13.07.2015 Views

Ground Water Issue - Plant Tissue Culture Research at the Univ. of ...

Ground Water Issue - Plant Tissue Culture Research at the Univ. of ...

Ground Water Issue - Plant Tissue Culture Research at the Univ. of ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

United St<strong>at</strong>esEnvironmental ProtectionAgencyOffice <strong>of</strong><strong>Research</strong> andDevelopmentOffice <strong>of</strong> Solid Wasteand EmergencyResponseEPA/540/S-01/500February 2001<strong>Ground</strong> <strong>W<strong>at</strong>er</strong> <strong>Issue</strong>Phytoremedi<strong>at</strong>ion <strong>of</strong> Contamin<strong>at</strong>ed Soil and<strong>Ground</strong> <strong>W<strong>at</strong>er</strong> <strong>at</strong> Hazardous Waste SitesBruce E. Pivetz*BackgroundThe EPA Regional <strong>Ground</strong> <strong>W<strong>at</strong>er</strong> Forum is a group <strong>of</strong> EPApr<strong>of</strong>essionals representing Regional Superfund and ResourceConserv<strong>at</strong>ion and Recovery Act (RCRA) Offices, committed to<strong>the</strong> identific<strong>at</strong>ion and resolution <strong>of</strong> ground-w<strong>at</strong>er issues impacting<strong>the</strong> remedi<strong>at</strong>ion <strong>of</strong> Superfund and RCRA sites. The Forum issupported by and advises <strong>the</strong> Superfund Technical SupportProject. Emerging technologies th<strong>at</strong> could provide effectivecleanup <strong>at</strong> hazardous waste sites are <strong>of</strong> interest to <strong>the</strong> Forum.Phytoremedi<strong>at</strong>ion, <strong>the</strong> use <strong>of</strong> plants in remedi<strong>at</strong>ion, is one suchtechnology. This issue paper focuses on <strong>the</strong> processes andapplic<strong>at</strong>ions <strong>of</strong> phytoremedi<strong>at</strong>ion for remedi<strong>at</strong>ion <strong>of</strong> hazardouswaste sites.The purpose <strong>of</strong> this issue paper is to provide a concise discussion<strong>of</strong> <strong>the</strong> processes associ<strong>at</strong>ed with <strong>the</strong> use <strong>of</strong> phytoremedi<strong>at</strong>ion asa cleanup or containment technique for remedi<strong>at</strong>ion <strong>of</strong> hazardouswaste sites. Introductory m<strong>at</strong>erial on plant processes is provided.The different forms <strong>of</strong> phytoremedi<strong>at</strong>ion are defined and <strong>the</strong>irapplic<strong>at</strong>ions are discussed. The types <strong>of</strong> contamin<strong>at</strong>ed mediaand contaminants th<strong>at</strong> are appropri<strong>at</strong>e for phytoremedi<strong>at</strong>ion aresummarized. Inform<strong>at</strong>ion is provided on <strong>the</strong> types <strong>of</strong> veget<strong>at</strong>ionth<strong>at</strong> have been studied or used in phytoremedi<strong>at</strong>ion. Theadvantages and disadvantages <strong>of</strong> phytoremedi<strong>at</strong>ion arediscussed, and some cost inform<strong>at</strong>ion is provided. Consider<strong>at</strong>ionsfor design <strong>of</strong> a phytoremedi<strong>at</strong>ion system are introduced; however,this issue paper is not a design manual. Cit<strong>at</strong>ions and referencesare provided for <strong>the</strong> reader to obtain additional inform<strong>at</strong>ion. Theissue paper is intended for remedial project managers, on-scenecoordin<strong>at</strong>ors, and o<strong>the</strong>rs involved in remedi<strong>at</strong>ion <strong>of</strong> hazardouswaste sites. It provides a basic understanding <strong>of</strong> <strong>the</strong> numerous* ManTech Environmental <strong>Research</strong> Services Corpor<strong>at</strong>ion,P. O. Box 1198, Ada, OK 74820issues th<strong>at</strong> should be examined when considering <strong>the</strong> use <strong>of</strong>phytoremedi<strong>at</strong>ion. The issue paper is intended to be an upd<strong>at</strong>ed,more concise version <strong>of</strong> inform<strong>at</strong>ion presented in <strong>the</strong> Introductionto Phytoremedi<strong>at</strong>ion (EPA/600/R-99/107), in a form<strong>at</strong> th<strong>at</strong> willfacilit<strong>at</strong>e use <strong>of</strong> this inform<strong>at</strong>ion.For fur<strong>the</strong>r inform<strong>at</strong>ion contact Dr. Scott G. Huling (580-436-8610) <strong>at</strong> <strong>the</strong> Subsurface Protection and Remedi<strong>at</strong>ion Division <strong>of</strong><strong>the</strong> N<strong>at</strong>ional Risk Management <strong>Research</strong> Labor<strong>at</strong>ory, Ada,Oklahoma.IntroductionPhytoremedi<strong>at</strong>ion is <strong>the</strong> use <strong>of</strong> plants to partially or substantiallyremedi<strong>at</strong>e selected contaminants in contamin<strong>at</strong>ed soil, sludge,sediment, ground w<strong>at</strong>er, surface w<strong>at</strong>er, and waste w<strong>at</strong>er. Itutilizes a variety <strong>of</strong> plant biological processes and <strong>the</strong> physicalcharacteristics <strong>of</strong> plants to aid in site remedi<strong>at</strong>ion.Phytoremedi<strong>at</strong>ion has also been called green remedi<strong>at</strong>ion,botano-remedi<strong>at</strong>ion, agroremedi<strong>at</strong>ion, and veget<strong>at</strong>iveremedi<strong>at</strong>ion. Phytoremedi<strong>at</strong>ion is a continuum <strong>of</strong> processes,with <strong>the</strong> different processes occurring to differing degrees fordifferent conditions, media, contaminants, and plants. A variety<strong>of</strong> terms have been used in <strong>the</strong> liter<strong>at</strong>ure to refer to <strong>the</strong>se variousprocesses. This discussion defines and uses a number <strong>of</strong> termsas a convenient means <strong>of</strong> introducing and conceptualizing <strong>the</strong>processes th<strong>at</strong> occur during phytoremedi<strong>at</strong>ion. However, it mustbe realized th<strong>at</strong> <strong>the</strong> various processes described by <strong>the</strong>se termsall tend to overlap to some degree and occur in varying proportionsduring phytoremedi<strong>at</strong>ion. Phytoremedi<strong>at</strong>ion encompasses anumber <strong>of</strong> different methods th<strong>at</strong> can lead to contaminantdegrad<strong>at</strong>ion, removal (through accumul<strong>at</strong>ion or dissip<strong>at</strong>ion), orimmobiliz<strong>at</strong>ion:1. Degrad<strong>at</strong>ion (for destruction or alter<strong>at</strong>ion <strong>of</strong> organiccontaminants).Superfund Technology Support Center for <strong>Ground</strong> <strong>W<strong>at</strong>er</strong>N<strong>at</strong>ional Risk Management <strong>Research</strong> Labor<strong>at</strong>orySubsurface Protection and Remedi<strong>at</strong>ion DivisionRobert S. Kerr Environmental <strong>Research</strong> CenterAda, OklahomaTechnology Innov<strong>at</strong>ion OfficeOffice <strong>of</strong> Solid Waste and EmergencyResponse, US EPA, Washington, DCWalter W. Kovalick, Jr., Ph.D.Director1


A. Rhizodegrad<strong>at</strong>ion: enhancement <strong>of</strong> biodegrad<strong>at</strong>ionin <strong>the</strong> below-ground root zone by microorganisms.B. Phytodegrad<strong>at</strong>ion: contaminant uptake andmetabolism above or below ground, within <strong>the</strong> root,stem, or leaves.2. Accumul<strong>at</strong>ion (for containment or removal <strong>of</strong> organic and/or metal contaminants).A. Phytoextraction: contaminant uptake andaccumul<strong>at</strong>ion for removal.B. Rhiz<strong>of</strong>iltr<strong>at</strong>ion: contaminant adsorption on roots forcontainment and/or removal.3. Dissip<strong>at</strong>ion (for removal <strong>of</strong> organic and/or inorganiccontaminants into <strong>the</strong> <strong>at</strong>mosphere).A. Phytovol<strong>at</strong>iliz<strong>at</strong>ion: contaminant uptake andvol<strong>at</strong>iliz<strong>at</strong>ion.4. Immobiliz<strong>at</strong>ion (for containment <strong>of</strong> organic and/or inorganiccontaminants).A. Hydraulic Control: control <strong>of</strong> ground-w<strong>at</strong>er flow byplant uptake <strong>of</strong> w<strong>at</strong>er.B. Phytostabiliz<strong>at</strong>ion: contaminant immobiliz<strong>at</strong>ion in <strong>the</strong>soil.Veget<strong>at</strong>ed caps, buffer strips, and riparian corridors areapplic<strong>at</strong>ions th<strong>at</strong> combine a variety <strong>of</strong> <strong>the</strong>se methods forcontaminant containment, removal, and/or destruction. Thedifferent forms <strong>of</strong> phytoremedi<strong>at</strong>ion are discussed individuallybelow. With each phytoremedi<strong>at</strong>ion method, it is necessary toensure th<strong>at</strong> unwanted transfer <strong>of</strong> contaminant to o<strong>the</strong>r mediadoes not occur. Phytoremedi<strong>at</strong>ion is potentially applicable to avariety <strong>of</strong> contaminants, including some <strong>of</strong> <strong>the</strong> most significantcontaminants, such as petroleum hydrocarbons, chlorin<strong>at</strong>edsolvents, metals, radionuclides, nutrients, pentachlorophenol(PCP), and polycyclic arom<strong>at</strong>ic hydrocarbons (PAHs).Phytoremedi<strong>at</strong>ion requires more effort than simply plantingveget<strong>at</strong>ion and, with minimal maintenance, assuming th<strong>at</strong> <strong>the</strong>contaminant will disappear. Phytoremedi<strong>at</strong>ion requires anunderstanding <strong>of</strong> <strong>the</strong> processes th<strong>at</strong> need to occur, <strong>the</strong> plantsselected, and wh<strong>at</strong> needs to be done to ensure plant growth.Given <strong>the</strong> gre<strong>at</strong> number <strong>of</strong> candid<strong>at</strong>es, a rel<strong>at</strong>ively limited number<strong>of</strong> plants have been investig<strong>at</strong>ed. Screening studies will beimportant in selecting <strong>the</strong> most useful plants. Extrapol<strong>at</strong>ion <strong>of</strong>results from hydroponic or greenhouse studies to actual fieldsitu<strong>at</strong>ions will require caution. Fur<strong>the</strong>r field studies will benecessary. Verific<strong>at</strong>ion <strong>of</strong> <strong>the</strong> applicability and efficacy <strong>of</strong>phytoremedi<strong>at</strong>ion is likely to be required on a site-specific basis,<strong>at</strong> least until <strong>the</strong> technology becomes firmly proven andestablished. Phytoremedi<strong>at</strong>ion requires a commitment <strong>of</strong>resources and time, but has <strong>the</strong> potential to provide a lower-cost,environmentally acceptable altern<strong>at</strong>ive to conventional remedialtechnologies <strong>at</strong> appropri<strong>at</strong>e sites.<strong>Plant</strong> ProcessesPhytoremedi<strong>at</strong>ion takes advantage <strong>of</strong> <strong>the</strong> n<strong>at</strong>ural processes <strong>of</strong>plants. These processes include w<strong>at</strong>er and chemical uptake,metabolism within <strong>the</strong> plant, exud<strong>at</strong>e release into <strong>the</strong> soil th<strong>at</strong>leads to contaminant loss, and <strong>the</strong> physical and biochemicalimpacts <strong>of</strong> plant roots.Growth <strong>of</strong> plants depends on photosyn<strong>the</strong>sis, in which w<strong>at</strong>er andcarbon dioxide are converted into carbohydr<strong>at</strong>es and oxygen,using <strong>the</strong> energy from sunlight. Roots are effective in extractingw<strong>at</strong>er held in soil, even w<strong>at</strong>er held <strong>at</strong> rel<strong>at</strong>ively high m<strong>at</strong>ric andosmotic neg<strong>at</strong>ive w<strong>at</strong>er potentials; extraction is followed byupward transport through <strong>the</strong> xylem. Transpir<strong>at</strong>ion (w<strong>at</strong>er vaporloss from plants to <strong>the</strong> <strong>at</strong>mosphere) occurs primarily <strong>at</strong> <strong>the</strong>stom<strong>at</strong>a (openings in leaves and stems where gas exchangeoccurs), with additional transpir<strong>at</strong>ion <strong>at</strong> <strong>the</strong> lenticels (gas exchangesites on stem and root surfaces).Carbon dioxide uptake from <strong>the</strong> <strong>at</strong>mosphere occurs through <strong>the</strong>stom<strong>at</strong>a, along with release <strong>of</strong> oxygen. Respir<strong>at</strong>ion <strong>of</strong> <strong>the</strong>carbohydr<strong>at</strong>es produced during photosyn<strong>the</strong>sis, and production<strong>of</strong> ATP, necessary for <strong>the</strong> active transport <strong>of</strong> nutrients by roots,requires oxygen. Diffusion and advection <strong>of</strong> oxygen into <strong>the</strong> soilare necessary for continued plant survival; and a high or s<strong>at</strong>ur<strong>at</strong>edsoil w<strong>at</strong>er content will gre<strong>at</strong>ly slow oxygen transport. <strong>Plant</strong>s donot transport oxygen into roots (or into <strong>the</strong> surrounding w<strong>at</strong>er orsoil), except for a rel<strong>at</strong>ively small number <strong>of</strong> plants (mostlyaqu<strong>at</strong>ic, flood-adapted, or wetland plants) using specializedstructures or mechanisms such as aerenchyma, lacunae, orpneum<strong>at</strong>ophores. Few woody species can transport oxygen to<strong>the</strong> root zone; flood tolerance <strong>of</strong> some trees, such as poplar, islikely due to coping mechanisms o<strong>the</strong>r than transport <strong>of</strong> oxygen.<strong>Plant</strong>s require macronutrients (N, P, K, Ca, Mg, S) andmicronutrients (B, Cl, Cu, Fe, Mn, Mo, Zn and possibly Co, Ni, Se,Si, V, and maybe o<strong>the</strong>rs). Lack <strong>of</strong> chlorophyll due to stresses on<strong>the</strong> plant, such as lack <strong>of</strong> nutrients, can result in chlorosis (<strong>the</strong>yellowing <strong>of</strong> normally green plant leaves). Nutrient uptakep<strong>at</strong>hways can take up contaminants th<strong>at</strong> are similar in chemicalform or behavior to <strong>the</strong> nutrients. Cadmium can be subject toplant uptake due to its similarity to <strong>the</strong> plant nutrients calcium andzinc, although poplar leaves in a field study did not accumul<strong>at</strong>esignificant amounts <strong>of</strong> cadmium (Pierzynski et al., 1994). Arsenic(as arsen<strong>at</strong>e) might be taken up by plants due to similarities to<strong>the</strong> plant nutrient phosph<strong>at</strong>e; however, poplars growing in soilcontaining an average <strong>of</strong> 1250 mg/kg arsenic did not accumul<strong>at</strong>esignificant amounts <strong>of</strong> arsenic in <strong>the</strong>ir leaves (Pierzynski et al.,1994). Selenium replaces <strong>the</strong> nutrient sulfur in compoundstaken up by a plant, but does not serve <strong>the</strong> same physiologicalfunctions (Brooks, 1998b).For uptake into a plant, a chemical must be in solution, ei<strong>the</strong>r inground w<strong>at</strong>er or in <strong>the</strong> soil solution (i.e., <strong>the</strong> w<strong>at</strong>er in <strong>the</strong>uns<strong>at</strong>ur<strong>at</strong>ed soil zone). <strong>W<strong>at</strong>er</strong> is absorbed from <strong>the</strong> soil solutioninto <strong>the</strong> outer tissue <strong>of</strong> <strong>the</strong> root. Contaminants in <strong>the</strong> w<strong>at</strong>er canmove through <strong>the</strong> epidermis to and through <strong>the</strong> Casparian strip,and <strong>the</strong>n through <strong>the</strong> endodermis, where <strong>the</strong>y can be sorbed,bound, or metabolized. Chemicals or metabolites passingthrough <strong>the</strong> endodermis and reaching <strong>the</strong> xylem are <strong>the</strong>ntransported in <strong>the</strong> transpir<strong>at</strong>ion stream or sap. The compoundsmight react with or partition into plant tissue, be metabolized, orbe released to <strong>the</strong> <strong>at</strong>mosphere through stom<strong>at</strong>al pores (P<strong>at</strong>ersonet al., 1990; Shimp et al., 1993).The uptake and transloc<strong>at</strong>ion <strong>of</strong> organic compounds is dependenton <strong>the</strong>ir hydrophobicity (lipophilicity), solubility, polarity, andmolecular weight (Briggs et al., 1982; Bell, 1992; Schnoor,1997). Briggs et al. (1982) found th<strong>at</strong> transloc<strong>at</strong>ion <strong>of</strong> nonionizedcompounds to shoots was optimum for intermedi<strong>at</strong>epolarity compounds th<strong>at</strong> were moder<strong>at</strong>ely hydrophobic (with log<strong>of</strong> <strong>the</strong> octanol-w<strong>at</strong>er partition coefficient, i.e., log k ow, between 1.5to 2.0), with less transloc<strong>at</strong>ion for more polar compounds. Aslightly wider range <strong>of</strong> log k owvalues (approxim<strong>at</strong>ely 1.0 to 3.5)was provided by Schnoor (1997) for prediction <strong>of</strong> transloc<strong>at</strong>ionto <strong>the</strong> shoot. More hydrophobic compounds are more stronglybound to root surfaces or partition into root solids, resulting inless transloc<strong>at</strong>ion within <strong>the</strong> plant (Briggs et al., 1982; Schnoor2


