13.04.2015 Views

Problem Set 7 12.742 Answer Key 1.a) U is conservative in ...

Problem Set 7 12.742 Answer Key 1.a) U is conservative in ...

Problem Set 7 12.742 Answer Key 1.a) U is conservative in ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Problem</strong> <strong>Set</strong> 7 <strong>12.742</strong> <strong>Answer</strong> <strong>Key</strong><br />

<strong>1.a</strong>)<br />

234 U <strong>is</strong> <strong>conservative</strong> <strong>in</strong> seawater we can calculate the expected flux of 230 Th at any<br />

depth based solely on our knowledge of the decay rate of 234 U and the depth of the water.<br />

At steady state the production rate of 230 Th must equal its loss rate. The production rate<br />

<strong>is</strong> equal to the decay of 234 U (or its activity), and the loss <strong>is</strong> equal to decay of 230 Th and<br />

the scaveng<strong>in</strong>g rate. The decay rate of 230 Th <strong>is</strong> much slower than the scaveng<strong>in</strong>g rate,<br />

therefore for 230 Th production equals scaveng<strong>in</strong>g, and the flux <strong>is</strong> simply equal to the<br />

depth times the production rate:<br />

Production = 234 A U<br />

=1.14 ∗ 238 A U<br />

( )<br />

Loss : 230 Th ∗ λ 230<br />

+ 230 Th∗ k scav<br />

= 230 Th λ 230<br />

+ k scav<br />

λ 230<br />

>decay,<br />

Production=Scaveng<strong>in</strong>g). Th<strong>is</strong> <strong>is</strong> aga<strong>in</strong> true for any model.


<strong>Problem</strong> <strong>Set</strong> 7 <strong>12.742</strong> <strong>Answer</strong> <strong>Key</strong><br />

Production Rate ∗ z<br />

[ particles]= ω<br />

ω = 1.14 ∗238 A U<br />

∗ λ 230<br />

∗z<br />

particles [ ]<br />

⎛<br />

ω⎜<br />

⎝<br />

m ⎞<br />

⎟ = 1.14 ∗2400dpm ∗ 9.24 ×10 −6 y −1 ∗ z<br />

m 3<br />

y⎠<br />

⎛<br />

[ particles] ⎜ dpm ⎞<br />

⎟<br />

⎝ m 3 ⎠<br />

⎛<br />

ω⎜<br />

⎝<br />

m ⎞ ⎛<br />

⎟ = 0.0253<br />

y<br />

dpm ⎞<br />

⎜<br />

⎠ ⎝ m 3 ⎟ ∗<br />

⋅ y⎠<br />

z<br />

particles<br />

⎛<br />

⎜<br />

[ ] ⎝<br />

m4 dpm<br />

To make sure that we get an accurate s<strong>in</strong>k<strong>in</strong>g rate (ω) let’s calculate the s<strong>in</strong>k<strong>in</strong>g rate a<br />

few different locations. One th<strong>in</strong>g I’ll po<strong>in</strong>t out here <strong>is</strong> when convert<strong>in</strong>g the particle<br />

concentrations from dpm/kg to dpm/m 3 we are talk<strong>in</strong>g about the density of 230 Th particles<br />

<strong>in</strong> the water column. Not the density of what <strong>is</strong> caught <strong>in</strong> the trap. We can pull th<strong>is</strong><br />

<strong>in</strong>formation of the total small particle concentration graph, then convert to dpm/m 3 us<strong>in</strong>g<br />

the trap <strong>in</strong>formation. Th<strong>is</strong> makes a huge difference! I’ve done the calculations <strong>in</strong> the<br />

excel spreadsheet. You can see that the s<strong>in</strong>k<strong>in</strong>g rate ranges from 42m/y at 300m to<br />

