27.04.2015 Views

Chemical and Biological Control of Phomopsis amygdali the ... - Iresa

Chemical and Biological Control of Phomopsis amygdali the ... - Iresa

Chemical and Biological Control of Phomopsis amygdali the ... - Iresa

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Chemical</strong> <strong>and</strong> <strong>Biological</strong> <strong>Control</strong> <strong>of</strong> <strong>Phomopsis</strong> <strong>amygdali</strong> <strong>the</strong><br />

Causal Agent <strong>of</strong> Constriction Canker <strong>of</strong> Almond in Tunisia<br />

Ali Rhouma, Mohamed Ali Triki , Khaled Ouerteni, Institut de l’Olivier, Route de<br />

Soukra, Km 1,5, 3003 Sfax, Tunisia, <strong>and</strong> Meriem Mezghanni, Institut National<br />

Agronomique de Tunisie, Avenue Charles Nicolle, 1082 Cité Mahrajène, Tunis,<br />

Tunisia<br />

____________________________________________________________________________<br />

ABSTRACT<br />

Rhouma, A., Triki, M. A., Ouerteni, K. <strong>and</strong> Mezghanni, M. 2008. <strong>Chemical</strong> <strong>and</strong> biological control<br />

<strong>of</strong> <strong>Phomopsis</strong> <strong>amygdali</strong> <strong>the</strong> causal agent <strong>of</strong> constriction canker <strong>of</strong> almond in Tunisia. Tunisian<br />

Journal <strong>of</strong> Plant Protection 3: 69-77.<br />

Almond trees (Prunus dulcis) growing in <strong>the</strong> Tunisian aeries were attacked by <strong>Phomopsis</strong> <strong>amygdali</strong><br />

which causes constriction canker, a damaging <strong>and</strong> economically important fungal disease. The aim <strong>of</strong><br />

this study, carried out in laboratory <strong>and</strong> in <strong>the</strong> field, was to test some fungicides <strong>and</strong> Trichoderma spp.<br />

antagonists. antagonists. <strong>Chemical</strong> experiments showed that benomyl, methyl-thiophanate <strong>and</strong><br />

carbendazim were effective in completely inhibiting <strong>the</strong> mycelial growth <strong>and</strong> <strong>the</strong> germination <strong>of</strong> conidia.<br />

Field experiments revealed that except for procymidone, all tested fungicides significantly reduced<br />

disease compared to untreated control. Benomyl, methyl-thiophanate <strong>and</strong> carbendazim provided <strong>the</strong> best<br />

control <strong>and</strong> gave a more than 70% reduction in infected shoots. <strong>Biological</strong> experiments showed that <strong>the</strong><br />

antagonists Trichoderma viride <strong>and</strong> Trichoderma harzianum reduced significantly <strong>the</strong> mycelial growth <strong>of</strong><br />

P. <strong>amygdali</strong>. Field experiments revealed <strong>the</strong> occurrence <strong>of</strong> more than 50% reduction in infected buds as<br />

compared to <strong>the</strong> untreated control.<br />

Keywords: Almond, canker, fungicides, <strong>Phomopsis</strong> <strong>amygdali</strong>, Trichoderma<br />

____________________________________________________________________________<br />

Constriction canker is a fungal disease<br />

that affects almond <strong>and</strong> peach trees<br />

growing in several aeries <strong>of</strong> <strong>the</strong> world <strong>and</strong><br />

in <strong>the</strong> Mediterranean regions. The disease<br />

is caused by <strong>the</strong> fungus <strong>Phomopsis</strong><br />

<strong>amygdali</strong> (17). The genre Fuscicocum has<br />

been replaced by <strong>Phomopsis</strong> according to<br />

<strong>the</strong> taxonomic studies carried out by Tuset<br />

<strong>and</strong> Portila (17). The pathogen was<br />

observed for <strong>the</strong> first time in California on<br />

Corresponding author : A. Rhouma<br />

roumaal@yahoo.fr<br />

Accepted for publication 30 May 2008<br />

almond (1), however it is found in<br />

Tunisian orchards on almond since 1968<br />

(16).<br />

The pathogen infects almond <strong>and</strong><br />

peach twigs through fresh leaf scars in <strong>the</strong><br />

fall <strong>and</strong> stipules, bud scale scars, blossoms,<br />

<strong>and</strong> fruit scars in <strong>the</strong> spring (2). However,<br />

direct infection through dormant buds has<br />

also been observed (18). Symptoms appear<br />

in early summer <strong>and</strong> become increasingly<br />

evident as more blighted shoots appear<br />

through late summer. Infected twigs <strong>and</strong><br />

shoots wilt <strong>and</strong> die because <strong>of</strong> elongate,<br />

brown, sunken cankers, <strong>of</strong>ten with a zonate<br />

pattern, at <strong>the</strong>ir bases. Constrictions<br />

formed at <strong>the</strong> bases <strong>of</strong> infected shoots <strong>and</strong><br />