et al., 1995; Cunningham et al., 1997). Very soluble organiccompounds (with low sorption) will not be sorbed onto roots asmuch as lower solubility compounds, or transloc<strong>at</strong>ed within <strong>the</strong>plant (Schnoor et al., 1995). In contrast to <strong>the</strong> very solubleorganic compounds, soluble inorganic compounds, such asnutrients, can be readily taken up by plants. Uptake <strong>of</strong> <strong>the</strong>inorganic compounds (which are generally in ionic or complexedform) is medi<strong>at</strong>ed by active or passive uptake mechanismswithin <strong>the</strong> plant (Brady, 1974), whereas uptake <strong>of</strong> organiccompounds is generally governed by log k ow(hydrophobicity)and polarity. Ryan et al. (1988) provide more discussion <strong>of</strong> plantuptake <strong>of</strong> organic compounds.<strong>Plant</strong> uptake <strong>of</strong> organic compounds can also depend on <strong>the</strong> type<strong>of</strong> plant, age <strong>of</strong> <strong>the</strong> contaminant, and many o<strong>the</strong>r physical andchemical characteristics <strong>of</strong> <strong>the</strong> soil. One study identified gre<strong>at</strong>erthan 70 organic chemicals, which represented many classes <strong>of</strong>compounds, th<strong>at</strong> were taken up and accumul<strong>at</strong>ed by 88 species<strong>of</strong> plants and trees (P<strong>at</strong>erson et al., 1990). Definitive conclusionscannot always be made about a particular chemical. Forexample, when PCP was spiked into soil, 21% was found in rootsand 15% in shoots after 155 days in <strong>the</strong> presence <strong>of</strong> grass (Qiuet al., 1994); in ano<strong>the</strong>r study, minimal uptake <strong>of</strong> PCP by severalplants was seen (Bellin and O’Connor, 1990).The breaking up <strong>of</strong> soil aggreg<strong>at</strong>es is a physical effect <strong>of</strong> root tipspushing through soil as <strong>the</strong> root tips grow. Roots can form largeopenings (macropores) in <strong>the</strong> soil, especially as <strong>the</strong> roots decay,which can contribute to w<strong>at</strong>er, gas, and contaminant transportthrough <strong>the</strong> soil and change <strong>the</strong> aer<strong>at</strong>ion and w<strong>at</strong>er st<strong>at</strong>us <strong>of</strong> <strong>the</strong>soil. The increased ‘workability’ <strong>of</strong> soil due to <strong>the</strong> incorpor<strong>at</strong>ion<strong>of</strong> organic m<strong>at</strong>ter by plants might make <strong>the</strong> soil conditions moreamenable to various types <strong>of</strong> soil tre<strong>at</strong>ment. <strong>Plant</strong> m<strong>at</strong>erials andplant roots can have chemical and biological impacts in <strong>the</strong> soil.Exud<strong>at</strong>es such as simple phenolics and o<strong>the</strong>r organic acids canbe released from living cells or from <strong>the</strong> entire cell contentsduring root decay. These exud<strong>at</strong>es can change metals speci<strong>at</strong>ion(i.e., form <strong>of</strong> <strong>the</strong> metal), and <strong>the</strong> uptake <strong>of</strong> metal ions andsimultaneous release <strong>of</strong> protons, which acidifies <strong>the</strong> soil andpromotes metal transport and bioavailability (Ernst, 1996). Insome cases, <strong>the</strong> changed metals speci<strong>at</strong>ion can lead to increasedprecipit<strong>at</strong>ion <strong>of</strong> <strong>the</strong> metals. The organic compounds in <strong>the</strong> rootexud<strong>at</strong>es can stimul<strong>at</strong>e microbial growth in <strong>the</strong> rhizosphere (<strong>the</strong>region immedi<strong>at</strong>ely surrounding plant roots). Fungi associ<strong>at</strong>edwith some plant roots (i.e., mycorrhizae) can also influence <strong>the</strong>chemical conditions within <strong>the</strong> soil. Decaying roots and abovegroundplant m<strong>at</strong>erial th<strong>at</strong> is incorpor<strong>at</strong>ed into <strong>the</strong> soil willincrease <strong>the</strong> organic m<strong>at</strong>ter content <strong>of</strong> <strong>the</strong> soil, potentiallyleading to increased sorption <strong>of</strong> contaminants and humific<strong>at</strong>ion(<strong>the</strong> incorpor<strong>at</strong>ion <strong>of</strong> a compound into organic m<strong>at</strong>ter).Contaminant loss may also increase as roots decay, due torelease <strong>of</strong> substr<strong>at</strong>es and <strong>the</strong> cre<strong>at</strong>ion <strong>of</strong> air passages in <strong>the</strong> soil;increased TPH loss occurred as white clover was dying and <strong>the</strong>roots were degrading in a field study (AATDF, 1998). Decayingplant m<strong>at</strong>erial can also have biochemical impacts on <strong>the</strong> soil; forexample, compounds may be released th<strong>at</strong> suppress growth <strong>of</strong>o<strong>the</strong>r plants.Phytoremedi<strong>at</strong>ion ProcessesThere are a number <strong>of</strong> different forms <strong>of</strong> phytoremedi<strong>at</strong>ion,discussed immedi<strong>at</strong>ely below. Defining <strong>the</strong>se forms is useful toclarify and understand <strong>the</strong> different processes th<strong>at</strong> can occurdue to veget<strong>at</strong>ion, wh<strong>at</strong> happens to a contaminant, where <strong>the</strong>contaminant remedi<strong>at</strong>ion occurs, and wh<strong>at</strong> should be done foreffective phytoremedi<strong>at</strong>ion. The different forms <strong>of</strong>phytoremedi<strong>at</strong>ion may apply to specific types <strong>of</strong> contaminants orcontamin<strong>at</strong>ed media, and may require different types <strong>of</strong> plants(<strong>the</strong> terms ‘plant’ and ‘veget<strong>at</strong>ion’ will be used interchangeablyto indic<strong>at</strong>e all plant life, whe<strong>the</strong>r trees, grasses, shrubs, or o<strong>the</strong>rforms).PhytoextractionPhytoextraction is contaminant uptake by roots with subsequentaccumul<strong>at</strong>ion in <strong>the</strong> aboveground portion <strong>of</strong> a plant, generally tobe followed by harvest and ultim<strong>at</strong>e disposal <strong>of</strong> <strong>the</strong> plant biomass.It is a contaminant removal process. Phytoextraction applies tometals (e.g., Ag, Cd, Co, Cr, Cu, Hg, Mn, Mo, Ni, Pb, Zn),metalloids (e.g., As, Se), radionuclides (e.g., 90 Sr, 137 Cs, 234 U,238U), and non-metals (e.g., B) (Salt et al., 1995; Kumar et al.,1995; Cornish et al., 1995; Bañuelos et al., 1999), as <strong>the</strong>se aregenerally not fur<strong>the</strong>r degraded or changed in form within <strong>the</strong>plant. Phytoextraction has generally not been considered fororganic or nutrient contaminants taken up by a plant, as <strong>the</strong>secan be metabolized, changed, or vol<strong>at</strong>ilized by <strong>the</strong> plant, thuspreventing accumul<strong>at</strong>ion <strong>of</strong> <strong>the</strong> contaminant. However, somestudies have shown accumul<strong>at</strong>ion <strong>of</strong> unaltered organiccontaminants within <strong>the</strong> aboveground portion <strong>of</strong> a plant. Thetarget medium is generally soil, although contaminants insediments and sludges can also undergo phytoextraction. Solublemetals in surface w<strong>at</strong>er or extracted ground w<strong>at</strong>er couldconceivably be cleaned using phytoextraction, perhaps inconjunction with rhiz<strong>of</strong>iltr<strong>at</strong>ion.Phytoextraction is also known as phytoaccumul<strong>at</strong>ion,phytoabsorption, and phytosequestr<strong>at</strong>ion (which can all alsoapply to contaminant accumul<strong>at</strong>ion within <strong>the</strong> roots). Somepractitioners define <strong>the</strong> term phytoremedi<strong>at</strong>ion to mean extraction<strong>of</strong> metals by plants; however, as discussed throughout this issuepaper, <strong>the</strong>re are many types <strong>of</strong> phytoremedi<strong>at</strong>ion, and thusphytoremedi<strong>at</strong>ion should remain a broad, over-all term.Phytoextraction has also been referred to as phytomining orbiomining. A narrower definition <strong>of</strong> phytomining is <strong>the</strong> use <strong>of</strong>plants to obtain an economic return from metals extracted by aplant, whe<strong>the</strong>r from contamin<strong>at</strong>ed soils or from soils havingn<strong>at</strong>urally high concentr<strong>at</strong>ions <strong>of</strong> metals (Brooks, 1998a); thismore specialized applic<strong>at</strong>ion will not be discussed here, as <strong>the</strong>primary goal and motiv<strong>at</strong>ion for this issue paper is <strong>the</strong> remedi<strong>at</strong>ion<strong>of</strong> hazardous waste sites.Interest in metal-accumul<strong>at</strong>ing plants initially focused onhyperaccumul<strong>at</strong>ors, plants th<strong>at</strong> accumul<strong>at</strong>e a metal from metalrichsoil to a much gre<strong>at</strong>er degree (such as 100-fold or 1000-fold)than do o<strong>the</strong>r plants in th<strong>at</strong> soil, and reach some specifiedunusually high concentr<strong>at</strong>ion <strong>of</strong> metal in some part <strong>of</strong> <strong>the</strong> plant.These plants are generally rel<strong>at</strong>ively rare and found only inlocalized areas around <strong>the</strong> world, with less than four hundredidentified species for eight heavy metals (Brooks, 1998a). Heavymetals are generally phytotoxic to plants; however,hyperaccumul<strong>at</strong>ors have developed on heavy-metal-rich soils.A possible physiological reason for metals hyperaccumul<strong>at</strong>ioncould be as a tolerance str<strong>at</strong>egy for <strong>the</strong>se high soil concentr<strong>at</strong>ions<strong>of</strong> metals. O<strong>the</strong>r potential reasons for metals hyperaccumul<strong>at</strong>ioninclude a possible competitive advantage, a means to resistdrought, inadvertent metal uptake, or a defense against herbivoresor p<strong>at</strong>hogens such as bacteria and fungi (Brooks, 1998a; Boyd,1998). More research is required to determine <strong>the</strong> reasons forhyperaccumul<strong>at</strong>ion (Boyd, 1998).Brooks (1998b) discusses <strong>the</strong> processes involved inhyperaccumul<strong>at</strong>ion. It is not clear if a plant’s tolerance to onemetal will induce tolerance to ano<strong>the</strong>r metal (Reeves and Brooks,1983). Some hyperaccumul<strong>at</strong>ors <strong>of</strong> one metal can3


