27.04.2015 Views

Phenolic Compounds and their Role in Bio-control and ... - Iresa

Phenolic Compounds and their Role in Bio-control and ... - Iresa

Phenolic Compounds and their Role in Bio-control and ... - Iresa

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Review Article<br />

<strong>Phenolic</strong> <strong>Compounds</strong> <strong>and</strong> <strong>their</strong> <strong>Role</strong> <strong>in</strong> <strong>Bio</strong>-<strong>control</strong> <strong>and</strong><br />

Resistance of Chickpea to Fungal Pathogenic Attacks<br />

Mohamed Chérif, Arbia Arfaoui, <strong>and</strong> Azza Rhaiem, Laboratoire de<br />

Phytoapthologie, INAT, 43 Avenue Charles Nicolle, 1082 Cité Mahrajène, Tunis,<br />

Tunisia<br />

__________________________________________________________________________<br />

ABSTRACT<br />

Chérif, M., Arfaoui, A., <strong>and</strong> Rhaiem, A. 2007. <strong>Phenolic</strong> compounds <strong>and</strong> <strong>their</strong> role <strong>in</strong> bio-<strong>control</strong><br />

<strong>and</strong> resistance of chickpea to fungal pathogenic attacks. Tunisian Journal of Plant Protection 2:<br />

7-21.<br />

Chickpea is a major source of human <strong>and</strong> domestic animal food, particularly <strong>in</strong> develop<strong>in</strong>g countries.<br />

Chickpea may be attacked by different fungal diseases <strong>in</strong>clud<strong>in</strong>g Ascochyta blight, caused by<br />

Ascochyta rabiei, Fusarium wilt, caused by Fusarium oxysporum f. sp. ciceris (Foc), Botrytis grey<br />

mold, caused by Botrytis c<strong>in</strong>erea, rust, caused by Uromyces ciceris-ariet<strong>in</strong>i, collar rot, caused by<br />

Sclerotium rolfsii… These pathogens are difficult to <strong>control</strong> with cultural practices <strong>and</strong> chemical<br />

<strong>control</strong> is one of the most used approaches. <strong>Bio</strong>logical <strong>control</strong> <strong>and</strong> plant resistance, however, provide<br />

an environmentally <strong>and</strong> economically appropriate means for disease <strong>control</strong> that can be easily <strong>in</strong>cluded<br />

with<strong>in</strong> an <strong>in</strong>tegrated disease management strategy. In fact, the use of natural resistance for the<br />

management of fungal diseases <strong>in</strong> chickpea may be enhanced by means of biological <strong>control</strong> us<strong>in</strong>g<br />

either bacterial or fungal antagonists. Different bio<strong>control</strong> agents, <strong>in</strong>clud<strong>in</strong>g bacteria belong<strong>in</strong>g to the<br />

genera Bacillus, Pseudomonas <strong>and</strong> Rhizobium <strong>and</strong> fungi such as nonpathogenic <strong>and</strong> nonhost Fusarium<br />

species, have been used successfully <strong>and</strong> resulted <strong>in</strong> significant reduction <strong>in</strong> both pathogenic fungal<br />

growth <strong>in</strong> vitro <strong>and</strong> disease development <strong>in</strong> planta. Different studies showed that <strong>in</strong>duced resistance,<br />

through the accumulation of various phenolic compounds <strong>and</strong> phytoalex<strong>in</strong>s, as well as the activation of<br />

peroxidases, polyphenoloxidases <strong>and</strong> key enzymes <strong>in</strong> phenylpropanoid <strong>and</strong> isoflavonoid pathways, may<br />

play a crucial role <strong>in</strong> the biological <strong>control</strong> <strong>and</strong> resistance of chickpea to pathogenic attacks. For<br />

<strong>in</strong>stance, recent <strong>in</strong>vestigations revealed that the pre-treatment of chickpea seedl<strong>in</strong>gs with selected<br />

Rhizobium isolates before challenge with Foc, <strong>in</strong>creased significantly the levels of total phenolics <strong>and</strong><br />

the constitutive isoflavonoids, formononet<strong>in</strong>, <strong>and</strong> biochan<strong>in</strong> A. Protection of chickpea aga<strong>in</strong>st Fusarium<br />

wilt by the nonpathogenic <strong>and</strong> nonhost Fusarium species was shown to be associated with the<br />

<strong>in</strong>duction of the synthesis of the phytoalex<strong>in</strong>s medicarp<strong>in</strong> <strong>and</strong> maachia<strong>in</strong> <strong>and</strong> the related isoflavones<br />

formononet<strong>in</strong> <strong>and</strong> biochan<strong>in</strong> A. Maakia<strong>in</strong> <strong>and</strong> medicarp<strong>in</strong> exhibited potent anti-fungal activity towards<br />

Fusarium spores, by <strong>in</strong>hibit<strong>in</strong>g <strong>their</strong> germ<strong>in</strong>ation <strong>and</strong> hyphal growth. Studies on phytoalex<strong>in</strong> tolerance<br />

<strong>in</strong> chickpea pathogenic fungi have also shown a relationship between virulence <strong>and</strong> the ability of these<br />

fungi to detoxify phytoalex<strong>in</strong>s. This was examplified by the fact that the fungus Nectria heamatococca<br />

can metabolise <strong>and</strong> detoxify maakia<strong>in</strong> <strong>and</strong> medicarp<strong>in</strong> <strong>and</strong> that these reactions are required for<br />

pathogenesis by this fungus on chickpea. Among the other phenolic compounds studied, gallic,<br />

c<strong>in</strong>namic, ferulic, <strong>and</strong> chlorogenic acids were also associated with the protection of chickpea from<br />

fungal attacks through <strong>in</strong>duced resistance. Of the <strong>in</strong>duced defenses, phenolics <strong>and</strong> phytoalex<strong>in</strong><br />

production have received a particular attention <strong>in</strong> chickpea. However, more efforts are needed to<br />

provide good evidence that these compounds accumulate at the right time, concentration, <strong>and</strong> location<br />

<strong>and</strong> to elucidate the regulatory genes <strong>in</strong>volved <strong>in</strong> <strong>their</strong> rapid <strong>and</strong> coord<strong>in</strong>ated <strong>in</strong>duction <strong>in</strong> response to<br />

fungal attack.<br />

Keywords: Chickpea, phenolics, phytoalex<strong>in</strong>s, bio<strong>control</strong>, resistance, fungal diseases.<br />

__________________________________________________________________________<br />

Tunisian Journal of Plant Protection 7<br />

Vol. 2, No. 1, 2007


Chickpea (Cicer ariet<strong>in</strong>um L.) is,<br />

after soybean <strong>and</strong> pea, the third most<br />

important gra<strong>in</strong> legume crop <strong>in</strong> the world<br />

<strong>and</strong>, along with French bean, soybean <strong>and</strong><br />

alfalfa, one of the legume plants the most<br />

studied at the biochemical level for<br />

phenolics <strong>and</strong> phytoalex<strong>in</strong> responses (4,<br />

27). This plant is native of Syria, Southeastern<br />

Turkey <strong>and</strong> around the<br />

Mediterranean Bas<strong>in</strong>, <strong>and</strong> constitutes a<br />

very important legume crop <strong>in</strong> North<br />

Africa (56, 73). In develop<strong>in</strong>g countries,<br />

it is an important source of high-quality<br />

prote<strong>in</strong> for the poorer <strong>in</strong>habitants.<br />

Chickpea is able to grow under poor soil<br />

conditions <strong>and</strong> can therefore be grown on<br />

marg<strong>in</strong>al l<strong>and</strong>s, where, ow<strong>in</strong>g to its<br />

capacity to fix nitrogen, it improves soil<br />

fertility (64). Chickpea occupies more<br />

than 10 million hectares of the cultivated<br />

areas <strong>in</strong> the world, with a total production<br />

of approximately 7 million tons <strong>and</strong> an<br />

average yield of 700 kg/ha (65, 66). Low<br />

yields are attributed to different factors,<br />

among which pathogenic microorganisms<br />

<strong>and</strong> <strong>in</strong>sect attacks are<br />

considered the most serious. Nene <strong>and</strong><br />

Reddy (57), reported many chickpea<br />

natural enemies, <strong>in</strong>clud<strong>in</strong>g 47 pathogens<br />

<strong>and</strong> 50 <strong>in</strong>sects. Ascochyta blight of<br />

chickpea caused by Ascochyta rabiei,<br />

grey mould caused by Botrytis c<strong>in</strong>erea,<br />

rust caused by Uromyces ciceris-ariet<strong>in</strong>i<br />

<strong>and</strong> Alternaria alternata <strong>and</strong> Stemphylium<br />

sarc<strong>in</strong>iforme attacks are considered as the<br />

most important <strong>and</strong> destructive foliar<br />

diseases of chickpea (60). As soil-borne<br />

fungi, Fusarium oxysporum f. sp. Ciceris<br />

(Foc), the causal agent of Fusarium wilt<br />

of chickpea, F. solani, F. eumartii,<br />

Rhizoctonia bataticola, Scleritium rolfsii,<br />

Pythium ultimum <strong>and</strong> Verticillium albo-<br />

Correspond<strong>in</strong>g author: M. Chérif<br />

cherif.mohamed@<strong>in</strong>at.agr<strong>in</strong>et.tn<br />

Accepted for publication 30 July 2007.<br />

atrum are reported to be the most<br />

pathogenic (57). Besides these fungal<br />

enemies, chickpea may be attacked by<br />

more than 16 viruses <strong>and</strong> different<br />

pathogenic bacteria, <strong>in</strong>clud<strong>in</strong>g<br />

Xanthomonas campestris pv. cassiae,<br />

which is especially destructive on earlysown<br />

chickpea, <strong>and</strong> nematodes, such as<br />

Meloidogyne <strong>in</strong>cognita, M. javanica, M.<br />

artiellia <strong>and</strong> Pratylenchus thornei (15,<br />

57). Despite the important number of<br />

chickpea natural enemies, Ascochyta<br />

blight <strong>and</strong> Fusarium wilt are always<br />

considered as respectively the first <strong>and</strong><br />

the second most destructive diseases of<br />

chickpea (33, 59). Seeds <strong>in</strong>fected by these<br />

pathogens are one of the ma<strong>in</strong> sources of<br />

<strong>in</strong>oculum <strong>and</strong> can be responsible of the<br />

<strong>in</strong>troduction of these pathogens <strong>in</strong>to<br />

disease-free areas. Therefore, plant<strong>in</strong>g<br />

pathogen free seed is the primary means<br />

to limit the <strong>in</strong>troduction of these<br />

pathogens <strong>in</strong>to a field <strong>and</strong> prevent the<br />

establishment of these diseases (64).<br />

Nevertheless, un<strong>in</strong>fected or treated seeds<br />

are not sufficient to prevent plants<br />

<strong>in</strong>fection dur<strong>in</strong>g the grow<strong>in</strong>g season. In<br />

fact, diseased debris <strong>and</strong> <strong>in</strong>fected crop<br />

residues overw<strong>in</strong>ter<strong>in</strong>g <strong>in</strong> <strong>and</strong> on the soil<br />

represent an efficient mechanism for the<br />

survival of these fungi from one season to<br />

another (35, 55). Cultural practices, such<br />

as plant<strong>in</strong>g date, sow<strong>in</strong>g density <strong>and</strong> crop<br />

rotation proved to be very effective <strong>in</strong><br />

reduc<strong>in</strong>g fungal attacks, but they are<br />

<strong>in</strong>sufficient under high disease pressure,<br />

especially when weather conditions are<br />

particularly conducive to disease<br />

development. Among other <strong>control</strong><br />

measures, such as fungicide treatments<br />

which are prohibitively expensive besides<br />

the problems relative to environmental<br />

pollution, chemical toxicity to humans<br />

<strong>and</strong> animals <strong>and</strong> fungal resistance, the use<br />

of resistant cultivars is probably the best<br />

way to manage these diseases (57). Many<br />

breed<strong>in</strong>g <strong>and</strong> screen<strong>in</strong>g programs have<br />