Tunisian Journal <strong>of</strong> Plant Protection 69<br />

Vol. 3, No. 2, 2008


leaf symptoms produced well beyond <strong>the</strong><br />

infection site result from a toxin named<br />

fusicoccin (3, 7). Gumming is commonly<br />

associated with cankers, but it is not a<br />

good diagnostic characteristic because<br />

o<strong>the</strong>r canker pathogens also cause<br />

gumming. Most fruit on infected shoots<br />

shrivel <strong>and</strong> drop <strong>of</strong>f as <strong>the</strong> shoots<br />

desiccate. Shoots having more advanced<br />

cankers, usually as a result <strong>of</strong> fall<br />

infection, are <strong>of</strong>ten dead before or during<br />

bloom <strong>and</strong> fruit set. A quantitative survey<br />

in commercial New Jersey orchards<br />

conducted in 1997 <strong>and</strong> 1998 revealed yield<br />

losses <strong>of</strong> 28.5 <strong>and</strong> 21.0%, which translated<br />

into economic losses <strong>of</strong> $4,009 <strong>and</strong> $2,803<br />

per ha, respectively (8).<br />

A review <strong>of</strong> fungicides used against<br />

<strong>the</strong> fungi indicated that <strong>the</strong> mercurial <strong>and</strong><br />

arsenic fungicides were effective in<br />

controlling <strong>the</strong> disease; however <strong>the</strong>y were<br />

banned from use on crops as foliar sprays<br />

(3, 4). In order to substitute <strong>the</strong>se products,<br />

dithiocarbamates <strong>and</strong> benzimidazoles were<br />

used but <strong>the</strong>y were proved less efficient<br />

(4). Lalancette <strong>and</strong> Robison (9)<br />

demonstrated that chlorothalonil was <strong>the</strong><br />

most efficient fungicide followed by<br />

captan, azoxystrobin <strong>and</strong> mycobutanil. As<br />

regards to <strong>the</strong> period spray, <strong>the</strong> lowest<br />

canker incidence <strong>and</strong> severity was obtained<br />

when fungicides were applied during both<br />

fall <strong>and</strong> spring.<br />

With <strong>the</strong> exception <strong>of</strong> <strong>the</strong>se<br />

fungicides, few products are registered for<br />

use during <strong>the</strong> critical periods <strong>of</strong> host<br />

susceptibility (fall), <strong>and</strong> efficacy <strong>of</strong> several<br />

new active ingredients is currently<br />

unknown. O<strong>the</strong>rwise, in recent decades,<br />

elevated awareness <strong>of</strong> <strong>the</strong> impacts <strong>of</strong><br />

pesticide use on <strong>the</strong> environment <strong>and</strong><br />

human health has resulted in efforts to<br />

reduce reliance on chemical controls.<br />

Several countries have instituted more<br />

stringent regulation <strong>of</strong> pesticide<br />

manufacture, registration <strong>and</strong> use, <strong>the</strong>reby<br />

increasing <strong>the</strong> cost, <strong>and</strong> decreasing <strong>the</strong><br />

availability <strong>of</strong> <strong>the</strong>se tools. In many cases,<br />

<strong>the</strong> pests <strong>the</strong>mselves have indicated <strong>the</strong><br />

need for change, with pesticide resistance<br />

now a common reality in many weeds,<br />

insects <strong>and</strong> diseases. The need for<br />

alternatives to pesticides is imperative.<br />

Several reports indicated that biologically<br />

based technologies such as biological<br />

control could be more widely used to solve<br />

pressing needs in pest management. In <strong>the</strong><br />

case <strong>of</strong> P. <strong>amygdali</strong>, little is known about<br />

<strong>the</strong> potential antagonistic effects <strong>of</strong><br />

Trichoderma species. Since it is generally<br />

believed that a combination <strong>of</strong> biological<br />

<strong>and</strong> chemical control measures is<br />

necessary to minimize losses caused by<br />

plant pathogenic fungi, <strong>the</strong> major aim <strong>of</strong><br />

<strong>the</strong> present study was to investigate <strong>the</strong><br />

management strategy for constriction<br />

canker using biological <strong>and</strong> chemical<br />

treatments. Different actives ingredients<br />

(benomyl, carbendazim, methylthiophanate,<br />

procymidone, cuprocuivre)<br />

were applied during <strong>the</strong> fall <strong>and</strong> spring<br />

periods. As regards to <strong>the</strong> antagonists<br />

agents, three species were tested:<br />

Trichoderma viride, Trichoderma<br />

harzianum <strong>and</strong> a local species <strong>of</strong><br />

Trichoderma.<br />

MATERIALS AND METHODS<br />

Fungal isolation <strong>and</strong> suspension<br />

preparation. P. <strong>amygdali</strong> was isolated<br />

from constriction canker <strong>of</strong> twigs sampled<br />

from <strong>the</strong> cultivar “Kossentiny”. It was<br />

grown from a single spore <strong>and</strong> maintained<br />

on Potato Dextrose Agar (PDA, 200 g <strong>of</strong><br />

potato, 20 g <strong>of</strong> dextrose <strong>and</strong> 20 g <strong>of</strong> agar).<br />

