19.04.2015 Views

Entanglement Entropy of a Random Pure State

Entanglement Entropy of a Random Pure State

Entanglement Entropy of a Random Pure State

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a<br />

<strong>Random</strong> <strong>Pure</strong> <strong>State</strong><br />

Satya N. Majumdar<br />

Laboratoire de Physique Théorique et Modèles Statistiques,CNRS,<br />

Université Paris-Sud, France<br />

February 14, 2012<br />

Collaborators:<br />

C. Nadal (Oxford University, UK)<br />

M. Vergassola (Institut Pasteur, Paris, France)<br />

Refs: Phys. Rev. Lett. 104, 110501 (2010)<br />

J. Stat. Phys. 142, 403 (2011) (long version)<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


Plan<br />

Plan:<br />

• Bipartite entanglement <strong>of</strong> a random pure state<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


Plan<br />

Plan:<br />

• Bipartite entanglement <strong>of</strong> a random pure state<br />

• Reduced density matrix −→ random matrix theory<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


Plan<br />

Plan:<br />

• Bipartite entanglement <strong>of</strong> a random pure state<br />

• Reduced density matrix −→ random matrix theory<br />

• Distribution <strong>of</strong> the Renyi entropy<br />

Results<br />

Coulomb gas technique for large systems<br />

Phase transitions<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


Plan<br />

Plan:<br />

• Bipartite entanglement <strong>of</strong> a random pure state<br />

• Reduced density matrix −→ random matrix theory<br />

• Distribution <strong>of</strong> the Renyi entropy<br />

Results<br />

Coulomb gas technique for large systems<br />

Phase transitions<br />

• Summary and Conclusions<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


Coupled Bipartite System<br />

A<br />

B<br />

N−dim.<br />

M−dim.<br />

| i A<br />

|α B<br />

Coupled Bipartite System<br />

N M<br />

Bipartite quantum system A × B: Hilbert space H A ⊗H B<br />

subsystem A: dimension N (the system to study)<br />

subsystem B: dimension M ≥ N (“environment”)<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


Coupled Bipartite System<br />

A<br />

B<br />

N−dim.<br />

M−dim.<br />

| i A<br />

|α B<br />

Coupled Bipartite System<br />

N M<br />

Bipartite quantum system A × B: Hilbert space H A ⊗H B<br />

subsystem A: dimension N (the system to study)<br />

subsystem B: dimension M ≥ N (“environment”)<br />

Large system: limit N ≫ 1 and M ≫ 1 with M ≈ N.<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


<strong>Pure</strong> <strong>State</strong> and Reduced Density Matrix<br />

A<br />

B<br />

N−dim.<br />

M−dim.<br />

| i A<br />

|α B<br />

Coupled Bipartite System<br />

N M<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


<strong>Pure</strong> <strong>State</strong> and Reduced Density Matrix<br />

A<br />

B<br />

N−dim.<br />

M−dim.<br />

| i A<br />

|α B<br />

Coupled Bipartite System<br />

N M<br />

Any pure state <strong>of</strong> the full system:<br />

|ψ >= ∑ i,α<br />

x i,α |i A > ⊗|α B ><br />

X = [x i,α ] → (N × M) rectangular Coupling matrix<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


<strong>Pure</strong> <strong>State</strong> <strong>of</strong> Bipartite System<br />

• |ψ >= ∑ i,α<br />

x i,α |i A > ⊗|α B ><br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


<strong>Pure</strong> <strong>State</strong> <strong>of</strong> Bipartite System<br />

• |ψ >= ∑ i,α<br />

x i,α |i A > ⊗|α B ><br />

• If x i,α = a i b α then<br />

|ψ >= ∑ i<br />

a i |i A > ⊗ ∑ α<br />

b α |α B >= |Φ A > ⊗|Φ B ><br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


<strong>Pure</strong> <strong>State</strong> <strong>of</strong> Bipartite System<br />

• |ψ >= ∑ i,α<br />

x i,α |i A > ⊗|α B ><br />

• If x i,α = a i b α then<br />

|ψ >= ∑ i<br />

a i |i A > ⊗ ∑ α<br />

b α |α B >= |Φ A > ⊗|Φ B ><br />

−→ Fully separable (factorised)<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


<strong>Pure</strong> <strong>State</strong> <strong>of</strong> Bipartite System<br />

• |ψ >= ∑ i,α<br />

x i,α |i A > ⊗|α B ><br />

• If x i,α = a i b α then<br />

|ψ >= ∑ i<br />

a i |i A > ⊗ ∑ α<br />

b α |α B >= |Φ A > ⊗|Φ B ><br />

−→ Fully separable (factorised)<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


<strong>Pure</strong> <strong>State</strong> <strong>of</strong> Bipartite System<br />

• |ψ >= ∑ i,α<br />

x i,α |i A > ⊗|α B ><br />

• If x i,α = a i b α then<br />

|ψ >= ∑ i<br />

a i |i A > ⊗ ∑ α<br />

b α |α B >= |Φ A > ⊗|Φ B ><br />

−→ Fully separable (factorised)<br />

Otherwise −→ Entangled (non-factorisable)<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


<strong>Pure</strong> <strong>State</strong> <strong>of</strong> Bipartite System<br />

• |ψ >= ∑ i,α<br />

x i,α |i A > ⊗|α B ><br />

• If x i,α = a i b α then<br />

|ψ >= ∑ i<br />

a i |i A > ⊗ ∑ α<br />

b α |α B >= |Φ A > ⊗|Φ B ><br />

−→ Fully separable (factorised)<br />

Otherwise −→ Entangled (non-factorisable)<br />

• Density matrix <strong>of</strong> the composite system<br />

ˆρ = |ψ >< ψ| with Tr[ˆρ] = 1<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


<strong>Pure</strong> <strong>State</strong> <strong>of</strong> Bipartite System<br />

• |ψ >= ∑ i,α<br />

x i,α |i A > ⊗|α B ><br />

• If x i,α = a i b α then<br />

|ψ >= ∑ i<br />

a i |i A > ⊗ ∑ α<br />

b α |α B >= |Φ A > ⊗|Φ B ><br />

−→ Fully separable (factorised)<br />

Otherwise −→ Entangled (non-factorisable)<br />

• Density matrix <strong>of</strong> the composite system<br />

ˆρ = |ψ >< ψ| with Tr[ˆρ] = 1<br />

• <strong>Pure</strong> state: ˆρ ≠ ∑ k<br />

p k |ψ k >< ψ k | → not a Mixed state<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


