19.04.2015 Views

Finite-temperature Field Theory - Theoretical Physics (TIFR)

Finite-temperature Field Theory - Theoretical Physics (TIFR)

Finite-temperature Field Theory - Theoretical Physics (TIFR)

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Finite</strong>-<strong>temperature</strong> <strong>Field</strong> <strong>Theory</strong><br />

Aleksi Vuorinen<br />

CERN<br />

Initial Conditions in Heavy Ion Collisions<br />

Goa, India, September 2008<br />

logo<br />

Aleksi Vuorinen, CERN<br />

<strong>Finite</strong>-<strong>temperature</strong> <strong>Field</strong> <strong>Theory</strong>


Basics of Statistical <strong>Physics</strong> and Thermodynamics<br />

Scalar fields at finite <strong>temperature</strong><br />

Interacting scalar fields<br />

Why is finite T /µ physics (≈ QCD) interesting?<br />

High energy physics applications<br />

◮ Heavy ion experiments ⇒ Need<br />

quantitive understanding of<br />

non-Abelian plasmas at<br />

◮ High T and small/moderate µ<br />

◮ Moderately large couplings<br />

◮ In and (especially) out of<br />

equilibrium<br />

◮ Early universe thermodynamics<br />

◮ Signatures of phase transitions<br />

◮ EW baryogenesis<br />

◮ Cosmic relics<br />

◮ Neutron star cores<br />

logo<br />

Aleksi Vuorinen, CERN<br />

<strong>Finite</strong>-<strong>temperature</strong> <strong>Field</strong> <strong>Theory</strong>


Basics of Statistical <strong>Physics</strong> and Thermodynamics<br />

Scalar fields at finite <strong>temperature</strong><br />

Interacting scalar fields<br />

In these lectures we will, however, only cover the very basics of<br />

finite-T formalism, restricting ourselves to<br />

◮ Equilibrium physics — imaginary-time formalism<br />

◮ Purely perturbative tools<br />

For other approaches/setups, see in particular Guy Moore’s<br />

lectures...<br />

logo<br />

Aleksi Vuorinen, CERN<br />

<strong>Finite</strong>-<strong>temperature</strong> <strong>Field</strong> <strong>Theory</strong>


Basics of Statistical <strong>Physics</strong> and Thermodynamics<br />

Scalar fields at finite <strong>temperature</strong><br />

Interacting scalar fields<br />

Plan of the lectures<br />

◮ Lecture 1: Basic tools in finite-<strong>temperature</strong> field theory<br />

◮ Reminder of statistical physics<br />

◮ Scalar field theories and equilibrium thermodynamics<br />

◮ Interacting scalar fields at T ≠ 0: λϕ 4 theory<br />

◮ Lecture 2: Gauge field theories and linear response<br />

◮ More tools for finite-<strong>temperature</strong> calculations<br />

◮ Gauge symmetry, QED and QCD<br />

◮ Linear response theory<br />

◮ Lecture 3: Special applications in QCD<br />

◮ Phases of hot and dense QCD<br />

◮ The IR problem<br />

◮ Dimensional reduction and high-T effective theories<br />

logo<br />

Aleksi Vuorinen, CERN<br />

<strong>Finite</strong>-<strong>temperature</strong> <strong>Field</strong> <strong>Theory</strong>


Basics of Statistical <strong>Physics</strong> and Thermodynamics<br />

Scalar fields at finite <strong>temperature</strong><br />

Interacting scalar fields<br />

Some useful reading<br />

Material used in preparing these lectures:<br />

◮ J. Kapusta, <strong>Finite</strong>-<strong>temperature</strong> field theory<br />

◮ M. Le Bellac, Thermal field theory<br />

◮ A. Rebhan, Thermal gauge field theories, hep-ph/0105183<br />

◮ D. Rischke, Quark-gluon plasma in equilibrium,<br />

nucl-th/0305030<br />

◮ ...<br />

logo<br />

Aleksi Vuorinen, CERN<br />

<strong>Finite</strong>-<strong>temperature</strong> <strong>Field</strong> <strong>Theory</strong>


Basics of Statistical <strong>Physics</strong> and Thermodynamics<br />

Scalar fields at finite <strong>temperature</strong><br />

Interacting scalar fields<br />

Outline<br />

Basics of Statistical <strong>Physics</strong> and Thermodynamics<br />

Statistical QM<br />

Simple examples<br />

Scalar fields at finite <strong>temperature</strong><br />

Partition function for scalar field theory<br />

Non-interacting examples<br />

Interacting scalar fields<br />

Feynman rules at finite <strong>temperature</strong><br />

Thermodynamics of ϕ 4 theory<br />

logo<br />

Aleksi Vuorinen, CERN<br />

<strong>Finite</strong>-<strong>temperature</strong> <strong>Field</strong> <strong>Theory</strong>


Basics of Statistical <strong>Physics</strong> and Thermodynamics<br />

Scalar fields at finite <strong>temperature</strong><br />

Interacting scalar fields<br />

Statistical QM<br />

Simple examples<br />

Outline<br />

Basics of Statistical <strong>Physics</strong> and Thermodynamics<br />

Statistical QM<br />

Simple examples<br />

Scalar fields at finite <strong>temperature</strong><br />

Partition function for scalar field theory<br />

Non-interacting examples<br />

Interacting scalar fields<br />

Feynman rules at finite <strong>temperature</strong><br />

Thermodynamics of ϕ 4 theory<br />

logo<br />

Aleksi Vuorinen, CERN<br />

<strong>Finite</strong>-<strong>temperature</strong> <strong>Field</strong> <strong>Theory</strong>


Basics of Statistical <strong>Physics</strong> and Thermodynamics<br />

Scalar fields at finite <strong>temperature</strong><br />

Interacting scalar fields<br />

Statistical QM<br />

Simple examples<br />

Grand canonical ensemble<br />

◮ Assume system that is free to exchange both energy and<br />

particles with a reservoir<br />

◮ ”Grand canonical ensemble”<br />

◮ System described by <strong>temperature</strong> T and chemical<br />

potentials µ i<br />

◮ Basic operator statistical density matrix ˆρ<br />

[<br />

]<br />

ˆρ ≡ Z −1 exp −β(Ĥ − µ ˆN i<br />

} {{ } i ) ,<br />

≡ ¯H<br />

〈Â〉 = Tr[ˆρÂ]<br />

◮<br />

β = 1/T and µ Lagrangian multipliers ensuring<br />

conservation of E and N i<br />

logo<br />

Aleksi Vuorinen, CERN<br />

<strong>Finite</strong>-<strong>temperature</strong> <strong>Field</strong> <strong>Theory</strong>