been undertaken <strong>in</strong> order to obta<strong>in</strong><br />

chickpea varieties with high levels of<br />

resistance to the major diseases of<br />

chickpea (18, 33, 40). However, the<br />

Tunisian Journal of Plant Protection 8<br />

Vol. 2, No. 1, 2007


effectiveness of host resistance is<br />

curtailed by the presence or the<br />

appearance of virulent races of the<br />

pathogen, which is the case of Foc (14,<br />

39), or by the absence of complete<br />

resistance to the pathogen, case of<br />

Ascochyta blight where cultivars range <strong>in</strong><br />

susceptibility to the disease (58).<br />

<strong>Bio</strong>logical <strong>control</strong> of chickpea<br />

major diseases. The use of resistant<br />

cultivars for management of chickpea<br />

diseases may be enhanced by biological<br />

<strong>control</strong> us<strong>in</strong>g either bacterial or fungal<br />

antagonists. Effective bio<strong>control</strong> of<br />

Ascochyta blight <strong>and</strong> Fusarium wilt of<br />

chickpea was achieved <strong>in</strong> our laboratory<br />

by us<strong>in</strong>g bacteria belong<strong>in</strong>g respectively<br />

to the genera Bacillus <strong>and</strong> Rhizobium (1).<br />

Seventy-eight Bacillus isolates, most of<br />

which isolated from salty soils <strong>in</strong> Tunisia,<br />

were assessed <strong>in</strong> planta for <strong>their</strong><br />

antagonistic activity aga<strong>in</strong>st Ascochyta<br />

rabiei. Fungicides, such as Azoxystrob<strong>in</strong><br />

(Quadris), Chlorothalonil (Banko) <strong>and</strong><br />

Kresoxym-Methyl (Fl<strong>in</strong>t), were <strong>in</strong>cluded<br />

<strong>in</strong> these experiments for comparison.<br />

Eleven of the tested isolates of Bacillus<br />

spp. appeared to be the most effective <strong>in</strong><br />

reduc<strong>in</strong>g disease severity. Disease attack<br />

<strong>and</strong> severity recorded on the plants<br />

<strong>in</strong>oculated with these bacteria were<br />

significantly lower than those of the<br />

tested fungicides <strong>and</strong> the <strong>in</strong>oculated<br />

<strong>control</strong>. Moreover, these antagonists<br />

improved plant growth parameters,<br />

<strong>in</strong>clud<strong>in</strong>g the percentage of seedl<strong>in</strong>g<br />

emergence, plant height <strong>and</strong> plant weight.<br />

Arfaoui et al. (1) studied the<br />

antagonistic activities of 21 Rhizobium<br />

isolates <strong>in</strong> vitro <strong>in</strong> dual culture, <strong>and</strong> <strong>in</strong><br />

vivo under greenhouse <strong>and</strong> field<br />

conditions aga<strong>in</strong>st Foc race 0. In dual<br />

culture, 19 of these isolates <strong>in</strong>hibited the<br />

mycelial growth of the pathogen result<strong>in</strong>g<br />

<strong>in</strong> the case of the most effective isolates<br />

<strong>in</strong> a percentage of growth <strong>in</strong>hibition<br />

higher than 50%. Greenhouse <strong>and</strong> field<br />

experiments undertaken by these authors,<br />

us<strong>in</strong>g the susceptible ILC482 <strong>and</strong> the<br />

moderately resistant INRAT 87/1<br />

cultivars of chickpea, revealed the<br />

effectiveness of some of these isolates <strong>in</strong><br />

reduc<strong>in</strong>g the percentage of wilted plants.<br />

In the greenhouse, the most effective<br />

Rhizobium isolate PchDMS reduced the<br />

percentage of wilted plants from more<br />

than 79% <strong>in</strong> the <strong>in</strong>oculated <strong>control</strong> to<br />

12.5% <strong>in</strong> the susceptible cultivar ILC482<br />

<strong>and</strong> from more than 54% to 8.3% <strong>in</strong> the<br />

moderately resistant cultivar INRAT<br />

87/1. Field experiments showed that <strong>in</strong><br />

presence of the susceptible chickpea<br />

cultivar, although most of the studied<br />

Rhizobium isolates reduced the<br />

percentage of wilted plants, these<br />

reductions were not significantly<br />

different. However, very <strong>in</strong>terest<strong>in</strong>g<br />

results were achieved <strong>in</strong> presence of the<br />

moderately resistant cultivar INRAT<br />

87/1. For <strong>in</strong>stance, Rhizobium isolate<br />

Pch43, which was very effective under<br />

greenhouse conditions, reduced the<br />

percentage of diseased plants from more<br />

than 48.6% <strong>in</strong> <strong>in</strong>fected <strong>control</strong> plants to<br />

less than 8% <strong>in</strong> plants <strong>in</strong>oculated with the<br />

bacteria <strong>and</strong> <strong>in</strong>fected with the pathogen.<br />

The best protection aga<strong>in</strong>st disease was<br />

obta<strong>in</strong>ed with isolates Pch43 <strong>and</strong> Rh4,<br />

which reduced the percentage of wilted<br />

plants to less than 8%. Besides <strong>their</strong><br />

beneficial effects on disease <strong>control</strong>, these<br />

studies showed that Rhizobium isolates<br />

may improve plant growth <strong>and</strong> yield.<br />

<strong>Bio</strong>logical <strong>control</strong> by us<strong>in</strong>g nonhost F.<br />

oxysporum isolates <strong>and</strong> <strong>in</strong>compatible<br />

races of the same forma specialis<br />

constitutes also a promis<strong>in</strong>g strategy for<br />

the management of Fusarium wilt of<br />

chickpea (14, 36, 37). Prior <strong>in</strong>oculation of<br />

germ<strong>in</strong>ated chickpea seeds with nonhost<br />

F. oxysporum isolates or <strong>in</strong>compatible<br />

Foc races protected effectively chickpea<br />

plants aga<strong>in</strong>st a highly virulent isolate of<br />

Foc race 5 (36). These results were<br />

confirmed by the studies of Cach<strong>in</strong>era et<br />

al. (14), who showed that <strong>in</strong>oculation of<br />

germ<strong>in</strong>ated seeds with these antagonists<br />

delayed the onset of symptoms <strong>and</strong><br />

significantly reduced the f<strong>in</strong>al amount of<br />

Fusarium wild caused by race 5.<br />

Tunisian Journal of Plant Protection 9<br />

Vol. 2, No. 1, 2007


A grow<strong>in</strong>g body of evidence from<br />

several studies revealed that different<br />

mechanisms may be <strong>in</strong>volved <strong>in</strong> the<br />

biological <strong>control</strong> of plant diseases by<br />

bacterial <strong>and</strong> fungal antagonists. These<br />

mechanisms may <strong>in</strong>clude antibiosis,<br />

direct parasitism, saprophytic competition<br />

for nutrients, competition for <strong>in</strong>fection<br />

sites, <strong>and</strong> <strong>in</strong>duced or enhanced host<br />

resistance (19, 22, 23, 30). These<br />

different modes of action are not<br />

necessarily exclusive of one another, <strong>and</strong><br />

many of these mechanisms may be<br />

synergistically active <strong>and</strong> used by the<br />

same bio-<strong>control</strong> agent (22, 48). As far as<br />

chickpea is concerned, different<br />

<strong>in</strong>vestigations showed that <strong>in</strong>duced<br />

resistance, through the accumulation of<br />

various phenolic compounds <strong>and</strong><br />

phytoalex<strong>in</strong>s, de novo synthesis of<br />

pathogenesis-related prote<strong>in</strong>s as well as<br />

the activation of different enzymes such<br />

as chit<strong>in</strong>ases, ß-1,3-glucanases,<br />

peroxidases, polyphenoloxidases <strong>and</strong> key<br />

enzymes <strong>in</strong> phenylpropanoid <strong>and</strong><br />

isoflavonoid pathways, may play a crucial<br />

role <strong>in</strong> the biological <strong>control</strong> of chickpea<br />

diseases by antagonistic microorganisms<br />

(2, 3, 4, 6, 13, 14). In this bibliographic<br />

study we will focus on the roles of<br />

<strong>in</strong>duced phenolic compounds <strong>and</strong><br />

phytoalex<strong>in</strong>s <strong>in</strong> the <strong>in</strong>teraction of<br />

chickpea with bacterial <strong>and</strong> fungal<br />

antagonistic agents which should lead to<br />

biological <strong>control</strong> of the major diseases of<br />

this plant.<br />

<strong>Phenolic</strong> compounds <strong>in</strong> plants.<br />

Plants have the ability to synthesize a<br />

large number of aromatic substances,<br />

most of which are phenols or <strong>their</strong><br />

oxygen-substituted derivatives (24). Most<br />

are secondary metabolites, which may be<br />

<strong>in</strong> the form of simple phenols <strong>and</strong><br />

phenolic acids, qu<strong>in</strong>ones, flavones,<br />

flavonoids, flavonols, tann<strong>in</strong>s, terpenoids,<br />

essential oils, alkaloids… All of the<br />

phenolics have one or more benzene r<strong>in</strong>gs<br />

with one or more hydroxyl groups that<br />

may be variously elaborated with methyl,<br />

methoxyl, am<strong>in</strong>o or glycosyl groups.<br />

Some, such as terpenoids, give plants<br />

<strong>their</strong> odors <strong>and</strong> flavor; many compounds,<br />

like tann<strong>in</strong>s <strong>and</strong> qu<strong>in</strong>ones, are responsible<br />

for plant pigment, <strong>and</strong> others, such as<br />

some alkaloids, may be toxic to the<br />

consumer. In many <strong>in</strong>stances, these<br />

substances serve as plant defense<br />

mechanisms aga<strong>in</strong>st predation by <strong>in</strong>sects,<br />

herbivores <strong>and</strong> microorganisms (11, 24,<br />

74). Different studies showed that there<br />

are often large <strong>in</strong>creases <strong>in</strong> phenolic<br />

synthesis <strong>in</strong> plants after attack by plant<br />

pathogens (26, 49). <strong>Phenolic</strong>s that occur<br />

constitutively <strong>and</strong> function as preformed<br />

<strong>in</strong>hibitors are generally referred to as<br />

phytoanticip<strong>in</strong>s, <strong>and</strong> those that are<br />

produced <strong>in</strong> response to <strong>in</strong>fection by the<br />

pathogen are called phytoalex<strong>in</strong>s <strong>and</strong><br />

constitute an active defense response. In<br />

resistant plants, phenolic based defense<br />

responses are characterized by the early<br />

<strong>and</strong> rapid accumulation of phenolics at<br />

the <strong>in</strong>fection site result<strong>in</strong>g <strong>in</strong> the effective<br />

isolation of the pathogen (20, 21, 28, 29).<br />

These physical responses may <strong>in</strong>clude the<br />

elaboration of cell wall thicken<strong>in</strong>gs <strong>and</strong><br />

appositions, such as papillae, as well as<br />

the occlusion of plant vessels. These<br />

reactions are usually accompanied by the<br />

synthesis <strong>and</strong> deposition of lign<strong>in</strong>, a<br />

polymer of aromatic phenolics. Results<br />

from many studies suggest that<br />

esterification of phenols to cell wall<br />

materials <strong>and</strong> the accumulation <strong>and</strong><br />

deposition of phenols <strong>in</strong> <strong>and</strong> on cell walls<br />

is usually considered as an <strong>in</strong>crease <strong>in</strong><br />

resistance to fungal hydrolytic enzymes<br />

as well as a physical barrier aga<strong>in</strong>st<br />

fungal penetration.<br />

<strong>Phenolic</strong>s present <strong>in</strong> healthy,<br />

un<strong>in</strong>fected plant tissues, as preformed<br />

antimicrobial compounds, that <strong>in</strong>hibit the<br />

growth of fungi may <strong>in</strong>clude simple<br />

phenols, phenolic acids, flavonols, some<br />

isoflavones… Those that are <strong>in</strong>duced <strong>in</strong><br />

response to fungal <strong>in</strong>fection <strong>in</strong>clude<br />

phenolic phytoalex<strong>in</strong>s, isoflavonoids,<br />

pterocarpans, furocoumar<strong>in</strong>s, flavans,<br />

stilbenes, phenanthrenes… (43). All the<br />

above mentioned compounds orig<strong>in</strong>ate<br />

through different branches of the general<br />

Tunisian Journal of Plant Protection 10<br />

Vol. 2, No. 1, 2007


phenylpropanoid pathway, lead<strong>in</strong>g to the<br />

elaboration of various hydroxyc<strong>in</strong>namic<br />

acids <strong>and</strong> derivatives with antifungal<br />

activity. Confrontation of many of these<br />

compounds with fungi <strong>in</strong> vitro revealed<br />

<strong>their</strong> effectiveness <strong>in</strong> reduc<strong>in</strong>g fungal<br />