Conidia were collected from 10 day-old<br />

cultures, suspended in 0,001% Tween 20<br />

(polyoxyethylene sorbitan monolaurate).<br />

They were <strong>the</strong>n filtered through glass<br />

wool, washed three times with distilled<br />

water, <strong>and</strong> <strong>the</strong>n re-suspended in water to<br />

give a final concentration <strong>of</strong> 5x10 4<br />

spores/ml,estimated by counting with a<br />

Malassez slide.<br />

Tunisian Journal <strong>of</strong> Plant Protection 70<br />

Vol. 3, No. 2, 2008


Experimental design. A local almond<br />

cultivar (Kossentiny) located in a<br />

commercial orchard in <strong>the</strong> region <strong>of</strong> Bir<br />

Mellouli (Sfax, Tunisia) was chosen for<br />

study. Almond trees had histories <strong>of</strong> severe<br />

constriction canker. For each treatment,<br />

three homogeneous trees were selected<br />

with approximately 4 to 5 m in diameter<br />

<strong>and</strong> 3 to 4 m in high. For each almond tree,<br />

ten homogenous shoots were selected <strong>and</strong><br />

five buds in each shoot were marked. The<br />

design employed was a r<strong>and</strong>omized<br />

complete block with three replicates.<br />

<strong>Chemical</strong> treatments. Different<br />

fungicides were assayed for <strong>the</strong>ir activity<br />

against P. <strong>amygdali</strong> in vitro <strong>and</strong> in planta.<br />

Evaluated fungicides were: benomyl<br />

(Benlate 50), procymidone (Sumisclex,<br />

50WP), methyl-thiophanate (Pelt 44),<br />

carbendazim (Bavistin FL), metallic<br />

copper (Cuprocuivre 50WP). All<br />

fungicides were suspended in water <strong>and</strong><br />

tested at 1/10, 1/5, 1, <strong>and</strong> 3/2 <strong>of</strong> <strong>the</strong><br />

registration dose (RD).<br />

Laboratory studies. Germination essay<br />

was carried out in cavity slides. One<br />

hundred µl <strong>of</strong> <strong>the</strong> test suspension <strong>and</strong> 50 µl<br />

<strong>of</strong> <strong>the</strong> conidial suspension were pipetted<br />

onto cavity slides <strong>and</strong> <strong>the</strong>n placed on<br />

Whatman N°1 filter paper in Petri dishes<br />

<strong>and</strong> held at 25°C, with a 12 h-photoperiod<br />

<strong>of</strong> approximately 145 µE/m 2 /sec. Counts<br />

<strong>of</strong> germinated conidia were taken 48 h<br />

post-incubation, <strong>and</strong> calculated means<br />

were based on 100 measurements. Four<br />

replications <strong>of</strong> each concentration, <strong>and</strong> two<br />

separate tests were performed.<br />

Fungicides were also tested for <strong>the</strong>ir<br />

activity against mycelial growth.<br />

Suspension <strong>of</strong> fungicides were prepared in<br />

sterile distilled water <strong>and</strong> added to PDA<br />

medium at approximately 50°C to yield to<br />

<strong>the</strong> appropriate concentration. After<br />

mixing, <strong>the</strong> amended PDA was dispensed<br />

into 9-cm-diameter Petri dishes <strong>and</strong><br />

allowed to cool. Six-mm-diameter plugs <strong>of</strong><br />

agar from actively growing medium <strong>of</strong> P.<br />

<strong>amygdali</strong>, grown on PDA, were placed<br />

with <strong>the</strong> surface mycelium face down on<br />

<strong>the</strong> medium. The plates were <strong>the</strong>n<br />

incubated at 25°C, <strong>and</strong> mycelial growth<br />

was measured at 24 h intervals. Four<br />

replications <strong>of</strong> each concentration were<br />

used, <strong>and</strong> three separate tests were<br />

performed.<br />

Field studies. Fungicides were applied<br />

during both fall <strong>and</strong> spring periods. The<br />

disease assessment was carried out from<br />

mid-June trough <strong>the</strong> end <strong>of</strong> July by<br />

counting <strong>the</strong> number <strong>of</strong> constriction<br />

cankers <strong>and</strong> determining disease incidence<br />

<strong>and</strong> severity on <strong>the</strong> base <strong>of</strong> <strong>the</strong> percentage<br />

<strong>of</strong> infected shoots <strong>and</strong> <strong>the</strong> average number<br />