Basics of Statistical <strong>Physics</strong> and Thermodynamics<br />

Scalar fields at finite <strong>temperature</strong><br />

Interacting scalar fields<br />

Statistical QM<br />

Simple examples<br />

Grand canonical ensemble<br />

◮ Assume system that is free to exchange both energy and<br />

particles with a reservoir<br />

◮ ”Grand canonical ensemble”<br />

◮ System described by <strong>temperature</strong> T and chemical<br />

potentials µ i<br />

◮ Basic operator statistical density matrix ˆρ<br />

[<br />

]<br />

ˆρ ≡ Z −1 exp −β(Ĥ − µ ˆN i<br />

} {{ } i ) ,<br />

≡ ¯H<br />

〈Â〉 = Tr[ˆρÂ]<br />

◮<br />

β = 1/T and µ Lagrangian multipliers ensuring<br />

conservation of E and N i<br />

logo<br />

Aleksi Vuorinen, CERN<br />

<strong>Finite</strong>-<strong>temperature</strong> <strong>Field</strong> <strong>Theory</strong>


Basics of Statistical <strong>Physics</strong> and Thermodynamics<br />

Scalar fields at finite <strong>temperature</strong><br />

Interacting scalar fields<br />

Statistical QM<br />

Simple examples<br />

◮ Most important quantity in equilibrium thermodynamics:<br />

The partition function Z<br />

Z (V , T , µ i ) = Tr e −β ¯H = ∑ i<br />

〈i|e −β ¯H|i〉 = ∑ e −βE i<br />

◮ Several thermodynamic quantities available through<br />

derivatives of Z (due to above relation for expectation<br />

values)<br />

p = −Ω/V = 1<br />

βV ln Z ,<br />

N i = 1 V 〈 ˆN i 〉 = ∂P<br />

∂µ i<br />

ε = 1 V 〈Ĥ〉 = − 1 V<br />

∂ln Z<br />

∂β<br />

logo<br />

Aleksi Vuorinen, CERN<br />

<strong>Finite</strong>-<strong>temperature</strong> <strong>Field</strong> <strong>Theory</strong>


Basics of Statistical <strong>Physics</strong> and Thermodynamics<br />

Scalar fields at finite <strong>temperature</strong><br />

Interacting scalar fields<br />

Statistical QM<br />

Simple examples<br />

◮ Most important quantity in equilibrium thermodynamics:<br />

The partition function Z<br />

Z (V , T , µ i ) = Tr e −β ¯H = ∑ i<br />

〈i|e −β ¯H|i〉 = ∑ e −βE i<br />

◮ Several thermodynamic quantities available through<br />

derivatives of Z (due to above relation for expectation<br />

values)<br />

p = −Ω/V = 1<br />

βV ln Z ,<br />

N i = 1 V 〈 ˆN i 〉 = ∂P<br />

∂µ i<br />

ε = 1 V 〈Ĥ〉 = − 1 V<br />

∂ln Z<br />

∂β<br />

logo<br />

Aleksi Vuorinen, CERN<br />

<strong>Finite</strong>-<strong>temperature</strong> <strong>Field</strong> <strong>Theory</strong>


Basics of Statistical <strong>Physics</strong> and Thermodynamics<br />

Scalar fields at finite <strong>temperature</strong><br />

Interacting scalar fields<br />

Statistical QM<br />

Simple examples<br />

s = S/V = 1 V 〈−lnˆρ〉 = 1 V ln Z + β V 〈Ĥ − µ i ˆN i 〉<br />

= ∂P<br />

∂T = β(P + ε − µ iN i )<br />

◮ Finally obtain energy through other quantities as<br />

E = −PV + TS + µ i N i<br />

◮ Important to note: Thermodynamic pressure =<br />

hydrodynamics pressure = 1 3 〈T ii 〉<br />

logo<br />

Aleksi Vuorinen, CERN<br />

<strong>Finite</strong>-<strong>temperature</strong> <strong>Field</strong> <strong>Theory</strong>


Basics of Statistical <strong>Physics</strong> and Thermodynamics<br />

Scalar fields at finite <strong>temperature</strong><br />

Interacting scalar fields<br />

Statistical QM<br />

Simple examples<br />

s = S/V = 1 V 〈−lnˆρ〉 = 1 V ln Z + β V 〈Ĥ − µ i ˆN i 〉<br />

= ∂P<br />

∂T = β(P + ε − µ iN i )<br />

◮ Finally obtain energy through other quantities as<br />

E = −PV + TS + µ i N i<br />

◮ Important to note: Thermodynamic pressure =<br />

hydrodynamics pressure = 1 3 〈T ii 〉<br />

logo<br />

Aleksi Vuorinen, CERN<br />

<strong>Finite</strong>-<strong>temperature</strong> <strong>Field</strong> <strong>Theory</strong>


Basics of Statistical <strong>Physics</strong> and Thermodynamics<br />

Scalar fields at finite <strong>temperature</strong><br />

Interacting scalar fields<br />

Statistical QM<br />

Simple examples<br />

s = S/V = 1 V 〈−lnˆρ〉 = 1 V ln Z + β V 〈Ĥ − µ i ˆN i 〉<br />

= ∂P<br />

∂T = β(P + ε − µ iN i )<br />

◮ Finally obtain energy through other quantities as<br />

E = −PV + TS + µ i N i<br />

◮ Important to note: Thermodynamic pressure =<br />

hydrodynamics pressure = 1 3 〈T ii 〉<br />

logo<br />

Aleksi Vuorinen, CERN<br />

<strong>Finite</strong>-<strong>temperature</strong> <strong>Field</strong> <strong>Theory</strong>


Basics of Statistical <strong>Physics</strong> and Thermodynamics<br />

Scalar fields at finite <strong>temperature</strong><br />

Interacting scalar fields<br />

Statistical QM<br />

Simple examples<br />

QM harmonic oscillator<br />

Use energy basis to obtain (in canonical ensemble):<br />

logo<br />

Aleksi Vuorinen, CERN<br />

<strong>Finite</strong>-<strong>temperature</strong> <strong>Field</strong> <strong>Theory</strong>


Basics of Statistical <strong>Physics</strong> and Thermodynamics<br />

Scalar fields at finite <strong>temperature</strong><br />

Interacting scalar fields<br />

Statistical QM<br />

Simple examples<br />

One degree of freedom<br />

◮ Consider one state system with E = ω, and ignore zero<br />

point energy<br />

Ĥ | n〉 = ω ˆN | n〉 = n ω | n〉<br />

◮ For bosons/fermions with chemical potential µ, obtain<br />

∞∑<br />

Z b = Tr e −β(ω−µ) ˆN = 〈n | e −β(ω−µ) ˆN 1<br />

| n〉 =<br />

1 − e ,<br />

−β(ω−µ)<br />

Z f = Tr e −β(ω−µ) ˆN =<br />

n=1<br />

1∑<br />

〈n | e −β(ω−µ) ˆN | n〉 = 1 + e −β(ω−µ)<br />

n=1<br />

◮ Taking derivatives...<br />

N b =<br />

1<br />

e β(ω−µ) − 1 , E b = ωN b<br />

N f =<br />

1<br />

e β(ω−µ) + 1 , E f = ωN f<br />

logo<br />

Aleksi Vuorinen, CERN<br />

<strong>Finite</strong>-<strong>temperature</strong> <strong>Field</strong> <strong>Theory</strong>


