19.04.2015 Views

Geometrically frustrated magnets - Department of Theoretical Physics

Geometrically frustrated magnets - Department of Theoretical Physics

Geometrically frustrated magnets - Department of Theoretical Physics

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Geometrically</strong> <strong>frustrated</strong> <strong>magnets</strong><br />

Arnab Sen, TIFR<br />

<strong>Theoretical</strong> <strong>Physics</strong> Colloquium<br />

Collaborators: K. Damle (TIFR), R. Moessner (Dresden),<br />

A. Vishwanath (Berkeley) and F. Wang (Berkeley)<br />

Thanks to: Deepak Dhar, T. Senthil<br />

A. Sen, F. Wang, K. Damle and R. Moessner, PRL 102, 227001<br />

(2009)<br />

A. Sen, K. Damle and A. Vishwanath, PRL 100, 097202 (2008).<br />

July 7, 2009<br />

Arnab Sen, TIFR<br />

<strong>Geometrically</strong> <strong>frustrated</strong> <strong>magnets</strong>


Magnetism in ionic insulators<br />

Many ionic insulators have magnetic ions with an<br />

associated magnetic moment due to incomplete shells.<br />

Interactions between these localized moments.<br />

Magnetic dipolar interaction energy (small ∼ 10 −5 eV).<br />

Exchange energy E = J ∑ 〈ij〉 S i · S j due to Coulomb<br />

interactions and Pauli exclusion.<br />

How big is J? When is it positive?<br />

Difficult questions.<br />

Arnab Sen, TIFR<br />

<strong>Geometrically</strong> <strong>frustrated</strong> <strong>magnets</strong>


Superexchange interaction<br />

Consider MnO which is<br />

antiferromagnetic ionic solid.<br />

Mn 2+ has 5 electrons in its d shell<br />

being parallel due to Hund’s rule.<br />

O 2− has fully occupied p orbitals.<br />

Antiparallel alignment <strong>of</strong> spins in<br />

neighbouring Mn ions has lower<br />

kinetic energy due to delocalization<br />

<strong>of</strong> electrons (virtual hoppings).<br />

Arnab Sen, TIFR<br />

<strong>Geometrically</strong> <strong>frustrated</strong> <strong>magnets</strong>


Un<strong>frustrated</strong> <strong>magnets</strong><br />

Usually ordered states at low temperature T (O(JS 2 )).<br />

Ordering at low T largely determined by classical<br />

energetics even for small spin length S for un<strong>frustrated</strong><br />

<strong>magnets</strong>.<br />

E.g. ground state for cubic lattice Heisenberg<br />

antiferromagnet is the Neel state and the low energy<br />

excitations are long wavelength spin waves.<br />

Arnab Sen, TIFR<br />

<strong>Geometrically</strong> <strong>frustrated</strong> <strong>magnets</strong>


Frustration<br />

Not all the interactions can be simultaneously satisfied.<br />

Randomness: e.g., Spin glasses<br />

Multiple interactions: e.g., J 1 − J 2 Model<br />

Geometry<br />

J<br />

J<br />

_ J<br />

J 1<br />

J 2<br />

?<br />

J<br />

2 J 1<br />

> J 2<br />

J 2<br />

> 2 J 1<br />

Arnab Sen, TIFR<br />

<strong>Geometrically</strong> <strong>frustrated</strong> <strong>magnets</strong>


Geometric frustration<br />

Arrangement <strong>of</strong> spins on the lattice such that all<br />

interactions cannot be satisfied together.<br />

Neel state avoided. Simplest case:<br />

In extreme cases, macroscopic degeneracy <strong>of</strong> classical<br />

minimum energy configurations (highly <strong>frustrated</strong><br />

<strong>magnets</strong>).<br />

?<br />

Arnab Sen, TIFR<br />

<strong>Geometrically</strong> <strong>frustrated</strong> <strong>magnets</strong>