500m/y at 3700m. Then it drops lower <strong>in</strong> the deepest samples. Why <strong>is</strong> th<strong>is</strong>? Well, if we<br />

th<strong>in</strong>k about how 230 Th works it <strong>is</strong> really a deep water scaveng<strong>in</strong>g <strong>is</strong>otope – so it <strong>is</strong>n’t good<br />

for the upper water column. So, let’s not use the samples shallower than 1000 m. Then<br />

we have the deepest samples. All the Th that has been scavenged out of the ocean<br />

eventually ends up <strong>in</strong> the sediments, and can get stirred back up <strong>in</strong>to the bottom waters.<br />

So let’s not bother with the samples from the lowest depths (4500 and deeper) that are<br />

clearly <strong>in</strong>fluenced by the bottom. So we are left with the middle samples, and they have<br />

an average s<strong>in</strong>k<strong>in</strong>g rate of about 325 m/y.<br />

1.b) To estimate the forward and backward scaveng<strong>in</strong>g rates (k 1 and k -1 , respectively)<br />

we must use two <strong>is</strong>otopes. 230 Th and 228 Th are both affected by the same scaveng<strong>in</strong>g<br />

rates, because they are the same species, chemically. They are different only <strong>in</strong> terms of<br />

their decay constants. Therefore, we can set up scaveng<strong>in</strong>g equations for both <strong>is</strong>otopes<br />

that conta<strong>in</strong> k 1 and k -1 as the unknowns, and by comb<strong>in</strong><strong>in</strong>g the two equations solve for<br />

each of the constants. To start, set up the equations and solve each for k 1 :<br />

⎞<br />

⎟<br />


<strong>Problem</strong> <strong>Set</strong> 7 <strong>12.742</strong> <strong>Answer</strong> <strong>Key</strong><br />

Now, solve for k -1 :<br />

A 230 ( k<br />

Th(d) 1<br />

+ λ 230 )= P + k 230<br />

Th −1A 230<br />

Th(p)<br />

k 1<br />

>>> λ 230<br />

A 230<br />

Th(d) k 1<br />

= P 230<br />

Th + k −1A 230<br />

Th(p)<br />

k 1<br />

= P 230 Th + k −1A 230<br />

Th(p)<br />

A 230<br />

Th(d)<br />

A 228 ( k<br />

Th(d) 1<br />

+ λ 228 )= P + k 228<br />

Th −1A 228<br />

Th(p)<br />

k 1<br />

= P 228 Th + k −1A 228<br />

Th(p) − λ 228A 228<br />

Th(d)<br />

A 228<br />

Th(d)<br />

P 230<br />

Th<br />

A 230<br />

Th(d)<br />

+ k −1A 230<br />

Th(p)<br />

A 230<br />

Th(d)<br />

= P228 Th<br />

+ k −1A 228<br />

Th(p)<br />

− λ 228<br />

A 228 A<br />

Th(d)<br />

228<br />

Th(d)<br />

k −1<br />

A 230<br />

Th(p)<br />

A 230<br />

Th(d)<br />

− k −1A 228<br />

Th(p)<br />

A 228<br />

Th(d)<br />

= P228 Th<br />

− λ 228<br />

− P230 Th<br />

A 228 A<br />

Th(d)<br />

230<br />

Th(d)<br />

P 228<br />

Th<br />

A 228<br />

Th(d)<br />

k −1<br />

=<br />

− λ 228<br />

− P 230 Th<br />

A 230<br />

Th(d)<br />

A 230<br />

Th(p)<br />

A 230<br />

Th(d)<br />

− A 228 Th(p)<br />

A 228<br />

Th(d)<br />

Now, all we need to know are the activities of the def<strong>in</strong>ed species (from the table) and<br />

calculate the production rate of 228 Th (just like for 230 Th, but we us<strong>in</strong>g 228 Ra (d) as its<br />

parent). Th<strong>is</strong> <strong>is</strong> all calculated <strong>in</strong> the excel spreadsheet. To calculate k 1 we just plug and<br />