growth (Table 1). These studies seem also<br />

to <strong>in</strong>dicate that hydroxyc<strong>in</strong>namaldehydes<br />

are more fungitoxic than<br />

hydroxyc<strong>in</strong>namic acids <strong>and</strong><br />

hydroxyc<strong>in</strong>namyl alcohols (9). Among<br />

the c<strong>in</strong>namics, caffeic <strong>and</strong> coumaric acids<br />

are widely distributed <strong>in</strong> plants occurr<strong>in</strong>g<br />

naturally <strong>in</strong> comb<strong>in</strong>ation with other<br />

compounds, usually <strong>in</strong> the form of esters.<br />

For <strong>in</strong>stance chlorogenic acid, the ester of<br />

caffeic with qu<strong>in</strong>ic acid, <strong>and</strong> ferulic acid<br />

were shown to be strong <strong>in</strong>hibitors of<br />

different fungal pathogens (43). Benzoic<br />

derivatives, such as 2,5-<br />

Dihydroxybenzoic acid <strong>and</strong> 2,5-<br />

dimetoxybenzoic acid, were very<br />

effective <strong>in</strong> <strong>in</strong>hibit<strong>in</strong>g both spore<br />

germ<strong>in</strong>ation <strong>and</strong> mycelial growth of<br />

different pathogenic fungi, <strong>in</strong>clud<strong>in</strong>g B.<br />

c<strong>in</strong>erea, Sclerot<strong>in</strong>ia sclerotiorum, F.<br />

oxysporum, <strong>and</strong> Penicillium digitatum,<br />

Gleosporium album, <strong>in</strong> vitro, <strong>and</strong> <strong>in</strong><br />

<strong>control</strong>l<strong>in</strong>g disease development <strong>in</strong> vivo<br />

(44). <strong>Phenolic</strong>s seem to <strong>in</strong>hibit disease<br />

development through different<br />

mechanisms <strong>in</strong>volv<strong>in</strong>g the <strong>in</strong>hibition of<br />

extracellular fungal enzymes (cellulases,<br />

pect<strong>in</strong>ases, laccase, xylanase,…),<br />

<strong>in</strong>hibition of fungal oxidative<br />

phosphorylation, nutrient deprivation<br />

(metal complexation, prote<strong>in</strong><br />

<strong>in</strong>solubilisation), <strong>and</strong> antioxidant activity<br />

<strong>in</strong> plant tissues (38, 47, 67). Lipophilic<br />

properties <strong>and</strong> the presence of a hydroxyl<br />

group <strong>in</strong> phenolics seem to play a major<br />

role <strong>in</strong> <strong>their</strong> antifungal activity, allow<strong>in</strong>g<br />

respectively the penetration of biological<br />

membranes <strong>and</strong> oxidative<br />

phosphorylation uncoupl<strong>in</strong>g.<br />

Table 1. <strong>Phenolic</strong> compounds active <strong>in</strong> vitro aga<strong>in</strong>st some plant pathogenic fungi<br />

Compound Target organism References<br />

Essential oils<br />

Penicillium spp., Botrytis c<strong>in</strong>erea,<br />

Fusarium oxysporum, Alternaria<br />

spp.<br />

Arras <strong>and</strong> Usai (7), Arras et al. (8),<br />

Reddy et al. (63)<br />

C<strong>in</strong>namic derivatives<br />

C<strong>in</strong>namic acid; 4-Coumaric acid; 3-<br />

Coumaric acid; Dihydrocaffeic acid;<br />

Ferulic acid; S<strong>in</strong>apic acid.<br />

Sclerot<strong>in</strong>ia sclerotirum; Alternaria<br />

spp; B. c<strong>in</strong>erea; Penicillium<br />

digitatum<br />

Lattanzio et al. (42)<br />

Flavonoids<br />

Apigen<strong>in</strong>-7-glucoside; (+)-Catech<strong>in</strong>;<br />

Luteoll<strong>in</strong>-7-glucoside; Myricet<strong>in</strong>;<br />

Quercet<strong>in</strong>-3-rhamnoside; Quercet<strong>in</strong>-<br />

3-rut<strong>in</strong>oside.<br />

Alternaria spp.; Penicillium<br />

digitatum<br />

Lattanzio et al. (42)<br />

Benzoic derivatives<br />

Gallic acid; Syr<strong>in</strong>gic acid; 4-<br />

Hydroxybenzoic acid; 2,3-; 3,4- <strong>and</strong><br />

2,5-Dihydroxybenzoic acid; 2,3-; 2,4-<br />

<strong>and</strong> 2,5- Dimethoxybenzoic acid.<br />

Alternaria spp.; B. c<strong>in</strong>erea;<br />

Penicillium digitatum<br />

Lattanzio et al. (42)<br />

Benzaldehyde; Methyl salicylate;<br />

Ethyl benzoate.<br />

Monilia fructicola; M. laxa; B.<br />

c<strong>in</strong>erea<br />

Ton<strong>in</strong>i <strong>and</strong> Caccioni (72), Wilson et<br />

al. (75)<br />

Tunisian Journal of Plant Protection 11<br />

Vol. 2, No. 1, 2007


Major phenolic compounds <strong>in</strong><br />

legumes. The isoflavonoids, unlike most<br />

other flavonoids, show a very limited<br />

distribution <strong>in</strong> the plant k<strong>in</strong>gdom, be<strong>in</strong>g<br />

largely conf<strong>in</strong>ed to the legumes. Most of<br />

the biologically active isoflavonoids have<br />

been isolates from the legumes but this<br />

not preclude f<strong>in</strong>d<strong>in</strong>g them <strong>in</strong> other plant<br />

families. Isoflavonoids are synthesized as<br />

part of the phenylpropanoid pathway <strong>and</strong><br />

they show a wide range of biological<br />

activities. The three most important are<br />

the oestrogenic activities of simple<br />

isoflovonoids <strong>and</strong> coumestans, the<br />

<strong>in</strong>secticidal properties of rotenoids, <strong>and</strong><br />

the antifungal <strong>and</strong> antibacterial properties<br />

of phytoalex<strong>in</strong>s (73). Isoflavonoids play a<br />

key role <strong>in</strong> plant-microbe <strong>in</strong>teractions,<br />

serv<strong>in</strong>g as the signal molecule for<br />

establish<strong>in</strong>g the symbiotic relationship<br />

between plants <strong>and</strong> rhizobial bacteria that<br />

results <strong>in</strong> the formation of nitrogen-fix<strong>in</strong>g<br />

root nodules. They are also the precursors<br />

to the major phytoalex<strong>in</strong>s <strong>in</strong> legumes,<br />

<strong>in</strong>dicat<strong>in</strong>g that the activation of <strong>their</strong><br />

synthesis dur<strong>in</strong>g the <strong>in</strong>teraction of<br />

resistant plants with the pathogen<br />

provides a battery of defense compounds.<br />

Isoflavones <strong>and</strong> ptericarpans are the two<br />

largest of the about twelve classes<br />

constitut<strong>in</strong>g isoflavonoids. The four<br />

commonest isoflavones are daidze<strong>in</strong><br />

(1,7,4’-trihydroxyisoflavone),<br />

formononet<strong>in</strong> (2,7-hydroxy-4’-<br />

methoxyisoflavone) (Fig. 1), geniste<strong>in</strong><br />

(3,5,7,4’-tridydroxyisoflavone) <strong>and</strong><br />

biochan<strong>in</strong> A (4,5,7-dihydroxy-4’-<br />

methoxyisoflavone) (Fig. 1).<br />

Isoflavanones are less frequent than<br />

isoflavones <strong>and</strong> most of the products so<br />

far reported <strong>in</strong> the literature have<br />

antifungal activity, <strong>and</strong> have been<br />

characterized from phytoalex<strong>in</strong><br />

<strong>in</strong>vestigations. Simple isoflavanones<br />

<strong>in</strong>clude<br />

dehydrodeidze<strong>in</strong>,<br />

dihydroformononet<strong>in</strong><br />

<strong>and</strong><br />

dihydrobiochan<strong>in</strong> A. Most of ptericarpans<br />

have been also isolated as phytoalex<strong>in</strong>s<br />

<strong>and</strong> exhibit both antifungal <strong>and</strong> optical<br />

activity. They are conveniently devided<br />

<strong>in</strong>to the ptericarpans, the 6ahydroxyptericarpans,<br />

<strong>and</strong> the<br />

ptericarpenes (73). Medicarp<strong>in</strong> (Fig. 1), a<br />

phytoalex<strong>in</strong> <strong>in</strong> many legume species, is<br />

undoubtedly the most widespread<br />

pterocarpan. Among the 27 members of<br />

the 6a-hydroxyptericarpans, pisat<strong>in</strong> was<br />

the first phytoalex<strong>in</strong> of this group isolated<br />

from pods of Pisum sativum (76). Over<br />

400 legumes have been studied for<br />

phytoalex<strong>in</strong>s synthesis <strong>and</strong> most<br />

responded positively, with the production<br />

of one or more isoflavonoids.<br />

Induction of phenolic compounds<br />

<strong>and</strong> phytoalex<strong>in</strong>s <strong>in</strong> chickpea. As<br />

<strong>in</strong>dicated previously, different studies<br />

showed that <strong>in</strong>duced resistance, through<br />

the accumulation of various phenolic<br />

compounds <strong>and</strong> phytoalex<strong>in</strong>s, as well as<br />

the activation of oxidative <strong>and</strong> key<br />

enzymes <strong>in</strong> phenylpropanoid <strong>and</strong><br />

isoflavonoid pathways, may play a crucial<br />

role <strong>in</strong> the biological <strong>control</strong> <strong>and</strong><br />

resistance of chickpea to pathogenic<br />

attacks (2, 4, 13, 14). Plant protection by<br />

the bio<strong>control</strong> agents was generally<br />

associated with the accumulation of<br />

mRNA of defense genes, <strong>in</strong>clud<strong>in</strong>g the<br />

phenylpropanoid pathway gene encod<strong>in</strong>g<br />

phenylalan<strong>in</strong>e ammonia lyase (PAL), <strong>and</strong><br />

secondary metabolites of phenolic nature<br />

(70). In the same context, S<strong>in</strong>gh et al.<br />

(69), reported that treatment of chickpea<br />

seeds with Pseudomonas spp. <strong>in</strong>creased<br />

the synthesis of c<strong>in</strong>namic, ferulic <strong>and</strong><br />

chlorogenic acids, which showed<br />

antifungal effects aga<strong>in</strong>st Sclerotium<br />

rolfsii. Investigations, conducted recently<br />

<strong>in</strong> our laboratory, revealed that the pretreatment<br />

of chickpea seedl<strong>in</strong>gs with<br />

selected Rhizobium isolates before<br />

challenge with Foc, <strong>in</strong>creased<br />

significantly the levels of peroxidases<br />

(POX), polyphenoloxidases (PPO), total<br />

phenolics <strong>and</strong> the constitutive<br />

isoflavonoids, formononet<strong>in</strong> <strong>and</strong><br />

biochan<strong>in</strong> A (1, 2). These <strong>in</strong>creases were<br />

particularly observed after pre-treatment<br />

with Rhizobium isolate PchDMS, which<br />

was reported to be the most effective <strong>in</strong><br />

Tunisian Journal of Plant Protection 12<br />

Vol. 2, No. 1, 2007


educ<strong>in</strong>g Fusarium wilt development (3).<br />

While the highest levels of POX were<br />

generally observed after 24 h of challenge<br />

with Foc, PPO <strong>and</strong> phenolics reached<br />

<strong>their</strong> highest levels 48 h later. Induced<br />

enzymatic activities <strong>and</strong> phenolic<br />

accumulation were usually higher <strong>in</strong> the<br />

moderately resistant cultivar INRAT87/1<br />

as compared to the susceptible cultivar<br />

ILC482. POX <strong>and</strong> PPO are known for<br />

<strong>their</strong> ability to oxidize several compounds<br />

particularly phenolics <strong>in</strong>creas<strong>in</strong>g <strong>their</strong><br />