Basics of Statistical <strong>Physics</strong> and Thermodynamics<br />

Scalar fields at finite <strong>temperature</strong><br />

Interacting scalar fields<br />

Statistical QM<br />

Simple examples<br />

One degree of freedom<br />

◮ Consider one state system with E = ω, and ignore zero<br />

point energy<br />

Ĥ | n〉 = ω ˆN | n〉 = n ω | n〉<br />

◮ For bosons/fermions with chemical potential µ, obtain<br />

∞∑<br />

Z b = Tr e −β(ω−µ) ˆN = 〈n | e −β(ω−µ) ˆN 1<br />

| n〉 =<br />

1 − e ,<br />

−β(ω−µ)<br />

Z f = Tr e −β(ω−µ) ˆN =<br />

n=1<br />

1∑<br />

〈n | e −β(ω−µ) ˆN | n〉 = 1 + e −β(ω−µ)<br />

n=1<br />

◮ Taking derivatives...<br />

N b =<br />

1<br />

e β(ω−µ) − 1 , E b = ωN b<br />

N f =<br />

1<br />

e β(ω−µ) + 1 , E f = ωN f<br />

logo<br />

Aleksi Vuorinen, CERN<br />

<strong>Finite</strong>-<strong>temperature</strong> <strong>Field</strong> <strong>Theory</strong>


Basics of Statistical <strong>Physics</strong> and Thermodynamics<br />

Scalar fields at finite <strong>temperature</strong><br />

Interacting scalar fields<br />

Statistical QM<br />

Simple examples<br />

One degree of freedom<br />

◮ Consider one state system with E = ω, and ignore zero<br />

point energy<br />

Ĥ | n〉 = ω ˆN | n〉 = n ω | n〉<br />

◮ For bosons/fermions with chemical potential µ, obtain<br />

∞∑<br />

Z b = Tr e −β(ω−µ) ˆN = 〈n | e −β(ω−µ) ˆN 1<br />

| n〉 =<br />

1 − e ,<br />

−β(ω−µ)<br />

Z f = Tr e −β(ω−µ) ˆN =<br />

n=1<br />

1∑<br />

〈n | e −β(ω−µ) ˆN | n〉 = 1 + e −β(ω−µ)<br />

n=1<br />

◮ Taking derivatives...<br />

N b =<br />

1<br />

e β(ω−µ) − 1 , E b = ωN b<br />

N f =<br />

1<br />

e β(ω−µ) + 1 , E f = ωN f<br />

logo<br />

Aleksi Vuorinen, CERN<br />

<strong>Finite</strong>-<strong>temperature</strong> <strong>Field</strong> <strong>Theory</strong>


Basics of Statistical <strong>Physics</strong> and Thermodynamics<br />

Scalar fields at finite <strong>temperature</strong><br />

Interacting scalar fields<br />

Partition function for scalar field theory<br />

Non-interacting examples<br />

Outline<br />

Basics of Statistical <strong>Physics</strong> and Thermodynamics<br />

Statistical QM<br />

Simple examples<br />

Scalar fields at finite <strong>temperature</strong><br />

Partition function for scalar field theory<br />

Non-interacting examples<br />

Interacting scalar fields<br />

Feynman rules at finite <strong>temperature</strong><br />

Thermodynamics of ϕ 4 theory<br />

logo<br />

Aleksi Vuorinen, CERN<br />

<strong>Finite</strong>-<strong>temperature</strong> <strong>Field</strong> <strong>Theory</strong>


Basics of Statistical <strong>Physics</strong> and Thermodynamics<br />

Scalar fields at finite <strong>temperature</strong><br />

Interacting scalar fields<br />

Partition function for scalar field theory<br />

Non-interacting examples<br />

Partition function<br />

◮ Consider real scalar field theory with no chemical<br />

potentials<br />

∫ ∫<br />

S = dt d 3 xL,<br />

L = 1 2<br />

{<br />

(∂ t φ) 2 − (∂ i φ) 2 } − V (φ)<br />

◮ To obtain equilibrium thermodynamics, want to compute<br />

partition function<br />

∫<br />

Z = Dφ〈φ | e −βĤ | φ〉<br />

logo<br />

Aleksi Vuorinen, CERN<br />

<strong>Finite</strong>-<strong>temperature</strong> <strong>Field</strong> <strong>Theory</strong>


Basics of Statistical <strong>Physics</strong> and Thermodynamics<br />

Scalar fields at finite <strong>temperature</strong><br />

Interacting scalar fields<br />

Partition function for scalar field theory<br />

Non-interacting examples<br />

Partition function<br />

◮ Consider real scalar field theory with no chemical<br />

potentials<br />

∫ ∫<br />

S = dt d 3 xL,<br />

L = 1 2<br />

{<br />

(∂ t φ) 2 − (∂ i φ) 2 } − V (φ)<br />

◮ To obtain equilibrium thermodynamics, want to compute<br />

partition function<br />

∫<br />

Z = Dφ〈φ | e −βĤ | φ〉<br />

logo<br />

Aleksi Vuorinen, CERN<br />

<strong>Finite</strong>-<strong>temperature</strong> <strong>Field</strong> <strong>Theory</strong>


Basics of Statistical <strong>Physics</strong> and Thermodynamics<br />

Scalar fields at finite <strong>temperature</strong><br />

Interacting scalar fields<br />

Partition function for scalar field theory<br />

Non-interacting examples<br />

◮ Recall path integral for transition amplitudes in QFT:<br />

〈φ b (x) | e −iĤ(t 1−t 0 ) | φ a (x)〉<br />

∫ [ ∫ t1<br />

∫ ]<br />

= N Dϕ exp i dt d 3 x L<br />

t 0<br />

ϕ(t 0 ,x)=φa(x)<br />

ϕ(t 1 ,x)=φ b (x)<br />

◮ For thermodynamic purposes, set t 0 = t 1 , t → −iτ:<br />

∫ β−it0 ∫<br />

iS → − dτ d d xL E ,<br />

L E = 1 2<br />

−it 0<br />

{<br />

(∂ t ϕ) 2 + (∂ i ϕ) 2 } + V (ϕ)<br />

◮ Finally, taking the trace...<br />

∫<br />

[<br />

Z = N Dϕ exp<br />

periodic<br />

∫ β−it0 ∫<br />

− dτ<br />

−it 0<br />

d d xL E<br />

]<br />

logo<br />

Aleksi Vuorinen, CERN<br />

<strong>Finite</strong>-<strong>temperature</strong> <strong>Field</strong> <strong>Theory</strong>