chug our value of k -1 <strong>in</strong>to the above equation(s). Aga<strong>in</strong>, th<strong>is</strong> <strong>is</strong> done <strong>in</strong> the excel<br />

spreadsheet. The answers are dependant upon which depths you use (as you can see from<br />

the spreadsheet), and I haven’t graded based on your numerical answer, rather on your<br />

methodology.<br />

1.c) Now we are deal<strong>in</strong>g with a system where the Th <strong>is</strong> scavenged onto small particles,<br />

but then the small particles aggregate <strong>in</strong>to large particles, and only the large particles<br />

s<strong>in</strong>k. Our equations are set just as they were previously, with production equal<strong>in</strong>g loss:


<strong>Problem</strong> <strong>Set</strong> 7 <strong>12.742</strong> <strong>Answer</strong> <strong>Key</strong><br />

Production = Loss<br />

dA D<br />

dt<br />

dA S<br />

dt<br />

= λ D<br />

A P<br />

− λA D<br />

− k 1<br />

A D<br />

+ k −1<br />

A S<br />

+ β −1<br />

A S<br />

= k 1<br />

A D<br />

+ β −2<br />

A L<br />

− k −1<br />

A S<br />

− β −1<br />

A S<br />

− β 2<br />

A S<br />

− λA S<br />

dA L<br />

dt<br />

= β 2<br />

A S<br />

− β −2<br />

A L<br />

− λA L<br />

−ω ∂A L<br />

∂z<br />

steady state : dA<br />

dt = 0<br />

λ D<br />

A P<br />

+ ( k −1<br />

+ β −1 )A S<br />

= ( λ + k 1 )A D<br />

k 1<br />

A D<br />

+ β −2<br />

A L<br />

= ( k −1<br />

+ β −1<br />

+ β 2<br />

+ λ)A S<br />

β 2<br />

A S<br />

= ( β −2<br />

+ λ)A L<br />

+ ω ∂A L<br />

∂z<br />

1.d) If β 2 and β- 2 are 3 y -1 and 150 y -1 , respectively, then particles must d<strong>is</strong>aggregate<br />

much faster than they aggregate. Th<strong>is</strong> <strong>in</strong>dicates that at any moment most of the particles<br />

are <strong>in</strong> the small form. By know<strong>in</strong>g these two values we are able to calculate the particle<br />

s<strong>in</strong>k<strong>in</strong>g rate, and thus the removal of organic matter from the ocean:<br />

β 2<br />

A S<br />

= ( β −2<br />

+ λ)A L<br />

+ ω ∂A L<br />

∂z<br />

ω = β A − β 2 S ( + λ −2 )A L<br />

∂A L<br />

∂z<br />

To understand how th<strong>is</strong> affects OM cycl<strong>in</strong>g let’s simplify and say that new production <strong>is</strong><br />

primarily fueled by the replen<strong>is</strong>h<strong>in</strong>g of nutrients through upwell<strong>in</strong>g of nutrient-rich deep<br />

water. Deep water nutrient concentrations are dependant upon the rem<strong>in</strong>eralization of<br />

s<strong>in</strong>k<strong>in</strong>g organic matter, and th<strong>is</strong> <strong>is</strong> dependant on the aggregation/d<strong>is</strong>aggregation rates of<br />

particles. Thus, on some long time scales, new production <strong>is</strong> dependant on the<br />

aggregation/d<strong>is</strong>aggregation rates of particles.<br />

2.a) Th<strong>is</strong> <strong>is</strong> another Th problem! Why so many Th problems? Because it an<br />

extremely useful element for measur<strong>in</strong>g ocean processes, not only are its <strong>is</strong>otopes <strong>in</strong> U/Th<br />

decay series, but they are particle reactive, and the different <strong>is</strong>otopes have a large range<br />

of decay rates, allow<strong>in</strong>g us to measure lots of different time scales. In th<strong>is</strong> case we are<br />

compar<strong>in</strong>g the relatively long-lived <strong>is</strong>otopes of 230 Th (t 1/2 = 75000y) to another particle<br />

reactive <strong>is</strong>otope, 231 Pa. Th <strong>is</strong> more susceptible to scaveng<strong>in</strong>g (more particle reactive) than<br />