toxicity (17, 45, 71). They are also known<br />

to be important <strong>in</strong> symptom expression. A<br />

close relationship between <strong>in</strong>creased<br />

activity of POX <strong>and</strong> PPO <strong>and</strong> appearance<br />

of symptoms <strong>in</strong> <strong>in</strong>fected plant tissues was<br />

reported by several studies (12, 31, 51).<br />

POXs are usually associated with <strong>in</strong>duced<br />

resistance (34, 61), <strong>and</strong> they are also<br />

implicated <strong>in</strong> several plant defense<br />

mechanisms such as lign<strong>in</strong> synthesis,<br />

oxidative cross l<strong>in</strong>k<strong>in</strong>g of different plant<br />

cell wall components or generation of<br />

reactive oxygen species (53).<br />

<strong>Bio</strong>chan<strong>in</strong> A<br />

Formononet<strong>in</strong><br />

Medicarp<strong>in</strong><br />

Maackia<strong>in</strong><br />

Fig. 1. Chemical structure of the isoflavones biochan<strong>in</strong> A <strong>and</strong> formononet<strong>in</strong> <strong>and</strong> the phytoalex<strong>in</strong>s medicarp<strong>in</strong> <strong>and</strong><br />

maackia<strong>in</strong> produced <strong>in</strong> chickpea.<br />

In our experiments with Rhizobium<br />

antagonists <strong>and</strong> Foc, the maximum levels<br />

of formononet<strong>in</strong> <strong>and</strong> biochan<strong>in</strong> A were<br />

recorded <strong>in</strong> chickpea roots after<br />

respectively 10 days <strong>and</strong> 20 days of<br />

challenge with Foc. High performance<br />

liquid chromatography (HPLC) profiles<br />

revealed the presence of these<br />

isoflavones, both under free forms <strong>and</strong><br />

glycosidically bound forms.<br />

Formononet<strong>in</strong> <strong>and</strong> biochan<strong>in</strong> A are<br />

synthesized constitutively <strong>in</strong> chickpea<br />

cells, stored as glycoside conjugates <strong>in</strong><br />

the vacuoles, <strong>and</strong> upon elicitation with the<br />

antagonists <strong>and</strong> challenge with Foc, the<br />

amounts of these compounds show an<br />

important <strong>in</strong>crease, through the<br />

conversion of glycoside conjugates to<br />

aglycons, which are themselves converted<br />

later to ptericarpans, such as the well<br />

documented compounds medicarp<strong>in</strong> <strong>and</strong><br />

maackia<strong>in</strong> (Fig. 1) (2, 25, 46). In our<br />

experiments, the addition of phenolic<br />

extracts, obta<strong>in</strong>ed from roots of chickpea<br />

Tunisian Journal of Plant Protection 13<br />

Vol. 2, No. 1, 2007


pretreated with Rhizobia <strong>and</strong> <strong>in</strong>oculated<br />

with Foc, to culture medium, <strong>in</strong>hibited the<br />

mycelial growth of the pathogen <strong>and</strong><br />

<strong>in</strong>duced marked changes <strong>in</strong> Foc<br />

morphology accompanied with the<br />

formation of numerous vesicles <strong>and</strong> large<br />

vacuoles with<strong>in</strong> hyphal cells. These<br />

observed fungitoxic effects were<br />

presumably due to compounds such as<br />

medicarp<strong>in</strong> <strong>and</strong> maackia<strong>in</strong>, which were<br />

previously reported to be fungitoxic to<br />

Foc, caus<strong>in</strong>g the <strong>in</strong>hibition of spore<br />

germ<strong>in</strong>ation <strong>and</strong> germ tube growth (70).<br />

In <strong>their</strong> studies, Stevenson et al. (70),<br />

demonstrated that medicarp<strong>in</strong> <strong>and</strong><br />

maackia<strong>in</strong> have ED 50 values for spore<br />

germ<strong>in</strong>ation of respectively about 80 <strong>and</strong><br />

160 g/ml <strong>and</strong> that both phytoalex<strong>in</strong>s<br />

caused 50% <strong>in</strong>hibition of germ tube<br />

growth at concentrations as low as 15<br />

g/ml. More importantly, these authors<br />

showed that the concentration of the two<br />

phytoalex<strong>in</strong>s medicarp<strong>in</strong> <strong>and</strong> maachia<strong>in</strong><br />

<strong>in</strong>creased <strong>in</strong> roots of four chickpea<br />

cultivars <strong>in</strong>oculated with Foc races 1 <strong>and</strong><br />

2. Concentrations of these phytoalex<strong>in</strong>s<br />

were significantly higher <strong>in</strong> wilt resistant<br />

cultivars as compared to susceptible<br />

cultivars, both before <strong>and</strong> after challenge<br />

with the pathogen, <strong>in</strong>dicat<strong>in</strong>g that they<br />

may be potential components of the<br />

resistance mechanism of chickpea to<br />

Fusarium wilt. The studies of Cach<strong>in</strong>ero<br />

et al. (14) have also focused ma<strong>in</strong>ly on<br />

the role that phytoalex<strong>in</strong> synthesis <strong>and</strong><br />

accumulation might have <strong>in</strong> the<br />

suppression of Fusarium wilt <strong>in</strong> chickpea<br />

plants <strong>in</strong>duced by <strong>in</strong>compatible race 0 of<br />

Foc <strong>and</strong> nonhost isolates of F.<br />

oxysporum. In these experiments, prior<br />

<strong>in</strong>oculation (three days before challenge<br />

with Foc) with <strong>in</strong>ducers delayed the onset<br />

of symptoms <strong>and</strong> significantly reduced<br />

Fusarium wilt caused by the highly<br />

virulent race 5 of the pathogen.<br />

Inoculation with the <strong>in</strong>ducers gave rise to<br />

synthesis of the phytoalex<strong>in</strong>s medicarp<strong>in</strong><br />

<strong>and</strong> maachia<strong>in</strong> <strong>and</strong> related isoflavones<br />

formononet<strong>in</strong> <strong>and</strong> biochan<strong>in</strong> A. These <strong>and</strong><br />

previous studies (4), showed that<br />

phytoalex<strong>in</strong>s produced <strong>in</strong> response to<br />

<strong>in</strong>duction <strong>and</strong> <strong>in</strong>fection of chickpea roots<br />

were released <strong>in</strong>to the liquid treatment<br />

carrier rather than accumulated <strong>in</strong> the<br />

roots. Therefore, these authors have<br />

analysed the levels of phytoalex<strong>in</strong>s <strong>in</strong><br />

<strong>in</strong>ducer <strong>and</strong> challenger <strong>in</strong>oculum<br />

suspensions at the end of the <strong>in</strong>oculation<br />

periods <strong>and</strong> suggested that phytoalex<strong>in</strong><br />

production is associated with the plant<br />

resistance response to the various<br />

<strong>in</strong>ducers they have studied, <strong>and</strong> especially<br />

with nonhost resistance to nonhost F.<br />

oxysporum isolates. Moreover, Cach<strong>in</strong>ero<br />

et al. (14), <strong>in</strong>dicated that the mechanistic<br />

role of the phytoalex<strong>in</strong> response <strong>in</strong><br />

<strong>in</strong>duced resistance to Fusarium wilt <strong>in</strong><br />

chickpea does not appear to relate to a<br />

plant sensitization process provoked by<br />

the <strong>in</strong>duc<strong>in</strong>g agents that enhances<br />

phytoalex<strong>in</strong> production after plantchallenger<br />

<strong>in</strong>teraction, but it seems to be a<br />

consequence of the response developed <strong>in</strong><br />

the plant by the prior <strong>in</strong>teraction with the<br />

<strong>in</strong>duc<strong>in</strong>g agent. Accord<strong>in</strong>g to this<br />

assumption, bio<strong>control</strong> agents <strong>in</strong>duce the<br />

expression of plant defense responses, but<br />

do not <strong>in</strong>crease the plant’s potential for<br />

respond<strong>in</strong>g to subsequent challenge<br />

<strong>in</strong>oculation. Accord<strong>in</strong>gly, the expressed<br />

defenses before challenge <strong>in</strong>oculation<br />

seem to <strong>in</strong>terfere with the <strong>in</strong>oculum, <strong>and</strong><br />

thus to contribute to <strong>in</strong>duced resistance<br />

<strong>in</strong>volved <strong>in</strong> Fusarium wilt suppression <strong>in</strong><br />

chickpea.<br />

Phytoalex<strong>in</strong>s (medicarp<strong>in</strong> <strong>and</strong><br />

maackia<strong>in</strong>) <strong>and</strong> constitutive isoflavones<br />

(formononet<strong>in</strong> <strong>and</strong> biochan<strong>in</strong> A) <strong>and</strong><br />

isoflavanones (homoferreir<strong>in</strong> <strong>and</strong> cicer<strong>in</strong>)<br />

were also <strong>in</strong>duced <strong>in</strong> chickpea seedl<strong>in</strong>gs<br />

<strong>and</strong> cell cultures challenged with elicitors,<br />

such as yeast extracts, ATPase <strong>in</strong>hibitors<br />

(orthovanadate,<br />

N,N’-<br />

dicychlohexylcarbodiimide, <strong>and</strong><br />

ionophores (carbonyl cyanide 3-<br />

chlorophenylhydrazone <strong>and</strong> nigeric<strong>in</strong>).<br />

Barz <strong>and</strong> Mackenbrock (10) showed that<br />

elicitation of cell cultures leads to<br />

pronounced <strong>in</strong>creases <strong>in</strong> the activities of<br />

biosynthetic enzymes with differential<br />

effects on the enzymes <strong>in</strong>volved <strong>in</strong><br />

conjugate metabolism. They <strong>in</strong>dicated<br />

Tunisian Journal of Plant Protection 14<br />

Vol. 2, No. 1, 2007


that low elicitor doses favour pterocarpan<br />

conjugate formation whereas high doses<br />

lead to pterocarpan aglycon accumulation<br />

accompanied by vacuolar efflux of<br />

formononet<strong>in</strong> <strong>and</strong> pterocarpan<br />

malonylglucosides. Armero <strong>and</strong> Tena (5)<br />

showed that the <strong>in</strong>hibition of the plasma<br />

membrane H + -ATPase, <strong>and</strong> particularly<br />

the proton efflux, may constitute a key<br />

step <strong>in</strong> the signall<strong>in</strong>g pathway lead<strong>in</strong>g to<br />

the activation of phytoalex<strong>in</strong> <strong>and</strong><br />

isoflavone production <strong>in</strong> chickpea<br />

seedl<strong>in</strong>gs. These authors assumed that<br />

external medium alkal<strong>in</strong>ization, as a<br />

result of plasma membrane depolarization<br />

triggered by elicitors, is the ma<strong>in</strong> cause of<br />

the elicitation response, as has been<br />

concluded <strong>in</strong> different studies conducted<br />

previously with a significant number of<br />

elicitors (41, 50, 51). By <strong>in</strong>vestigat<strong>in</strong>g the<br />

signal transduction pathways <strong>in</strong> these<br />

systems, the mechanisms that <strong>control</strong> the<br />

production of these important<br />

phytoalex<strong>in</strong>s <strong>and</strong> phenolic compounds<br />

can be discovered.<br />

Studies on phytoalex<strong>in</strong> tolerance <strong>in</strong><br />

pathogenic fungi have also shown a<br />

relationship between virulence <strong>and</strong> the<br />

ability of fungi to detoxify phytoalex<strong>in</strong>s.<br />

For <strong>in</strong>stance, Miao <strong>and</strong> Vanetten (54)<br />

showed that Nectria haematococca<br />

mat<strong>in</strong>g type VI (MP VI), a fungus<br />

pathogenic on chickpea, can metabolise<br />

maackia<strong>in</strong> <strong>and</strong> medicarp<strong>in</strong> to less toxic<br />

products. These detoxification reactions<br />

are thought to be required for<br />

pathogenesis by this fungus on chickpea,<br />

which was tested by exam<strong>in</strong><strong>in</strong>g the<br />

phenotypes of progeny from crosses of<br />

the fungus that segregated for Mak genes<br />

<strong>control</strong>l<strong>in</strong>g phytoalex<strong>in</strong> metabolism. In<br />