Basics of Statistical <strong>Physics</strong> and Thermodynamics<br />

Scalar fields at finite <strong>temperature</strong><br />

Interacting scalar fields<br />

Partition function for scalar field theory<br />

Non-interacting examples<br />

◮ Recall path integral for transition amplitudes in QFT:<br />

〈φ b (x) | e −iĤ(t 1−t 0 ) | φ a (x)〉<br />

∫ [ ∫ t1<br />

∫ ]<br />

= N Dϕ exp i dt d 3 x L<br />

t 0<br />

ϕ(t 0 ,x)=φa(x)<br />

ϕ(t 1 ,x)=φ b (x)<br />

◮ For thermodynamic purposes, set t 0 = t 1 , t → −iτ:<br />

∫ β−it0 ∫<br />

iS → − dτ d d xL E ,<br />

L E = 1 2<br />

−it 0<br />

{<br />

(∂ t ϕ) 2 + (∂ i ϕ) 2 } + V (ϕ)<br />

◮ Finally, taking the trace...<br />

∫<br />

[<br />

Z = N Dϕ exp<br />

periodic<br />

∫ β−it0 ∫<br />

− dτ<br />

−it 0<br />

d d xL E<br />

]<br />

logo<br />

Aleksi Vuorinen, CERN<br />

<strong>Finite</strong>-<strong>temperature</strong> <strong>Field</strong> <strong>Theory</strong>


Basics of Statistical <strong>Physics</strong> and Thermodynamics<br />

Scalar fields at finite <strong>temperature</strong><br />

Interacting scalar fields<br />

Partition function for scalar field theory<br />

Non-interacting examples<br />

◮ Recall path integral for transition amplitudes in QFT:<br />

〈φ b (x) | e −iĤ(t 1−t 0 ) | φ a (x)〉<br />

∫ [ ∫ t1<br />

∫ ]<br />

= N Dϕ exp i dt d 3 x L<br />

t 0<br />

ϕ(t 0 ,x)=φa(x)<br />

ϕ(t 1 ,x)=φ b (x)<br />

◮ For thermodynamic purposes, set t 0 = t 1 , t → −iτ:<br />

∫ β−it0 ∫<br />

iS → − dτ d d xL E ,<br />

L E = 1 2<br />

−it 0<br />

{<br />

(∂ t ϕ) 2 + (∂ i ϕ) 2 } + V (ϕ)<br />

◮ Finally, taking the trace...<br />

∫<br />

[<br />

Z = N Dϕ exp<br />

periodic<br />

∫ β−it0 ∫<br />

− dτ<br />

−it 0<br />

d d xL E<br />

]<br />

logo<br />

Aleksi Vuorinen, CERN<br />

<strong>Finite</strong>-<strong>temperature</strong> <strong>Field</strong> <strong>Theory</strong>


Basics of Statistical <strong>Physics</strong> and Thermodynamics<br />

Scalar fields at finite <strong>temperature</strong><br />

Interacting scalar fields<br />

Partition function for scalar field theory<br />

Non-interacting examples<br />

A few things to note:<br />

◮ Periodicity of fields: Integrate over all ϕ satisfying<br />

ϕ(−it 0 , x) = ϕ(β − it 0 , x)<br />

◮ Simple consequence of taking the trace<br />

◮ Compactness of time direction<br />

◮ For equilibrium thermodynamics, may set t 0 = 0<br />

◮ Real Gaussian path integral<br />

◮ No issues of existence/convergence<br />

◮ Inclusion of finite chemical potentials straightforward<br />

(coming up in detail...)<br />

logo<br />

Aleksi Vuorinen, CERN<br />

<strong>Finite</strong>-<strong>temperature</strong> <strong>Field</strong> <strong>Theory</strong>


Basics of Statistical <strong>Physics</strong> and Thermodynamics<br />

Scalar fields at finite <strong>temperature</strong><br />

Interacting scalar fields<br />

Partition function for scalar field theory<br />

Non-interacting examples<br />

Side remark: Direct proof of periodicity<br />

◮ Define thermal (time-ordered) Green’s function<br />

[<br />

G B (x, y; τ, 0) = Tr<br />

{ˆρT τ ˆφ(x, τ) ˆφ(y, 0) ]}<br />

◮ Using cyclic property of the trace...<br />

{<br />

G B (x, y; τ, 0) = Z −1 Tr e −βĤe }<br />

βĤ ˆφ(y, 0)e −βĤ ˆφ(x, τ)<br />

{<br />

}<br />

= Z −1 Tr e −βĤ ˆφ(y, β) ˆφ(x, τ)<br />

= Z −1 Tr<br />

{e −βĤT [ ]<br />

τ ˆφ(x, τ) ˆφ(y, }<br />

β)<br />

= G B (x, y; τ, β)<br />

logo<br />

Aleksi Vuorinen, CERN<br />

<strong>Finite</strong>-<strong>temperature</strong> <strong>Field</strong> <strong>Theory</strong>


Basics of Statistical <strong>Physics</strong> and Thermodynamics<br />

Scalar fields at finite <strong>temperature</strong><br />

Interacting scalar fields<br />

Partition function for scalar field theory<br />

Non-interacting examples<br />

Massive scalar fields<br />

◮ Specialize now to V (ϕ) = 1 2 m2 ϕ 2<br />

◮<br />

One free bosonic dof<br />

◮ Following rules of Gaussian integration<br />

{<br />

}<br />

(<br />

) −1/2<br />

ln Z = ln N det (−∂τ 2 − ∂i 2 + m 2 )<br />

= − 1 2 Tr ln (−∂2 τ − ∂i 2 + m 2 ) + const.<br />

◮ How to take a trace of an operator containing derivatives?<br />

◮<br />

Go to momentum space!<br />

logo<br />

Aleksi Vuorinen, CERN<br />

<strong>Finite</strong>-<strong>temperature</strong> <strong>Field</strong> <strong>Theory</strong>


Basics of Statistical <strong>Physics</strong> and Thermodynamics<br />

Scalar fields at finite <strong>temperature</strong><br />

Interacting scalar fields<br />

Partition function for scalar field theory<br />

Non-interacting examples<br />

Massive scalar fields<br />

◮ Specialize now to V (ϕ) = 1 2 m2 ϕ 2<br />

◮<br />

One free bosonic dof<br />

◮ Following rules of Gaussian integration<br />

{<br />

}<br />

(<br />

) −1/2<br />

ln Z = ln N det (−∂τ 2 − ∂i 2 + m 2 )<br />

= − 1 2 Tr ln (−∂2 τ − ∂i 2 + m 2 ) + const.<br />

◮ How to take a trace of an operator containing derivatives?<br />

◮<br />

Go to momentum space!<br />

logo<br />

Aleksi Vuorinen, CERN<br />

<strong>Finite</strong>-<strong>temperature</strong> <strong>Field</strong> <strong>Theory</strong>


Basics of Statistical <strong>Physics</strong> and Thermodynamics<br />

Scalar fields at finite <strong>temperature</strong><br />

Interacting scalar fields<br />

Partition function for scalar field theory<br />

Non-interacting examples<br />

Massive scalar fields<br />

◮ Specialize now to V (ϕ) = 1 2 m2 ϕ 2<br />

◮<br />

One free bosonic dof<br />

◮ Following rules of Gaussian integration<br />

{<br />

}<br />

(<br />

) −1/2<br />

ln Z = ln N det (−∂τ 2 − ∂i 2 + m 2 )<br />

= − 1 2 Tr ln (−∂2 τ − ∂i 2 + m 2 ) + const.<br />

◮ How to take a trace of an operator containing derivatives?<br />

◮<br />

Go to momentum space!<br />

logo<br />

Aleksi Vuorinen, CERN<br />

<strong>Finite</strong>-<strong>temperature</strong> <strong>Field</strong> <strong>Theory</strong>


