26.04.2015 Views

Development of a New Tool for Modelling Potential Risks from Food ...

Development of a New Tool for Modelling Potential Risks from Food ...

Development of a New Tool for Modelling Potential Risks from Food ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Development</strong> <strong>of</strong> a <strong>New</strong> <strong>Tool</strong> <strong>for</strong><br />

<strong>Modelling</strong> <strong>Potential</strong> <strong>Risks</strong> <strong>from</strong><br />

<strong>Food</strong> Contact Materials<br />

P.S. Price MS, Dr. J.M. Zabik, G.M. Wiltshire, and<br />

Dr. H.M. Hollnagel<br />

The Dow Chemical Company<br />

ILSI 4 th International Symposium on<br />

<strong>Food</strong> Packaging<br />

Prague, Czech Republic<br />

1


Project Goals<br />

• Characterize risks posed by mixtures <strong>of</strong> migrants rather than single<br />

substances<br />

• Create a screening tool <strong>for</strong> non-carcinogenic effects to identify<br />

mixtures that have a low potential <strong>for</strong> toxicity<br />

• Develop a tool that:<br />

– Can be applied to a wide range <strong>of</strong> mixtures;<br />

– Does not require toxicity data on mixture components; but<br />

– Can make effective use <strong>of</strong> toxicity data when available<br />

• Build on work done in the Threshold <strong>of</strong> Toxicological Concern (TTC)<br />

• Use the latest guidance on assessing chemical toxicity (ECHA and<br />

other sources)<br />

2


Challenges Posed by Mixtures<br />

• Complexity:<br />

– Infinite number <strong>of</strong> mixtures (can’t test them all)<br />

• Little or no toxicity data <strong>for</strong> many components <strong>of</strong> mixtures.<br />

• Traditional approaches <strong>for</strong> assessing mixture toxicity<br />

– Additive models too conservative (not all effects add);<br />

– Independence models not sufficiently conservative (some might<br />

add);<br />

– Both approaches require toxicity data on all components<br />

3


Components <strong>of</strong> <strong>Tool</strong><br />

• Use existing models <strong>of</strong> mixture toxicity<br />

– To develop estimates <strong>of</strong> safe exposures under different<br />

assumptions<br />

– To identify the mixture components that drive toxicity<br />

• Use Cramer classes to fill data gaps<br />

• Monte Carlo modeling <strong>of</strong> uncertainty in estimates<br />

4


Limitations to the <strong>Tool</strong><br />

• Does not address carcinogenic / genotoxic effects<br />

– A separate assessment <strong>of</strong> carcinogenic effects is required<br />

• The approach requires in<strong>for</strong>mation on the structure <strong>of</strong> the compounds<br />

– To assign the compounds to a Cramer class<br />

– To confirm that the Munro et al. 1996 data set has similar compounds<br />

– To determine that there are no structural alerts <strong>for</strong> carcinogenicity and<br />

that they are not organophosphorous compounds<br />

• Synergy / Potentiation<br />

– Not modeled directly<br />

– Proposed approach minimizes the potential <strong>for</strong> synergistic effects by<br />

restricting exposures to mixture components to levels where synergy is<br />

unlikely to occur (Konemann and Pieters, 1996)<br />

5


Models <strong>for</strong> Mixture Toxicity<br />

Derived No Effect Level (DNEL) <strong>for</strong> single compound:<br />

DNEL =<br />

POD<br />

AF A AF H<br />

POD = Point <strong>of</strong> departure (NOAEL, NOEL, LOAEL, BMD, etc.)<br />

AF = Adjustment Factor (interspecies or interindividual uncertainty)<br />

DNEL <strong>for</strong> mixture assuming additivity:<br />

Mixture DNEL =<br />

-1 -1<br />

POD<br />

Σ F i<br />

i<br />

AF Ai<br />

AF Hi<br />

F i = Weight fraction <strong>of</strong> the i th chemical in the mixture<br />

6


Models <strong>for</strong> Mixture Toxicity (Cont.)<br />

DNEL <strong>for</strong> mixture assuming independence:<br />

Mixture DNEL =<br />

Min<br />

POD i<br />

AF Ai AF Hi<br />

F i<br />

Contributions to Additive models <strong>of</strong> mixture toxicity can be<br />

