26.04.2015 Views

Development of a New Tool for Modelling Potential Risks from Food ...

Development of a New Tool for Modelling Potential Risks from Food ...

Development of a New Tool for Modelling Potential Risks from Food ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Development</strong> <strong>of</strong> a <strong>New</strong> <strong>Tool</strong> <strong>for</strong><br />

<strong>Modelling</strong> <strong>Potential</strong> <strong>Risks</strong> <strong>from</strong><br />

<strong>Food</strong> Contact Materials<br />

P.S. Price MS, Dr. J.M. Zabik, G.M. Wiltshire, and<br />

Dr. H.M. Hollnagel<br />

The Dow Chemical Company<br />

ILSI 4 th International Symposium on<br />

<strong>Food</strong> Packaging<br />

Prague, Czech Republic<br />

1


Project Goals<br />

• Characterize risks posed by mixtures <strong>of</strong> migrants rather than single<br />

substances<br />

• Create a screening tool <strong>for</strong> non-carcinogenic effects to identify<br />

mixtures that have a low potential <strong>for</strong> toxicity<br />

• Develop a tool that:<br />

– Can be applied to a wide range <strong>of</strong> mixtures;<br />

– Does not require toxicity data on mixture components; but<br />

– Can make effective use <strong>of</strong> toxicity data when available<br />

• Build on work done in the Threshold <strong>of</strong> Toxicological Concern (TTC)<br />

• Use the latest guidance on assessing chemical toxicity (ECHA and<br />

other sources)<br />

2


Challenges Posed by Mixtures<br />

• Complexity:<br />

– Infinite number <strong>of</strong> mixtures (can’t test them all)<br />

• Little or no toxicity data <strong>for</strong> many components <strong>of</strong> mixtures.<br />

• Traditional approaches <strong>for</strong> assessing mixture toxicity<br />

– Additive models too conservative (not all effects add);<br />

– Independence models not sufficiently conservative (some might<br />

add);<br />

– Both approaches require toxicity data on all components<br />

3


Components <strong>of</strong> <strong>Tool</strong><br />

• Use existing models <strong>of</strong> mixture toxicity<br />

– To develop estimates <strong>of</strong> safe exposures under different<br />

assumptions<br />

– To identify the mixture components that drive toxicity<br />

• Use Cramer classes to fill data gaps<br />

• Monte Carlo modeling <strong>of</strong> uncertainty in estimates<br />

4


Limitations to the <strong>Tool</strong><br />

• Does not address carcinogenic / genotoxic effects<br />

– A separate assessment <strong>of</strong> carcinogenic effects is required<br />

• The approach requires in<strong>for</strong>mation on the structure <strong>of</strong> the compounds<br />

– To assign the compounds to a Cramer class<br />

– To confirm that the Munro et al. 1996 data set has similar compounds<br />

– To determine that there are no structural alerts <strong>for</strong> carcinogenicity and<br />

that they are not organophosphorous compounds<br />

• Synergy / Potentiation<br />

– Not modeled directly<br />

– Proposed approach minimizes the potential <strong>for</strong> synergistic effects by<br />

restricting exposures to mixture components to levels where synergy is<br />

unlikely to occur (Konemann and Pieters, 1996)<br />

5


Models <strong>for</strong> Mixture Toxicity<br />

Derived No Effect Level (DNEL) <strong>for</strong> single compound:<br />

DNEL =<br />

POD<br />

AF A AF H<br />

POD = Point <strong>of</strong> departure (NOAEL, NOEL, LOAEL, BMD, etc.)<br />

AF = Adjustment Factor (interspecies or interindividual uncertainty)<br />

DNEL <strong>for</strong> mixture assuming additivity:<br />

Mixture DNEL =<br />

-1 -1<br />

POD<br />

Σ F i<br />

i<br />

AF Ai<br />

AF Hi<br />

F i = Weight fraction <strong>of</strong> the i th chemical in the mixture<br />

6


Models <strong>for</strong> Mixture Toxicity (Cont.)<br />

DNEL <strong>for</strong> mixture assuming independence:<br />

Mixture DNEL =<br />

Min<br />

POD i<br />

AF Ai AF Hi<br />

F i<br />

Contributions to Additive models <strong>of</strong> mixture toxicity can be<br />