Pa, therefore Th has a shorter residence time <strong>in</strong> the water column. Consequently, Pa <strong>is</strong><br />

more likely to be affected by advection then Th, and more of it can then be removed from<br />

the central gyre regions to areas of high scaveng<strong>in</strong>g rates (like the cont<strong>in</strong>ental marg<strong>in</strong>s).<br />

By compar<strong>in</strong>g these two <strong>is</strong>otopes <strong>in</strong> sediment traps we can get a handle on how much of<br />

each <strong>is</strong> vertically scavenged, laterally advected, and how well the sediment traps do <strong>in</strong><br />

captur<strong>in</strong>g fall<strong>in</strong>g OM.


<strong>Problem</strong> <strong>Set</strong> 7 <strong>12.742</strong> <strong>Answer</strong> <strong>Key</strong><br />

First, we need to calculate the amount of scaveneged Th and Pa the traps<br />

collected. To do th<strong>is</strong> we need to take the amount of each <strong>in</strong> the trap and subtract off the<br />

amount of Th and Pa present <strong>in</strong> secular equilibrium with their parent <strong>is</strong>otopes ( 234 U and<br />

235 U, respectively). We do th<strong>is</strong> because we are only <strong>in</strong>terested <strong>in</strong> the ‘excess’ Th and Pa<br />

– the equilibrium Th and Pa trapped <strong>in</strong> the m<strong>in</strong>eral matrix came from the decay of U<br />

trapped <strong>in</strong> the matrix, and was never d<strong>is</strong>solved <strong>in</strong> the ocean, and therefore was never<br />

scavenged. For Th, th<strong>is</strong> <strong>is</strong> easy, 238 U <strong>is</strong> give to us, so:<br />

Scavenged 230 Th = 3.00 dpm g − 0.20dpm g = 2.80dpm g<br />

In th<strong>is</strong> case we can assume that 234 U and 238 U are <strong>in</strong> secular equilibrium. If you make the<br />

calculations (as below for 235 U) us<strong>in</strong>g the crustal abundance you will f<strong>in</strong>d that 234 U =<br />

1.01* 238 U = 1.01*0.20 = 0.20 (the same with<strong>in</strong> the significant figures we have available<br />

to us).<br />

To calculate the 235 U <strong>in</strong> the trap we use the known 235 U/ 238 U ratio and the decay<br />

constants. The ratios given <strong>in</strong> the HBCP are atom ratios – so you can’t just multiply by<br />

the activities! (Note: 238 U <strong>is</strong> essentially 1, which <strong>is</strong> why I only used 0.0072. It <strong>is</strong> more<br />

rigorous <strong>is</strong> to use 0.0072/0.99275, but the answer <strong>is</strong> the same.)<br />

235 U 238 = 0.0072 (by atoms)<br />

U 235 A<br />

238 A = ⎛ λ ⎞ ⎛<br />

235<br />

⎜ ⎟ N ⎞ ⎛<br />

235<br />

9.85 ×10−10 ⎞<br />

⎜ ⎟ = ⎜<br />

⎟ 0.0072 = 0.046<br />

⎝ ⎠ ⎝ ⎠ ⎝ 1.551×10 −10<br />

⎠<br />

λ 238<br />

N 238<br />

235 A = 0.046 ∗ 235 A = 0.046 ∗ 0.20 dpm g = 9.15 ×10−3 dpm g<br />

And now we can calculate the scavenged 231 Pa:<br />

Scavenged 231 Pa = 0.125 dpm g − 9.15 ×10−3 dpm g = 0.1158dpm g<br />

S<strong>in</strong>ce the trap was deployed for one year, the fluxes of 230 Th and 231 Pa:<br />