ranked based on:<br />

Toxicity<br />

Weight <strong>of</strong><br />

Compound<br />

=<br />

F i<br />

AF Ai AF Hi<br />

POD i<br />

Mixture components with the highest weights will drive the<br />

mixture’s toxicity and can be investigated further.<br />

7


Using the Munro et al. Analysis <strong>of</strong><br />

Cramer Classes to Fill Data Gaps<br />

• Cramer 1 classes associate structural properties with<br />

toxicological potency<br />

• Assignment to the three Cramer classes is made based on<br />

structure<br />

• Use the lower 5 th percentile <strong>of</strong> the distribution or NOELs<br />

as the POD<br />

• Use 100 fold adjustment factor proposed by Munro et al.<br />

1996 2 .<br />

1<br />

Cramer et al. 1978 <strong>Food</strong> Cosmetic Toxicology Vol. 16. pp.255-278<br />

2<br />

Munroe et al. 1996 <strong>Food</strong> and Chemical Toxicology Vol 34. pp 829-867<br />

8


The Cramer Class Approach<br />

Class<br />

II<br />

Class<br />

I<br />

5%ile NOEL<br />

(mg/kg/day)<br />

3.0<br />

Class<br />

III<br />

Class I<br />

II<br />

0.91<br />

III<br />

0.15<br />

9


Probabilistic Non-cancer Risk<br />

Assessment<br />

• Concept first raised in the early 1990s<br />

• Groups that have published in this area<br />

– RIVM, TNO, FoBiG, and BAuG<br />

– U.S. EPA<br />

– Harvard Center <strong>for</strong> Risk Analysis<br />

• Cited in ECHA guidance <strong>for</strong> REACH<br />

• Benefits<br />

– Allows the investigation <strong>of</strong> the impact <strong>of</strong> making multiple conservative<br />

assumptions <strong>for</strong> each component<br />

– The approach gives:<br />

• A single value (lower 5 th percentile)<br />

• Complete distribution to provide a context to the standard<br />

10


Why Per<strong>for</strong>m a Probabilistic<br />

Analysis?<br />

• The use <strong>of</strong> the Cramer classes/Munro et al. approach <strong>for</strong> a<br />

single chemical gives a conservative assumption <strong>of</strong><br />

toxicity<br />

• Applying the same approach to multiple chemicals can<br />

result in an over-estimation<br />

– It is unlikely that all chemicals in a mixture will be as toxic as the<br />

5 th percentile<br />

• The conservative adjustment factors have a similar<br />

problem<br />

11


Probabilistic Noncancer Risk<br />

Assessment<br />

• Uses Monte Carlo analysis<br />

• Based on the same equations<br />

• Requires uncertainty distributions <strong>for</strong> POD and each<br />

adjustment factor<br />

• Currently ECHA guidance on DNELs is most closely<br />

aligned to published probabilistic assessments<br />

12


Probabilistic Additive Model <strong>of</strong><br />

Mixture Risk<br />

-1 -1<br />

Uncertainty<br />

distribution <strong>of</strong><br />

NOAEL in<br />

Sensitive Humans<br />

=<br />

Σ F i<br />

AF Ai<br />

POD i<br />

AF Hi<br />

Fifth percentile<br />

provides a basis <strong>for</strong> a<br />

point estimate <strong>of</strong> the<br />

Mixture DNEL<br />

13


Application <strong>of</strong> the <strong>Tool</strong> to <strong>Food</strong><br />