Reduced Density Matrix <strong>of</strong> subsystem A:<br />

A<br />

B<br />

N−dim.<br />

M−dim.<br />

| i A<br />

|α B<br />

Coupled Bipartite System<br />

N M<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


Reduced Density Matrix <strong>of</strong> subsystem A:<br />

A<br />

B<br />

N−dim.<br />

M−dim.<br />

| i A<br />

|α B<br />

Coupled Bipartite System<br />

N M<br />

• Reduced Density Matrix: ˆρ A = Tr B [ˆρ] = Tr B [|ψ〉〈ψ|] with Tr[ˆρ A ] = 1<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


Reduced Density Matrix <strong>of</strong> subsystem A:<br />

A<br />

B<br />

N−dim.<br />

M−dim.<br />

| i A<br />

|α B<br />

Coupled Bipartite System<br />

N M<br />

• Reduced Density Matrix: ˆρ A = Tr B [ˆρ] = Tr B [|ψ〉〈ψ|] with Tr[ˆρ A ] = 1<br />

Measurement → 〈ÔA〉 = Tr[Ô ˆρ A]<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


Reduced Density Matrix <strong>of</strong> subsystem A:<br />

A<br />

B<br />

N−dim.<br />

M−dim.<br />

| i A<br />

|α B<br />

Coupled Bipartite System<br />

N M<br />

• Reduced Density Matrix: ˆρ A = Tr B [ˆρ] = Tr B [|ψ〉〈ψ|] with Tr[ˆρ A ] = 1<br />

Measurement → 〈ÔA〉 = Tr[Ô ˆρ A]<br />

• ˆρ A = Tr B [ˆρ]<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


Reduced Density Matrix <strong>of</strong> subsystem A:<br />

A<br />

B<br />

N−dim.<br />

M−dim.<br />

| i A<br />

|α B<br />

Coupled Bipartite System<br />

N M<br />

• Reduced Density Matrix: ˆρ A = Tr B [ˆρ] = Tr B [|ψ〉〈ψ|] with Tr[ˆρ A ] = 1<br />

Measurement → 〈ÔA〉 = Tr[Ô ˆρ A]<br />

M∑<br />

• ˆρ A = Tr B [ˆρ] = < α B |ˆρ|α B ><br />

α=1<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


Reduced Density Matrix <strong>of</strong> subsystem A:<br />

A<br />

B<br />

N−dim.<br />

M−dim.<br />

| i A<br />

|α B<br />

Coupled Bipartite System<br />

N M<br />

• Reduced Density Matrix: ˆρ A = Tr B [ˆρ] = Tr B [|ψ〉〈ψ|] with Tr[ˆρ A ] = 1<br />

Measurement → 〈ÔA〉 = Tr[Ô ˆρ A]<br />

[<br />

M∑<br />

N∑ M<br />

]<br />

∑<br />

• ˆρ A = Tr B [ˆρ] = < α B |ˆρ|α B > = x i,α xj,α<br />

∗ |i A >< j A |<br />

α=1<br />

i,j=1<br />

α=1<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


Reduced Density Matrix <strong>of</strong> subsystem A:<br />

A<br />

B<br />

N−dim.<br />

M−dim.<br />

| i A<br />

|α B<br />

Coupled Bipartite System<br />

N M<br />

• Reduced Density Matrix: ˆρ A = Tr B [ˆρ] = Tr B [|ψ〉〈ψ|] with Tr[ˆρ A ] = 1<br />

Measurement → 〈ÔA〉 = Tr[Ô ˆρ A]<br />

[<br />

M∑<br />

N∑ M<br />

]<br />

∑<br />

• ˆρ A = Tr B [ˆρ] = < α B |ˆρ|α B > = x i,α xj,α<br />

∗ |i A >< j A |<br />

α=1<br />

=<br />

i,j=1<br />

α=1<br />

N∑<br />

W i,j |i A >< j A |<br />

i,j=1<br />

where the N × N matrix: W = XX †<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


Eigenvalues <strong>of</strong> W:<br />

• In the diagonal representation<br />

N∑<br />

N∑<br />

ˆρ A = W i,j |i A >< j A | → λ i |λ A i >< λ A i |<br />

i,j=1<br />

i=1<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


Eigenvalues <strong>of</strong> W:<br />

• In the diagonal representation<br />

N∑<br />

N∑<br />

ˆρ A = W i,j |i A >< j A | → λ i |λ A i >< λ A i |<br />

i,j=1<br />

i=1<br />

{λ 1 , λ 2 , . . . , λ N } → non-negative eigenvalues <strong>of</strong> W = XX †<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


Eigenvalues <strong>of</strong> W:<br />

• In the diagonal representation<br />

N∑<br />

N∑<br />

ˆρ A = W i,j |i A >< j A | → λ i |λ A i >< λ A i |<br />

i,j=1<br />

i=1<br />

{λ 1 , λ 2 , . . . , λ N } → non-negative eigenvalues <strong>of</strong> W = XX †<br />

Tr[ˆρ A ] = 1 →<br />

N∑<br />

λ i = 1 ⇒ 0 ≤ λ i ≤ 1<br />

i=1<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


Eigenvalues <strong>of</strong> W:<br />

• In the diagonal representation<br />

N∑<br />

N∑<br />

ˆρ A = W i,j |i A >< j A | → λ i |λ A i >< λ A i |<br />

i,j=1<br />

i=1<br />

{λ 1 , λ 2 , . . . , λ N } → non-negative eigenvalues <strong>of</strong> W = XX †<br />

Tr[ˆρ A ] = 1 →<br />

N∑<br />

λ i = 1 ⇒ 0 ≤ λ i ≤ 1<br />

i=1<br />

M∑<br />

• Similarly ˆρ B = Tr A [ˆρ] = W α,β ′ |α B >< β B |<br />

α,β=1<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


Eigenvalues <strong>of</strong> W:<br />

• In the diagonal representation<br />

N∑<br />

N∑<br />

ˆρ A = W i,j |i A >< j A | → λ i |λ A i >< λ A i |<br />

i,j=1<br />

i=1<br />

{λ 1 , λ 2 , . . . , λ N } → non-negative eigenvalues <strong>of</strong> W = XX †<br />

Tr[ˆρ A ] = 1 →<br />

N∑<br />

λ i = 1 ⇒ 0 ≤ λ i ≤ 1<br />

i=1<br />

M∑<br />

• Similarly ˆρ B = Tr A [ˆρ] = W α,β ′ |α B >< β B |<br />

α,β=1<br />

W ′ = X † X → (M × M) matrix with M eigenvalues (recall N ≤ M)<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


Eigenvalues <strong>of</strong> W:<br />

• In the diagonal representation<br />

N∑<br />

N∑<br />

ˆρ A = W i,j |i A >< j A | → λ i |λ A i >< λ A i |<br />

i,j=1<br />

i=1<br />

{λ 1 , λ 2 , . . . , λ N } → non-negative eigenvalues <strong>of</strong> W = XX †<br />