Basics of Statistical <strong>Physics</strong> and Thermodynamics<br />

Scalar fields at finite <strong>temperature</strong><br />

Interacting scalar fields<br />

Partition function for scalar field theory<br />

Non-interacting examples<br />

Massive scalar fields<br />

◮ Specialize now to V (ϕ) = 1 2 m2 ϕ 2<br />

◮<br />

One free bosonic dof<br />

◮ Following rules of Gaussian integration<br />

{<br />

}<br />

(<br />

) −1/2<br />

ln Z = ln N det (−∂τ 2 − ∂i 2 + m 2 )<br />

= − 1 2 Tr ln (−∂2 τ − ∂i 2 + m 2 ) + const.<br />

◮ How to take a trace of an operator containing derivatives?<br />

◮<br />

Go to momentum space!<br />

logo<br />

Aleksi Vuorinen, CERN<br />

<strong>Finite</strong>-<strong>temperature</strong> <strong>Field</strong> <strong>Theory</strong>


Basics of Statistical <strong>Physics</strong> and Thermodynamics<br />

Scalar fields at finite <strong>temperature</strong><br />

Interacting scalar fields<br />

Partition function for scalar field theory<br />

Non-interacting examples<br />

◮ Expand fields in terms of their Fourier modes<br />

◮<br />

ϕ(τ, x) = T ∑ ∫<br />

d 3 p<br />

ei(p·x+ωnτ)<br />

(2π) 3 ϕ n (p),<br />

n<br />

ω n = 2nπT , n ∈ Z<br />

Fourier series in τ direction due to compactness of<br />

temporal direction<br />

◮ Now, a short exercise produces (up to T -indep. constant)<br />

ln Z = − V ∑<br />

∫<br />

d 3 (<br />

p<br />

2 (2π) 3 ln n 2 + β2 (p 2 + m 2 )<br />

)<br />

(2π) 2 n<br />

∫ [√<br />

d 3 p p<br />

= −V<br />

2 + m 2<br />

(2π) 3 + ln<br />

(1 − e −β√ p 2 +m 2) ]<br />

2T<br />

◮ Reminiscent of point particle result for bosons!<br />

logo<br />

Aleksi Vuorinen, CERN<br />

<strong>Finite</strong>-<strong>temperature</strong> <strong>Field</strong> <strong>Theory</strong>


Basics of Statistical <strong>Physics</strong> and Thermodynamics<br />

Scalar fields at finite <strong>temperature</strong><br />

Interacting scalar fields<br />

Partition function for scalar field theory<br />

Non-interacting examples<br />

◮ Expand fields in terms of their Fourier modes<br />

◮<br />

ϕ(τ, x) = T ∑ ∫<br />

d 3 p<br />

ei(p·x+ωnτ)<br />

(2π) 3 ϕ n (p),<br />

n<br />

ω n = 2nπT , n ∈ Z<br />

Fourier series in τ direction due to compactness of<br />

temporal direction<br />

◮ Now, a short exercise produces (up to T -indep. constant)<br />

ln Z = − V ∑<br />

∫<br />

d 3 (<br />

p<br />

2 (2π) 3 ln n 2 + β2 (p 2 + m 2 )<br />

)<br />

(2π) 2 n<br />

∫ [√<br />

d 3 p p<br />

= −V<br />

2 + m 2<br />

(2π) 3 + ln<br />

(1 − e −β√ p 2 +m 2) ]<br />

2T<br />

◮ Reminiscent of point particle result for bosons!<br />

logo<br />

Aleksi Vuorinen, CERN<br />

<strong>Finite</strong>-<strong>temperature</strong> <strong>Field</strong> <strong>Theory</strong>


Basics of Statistical <strong>Physics</strong> and Thermodynamics<br />

Scalar fields at finite <strong>temperature</strong><br />

Interacting scalar fields<br />

Partition function for scalar field theory<br />

Non-interacting examples<br />

◮ Expand fields in terms of their Fourier modes<br />

◮<br />

ϕ(τ, x) = T ∑ ∫<br />

d 3 p<br />

ei(p·x+ωnτ)<br />

(2π) 3 ϕ n (p),<br />

n<br />

ω n = 2nπT , n ∈ Z<br />

Fourier series in τ direction due to compactness of<br />

temporal direction<br />

◮ Now, a short exercise produces (up to T -indep. constant)<br />

ln Z = − V ∑<br />

∫<br />

d 3 (<br />

p<br />

2 (2π) 3 ln n 2 + β2 (p 2 + m 2 )<br />

)<br />

(2π) 2 n<br />

∫ [√<br />

d 3 p p<br />

= −V<br />

2 + m 2<br />

(2π) 3 + ln<br />

(1 − e −β√ p 2 +m 2) ]<br />

2T<br />

◮ Reminiscent of point particle result for bosons!<br />

logo<br />

Aleksi Vuorinen, CERN<br />

<strong>Finite</strong>-<strong>temperature</strong> <strong>Field</strong> <strong>Theory</strong>


Basics of Statistical <strong>Physics</strong> and Thermodynamics<br />

Scalar fields at finite <strong>temperature</strong><br />

Interacting scalar fields<br />

Partition function for scalar field theory<br />

Non-interacting examples<br />

Brief note on fermions<br />

◮ For free Dirac fermions, going from QFT transition<br />

amplitude to finite-T partition function proceeds as above<br />

∫<br />

[ ∫ β ∫<br />

Z = D ¯ψDψ exp − dτ d 3 xL E<br />

],<br />

{<br />

}<br />

L = ¯ψ γ 0 ∂ τ − iγ i ∂ i + m ψ<br />

0<br />

◮ What about periodicity?<br />

◮ Spinor fields satisfy canonical anticommutation relations<br />

and are represented by Grassmann variables<br />

◮ Let’s try to repeat our proof of periodicity for bosonic<br />

fields...<br />

logo<br />

Aleksi Vuorinen, CERN<br />

<strong>Finite</strong>-<strong>temperature</strong> <strong>Field</strong> <strong>Theory</strong>


Basics of Statistical <strong>Physics</strong> and Thermodynamics<br />

Scalar fields at finite <strong>temperature</strong><br />

Interacting scalar fields<br />

Partition function for scalar field theory<br />

Non-interacting examples<br />

Brief note on fermions<br />

◮ For free Dirac fermions, going from QFT transition<br />

amplitude to finite-T partition function proceeds as above<br />

∫<br />

[ ∫ β ∫<br />

Z = D ¯ψDψ exp − dτ d 3 xL E<br />

],<br />

{<br />

}<br />

L = ¯ψ γ 0 ∂ τ − iγ i ∂ i + m ψ<br />

0<br />

◮ What about periodicity?<br />

◮ Spinor fields satisfy canonical anticommutation relations<br />

and are represented by Grassmann variables<br />

◮ Let’s try to repeat our proof of periodicity for bosonic<br />

fields...<br />

logo<br />

Aleksi Vuorinen, CERN<br />

<strong>Finite</strong>-<strong>temperature</strong> <strong>Field</strong> <strong>Theory</strong>