<strong>of</strong> cankers per shoot respectively.<br />

<strong>Biological</strong> Treatments. <strong>Biological</strong><br />

control <strong>of</strong> <strong>Phomopsis</strong> canker was<br />

performed with <strong>the</strong> antagonists fungi<br />

Trichoderma viride, T. harzianum <strong>and</strong><br />

Trichoderma sp. isolated in Tunisia.<br />

Laboratory experiments. In vitro tests<br />

were achieved by confrontation <strong>of</strong> isolates<br />

<strong>of</strong> Trichoderma <strong>and</strong> P. <strong>amygdali</strong> in Petri<br />

dishes. Six-mm-diameter plugs <strong>of</strong> agar<br />

from actively growing medium <strong>of</strong> P.<br />

<strong>amygdali</strong> <strong>and</strong> <strong>the</strong> antagonistic fungi were<br />

placed on PDA at a distance <strong>of</strong> 30 mm.<br />

Plugs were symmetrically <strong>of</strong> <strong>the</strong> dish<br />

center. The plates were <strong>the</strong>n incubated at<br />

25°C, <strong>and</strong> mycelial growth was measured<br />

at 24 h intervals. Four replications <strong>of</strong> each<br />

concentration were used, <strong>and</strong> three<br />

separate tests were performed. The<br />

inhibition percentage <strong>of</strong> mycelium growth<br />

was determined according to <strong>the</strong> formula<br />

<strong>of</strong> Fokkema (5) <strong>and</strong> Sy (14):<br />

M% = 100 x (M 0 – M 1 )/M 0 ,<br />

where M 0 was <strong>the</strong> mycelial growth <strong>of</strong><br />

<strong>Phomopsis</strong> alone <strong>and</strong> M 1 <strong>the</strong> mycelial<br />

growth <strong>of</strong> P. <strong>amygdali</strong> in presence <strong>of</strong> <strong>the</strong><br />

antagonist.<br />

Tunisian Journal <strong>of</strong> Plant Protection 71<br />

Vol. 3, No. 2, 2008


Field experiments. Antagonists were<br />

applied during both fall <strong>and</strong> spring periods.<br />

Spore suspension <strong>of</strong> Trichoderma (10 6<br />

spores/ml) was deposed on <strong>the</strong> leaves<br />

scars. The disease assessment was carried<br />

out from mid-June trough <strong>the</strong> end <strong>of</strong> July<br />

by counting <strong>the</strong> number <strong>of</strong> constriction<br />

cankers <strong>and</strong> determining disease incidence<br />

<strong>and</strong> severity on <strong>the</strong> base <strong>of</strong> <strong>the</strong> percentage<br />

<strong>of</strong> infected shoots <strong>and</strong> <strong>the</strong> average number<br />

<strong>of</strong> cankers per shoot respectively.<br />

Statistical analysis. Analysis <strong>of</strong><br />

variance (ANOVA) was performed using<br />

<strong>the</strong> general linear models (GLM)<br />

procedure <strong>of</strong> <strong>the</strong> SPSS s<strong>of</strong>tware (version<br />

13) means were separated by Duncan test,<br />

<strong>and</strong> responses were judged significant at<br />

<strong>the</strong> 5% level (P = 0.05).<br />

RESULTS<br />

Favorable conditions for disease<br />

development occurred during <strong>the</strong><br />

experiments essays. Fall <strong>and</strong> spring<br />

seasons had almost similar environment<br />

conditions except in spring 2002, when<br />

temperatures were warmer <strong>and</strong> rainfall was<br />

reduced as compared to 2003 <strong>and</strong> 2004.<br />

<strong>Chemical</strong> treatment.<br />

Effect <strong>of</strong> fungicides on germination.<br />

From Fig. 1 it can be seen that germination<br />

<strong>of</strong> conidia was completely inhibited by<br />

benomyl at its registration dose (RD) <strong>and</strong><br />

even at 1/5 RD <strong>and</strong> 1/10 RD. This active<br />

ingredient was very active against<br />

germination. Copper showed <strong>the</strong> same<br />

activity against conidia germination, but its<br />

efficacy was observed only at higher<br />

doses. However, procymidone was unable<br />

to inhibit germination completely even at<br />

<strong>the</strong> highest dose.<br />

Effect <strong>of</strong> fungicides on mycelial<br />

growth <strong>of</strong> P. amygdale. In tests using<br />

fungicide-amended PDA, methylthiophanate,<br />

benomyl <strong>and</strong> carbendazim<br />

inhibited mycelia growth <strong>of</strong> P. <strong>amygdali</strong> at<br />

registered dose even at very low<br />

concentrations. However, complete<br />

inhibition did not occur even at <strong>the</strong><br />

registration dose with copper <strong>and</strong><br />

procymidone. Never<strong>the</strong>less, copper was<br />

more active than procymidone, at all tested<br />

doses (Fig. 2).<br />

70<br />

60<br />

Germination (%)<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Procy<br />

Be<br />

Fongicide<br />

Co<br />

1/10<br />

RD<br />

1/5 RD<br />

RD<br />

3/2 RD<br />

Fig. 1. Effect <strong>of</strong> fungicides on conidial germination <strong>of</strong> P. <strong>amygdali</strong>. Counts <strong>of</strong> germinated conidia were taken 48 h<br />

post-incubation. Each value is <strong>the</strong> mean based on 100 measurements. (RD: Registration Dose, Procy: Procymidone,<br />

Be: Benomyl, Co: Copper)<br />

Tunisian Journal <strong>of</strong> Plant Protection 72<br />

Vol. 3, No. 2, 2008


7<br />

6<br />

mycelial growth (cm)<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Procy Co Carb Ben M-Thio<br />

