27.04.2015 Views

Introduction to the Finite Element Method - Lecture 02

Introduction to the Finite Element Method - Lecture 02

Introduction to the Finite Element Method - Lecture 02

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Lecture</strong> <strong>02</strong><br />

pk285@<br />

Boundary<br />

Value<br />

Problems<br />

<strong>Finite</strong> <strong>Element</strong><br />

<strong>Method</strong><br />

Function Spaces<br />

Weak Forms<br />

<strong>Introduction</strong> <strong>to</strong> <strong>the</strong> <strong>Finite</strong> <strong>Element</strong> <strong>Method</strong><br />

<strong>Lecture</strong> <strong>02</strong><br />

P.S. Koutsourelakis<br />

pk285@cornell.edu<br />

369 Hollister Hall<br />

September 3 2008


Boundary Value Problem<br />

<strong>Lecture</strong> <strong>02</strong><br />

pk285@<br />

Boundary<br />

Value<br />

Problems<br />

<strong>Finite</strong> <strong>Element</strong><br />

<strong>Method</strong><br />

Function Spaces<br />

Weak Forms<br />

Example<br />

Consider a bar of length L, cross-sectional area A which is held<br />

fixed on <strong>the</strong> left end and pulled with a force F on <strong>the</strong> right end and<br />

stretched with a distributed force b(x) along its length. Whats will<br />

be <strong>the</strong> deformation of <strong>the</strong> bar u(x) at each point x?<br />

b(x)<br />

A<br />

u(x)<br />

L<br />

F<br />

Boundary Value Problem (BVP)<br />

EA d 2 u(x)<br />

dx 2 + b(x) = 0 ∀x ∈ (0, L) (1)<br />

with boundary conditions: u(0) = 0,<br />

E A du<br />

dx | x=l = F


Boundary Value Problem<br />

<strong>Lecture</strong> <strong>02</strong><br />

pk285@<br />

Boundary<br />

Value<br />

Problems<br />

<strong>Finite</strong> <strong>Element</strong><br />

<strong>Method</strong><br />

Function Spaces<br />

Weak Forms<br />

Boundary Value Problem (BVP)<br />

EA d 2 u(x)<br />

dx 2 + b(x) = 0 ∀x ∈ (0, L) (2)<br />

with boundary conditions: u(0) = 0, E A du<br />

dx | x=l = F<br />

Although it is straightforward <strong>to</strong> derive a closed-form<br />

solution (right?) things are not necessarily so if:<br />

elastic modulus varies E(x)<br />

cross-sectional area varies A(x)<br />

if we are considering two or three dimensional versions<br />

with arbitrary boundary shapes/conditions.<br />

we need a general computational method that is able <strong>to</strong><br />

produce efficiently, accurate solutions of BVPs.


Boundary Value Problem<br />

<strong>Lecture</strong> <strong>02</strong><br />

pk285@<br />

Boundary<br />

Value<br />

Problems<br />

<strong>Finite</strong> <strong>Element</strong><br />

<strong>Method</strong><br />

Function Spaces<br />

Weak Forms<br />

Boundary Value Problem (BVP)<br />

EA d 2 u(x)<br />

dx 2 + b(x) = 0 ∀x ∈ (0, L) (3)<br />

Approximate derivatives with finite differences, i.e.:<br />

du<br />

dx = lim u(x + h) − u(x) u(x + h) − u(x)<br />

≈ for 0 < h


Boundary Value Problem<br />

<strong>Lecture</strong> <strong>02</strong><br />

pk285@<br />

Boundary<br />

Value<br />

Problems<br />

<strong>Finite</strong> <strong>Element</strong><br />

<strong>Method</strong><br />

Function Spaces<br />

Weak Forms<br />

Boundary Value Problem (BVP)<br />

EA d 2 u(x)<br />

dx 2 + b(x) = 0 ∀x ∈ (0, L) (4)<br />

define N grid points x i = i h where h = L N<br />

and let<br />

u i = u(x i )<br />

if h is small enough <strong>the</strong>n I can approximate:<br />

d 2 u(x)<br />

dx 2 | x=xi ≈ u i+1 − 2u i + u i−1<br />

h 2 (5)<br />

substitute in Equation (4) for x = x i , ∀i <strong>to</strong> obtain N<br />

algebraic equations w.r.t N unknowns u i .<br />

this is <strong>the</strong> <strong>the</strong> <strong>Finite</strong> Difference <strong>Method</strong>