Scavenged Flux = Amount Scavenged dpm 10.2<br />

⎛<br />

⎜<br />

⎞<br />

g ⎟<br />

y<br />

⎝ g<br />

×<br />

⎠ 0.5 m 2<br />

Scavenged Flux ( 230 Th) = 2.80 dpm g × 10.2 g y<br />

0.5 m 2 ≅ 57.1 dpm m 2 ⋅ y<br />

Scavenged Flux ( 231 Pa) = 0.1158 dpm g × 10.2 g y<br />

0.5 m 2 ≅ 2.36 dpm m 2 ⋅ y<br />

2.b)<br />

There are 4 equations that we can use to solve th<strong>is</strong> problem:


<strong>Problem</strong> <strong>Set</strong> 7 <strong>12.742</strong> <strong>Answer</strong> <strong>Key</strong><br />

P Th<br />

=V Th<br />

+H Th<br />

P Pa<br />

=V Pa<br />

+H Pa<br />

R V<br />

= V Th<br />

V Pa<br />

R H<br />

= H Th<br />

H Pa<br />

These equations are comb<strong>in</strong>ed to solve for the vertical fluxes as follows:<br />

(<br />

V Th<br />

= P Th<br />

-R H<br />

⋅ P Pa )R V<br />

R V<br />

− R H<br />

( )<br />

V Pa<br />

= P Th<br />

-R H<br />

⋅ P Pa<br />

R V<br />

− R H<br />

R H<br />

= 2<br />

R V<br />

= V Th<br />

V Pa<br />

= 57<br />

2.36 ≈ 24<br />

P Th<br />

= λ 230<br />

∗ A 234<br />

U = 9.22 ×10−6 y −1 ∗2.75 dpm L 103 L<br />

m<br />

3<br />

( ) = 2.52 ×10−2 dpm m 3 y<br />

P Pa<br />

= λ 231<br />

∗ A = 2.13 235<br />

U ×10−5 y −1 ∗0.108 dpm L 103 L<br />

( m<br />

3) = 2.30 dpm ×10−3 m 3 y<br />

⎛<br />

2.52 ×10 −2 dpm m 3 y − 2⋅ 2.30 dpm ⎞<br />

⎜<br />

×10−3 m 3 ⎟ ∗24<br />

⎝<br />

y⎠<br />

V Th<br />

=<br />

= 2.25 ×10 −2 dpm 24 − 2<br />

m 3 y<br />

⎛<br />

2.52 ×10 −2 dpm m 3 y − 2 ⋅ 2.30 dpm ⎞<br />

⎜<br />

×10−3 m 3 ⎟<br />

⎝<br />

y⎠<br />

V Pa<br />

=<br />

= 9.36 ×10 −4 dpm 24 − 2<br />

m 3 y<br />

The production (P) of thorium and protact<strong>in</strong>ium <strong>is</strong> not a flux – it <strong>is</strong> a concentration per<br />

unit time. You then need to use the depth of the trap to determ<strong>in</strong>e the V values, but the P<br />

values are technically not fluxes. It works out ok here, because th<strong>in</strong>gs cancel, but <strong>in</strong><br />

many other cases you do not want to multiply by depth unless you are calculat<strong>in</strong>g a flux.<br />

The fraction of each <strong>is</strong>otope removed by vertical flux and the fraction removed by lateral<br />

transport are as follows:


<strong>Problem</strong> <strong>Set</strong> 7 <strong>12.742</strong> <strong>Answer</strong> <strong>Key</strong><br />

f 230<br />

= V 2.25 ×10 −2 dpm<br />

Th<br />

m 3 y<br />

=<br />

P Th 2.52 ×10 −2 dpm = 0.89<br />

m 3 y<br />

f 231<br />

= V 9.36 ×10 −4 dpm<br />

Pa<br />

m 3 y<br />

=<br />

P Pa 2.33×10 −3 dpm = 0.40<br />

m 3 y<br />

The Th removal by vertical flux <strong>is</strong> 89% and by lateral <strong>is</strong> 11%. The Pa removal by<br />

vertical flux <strong>is</strong> 40% and by lateral <strong>is</strong> 60%.<br />