Tr[ˆρ A ] = 1 →<br />

N∑<br />

λ i = 1 ⇒ 0 ≤ λ i ≤ 1<br />

i=1<br />

• Similarly ˆρ B = Tr A [ˆρ] =<br />

M∑<br />

α,β=1<br />

W ′ α,β |α B >< β B |<br />

W ′ = X † X → (M × M) matrix with M eigenvalues (recall N ≤ M)<br />

{λ 1 , λ 2 , . . . , λ N , 0, 0, . . . , 0}<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


Eigenvalues <strong>of</strong> W:<br />

• In the diagonal representation<br />

N∑<br />

N∑<br />

ˆρ A = W i,j |i A >< j A | → λ i |λ A i >< λ A i |<br />

i,j=1<br />

i=1<br />

{λ 1 , λ 2 , . . . , λ N } → non-negative eigenvalues <strong>of</strong> W = XX †<br />

Tr[ˆρ A ] = 1 →<br />

N∑<br />

λ i = 1 ⇒ 0 ≤ λ i ≤ 1<br />

i=1<br />

• Similarly ˆρ B = Tr A [ˆρ] =<br />

M∑<br />

α,β=1<br />

W ′ α,β |α B >< β B |<br />

W ′ = X † X → (M × M) matrix with M eigenvalues (recall N ≤ M)<br />

{λ 1 , λ 2 , . . . , λ N , 0, 0, . . . , 0}<br />

• Schmidt decomposition: |ψ >=<br />

N∑ √<br />

λi |λ A i > ⊗|λ B i ><br />

i=1<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


<strong>Entanglement</strong><br />

N∑ √<br />

• Schmidt decomposition: |ψ >= λi |λ A i > ⊗|λ B i ><br />

N∑<br />

• Reduced density matrix: ˆρ A = Tr B [|ψ >< ψ|] = λ i |λ A i >< λ A i |<br />

i=1<br />

i=1<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


<strong>Entanglement</strong><br />

N∑ √<br />

• Schmidt decomposition: |ψ >= λi |λ A i > ⊗|λ B i ><br />

N∑<br />

• Reduced density matrix: ˆρ A = Tr B [|ψ >< ψ|] = λ i |λ A i >< λ A i |<br />

i=1<br />

• {λ 1 , λ 2 , . . . , λ N } → eigenvalues <strong>of</strong> W = XX † with<br />

N∑<br />

0 ≤ λ i ≤ 1 and<br />

λ i = 1<br />

i=1<br />

i=1<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


<strong>Entanglement</strong><br />

• Schmidt decomposition: |ψ >=<br />

N∑ √<br />

λi |λ A i > ⊗|λ B i ><br />

i=1<br />

• Reduced density matrix: ˆρ A = Tr B [|ψ >< ψ|] =<br />

• {λ 1 , λ 2 , . . . , λ N } → eigenvalues <strong>of</strong> W = XX † with<br />

N∑<br />

0 ≤ λ i ≤ 1 and<br />

λ i = 1<br />

(i) Unentangled<br />

λ i0 = 1, λ j = 0 ∀j ≠ i 0<br />

|ψ〉 = |λ A i 0<br />

〉 ⊗ |λ B i 0<br />

〉<br />

is separable<br />

ˆρ A = |λ A i 0<br />

〉〈λ A i 0<br />

| is pure<br />

i=1<br />

N∑<br />

λ i |λ A i >< λ A i |<br />

i=1<br />

(ii) Maximally entangled<br />

λ j = 1/N for all j<br />

(all eigenvalues equal)<br />

|ψ〉 is a superposition <strong>of</strong> all<br />

product states<br />

ˆρ A = 1 N<br />

∑ N<br />

i=1 |λA i 〉〈λ A i | = 1 N 1 A is<br />

completely mixed<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


<strong>Entanglement</strong> entropy<br />

Subsystem A described by ˆρ A = ∑ N<br />

i=1 λ i|λ A i 〉〈λ A i |<br />

• Von Neuman entropy: S VN = −Tr [ˆρ A ln ˆρ A ] = − ∑ N<br />

i=1 λ i ln λ i<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


<strong>Entanglement</strong> entropy<br />

Subsystem A described by ˆρ A = ∑ N<br />

i=1 λ i|λ A i 〉〈λ A i |<br />

• Von Neuman entropy: S VN = −Tr [ˆρ A ln ˆρ A ] = − ∑ N<br />

i=1 λ i ln λ i<br />

[<br />

• Renyi entropy: S q = 1<br />

1−q ln ∑N<br />

]<br />

i=1 λq i<br />

and Σ q = ∑ N<br />

i=1 λq i<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


<strong>Entanglement</strong> entropy<br />

Subsystem A described by ˆρ A = ∑ N<br />

i=1 λ i|λ A i 〉〈λ A i |<br />

• Von Neuman entropy: S VN = −Tr [ˆρ A ln ˆρ A ] = − ∑ N<br />

i=1 λ i ln λ i<br />

[<br />

• Renyi entropy: S q = 1<br />

1−q ln ∑N<br />

]<br />

i=1 λq i<br />

and Σ q = ∑ N<br />

i=1 λq i<br />

• S q→1 = S VN and S q→∞ = − ln(λ max )<br />

• Σ 2 = exp[−S q=2 ] −→ Purity<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


<strong>Entanglement</strong> entropy<br />

Subsystem A described by ˆρ A = ∑ N<br />

i=1 λ i|λ A i 〉〈λ A i |<br />

• Von Neuman entropy: S VN = −Tr [ˆρ A ln ˆρ A ] = − ∑ N<br />

i=1 λ i ln λ i<br />

[<br />

• Renyi entropy: S q = 1<br />

1−q ln ∑N<br />

]<br />

i=1 λq i<br />

and Σ q = ∑ N<br />

i=1 λq i<br />

• S q→1 = S VN and S q→∞ = − ln(λ max )<br />

• Σ 2 = exp[−S q=2 ] −→ Purity<br />

(i) Unentangled<br />

λ i0 = 1, λ j = 0 ∀j ≠ i 0<br />

ˆρ A = |λ A i 0<br />

〉〈λ A i 0<br />

| is pure<br />

S VN = 0 = S q is minimal<br />

S.N. Majumdar<br />

(ii) Maximally entangled<br />

λ j = 1/N for all j<br />

ˆρ A = 1 N<br />

∑ N<br />

i=1 |λA i 〉〈λ A i | mixed<br />

S VN = ln N = S q is maximal<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