these studies, Mak1 <strong>and</strong> Mak2, two genes<br />

that <strong>in</strong>dividually confer the ability to<br />

convert maakia<strong>in</strong> to its 1ahydroxydienone<br />

derivative, were l<strong>in</strong>ked<br />

to higher tolerance of the phytoalex<strong>in</strong>s<br />

<strong>and</strong> high virulence on chickpea. Mak1<br />

was also shown to be closely l<strong>in</strong>ked to<br />

Pda6, a member <strong>in</strong> a family of genes <strong>in</strong> N.<br />

heamatococca that encode enzymes for<br />

detoxification of pisat<strong>in</strong>. The gene Mak3,<br />

conferr<strong>in</strong>g the ability to convert maakia<strong>in</strong><br />

to its 6a-hydroxypterocarpan derivative,<br />

was also shown to <strong>in</strong>crease tolerance to<br />

the phytoalex<strong>in</strong>. Nevertheless, the<br />

contribution of this gene to the overall<br />

level of pathogenesis was not evaluated<br />

because of the low virulence of most of<br />

the progeny obta<strong>in</strong>ed from the cross<br />

segregat<strong>in</strong>g for Mak3. From these studies,<br />

the authors concluded that metabolic<br />

detoxification of phytoalex<strong>in</strong>s seems to be<br />

necessary, as demonstrated <strong>in</strong> the Mak1<br />

<strong>and</strong> Mak2 crosses, but not sufficient by<br />

itself, as <strong>in</strong> the Mak3 cross, for high<br />

virulence of N. haematococca MP VI on<br />

chichpea. Use of mutants deficient <strong>in</strong><br />

phytoalex<strong>in</strong> synthesis <strong>and</strong> elucidat<strong>in</strong>g<br />

biosynthetic pathways provide other<br />

approaches to evaluat<strong>in</strong>g the role of<br />

phytoalex<strong>in</strong>s. Nevertheless, to our<br />

knowledge, these approaches have been<br />

studied us<strong>in</strong>g the Arabidopsis-camalex<strong>in</strong><br />

system <strong>and</strong> other plant-phytoalex<strong>in</strong><br />

systems rather than chickpea as a model.<br />

The accumulation of phenolics <strong>and</strong><br />

phytoalex<strong>in</strong>s, such as medicarp<strong>in</strong> <strong>and</strong><br />

maackia<strong>in</strong>, is considered as a major<br />

defense mechanism frequently observed<br />

<strong>and</strong> well characterized <strong>in</strong> chickpea. These<br />

compounds were shown to accumulate<br />

both <strong>in</strong> roots <strong>and</strong> shoots <strong>in</strong> response to<br />

various fungal <strong>in</strong>fections <strong>and</strong> elicitors,<br />

<strong>and</strong> <strong>their</strong> levels significantly <strong>in</strong>crease <strong>in</strong><br />

plants pre-<strong>in</strong>oculated with antagonistic<br />

microorganisms. These <strong>in</strong>duced<br />

compounds seem to exhibit a rather<br />

unspecific antifungal character at<br />

physiological concentrations, enhanc<strong>in</strong>g<br />

the resistance of chickpea to various<br />

phytopathogenic fungi, <strong>in</strong>clud<strong>in</strong>g Foc,<br />

Nectria haematococca, Sclerotium rolfsii,<br />

Botrytis c<strong>in</strong>erea… Moreover, maackia<strong>in</strong><br />

<strong>and</strong> medicarp<strong>in</strong> revealed a broad<br />

spectrum of activity aga<strong>in</strong>st bacteria,<br />

phytopathogenic fungi <strong>and</strong> even<br />

zoopathogenic fungi (32). There is great<br />

potential for the use of these natural<br />

antifungal compounds <strong>and</strong> selected<br />

beneficial bio<strong>control</strong> agents as<br />

biofungicides <strong>and</strong> alternatives to<br />

Tunisian Journal of Plant Protection 15<br />

Vol. 2, No. 1, 2007


fungicides <strong>in</strong> chickpea disease<br />

management. Despite the grow<strong>in</strong>g wealth<br />

of <strong>in</strong>formation <strong>in</strong>dicat<strong>in</strong>g the importance<br />

of phenolic compounds <strong>and</strong> phytoalex<strong>in</strong>s<br />

<strong>in</strong> resistance of chickpea to pathogenic<br />

fungi, the specific role of phytoalex<strong>in</strong>s <strong>in</strong><br />

disease resistance still rema<strong>in</strong>s to be<br />

demonstrated. In fact, much of the<br />

research <strong>in</strong> this doma<strong>in</strong> has relied on the<br />

identification of <strong>in</strong>duced antifungal<br />

compounds <strong>and</strong> correlat<strong>in</strong>g <strong>their</strong> presence<br />

with resistance. More studies aim<strong>in</strong>g to<br />

provide good evidence that these<br />

compounds accumulate at the right time,<br />

concentration, <strong>and</strong> location to be effective<br />

<strong>in</strong> resistance are needed. Use of mutants<br />

deficient <strong>in</strong> <strong>their</strong> synthesis may provide<br />

also direct evidence for <strong>their</strong> importance<br />

as key mechanisms of resistance.<br />

Elucidat<strong>in</strong>g biosynthetic pathways, the<br />

enzymatic <strong>in</strong>teractions between the key<br />

enzymes <strong>in</strong> the phenylpropanoid <strong>and</strong><br />

isoflavonoid pathways <strong>and</strong> the<br />

transcriptional regulation of isoflavonoid<br />

synthesis provide other approaches to<br />

evaluat<strong>in</strong>g the role of phytoalex<strong>in</strong>s.<br />

Clon<strong>in</strong>g of genes of these key enzymes<br />

from chickpea <strong>and</strong> other legumes <strong>and</strong><br />

<strong>their</strong> expression <strong>in</strong> other plants (legumes<br />

<strong>and</strong> non-legume plants) as well as the<br />

study of the mode of action of these<br />

enzymes may be also very useful <strong>in</strong> the<br />

elucidation of <strong>their</strong> role <strong>in</strong> resistance.<br />

Although most of the enzymatic steps<br />

<strong>in</strong>volved <strong>in</strong> the biosynthesis of the major<br />

classes of phenylpropanoid compounds<br />

are now well established, <strong>and</strong> many of the<br />

correspond<strong>in</strong>g genes have been cloned,<br />

less is understood about the regulatory<br />

genes <strong>in</strong>volved <strong>in</strong> rapid, coord<strong>in</strong>ated<br />

<strong>in</strong>duction of phenylpropanoid defenses <strong>in</strong><br />

response to fungal attack. Genetic<br />

eng<strong>in</strong>eer<strong>in</strong>g of legumes <strong>and</strong> non-legume<br />

plants can alter the production of these<br />

secondary metabolites <strong>and</strong> lead to the<br />

synthesis of novel isoflavonoids with<br />

significant benefits for disease resistance<br />

<strong>and</strong> human health. Transcriptional<br />

regulation of these pathways has to be<br />

also studied, with a particular focus on<br />

the transcription factors that activate gene<br />

expression dur<strong>in</strong>g plant defense <strong>and</strong><br />

plant-bio<strong>control</strong> agents <strong>in</strong>teractions. Gene<br />

expression array analysis <strong>and</strong> metabolic<br />

profil<strong>in</strong>g approaches constitute actually<br />

powerful tools to make comparative<br />

parallel analyses of global changes at the<br />

genome <strong>and</strong> metabolism levels, which<br />

will certa<strong>in</strong>ly facilitate the underst<strong>and</strong><strong>in</strong>g<br />

of the relationships between changes <strong>in</strong><br />

specific transcripts <strong>and</strong> subsequent<br />

alterations <strong>in</strong> chickpea metabolism <strong>in</strong><br />

response to <strong>in</strong>oculation with bio<strong>control</strong><br />

agents <strong>and</strong> <strong>in</strong>fection with pathogenic<br />

fungi.<br />

__________________________________________________________________________<br />

RESUME<br />

Chérif M., Arfaoui A. et Rhaiem A. 2007. Les composés phénoliques et leur rôle dans la lutte<br />

biologique et la résistance du pois chiche aux attaques des champignons pathogènes Tunisian<br />

Journal of Plant Protection 2: 7-21.<br />

Le pois chiche est une source majeure pour la nutrition huma<strong>in</strong>e et animale, particulièrement dans les<br />

pays en voie de développement. Le pois chiche peut être attaqué par différentes maladies fongiques<br />

telles que l’anthracnose causée par Ascochyta rabiei, le flétrissement fusarien causé par Fusarium<br />

oxysporum f. sp. ciceris (Foc), la pourriture grise causée par Botrytis c<strong>in</strong>erea, la rouille causée par<br />

Uromyces ciceris-ariet<strong>in</strong>i, la pourriture du collet causée par Sclerotium rolfsii… Ces agents pathogènes<br />

sont difficiles à combattre par les pratiques culturales et la lutte chimique reste la méthode de lutte la<br />

plus utilisée. La lutte biologique et la résistance variétale offrent, toutefois, des moyens de lutte très<br />

appropriés sur les plans économique et environnemental et peuvent être <strong>in</strong>clus facilement dans le cadre<br />

d’une stratégie de lutte <strong>in</strong>tégrée. En effet, l’usage de la résistance naturelle pour limiter les dégâts des<br />

maladies fongiques du pois chiche peut être amélioré par la lutte biologique faisant appel à des<br />

bactéries ou des champignons antagonistes. Différents agents de lutte biologique, tels que les bactéries<br />

Tunisian Journal of Plant Protection 16<br />

Vol. 2, No. 1, 2007


ىعل<br />

appartenant aux genres Bacillus, Pseudomonas et Rhizobium et les champignons non pathogènes et<br />

non-hôtes du genre Fusarium, ont été utilisés avec succès et ont entraîné une réduction significative de<br />

la croissance de l’agent pathogène <strong>in</strong> vitro et du développement de la maladie <strong>in</strong> planta. Plusieurs<br />

études ont révélé que la résistance <strong>in</strong>duite, à travers l’accumulation de composés phénoliques et de<br />

phytoalex<strong>in</strong>es, a<strong>in</strong>si que l’activation des peroxydases, des polyphénoloxydases et des enzymes clés des<br />

voies des phénylpropanoïdes et des isoflavonoïdes, peut jouer un rôle crucial dans la lutte biologique et<br />

la résistance du pois chiche vis-à-vis des attaques pathogéniques. A titre d’exemple, des études récentes<br />

ont révélé que le pré-traitement des plantules de pois chiche avec des isolats sélectionnés de Rhizobium<br />

avant l’<strong>in</strong>oculation par le pathogène Foc a conduit à une augmentation significative des niveaux des<br />

composés phénoliques totaux et des isoflavonoïdes constitutifs, formononet<strong>in</strong>e et biochan<strong>in</strong>e A. La<br />

protection du pois chiche contre le flétrissement fusarien au moyen des espèces non-pathogènes et nonhôtes<br />

de Fusarium a été démontrée être associée à une <strong>in</strong>duction de la synthèse des phytoalex<strong>in</strong>es<br />

medicarp<strong>in</strong>e et maachia<strong>in</strong>e et des isoflavones apparentés formononet<strong>in</strong>e et biochan<strong>in</strong>e A. Les<br />

phytoalex<strong>in</strong>es, maakia<strong>in</strong>e et medicarp<strong>in</strong>e, ont révélé une très gr<strong>and</strong>e activité antifongique vis-à-vis des<br />

spores de Fusarium, et ce par l’<strong>in</strong>hibition de leur germ<strong>in</strong>ation et croissance hyphale. Les études menées<br />

sur la tolérance des champignons pathogènes du pois chiche à l’égard des phytoalex<strong>in</strong>es ont également<br />

montré une corrélation entre la virulence et la capacité de ces champignons à détoxifier les<br />

phytoalex<strong>in</strong>es. Ceci a été illustré par le fait que le champignon Nectria heamatococca peut métaboliser<br />

et détoxifier le maakia<strong>in</strong> et la medicarp<strong>in</strong>e et que ces réactions sont requises pour la pathogénie de ce<br />

champignon sur le pois chiche. Parmi les autres composés phénoliques étudiés, les acides gallique,<br />

c<strong>in</strong>namique, férulique et chlorogénique ont été aussi associés à la protection du pois chiche des attaques<br />

fongiques à travers la résistance <strong>in</strong>duite. Des mécanismes de défense <strong>in</strong>duits chez le pois chiche, la<br />

production de composés phénoliques et l’accumulation de phytoalex<strong>in</strong>es ont reçu une attention<br />

particulière. Cependant, des efforts supplémentaires sont nécessaires pour fournir plus de preuves quant<br />