ranked based on:<br />

Toxicity<br />

Weight <strong>of</strong><br />

Compound<br />

=<br />

F i<br />

AF Ai AF Hi<br />

POD i<br />

Mixture components with the highest weights will drive the<br />

mixture’s toxicity and can be investigated further.<br />

7


Using the Munro et al. Analysis <strong>of</strong><br />

Cramer Classes to Fill Data Gaps<br />

• Cramer 1 classes associate structural properties with<br />

toxicological potency<br />

• Assignment to the three Cramer classes is made based on<br />

structure<br />

• Use the lower 5 th percentile <strong>of</strong> the distribution or NOELs<br />

as the POD<br />

• Use 100 fold adjustment factor proposed by Munro et al.<br />

1996 2 .<br />

1<br />

Cramer et al. 1978 <strong>Food</strong> Cosmetic Toxicology Vol. 16. pp.255-278<br />

2<br />

Munroe et al. 1996 <strong>Food</strong> and Chemical Toxicology Vol 34. pp 829-867<br />

8


The Cramer Class Approach<br />

Class<br />

II<br />

Class<br />

I<br />

5%ile NOEL<br />

(mg/kg/day)<br />

3.0<br />

Class<br />

III<br />

Class I<br />

II<br />

0.91<br />

III<br />

0.15<br />

9


Probabilistic Non-cancer Risk<br />

Assessment<br />

• Concept first raised in the early 1990s<br />

• Groups that have published in this area<br />

– RIVM, TNO, FoBiG, and BAuG<br />

– U.S. EPA<br />

– Harvard Center <strong>for</strong> Risk Analysis<br />

• Cited in ECHA guidance <strong>for</strong> REACH<br />

• Benefits<br />

– Allows the investigation <strong>of</strong> the impact <strong>of</strong> making multiple conservative<br />

assumptions <strong>for</strong> each component<br />

– The approach gives:<br />

• A single value (lower 5 th percentile)<br />

• Complete distribution to provide a context to the standard<br />

10


Why Per<strong>for</strong>m a Probabilistic<br />

Analysis?<br />

• The use <strong>of</strong> the Cramer classes/Munro et al. approach <strong>for</strong> a<br />

single chemical gives a conservative assumption <strong>of</strong><br />

toxicity<br />

• Applying the same approach to multiple chemicals can<br />

result in an over-estimation<br />

– It is unlikely that all chemicals in a mixture will be as toxic as the<br />

5 th percentile<br />

• The conservative adjustment factors have a similar<br />

problem<br />

11


Probabilistic Noncancer Risk<br />

Assessment<br />

• Uses Monte Carlo analysis<br />

• Based on the same equations<br />

• Requires uncertainty distributions <strong>for</strong> POD and each<br />

adjustment factor<br />

• Currently ECHA guidance on DNELs is most closely<br />

aligned to published probabilistic assessments<br />

12


Probabilistic Additive Model <strong>of</strong><br />

Mixture Risk<br />

-1 -1<br />

Uncertainty<br />

distribution <strong>of</strong><br />

NOAEL in<br />

Sensitive Humans<br />

=<br />

Σ F i<br />

AF Ai<br />

POD i<br />

AF Hi<br />

Fifth percentile<br />

provides a basis <strong>for</strong> a<br />

point estimate <strong>of</strong> the<br />

Mixture DNEL<br />

13


Application <strong>of</strong> the <strong>Tool</strong> to <strong>Food</strong><br />