2.c)<br />

The trapp<strong>in</strong>g efficiency of the sediment trap <strong>is</strong> calculated as:<br />

E= F V<br />

Flux from sediment trap<br />

F=<br />

depth of sediment trap<br />

E Th<br />

= F 57.1<br />

Th<br />

= 3000 = 0.84<br />

−2<br />

V Th<br />

2.24 ×10<br />

E Pa<br />

= F 2.36<br />

Pa<br />

= 3000 = 0.84<br />

−4<br />

V Pa<br />

9.33×10<br />

S<strong>in</strong>ce the trap <strong>is</strong> collects 84% of the vertical flux, then we know that the actual amount of<br />

material fall<strong>in</strong>g at 3000 m <strong>is</strong>:<br />

Flux collected <strong>in</strong> trap = Acutal Flux∗ Trapp<strong>in</strong>g Efficiency<br />

10.2 g y<br />

Actual Flux = ÷ 0.84 ≅ 24 g 0.5 m 2 y⋅ m 2<br />

3.a) DIC <strong>in</strong>creases as a water mass ages, both from the rem<strong>in</strong>eralization of OM and<br />

the d<strong>is</strong>solution of calcium carbonate. These two process differ <strong>in</strong> that rem<strong>in</strong>eralization<br />

typically requires the consumption of O 2 (except <strong>in</strong> anoxic water parcels) and d<strong>is</strong>solution<br />

of CaCO 3 does not. Also, CaCO 3 d<strong>is</strong>solution <strong>in</strong>creases the alkal<strong>in</strong>ity of the water parcel,<br />

and OM rem<strong>in</strong>eralization does not. These differences allows us calculate the DIC from<br />

rem<strong>in</strong>eralization of OM and from the d<strong>is</strong>solution of CaCO 3 .<br />

The Apparent Oxygen Utilization (AOU) <strong>is</strong> used with the Normal Atmospheric<br />

Equilibrium Concentration (NAEC) to stoichiometrically calculate the OC rem<strong>in</strong>eralized:


<strong>Problem</strong> <strong>Set</strong> 7 <strong>12.742</strong> <strong>Answer</strong> <strong>Key</strong><br />

AOU = NAEC - [ O 2 ] <strong>in</strong> situ<br />

AOU = 331.8 μmol kg − 250μmol kg = 81.8μmol kg<br />

⎛<br />

OC rem<strong>in</strong>. = AOU × C ⎞<br />

⎜ ⎟<br />

⎝ O 2 ⎠<br />

Redfield<br />

OC rem<strong>in</strong>.= 81.8 μmol kg × ⎛ 117 ⎞<br />

⎜ ⎟ ≈ 56 μmol ⎝ 170⎠<br />

kg<br />

To calculate the number of moles of CaCO 3 rem<strong>in</strong>eralized we can use the<br />

relationship between CaCO 3 d<strong>is</strong>solution and alkal<strong>in</strong>ity: for 1 mole of CO 3 2- added to the<br />

water from CaCO 3 , 2 moles of alkal<strong>in</strong>ity are added.<br />

CaCO 3<br />

d<strong>is</strong>solved = 1 2 ( CA meas<br />

-CA pref )<br />

CA = [HCO 3 - ] +2[CO 3 2- ]<br />

TA = [HCO 3 - ] +2[CO 3 2- ] +[OH - ] +[B(OH) 4 - ] -[H + ] +m<strong>in</strong>or species<br />