à l’accumulation de ses composés au bon moment, à la bonne concentration et au bon emplacement et<br />

pour élucider les gènes de régulation impliqués dans leur <strong>in</strong>duction rapide et coordonnée en réponse à<br />

une agression fongique.<br />

Mots clés: Pois chiche, composes phénoliques, phytoalex<strong>in</strong>es, lutte biologique, résistance, maladies<br />

fongiques<br />

__________________________________________________________________________<br />

ملخص<br />

.2007<br />

ومقاومة الحمص للأمراض الفطريّة.‏ 7-21 .Tunisian Journal of Plant Protection 2:<br />

الشريف،‏ محمد وعربية العرفاوي وعزّة رحيّم.‏<br />

المرآبات الفينوليةّ‏ ودورها في المكافحة البيولوجية/الأحيائية<br />

يعتبر الحمص أحد المصادر الرئيسية لتغذية الإنسان والحيوان،‏ بشكل خاصّ‏ في الدول النامية.‏ يمكن للحمص أن تصيبه<br />

العديد من الأمراض الفطريّة بما في ذلك اللفحة الناجمة عن<br />

ومرض الصدأ الناجم<br />

، والتص ‏ّوف الرماديّ‏ الناجم عن<br />

عن ،Uromyces ciceris-iariet<strong>in</strong> وتعفن التاج الناجم عن ...Sclerotium rolfsii تصعب مكافحة هذه الأمراض<br />

بالاعتماد على المكافحة الزراعية وتمثل المكافحة الكيميائيةّ‏ الطريقة الأآثر استعمالا.‏ تمثل المكافحة البيولوجية/الأحيائية<br />

واستعمال الأصناف النباتية المقاومة للأمراض الطرق المناسبة من النّواحي الاقتصادية والبيئيّة ويمكن إدراجهما ضمن<br />

إستراتيجية مكافحة متكاملة.‏ إن استعمال المقاومة الطبيعيّة عند نبات الحمص للحد من الإصابات بالأمراض الفطريّة يمكن<br />

استحثاثها بواسطة المكافحة البيولوجية التي تعتمد على استعمال مضادات بكتيريّة أو فطريّة.‏ لقد وقع استعمال العديد من<br />

و Rhizobium والفطرية غير الممرضة من نوع<br />

الكائنات المضادة منها البكتيرية مثل و<br />

والتمكن من الحد بصفة حاسمة من نمو الفطر الممرض في المخبر ومن تطور المرض في الحقل.‏ لقد<br />

أظهرت العديد من الدراسات أنه يمكن للمقاومة المستحثّة من خلال تراآم المرآبات الفينولية والفيتوألكسينات وآذلك<br />

تنشيط الأنزيمات من نوع بيروإآسيداز وبولي فينولوإآسيداز والأنزيمات الأساسية لدروب الفينيلبروبانويد<br />

والإيسوفلفونويد أن تسهم بدور مهم في المكافحة البيولوجية و نسبة مقاومة الحمص للأمراض الفطرية.‏ سبيل المثال،‏<br />

أظهرت البحوث مؤخرا أن معالجة نباتات الحمص مسبقا بعزلات منتقاة من الجنس البكتيري Rhizobium قبل إلقاحه<br />

بالفطر الممرض قاد إلي زيادة هامة في مستويات المرآبات الفينوليّة الإجمالية والإيسوفلفونويد الأساسية،‏<br />

الفورمونونتين والبيوآنين أ.‏ آما بينت النتائج أن حماية الحمص من مرض الذبول الناتج عن بواسطة أنواع<br />

غير الممرضة تتم بتنشيط إفراز مادتي الفيتوألكسين،‏ المديكربين والمكيان والمرآبات ذات الصلة<br />

Fusarium والذبول الناجم عن ،Ascochyta rabiei<br />

،Botrytis c<strong>in</strong>erea<br />

Foc<br />

Pseudomonas<br />

Bacillus<br />

oxysporum f. sp. ciceris (Foc)<br />

،Foc<br />

Fusarium<br />

Fusarium<br />

Tunisian Journal of Plant Protection 17<br />

Vol. 2, No. 1, 2007


بالإيسوفلفونويد،‏ الفورمونونتين والبيوآنين أ.‏ وأظهرت مادتي الفيتوألكسين،‏ المديكربين والمكيان،‏ فاعلية عالية ضد<br />

وذلك بالحد من نسبة إنبات الأبواغ ونمو الغزل الفطري.‏ لقد بينت دراسة طاقة التحمل عند الفطريات<br />

الممرضة للحمص للفيتوألكسين علاقة وثيقة بين نسبة الإمراض وقدرة الفطر على إزالة سمية الفيتوألكسين.‏ وتم توضيح<br />

قادر على إزالة السمية وتفكيك المديكربين<br />

هذه الظاهرة بالدراسة التي بينت أن الفطر<br />

والمكيان،‏ وأن هذه العملية ضرورية حتى يستطيع هذا الفطر إصابة الحمص.‏ من بين المرآبات الفينوليّة الأخرى التي<br />

وقعت دراستها واعتبارها ضمن المواد الحامية للحمص ضد الأمراض الفطرية وجود الحامض الغال ‏ّي والحامض القرفوي<br />

والحامض الفيرول ‏ّي والحامض مولّد الكلور.‏ ومن بين آليات المقاومة التي يقع استحثاثها لدى الحمص والتي وقع الاهتمام<br />

بها آثيرا نجد إنتاج المرآبات الفينوليّة وتراآم مواد الفيتوألكسين.‏ ولكن لابد من مجهودات إضافية لتقديم المزيد من<br />

المعلومات والبينات على أن تراآم هذه المواد يقع في الوقت المناسب وفي المكان المناسب وبالكميات المناسبة وآذلك<br />

للكشف وتشخيص المورثات الجينيّة المعدلة والمتسببة في التنشيط السريع والمنسق للرد على الإصابة بالفطر الممرض.‏<br />

Nectria heamatococca<br />

،Fusarium<br />

آلمات مفتاحية:‏ الحمص،‏ مرآبات فينوليّة،‏ فيتوألكسين،‏ المكافحة البيولوجية/الأحيائية ، أصناف مقاومة،‏ أمراض فطرية<br />

__________________________________________________________________________<br />

LITERATURE CITED<br />

1. Arfaoui, A., Sifi, B., Boudabous, A., El Hadrami,<br />

I., <strong>and</strong> Chérif, M. 2006a. Identification of<br />

Rhizobium isolates possess<strong>in</strong>g antagonistic<br />

activity aga<strong>in</strong>st Fusarium oxysporum f.sp.<br />

ciceris, the causal agent of Fusarium wilt of<br />

chickpea. Journal of Plant Pathology (<strong>in</strong> press).<br />

2. Arfaoui A., Sifi, B., Boudabous, A., El Hadrami,<br />

I., <strong>and</strong> Chérif, M. 2006b. Effects of Rhizobium<br />

isolates on isoflavonoids contents <strong>in</strong> chickpea<br />

plants <strong>in</strong>fected with Fusarium oxysporum f.sp.<br />

ciceris. Phytoapthologia Mediterranea (<strong>in</strong><br />

press).<br />

3. Arfaoui A., Sifi, B., El Hassni, I., El Hadrami, I.,<br />

Boudabous A., <strong>and</strong> Chérif, M. 2005.<br />

<strong>Bio</strong>chemical analysis of chickpea protection<br />

aga<strong>in</strong>st Fusarium wilt afforded by two<br />

Rhizobium isolates. Plant Pathology Journal 4,<br />

35-42.<br />

4. Armero, J. 1996. Isoflavonoids y Compuestos<br />

Relacionados de Garbanzo: Inducción y<br />

Funcciones. Córdoba, Spa<strong>in</strong> : university of<br />

Córdoba, PhD Thesis.<br />

5. Armero J. <strong>and</strong> Tena, M. 2001. Possible role of<br />

plasma membrane H + -ATPase <strong>in</strong> the elicitation<br />

of phytoalex<strong>in</strong> <strong>and</strong> related isoflavone root<br />

secretion <strong>in</strong> chickpea (Cicer ariet<strong>in</strong>um L.)<br />

seedl<strong>in</strong>gs. Plant Science 161, 791-798.<br />

6. Armero J., Cabello, F., Cach<strong>in</strong>ero, J.M., Lópezvalbuena,<br />

R., Jorr<strong>in</strong>, J., Jiménez-Díaz, R.M., <strong>and</strong><br />

Tena, M. 1993. Defence reactions associated to<br />

host-nonspecific <strong>and</strong> host-specific <strong>in</strong>teractions<br />

<strong>in</strong> the chickpea (Cicer ariet<strong>in</strong>um)-Fusarium<br />

oxysporum pathosystem. In: Fritig B, Legr<strong>and</strong><br />

M., eds. Mechanism of Plant Defense Response.<br />

Dordrecht, the Netherl<strong>and</strong>s: Kluwer Academic<br />

Publishers, 316-319.<br />

7. Arras, G. <strong>and</strong> Usai, M. 2001. Fungitoxic activity<br />

of twelve essential oils aga<strong>in</strong>st four postharvest<br />

citrus pathogens: chemical analysis of Thymus<br />

capitatus (L.) Hofmgg oil <strong>and</strong> its effects <strong>in</strong> subatmospheric<br />

pressure conditions. Journal of<br />

Food Protection 64, 1025-1029.<br />

8. Arras, G., Agabbio, N., Piga, A., <strong>and</strong> D’Hallew<strong>in</strong>,<br />

G. 1995. Fungicide effect of volatile compounds<br />

of Thymus capitatus essential oil. Acta<br />

Horticultura 379, 593-600.<br />

9. Barber, M.S., Mcconnell, V.S., <strong>and</strong> Decaux, B.S.<br />

2000. Antimicrobial <strong>in</strong>termediates of the general<br />

phenylpropanoid <strong>and</strong> lign<strong>in</strong> specific pathways.<br />

Phytochemistry 54, 53-56.<br />

10. Barz, W. <strong>and</strong> Mackenbrock, U. 1994.<br />

Constitutive <strong>and</strong> elicitation <strong>in</strong>duced metabolism<br />

of isoflavonones <strong>and</strong> ptericarpans <strong>in</strong> chickpea<br />

(Cicer ariet<strong>in</strong>um) cell suspension cultures. Plant<br />

Cell, Tissue <strong>and</strong> Organ Culture 38, 199-211.<br />

11. Beckman, C.H. 2000. <strong>Phenolic</strong>-stor<strong>in</strong>g cells:<br />

keys to programmed cell death <strong>and</strong> periderm<br />

formation <strong>in</strong> wilt disease resistance <strong>and</strong> <strong>in</strong><br />

general defence responses <strong>in</strong> plants.<br />

Physiological <strong>and</strong> Molecular Plant pathology<br />

57, 101-110.<br />

12. Brown, S.A. 1966. Lign<strong>in</strong>es: Annuel Review of<br />

Plant Physiology 17, 233-244.<br />

13. Cabello, F. 1994. ß-1,3-Glucanasas y Quit<strong>in</strong>asas<br />

de Garbanzo (Cicer ariet<strong>in</strong>um L.) :<br />

Caracterización y Papel Defensivo en<br />

Inteacciones No-Huésped y Huésped-<br />

Especificas Garbanzo : Fusarium oxysporum.<br />

Córdoba, Spa<strong>in</strong>: University of Córdoba, PhD<br />

Thesis.<br />

14. Cach<strong>in</strong>ero, J.M., Hervás, A., Jiménez-Díaz,<br />

R.M., <strong>and</strong> Tena, M. 2002. Plant defense<br />

reactions aga<strong>in</strong>st Fusarium wilt <strong>in</strong> chickpea<br />