A Simple Diagram for N=3<br />

(0,0,1)<br />

λ 3<br />

(1/3,1/3,1/3)<br />

MOST<br />

ENTANGLED<br />

S=log(N)<br />

λ 2<br />

(0,1,0)<br />

λ (1,0,0) 1<br />

LEAST ENTANGLED<br />

S=0<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


A Simple Diagram for N=3<br />

(0,0,1)<br />

λ 3<br />

(1/3,1/3,1/3)<br />

MOST<br />

ENTANGLED<br />

S=log(N)<br />

λ 2<br />

(0,1,0)<br />

λ (1,0,0) 1<br />

LEAST ENTANGLED<br />

S=0<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


<strong>Random</strong> <strong>Pure</strong> <strong>State</strong>: Haar Measure<br />

|ψ >= ∑ x i,α |i A > ⊗|α B > =<br />

i,α<br />

N∑ √<br />

λi |λ A i > ⊗|λ B i ><br />

i=1<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


<strong>Random</strong> <strong>Pure</strong> <strong>State</strong>: Haar Measure<br />

|ψ >= ∑ i,α<br />

x i,α |i A > ⊗|α B > =<br />

N∑ √<br />

λi |λ A i > ⊗|λ B i ><br />

• random pure state −→ where X = [x i,α ] are uniformly distributed<br />

among the sets <strong>of</strong> {x i,α } satisfying ∑ i,α |x i,α| 2 = Trρ = 1<br />

i=1<br />

−→ Haar measure<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


<strong>Random</strong> <strong>Pure</strong> <strong>State</strong>: Haar Measure<br />

|ψ >= ∑ i,α<br />

x i,α |i A > ⊗|α B > =<br />

N∑ √<br />

λi |λ A i > ⊗|λ B i ><br />

• random pure state −→ where X = [x i,α ] are uniformly distributed<br />

among the sets <strong>of</strong> {x i,α } satisfying ∑ i,α |x i,α| 2 = Trρ = 1<br />

i=1<br />

−→ Haar measure<br />

• Equivalently, for the N × M matrix<br />

P(X ) ∝ δ ( Tr(XX † ) − 1 )<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


<strong>Random</strong> <strong>Pure</strong> <strong>State</strong>: Haar Measure<br />

|ψ >= ∑ i,α<br />

x i,α |i A > ⊗|α B > =<br />

N∑ √<br />

λi |λ A i > ⊗|λ B i ><br />

• random pure state −→ where X = [x i,α ] are uniformly distributed<br />

among the sets <strong>of</strong> {x i,α } satisfying ∑ i,α |x i,α| 2 = Trρ = 1<br />

i=1<br />

−→ Haar measure<br />

• Equivalently, for the N × M matrix<br />

P(X ) ∝ δ ( Tr(XX † ) − 1 )<br />

• In the basis |i A 〉 <strong>of</strong> H A : ˆρ A = W = XX †<br />

−→ Distribution <strong>of</strong> the eigenvalues λ i <strong>of</strong> ˆρ A ?<br />

−→ Distribution <strong>of</strong> the entanglement entropies S VN , S q ?<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


Joint PDF <strong>of</strong> Eigenvalues<br />

• the joint pdf P(λ 1 , λ 2 , . . . , λ N )<br />

where {λ 1 , λ 2 , . . . , λ N } → eigenvalues <strong>of</strong> the Wishart matrix<br />

W = XX † (X → N × M Gaussian random matrix)<br />

with an additional constraint<br />

N∑<br />

λ i = 1<br />

i=1<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


Joint PDF <strong>of</strong> Eigenvalues<br />

• the joint pdf P(λ 1 , λ 2 , . . . , λ N )<br />

where {λ 1 , λ 2 , . . . , λ N } → eigenvalues <strong>of</strong> the Wishart matrix<br />

W = XX † (X → N × M Gaussian random matrix)<br />

with an additional constraint<br />

N∑<br />

λ i = 1<br />

i=1<br />

• Joint distribution <strong>of</strong> Wishart eigenvalues (James ’64):<br />

[ ]<br />

P({λ i }) ∝ exp − β N∑ ∏<br />

λ i λ β 2 (1+M−N)−1 ∏<br />

i<br />

|λ j − λ k | β<br />

2<br />

i=1 i<br />

j


Joint PDF <strong>of</strong> Eigenvalues<br />

• the joint pdf P(λ 1 , λ 2 , . . . , λ N )<br />

where {λ 1 , λ 2 , . . . , λ N } → eigenvalues <strong>of</strong> the Wishart matrix<br />

W = XX † (X → N × M Gaussian random matrix)<br />

with an additional constraint<br />

N∑<br />

λ i = 1<br />

i=1<br />

• Joint distribution <strong>of</strong> Wishart eigenvalues (James ’64):<br />

[ ] (<br />

P({λ i }) ∝ exp − β N∑ ∏<br />

λ i λ β 2 (1+M−N)−1 ∏<br />

N<br />

)<br />

∑<br />

i<br />

|λ j − λ k | β ×δ λ i − 1<br />

2<br />

i=1 i<br />

i=1<br />

j


Joint PDF <strong>of</strong> Eigenvalues<br />

• the joint pdf P(λ 1 , λ 2 , . . . , λ N )<br />

where {λ 1 , λ 2 , . . . , λ N } → eigenvalues <strong>of</strong> the Wishart matrix<br />

W = XX † (X → N × M Gaussian random matrix)<br />

with an additional constraint<br />

N∑<br />

λ i = 1<br />

i=1<br />

• Joint distribution <strong>of</strong> Wishart eigenvalues (James ’64):<br />

[ ] (<br />

P({λ i }) ∝ exp − β N∑ ∏<br />

λ i λ β 2 (1+M−N)−1 ∏<br />

N<br />

)<br />

∑<br />

i<br />

|λ j − λ k | β ×δ λ i − 1<br />

2<br />

i=1 i<br />

i=1<br />

j


<strong>Random</strong> <strong>Pure</strong> <strong>State</strong>: Well Studied<br />

• Average von Neumann entropy: 〈S VN 〉 → ln N − N<br />

2M for M ∼ N ≫ 1<br />

−→ Near Maximal<br />

[Lubkin (’78), Page (’93), Foong and Kanno (’94), Sánchez-Ruiz (’95),<br />

Sen (’96)]<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


<strong>Random</strong> <strong>Pure</strong> <strong>State</strong>: Well Studied<br />

• Average von Neumann entropy: 〈S VN 〉 → ln N − N<br />

2M for M ∼ N ≫ 1<br />

−→ Near Maximal<br />

[Lubkin (’78), Page (’93), Foong and Kanno (’94), Sánchez-Ruiz (’95),<br />

Sen (’96)]<br />

• statistics <strong>of</strong> observables such as average density <strong>of</strong> eigenvalues,<br />

concurrence, purity, minimum eigenvalue λ min etc.<br />

[Lubkin (’78), Zyczkowski & Sommers (2001, 2004), Cappellini,<br />

Sommers and Zyczkowski (2006), Giraud (2007), Znidaric (2007), S.M.,<br />

Bohigas and Lakshminarayan (2008), Kubotini, Adachi and Toda (2008),<br />

Chen, Liu and Zhou (2010), Vivo (2010), ...]<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