Contact Materials<br />

• Chemicals detected in water stored in<br />

polypropylene bottles (Skjevrak et al. 2005)<br />

• Chemicals identified and concentrations<br />

measured<br />

– 72 hr duration ambient temperatures<br />

– Highest values <strong>from</strong> multiple bottles reported in<br />

paper<br />

14


Residue Data<br />

Compound<br />

Concentration in Water ug/l<br />

Di isobutyl phthalate 36<br />

Dibutyl phthalate 9<br />

Ethyl-4-Ethoxybenzoate 101<br />

2,4-di-tert-butylphenol 25<br />

Ethylbenzoate 15<br />

4-Methylbenzaldehyde 37<br />

Toxicity Data<br />

Compound Cramer Class Safe Level <strong>of</strong> Intake Reference<br />

Di isobutyl phthalate 1<br />

Dibutyl phthalate 1 1 EPA IRIS 1990<br />

Ethyl-4-Ethoxybenzoate 2<br />

2,4-di-tert-butylphenol 1<br />

Ethylbenzoate 1<br />

4-Methylbenzaldehyde 1<br />

15


Revised Toxicity Data<br />

Compound<br />

Estimate <strong>of</strong> Safe Dose mg/kg/d<br />

Di isobutyl phthalate 0.03<br />

Dibutyl phthalate 0.2<br />

Ethyl-4-Ethoxybenzoate 0.0091<br />

2,4-di-tert-butylphenol 0.03<br />

Ethylbenzoate 0.03<br />

4-Methylbenzaldehyde 0.03<br />

16


Results<br />

0.05<br />

Safe Dose mg/kg/d<br />

0.04<br />

0.03<br />

0.02<br />

0.01<br />

0.00<br />

Additive Independence MC Additive MC Independence<br />

Estimates <strong>of</strong> Mixture Toxicity<br />

• Estimates are similar <strong>for</strong> independence and additive models – one<br />

compound drives the mixture’s toxicity<br />

• Probabilistic models give values 2-3 fold higher than deterministic<br />

17


Drivers <strong>of</strong> Mixture Toxicity<br />

• One compound, Ethyl-4-Ethoxybenzoate, drives toxicity<br />

Compound<br />

Toxicity<br />

Contribution<br />

Weight<br />

Di isobutyl phthalate 5.4<br />

Dibutyl phthalate 0.2<br />

Ethyl-4-Ethoxybenzoate 49.8<br />

2,4-di-tert-butylphenol 3.7<br />

Ethylbenzoate 2.2<br />

4-Methylbenzaldehyde 5.5<br />

Toxicity Driver<br />

• Additional data on this compound could have a major<br />

impact on the estimate <strong>of</strong> mixture toxicity<br />

• Removal <strong>of</strong> this compound would raise the estimate <strong>of</strong> a<br />

safe dose <strong>of</strong> the mixture 4 fold!<br />

18


Estimates <strong>of</strong> Safe Doses in Bottled Water<br />

• Assuming 2 l/d intake and 60 kg body weight, the estimates <strong>of</strong> safe levels <strong>of</strong> the<br />

mixture in the water range <strong>from</strong> 0.5 – 1.5 mg/l<br />

• The highest level <strong>of</strong> the mixture found in the study is less than 0.25 mg/l<br />

3.00<br />

Water Conc. Of Mixture mg/l<br />

2.50<br />

2.00<br />

1.50<br />

1.00<br />

0.50<br />

Estimates <strong>of</strong> Safe Level <strong>of</strong> Mixture in Water<br />

0.00<br />

Additive Independence MC Additive MC<br />

Independence<br />

Higest<br />

Reported<br />

Level <strong>of</strong><br />

Mixture<br />

There<strong>for</strong>e, total toxicity <strong>of</strong> the migrants at the concentrations reported in<br />

this study does not pose a risk <strong>for</strong> individuals consuming water <strong>from</strong> the<br />

polypropylene bottles.<br />

19


Summary<br />

• The approach is allows estimates to be made on any<br />

mixture <strong>of</strong> migrants where:<br />

– the relative amounts, and<br />

– structures <strong>of</strong> the migrants are known;<br />

• Identifies the migrants that drive mixtures’ toxicities<br />

– Provides guidance <strong>for</strong> risk management <strong>of</strong> migrants<br />

• Estimates take advantage <strong>of</strong> toxicity data when available<br />

• Probabilistic approaches show that deterministic values<br />

overestimated toxicity by a factor <strong>of</strong> 2-3 in this example<br />

20


Questions<br />

21

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!