02.05.2015 Views

Genome-Enabled Insights into Legume Biology - University of ...

Genome-Enabled Insights into Legume Biology - University of ...

Genome-Enabled Insights into Legume Biology - University of ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Annu. Rev. Plant Biol. 2012.63:283-305. Downloaded from www.annualreviews.org<br />

by <strong>University</strong> <strong>of</strong> Minnesota - Twin Cities - Wilson Library on 05/07/12. For personal use only.<br />

79. Provides the initial<br />

report <strong>of</strong> the Lotus<br />

japonicus genome<br />

sequence.<br />

81. Provides the initial<br />

report <strong>of</strong> the Glycine<br />

max genome sequence.<br />

87. Gives an overview <strong>of</strong><br />

an alternative legume,<br />

Chamaecrista, found<br />

within one <strong>of</strong> the clades<br />

not generally targeted<br />

for genomic analysis.<br />

100. Provides the initial<br />

report <strong>of</strong> the Medicago<br />

truncatula genome<br />

sequence.<br />

77. Rausch T, Koren S, Denisov G, Weese D, Emde AK, et al. 2009. A consistency-based consensus algorithm<br />

for de novo and reference-guided sequence assembly <strong>of</strong> short reads. Bioinformatics 25:1118–24<br />

78. Sato S, Isobe S, Tabata S. 2010. Structural analyses <strong>of</strong> the genomes in legumes. Curr. Opin. Plant Biol.<br />

13:1–7<br />

79. Sato S, Nakamura Y, Kaneko T, Asamizu E, Kato T, et al. 2008. <strong>Genome</strong> structure <strong>of</strong> the legume,<br />

Lotus japonicus. DNA Res. 15:1–8<br />

80. Schlueter JA, Dixon P, Granger C, Grant D, Clark L, et al. 2004. Mining EST databases to resolve<br />

evolutionary events in major crop species. <strong>Genome</strong> 47:868–76<br />

81. Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, et al. 2010. <strong>Genome</strong> sequence <strong>of</strong> the<br />

palaeopolyploid soybean. Nature 463:178–83<br />

82. Schneeberger K, Ossowski S, Ott F, Klein JD, Wang X, et al. 2011. Reference-guided assembly <strong>of</strong> four<br />

diverse Arabidopsis thaliana genomes. Proc. Natl. Acad. Sci. USA 108:10249–54<br />

83. Shin JH, Van K, Kim DH, Kim KD, Jang YE, et al. 2008. The lipoxygenase gene family: a genomic<br />

fossil <strong>of</strong> shared polyploidy between Glycine max and Medicago truncatula. BMC Plant Biol. 8:133<br />

84. Shoemaker RC, Polzin K, Labate J, Specht J, Brummer EC, et al. 1996. <strong>Genome</strong> duplication in soybean<br />

(Glycine subgenus soja). Genetics 144:329–38<br />

85. Shoemaker RC, Schlueter J, Doyle JJ. 2006. Paleopolyploidy and gene duplication in soybean and other<br />

legumes. Curr. Opin. Plant Biol. 9:104–9<br />

86. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, et al. 2009. ABySS: a parallel assembler for<br />

short read sequence data. <strong>Genome</strong> Res. 19:1117–23<br />

87. Singer SR, Maki SL, Farmer AD, Ilut D, May GD, et al. 2009. Venturing beyond beans and peas:<br />

What can we learn from Chamaecrista? Plant Physiol. 151:1041–47<br />

88. Soltis DE, Soltis PS, Morgan DR, Swensen SM, Mullin BC, et al. 1995. Chloroplast gene sequence data<br />

suggest a single origin <strong>of</strong> the predisposition for symbiotic nitrogen fixation in angiosperms. Proc. Natl.<br />

Acad. Sci. USA 92:2647–51<br />

89. Sprent JI. 2008. 60 Ma <strong>of</strong> legume nodulation: What’s new? What’s changing? J. Exp. Bot. 59:1081–84<br />

90. Tian F, Bradbury PJ, Brown PJ, Hung H, Sun Q, et al. 2011. <strong>Genome</strong>-wide association study <strong>of</strong> leaf<br />

architecture in the maize nested association mapping population. Nat. Genet. 43:159–62<br />

91. Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, et al. 2006. The genome <strong>of</strong> black cottonwood,<br />

Populus trichocarpa (Torr. & Gray). Science 313:1596–604<br />

92. Van de Velde W, Zehirov G, Szatmari A, Debreczeny M, Ishihara H, et al. 2010. Plant peptides govern<br />

terminal differentiation <strong>of</strong> bacteria in symbiosis. Science 327:1122–26<br />

93. van Oeveren J, de Ruiter M, Jesse T, van der Poel H, Tang J, et al. 2011. Sequence-based physical<br />

mapping <strong>of</strong> complex genomes by whole genome pr<strong>of</strong>iling. <strong>Genome</strong> Res. 21:618–25<br />

94. Varshney RK, Chen W, Li Y, Bharti AK, Saxena RK, et al. 2012. Draft genome sequence <strong>of</strong> pigeonpea<br />

(Cajanus cajan), an orphan legume crop <strong>of</strong> resource-poor farmers. Nat. Biotechnol. 30:83–89<br />

95. Varshney RK, Close TJ, Singh NK, Hoisington DA, Cook DR. 2009. Orphan legume crops enter the<br />

genomics era! Curr. Opin. Plant Biol. 12:202–10<br />

96. Vernié T, Moreau S, de Billy F, Plet J, Combier JP, et al. 2008. EFD is an ERF transcription factor<br />

involved in the control <strong>of</strong> nodule number and differentiation in Medicago truncatula. Plant Cell 20:2696–<br />

713<br />

97. Wojciechowski MF, Sanderson MJ, Steele KP, Liston A. 2000. Molecular phylogeny <strong>of</strong> the “temperate<br />

herbaceous tribes” <strong>of</strong> papilionoid legumes: a supertree approach. In Advances in <strong>Legume</strong> Systematics, Part<br />

9, ed. PS Herendeen, A Bruneau, pp. 277–98. Kew, UK: R. Bot. Gard.<br />

98. Yang S, Feng Z, Zhang X, Jiang K, Jin X, et al. 2006. <strong>Genome</strong>-wide investigation on the genetic variations<br />

<strong>of</strong> rice disease resistance genes. Plant Mol. Biol. 62:181–83<br />

99. Yang S, Gao M, Xu C, Gao J, Deshpande S, et al. 2008. Alfalfa benefits from Medicago truncatula: the<br />

RCT1 gene from M. truncatula confers broad-spectrum resistance to anthracnose in alfalfa. Proc. Natl.<br />

Acad. Sci. USA 105:12164–69<br />

100. Young N, Debellé F, Oldroyd G, Geurts R, Cannon SB, et al. 2011. The Medicago genome<br />

provides insight <strong>into</strong> the evolution <strong>of</strong> rhizobial symbioses. Nature 480:520–24<br />

101. Young ND, Udvardi M. 2009. Translating Medicago truncatula genomics to crop legumes. Curr. Opin.<br />

Plant Biol. 12:193–201<br />

304 Young·Bharti

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!