<strong>Random</strong> <strong>Pure</strong> <strong>State</strong>: Well Studied<br />

• Average von Neumann entropy: 〈S VN 〉 → ln N − N<br />

2M for M ∼ N ≫ 1<br />

−→ Near Maximal<br />

[Lubkin (’78), Page (’93), Foong and Kanno (’94), Sánchez-Ruiz (’95),<br />

Sen (’96)]<br />

• statistics <strong>of</strong> observables such as average density <strong>of</strong> eigenvalues,<br />

concurrence, purity, minimum eigenvalue λ min etc.<br />

[Lubkin (’78), Zyczkowski & Sommers (2001, 2004), Cappellini,<br />

Sommers and Zyczkowski (2006), Giraud (2007), Znidaric (2007), S.M.,<br />

Bohigas and Lakshminarayan (2008), Kubotini, Adachi and Toda (2008),<br />

Chen, Liu and Zhou (2010), Vivo (2010), ...]<br />

• Laplace transform <strong>of</strong> the purity (q = 2) distribution for large N [Facchi<br />

et. al. (2008, 2010)]<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


Results: <strong>Entropy</strong> Distribution<br />

• Scaling for large N: λ typ ∼ 1 N as ∑ N<br />

i=1 λ i = 1<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


Results: <strong>Entropy</strong> Distribution<br />

• Scaling for large N: λ typ ∼ 1 N as ∑ N<br />

i=1 λ i = 1<br />

Renyi entropy:<br />

S q = 1<br />

1−q ln [Σ q] with Σ q = ∑ N<br />

i=1 λq i<br />

, q > 1<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


Results: <strong>Entropy</strong> Distribution<br />

• Scaling for large N: λ typ ∼ 1 N as ∑ N<br />

i=1 λ i = 1<br />

Renyi entropy:<br />

S q = 1<br />

1−q ln [Σ q] with Σ q = ∑ N<br />

i=1 λq i<br />

, q > 1<br />

Σ q = N 1−q s for large N −→ S q = ln N − ln s<br />

q−1<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


Results: <strong>Entropy</strong> Distribution<br />

• Scaling for large N: λ typ ∼ 1 N as ∑ N<br />

i=1 λ i = 1<br />

Renyi entropy:<br />

S q = 1<br />

1−q ln [Σ q] with Σ q = ∑ N<br />

i=1 λq i<br />

, q > 1<br />

Σ q = N 1−q s for large N −→ S q = ln N − ln s<br />

q−1<br />

(i) Unentangled<br />

S q = 0 is minimal<br />

Σ q = 1 (or s → ∞)<br />

(ii) Maximally entangled<br />

S q = ln N is maximal<br />

Σ q = N 1−q (or s = 1)<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


Results: <strong>Entropy</strong> Distribution<br />

• Scaling for large N: λ typ ∼ 1 N as ∑ N<br />

i=1 λ i = 1<br />

Renyi entropy:<br />

S q = 1<br />

1−q ln [Σ q] with Σ q = ∑ N<br />

i=1 λq i<br />

, q > 1<br />

Σ q = N 1−q s for large N −→ S q = ln N − ln s<br />

q−1<br />

(i) Unentangled<br />

S q = 0 is minimal<br />

Σ q = 1 (or s → ∞)<br />

(ii) Maximally entangled<br />

S q = ln N is maximal<br />

Σ q = N 1−q (or s = 1)<br />

• Average entropy for large N:<br />

〈Σ q 〉 ≈ N 1−q ¯s(q) → 〈S q 〉 ≈ ln N −<br />

ln ¯s(q)<br />

q−1<br />

where ¯s(q) = Γ(q+1/2) √ πΓ(q+2)<br />

4 q<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


Results: <strong>Entropy</strong> Distribution<br />

• Scaling for large N: λ typ ∼ 1 N as ∑ N<br />

i=1 λ i = 1<br />

Renyi entropy:<br />

S q = 1<br />

1−q ln [Σ q] with Σ q = ∑ N<br />

i=1 λq i<br />

, q > 1<br />

Σ q = N 1−q s for large N −→ S q = ln N − ln s<br />

q−1<br />

(i) Unentangled<br />

S q = 0 is minimal<br />

Σ q = 1 (or s → ∞)<br />

(ii) Maximally entangled<br />

S q = ln N is maximal<br />

Σ q = N 1−q (or s = 1)<br />

• Average entropy for large N:<br />

〈Σ q 〉 ≈ N 1−q ¯s(q) → 〈S q 〉 ≈ ln N −<br />

ln ¯s(q)<br />

q−1<br />

where ¯s(q) = Γ(q+1/2) √ πΓ(q+2)<br />

4 q<br />

For q = 2, 〈Σ 2 〉 ≈ 2 N (purity); For q → 1, 〈S VN〉 ≈ ln N − 1 2<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


Results: pdf <strong>of</strong> Σ q = ∑ i λq i<br />

⎧<br />

P ( Σ q = N 1−q s ) ⎪⎨<br />

≈<br />

⎪⎩<br />

exp { −βN 2 Φ I (s) }<br />

exp { −βN 2 Φ II (s) }<br />

{<br />

exp −βN 1+ 1 q<br />

}<br />

ΨIII (s)<br />

for 1 ≤ s < s 1 (q)<br />

for s 1 (q) < s < s 2 (q)<br />

for s > s 2 (q)<br />

P ( Σ q = N 1−q s )<br />

¯s(q)<br />

(a)<br />

− ln [ P ( Σ q = N 1−q s )]<br />

(b)<br />

I II III<br />

I II III<br />

1 s 1 (q) s 2 (q)<br />

max. entangled ←− unentangled<br />

s<br />

1s 1 (q)<br />

¯s(q)<br />

s 2 (q)<br />

s<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


Computation <strong>of</strong> the pdf <strong>of</strong> Σ q : Coulomb gas method<br />

• PDF <strong>of</strong> Σ q = ∑ i λq i<br />

∫<br />

( ) ( )<br />

∑ ∏<br />

P(Σ q , N) = P(λ 1 , ..., λ N ) δ λ q i<br />

− Σ q dλ i .<br />

i<br />

i<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


Computation <strong>of</strong> the pdf <strong>of</strong> Σ q : Coulomb gas method<br />