( )<br />

CA pref<br />

= TA pref<br />

− [OH - ] +[B(OH) 4 - ] -[H + ]<br />

pH = 8.2, S = 35‰ :<br />

TA pref<br />

= 547.05 + ( 50.56 × S)= 2316.7 μmol kg<br />

[H + ]=10 -8.2 mol kg<br />

[OH - ]=10 -5.8 mol kg<br />

[B(OH) 4 - ] = K B<br />

∗11.9 ×10 −6 ∗ S<br />

K B<br />

+ [H + ]<br />

= 10−8.91 ⋅10 −8.91 ⋅ 35<br />

10 −8.91 +10 −8.2 = 66.1 μmol kg<br />

CA pref<br />

= 2316.7 μmol kg −10-5.8 mol kg<br />

− 66.1 μmol kg +10-8.2 mol kg<br />

= 2249 μmol kg<br />

CaCO 3<br />

d<strong>is</strong>solved = 1 ⎛<br />

⎜ 2<br />

2300 μmol ⎝ kg − 2249μmol ⎞<br />

⎟<br />

kg<br />

≈ 25 μmol ⎠ kg<br />

3.b) To calculate the preformed nutrient we use the AOU and Redfield ratios to<br />

determ<strong>in</strong>e the nutrients produced through OM rem<strong>in</strong>eralization, and then subtract those<br />

numbers from the measured (<strong>in</strong> situ) concentrations. For DIC we do basically the same<br />

th<strong>in</strong>g, but we also have to account for the DIC added dur<strong>in</strong>g CaCO 3 d<strong>is</strong>solution.


<strong>Problem</strong> <strong>Set</strong> 7 <strong>12.742</strong> <strong>Answer</strong> <strong>Key</strong><br />

⎛<br />

NO - 3<br />

recycled = AOU × N ⎞<br />

⎜ ⎟<br />

⎝ O 2 ⎠<br />

Redfield<br />

NO - 3<br />

recycled = 81.8 μmol kg × ⎛ 16 ⎞<br />

⎜ ⎟ = 7.7 μmolN ⎝ 170⎠<br />

kg<br />

NO - 3<br />

preformed = 21.5 μmol kg − 7.7μmol kg =13.8μmol kg<br />

⎛<br />

PO 3- 4<br />

recycled = AOU × P ⎞<br />

⎜ ⎟<br />

⎝ O 2 ⎠<br />

Redfield<br />

PO 3- 4<br />

recycled = 81.8 μmol kg × ⎛ 1 ⎞<br />

⎜ ⎟ = 0.48 μmolP ⎝ 170⎠<br />

kg<br />

PO 3- 4<br />

preformed =1.45 μmol kg − 0.48μmol kg = 0.97μmol kg<br />

DIC preformed = DIC meas<br />

- DIC OM<br />

− DIC CaCO3<br />

DIC preformed = 2180 μmol kg − 56μmol kg − 25μmol kg ≈ 2100μmol kg<br />

3.c) The Ca 2+ added from CaCO 3 d<strong>is</strong>solution <strong>is</strong> only a small addition to the total Ca 2+<br />

present <strong>in</strong> seawater. Ca 2+ <strong>is</strong> <strong>conservative</strong> <strong>in</strong> seawater at ~10mmol/kg. Therefore, the<br />

<strong>in</strong>crease of 25µmol/kg only represents a change of ~0.25%.<br />

3.d) In order to use up the rema<strong>in</strong><strong>in</strong>g O 2 , the amount of OC we will need to<br />

rem<strong>in</strong>eralize will be (assum<strong>in</strong>g perfect Redfield stoichiometry):<br />

⎛ ⎞<br />

⎟<br />

⎝ 170⎠<br />

[ C org ]= ⎜<br />

117<br />

Redfield<br />

∗ 250 μmol O 2<br />

kg<br />

=172 μmol C org<br />

kg<br />

3.e) To deplete the rema<strong>in</strong><strong>in</strong>g nitrate we can do the same th<strong>in</strong>g. But before we start<br />

multiply<strong>in</strong>g by ratios – what <strong>is</strong> the rema<strong>in</strong><strong>in</strong>g NO - 3 ? It <strong>is</strong> very important to remember that<br />

the oxic rem<strong>in</strong>eralization of OM <strong>in</strong> part d also generated NO - 3 . How much?<br />