<strong>Finite</strong> Difference <strong>Method</strong> (FDM)<br />

<strong>Lecture</strong> <strong>02</strong><br />

pk285@<br />

Boundary<br />

Value<br />

Problems<br />

<strong>Finite</strong> <strong>Element</strong><br />

<strong>Method</strong><br />

Function Spaces<br />

Weak Forms<br />

E d 2 u(x)<br />

dx 2 + b(x) = 0 ∀x ∈ (0, L)<br />

⇓<br />

(discretization)<br />

EA u i+1 − 2u i + u i−1<br />

h 2 + b(x i ) = 0 ∀x i , i = 1, 2,...,N<br />

Observe that in FDM we approximate <strong>the</strong> PDE itself<br />

FDM is still used in a wide range of problems and we<br />

will use it in time-dependent problems <strong>to</strong> discretize<br />

time derivatives.<br />

In <strong>the</strong> <strong>Finite</strong> <strong>Element</strong> <strong>Method</strong> (FEM) we approximate<br />

<strong>the</strong> solution of <strong>the</strong> PDE.


<strong>Finite</strong> <strong>Element</strong> <strong>Method</strong><br />

<strong>Lecture</strong> <strong>02</strong><br />

pk285@<br />

Boundary<br />

Value<br />

Problems<br />

<strong>Finite</strong> <strong>Element</strong><br />

<strong>Method</strong><br />

Function Spaces<br />

Weak Forms<br />

Roadmap <strong>to</strong> FEM approximations:<br />

1 We are going <strong>to</strong> define where we are going <strong>to</strong> <strong>to</strong> be looking<br />

for solutions, i.e. which function space<br />

2 We are going <strong>to</strong> reformulate <strong>the</strong> original problem, i.e. PDE<br />

and BC.<br />

3 We are going <strong>to</strong> show that this new form is actually<br />

equivalent <strong>to</strong> <strong>the</strong> original, i.e. any solution of <strong>the</strong> former is a<br />

solution of <strong>the</strong> latter and vice versa.<br />

4 We are going <strong>to</strong> show that <strong>the</strong> solution is unique.<br />

5 If that wasn’t enough, we are going <strong>to</strong> look at some<br />

equivalent forms which can be considered as special cases.<br />

6 We are going <strong>to</strong> propose ways <strong>to</strong> discretize <strong>the</strong>se alternate<br />

forms.


Function Spaces<br />

<strong>Lecture</strong> <strong>02</strong><br />

pk285@<br />

Boundary<br />

Value<br />

Problems<br />

<strong>Finite</strong> <strong>Element</strong><br />

<strong>Method</strong><br />

Function Spaces<br />

Weak Forms<br />

Since we are going <strong>to</strong> be approximating solutions of PDEs<br />

i.e. functions, it makes sense <strong>to</strong> recap some of <strong>the</strong> basic<br />

function spaces and <strong>the</strong>ir properties. If Ω is an open subset<br />

of R (or R n ) in general, <strong>the</strong>n:<br />

C(Ω) contains all functions defined on Ω which are<br />

continuous.<br />

C k (Ω) contains all functions defined on Ω which have<br />

continuous derivatives up <strong>to</strong> order k.<br />

Cb k(Ω) same as Ck (Ω) plus <strong>the</strong> function is bounded<br />

L 2 (Ω) contains all functions defined on Ω which are square<br />

integrable i.e.: ∫<br />

u 2 (x) dx < +∞ (6)<br />

Ω<br />

H 1 (Ω) contains all functions in L 2 whose derivatives are also<br />

square integrable i.e.:<br />

∫<br />

|du/dx| 2 (x) dx < +∞ (7)<br />

Ω


Function Spaces<br />

<strong>Lecture</strong> <strong>02</strong><br />

pk285@<br />

Boundary<br />

Value<br />

Problems<br />

<strong>Finite</strong> <strong>Element</strong><br />

<strong>Method</strong><br />

Function Spaces<br />

Weak Forms<br />

Boundary Value Problem (BVP)<br />

EA d 2 u(x)<br />

dx 2 + b(x) = 0 ∀x ∈ (0, L) (8)<br />

with boundary conditions: u(0) = u 0 ,<br />

E A du<br />

dx | x=l = F<br />

We are going <strong>to</strong> look for solutions in <strong>the</strong> space S:<br />

∫<br />

S = {u(x) : (0, L) → R|u(0) = u 0 , E A| du<br />

dx |2 (x) dx < +∞}<br />

(0,L)<br />

Observe that:<br />

u ∈ S satisfy exactly only one of <strong>the</strong> two boundary<br />

conditions. This BC is called essential.<br />

u ∈ S have finite strain energy!<br />

u ∈ S are continuous and bounded.