• PDF <strong>of</strong> Σ q = ∑ i λq i<br />

∫<br />

( ) ( )<br />

∑ ∏<br />

P(Σ q , N) = P(λ 1 , ..., λ N ) δ λ q i<br />

− Σ q dλ i .<br />

i<br />

i<br />

• The joint pdf <strong>of</strong> the eigenvalues can be interpreted as a Boltzmann<br />

weight at inverse temperature β:<br />

P(λ 1 , ..., λ N ) ∝ δ ( ∑<br />

λ i − 1 )<br />

i<br />

N ∏<br />

i=1<br />

∝ exp {−βE [{λ i }]}<br />

λ β 2 (M−N+1)−1<br />

i<br />

∏<br />

|λ i − λ j | β<br />

i


Charge Density and Effective Energy<br />

E{λ i } = −γ<br />

N∑<br />

ln λ i − ∑ ln |λ i − λ j | with ∑ λ i = 1<br />

i


Charge Density and Effective Energy<br />

E{λ i } = −γ<br />

N∑<br />

ln λ i − ∑ ln |λ i − λ j | with ∑ λ i = 1<br />

i


Charge Density and Effective Energy<br />

E{λ i } = −γ<br />

N∑<br />

ln λ i − ∑ ln |λ i − λ j | with ∑<br />

i


Saddle Point Solution<br />

∫ ∞ ∫ ∞<br />

E s [ρ]=− 1 (∫ ∞<br />

dxdx ′ ρ(x)ρ(x ′ ) ln |x − x ′ | + µ 0<br />

2 0 0<br />

(∫ ∞<br />

) (∫ ∞<br />

+µ 1 dx x ρ(x) − 1 + µ 2<br />

0<br />

0<br />

)<br />

dx ρ(x) − 1<br />

0<br />

)<br />

dx x q ρ(x) − s<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


Saddle Point Solution<br />

∫ ∞ ∫ ∞<br />

E s [ρ]=− 1 (∫ ∞<br />

dxdx ′ ρ(x)ρ(x ′ ) ln |x − x ′ | + µ 0<br />

2 0 0<br />

(∫ ∞<br />

) (∫ ∞<br />

+µ 1 dx x ρ(x) − 1 + µ 2<br />

0<br />

0<br />

)<br />

dx ρ(x) − 1<br />

0<br />

)<br />

dx x q ρ(x) − s<br />

• Saddle point method for large N:<br />

P ( Σ q = N 1−q s, N ) ∫<br />

∝ D [ρ] exp { −βN 2 E s [ρ] } ∝ exp { −βN 2 E s [ρ c ] }<br />

where ρ c minimizes the energy:<br />

δE s<br />

δρ<br />

∣ = 0<br />

ρ=ρc<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


Saddle Point Solution<br />

∫ ∞ ∫ ∞<br />

E s [ρ]=− 1 (∫ ∞<br />

dxdx ′ ρ(x)ρ(x ′ ) ln |x − x ′ | + µ 0<br />

2 0 0<br />

(∫ ∞<br />

) (∫ ∞<br />

+µ 1 dx x ρ(x) − 1 + µ 2<br />

0<br />

0<br />

)<br />

dx ρ(x) − 1<br />

0<br />

)<br />

dx x q ρ(x) − s<br />

• Saddle point method for large N:<br />

P ( Σ q = N 1−q s, N ) ∫<br />

∝ D [ρ] exp { −βN 2 E s [ρ] } ∝ exp { −βN 2 E s [ρ c ] }<br />

where ρ c minimizes the energy:<br />

∫ ∞<br />

0<br />

δE s<br />

δρ<br />

∣ = 0 giving<br />

ρ=ρc<br />

dx ′ ρ c (x ′ ) ln |x − x ′ | = µ 0 + µ 1 x + µ 2 x q ≡ V (x)<br />

V (x) → effective potential for the charges.<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


Saddle Point Solution<br />

∫ ∞ ∫ ∞<br />

E s [ρ]=− 1 (∫ ∞<br />

dxdx ′ ρ(x)ρ(x ′ ) ln |x − x ′ | + µ 0<br />

2 0 0<br />

(∫ ∞<br />

) (∫ ∞<br />

+µ 1 dx x ρ(x) − 1 + µ 2<br />

0<br />

0<br />

)<br />

dx ρ(x) − 1<br />

0<br />

)<br />

dx x q ρ(x) − s<br />

• Saddle point method for large N:<br />

P ( Σ q = N 1−q s, N ) ∫<br />

∝ D [ρ] exp { −βN 2 E s [ρ] } ∝ exp { −βN 2 E s [ρ c ] }<br />

where ρ c minimizes the energy:<br />

∫ ∞<br />

0<br />

δE s<br />

δρ<br />

∣ = 0 giving<br />

ρ=ρc<br />

dx ′ ρ c (x ′ ) ln |x − x ′ | = µ 0 + µ 1 x + µ 2 x q ≡ V (x)<br />

V (x) → effective potential for the charges.<br />

• Taking derivative with respect to x gives<br />

P<br />

∫ ∞<br />

0<br />

dx ′ ρ c(x ′ )<br />

x − x ′ = µ 1 + q µ 2 x q−1 = V ′ (x)<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