<strong>in</strong>duced by <strong>in</strong>compatible race 0 of Fusarium<br />

oxysporum f.sp. ciceris <strong>and</strong> nonhost isolates of<br />

F. oxysporum. Plant pathology 51, 765-776.<br />

15. Castillo, P., Mora-Rodriguez, M.P., Navas-<br />

Cortés, J.A., <strong>and</strong> Jiménez-Diaz, R.M. 1998.<br />

Interaction of Pratylenchus thornei <strong>and</strong><br />

Fusarium oxysporum f.sp. ceceris on chickpea.<br />

Phytopathology 88, 828-836.<br />

16. Castillo, P., Navas-Cortés, J.A., Gomar T<strong>in</strong>oco,<br />

D., Di Vito, M., <strong>and</strong> Jiménez-Diaz, R.M. 2003.<br />

Interactions between Meloidigyne artiellia, the<br />

cereal <strong>and</strong> legume root-knot nematode, <strong>and</strong><br />

Fusarium oxysporum f.sp. ceceris race 5 <strong>in</strong><br />

chickpea. Phytopathology 93, 1513-1523.<br />

17. Chen, C., Bélanger, R.R., Benhamou, N., <strong>and</strong><br />

Paulitz, T.C. 2000. Defense enzymes <strong>in</strong>duced <strong>in</strong><br />

cucumber roots by treatment with plant growth-<br />

Tunisian Journal of Plant Protection 18<br />

Vol. 2, No. 1, 2007


promot<strong>in</strong>g rhizobacteria (PGPR) <strong>and</strong> Pythium<br />

aphanidermatum. Physiological <strong>and</strong> Molecular<br />

Plant Pathology 56, 13-23.<br />

18. Chen, W., Coyne, C.J., Peever, T.L., <strong>and</strong><br />

Muehlbauer, F.J. 2004. Characterization of<br />

chickpea differentials for pathogenicity assay of<br />

Ascochyta blight <strong>and</strong> identification of chickpea<br />

accessions resistant to Didymella rabiei. Plant<br />

pathology 53, 759-769.<br />

19. Chérif, M. <strong>and</strong> Benhamou, N. 1990.<br />

Cytochemical aspects of chit<strong>in</strong> breakdown<br />

dur<strong>in</strong>g the parasitic action of a Trichoderma sp.<br />

on Fusarium oxysporum f. sp. radicislycopersici.<br />

Phytopathology 80,1406-1414.<br />

20. Chérif M., Benhamou, N., <strong>and</strong> Bélangeret, R.R.<br />

1991. Ultrastructural <strong>and</strong> cytochemical studies<br />

of fungal development <strong>and</strong> host reactions <strong>in</strong><br />

cucumber plants <strong>in</strong>fected by Pythium ultimum.<br />

Physiological <strong>and</strong> Molecular Plant Pathology<br />

39, 353-375.<br />

21. Chérif, M., Benhamou, N., Menzies, J.G., <strong>and</strong><br />

Bélanger, R.R. 1992. Silicon-<strong>in</strong>duced cellular<br />

defence reactions <strong>in</strong> cucumber plants attacked<br />

with Pythium ultimum. Physiological <strong>and</strong><br />

Molecular Plant Pathology 41, 411-425.<br />

22. Chérif, M., Sadafi, N., Benhamou, N., Hajlaoui,<br />

M.R., Boubaker, A., <strong>and</strong> Tirilly, Y. 2002.<br />

Ultrastructure <strong>and</strong> cytochemistry of <strong>in</strong> vitro<br />

<strong>in</strong>teractions of the antagonistic bacteria Bacillus<br />

cereus X16 <strong>and</strong> B. thur<strong>in</strong>giensis 55T with<br />

Fusarium roseum var. sambuc<strong>in</strong>um. Journal of<br />

Plant Pathology 84, 83-93.<br />

23. Chérif, M., Sadfi, N., <strong>and</strong> Ouellette, G.B. 2003.<br />

Ultrastructure <strong>and</strong> cytochemistry of <strong>in</strong> vivo<br />

<strong>in</strong>teractions of the antagonistic bacteria Bacillus<br />

cereus X16 <strong>and</strong> B. thur<strong>in</strong>giensis 55T with<br />

Fusarium roseum var. sambuc<strong>in</strong>um, the causal<br />

agent of potato dry rot. Phytopathologia<br />

Mediterranea 42, 41-54.<br />

24. Cowan, 1999. Plant products as antimicrobial<br />

agents. Cl<strong>in</strong>ical Microbiology 12, 564-582.<br />

25. Daniel, S.K., Tiemann, K., Wittkampf, U.,<br />

Bless, W., H<strong>in</strong>drer, W., <strong>and</strong> Barz, W. 1990.<br />

Elicitor <strong>in</strong>duced metabolic changes <strong>in</strong> cell<br />

cultures of chickpea (Cicer ariet<strong>in</strong>um L.)<br />

cultivars resistant <strong>and</strong> susceptible to Ascochyta<br />

rabiei. Investigations of enzyme activities <strong>in</strong><br />

isoflavone <strong>and</strong> pterocarpan phytoalex<strong>in</strong><br />

biosynthesis. Planta 182, 270-278.<br />

26. De Ascensao, A.F.R.D.C. <strong>and</strong> Dubrey, I.A.<br />

2003. Soluble <strong>and</strong> wall-bound phenolic<br />

polymers <strong>in</strong> Musa acum<strong>in</strong>ata roots exposed to<br />

elicitors from Fusarium oxysporum f.sp. cubens.<br />

Phytochemistry 63, 679-686.<br />

27. Dixon, R.A. <strong>and</strong> Paiva, N.L. 1995. Stress<strong>in</strong>duced<br />

phenylpropanoid metabolism. Plant<br />

Cell 7, 1085-1097.<br />

28. Fern<strong>and</strong>ez, M.R. <strong>and</strong> Heath, M.C. 1998.<br />

Interaction of the nonhost French been plant<br />

(Phaseolus vulgaris) with parasitic <strong>and</strong><br />

saprophytic fungi. III Cytologically detectable<br />

responses. Canadian Journal of Botany 67, 676-<br />

686.<br />

29. Fry, S.C. 1987. Intracellular feruloylation of<br />

pectic polysaccharides. Planta 171, 205-211.<br />

30. Fuchs, J.C., Moënne-Loccoz, Y., <strong>and</strong> Défago, G.<br />

1997. Nonpathogenic Fusarium oxysporum<br />

stra<strong>in</strong> Fo47 <strong>in</strong>duces resistance to Fusarium wilt<br />

<strong>in</strong> tomato. Plant Disease 81, 492-496.<br />

31. Goodman, R.N., Kiraly, Z., <strong>and</strong> Wood, K.R.<br />

1986. Secondary Metabolites. In the<br />

<strong>Bio</strong>chemistry <strong>and</strong> Physiology of plant disease.<br />

University of Missouri Press. Columbia<br />

Missouri, pp: 211-244<br />

32. Gordon, M.A., Lapa, E.W., Fitter, M.S., <strong>and</strong><br />

L<strong>in</strong>dsay, M. 1980. Susceptibility of<br />

zoopathogenic fungi to phytoalex<strong>in</strong>s.<br />

Antimicrobial Agents <strong>and</strong> Chemotherapy 17,<br />

120-123.<br />

33. Halila, M.H. <strong>and</strong> Harrabi, M. 1990. Breed<strong>in</strong>g for<br />

dual resistance to Ascochyta <strong>and</strong> wilt diseases <strong>in</strong><br />

chickpea. Pages 163-166. In: Sém<strong>in</strong>aires<br />

Méditerranéens No 9 (M.C. Saxena, J.I. Cubero<br />

<strong>and</strong> J. Wery, eds.) Proceed<strong>in</strong>gs of the<br />

<strong>in</strong>ternational workshop on present status <strong>and</strong><br />

future prospects of chickpea crop production<br />

<strong>and</strong> improvement <strong>in</strong> the Mediterranean<br />

countries, ECC/CIHEAM/ICARDA, 11-13 July<br />

1988, Zaragova, Spa<strong>in</strong>.<br />

34. Hammershmidt, R., Nuckles, E.M., <strong>and</strong> Kuc, J.<br />

1982. Association of enhanced peroxidase<br />

activity with <strong>in</strong>duced systemic resistance of<br />

cucumber to colletotrichum lagenarium.<br />

Physiological Plant pathology 20, 73-82.<br />

35. Haware, M.P., Nene, Y.L., <strong>and</strong> Natarajan, M.<br />

1996. The survival of Fusarium oxysporum f.<br />

sp. ciceris <strong>in</strong> the soil <strong>in</strong> the absence of chickpea.<br />

Phytopathologia mediterranea 35, 9-12.<br />

36. Hervás, A., Trapero-Casas, J.L., <strong>and</strong> Jiménez-<br />

Díaz, R.M. 1995. Induced resistance aga<strong>in</strong>st<br />

Fusarium wilt of chickpea by nonpathogenic<br />

races of Fusarium oxysporum f. sp. ciceris <strong>and</strong><br />

non-pathogenic isolates of F. oxysporum. Plant<br />

Disease 79, 1110-1116.<br />

37. Hervás, A., L<strong>and</strong>a, B., Dattnoff, L.E., <strong>and</strong><br />

Jiménez-Díaz, R.M. 1998. Effects of<br />

commercial <strong>and</strong> <strong>in</strong>digenous microorganisms on<br />

Fusarium wilt development <strong>in</strong> chickpea.<br />

<strong>Bio</strong>logical Control 13, 166-176.<br />

38. Jersh, S., Scherer, C., Huth, G., <strong>and</strong> Schlosser,<br />

E. 1989. Proanthocyanid<strong>in</strong>s as basis for<br />

quiescence of Botrytis ciberea <strong>in</strong> immature<br />

strawberry. Journal of Plant pathology 22, 67-<br />

70.<br />

39. Jiménez-Díaz, R.M., Alcala-Jiménez, A.R.,<br />

Hervás, A., <strong>and</strong> Trapero-Casas, J.L. 1993.<br />

Pathogenic variability <strong>and</strong> host resistance <strong>in</strong> the<br />

Fusarium oxysporum pathosystem. Pages 87-97.<br />

In: Arseniuk E., Goral T., eds. Fusarium<br />

Mycotox<strong>in</strong>s, Taxonomy, Pathogenicity <strong>and</strong> Host<br />

Resistance. Proceed<strong>in</strong>gs of the 3 rd European<br />

Sem<strong>in</strong>ar. Radzikov, Pol<strong>and</strong>: Plant Breed<strong>in</strong>g <strong>and</strong><br />

Acclimatization Institute.<br />

40. Kraft, J.M., Haware, M.P., Jiménez-Diaz, R.M.,<br />

Bayaa, B., <strong>and</strong> Harrabi, M. 1994. Screen<strong>in</strong>g<br />

techniques <strong>and</strong> sources of resistance to root rot<br />

Tunisian Journal of Plant Protection 19<br />

Vol. 2, No. 1, 2007


<strong>and</strong> wilts <strong>in</strong> cool season food legumes.<br />

Euphytica 73, 27-39.<br />

41. Kuchitsu, K., Kikuyama, M., <strong>and</strong> shibuya, N.<br />

1993. N-acethylchitooligosaccharides, biotic<br />

elicitors for phytoalex<strong>in</strong> production, <strong>in</strong>duce<br />

transient membrane depolarisation <strong>in</strong><br />

suspension-cultured rice cells. Protoplasma 174,<br />

79-81.<br />

42. Lattanzio, V., De Cicco, D., Di Venere, G.,<br />

Lima, A., <strong>and</strong> Salerno, M. 1994. Antifungal<br />

activity of phenolics aga<strong>in</strong>st different storage<br />

fungi. Italian Journal of Food Science 6, 23-30.<br />

43. Lattanzio, V., Di Venere, D., L<strong>in</strong>salata, V.,<br />

Bertol<strong>in</strong>i, P., Ippolito, A., <strong>and</strong> Salerno, M. 2001.<br />

Low temperature metabolism of apple phenolics<br />

<strong>and</strong> quiescence of Phlyctaena vagabunda.<br />

Journal of Agriculture <strong>and</strong> Food Chemistry 49,<br />

5817-5821.<br />

44. Lattanzio, V., Di Venere, D., L<strong>in</strong>salata, V.,<br />

Lima, G., Ippolito, A., <strong>and</strong> Salerno, M. 1996.<br />

Antifungal activity of 2,5-dimethoxybenzoic<br />

acid on postharvest pathogens of strawberry<br />

fruits. Postharvest <strong>Bio</strong>logy <strong>and</strong> Technology 9,<br />