hyperaccumul<strong>at</strong>e o<strong>the</strong>r metals if present; for example, copper orcobalt hyperaccumul<strong>at</strong>ors will hyperaccumul<strong>at</strong>e both (Brooks,1998c). O<strong>the</strong>r hyperaccumul<strong>at</strong>ors will take up only a specificmetal even if o<strong>the</strong>rs are present.<strong>Plant</strong> roots generally contain higher metal concentr<strong>at</strong>ions than<strong>the</strong> shoots despite <strong>the</strong> transloc<strong>at</strong>ion mechanisms. An upper limitto <strong>the</strong> metal concentr<strong>at</strong>ion within <strong>the</strong> root can occur. Root uptake<strong>of</strong> lead by hydroponically-grown plants reached a maximumconcentr<strong>at</strong>ion and did not increase fur<strong>the</strong>r as <strong>the</strong> leadconcentr<strong>at</strong>ion <strong>of</strong> <strong>the</strong> solution increased (Kumar et al., 1995).Metals are generally unevenly distributed throughout a plant,although in hyperaccumul<strong>at</strong>ors <strong>the</strong> metal content <strong>of</strong> <strong>the</strong> leavesis <strong>of</strong>ten gre<strong>at</strong>er than o<strong>the</strong>r portions <strong>of</strong> <strong>the</strong> plant; for example, <strong>the</strong>gre<strong>at</strong>est proportion <strong>of</strong> nickel in Alyssum heldreichii was found in<strong>the</strong> leaves (Brooks, 1998b). Cadmium and zinc were found inboth roots and shoots, although <strong>the</strong> shoots had higherconcentr<strong>at</strong>ions <strong>of</strong> zinc (Brooks, 1998b). High concentr<strong>at</strong>ions <strong>of</strong>zinc were found in small hemispherical bodies loc<strong>at</strong>ed on <strong>the</strong>surface <strong>of</strong> some leaves <strong>of</strong> Thlaspi caerulescens (Brooks, 1998b).Phytoextraction occurs in <strong>the</strong> root zone <strong>of</strong> plants. The root zonemay typically be rel<strong>at</strong>ively shallow, with <strong>the</strong> bulk <strong>of</strong> roots <strong>at</strong>shallower r<strong>at</strong>her than deeper depths. This can be a limit<strong>at</strong>ion <strong>of</strong>phytoextraction. Remedi<strong>at</strong>ion <strong>of</strong> lead-contamin<strong>at</strong>ed soil usingBrassica juncea was limited to <strong>the</strong> top 15 cm, with insignificantlead removal from 15 to 45 cm (Blaylock et al., 1999).Due to <strong>the</strong> scarcity, small biomass, slow growth r<strong>at</strong>e, uncertainor specialized growing conditions <strong>of</strong> many hyperaccumul<strong>at</strong>ors,or lack <strong>of</strong> hyperaccumul<strong>at</strong>ors for some <strong>of</strong> <strong>the</strong> most seriouscontaminants, such as chromium, <strong>the</strong> effectiveness <strong>of</strong>hyperaccumul<strong>at</strong>ors for phytoextraction has been uncertain,especially if <strong>the</strong>y can remove only a rel<strong>at</strong>ively small mass <strong>of</strong>metals from <strong>the</strong> soil. Solutions to this uncertainty includeincreased screening <strong>of</strong> hyperaccumul<strong>at</strong>or candid<strong>at</strong>e plants,plant breeding, genetic development <strong>of</strong> better hyperaccumul<strong>at</strong>ors,genetic transfer <strong>of</strong> hyperaccumul<strong>at</strong>ing abilities to higher-biomassplants, fertiliz<strong>at</strong>ion str<strong>at</strong>egies th<strong>at</strong> increase <strong>the</strong> biomass <strong>of</strong>hyperaccumul<strong>at</strong>ors, or use <strong>of</strong> faster-growing, gre<strong>at</strong>er biomassmetal-accumul<strong>at</strong>ing plants th<strong>at</strong> are not hyperaccumul<strong>at</strong>ors.Metals can be taken up by o<strong>the</strong>r plants th<strong>at</strong> do not accumul<strong>at</strong>e<strong>the</strong> high concentr<strong>at</strong>ions <strong>of</strong> hyperaccumul<strong>at</strong>ors, for example,corn (Zea mays), sorghum (Sorghum bicolor), alfalfa (Medicagos<strong>at</strong>iva L.), and willow trees (Salix spp.). The gre<strong>at</strong>er biomass <strong>of</strong><strong>the</strong>se plants could result in a gre<strong>at</strong>er mass <strong>of</strong> metals beingremoved from <strong>the</strong> soil even though <strong>the</strong> concentr<strong>at</strong>ions within <strong>the</strong>plants might be lower than in hyperaccumul<strong>at</strong>ors, since <strong>the</strong>metal concentr<strong>at</strong>ion in <strong>the</strong> plant multiplied by <strong>the</strong> biomassdetermines <strong>the</strong> amount <strong>of</strong> metal removal. McGr<strong>at</strong>h (1998) pointsout, however, th<strong>at</strong> <strong>the</strong> much higher metals concentr<strong>at</strong>ionsachievable in hyperaccumul<strong>at</strong>ors more than compens<strong>at</strong>e for<strong>the</strong>ir lower biomass. The suitability <strong>of</strong> hyperaccumul<strong>at</strong>ors ascompared to non-hyperaccumul<strong>at</strong>ors will need to be resolvedthrough fur<strong>the</strong>r research and field trials <strong>of</strong> phytoextraction.Metals are taken up to different degrees. In one greenhousestudy, phytoextraction coefficients (<strong>the</strong> r<strong>at</strong>io <strong>of</strong> <strong>the</strong> metalconcentr<strong>at</strong>ion in <strong>the</strong> shoot to <strong>the</strong> metal concentr<strong>at</strong>ion in <strong>the</strong> soil)for different metals taken up by Indian mustard (Brassica juncea(L.) Czern) were 58 for Cr(VI), 52 for Cd(II), 31 for Ni(II), 17 forZn(II), 7 for Cu(II), 1.7 for Pb(II), and 0.1 for Cr(III), with <strong>the</strong> higherphytoextraction coefficients indic<strong>at</strong>ing gre<strong>at</strong>er uptake (Kumar etal., 1995). The effectiveness <strong>of</strong> phytoextraction can be limited by<strong>the</strong> sorption <strong>of</strong> metals to soil particles and <strong>the</strong> low solubility <strong>of</strong> <strong>the</strong>metals; however, <strong>the</strong> metals can be solubilized by addition <strong>of</strong>chel<strong>at</strong>ing agents to allow uptake <strong>of</strong> <strong>the</strong> contaminant by <strong>the</strong> plant.The chel<strong>at</strong>ing agent EDTA was used in a growth chamber studyto solubilize lead to achieve rel<strong>at</strong>ively high lead concentr<strong>at</strong>ionsin Indian mustard (Blaylock et al., 1997) and EDTA and HBEDsolubilized lead for uptake by corn under greenhouse conditions(Wu et al., 1999). Potential adverse impacts <strong>of</strong> chel<strong>at</strong>ing agentaddition, such as high w<strong>at</strong>er solubility leading to neg<strong>at</strong>ive impactson ground w<strong>at</strong>er, or impacts on plant growth, have to be considered(Wu et al., 1999). In addition, increased uptake might be specificfor one metal, such as lead, while decreasing uptake <strong>of</strong> o<strong>the</strong>rmetals; for example, addition <strong>of</strong> citric acid or EDTA decreaseduptake <strong>of</strong> nickel in <strong>the</strong> hyperaccumul<strong>at</strong>or Berkheya coddii(Robinson et al., 1997).Some research with hyperaccumul<strong>at</strong>ing plants has achievedhigh levels <strong>of</strong> metal uptake when using plants grown in hydroponicsolution. Extrapol<strong>at</strong>ion <strong>of</strong> <strong>the</strong> results <strong>of</strong> hydroponic studies tophytoextraction <strong>of</strong> metals from soils could be misleading, evenusing <strong>the</strong> same plants, due to <strong>the</strong> much gre<strong>at</strong>er bioavailability <strong>of</strong>metals in <strong>the</strong> hydroponic solution as compared to metals in soil.Such research indic<strong>at</strong>es th<strong>at</strong> uptake is possible, and identifiesappropri<strong>at</strong>e plant species, r<strong>at</strong>her than providing estim<strong>at</strong>es <strong>of</strong> <strong>the</strong>actual concentr<strong>at</strong>ions. Phytoextraction coefficients under fieldconditions are likely to be less than those determined in <strong>the</strong>labor<strong>at</strong>ory (Kumar et al., 1995).A small-scale field test applic<strong>at</strong>ion <strong>of</strong> phytoextraction wassuccessfully conducted <strong>at</strong> <strong>the</strong> "Magic Marker" site in Trenton,NJ, by a commercial phytoremedi<strong>at</strong>ion firm (Phytotech, Inc.,which was acquired by Edenspace Systems Corpor<strong>at</strong>ion in1999) under <strong>the</strong> Superfund Innov<strong>at</strong>ive Technology Evalu<strong>at</strong>ion(SITE) program. Lead was removed from soil using three crops<strong>of</strong> Indian mustard in one growing season, with a decrease in soilconcentr<strong>at</strong>ions <strong>of</strong> lead to acceptable levels (Blaylock et al.,1999).Phytoextraction <strong>of</strong> organic contaminants is not as straightforwardas for metals, in th<strong>at</strong> transform<strong>at</strong>ions <strong>of</strong> <strong>the</strong> contaminants within<strong>the</strong> plant are more likely to occur. Ashing <strong>of</strong> metal-contamin<strong>at</strong>edbiomass and recovery <strong>of</strong> <strong>the</strong> metals may raise less concernsthan would <strong>the</strong> combustion <strong>of</strong> plant biomass containing organiccontaminants, due to potential concerns over incompletedestruction <strong>of</strong> <strong>the</strong> organics and release <strong>of</strong> contaminants in <strong>the</strong><strong>of</strong>f-gases and particul<strong>at</strong>e m<strong>at</strong>ter. Phytoaccumul<strong>at</strong>ion <strong>of</strong> organiccontaminants has occurred. The explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) was found to have accumul<strong>at</strong>ed inan unaltered form in <strong>the</strong> leaves <strong>of</strong> hybrid poplar, after uptake froma hydroponic solution (Thompson et al., 1999). This was viewedas a potential impediment to o<strong>the</strong>r forms <strong>of</strong> phytoremedi<strong>at</strong>ion <strong>of</strong>RDX, such as rhizodegrad<strong>at</strong>ion and phytodegrad<strong>at</strong>ion, r<strong>at</strong>herthan as an applic<strong>at</strong>ion <strong>of</strong> phytoextraction. Accumul<strong>at</strong>ion <strong>of</strong> RDXin <strong>the</strong> poplar leaves could potentially result in food chaincontamin<strong>at</strong>ion.Phytostabiliz<strong>at</strong>ionPhytostabiliz<strong>at</strong>ion is <strong>the</strong> use <strong>of</strong> veget<strong>at</strong>ion to contain soilcontaminants in situ, through modific<strong>at</strong>ion <strong>of</strong> <strong>the</strong> chemical,biological, and physical conditions in <strong>the</strong> soil. Contaminanttransport in soil, sediments, or sludges can be reduced throughabsorption and accumul<strong>at</strong>ion by roots; adsorption onto roots;precipit<strong>at</strong>ion, complex<strong>at</strong>ion, or metal valence reduction in soilwithin <strong>the</strong> root zone; or binding into humic (organic) m<strong>at</strong>terthrough <strong>the</strong> process <strong>of</strong> humific<strong>at</strong>ion. In addition, veget<strong>at</strong>ion canreduce wind and w<strong>at</strong>er erosion <strong>of</strong> <strong>the</strong> soil, thus preventingdispersal <strong>of</strong> <strong>the</strong> contaminant in run<strong>of</strong>f or fugitive dust emissions,and may reduce or prevent leach<strong>at</strong>e gener<strong>at</strong>ion.Phytostabiliz<strong>at</strong>ion is also known as in-place inactiv<strong>at</strong>ion or4


phytoimmobiliz<strong>at</strong>ion. Phytostabiliz<strong>at</strong>ion research to d<strong>at</strong>e hasgenerally focused on metals contamin<strong>at</strong>ion, with lead, chromium,and mercury being identified as <strong>the</strong> top potential candid<strong>at</strong>es forphytostabiliz<strong>at</strong>ion (U.S. EPA, 1997). However, <strong>the</strong>re may bepotential for phytostabiliz<strong>at</strong>ion <strong>of</strong> organic contaminants, sincesome organic contaminants or metabolic byproducts <strong>of</strong> <strong>the</strong>secontaminants can be <strong>at</strong>tached to or incorpor<strong>at</strong>ed into plantcomponents such as lignin (Harms and Langebartels, 1986).This form <strong>of</strong> phytostabiliz<strong>at</strong>ion has been called phytolignific<strong>at</strong>ion(Cunningham et al., 1995). One difference, however, is th<strong>at</strong>phytostabiliz<strong>at</strong>ion <strong>of</strong> metals is generally intended to occur in <strong>the</strong>soil, whereas phytostabiliz<strong>at</strong>ion <strong>of</strong> organic contaminants throughphytolignific<strong>at</strong>ion can occur aboveground.Metals within <strong>the</strong> root zone can be stabilized by changing froma soluble to an insoluble oxid<strong>at</strong>ion st<strong>at</strong>e, through root-medi<strong>at</strong>edprecipit<strong>at</strong>ion. For example, roots can medi<strong>at</strong>e <strong>the</strong> precipit<strong>at</strong>ion<strong>of</strong> lead as insoluble lead phosph<strong>at</strong>e (Salt et al., 1995). Stabiliz<strong>at</strong>ion<strong>of</strong> metals also includes <strong>the</strong> non-biological process <strong>of</strong> surfacesorption, due to chel<strong>at</strong>ion, ion exchange, and specific adsorption(Salt et al., 1995). Lead, which is generally toxic to plants, isusually not accumul<strong>at</strong>ed in plants under n<strong>at</strong>ural conditions,possibly due to precipit<strong>at</strong>ion <strong>of</strong> lead as sulf<strong>at</strong>e <strong>at</strong> <strong>the</strong> plant roots(Reeves and Brooks, 1983). Soil pH can be changed by <strong>the</strong>production <strong>of</strong> CO 2by microbes degrading <strong>the</strong> plant root exud<strong>at</strong>es,possibly changing metal solubility and mobility or impacting <strong>the</strong>dissoci<strong>at</strong>ion <strong>of</strong> organic compounds. Effective phytostabiliz<strong>at</strong>ionrequires a thorough understanding <strong>of</strong> <strong>the</strong> chemistry <strong>of</strong> <strong>the</strong> rootzone, root exud<strong>at</strong>es, contaminants, and fertilizers or soilamendments, to prevent unintended effects th<strong>at</strong> might increasecontaminant solubility and leaching. Cunningham et al. (1995)indic<strong>at</strong>e th<strong>at</strong> phytostabiliz<strong>at</strong>ion might be most appropri<strong>at</strong>e forheavy-textured soils and soils with high organic m<strong>at</strong>ter contents.A form <strong>of</strong> phytostabiliz<strong>at</strong>ion may occur in w<strong>at</strong>er into which plantroots release plant exud<strong>at</strong>es such as phosph<strong>at</strong>e. Insolubleprecipit<strong>at</strong>ed forms <strong>of</strong> contaminants may occur, such as leadphosph<strong>at</strong>e, thus removing <strong>the</strong> contaminant from solution withouthaving it taken up into <strong>the</strong> plant. The form<strong>at</strong>ion <strong>of</strong> a leadphosph<strong>at</strong>e precipit<strong>at</strong>e in a hydroponic solution was identified byDushenkov et al. (1995).Advantages <strong>of</strong> phytostabiliz<strong>at</strong>ion are th<strong>at</strong> soil removal isunnecessary, disposal <strong>of</strong> hazardous m<strong>at</strong>erials or biomass is notrequired, <strong>the</strong> cost and degree <strong>of</strong> disruption to site activities maybe less than with o<strong>the</strong>r more vigorous soil remedial technologies,and ecosystem restor<strong>at</strong>ion is enhanced by <strong>the</strong> veget<strong>at</strong>ion.Disadvantages <strong>of</strong> phytostabiliz<strong>at</strong>ion include <strong>the</strong> necessity forlong-term maintenance <strong>of</strong> <strong>the</strong> veget<strong>at</strong>ion or verific<strong>at</strong>ion th<strong>at</strong> <strong>the</strong>veget<strong>at</strong>ion will be self-sustaining. This is necessary since <strong>the</strong>contaminants remain in place and future re-release <strong>of</strong> <strong>the</strong>contaminants and leaching must be prevented. A plant systemth<strong>at</strong> produces an irreversible stabiliz<strong>at</strong>ion process is preferred,but must be verified. If not, phytostabiliz<strong>at</strong>ion might have to beconsidered an interim containment measure. <strong>Plant</strong> uptake <strong>of</strong>metals and transloc<strong>at</strong>ion to <strong>the</strong> aboveground portion should beavoided, to prevent <strong>the</strong> transfer <strong>of</strong> metals to <strong>the</strong> food chain.Phytostabiliz<strong>at</strong>ion requires a plant th<strong>at</strong> is able to grow in <strong>the</strong>contamin<strong>at</strong>ed soil (i.e., metal-tolerant plants for heavy-metalcontamin<strong>at</strong>ed soils), with roots growing into <strong>the</strong> zone <strong>of</strong>contamin<strong>at</strong>ion, and th<strong>at</strong> is able to alter <strong>the</strong> biological, chemical,or physical conditions in <strong>the</strong> soil. In a field study, mine wastescontaining copper, lead, and zinc were stabilized by grasses(Agrostis tenuis cv. Goginan for acid lead and zinc mine wastes,Agrostis tenuis cv. Parys for copper mine wastes, and Festucarubra cv. Merlin for calcareous lead and zinc mine wastes)(Smith and Bradshaw, 1979). Indian mustard appeared to havepotential for effective phytostabiliz<strong>at</strong>ion. In a labor<strong>at</strong>ory study,leach<strong>at</strong>e from sand planted with seedlings <strong>of</strong> <strong>the</strong> Indian mustardcontained 22 µg/mL lead, compared to 740 g/mL lead from sandwithout plants (Salt et al., 1995). A labor<strong>at</strong>ory rhiz<strong>of</strong>iltr<strong>at</strong>ion studyindic<strong>at</strong>ed th<strong>at</strong> Indian mustard roots apparently reduced Cr(VI) toCr(III) (Dushenkov et al., 1995); this process occurring in soilwould promote phytostabiliz<strong>at</strong>ion.Some hazardous waste sites are former mining or mining-wastesites