RD<br />

3/2 RD<br />

1/10 RD<br />

1/5 RD<br />

Fongicide<br />

Fig. 2. Effect <strong>of</strong> fungicides on mycelial growth P. <strong>amygdali</strong>. Each value in <strong>the</strong> mean is based on 4 measurements in<br />

triplicate experiments. (RD: Registration Dose, Procy: Procymidone, Co: Copper, Carb: Carbendazim, M-Thio:<br />

Methyl-Thiophanate).<br />

Field studies. From <strong>the</strong> results<br />

illustrated in Fig. 3, related to field studies,<br />

it appears that except for procymidone, all<br />

<strong>the</strong> tested fungicides significantly reduced<br />

disease as compared with non treated<br />

control, but methyl-thiophanate <strong>and</strong><br />

benomyl were equally effective in<br />

controlling <strong>Phomopsis</strong> canker <strong>and</strong><br />

provided <strong>the</strong> best control. A 70% reduction<br />

in infected shoots was observed with<br />

<strong>the</strong>ses fungicides. Besides, <strong>the</strong> number <strong>of</strong><br />

constrictions cankers was significantly<br />

reduced.<br />

70<br />

a<br />

<strong>Biological</strong> treatment.<br />

Laboratory essays. The percentages <strong>of</strong><br />

inhibition found with <strong>the</strong> different strains<br />

revealed that all tested species <strong>of</strong><br />

Trichoderma reduced <strong>the</strong> mycelial growth<br />

<strong>of</strong> P. <strong>amygdali</strong> (Table 1). But, T. viride<br />

<strong>and</strong> T. harzianum appeared more efficient<br />

than <strong>the</strong> local species <strong>of</strong> Trichoderma.<br />

Field experiments. All tested species<br />

<strong>of</strong> Trichoderma reduced significantly <strong>the</strong><br />

percentage <strong>of</strong> infected shoots as well as <strong>the</strong><br />

number <strong>of</strong> constriction cankers (Fig. 4).<br />

1 to 2 cankers 3 to 4 cankers<br />

5 to 7 cankers 8 to 10 cankers<br />

infected shoots (%)<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

b<br />

b<br />

c<br />

c<br />

d<br />

0<br />

<strong>Control</strong> Ben M-Thio Carb Co Procy<br />

Fungicide<br />

Fig.3. Effect <strong>of</strong> fungicides on <strong>the</strong> disease incidence <strong>and</strong> severity <strong>of</strong> P. <strong>amygdali</strong> infection. (Ben: Benomyl, M-Thio:<br />

Methyl-Thiophanate, Carb: Carbendazim, Co: Copper, Procy: Procymidone). Bars with <strong>the</strong> same letter were not<br />

significantly different at <strong>the</strong> level 5%.<br />

Tunisian Journal <strong>of</strong> Plant Protection 73<br />

Vol. 3, No. 2, 2008


Table 1. Inhibition <strong>of</strong> P. <strong>amygdali</strong> mycelial growth by different species <strong>of</strong> Trichoderma as<br />

compared with <strong>the</strong> non treated control<br />

Antagonists Inhibition <strong>of</strong> P. <strong>amygdali</strong> mycelial growth (%)<br />

T. viridae 25.00 b<br />

T. harzianum 23.57 b<br />

Local Trichoderma sp.<br />

18.14 a<br />

* Values followed by <strong>the</strong> same letter were not significantly different at <strong>the</strong> 5% level<br />

Infected shoots (%)<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

a<br />

1 to 2 cankers 3 to 4 cankers<br />

5 to 7 cankers 8 to 10 cankers<br />

b b b<br />

<strong>Control</strong> T. viride T. harzianum T. sp<br />

Antagonist<br />

Fig. 4. Effect <strong>of</strong> antagonists on <strong>the</strong> disease incidence <strong>and</strong> severity <strong>of</strong> P. <strong>amygdali</strong> infection after treatments with<br />

different species <strong>of</strong> Trichoderma: T. harzianum, T. viride, <strong>and</strong> a local isolate <strong>of</strong> Trichoderma sp. Bars with <strong>the</strong> same<br />

letter were not significantly different at <strong>the</strong> level 5%.<br />

DISCUSSION<br />

P. <strong>amygdali</strong> has been observed for <strong>the</strong><br />

first time in Tunisian orchards since 1968<br />

(16). <strong>Phomopsis</strong> canker causes severe<br />

attack particularly in wet autumn for some<br />

susceptible cultivars. Infections occur after<br />

leaves scars or bud break. In 2002, 2003<br />

<strong>and</strong> 2004, we have observed more serious<br />

damages in many orchards in <strong>the</strong> region <strong>of</strong><br />