Schematic <strong>of</strong> magnetic susceptibility<br />

No magnetic ordering even for T well below O(JS 2 ) unlike<br />

un<strong>frustrated</strong> <strong>magnets</strong>, instead in a cooperative<br />

paramagnetic regime (J. Villain (1979)).<br />

T → 0: Quantum effects+ subdominant interactions like<br />

next nearest neighbour interactions, magnetic anisotropies<br />

etc.<br />

θ cw<br />

= −500K<br />

non−generic<br />

cooperative<br />

paramagnet<br />

paramagnet<br />

x=7/9<br />

f= |θcw| /T*<br />

x=1/9<br />

θ cw<br />

χ −1 T *<br />

−θ cw<br />

T<br />

SCGO ( Sr Cr 9−9xGa 3+9x O 19 )<br />

Fig from Martinez et al., PRB 46, 10786 (1992)<br />

Arnab Sen, TIFR<br />

<strong>Geometrically</strong> <strong>frustrated</strong> <strong>magnets</strong>


Materials<br />

Pyrochlore<br />

Kagome<br />

Triangular<br />

Hagemann et al., PRL 86, 894 (2001).<br />

Arnab Sen, TIFR<br />

<strong>Geometrically</strong> <strong>frustrated</strong> <strong>magnets</strong>


Interesting questions<br />

Spin liquids<br />

Description <strong>of</strong> the system when there is no magnetic<br />

ordering? Is the physics trivial?<br />

Signatures/probes <strong>of</strong> such correlated phases?<br />

Sensitivity<br />

How can degeneracy be split?<br />

Can unusual states be obtained in this way?<br />

’Quenching’ <strong>of</strong> leading exchange interactions allow new physics<br />

to happen.<br />

Arnab Sen, TIFR<br />

<strong>Geometrically</strong> <strong>frustrated</strong> <strong>magnets</strong>


Macroscopic degeneracy I<br />

Macroscopic degeneracy <strong>of</strong> ground states <strong>of</strong> the Ising<br />

antiferromagnet on both kagome and triangular lattice.<br />

Disordered at all temperatures.<br />

Kagome<br />

a<br />

Triangular<br />

c<br />

b<br />

a<br />

c<br />

b<br />

a<br />

c<br />

b<br />

a<br />

c<br />

b<br />

a<br />

c<br />

b<br />

a<br />

Arnab Sen, TIFR<br />

<strong>Geometrically</strong> <strong>frustrated</strong> <strong>magnets</strong>


Macroscopic degeneracy II<br />

Zero modes for the kagome lattice Heisenberg<br />

antiferromagnet.<br />

Triangular lattice Heisenberg antiferromagnet forms an<br />

ordered state at low temperatures.<br />

Arnab Sen, TIFR<br />

<strong>Geometrically</strong> <strong>frustrated</strong> <strong>magnets</strong>


Ground state correlations<br />

Local constraints can lead to long-ranged correlations.<br />

Best example → dipolar spin liquid on the pyrochlore<br />

lattice.<br />

∑<br />

☒ Sα i<br />

= 0 → ∇ · ⃗B α = 0.<br />

Power-law correlators–〈B l i (0)Bm j<br />

(r)〉 ∝ δ lm<br />

( 3ri r j −r 2 δ ij<br />

r 5 ).<br />

e 2<br />

x<br />

e 4<br />

z<br />

y<br />

e 1<br />

e 3<br />

Isakov, Gregor, Moessner and Sondhi, PRL 93, 167204 (2004).<br />

Arnab Sen, TIFR<br />

<strong>Geometrically</strong> <strong>frustrated</strong> <strong>magnets</strong>


Quantum fluctuations<br />

Quantum fluctuations can be introduced in a perturbative<br />

manner by doing a 1/S expansion.<br />

Large-S calculations on kagome lattice lead to an ordered<br />

state (Chubukov, PRL 69, 832 (1992)).<br />

Arnab Sen, TIFR<br />

<strong>Geometrically</strong> <strong>frustrated</strong> <strong>magnets</strong>


S = 1/2 Case<br />

Precise nature <strong>of</strong> ground state<br />

remains a subject <strong>of</strong> debate.<br />

Exact diagonalization studies find<br />

very short ranged spin-spin<br />

correlations and a spin gap <strong>of</strong><br />

△ ≈ 0.25J.<br />

Recent study finds a state with a 36<br />

site unit cell to be the ground state<br />

(Singh and Huse, PRB 76,<br />

180407(R) (2007)).<br />

Also obtained by Nikolic and Senthil (PRB, 68, 214415<br />

(2003), Fig from there) using a Resonating-Valence-Bond<br />

picture (Anderson, Science 235, 1196 (1987)) .<br />

Arnab Sen, TIFR<br />

<strong>Geometrically</strong> <strong>frustrated</strong> <strong>magnets</strong>