th<strong>at</strong> can have large areal expanses <strong>of</strong> contamin<strong>at</strong>ed andseverely degraded soil. Saline-affected soils can also coverlarge areas. Reclam<strong>at</strong>ion and reveget<strong>at</strong>ion <strong>of</strong> <strong>the</strong>se soils willreduce wind and w<strong>at</strong>er erosion and subsequent dispersal <strong>of</strong>contamin<strong>at</strong>ed soil, as well as promote restor<strong>at</strong>ion <strong>of</strong> <strong>the</strong> localecosystem. Phytostabiliz<strong>at</strong>ion is <strong>the</strong> primary str<strong>at</strong>egy to be used<strong>at</strong> <strong>the</strong>se sites, but if appropri<strong>at</strong>e for <strong>the</strong> contaminant, extractivephytoremedi<strong>at</strong>ion methods, such as phytoextraction, could beused. The use <strong>of</strong> phytoextraction, however, raises concernsabout transfer <strong>of</strong> <strong>the</strong> contaminants to <strong>the</strong> broader ecosystem;thus, it should not be used unless <strong>the</strong> biomass containingaccumul<strong>at</strong>ed metals is removed for disposal. Reclam<strong>at</strong>ion andreveget<strong>at</strong>ion <strong>of</strong> mining-impacted and saline soils has beenresearched for many years, well before <strong>the</strong> concept <strong>of</strong>phytoremedi<strong>at</strong>ion was applied to hazardous waste sites, so alarge body <strong>of</strong> liter<strong>at</strong>ure and experience exists for <strong>the</strong>se conditions.<strong>Plant</strong> re-establishment <strong>at</strong> <strong>the</strong>se waste sites may be difficult forreasons such as phytotoxicity <strong>of</strong> <strong>the</strong> contaminant, <strong>the</strong> physicalcondition <strong>of</strong> <strong>the</strong> soil, adverse pH, arid clim<strong>at</strong>e, or lack <strong>of</strong> organicm<strong>at</strong>ter. Metal-tolerant, non-accumul<strong>at</strong>or plants are appropri<strong>at</strong>e,as <strong>the</strong>y would toler<strong>at</strong>e, but not accumul<strong>at</strong>e high levels <strong>of</strong> metals.Hyperaccumul<strong>at</strong>or plants generally would not be used due to<strong>the</strong>ir slow growth r<strong>at</strong>e and propensity to accumul<strong>at</strong>e metals.Stabilizing covers <strong>of</strong> n<strong>at</strong>ive metal-tolerant grasses weresuccessfully established on metalliferous mine wastes in <strong>the</strong>United Kingdom, and grew vigorously during a nine-yearinvestig<strong>at</strong>ion (Smith and Bradshaw, 1979). Hybrid poplars inexperimental plots <strong>at</strong> <strong>the</strong> Whitewood Creek Superfund site,South Dakota, grew to 12 m by <strong>the</strong> end <strong>of</strong> <strong>the</strong> first growingseason, and established dense root masses. Analysis <strong>of</strong> leaves,stems, and roots for arsenic and cadmium indic<strong>at</strong>ed th<strong>at</strong> labor<strong>at</strong>orystudies had overestim<strong>at</strong>ed <strong>the</strong> amount <strong>of</strong> uptake (Pierzynski etal., 1994). Reveget<strong>at</strong>ion was proposed for <strong>the</strong> Galena Superfundsite in sou<strong>the</strong>astern Kansas as a phytostabiliz<strong>at</strong>ion str<strong>at</strong>egy th<strong>at</strong>would decrease wind erosion <strong>of</strong> contamin<strong>at</strong>ed soil. Experimentalstudies using n<strong>at</strong>ive and tame grasses and leguminous forbs,including big bluestem (Andropogon gerardi Vit.) and tall fescue(Festuca arundinacea Schreb.), revealed <strong>the</strong> importance <strong>of</strong>mycorrhizae and adding organic waste amendments inestablishing plants on <strong>the</strong> metal-contamin<strong>at</strong>ed mine wastes <strong>at</strong><strong>the</strong> Galena site (Pierzynski et al., 1994). Investig<strong>at</strong>ions havealso been conducted using metal-tolerant plants to examine <strong>the</strong>feasibility <strong>of</strong> phytostabilizing large areas <strong>of</strong> cadmium- and zinccontamin<strong>at</strong>edsoils <strong>at</strong> a Superfund site in Palmerton,Pennsylvania. The IINERT (In-Place Inactiv<strong>at</strong>ion and N<strong>at</strong>uralEcological Restor<strong>at</strong>ion Technologies) Soil-Metals Action teamunder <strong>the</strong> Remedi<strong>at</strong>ion Technologies Development Forum(RTDF) program has also investig<strong>at</strong>ed <strong>the</strong> use <strong>of</strong> plants tophysically stabilize metal-contamin<strong>at</strong>ed soil in order to decrease<strong>of</strong>f-site movement <strong>of</strong> contaminants.Rhiz<strong>of</strong>iltr<strong>at</strong>ionRhiz<strong>of</strong>iltr<strong>at</strong>ion (also known as phyt<strong>of</strong>iltr<strong>at</strong>ion) is <strong>the</strong> removal byplant roots <strong>of</strong> contaminants in surface w<strong>at</strong>er, waste w<strong>at</strong>er, orextracted ground w<strong>at</strong>er, through adsorption or precipit<strong>at</strong>ion onto5


<strong>the</strong> roots, or absorption into <strong>the</strong> roots. The root environment orroot exud<strong>at</strong>es may produce biogeochemical conditions th<strong>at</strong>result in precipit<strong>at</strong>ion <strong>of</strong> contaminants onto <strong>the</strong> roots or into <strong>the</strong>w<strong>at</strong>er body. The contaminant may remain on <strong>the</strong> root, within <strong>the</strong>root, or be taken up and transloc<strong>at</strong>ed into o<strong>the</strong>r portions <strong>of</strong> <strong>the</strong>plant, depending on <strong>the</strong> contaminant, its concentr<strong>at</strong>ion, and <strong>the</strong>plant species.Rhiz<strong>of</strong>iltr<strong>at</strong>ion and phytoextraction are similar in th<strong>at</strong> <strong>the</strong>y eachresult in accumul<strong>at</strong>ion <strong>of</strong> <strong>the</strong> contaminant in or on <strong>the</strong> plant.However, in rhiz<strong>of</strong>iltr<strong>at</strong>ion this accumul<strong>at</strong>ion can occur in <strong>the</strong>roots or in <strong>the</strong> portion <strong>of</strong> <strong>the</strong> plant above w<strong>at</strong>er, whereas foreffective phytoextraction <strong>the</strong> accumul<strong>at</strong>ion occurs aboveground,not in <strong>the</strong> roots. In addition, rhiz<strong>of</strong>iltr<strong>at</strong>ion differs fromphytoextraction in th<strong>at</strong> <strong>the</strong> contaminant is initially in w<strong>at</strong>er, r<strong>at</strong>herthan in soil.Rhiz<strong>of</strong>iltr<strong>at</strong>ion is a contaminant removal process, in whichcontaminant removal from <strong>the</strong> site is accomplished by harvesting<strong>the</strong> roots and, if necessary, <strong>the</strong> above-w<strong>at</strong>er portion <strong>of</strong> <strong>the</strong> plant,followed by proper disposal <strong>of</strong> <strong>the</strong> contamin<strong>at</strong>ed plant mass.Thus, rhiz<strong>of</strong>iltr<strong>at</strong>ion differs from phytostabiliz<strong>at</strong>ion occurring insoil, in which <strong>the</strong> contaminant remains in <strong>the</strong> root zone.Rhiz<strong>of</strong>iltr<strong>at</strong>ion is generally applicable to tre<strong>at</strong>ing large volumes <strong>of</strong>w<strong>at</strong>er with low contaminant concentr<strong>at</strong>ions (in <strong>the</strong> ppb range). Ithas primarily been applied to metals (Pb, Cd, Cu, Fe, Ni, Mn, Zn,Cr(VI) (Dushenkov et al., 1995; Wang et al., 1996; Salt et al.,1997)) and radionuclides ( 90 Sr, 137 Cs, 238 U, 236 U (Dushenkov etal., 1997)).Ei<strong>the</strong>r aqu<strong>at</strong>ic or terrestrial plants can be used. Given a supportpl<strong>at</strong>form to enable growth on w<strong>at</strong>er, terrestrial plants <strong>of</strong>fer <strong>the</strong>advantage <strong>of</strong> gre<strong>at</strong>er biomass and longer, faster-growing rootsystems than aqu<strong>at</strong>ic plants (Dushenkov et al., 1995). The use<strong>of</strong> seedlings has been proposed in place <strong>of</strong> m<strong>at</strong>ure plants sinceseedlings can take up metals but do not require light or nutrientsfor germin<strong>at</strong>ion and growth for up to two weeks (Salt et al., 1997).Rhiz<strong>of</strong>iltr<strong>at</strong>ion can be conducted in situ to remedi<strong>at</strong>e contamin<strong>at</strong>edsurface w<strong>at</strong>er bodies, or ex situ, in which an engineered system<strong>of</strong> tanks can be used to hold <strong>the</strong> introduced contamin<strong>at</strong>ed w<strong>at</strong>erand <strong>the</strong> plants. Ei<strong>the</strong>r <strong>of</strong> <strong>the</strong>se systems will require anunderstanding <strong>of</strong> <strong>the</strong> contaminant speci<strong>at</strong>ion and interactions <strong>of</strong>all contaminants and nutrients. Monitoring and possiblemodific<strong>at</strong>ion <strong>of</strong> <strong>the</strong> w<strong>at</strong>er pH, or <strong>of</strong> <strong>the</strong> flow r<strong>at</strong>e and contaminantconcentr<strong>at</strong>ion <strong>of</strong> influent