⎛ ⎞<br />

⎟<br />

⎝ 170⎠<br />

−<br />

[ NO 3 ] = 16<br />

added<br />

⎜<br />

Redfield<br />

∗ 250 μmol O 2<br />

kg<br />

= 23.5 μmol C org<br />

kg<br />

−<br />

−<br />

−<br />

[ NO 3 ] = NO 3 rema<strong>in</strong><strong>in</strong>g<br />

[ ] + NO 3 measured<br />

[ ] = 21.5 + 23.5 = 45 μmol<br />

added kg<br />

Now to determ<strong>in</strong>e the appropriate ratio for denitrification. We are only consider<strong>in</strong>g<br />

carbohydrates, so that certa<strong>in</strong>ly makes life easier. The equation we need to use will be:<br />

10CH 2 O + 8HNO 3 ⇔ 10CO 2 + 4N 2 + 14H 2 O<br />

⎛ 10 mol C⎞<br />

OC oxidized by denitrification = ⎜ ⎟ × 45 μmolN ⎝ 8 mol N ⎠ kg = 56.3μmolC kg


<strong>Problem</strong> <strong>Set</strong> 7 <strong>12.742</strong> <strong>Answer</strong> <strong>Key</strong><br />

However, we know that organic matter <strong>is</strong>, on average, more reduced than a simple<br />

carbohydrate. If the molecular formula <strong>is</strong> changed to CH 2.72 O to reflect th<strong>is</strong> we have the<br />

equation:<br />

10CH 2.72 O + 9.44HNO 3 ⇔ 10CO 2 + 4.72N 2 + 18.32H 2 O<br />

⎛ 10 mol C ⎞<br />

OC oxidized by denitrification = ⎜ ⎟ × 45 μmolN ⎝ 9.44 mol N⎠<br />

kg = 47.7μmolC kg<br />

The amount of OC required to deplete all the NO 3 - thus decreases. Th<strong>is</strong> shouldn’t be a<br />

surpr<strong>is</strong>e, s<strong>in</strong>ce the OC <strong>is</strong> more reduced each molecule requires more of the oxidant (<strong>in</strong><br />

th<strong>is</strong> case NO 3 - ) for full oxidation.<br />

COMMON ERRORS ON Q3:<br />

CA preformed = TA preformed<br />

Th<strong>is</strong> <strong>is</strong> a bad assumption <strong>in</strong> th<strong>is</strong> case! If we make th<strong>is</strong> assumption then CA pref ><br />

CA meas , <strong>in</strong>dicat<strong>in</strong>g CaCO 3 precipitation. Remember – th<strong>is</strong> water parcel <strong>is</strong> deep water –<br />

there <strong>is</strong> no CaCO 3 formation go<strong>in</strong>g on s<strong>in</strong>ce it has left the surface, and probably only<br />

d<strong>is</strong>solution (pH drops).<br />

DIC pref = DIC meas + DIC Corg + DIC CaCO3<br />

Th<strong>is</strong> statement <strong>is</strong> entirely false. To account for the rem<strong>in</strong>eralization of OC and<br />

the d<strong>is</strong>solution of CaCO 3 these terms must be subtracted from the measured<br />

concentration. (However, if you made the CA=TA error I did accept a +DIC CaCO3<br />

because it <strong>in</strong>correctly calculates to an subtraction of DIC from the preformed<br />

concentration.)<br />

The last question I read <strong>in</strong>correctly while grad<strong>in</strong>g, so there are some scribbles at the<br />

bottom of some of your pages. Sorry about that!

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!