Steps for Computing the PDF <strong>of</strong> Σ q<br />

(i) find the solution ρ c (x) <strong>of</strong> the integral equation<br />

P<br />

∫ ∞<br />

0<br />

dx ′ ρ c(x ′ )<br />

x − x ′ = µ 1 + q µ 2 x q−1 = V ′ (x)<br />

Tricomi’s solution: density ρ c (x) with finite support [L 1 , L 2 ]:<br />

[ ∫<br />

1<br />

L2<br />

√ √ ]<br />

ρ c (x) =<br />

π √ dy y − L1 L2 − y<br />

√ C − P<br />

V ′ (y) ,<br />

x − L 1 L2 − x<br />

π x − y<br />

where C = ∫ L 2<br />

L 1<br />

dx ρ c (x) is a constant<br />

L 1<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


Steps for Computing the PDF <strong>of</strong> Σ q<br />

(i) find the solution ρ c (x) <strong>of</strong> the integral equation<br />

P<br />

∫ ∞<br />

0<br />

dx ′ ρ c(x ′ )<br />

x − x ′ = µ 1 + q µ 2 x q−1 = V ′ (x)<br />

Tricomi’s solution: density ρ c (x) with finite support [L 1 , L 2 ]:<br />

[ ∫<br />

1<br />

L2<br />

√ √ ]<br />

ρ c (x) =<br />

π √ dy y − L1 L2 − y<br />

√ C − P<br />

V ′ (y) ,<br />

x − L 1 L2 − x<br />

π x − y<br />

where C = ∫ L 2<br />

L 1<br />

dx ρ c (x) is a constant<br />

(ii) for a given s, the unknown Lagrange multipliers µ 0 , µ 1 and µ 2 are<br />

fixed by the three conditions:<br />

∫ ∞<br />

0<br />

ρ c (x) dx = 1 ,<br />

∫ ∞<br />

0<br />

L 1<br />

x ρ c (x) dx = 1 and<br />

∫ ∞<br />

0<br />

x q ρ c (x) dx = s<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


Steps for Computing the PDF <strong>of</strong> Σ q<br />

(i) find the solution ρ c (x) <strong>of</strong> the integral equation<br />

P<br />

∫ ∞<br />

0<br />

dx ′ ρ c(x ′ )<br />

x − x ′ = µ 1 + q µ 2 x q−1 = V ′ (x)<br />

Tricomi’s solution: density ρ c (x) with finite support [L 1 , L 2 ]:<br />

[ ∫<br />

1<br />

L2<br />

√ √ ]<br />

ρ c (x) =<br />

π √ dy y − L1 L2 − y<br />

√ C − P<br />

V ′ (y) ,<br />

x − L 1 L2 − x<br />

π x − y<br />

where C = ∫ L 2<br />

L 1<br />

dx ρ c (x) is a constant<br />

(ii) for a given s, the unknown Lagrange multipliers µ 0 , µ 1 and µ 2 are<br />

fixed by the three conditions:<br />

∫ ∞<br />

0<br />

ρ c (x) dx = 1 ,<br />

∫ ∞<br />

0<br />

L 1<br />

x ρ c (x) dx = 1 and<br />

(iii) evaluate the saddle point energy E s [ρ c ]<br />

∫ ∞<br />

0<br />

x q ρ c (x) dx = s<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


Phase Transitions<br />

Regime I:<br />

1 < s < s 1<br />

(s 1 (q = 2) = 5/4 )<br />

Regime II:<br />

s 1 < s < s 2<br />

(s 2 (q = 2) = 2 + 24/3<br />

N 1/3 )<br />

V (x) V (x) V (x)<br />

Regime III:<br />

s > s 2<br />

(weakly entangled)<br />

I II III<br />

0<br />

x ∗ x 0 x 0<br />

x<br />

(a) (b) (c)<br />

ρ c (λ, N) ρ c (λ, N) ρ c (λ, N)<br />

I II III<br />

L 1 /N L 2 /N<br />

λ<br />

λ<br />

λ<br />

0 L/N 0 ζ t<br />

S.N. Majumdar Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


q = 2 : Purity<br />

• Regime I: 1 < s < 5/4 √<br />

L2 − x √ x − L 1<br />

ρ c (x) =<br />

,<br />

2π (s − 1)<br />

P<br />

(Σ 2 = s )<br />

N , N ∝ e −βN2 Φ I (s) , Φ I (s) = − 1 4 ln (s − 1) − 1 8<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


q = 2 : Purity<br />

• Regime I: 1 < s < 5/4 √<br />

L2 − x √ x − L 1<br />

ρ c (x) =<br />

,<br />

2π (s − 1)<br />

P<br />

(Σ 2 = s )<br />

N , N ∝ e −βN2 Φ I (s) , Φ I (s) = − 1 4 ln (s − 1) − 1 8<br />

• Regime II: 5/4 < s < 2 + 24/3<br />

N 1/3<br />

ρ c (x) = 1 √<br />

L − x<br />

(<br />

(A + B x) with L = 2 3 − √ )<br />

9 − 4s<br />

π x<br />

P<br />

(Σ 2 = s )<br />

N , N ∝ e −βN2 Φ II (s) , Φ II (s) = − 1 ( ) L<br />

2 ln + 6 4 L 2 − 5 L + 7 8<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


q = 2 : Purity<br />

• Regime I: 1 < s < 5/4 √<br />

L2 − x √ x − L 1<br />

ρ c (x) =<br />

,<br />

2π (s − 1)<br />

P<br />

(Σ 2 = s )<br />

N , N ∝ e −βN2 Φ I (s) , Φ I (s) = − 1 4 ln (s − 1) − 1 8<br />

• Regime II: 5/4 < s < 2 + 24/3<br />

N 1/3<br />

ρ c (x) = 1 √<br />

L − x<br />

(<br />

(A + B x) with L = 2 3 − √ )<br />

9 − 4s<br />

π x<br />

P<br />

(Σ 2 = s )<br />

N , N ∝ e −βN2 Φ II (s) , Φ II (s) = − 1 ( ) L<br />

2 ln + 6 4 L 2 − 5 L + 7 8<br />

• Regime III: s > 2 + 24/3 Continuous density with support [0, ζ] with<br />

N 1/3<br />

ζ ≈ 4 N and separated λ max ≫ ζ: λ max = t ≈ √ √<br />

s−2<br />

N<br />

P<br />

(Σ 2 = s )<br />

N , N ≈ e −βN 3 2 Ψ III (s)<br />

, Ψ III (s) =<br />

√ s − 2<br />

2<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


Numerical simulations<br />

Monte Carlo Simulations (non-standard Metropolis algorithm):<br />

pdf <strong>of</strong> Σ 2 (purity) for N = 1000 (second phase transition)<br />

− ln P (Σ 2 = s N )<br />

0.008<br />

βN 2<br />

0.006<br />

0.004<br />

Φ III = Ψ III √<br />

N<br />

0.002<br />

Φ II<br />

0.000<br />

2.0 2.1 2.2 2.3 2.4 2.5<br />

¯s(2) s 2 (2)<br />

S.N. Majumdar Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong><br />

s


Numerical Simulations (2)<br />

Jump <strong>of</strong> the maximal eigenvalue (rightmost charge) at s = s 2 for q = 2<br />

and different values <strong>of</strong> N<br />

N t = N λ max<br />

for Σ 2 = s N<br />

20<br />

15<br />

N = 1000<br />

N = 500<br />

10<br />

5<br />

N = 50<br />

0<br />

2.0 2.1 2.2 2.3 2.4 2.5<br />

¯s s 2<br />

(N = 1000)<br />

s2<br />

(N = 500)<br />

S.N. Majumdar<br />

s<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


The limit q → 1 — von Neumann <strong>Entropy</strong><br />

S VN = S q→1 = − ∑ N<br />

i=1 λ i ln(λ i ) = ln(N) − z<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