w<strong>at</strong>er, may be necessary. Predictions<strong>of</strong> metal immobiliz<strong>at</strong>ion and uptake from labor<strong>at</strong>ory studies andgreenhouse studies might not be achievable in <strong>the</strong> field. However,in an engineered ex-situ system, <strong>the</strong> ability to control conditionsmay allow results to approach those predicted in <strong>the</strong> labor<strong>at</strong>ory.Effluent from engineered flow-through rhiz<strong>of</strong>iltr<strong>at</strong>ion systems willneed to meet relevant discharge limits. Proper disposal <strong>of</strong> <strong>the</strong>contamin<strong>at</strong>ed plant biomass will be required.Applic<strong>at</strong>ions <strong>of</strong> rhiz<strong>of</strong>iltr<strong>at</strong>ion are currently <strong>at</strong> <strong>the</strong> pilot-scalestage. Phytotech tested a pilot-scale rhiz<strong>of</strong>iltr<strong>at</strong>ion system in agreenhouse <strong>at</strong> a Department <strong>of</strong> Energy uranium-processingfacility in Ashtabula, Ohio (Dushenkov et al., 1997). Thisengineered ex-situ system used sunflowers to remove uraniumfrom contamin<strong>at</strong>ed ground w<strong>at</strong>er and/or process w<strong>at</strong>er. Phytotechalso conducted a small-scale field test <strong>of</strong> rhiz<strong>of</strong>iltr<strong>at</strong>ion to removeradionuclides from a small pond near <strong>the</strong> Chernobyl reactor,Ukraine. Sunflowers were grown for four to eight weeks in aflo<strong>at</strong>ing raft on a pond, and bioaccumul<strong>at</strong>ion results indic<strong>at</strong>edth<strong>at</strong> sunflowers could remove 137 Cs and 90 Sr from <strong>the</strong> pond.Rhizodegrad<strong>at</strong>ionRhizodegrad<strong>at</strong>ion is <strong>the</strong> enhancement <strong>of</strong> n<strong>at</strong>urally-occurringbiodegrad<strong>at</strong>ion in soil through <strong>the</strong> influence <strong>of</strong> plant roots, andideally will lead to destruction or detoxific<strong>at</strong>ion <strong>of</strong> an organiccontaminant. O<strong>the</strong>r terms have been used by some authors assynonyms for rhizodegrad<strong>at</strong>ion, such as enhanced rhizospherebiodegrad<strong>at</strong>ion.Organic contaminants in soil can <strong>of</strong>ten be broken down intodaughter products or completely mineralized to inorganic productssuch as carbon dioxide and w<strong>at</strong>er by n<strong>at</strong>urally occurring bacteria,fungi, and actinomycetes. The presence <strong>of</strong> plant roots will <strong>of</strong>tenincrease <strong>the</strong> size and variety <strong>of</strong> microbial popul<strong>at</strong>ions in <strong>the</strong> soilsurrounding roots (<strong>the</strong> rhizosphere) or in mycorrhizae(associ<strong>at</strong>ions <strong>of</strong> fungi and plant roots). Significantly higherpopul<strong>at</strong>ions <strong>of</strong> total heterotrophs, denitrifiers, pseudomonads,BTX (benzene, toluene, xylenes) degraders, and <strong>at</strong>razinedegraders were found in rhizosphere soil around hybrid poplartrees in a field plot (Populus deltoides × nigra DN-34, ImperialCarolina) than in non-rhizosphere soil (Jordahl et al., 1997). Theincreased microbial popul<strong>at</strong>ions are due to stimul<strong>at</strong>ion by plantexud<strong>at</strong>es, compounds produced by plants and released fromplant roots. <strong>Plant</strong> exud<strong>at</strong>es include sugars, amino acids, organicacids, f<strong>at</strong>ty acids, sterols, growth factors, nucleotides, flavanones,enzymes, and o<strong>the</strong>r compounds (Shimp et al., 1993). Theincreased microbial popul<strong>at</strong>ions and activity in <strong>the</strong> rhizospherecan result in increased contaminant biodegrad<strong>at</strong>ion in <strong>the</strong> soil,and degrad<strong>at</strong>ion <strong>of</strong> <strong>the</strong> exud<strong>at</strong>es can stimul<strong>at</strong>e cometabolism <strong>of</strong>contaminants in <strong>the</strong> rhizosphere. Rhizodegrad<strong>at</strong>ion occursprimarily in soil, although stimul<strong>at</strong>ion <strong>of</strong> microbial activity in <strong>the</strong>root zone <strong>of</strong> aqu<strong>at</strong>ic plants could potentially occur.Stimul<strong>at</strong>ion <strong>of</strong> soil microbes by plant root exud<strong>at</strong>es can alsoresult in alter<strong>at</strong>ion <strong>of</strong> <strong>the</strong> geochemical conditions in <strong>the</strong> soil, suchas pH, which may result in changes in <strong>the</strong> transport <strong>of</strong> inorganiccontaminants. <strong>Plant</strong>s and plant roots can also affect <strong>the</strong> w<strong>at</strong>ercontent, w<strong>at</strong>er and nutrient transport, aer<strong>at</strong>ion, structure,temper<strong>at</strong>ure, pH, or o<strong>the</strong>r parameters in <strong>the</strong> soil, <strong>of</strong>ten cre<strong>at</strong>ingmore favorable environments for soil microorganisms, regardless<strong>of</strong> <strong>the</strong> production <strong>of</strong> exud<strong>at</strong>es. This effect has not been addressedin most phytoremedi<strong>at</strong>ion research. One labor<strong>at</strong>ory study didraise <strong>the</strong> possibility th<strong>at</strong> transpir<strong>at</strong>ion due to alfalfa plants drewmethane from a s<strong>at</strong>ur<strong>at</strong>ed methanogenic zone up into <strong>the</strong>vadose zone where <strong>the</strong> methane was used by methanotrophsth<strong>at</strong> cometabolically degraded trichloroethylene (TCE)(Narayanan et al., 1995). Lin and Mendelssohn (1998) indic<strong>at</strong>eth<strong>at</strong> <strong>the</strong> salt marsh grasses Spartina alterniflora and S. p<strong>at</strong>enscould potentially increase subsurface aerobic biodegrad<strong>at</strong>ion <strong>of</strong>spilled oil by transporting oxygen to <strong>the</strong>ir roots.Appealing fe<strong>at</strong>ures <strong>of</strong> rhizodegrad<strong>at</strong>ion include destruction <strong>of</strong><strong>the</strong> contaminant in situ, <strong>the</strong> potential complete mineraliz<strong>at</strong>ion <strong>of</strong>organic contaminants, and th<strong>at</strong> transloc<strong>at</strong>ion <strong>of</strong> <strong>the</strong> compound to<strong>the</strong> plant or <strong>at</strong>mosphere is less likely than with o<strong>the</strong>rphytoremedi<strong>at</strong>ion technologies since degrad<strong>at</strong>ion occurs <strong>at</strong> <strong>the</strong>source <strong>of</strong> <strong>the</strong> contamin<strong>at</strong>ion. Harvesting <strong>of</strong> <strong>the</strong> veget<strong>at</strong>ion is notnecessary since <strong>the</strong>re is contaminant degrad<strong>at</strong>ion within <strong>the</strong>soil, r<strong>at</strong>her than contaminant accumul<strong>at</strong>ion within <strong>the</strong> plant. Rootpenetr<strong>at</strong>ion throughout <strong>the</strong> soil may allow a significant percentage<strong>of</strong> <strong>the</strong> soil to be contacted. However, <strong>at</strong> a given time only a smallpercentage <strong>of</strong> <strong>the</strong> total soil volume is in contact with living roots.It can take a long time for root dieback and root growth into newareas <strong>of</strong> <strong>the</strong> soil for contact with most <strong>of</strong> <strong>the</strong> soil to occur. Also,inhospitable soil conditions or areas <strong>of</strong> high contaminant6


concentr<strong>at</strong>ions can decrease root penetr<strong>at</strong>ion, leading to someportions <strong>of</strong> <strong>the</strong> soil never being contacted by roots.Perhaps <strong>the</strong> most serious impediment to successfulrhizodegrad<strong>at</strong>ion is its limit<strong>at</strong>ion to <strong>the</strong> depth <strong>of</strong> <strong>the</strong> root zone.Many plants have rel<strong>at</strong>ively shallow root zones, and <strong>the</strong> depth <strong>of</strong>root penetr<strong>at</strong>ion can also be limited by soil moisture conditionsor by soil structures such as hard pans or clay pans th<strong>at</strong> areimpenetrable by roots. However, in some cases roots mayextend rel<strong>at</strong>ively deep (e.g., 110 cm) and extend into soil withhigh contaminant concentr<strong>at</strong>ions (Olson and Fletcher, 2000).O<strong>the</strong>r potential impediments to successful rhizodegrad<strong>at</strong>ioninclude <strong>the</strong> <strong>of</strong>ten substantial time th<strong>at</strong> may be required todevelop an extensive root zone. The rhizosphere extends onlyabout 1 mm from <strong>the</strong> root and initially <strong>the</strong> volume <strong>of</strong> soil occupiedby roots is a small fraction <strong>of</strong> <strong>the</strong> total soil volume; thus, <strong>the</strong> soilvolume initially affected by <strong>the</strong> rhizosphere is limited. However,with time, new roots penetr<strong>at</strong>e more <strong>of</strong> <strong>the</strong> soil volume and o<strong>the</strong>rroots decompose. This root turnover adds exud<strong>at</strong>es to <strong>the</strong>rhizosphere (Olson