Sfax. Many fruit-growers have requested<br />

for help to control this fungal disease.<br />

Benomyl <strong>and</strong> methyl-thiophanate have<br />

been used with success in controlling<br />

many fungal diseases included <strong>Phomopsis</strong><br />

canker. Our result showed that only<br />

benomyl, among <strong>the</strong> tested fungicides was<br />

effective in completely inhibiting conidia<br />

germination. Mycelial growth was<br />

inhibited by benomyl, carbendazim <strong>and</strong><br />

methyl-thiophanate. Procymidone was<br />

inefficient in inhibiting conidia<br />

germination <strong>and</strong> mycelial growth, showing<br />

that this fungicide was apparently<br />

subjected to <strong>the</strong> problem <strong>of</strong> <strong>Phomopsis</strong><br />

resistance. From <strong>the</strong>se experiments, it also<br />

appeared that effectiveness <strong>of</strong> fungicides<br />

as inhibitors <strong>of</strong> conidial germination is not<br />

always indicative for <strong>the</strong>ir performance<br />

against mycelial growth. This situation<br />

was observed in <strong>the</strong> case <strong>of</strong> copper, which<br />

was unable to control mycelial growth as<br />

its performance in inhibiting conidial<br />

germination.<br />

Fields experiments carried out in an<br />

orchard naturally infected with <strong>Phomopsis</strong><br />

canker revealed that benomyl toge<strong>the</strong>r with<br />

methlyl-thiophanate <strong>and</strong> carbendazim<br />

significantly reduced <strong>the</strong> percentages <strong>of</strong><br />

infected shoots <strong>and</strong> <strong>the</strong> number <strong>of</strong><br />

constriction cankers as compared to <strong>the</strong><br />

o<strong>the</strong>r fungicides. Although benomyl was<br />

proved to be efficient in reducing disease<br />

severity, it can not be recommended<br />

because it has been banned for use in some<br />

countries. These chemicals should be used<br />

as mixtures, intermittently, or alternately in<br />

Tunisian Journal <strong>of</strong> Plant Protection 74<br />

Vol. 3, No. 2, 2008


order to ovoid <strong>the</strong> possible selection <strong>of</strong><br />

resistant strains. According to Norman <strong>and</strong><br />

Robison (12), <strong>the</strong> fall leaf abscission<br />

period is <strong>the</strong> most critical time for disease<br />

control. These authors have reported that<br />

chlorothalonil <strong>and</strong> captan provided <strong>the</strong><br />

lowest canker incidence <strong>and</strong> severity,<br />

followed by azoxystrobin <strong>and</strong><br />

myclobutanil. The efficacy <strong>of</strong> various<br />

fungicides was compared on detached<br />

peach shoots that were artificially<br />

inoculated with P. <strong>amygdali</strong> conidia <strong>and</strong><br />

incubated in moist chambers for 21 days<br />

(10). The best control was achieved with<br />

<strong>the</strong> triazole bitertanol <strong>and</strong> result in 89% <strong>of</strong><br />

healthy shoots. However, sulfur, lime<br />

sulfur, <strong>and</strong> iprodione failed to provide any<br />

control. Chlorothalonil treatment in that<br />

study provided good control, confirming<br />

<strong>the</strong> results <strong>of</strong> Norman et al. (12).<br />

The potential <strong>of</strong> biological control<br />

agents Trichoderma harzianum <strong>and</strong> T.<br />

viride to suppress plant disease has been<br />

evaluated on a number <strong>of</strong> crops including<br />

almond tree. Our results applied for<br />

<strong>Phomopsis</strong> canker on almond tree showed<br />

<strong>the</strong> effectiveness <strong>of</strong> <strong>the</strong>ses antagonists in<br />

laboratory <strong>and</strong> in field experiments.<br />

Efficacy <strong>of</strong> <strong>the</strong>se antagonists was a direct<br />

result <strong>of</strong> action <strong>of</strong> antagonists through one<br />

or more <strong>of</strong> <strong>the</strong> following mechanisms:<br />

antibiosis, competition or hyperparasitism<br />

(6, 15). Many substances could be secreted<br />

such us trichodermine <strong>and</strong> also volatiles<br />

substances (11). Mycoparasitism has been<br />

reported in species <strong>of</strong> Trichoderma (13).<br />

Combining different control methods<br />

was recognized for best control <strong>of</strong><br />

<strong>Phomopsis</strong> canker. Removing twigs with<br />

dieback <strong>and</strong> cankers is <strong>of</strong> interest in case<br />

<strong>of</strong> heavy attack. <strong>Chemical</strong> <strong>and</strong> biological<br />

treatments should be applied in<br />

complementary with <strong>the</strong> cultural methods.<br />

AKNOWLEDGMENTS<br />

This work was supported by <strong>the</strong> budget <strong>of</strong> <strong>the</strong><br />

Institut de l’Olivier in Tunisia.We Thank Mr.<br />

Makhlouf <strong>and</strong> Mr. M. Megdich for <strong>the</strong>ir technical<br />

assistance.<br />

____________________________________________________________________________<br />

RESUME<br />

Rhouma A., Triki M. A., Ouerteni K., <strong>and</strong> Mezghanni M. 2008. Lutte Chimique et biologique<br />

contre <strong>Phomopsis</strong> <strong>amygdali</strong> agent causal de la maladie du chancre phomopsien de<br />

l’am<strong>and</strong>ier en Tunisie. Tunisian Journal <strong>of</strong> Plant Protection 3: 69-77.<br />