Basics of Statistical <strong>Physics</strong> and Thermodynamics<br />

Scalar fields at finite <strong>temperature</strong><br />

Interacting scalar fields<br />

Partition function for scalar field theory<br />

Non-interacting examples<br />

Brief note on fermions<br />

◮ For free Dirac fermions, going from QFT transition<br />

amplitude to finite-T partition function proceeds as above<br />

∫<br />

[ ∫ β ∫<br />

Z = D ¯ψDψ exp − dτ d 3 xL E<br />

],<br />

{<br />

}<br />

L = ¯ψ γ 0 ∂ τ − iγ i ∂ i + m ψ<br />

0<br />

◮ What about periodicity?<br />

◮ Spinor fields satisfy canonical anticommutation relations<br />

and are represented by Grassmann variables<br />

◮ Let’s try to repeat our proof of periodicity for bosonic<br />

fields...<br />

logo<br />

Aleksi Vuorinen, CERN<br />

<strong>Finite</strong>-<strong>temperature</strong> <strong>Field</strong> <strong>Theory</strong>


Basics of Statistical <strong>Physics</strong> and Thermodynamics<br />

Scalar fields at finite <strong>temperature</strong><br />

Interacting scalar fields<br />

Partition function for scalar field theory<br />

Non-interacting examples<br />

◮ Define again thermal Green’s function<br />

[ ]<br />

G F (x, y; τ, 0) = Tr<br />

{ˆρT τ ˆψ(x, τ) ˆψ(y, }<br />

0)<br />

◮<br />

This time field operators anticommute!<br />

◮ Using cyclic property of the trace...<br />

{<br />

G F (x, y; τ, 0) = Z −1 Tr e −βĤe }<br />

βĤ ˆψ(y, 0)e −βĤ ˆψ(x, τ)<br />

}<br />

= Z −1 Tr<br />

{e −βĤ ˆψ(y, β) ˆψ(x, τ)<br />

= −Z −1 Tr<br />

{e −βĤT [<br />

τ ˆψ(x, τ) ˆψ(y, β) ]}<br />

= −G F (x, y; τ, β)<br />

logo<br />

Aleksi Vuorinen, CERN<br />

<strong>Finite</strong>-<strong>temperature</strong> <strong>Field</strong> <strong>Theory</strong>


Basics of Statistical <strong>Physics</strong> and Thermodynamics<br />

Scalar fields at finite <strong>temperature</strong><br />

Interacting scalar fields<br />

Partition function for scalar field theory<br />

Non-interacting examples<br />

◮ Define again thermal Green’s function<br />

[ ]<br />

G F (x, y; τ, 0) = Tr<br />

{ˆρT τ ˆψ(x, τ) ˆψ(y, }<br />

0)<br />

◮<br />

This time field operators anticommute!<br />

◮ Using cyclic property of the trace...<br />

{<br />

G F (x, y; τ, 0) = Z −1 Tr e −βĤe }<br />

βĤ ˆψ(y, 0)e −βĤ ˆψ(x, τ)<br />

}<br />

= Z −1 Tr<br />

{e −βĤ ˆψ(y, β) ˆψ(x, τ)<br />

= −Z −1 Tr<br />

{e −βĤT [<br />

τ ˆψ(x, τ) ˆψ(y, β) ]}<br />

= −G F (x, y; τ, β)<br />

logo<br />

Aleksi Vuorinen, CERN<br />

<strong>Finite</strong>-<strong>temperature</strong> <strong>Field</strong> <strong>Theory</strong>


Basics of Statistical <strong>Physics</strong> and Thermodynamics<br />

Scalar fields at finite <strong>temperature</strong><br />

Interacting scalar fields<br />

Partition function for scalar field theory<br />

Non-interacting examples<br />

◮ Conclusion: Fermion fields antiperiodic in time inside the<br />

path integral!<br />

ψ(β, x) = −ψ(0, x)<br />

⇒<br />

ψ(τ, x) = T ∑ ∫<br />

d 3 p<br />

ei(p·x+ωnτ)<br />

(2π) 3 ψ n (p),<br />

n<br />

ω n = (2n + 1)πT , n ∈ Z<br />

logo<br />

Aleksi Vuorinen, CERN<br />

<strong>Finite</strong>-<strong>temperature</strong> <strong>Field</strong> <strong>Theory</strong>


Basics of Statistical <strong>Physics</strong> and Thermodynamics<br />

Scalar fields at finite <strong>temperature</strong><br />

Interacting scalar fields<br />

Feynman rules at finite <strong>temperature</strong><br />

Thermodynamics of ϕ 4 theory<br />

Outline<br />

Basics of Statistical <strong>Physics</strong> and Thermodynamics<br />

Statistical QM<br />

Simple examples<br />

Scalar fields at finite <strong>temperature</strong><br />

Partition function for scalar field theory<br />

Non-interacting examples<br />

Interacting scalar fields<br />

Feynman rules at finite <strong>temperature</strong><br />

Thermodynamics of ϕ 4 theory<br />

logo<br />

Aleksi Vuorinen, CERN<br />

<strong>Finite</strong>-<strong>temperature</strong> <strong>Field</strong> <strong>Theory</strong>


Basics of Statistical <strong>Physics</strong> and Thermodynamics<br />

Scalar fields at finite <strong>temperature</strong><br />

Interacting scalar fields<br />

Feynman rules at finite <strong>temperature</strong><br />

Thermodynamics of ϕ 4 theory<br />

Scalar field theory with self-interactions<br />

◮ Consider a scalar field theory with interaction term<br />

proportional to small parameter λ<br />

◮ Action S = S0 + λS I<br />

◮ Now expand in coupling<br />

{ ∫<br />

ln Z = ln N<br />

periodic<br />

Dϕ e −(S 0+λS I )<br />

{ ∫<br />

}<br />

∞∑<br />

= ln N Dϕ e −S (−λS<br />

0<br />

I ) k<br />

periodic<br />

k!<br />

k=0<br />

{<br />

∫ }<br />

∞∑ (−λ) k Dϕ e<br />

−S 0<br />

SI<br />

k = ln Z 0 + ln 1 +<br />

∫<br />

k! Dϕ e −S 0<br />

k=1<br />

◮ Note underlying assumption here: [S0 , S I ] = 0<br />

}<br />

logo<br />

Aleksi Vuorinen, CERN<br />

<strong>Finite</strong>-<strong>temperature</strong> <strong>Field</strong> <strong>Theory</strong>