Contact Materials<br />

• Chemicals detected in water stored in<br />

polypropylene bottles (Skjevrak et al. 2005)<br />

• Chemicals identified and concentrations<br />

measured<br />

– 72 hr duration ambient temperatures<br />

– Highest values <strong>from</strong> multiple bottles reported in<br />

paper<br />

14


Residue Data<br />

Compound<br />

Concentration in Water ug/l<br />

Di isobutyl phthalate 36<br />

Dibutyl phthalate 9<br />

Ethyl-4-Ethoxybenzoate 101<br />

2,4-di-tert-butylphenol 25<br />

Ethylbenzoate 15<br />

4-Methylbenzaldehyde 37<br />

Toxicity Data<br />

Compound Cramer Class Safe Level <strong>of</strong> Intake Reference<br />

Di isobutyl phthalate 1<br />

Dibutyl phthalate 1 1 EPA IRIS 1990<br />

Ethyl-4-Ethoxybenzoate 2<br />

2,4-di-tert-butylphenol 1<br />

Ethylbenzoate 1<br />

4-Methylbenzaldehyde 1<br />

15


Revised Toxicity Data<br />

Compound<br />

Estimate <strong>of</strong> Safe Dose mg/kg/d<br />

Di isobutyl phthalate 0.03<br />

Dibutyl phthalate 0.2<br />

Ethyl-4-Ethoxybenzoate 0.0091<br />

2,4-di-tert-butylphenol 0.03<br />

Ethylbenzoate 0.03<br />

4-Methylbenzaldehyde 0.03<br />

16


Results<br />

0.05<br />

Safe Dose mg/kg/d<br />

0.04<br />

0.03<br />

0.02<br />

0.01<br />

0.00<br />

Additive Independence MC Additive MC Independence<br />

Estimates <strong>of</strong> Mixture Toxicity<br />

• Estimates are similar <strong>for</strong> independence and additive models – one<br />

compound drives the mixture’s toxicity<br />

• Probabilistic models give values 2-3 fold higher than deterministic<br />

17


Drivers <strong>of</strong> Mixture Toxicity<br />

• One compound, Ethyl-4-Ethoxybenzoate, drives toxicity<br />

Compound<br />

Toxicity<br />

Contribution<br />

Weight<br />

Di isobutyl phthalate 5.4<br />

Dibutyl phthalate 0.2<br />

Ethyl-4-Ethoxybenzoate 49.8<br />

2,4-di-tert-butylphenol 3.7<br />

Ethylbenzoate 2.2<br />

4-Methylbenzaldehyde 5.5<br />

Toxicity Driver<br />

• Additional data on this compound could have a major<br />

impact on the estimate <strong>of</strong> mixture toxicity<br />

• Removal <strong>of</strong> this compound would raise the estimate <strong>of</strong> a<br />

safe dose <strong>of</strong> the mixture 4 fold!<br />

18


Estimates <strong>of</strong> Safe Doses in Bottled Water<br />

• Assuming 2 l/d intake and 60 kg body weight, the estimates <strong>of</strong> safe levels <strong>of</strong> the<br />

mixture in the water range <strong>from</strong> 0.5 – 1.5 mg/l<br />

• The highest level <strong>of</strong> the mixture found in the study is less than 0.25 mg/l<br />

3.00<br />

Water Conc. Of Mixture mg/l<br />

2.50<br />

2.00<br />

1.50<br />

1.00<br />

0.50<br />

Estimates <strong>of</strong> Safe Level <strong>of</strong> Mixture in Water<br />

0.00<br />

Additive Independence MC Additive MC<br />

Independence<br />

Higest<br />

Reported<br />

Level <strong>of</strong><br />

Mixture<br />

There<strong>for</strong>e, total toxicity <strong>of</strong> the migrants at the concentrations reported in<br />

this study does not pose a risk <strong>for</strong> individuals consuming water <strong>from</strong> the<br />

polypropylene bottles.<br />

19


Summary<br />

• The approach is allows estimates to be made on any<br />

mixture <strong>of</strong> migrants where:<br />

– the relative amounts, and<br />

– structures <strong>of</strong> the migrants are known;<br />

• Identifies the migrants that drive mixtures’ toxicities<br />

– Provides guidance <strong>for</strong> risk management <strong>of</strong> migrants<br />

• Estimates take advantage <strong>of</strong> toxicity data when available<br />

• Probabilistic approaches show that deterministic values<br />

overestimated toxicity by a factor <strong>of</strong> 2-3 in this example<br />

20


Questions<br />

21

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!