325-334.<br />

45. M’Piga, P., Bélanger, R.R., Paulitz, T.C., <strong>and</strong><br />

Benhamou, N. 1997. Increased resistance to<br />

Fusarium oxysporum f. sp. radicis-lycopersici<br />

<strong>in</strong> tomato plants treated with the endophytic<br />

bacterium Pseudomonas fluorescences stra<strong>in</strong><br />

63-28: Physiological <strong>and</strong> Molecular Plant<br />

Pathology 50, 301-320.<br />

46. Mackenbrock, U., Vogelsang, R., <strong>and</strong> Barz, W.<br />

1992. Isoflavone <strong>and</strong> pterocarpan<br />

malonylglucosides anf B-1,3-glucan- <strong>and</strong> chit<strong>in</strong>hydrolases<br />

are vacuolar constituents <strong>in</strong> chickpea<br />

(Cicer ariet<strong>in</strong>um L.) Zeitschrift für<br />

Naturforschung 47, 815-822.<br />

47. MacRae, W.D. <strong>and</strong> Towers, G.H.N. 1984.<br />

<strong>Bio</strong>logical activity of lignans. Phytochemistry<br />

23, 1207-1220.<br />

48. M<strong>and</strong>eel, Q. <strong>and</strong> Baker, R. 1991. Mechanisms<br />

<strong>in</strong>volved <strong>in</strong> biological <strong>control</strong> of Fusarium wilt<br />

of cucumber with stra<strong>in</strong>s of non-pathogenic<br />

Fusarium oxysporum. Phytopathology 81, 462-<br />

469.<br />

49. Matern, U., Grimmig, B., <strong>and</strong> Kneusel, R.E.<br />

1995. Plant cell wall re<strong>in</strong>forcement <strong>in</strong> the<br />

disease-resistance response: molecular<br />

composition <strong>and</strong> regulation. Can<strong>and</strong>ian Journal<br />

of Botany 73, S511-S517.<br />

50. Mathieu, Y., Kurkjian, A., Xia, H., Guern, J.,<br />

Koller, A., Spiro, M.D., O’Neill, M.,<br />

Albersheim, P., <strong>and</strong> Darvill, A. 1991.<br />

Membrane responses <strong>in</strong>duced by<br />

oligogalacturonids <strong>in</strong> suspension-cultured<br />

tobacco cells. Plant journal 1, 333-343.<br />

51. Mayer, M.G. <strong>and</strong> Ziegler, E. 1988. An elicitor<br />

from Phytophthora megasperma f.sp. glyc<strong>in</strong>ea<br />

<strong>in</strong>fluences the membrane potential of soybean<br />

cotyledonary cells. Physiological <strong>and</strong> molecular<br />

plant pathology 33, 397-407.<br />

52. Mayer, A.M. 1987. Polyphenol oxidases <strong>in</strong><br />

plants-Recent progress: Phytochemistry 26, 11-<br />

20.<br />

53. Mehdy, M.C. 1994. Active oxygen species <strong>in</strong><br />

plant defense aga<strong>in</strong>st pathogens. Plant<br />

Physiology 105, 476-472.<br />

54. Miao, V.P.W. <strong>and</strong> Vanetten, H.D. 1992. Three<br />

genes for metabolism of the phytoalex<strong>in</strong><br />

maackia<strong>in</strong> <strong>in</strong> the plant pathogen Nectria<br />

haematococca: Meiotic <strong>in</strong>stability <strong>and</strong><br />

relationship to a new gene for pisat<strong>in</strong><br />

demethylase. Applied <strong>and</strong> Environmental<br />

Microbiology 58, 801-808.<br />

55. Navas-Cortes, J.A., Perez-Artes, E., <strong>and</strong><br />

Jiménez-Diaz, R.M. 1998. Mat<strong>in</strong>g type,<br />

pathotype <strong>and</strong> RAPDs analysis <strong>in</strong> Didymella<br />

rabiei, the agent of ascochyta blight of<br />

chickpea. Phytoparasitica 26, 199-212.<br />

56. Nene, Y.L. 1982. Review of Ascochyta blight of<br />

chickpea. Tropical Pest Management 28, 61-70.<br />

57. Nene, Y. <strong>and</strong> Reddy, M.V. 1987. Chickpea<br />

diseases <strong>and</strong> <strong>their</strong> <strong>control</strong>. Pages 233-270. In:<br />

The Chickpea (M.C. Saxena, K.B. S<strong>in</strong>gh, eds.),<br />

Commonwealth Agricultural Bureaux<br />

International, Oxon, UK, 320 pp.<br />

58. Pearse, P., McVicar, R., Goodwillie, D., Gossen,<br />

B., Buchwaldt, L., Chongo, G., <strong>and</strong> Armstrong,<br />

C. 2005. Ascochyta blight of chickpea,<br />

Saskatchewan Agriculture, Food <strong>and</strong> Rural<br />

Revitalization; Agriculture <strong>and</strong> Agri-Food<br />

Canada,<br />

pp.1-4<br />

(http://www.agr.gov.sk.ca/docs/crops/<strong>in</strong>tegrated<br />

_pest_management/disease/ascochytaonChickpe<br />

as.asp#3 ).<br />

59. Porta-Puglia, A. 1990. Status of Ascochyta<br />

rabiei of chickpea <strong>in</strong> the Mediterranean bas<strong>in</strong>.<br />

CIHEAM - Options Méditerranéennes – Série<br />

Sém<strong>in</strong>aires 9, 51-54.<br />

60. Porta-Puglia, A., Bernier, C.C., Jellis, G.J.,<br />

Kaiser, W.J., Reddy, M.V. 1994. Screen<strong>in</strong>g<br />

techniques <strong>and</strong> sources of resistance to foliar<br />

diseases caused by fungi <strong>and</strong> bacteria <strong>in</strong> cool<br />

season food legumes. Euphytica 73, 11-25.<br />

61. Rasmussen, J.B., Smith, J.A., Williams, S.,<br />

Burkhatr, W., <strong>and</strong> Ward, E. 1995. cDNA<br />

clon<strong>in</strong>g <strong>and</strong> systemic expression of acidic<br />

peroxidases associated with systemic acquired<br />

resistance to disease <strong>in</strong> cucumber. Physiological<br />

<strong>and</strong> Molecular Plant Pathology 46, 398-400.<br />

62. Reddy, M. V. 1984. Production of chickpea<br />

seeds free from Ascochyta blight In: Ascochyta<br />

blight resistance <strong>in</strong> chickpeas - Proceed<strong>in</strong>gs of a<br />

tra<strong>in</strong><strong>in</strong>g course, Islamabad, Pakistan, 3-10<br />

march 1984, ICARDA (International Center for<br />

Agricultural Research <strong>in</strong> the Dry Areas), pp 99-<br />

102.<br />

63. Reddy, M. V., Angers, P., Gossel<strong>in</strong>, A., <strong>and</strong><br />

Arul, J. 1998. Characterization <strong>and</strong> use of<br />

essential oil from Thymus vulgaris aga<strong>in</strong>st<br />

Botrytis c<strong>in</strong>erea <strong>and</strong> Rhizopus stol<strong>in</strong>ifer <strong>in</strong><br />

strawberry fruits. Phytochemistry 47, 1515-<br />

1520.<br />

Tunisian Journal of Plant Protection 20<br />

Vol. 2, No. 1, 2007


64. Saxena, M.C. 1988. Food Legumes <strong>in</strong> the<br />

Mediterranean Type of Environment <strong>and</strong><br />

ICARDA’s Efforts <strong>in</strong> Improv<strong>in</strong>g <strong>their</strong><br />

Productivity. In: Beck, D. P., <strong>and</strong> Materon, L.<br />

A. (Eds.), Nitrogen fixation by legumes <strong>in</strong><br />

Mediterranean Agriculture, The Netherl<strong>and</strong>s.<br />

pp11-23.<br />

65. Saxena, M. C. 1990. Research on faba bean,<br />

lentil <strong>and</strong> Kabuli chickpea at the International<br />

Center for Agricultural Research <strong>in</strong> the dry<br />

areas (ICARDA). Tropical Agriculture Research<br />

series 23, 282-295.<br />

66. Saxena M. C. <strong>and</strong> S<strong>in</strong>gh, K. B. 1984. Ascochyta<br />

blight <strong>and</strong> w<strong>in</strong>ter sow<strong>in</strong>g of chickpea. Mart<strong>in</strong>us<br />

Nijhoff/ Dr W. Junk Publishers <strong>and</strong> ICARDA,<br />

the Hague, Netherl<strong>and</strong>s, 288 pp.<br />

67. Scalbert, A. 1991. Antimicrobial properties of<br />

tann<strong>in</strong>s. Phytochemistry 30: 3875-3883.<br />

68. S<strong>in</strong>gh, G., 1990. Identification <strong>and</strong> designation<br />

of physiological races of Ascochyta rabiei <strong>in</strong><br />

India. Indian Phytopathology 43, 48-52.<br />

69. S<strong>in</strong>gh, U.P., Samara, B.K., <strong>and</strong> S<strong>in</strong>gh, D.P.<br />

2003. Effect of plant growth-promot<strong>in</strong>g<br />

rhizobacteria <strong>and</strong> culture filtrate of Sclerotium<br />

rolfsii on phenolic <strong>and</strong> salicylic acid contents <strong>in</strong><br />

chickpea (Cicer ariet<strong>in</strong>um L.). current<br />

Microbiology 46, 131-140.<br />

70. Stevenson, P.C., Turner, H.C., <strong>and</strong> Haware,<br />

M.P. 1997. Phytoalex<strong>in</strong> accumulation <strong>in</strong> the<br />

roots of chickpea (Cicer ariet<strong>in</strong>um L.) seedl<strong>in</strong>gs<br />

associated with resistance to fusarium wilt<br />

(Fusarium oxysporum f.sp. ciceris).<br />

Physiological <strong>and</strong> Molecular Plant Pathology<br />

50, 167-178.<br />

71. Tomiyama, K. <strong>and</strong> Stahman, M.A. 1964.<br />

Alteration of oxidation enzymes <strong>in</strong> potato tuber<br />

tissues by <strong>in</strong>fection with Phytophtora <strong>in</strong>festans.<br />

Plant Physiology 39, 383-400.<br />

72. Ton<strong>in</strong>i, G. <strong>and</strong> Caccioni, D.R.L. 1990. The<br />

effect of several natural volatiles on Monil<strong>in</strong>ia<br />

laxa. Pages 123-126. In proceed<strong>in</strong>gs ‘Qualità dei<br />

prodotti ortofrutticoli postraccolta’, Fondazione<br />

Cesena Agri-cultura.<br />

73. Van Der Maessen, L.J.G. 1987. Orig<strong>in</strong>, history<br />

<strong>and</strong> taxonomy of chickpea. Page 409. In: The<br />

chickpea (Saxena M.C., S<strong>in</strong>gh K.B., eds.), CAB<br />

International, Oxford, UK.<br />

74. Williams, C.A. <strong>and</strong> Harborne, J.B. 1989.<br />

Isoflavonoids. Pages 421-449. In: Methods <strong>in</strong><br />

Plant <strong>Bio</strong>chemistry, Vol. 1, Academic Press.<br />

75. Wilson, C. L., Frankl<strong>in</strong>, J. D., <strong>and</strong> Otto, B. 1987.<br />

Fruit volatiles <strong>in</strong>hibitory to Monil<strong>in</strong>ia fructicola<br />

<strong>and</strong> Botrytis c<strong>in</strong>erea . Plant Disease 71, 316-<br />

319.<br />

76. Yedidia, I., Shoresh, M., Karem, Z., Benhamou,<br />

N., Kapulnik, Y., <strong>and</strong> Chet, I. 2003.<br />

Concomitant <strong>in</strong>duction of systemic resistance to<br />

Pseudomonas syr<strong>in</strong>gae pv. lachrymans <strong>in</strong><br />

cucumber by Trichoderma asperellum (T-203)<br />

<strong>and</strong> accumulation of phytoalex<strong>in</strong>s. Applied <strong>and</strong><br />

Environmental Microbiology 69, 7343-7353.<br />

________________<br />

Tunisian Journal of Plant Protection 21<br />

Vol. 2, No. 1, 2007


Tunisian Journal of Plant Protection 22<br />

Vol. 2, No. 1, 2007

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!