Basics of Statistical <strong>Physics</strong> and Thermodynamics<br />

Scalar fields at finite <strong>temperature</strong><br />

Interacting scalar fields<br />

Feynman rules at finite <strong>temperature</strong><br />

Thermodynamics of ϕ 4 theory<br />

Scalar field theory with self-interactions<br />

◮ Consider a scalar field theory with interaction term<br />

proportional to small parameter λ<br />

◮ Action S = S0 + λS I<br />

◮ Now expand in coupling<br />

{ ∫<br />

ln Z = ln N<br />

periodic<br />

Dϕ e −(S 0+λS I )<br />

{ ∫<br />

}<br />

∞∑<br />

= ln N Dϕ e −S (−λS<br />

0<br />

I ) k<br />

periodic<br />

k!<br />

k=0<br />

{<br />

∫ }<br />

∞∑ (−λ) k Dϕ e<br />

−S 0<br />

SI<br />

k = ln Z 0 + ln 1 +<br />

∫<br />

k! Dϕ e −S 0<br />

k=1<br />

◮ Note underlying assumption here: [S0 , S I ] = 0<br />

}<br />

logo<br />

Aleksi Vuorinen, CERN<br />

<strong>Finite</strong>-<strong>temperature</strong> <strong>Field</strong> <strong>Theory</strong>


Basics of Statistical <strong>Physics</strong> and Thermodynamics<br />

Scalar fields at finite <strong>temperature</strong><br />

Interacting scalar fields<br />

Feynman rules at finite <strong>temperature</strong><br />

Thermodynamics of ϕ 4 theory<br />

◮ Conclusion: In evaluating Z , end up computing expectation<br />

values of powers of S I within unperturbed theory<br />

〈S k I 〉 0 =<br />

∫<br />

Dϕ e<br />

−S 0<br />

S k I<br />

∫<br />

Dϕ e −S 0<br />

◮ No external legs: Partition function available through the<br />

computation of vacuum diagrams<br />

◮ As usual, powers of λ count loop order<br />

◮ Challenge: Derive Feynman rules at finite <strong>temperature</strong><br />

logo<br />

Aleksi Vuorinen, CERN<br />

<strong>Finite</strong>-<strong>temperature</strong> <strong>Field</strong> <strong>Theory</strong>


Basics of Statistical <strong>Physics</strong> and Thermodynamics<br />

Scalar fields at finite <strong>temperature</strong><br />

Interacting scalar fields<br />

Feynman rules at finite <strong>temperature</strong><br />

Thermodynamics of ϕ 4 theory<br />

◮ Conclusion: In evaluating Z , end up computing expectation<br />

values of powers of S I within unperturbed theory<br />

〈S k I 〉 0 =<br />

∫<br />

Dϕ e<br />

−S 0<br />

S k I<br />

∫<br />

Dϕ e −S 0<br />

◮ No external legs: Partition function available through the<br />

computation of vacuum diagrams<br />

◮ As usual, powers of λ count loop order<br />

◮ Challenge: Derive Feynman rules at finite <strong>temperature</strong><br />

logo<br />

Aleksi Vuorinen, CERN<br />

<strong>Finite</strong>-<strong>temperature</strong> <strong>Field</strong> <strong>Theory</strong>


Basics of Statistical <strong>Physics</strong> and Thermodynamics<br />

Scalar fields at finite <strong>temperature</strong><br />

Interacting scalar fields<br />

Feynman rules at finite <strong>temperature</strong><br />

Thermodynamics of ϕ 4 theory<br />

◮ Conclusion: In evaluating Z , end up computing expectation<br />

values of powers of S I within unperturbed theory<br />

〈S k I 〉 0 =<br />

∫<br />

Dϕ e<br />

−S 0<br />

S k I<br />

∫<br />

Dϕ e −S 0<br />

◮ No external legs: Partition function available through the<br />

computation of vacuum diagrams<br />

◮ As usual, powers of λ count loop order<br />

◮ Challenge: Derive Feynman rules at finite <strong>temperature</strong><br />

logo<br />

Aleksi Vuorinen, CERN<br />

<strong>Finite</strong>-<strong>temperature</strong> <strong>Field</strong> <strong>Theory</strong>


Basics of Statistical <strong>Physics</strong> and Thermodynamics<br />

Scalar fields at finite <strong>temperature</strong><br />

Interacting scalar fields<br />

Feynman rules at finite <strong>temperature</strong><br />

Thermodynamics of ϕ 4 theory<br />

Feynman rules for φ 4 theory<br />

◮ Assume massive scalar theory with L I = ϕ 4<br />

◮<br />

Graphs composed of four-ϕ vertices and propagators<br />

1<br />

D 0 (ω n , p) =<br />

ωn 2 + p 2 + m 2<br />

◮ Feynman rules almost the same as at T = 0:<br />

◮ As usual, only need to compute connected diagrams<br />

◮ Same symmetry factors, vertex functions, etc.<br />

◮ Only changes due to discrete values of p 0 :<br />

◮ In integration measure: ∫ d 4 p<br />

→ T ∑ ∫ d 3 p<br />

(2π) 4<br />

n (2π) 3<br />

◮ In vertices: δ (4) (P 1 − P 2 ) → δ n1 ,n 2<br />

δ (3) (p 1 − p 2 )<br />

◮ Question: How to evaluate the necessary sum-integrals?<br />

◮ Will be covered in more detail later...<br />

logo<br />

Aleksi Vuorinen, CERN<br />

<strong>Finite</strong>-<strong>temperature</strong> <strong>Field</strong> <strong>Theory</strong>


Basics of Statistical <strong>Physics</strong> and Thermodynamics<br />

Scalar fields at finite <strong>temperature</strong><br />

Interacting scalar fields<br />

Feynman rules at finite <strong>temperature</strong><br />

Thermodynamics of ϕ 4 theory<br />

Feynman rules for φ 4 theory<br />

◮ Assume massive scalar theory with L I = ϕ 4<br />

◮<br />

Graphs composed of four-ϕ vertices and propagators<br />

1<br />

D 0 (ω n , p) =<br />

ωn 2 + p 2 + m 2<br />

◮ Feynman rules almost the same as at T = 0:<br />

◮ As usual, only need to compute connected diagrams<br />

◮ Same symmetry factors, vertex functions, etc.<br />

◮ Only changes due to discrete values of p 0 :<br />

◮ In integration measure: ∫ d 4 p<br />

→ T ∑ ∫ d 3 p<br />

(2π) 4<br />

n (2π) 3<br />

◮ In vertices: δ (4) (P 1 − P 2 ) → δ n1 ,n 2<br />

δ (3) (p 1 − p 2 )<br />

◮ Question: How to evaluate the necessary sum-integrals?<br />

◮ Will be covered in more detail later...<br />

logo<br />

Aleksi Vuorinen, CERN<br />

<strong>Finite</strong>-<strong>temperature</strong> <strong>Field</strong> <strong>Theory</strong>