Function Spaces<br />

<strong>Lecture</strong> <strong>02</strong><br />

pk285@<br />

Boundary<br />

Value<br />

Problems<br />

<strong>Finite</strong> <strong>Element</strong><br />

<strong>Method</strong><br />

Function Spaces<br />

Weak Forms<br />

Boundary Value Problem (BVP)<br />

EA d 2 u(x)<br />

dx 2 + b(x) = 0 ∀x ∈ (0, L) (9)<br />

with boundary conditions: u(0) = u 0 , E A du<br />

dx | x=l = F<br />

We are going <strong>to</strong> look for solutions in <strong>the</strong> space S:<br />

∫<br />

S = {u(x) : (0, L) → R|u(0) = u 0 ,<br />

(0,L)<br />

E A| du<br />

dx |2 (x) dx < +∞}<br />

Observe that:<br />

The space S is much larger than what <strong>the</strong> PDE and BC<br />

would imply.<br />

Even though a 2nd order derivative of appears in<br />

Equation (9), we are looking for solutions that are<br />

guaranteed <strong>to</strong> have a 1st order derivative<br />

Even though a “force” BC must be satisfied, we are<br />

looking for solutions that are not a priori guaranteed <strong>to</strong><br />

satisfy it.


<strong>Finite</strong> <strong>Element</strong> <strong>Method</strong><br />

<strong>Lecture</strong> <strong>02</strong><br />

pk285@<br />

Boundary<br />

Value<br />

Problems<br />

<strong>Finite</strong> <strong>Element</strong><br />

<strong>Method</strong><br />

Function Spaces<br />

Weak Forms<br />

Roadmap <strong>to</strong> FEM approximations:<br />

1 We are going <strong>to</strong> define where we are going <strong>to</strong> <strong>to</strong> be looking<br />

for solutions, i.e. which function space<br />

2 We are going <strong>to</strong> reformulate <strong>the</strong> original problem, i.e. PDE<br />

and BC.<br />

3 We are going <strong>to</strong> show that this new form is actually<br />

equivalent <strong>to</strong> <strong>the</strong> original, i.e. any solution of <strong>the</strong> former is a<br />

solution of <strong>the</strong> latter and vice versa.<br />

4 We are going <strong>to</strong> show that <strong>the</strong> solution is unique.<br />

5 If that wasn’t enough, we are going <strong>to</strong> look at some<br />

equivalent forms which can be considered as special cases.<br />

6 We are going <strong>to</strong> propose ways <strong>to</strong> discretize <strong>the</strong>se alternate<br />

forms.


Weak Forms<br />

<strong>Lecture</strong> <strong>02</strong><br />

pk285@<br />

Boundary<br />

Value<br />

Problems<br />

<strong>Finite</strong> <strong>Element</strong><br />

<strong>Method</strong><br />

Function Spaces<br />

Weak Forms<br />

Boundary Value Problem (BVP)<br />

EA d 2 u(x)<br />

dx 2 + b(x) = 0 ∀x ∈ (0, L) (10)<br />

with boundary conditions: u(0) = u 0 , E A du<br />

dx | x=l = F<br />

We are going <strong>to</strong> look for solutions in <strong>the</strong> space S:<br />