Single-ion anisotropy<br />

Motion <strong>of</strong> the electrons in the magnetic ions influenced by<br />

the crystalline environment.<br />

Energy depends on the absolute orientation with respect to<br />

the crystal axes.<br />

H = J ∑ 〈ij〉 ⃗ S i · ⃗S j − D ∑ i (⃗ S i · ˆn i ) 2<br />

Pyrochlore spin ice Ho 2 Ti 2 O 7 (Ho 3+ , J=8)<br />

Easy axes ˆn point outward from center <strong>of</strong> each<br />

tetrahedron, D ∼ 50K, J ∼ 1K .<br />

Harris et. al., PRL 79, 2554 (1997).<br />

Kagome Nd-langasite Nd 3 Ga 5 SiO 14 (Nd 3+ , J=9/2)<br />

Easy axis perpendicular to lattice plane,<br />

D ∼ 10K, J ∼ 1.5K<br />

A. Zorko et. al., PRL 100, 147201 (2008).<br />

Arnab Sen, TIFR<br />

<strong>Geometrically</strong> <strong>frustrated</strong> <strong>magnets</strong>


Our work<br />

S ≥ 3/2 easy axis on the kagome and triangular lattices:<br />

H = J ∑ 〈ij〉 S i · S j − D ∑ i (Sz i<br />

) 2<br />

<strong>Physics</strong> when D term forces a collinear state?<br />

Best answered by working out small J/D expansion for<br />

effective Hamiltonian for pseudospin-1/2 variables σ i<br />

(σ z = ±1 ↔ S z = ±S).<br />

Assumption: Perturbative results in J/D will be valid as long as<br />

collinear states selected by anisotropy.<br />

Arnab Sen, TIFR<br />

<strong>Geometrically</strong> <strong>frustrated</strong> <strong>magnets</strong>


Zero field<br />

To O(J 3 /D 2 ), H eff is given as<br />

∑<br />

H eff = J 1 〈ij〉 σ 1−σ<br />

iσ j − J i σ j<br />

2<br />

∑〈ij〉 2<br />

(σ i H i + σ j H j )<br />

where<br />

J 1 = JS 2 , J 2 = (S 3 J 3 )/(4D 2 (2S − 1) 2 ), and exchange field<br />

H i = Γ ij σ j with Γ ij = 1 for nearest neighbours and zero<br />

otherwise.<br />

Additional O(J 2S /D 2S−1 ) pseudo-spin exchange term<br />

subleading for S > 3/2.<br />

+<br />

_<br />

+<br />

_ + + +<br />

_ + _<br />

+<br />

2 J 2<br />

4J 2<br />

6 J<br />

_ _<br />

2<br />

+ _<br />

_<br />

+<br />

+<br />

Arnab Sen, TIFR<br />

<strong>Geometrically</strong> <strong>frustrated</strong> <strong>magnets</strong>


Dice Lattice Dimer Model<br />

Can be cast as an interacting dimer model on the Dice<br />

lattice.<br />

Arnab Sen, TIFR<br />

<strong>Geometrically</strong> <strong>frustrated</strong> <strong>magnets</strong>


No minority rule<br />

H D = 2J 2<br />

∑P n2 |nP〉〈nP|<br />

Minimizing J 2 for minimally <strong>frustrated</strong> states → No spin is a<br />

minority spin <strong>of</strong> both the triangles to which it belongs.<br />

Entropy still macroscopic.<br />

=<br />

or<br />

0<br />

T<br />

1<br />

T 0<br />

= or<br />

1<br />

2<br />

Arnab Sen, TIFR<br />

<strong>Geometrically</strong> <strong>frustrated</strong> <strong>magnets</strong>