L’am<strong>and</strong>ier (Prunus dulcis) cultivé à gr<strong>and</strong>e échelle en Tunisie, est sensible à l’attaque du champignon<br />

<strong>Phomopsis</strong> <strong>amygdali</strong>, responsable d’un chancre qui provoque d’importants dégâts sur les plantes<br />

infectées. Cette étude, conduite au laboratoire et au champ, consiste à tester l’efficacité de quelques<br />

fongicides et espèces antagonistes du genre Trichoderma. Les essais chimiques ont montré une efficacité<br />

remarquable de bénomyl, méthyl-thiophanate et carbendazime en inhibant complète la croissance<br />

mycélienne et germination conidienne du champignon. Les tests conduits aux champs à base de<br />

fongicides ont révélé, à l’exception de procimidone, une réduction significative de la maladie en<br />

comparaison avec le témoin non traité. Bénomyl et carbendazime se sont montrés les plus efficaces avec<br />

un pourcentage de réduction des pousses infectées supérieur à 70%. Les essais de lutte biologique ont<br />

montré que les espèces antagonistes Trichoderma viride et Trichoderma harzianum ont réduit<br />

significativement la croissance mycélienne de P. <strong>amygdali</strong>. Les essais en plein champ ont révélé une nette<br />

réduction de plus de 50% des bourgeons infectés par rapport au témoin non traité.<br />

Mots clés : Am<strong>and</strong>ier, chancre, fongicides, <strong>Phomopsis</strong> <strong>amygdali</strong>, Trichoderma<br />

____________________________________________________________________________<br />

Tunisian Journal <strong>of</strong> Plant Protection 75<br />

Vol. 3, No. 2, 2008


_____________________________________________________________________<br />

ملخص<br />

رحومة،‏ علي ومحمد علي تريكي وخالد الورتاني ومريم مزغني.‏<br />

المسبَب لمرض التق ‏َرح المخنصر<br />

المكافحة الكيميائيَة<br />

والبيولوجيَة<br />

للفطر<br />

.2008<br />

للوز في تونس.‏<br />

Tunisian Journal <strong>of</strong> Plant Protection 3: 69-77.<br />

<strong>Phomopsis</strong> <strong>amygdali</strong><br />

الكائن المسبب لمرض التَقرح<br />

قي تونس للإصابة بفطر<br />

تتعرَض أشجار اللوز<br />

المخنصر،‏ الذي يلحق خسائرا آبيرة في الأشجار المصابة.‏ وتهدف هذه الدراسة المخبريَة والحقليَة إلى تقييم مدى فاعليَة<br />

في مكافحة<br />

بعض المبيدات الفطريَة الكيميائية والمبيدات البيولوجيَة باستعمال أنواع مضادة تتبع الجنس<br />

المرض.‏ أظهرت التجارب الكيميائية أن آارربندازيم وثيوفانات الميثيل وبينوميل آانت ناجعة في تثبّيط النم ‏َو<br />

الغزلي/الميسيليومي وإنبات الأبواغ الكونيدية للفطر.‏ بيَنت التجارب الحقليَة أن آل المبيدات الكيميائية المذآورة،‏ باستثناء<br />

بروسيميدون،‏ خفضت نسبة المرض معنوياً‏ مقارنة بمعاملة الشاهد غير المعالج.‏ أدى استخدام آل من آاربندازيم وثيوفانات<br />

الميثيل وبينوميل إلى خفض درجة إصابة الأغصان بنسبة تفوق أظهرت التجارب البيولوجية باستعمال الكائنين<br />

أنهما خفضا معنويًا النمو الغزلي للفطر<br />

المضادَين<br />

آما بيَنت التجارب الحقليَة انخفاض عدد البراعم المتقرَحة وذلك بنسبة تفوق مقارنة بمعاملة الشاهد غير المعالج.‏<br />

.P. <strong>amygdali</strong><br />

Trichoderma<br />

<strong>Phomopsis</strong> <strong>amygdali</strong><br />

%50<br />

.%70<br />

و Trichoderma harzianum<br />

(Prunus dulcis)<br />

Trichoderma viride<br />

آلمات مفتاحية:‏ تقرَح،‏ لوز،‏ مبيدات فطريَة،‏<br />

Trichoderma ،<strong>Phomopsis</strong> <strong>amygdali</strong><br />

____________________________________________________________________________<br />

LITERATURE CITED<br />

1. Adaskaveg, J. E., <strong>and</strong> Förster, H. 1999. First report<br />

<strong>of</strong> fruit rot <strong>and</strong> associated branch dieback <strong>of</strong><br />

almond in California caused by a <strong>Phomopsis</strong><br />

species tentatively identified as P. <strong>amygdali</strong>. Plant<br />

Dis. 83 : 1073.<br />

2. Cohoon, D. F., <strong>and</strong> Daines, R. H. 1956. Peach<br />

canker (Fusicoccum <strong>amygdali</strong>) : times <strong>and</strong> sites <strong>of</strong><br />