Basics of Statistical <strong>Physics</strong> and Thermodynamics<br />

Scalar fields at finite <strong>temperature</strong><br />

Interacting scalar fields<br />

Feynman rules at finite <strong>temperature</strong><br />

Thermodynamics of ϕ 4 theory<br />

Feynman rules for φ 4 theory<br />

◮ Assume massive scalar theory with L I = ϕ 4<br />

◮<br />

Graphs composed of four-ϕ vertices and propagators<br />

1<br />

D 0 (ω n , p) =<br />

ωn 2 + p 2 + m 2<br />

◮ Feynman rules almost the same as at T = 0:<br />

◮ As usual, only need to compute connected diagrams<br />

◮ Same symmetry factors, vertex functions, etc.<br />

◮ Only changes due to discrete values of p 0 :<br />

◮ In integration measure: ∫ d 4 p<br />

→ T ∑ ∫ d 3 p<br />

(2π) 4<br />

n (2π) 3<br />

◮ In vertices: δ (4) (P 1 − P 2 ) → δ n1 ,n 2<br />

δ (3) (p 1 − p 2 )<br />

◮ Question: How to evaluate the necessary sum-integrals?<br />

◮ Will be covered in more detail later...<br />

logo<br />

Aleksi Vuorinen, CERN<br />

<strong>Finite</strong>-<strong>temperature</strong> <strong>Field</strong> <strong>Theory</strong>


Basics of Statistical <strong>Physics</strong> and Thermodynamics<br />

Scalar fields at finite <strong>temperature</strong><br />

Interacting scalar fields<br />

Feynman rules at finite <strong>temperature</strong><br />

Thermodynamics of ϕ 4 theory<br />

Feynman rules for φ 4 theory<br />

◮ Assume massive scalar theory with L I = ϕ 4<br />

◮<br />

Graphs composed of four-ϕ vertices and propagators<br />

1<br />

D 0 (ω n , p) =<br />

ωn 2 + p 2 + m 2<br />

◮ Feynman rules almost the same as at T = 0:<br />

◮ As usual, only need to compute connected diagrams<br />

◮ Same symmetry factors, vertex functions, etc.<br />

◮ Only changes due to discrete values of p 0 :<br />

◮ In integration measure: ∫ d 4 p<br />

→ T ∑ ∫ d 3 p<br />

(2π) 4<br />

n (2π) 3<br />

◮ In vertices: δ (4) (P 1 − P 2 ) → δ n1 ,n 2<br />

δ (3) (p 1 − p 2 )<br />

◮ Question: How to evaluate the necessary sum-integrals?<br />

◮ Will be covered in more detail later...<br />

logo<br />

Aleksi Vuorinen, CERN<br />

<strong>Finite</strong>-<strong>temperature</strong> <strong>Field</strong> <strong>Theory</strong>


Basics of Statistical <strong>Physics</strong> and Thermodynamics<br />

Scalar fields at finite <strong>temperature</strong><br />

Interacting scalar fields<br />

Feynman rules at finite <strong>temperature</strong><br />

Thermodynamics of ϕ 4 theory<br />

Example: Pressure of massless ϕ 4 theory<br />

◮ To obtain pressure of ϕ 4 theory to 4 loops, must evaluate<br />

◮ Up to two loops:<br />

( ∫ ∑<br />

p(T ) = p 0 (T ) − 3λ<br />

≡<br />

( ∫ ∑<br />

p 0 (T ) − 3λ<br />

P<br />

P<br />

)<br />

1 2<br />

ωn 2 + p 2<br />

)<br />

1 2<br />

P 2<br />

where the sum-integral reads...<br />

logo<br />

Aleksi Vuorinen, CERN<br />

<strong>Finite</strong>-<strong>temperature</strong> <strong>Field</strong> <strong>Theory</strong>


Basics of Statistical <strong>Physics</strong> and Thermodynamics<br />

Scalar fields at finite <strong>temperature</strong><br />

Interacting scalar fields<br />

Feynman rules at finite <strong>temperature</strong><br />

Thermodynamics of ϕ 4 theory<br />

Example: Pressure of massless ϕ 4 theory<br />

◮ To obtain pressure of ϕ 4 theory to 4 loops, must evaluate<br />

◮ Up to two loops:<br />

( ∫ ∑<br />

p(T ) = p 0 (T ) − 3λ<br />

≡<br />

( ∫ ∑<br />

p 0 (T ) − 3λ<br />

P<br />

P<br />

)<br />

1 2<br />

ωn 2 + p 2<br />

)<br />

1 2<br />

P 2<br />

where the sum-integral reads...<br />

logo<br />

Aleksi Vuorinen, CERN<br />

<strong>Finite</strong>-<strong>temperature</strong> <strong>Field</strong> <strong>Theory</strong>


Basics of Statistical <strong>Physics</strong> and Thermodynamics<br />

Scalar fields at finite <strong>temperature</strong><br />

Interacting scalar fields<br />

Feynman rules at finite <strong>temperature</strong><br />

Thermodynamics of ϕ 4 theory<br />

∑ ∫ P<br />

1<br />

P 2 = Λ 2ε T<br />

=<br />

=<br />

∞∑<br />

n=−∞<br />

∫<br />

2Γ(−1/2 + ε)<br />

(4π) 3/2−ε<br />

d 3−2ε p<br />

(2π) 3−2ε 1<br />

p 2 + (2nπT ) 2<br />

Λ 2ε T (2πT ) 1−2ε ∞ ∑<br />

n=1<br />

n 1−2ε<br />

2Γ(−1/2 + ε)<br />

(4π) 3/2−ε Λ 2ε T (2πT ) 1−2ε ζ(−1 + 2ε)<br />

= T 2<br />

12 + O(ε)<br />

◮ Recalling the free theory result, finally obtain<br />

p(T ) = π2 T 4 (<br />

1 − 15 )<br />

90 8π 2 λ + O(λ 2 )<br />

logo<br />

Aleksi Vuorinen, CERN<br />

<strong>Finite</strong>-<strong>temperature</strong> <strong>Field</strong> <strong>Theory</strong>


Basics of Statistical <strong>Physics</strong> and Thermodynamics<br />

Scalar fields at finite <strong>temperature</strong><br />

Interacting scalar fields<br />

Feynman rules at finite <strong>temperature</strong><br />

Thermodynamics of ϕ 4 theory<br />

∑ ∫ P<br />

1<br />

P 2 = Λ 2ε T<br />

=<br />

=<br />

∞∑<br />

n=−∞<br />

∫<br />

2Γ(−1/2 + ε)<br />

(4π) 3/2−ε<br />

d 3−2ε p<br />

(2π) 3−2ε 1<br />

p 2 + (2nπT ) 2<br />

Λ 2ε T (2πT ) 1−2ε ∞ ∑<br />

n=1<br />

n 1−2ε<br />

2Γ(−1/2 + ε)<br />

(4π) 3/2−ε Λ 2ε T (2πT ) 1−2ε ζ(−1 + 2ε)<br />

= T 2<br />

12 + O(ε)<br />

◮ Recalling the free theory result, finally obtain<br />

p(T ) = π2 T 4 (<br />

1 − 15 )<br />

90 8π 2 λ + O(λ 2 )<br />

logo<br />

Aleksi Vuorinen, CERN<br />

<strong>Finite</strong>-<strong>temperature</strong> <strong>Field</strong> <strong>Theory</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!