Semiclassical spin liquid<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

L=48<br />

2C v /N s<br />

(Tχ(T))/(N s S 2 )<br />

S(q)<br />

0<br />

0<br />

0 1 2 3 4 5 6<br />

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2<br />

2βJ 2<br />

q/π<br />

0.0 1.0 6.0<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

(q,q) Cut<br />

L=60, βJ 2 =0.0<br />

L=60, βJ 2 =3.0<br />

L=48, βJ 2 =0.0<br />

L=48, βJ 2 =3.0<br />

System remains a spin liquid down to very low<br />

temperatures.<br />

Very different short-ranged correlations from classical Ising<br />

model.<br />

Arnab Sen, TIFR<br />

<strong>Geometrically</strong> <strong>frustrated</strong> <strong>magnets</strong>


Triangular Lattice<br />

Arnab Sen, TIFR<br />

<strong>Geometrically</strong> <strong>frustrated</strong> <strong>magnets</strong>


The J 2 term<br />

H D can be written in a simplified form as<br />

H D = 2J 2<br />

∑ 3<br />

n=0 n2 |nP〉〈nP|<br />

H D can be minimized by noting that the average number <strong>of</strong><br />

dimers on the perimeter <strong>of</strong> a hexagon is 2 and 〈x 2 〉 ≥ 〈x〉 2<br />

Minimum potential energy for all configurations with g 2 = 1.<br />

Arnab Sen, TIFR<br />

<strong>Geometrically</strong> <strong>frustrated</strong> <strong>magnets</strong>


Orientationally ordered state<br />

0<br />

−1<br />

T2 T1<br />

0<br />

T0<br />

Translational symmetry <strong>of</strong> the triangular lattice intact.<br />

However, symmetry <strong>of</strong> π/3 rotations about a lattice site<br />

broken.<br />

Orientational OP Φ = ∑ P −B p exp(i2pπi/3) where B p<br />

denotes the average <strong>of</strong> the Ising exchange energy on all<br />

links <strong>of</strong> the p th (p=0,1,2) on the triangular lattice.<br />

Arnab Sen, TIFR<br />

<strong>Geometrically</strong> <strong>frustrated</strong> <strong>magnets</strong>


Transition<br />

|Φ| 2<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

L=24<br />

L=30<br />

L=36<br />

a) b)<br />

P( |Φ| 2 )<br />

0.16<br />

0.12<br />

0.08<br />

0.04<br />

L=30, 2βJ 2 (S)=1.1<br />

0<br />

0 0.5 1 1.5 2 2.5<br />

2βJ 2 (S)<br />

0<br />

0 0.4 0.8 1.2 1.6 2<br />

|Φ| 2<br />

Below a critical temperature T c ≈ 1.67J 2 , the system<br />

orders in an orientationally ordered state.<br />

The transition has a first order nature.<br />

Arnab Sen, TIFR<br />

<strong>Geometrically</strong> <strong>frustrated</strong> <strong>magnets</strong>


Consequences (I)<br />

0 q x π 2 π<br />

2 π<br />

b)<br />

a)<br />

0.04<br />

0.03<br />

π<br />

0.02<br />

0.01<br />

q y<br />

0<br />

S(q)<br />

0.0 2.0<br />

0<br />

L=24<br />

0.025|Φ| 2<br />

2χJ 2 (S)/(S 2 N s )<br />

0 0.5 1 1.5 2 2.5<br />

2βJ 2 (S)<br />

Bragg lines with enhanced signal are the signature <strong>of</strong><br />

orientational order.<br />

Sudden drop in magnetic susceptibility χ when the<br />

ordering transition takes place.<br />

Arnab Sen, TIFR<br />

<strong>Geometrically</strong> <strong>frustrated</strong> <strong>magnets</strong>


Consequences (II)<br />

Presence <strong>of</strong> low-temperature zero magnetization plateau<br />

that extends for a range <strong>of</strong> magnetic fields<br />

0 < B < B c ∼ J 3 /D 2 .<br />

Slow glassy dynamics <strong>of</strong> spins due to extended nature <strong>of</strong><br />

stripes in this disorder-free system.<br />

Arnab Sen, TIFR<br />

<strong>Geometrically</strong> <strong>frustrated</strong> <strong>magnets</strong>