infections. Plant Dis. Rep. 40 : 304-308.<br />

3. Daines R.H. 1959. Advises Bordeaux-Arsenic<br />

mixture for peach canker. New Jersey Agric. 41: 2-<br />

4.<br />

4. Daines, R.H. 1974. Peach canker (Fusicoccum<br />

<strong>amygdali</strong> Delacroix) present in orchards in<br />

Hammonton area. Hortic. News New Jersey State<br />

Hortic. Soc. 55: 12-13<br />

5. Fokkema N.J. 1983. Naturally-occurring biological<br />

control in <strong>the</strong> phyllosphere. Colloq. INRA 18: 71-<br />

79.<br />

6. Fravel, R.D. 1988. Role <strong>of</strong> antibiosis in <strong>the</strong><br />

biological control <strong>of</strong> plant diseases. Annu. Rev.<br />

Phytopathol. 26: 75-91.<br />

7. Grosclaude, C. 1968. Le chancre à Fusicoccum<br />

<strong>amygdali</strong> chez le pêcher. Arbor. Fruit. 175: 20-25.<br />

8. Lalancette, N. <strong>and</strong> Polk, D.F. 2000. Estimating<br />

yield <strong>and</strong> economic loss <strong>of</strong> constriction canker <strong>of</strong><br />

peach. Plant Dis. 84: 941-946.<br />

9. Lalancette, N., <strong>and</strong> Robison, D. M. 2001. Seasonal<br />

availability <strong>of</strong> inocu-lum for constriction canker <strong>of</strong><br />

peach in New Jersey. Phytopathol. 91:1109-1115.<br />

10. Latham, AJ. 1994. <strong>Phomopsis</strong> dieback <strong>of</strong> peach<br />

shoots. Pages 116-120. In: Stone fruit tree decline,<br />

Sixth Workshop Proceeding. A.P. Nyezpir, PF<br />

Berr<strong>and</strong>, <strong>and</strong> TG Beckman, Eds. US Dep.<br />

Agriculture, Agricultural Research Service, 122<br />

pp.<br />

11. Lewis, J.A. <strong>and</strong> Papavizas, G.C. 1987.<br />

Permeability changes in hyphae <strong>of</strong> Rhizoctonia<br />

solani induced by germiling preparations <strong>of</strong><br />

Trichoderma <strong>and</strong> Gliocaldium. Phytopathol. 77:<br />

699-703.<br />

12. Norman, L. <strong>and</strong> Robison, D.M. 2002. Effect <strong>of</strong><br />

fungicides, application timing, <strong>and</strong> canker removal<br />

on incidence <strong>and</strong> severity <strong>of</strong> construction canker <strong>of</strong><br />

peach. Plant. Dis. 86, 721-728.<br />

13. Ridout, C.J., Coley-Smith, J.R., <strong>and</strong> Lynch, J.M.<br />

1988. Fractionation <strong>of</strong> extracellular enzymes from<br />

a mycoparasitic strain <strong>of</strong> Trichoderma harzianum.<br />

Enzyme Microb. Technol. 10: 180-187.<br />

14. Sy, A.A. 1976. Contribution à l’étude de<br />

Pyricularia oryzae Cav. Recherche in vitro<br />

d’antagonistes dans une perspective de lutte<br />

biologique. Thèse Docteur Ingénieur, n°534, INP<br />

Toulouse. France. 168 pp.<br />

15. Tong-Kwee, L. <strong>and</strong> Keng, TH. 1990. Antagonism<br />

in vitro <strong>of</strong> Trichoderma species against several<br />

Basi-diomycetous soil-born pathogens <strong>and</strong><br />

Sclerotium rolfsii. J. Plant. Dis. Prot. 97: 33-41.<br />

Tunisian Journal <strong>of</strong> Plant Protection 76<br />

Vol. 3, No. 2, 2008


16. Trigui, A. 1968. Sur la présence en Tunisie de<br />

Fusicoccum <strong>amygdali</strong> Delacroix sur Am<strong>and</strong>ier.<br />

Bull. E. N. S. A. T. 18/19: 65-68.<br />

17. Tuset, J.J. <strong>and</strong> Portilla, M.T. 1989. Taxonomic<br />

status <strong>of</strong> Fusicoccum <strong>amygdali</strong> <strong>and</strong> <strong>Phomopsis</strong><br />

<strong>amygdali</strong>na. Can. J. Bot. 67: 1275-1280.<br />

18. Uddin, W., Stevensen, K.L., <strong>and</strong> Pardo-<br />

Schul<strong>the</strong>iss, R.A. 1997. Pathogenicity <strong>of</strong> a species<br />

<strong>of</strong> <strong>Phomopsis</strong> causing shoot blight on peach in<br />

Georgia <strong>and</strong> evaluation <strong>of</strong> possible infection<br />

courts. Plant Dis. 81: 983-989.<br />

-------------------------------<br />

Tunisian Journal <strong>of</strong> Plant Protection 77<br />

Vol. 3, No. 2, 2008


Tunisian Journal <strong>of</strong> Plant Protection 78<br />

Vol. 3, No. 2, 2008

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!