The limit q → 1 — von Neumann <strong>Entropy</strong><br />

00 11<br />

00 11<br />

00 11<br />

z<br />

01 01<br />

01<br />

01<br />

S VN = S q→1 = − ∑ N<br />

i=1 λ i ln(λ i ) = ln(N) − z<br />

⎧<br />

exp { −βN 2 φ I (z) } for 0 ≤ z < z 1 = 2 3 − ln ( 3<br />

2)<br />

= 0.26.<br />

⎪⎨<br />

(S VN = ln(N) − z) ≈ exp { −βN 2 φ II (z) } for 0.26.. < z < z 2 = 1/2<br />

{<br />

}<br />

⎪⎩ exp −β N2<br />

ln(N) φ III (z) for z > z 2 = 1/2<br />

P(S VN<br />

= ln(N)−z)<br />

z=0<br />

II<br />

I<br />

maximally entangled<br />

z 1<br />

=0.26..<br />

III<br />

2<br />

= 0.5<br />

z<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


The limit q → ∞ — Maximal eigenvalue<br />

• S q→∞ = − ln (λ max )<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


The limit q → ∞ — Maximal eigenvalue<br />

• S q→∞ = − ln (λ max )<br />

(<br />

P λ max = t )<br />

≈<br />

N<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

exp { −βN 2 χ I (t) } for 1 ≤ t < t 1 = 4 3<br />

exp { −βN 2 χ II (t) } for 4 3 < t < t 2 = 4<br />

exp {−βN χ III (t)} for t > t 2 = 4<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


The limit q → ∞ — Maximal eigenvalue<br />

• S q→∞ = − ln (λ max )<br />

(<br />

P λ max = t )<br />

≈<br />

N<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

exp { −βN 2 χ I (t) } for 1 ≤ t < t 1 = 4 3<br />

exp { −βN 2 χ II (t) } for 4 3 < t < t 2 = 4<br />

exp {−βN χ III (t)} for t > t 2 = 4<br />

• Around its mean, 〈λ max 〉 = 4/N, the typical fluctuations<br />

(∼ O(N −5/3 )) are described by the Tracy-Widom distribution<br />

λ max = 4 N + 24/3 N −5/3 Y β<br />

Y β → random variable distributed via Tracy-Widom law<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


The limit q → ∞ — Maximal eigenvalue<br />

• S q→∞ = − ln (λ max )<br />

(<br />

P λ max = t )<br />

≈<br />

N<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

exp { −βN 2 χ I (t) } for 1 ≤ t < t 1 = 4 3<br />

exp { −βN 2 χ II (t) } for 4 3 < t < t 2 = 4<br />

exp {−βN χ III (t)} for t > t 2 = 4<br />

• Around its mean, 〈λ max 〉 = 4/N, the typical fluctuations<br />

(∼ O(N −5/3 )) are described by the Tracy-Widom distribution<br />

λ max = 4 N + 24/3 N −5/3 Y β<br />

Y β → random variable distributed via Tracy-Widom law<br />

• For finite N and M, see P. Vivo (2011)<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


Summary and Conclusions<br />

• Exact distribution <strong>of</strong> the Renyi entanglement entropy S q for a<br />

random pure state in a large bipartite quantum system (M ∼ N ≫ 1)<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


Summary and Conclusions<br />

• Exact distribution <strong>of</strong> the Renyi entanglement entropy S q for a<br />

random pure state in a large bipartite quantum system (M ∼ N ≫ 1)<br />

• Coulomb gas method → saddle point solution<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


Summary and Conclusions<br />

• Exact distribution <strong>of</strong> the Renyi entanglement entropy S q for a<br />

random pure state in a large bipartite quantum system (M ∼ N ≫ 1)<br />

• Coulomb gas method → saddle point solution<br />

• 2 critical points → direct consequence <strong>of</strong> 2 phase transitions in the<br />

associated Coulomb gas<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


Summary and Conclusions<br />

• Exact distribution <strong>of</strong> the Renyi entanglement entropy S q for a<br />

random pure state in a large bipartite quantum system (M ∼ N ≫ 1)<br />

• Coulomb gas method → saddle point solution<br />

• 2 critical points → direct consequence <strong>of</strong> 2 phase transitions in the<br />

associated Coulomb gas<br />

• at the second critical point: λ max suddenly jumps to a value<br />

∼ N −(1−1/q) much larger than the other λ i ∼ 1/N<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


Summary and Conclusions<br />

• Exact distribution <strong>of</strong> the Renyi entanglement entropy S q for a<br />

random pure state in a large bipartite quantum system (M ∼ N ≫ 1)<br />

• Coulomb gas method → saddle point solution<br />

• 2 critical points → direct consequence <strong>of</strong> 2 phase transitions in the<br />

associated Coulomb gas<br />

• at the second critical point: λ max suddenly jumps to a value<br />

∼ N −(1−1/q) much larger than the other λ i ∼ 1/N<br />

• While the average entropy <strong>of</strong> a random pure state is indeed close to its<br />

maximal value ln N, the probability <strong>of</strong> occurrence <strong>of</strong> the maximally<br />

entangled state (all λ i = 1/N) is actually very small.<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


Summary and Conclusions<br />

• Exact distribution <strong>of</strong> the Renyi entanglement entropy S q for a<br />

random pure state in a large bipartite quantum system (M ∼ N ≫ 1)<br />

• Coulomb gas method → saddle point solution<br />

• 2 critical points → direct consequence <strong>of</strong> 2 phase transitions in the<br />

associated Coulomb gas<br />

• at the second critical point: λ max suddenly jumps to a value<br />

∼ N −(1−1/q) much larger than the other λ i ∼ 1/N<br />

• While the average entropy <strong>of</strong> a random pure state is indeed close to its<br />

maximal value ln N, the probability <strong>of</strong> occurrence <strong>of</strong> the maximally<br />

entangled state (all λ i = 1/N) is actually very small.<br />

Work in progress (C. Nadal, S.M with C. Pineda and T. Seligman)<br />

Distribution <strong>of</strong> entropy for N finite but M ≫ N (large environment)?<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>


References<br />

On the large N distribution <strong>of</strong> the Renyi entropy:<br />

• C. Nadal, S.M. and M. Vergassola, Phys. Rev. Lett. 104, 110501<br />

(2010)<br />

• long version: J. Stat. Phys. 142, 403 (2011)<br />

On the distribution <strong>of</strong> the minumum Schmidt number λ min :<br />

• S.M., O. Bohigas and A. Lakshminarayan, J. Stat. Phys. 131, 33<br />

(2008)<br />

• see also S.M. in “ Handbook <strong>of</strong> <strong>Random</strong> Matrix Theory” (ed. by G.<br />

Akemann, J. Baik and P. Di Francesco and forwarded by F.J. Dyson)<br />

(Oxford Univ. Press, 2011) (arXiv:1005.4515)<br />

S.N. Majumdar<br />

Distribution <strong>of</strong> Bipartite <strong>Entanglement</strong> <strong>of</strong> a <strong>Random</strong> <strong>Pure</strong> <strong>State</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!