Kagome in magnetic field<br />

Include magnetic field along the easy axis<br />

H = J ∑ 〈ij〉 ⃗ S i · ⃗S j − D ∑ i (Sz i<br />

) 2 − B ∑ i Sz i<br />

For Ising spins, m = 1/3 plateau for 0 < |B| < 4JS, with<br />

the Zeeman energy gap largest at B = 2JS.<br />

Ground states characterized by a 2 : 1 constraint that<br />

requires each triangle to have (+S,+S, −S).<br />

Can be represented as dimer coverings <strong>of</strong> honeycomb<br />

lattice.<br />

Dimer<br />

Arnab Sen, TIFR<br />

<strong>Geometrically</strong> <strong>frustrated</strong> <strong>magnets</strong>


Effective hamiltonian on the m = 1/3 plateau<br />

Because <strong>of</strong> the strong 2 : 1 constraint, the first term (for<br />

any S ≥ 3/2) that breaks degeneracy is a diagonal term at<br />

O(J 6 /D 5 ).<br />

Leading <strong>of</strong>f-diagonal term t ring ∼ J 6S−2 /D 6S−3 .<br />

Calculation tricky, result simple<br />

Hexagons with exactly one dimer on them pay energy<br />

penalty V =<br />

(2S) 6 J 6<br />

1024(2S−1) 5 D 5 .<br />

Arnab Sen, TIFR<br />

<strong>Geometrically</strong> <strong>frustrated</strong> <strong>magnets</strong>


Sublattice symmetry broken<br />

a)<br />

c)<br />

0<br />

1<br />

2<br />

T 0<br />

T 1<br />

|Φ| 2<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

L=18<br />

L=24<br />

L=30<br />

0<br />

2 2.4 2.8 3.2 3.6 4<br />

βV(S)<br />

b)<br />

P( |Φ| 2 )<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

L = 30, β = 3.20<br />

0<br />

0 0.4 0.8 1.2 1.6<br />

|Φ| 2<br />

Dimer Representation <strong>of</strong><br />

m=1/3 configurations.<br />

Ordering can be characterized by a sublattice order<br />

parameter Φ = ∑ p m p exp(2pπi/3), where m p denotes the<br />

sublattice magnetization <strong>of</strong> the p th sublattice.<br />

Arnab Sen, TIFR<br />

<strong>Geometrically</strong> <strong>frustrated</strong> <strong>magnets</strong>


Glassy dynamics without disorder<br />

(log(τ)) -1<br />

0.2<br />

0.16<br />

0.12<br />

0.08<br />

0.04<br />

∆ ≈ 3.57V(S), T f (L → ∞) ≈ 0.2V(S)<br />

L=10<br />

L=8<br />

L=6<br />

JS 2 /V(S) =2<br />

0<br />

0 0.2 0.4 0.6 0.8 1<br />

T/V(S)<br />

C(t)<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

L=8, βV(S)=1.2<br />

exp(-t/1460)<br />

0 5000 10000 15000<br />

t (Monte Carlo Step)<br />

Vogel-Fulcher law: Relaxation time τ = exp(∆/(T − T f ))<br />

Arnab Sen, TIFR<br />

<strong>Geometrically</strong> <strong>frustrated</strong> <strong>magnets</strong>


Summary<br />

S > 3/2 kagome and triangular lattice antiferro<strong>magnets</strong><br />

with strong easy axis anisotropy considered.<br />

The kagome magnet goes into a semiclassical spin liquid<br />

with distinctive and unusual short-range correlations below<br />

a crossover temperature T ∗ ≈ 0.08J 3 S/D 2 at zero field.<br />

The triangular magnet undergoes a first order transition at<br />

T c ≈ 0.1J 3 /D 2 to an orientationally ordered collinear state<br />

that gives rise to a zero magnetization plateau for small<br />

magnetic fields along the easy axis.<br />

On the m = 1/3 magnetization plateau on the kagome<br />

lattice, the system breaks sublattice rotation symmetry but<br />

no translational symmetry.<br />

Arnab Sen, TIFR<br />

<strong>Geometrically</strong> <strong>frustrated</strong> <strong>magnets</strong>


THANK YOU<br />

Arnab Sen, TIFR<br />

<strong>Geometrically</strong> <strong>frustrated</strong> <strong>magnets</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!