∫<br />

S = {u(x) : (0, L) → R|u(0) = u 0 ,<br />

(0,L)<br />

E A| du<br />

dx |2 (x) dx < +∞}<br />

A u ∈ S will not satisfy Equation (10) exactly (unless it is <strong>the</strong><br />

solution) and in general <strong>the</strong>re will be a residual R(x)<br />

R(x) = EA d 2 u(x)<br />

dx 2 + b(x) (11)<br />

There will also be a residual R(L) = E A du<br />

dx | x=l − F because<br />

u ∈ S do not a priori satisfy this BC


Weak Forms<br />

<strong>Lecture</strong> <strong>02</strong><br />

pk285@<br />

Boundary<br />

Value<br />

Problems<br />

<strong>Finite</strong> <strong>Element</strong><br />

<strong>Method</strong><br />

Function Spaces<br />

Weak Forms<br />

How can we make those residuals zero?<br />

R(x) = EA d 2 u(x)<br />

dx 2 + b(x) R(L) = F − EA du<br />

dx | x=l<br />

(Bubnov)-Galerkin approach<br />

Figure: Boris Galerkin (1871-1945)


Weak Forms<br />

<strong>Lecture</strong> <strong>02</strong><br />

pk285@<br />

Boundary<br />

Value<br />

Problems<br />

<strong>Finite</strong> <strong>Element</strong><br />

<strong>Method</strong><br />

Function Spaces<br />

Weak Forms<br />

How can we make those residuals zero?<br />

R(x) = EA d 2 u(x)<br />

dx 2 + b(x) R(L) = F − EA du<br />

dx | x=l<br />

(Bubnov)-Galerkin or Weighted Residual approach: define<br />

ano<strong>the</strong>r set of functions called weighting functions v ∈ V:<br />

∫<br />

V = {v(x) : (0, L) → R|v(0) = 0, E A| dv<br />

dx |2 (x) dx < +∞}<br />

(0,L)<br />

Find u ∈ S such that for all v ∈ V:<br />

∫ L<br />

0<br />

v(x)R(x) dx + v(L)R(L) = 0 (12)<br />

Note that <strong>the</strong> residual is not zero in <strong>the</strong> STRONG sense i.e.<br />

R(x) = 0 ∀x but <strong>the</strong> condition is enforced WEAKLY as above.


Weak Forms<br />

<strong>Lecture</strong> <strong>02</strong><br />

pk285@<br />

Boundary<br />

Value<br />

Problems<br />

<strong>Finite</strong> <strong>Element</strong><br />

<strong>Method</strong><br />

Function Spaces<br />

Weak Forms<br />

STRONG form:<br />

WEAK form:<br />

⎧ ∫ L<br />

⎨<br />

0<br />

u ∈ S<br />

⎩<br />

v ∈ V<br />

du dv<br />

EA<br />

dx<br />

⎧<br />

⎨<br />

⎩<br />

EA d 2 u(x)<br />

dx 2 + b(x) = 0<br />

u(0) = u 0<br />

F = EA du<br />

dx | x=l<br />

dx dx = ∫ L<br />

A b(x)v(x)dx + v(L)F ∀v ∈ V<br />

0<br />

Does <strong>the</strong> weak form remind you of something?<br />

Principle of Virtual Work<br />

The necessary and sufficient condition for a system in<br />

equilibrium is that <strong>the</strong> work done by internal forces should be<br />

equal <strong>to</strong> <strong>the</strong> work done by externals loads for any<br />

kinematically acceptable virtual displacement


Weak Forms<br />

<strong>Lecture</strong> <strong>02</strong><br />

pk285@<br />

Boundary<br />

Value<br />

Problems<br />

<strong>Finite</strong> <strong>Element</strong><br />

<strong>Method</strong><br />

Function Spaces<br />

Weak Forms<br />

WEAK form:<br />

⎧ ∫ L<br />

⎨<br />

0<br />

u ∈ S<br />

⎩<br />

v ∈ V<br />

du dv<br />

EA<br />

dx<br />

Principle of Virtual Work:<br />

dx dx = ∫ L<br />

A b(x)v(x)dx + v(L) F ∀v ∈ V<br />

0<br />

a virtual kinematically acceptable displacement v(x) is<br />

one that does not violate displacement boundary<br />

conditions u(0) = u 0 , i.e. v(0) = 0.<br />

Work of internal forces:<br />

∫<br />

W int (v) = A<br />

σ u (x)<br />

} {{ }<br />

stress from u<br />

∫<br />

ǫ v (x) dx = A<br />

} {{ }<br />

strain from v<br />

Work of external forces:<br />

∫<br />

W ext (v) = A b(x) v(x) dx + F v(l)<br />

E du<br />

dx<br />

dv<br />

dx dx

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!