and Fletcher, 1999). Uptake <strong>of</strong> <strong>the</strong>contaminant by <strong>the</strong> plant is an undesirable trait inrhizodegrad<strong>at</strong>ion, and plants must be selected to avoid uptake,unless it is shown th<strong>at</strong> phytodegrad<strong>at</strong>ion also occurs within <strong>the</strong>plant. Stimul<strong>at</strong>ion <strong>of</strong> rhizosphere organisms does not alwayslead to increased contaminant degrad<strong>at</strong>ion, as popul<strong>at</strong>ions <strong>of</strong>microorganisms th<strong>at</strong> are not degraders might be increased <strong>at</strong> <strong>the</strong>expense <strong>of</strong> degraders. Competition between <strong>the</strong> plants and <strong>the</strong>microorganisms can also impact <strong>the</strong> amount <strong>of</strong> biodegrad<strong>at</strong>ion.In addition, organic m<strong>at</strong>ter from <strong>the</strong> veget<strong>at</strong>ion might be used asa carbon source instead <strong>of</strong> <strong>the</strong> contaminant, which would decrease<strong>the</strong> amount <strong>of</strong> contaminant biodegrad<strong>at</strong>ion (Molina et al., 1995).In some studies, rhizodegrad<strong>at</strong>ion has increased <strong>the</strong> initial r<strong>at</strong>e<strong>of</strong> degrad<strong>at</strong>ion compared to a non-rhizosphere soil, but <strong>the</strong> finalextent or degree <strong>of</strong> degrad<strong>at</strong>ion was similar in both rhizosphereand non-rhizosphere soil. Th<strong>at</strong> <strong>the</strong> rhizosphere has a significantbeneficial effect on biodegrad<strong>at</strong>ion under most conditions hasnot been conclusively proven, although a forensicphytoremedi<strong>at</strong>ion field investig<strong>at</strong>ion provided evidence th<strong>at</strong>contaminant loss did occur in <strong>the</strong> root zone (Olson and Fletcher,2000). The effectiveness <strong>of</strong> rhizodegrad<strong>at</strong>ion may be sitespecificand not universal. The chances for successfulrhizodegrad<strong>at</strong>ion can be enhanced in several ways. A usefulpreliminary step is <strong>the</strong> screening <strong>of</strong> plants for root exud<strong>at</strong>es th<strong>at</strong>have been experimentally determined to be effective in stimul<strong>at</strong>ingcontaminant cometabolism (Fletcher and Hegde, 1995). Seedscan be inocul<strong>at</strong>ed with bacteria th<strong>at</strong> are capable <strong>of</strong> degrading <strong>the</strong>contaminant (Pfender, 1996).A wide range <strong>of</strong> organic contaminants are candid<strong>at</strong>es forrhizodegrad<strong>at</strong>ion, such as petroleum hydrocarbons, PAHs,pesticides, chlorin<strong>at</strong>ed solvents, PCP, polychlorin<strong>at</strong>ed biphenyls(PCBs), and surfactants. Higher popul<strong>at</strong>ions <strong>of</strong> benzene-,toluene-, and o-xylene-degrading bacteria were found in soilfrom <strong>the</strong> rhizosphere <strong>of</strong> poplar trees than in non-rhizosphere soil,although it was not clear th<strong>at</strong> <strong>the</strong> popul<strong>at</strong>ions were truly st<strong>at</strong>isticallydifferent. Root exud<strong>at</strong>es contained readily biodegradable organicmacromolecules (Jordahl et al., 1997). Schwab and Banks(1999) investig<strong>at</strong>ed total petroleum hydrocarbon (TPH)disappearance <strong>at</strong> several field sites contamin<strong>at</strong>ed with crude oil,diesel fuel, or petroleum refinery wastes, <strong>at</strong> initial petroleumhydrocarbon contents <strong>of</strong> 1,700 to 16,000 mg/kg TPH. <strong>Plant</strong>growth varied by species, but <strong>the</strong> presence <strong>of</strong> some species ledto gre<strong>at</strong>er TPH disappearance than with o<strong>the</strong>r species or inunveget<strong>at</strong>ed soil. At <strong>the</strong> crude oil-contamin<strong>at</strong>ed field site near<strong>the</strong> Gulf <strong>of</strong> Mexico, an annual rye-soybean rot<strong>at</strong>ion plot and a St.Augustine grass-cowpea rot<strong>at</strong>ion plot had significantly (P < 0.05)gre<strong>at</strong>er TPH disappearance than did sorghum-sudan grass orunveget<strong>at</strong>ed plots, <strong>at</strong> 21 months. At <strong>the</strong> diesel fuel-contamin<strong>at</strong>edCraney Island field site in Norfolk, Virginia, <strong>the</strong> fescue plot hadsignificantly (P < 0.10) gre<strong>at</strong>er TPH disappearance than did anunveget<strong>at</strong>ed plot. At <strong>the</strong> refinery waste site, st<strong>at</strong>istical analyseswere not presented due to <strong>the</strong> short time since establishment <strong>of</strong><strong>the</strong> plots, but Schwab and Banks (1999) reported th<strong>at</strong> qualit<strong>at</strong>ively,<strong>the</strong> veget<strong>at</strong>ed plots had gre<strong>at</strong>er TPH disappearance than <strong>the</strong>unveget<strong>at</strong>ed plots.For PAHs, a gre<strong>at</strong>er disappearance in veget<strong>at</strong>ed soil than in nonveget<strong>at</strong>edsoil was found for 10 mg/kg <strong>of</strong> chrysene,benz(a)anthracene, benzo(a)pyrene, and dibenz(a,h)anthracene(Aprill and Sims, 1990). This labor<strong>at</strong>ory study used a mix <strong>of</strong>prairie grasses: big bluestem (Andropogon gerardi), little bluestem(Schizachyrium scoparius), indiangrass (Sorghastrum nutans),switchgrass (Panicum virg<strong>at</strong>um), Canada wild rye (Elymuscanadensis), western whe<strong>at</strong>grass (Agropyron smithii), side o<strong>at</strong>sgrama (Bouteloua curtipendula), and blue grama (Boutelouagracilis). In a greenhouse study, st<strong>at</strong>istically gre<strong>at</strong>er loss <strong>of</strong>fluoran<strong>the</strong>ne, pyrene, and chrysene occurred in soil planted withperennial ryegrass (Lolium perenne) than in unplanted soil(Ferro et al., 1999). Fescue, a cool-season grass; sudangrass(Sorghum vulgare L.) and switchgrass, warm-season grasses;and alfalfa, a legume, were used in a greenhouse study <strong>of</strong> <strong>the</strong>disappearance <strong>of</strong> 100 mg/kg anthracene and pyrene; gre<strong>at</strong>erdisappearance was seen in <strong>the</strong> veget<strong>at</strong>ed soils than inunveget<strong>at</strong>ed soils (Reilley et al., 1996).Pesticide biodegrad<strong>at</strong>ion has been found to be influenced byplants. Kochia species (sp.) rhizosphere soil increased <strong>the</strong>degrad<strong>at</strong>ion <strong>of</strong> herbicides (0.3 µg/g trifluralin, 0.5 µg/g <strong>at</strong>razine,and 9.6 µg/g metolachlor) rel<strong>at</strong>ive to non-rhizosphere soil. Theselabor<strong>at</strong>ory experiments used rhizosphere soil but were conductedin <strong>the</strong> absence <strong>of</strong> plants to minimize any effects <strong>of</strong> root uptake(Anderson et al., 1994). In a labor<strong>at</strong>ory study, bush bean(Phaseolus vulgaris cv. “Tender Green”) rhizosphere soil hadhigher mineraliz<strong>at</strong>ion r<strong>at</strong>es for 5 µg/g <strong>of</strong> <strong>the</strong> organophosph<strong>at</strong>einsecticides par<strong>at</strong>hion and diazinon than non-rhizosphere soil.Diazinon mineraliz<strong>at</strong>ion in soil without roots did not increasewhen an exud<strong>at</strong>e solution was added, but par<strong>at</strong>hion mineraliz<strong>at</strong>iondid increase (Hsu and Bartha, 1979). A greenhouse studyindic<strong>at</strong>ed th<strong>at</strong> rice (Oryza s<strong>at</strong>iva L.) rhizosphere soil with 3 µg/gpropanil herbicide had increased numbers <strong>of</strong> Gram-neg<strong>at</strong>ivebacteria th<strong>at</strong> could rapidly transform <strong>the</strong> propanil. It washypo<strong>the</strong>sized th<strong>at</strong> <strong>the</strong> best propanil degraders would benefitfrom <strong>the</strong> proximity to plant roots and exud<strong>at</strong>es (Hoagland et al.,1994). Microorganisms capable <strong>of</strong> degrading 2,4-dichlorophenoxyacetic acid (2,4-D) occurred in elev<strong>at</strong>ed numbersin <strong>the</strong> rhizosphere <strong>of</strong> sugar cane, compared to non-rhizospheresoil (Sandmann and Loos, 1984). The r<strong>at</strong>e constants for 2,4-Dand 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) herbicidebiodegrad<strong>at</strong>ion in a labor<strong>at</strong>ory evalu<strong>at</strong>ion were higher in fieldcollectedrhizosphere soil than in non-rhizosphere soil (Boyleand Shann, 1995).Chlorin<strong>at</strong>ed solvents may be subject to rhizodegrad<strong>at</strong>ion. In agrowth chamber study, TCE mineraliz<strong>at</strong>ion was increased in soilplanted with a legume (Lespedeza cune<strong>at</strong>a (Dumont)), Loblollypine (Pinus taeda (L.)), and soybean (Glycine max (L.) Merr., cv.Davis), compared to non-veget<strong>at</strong>ed soil (Anderson and Walton,1995). In ano<strong>the</strong>r labor<strong>at</strong>ory study, <strong>the</strong> presence <strong>of</strong> alfalfapossibly contributed to <strong>the</strong> dissip<strong>at</strong>ion <strong>of</strong> 100 and 200 µL/L TCEand 50 and 100 µL/L 1,1,1-trichloroethane (TCA) in groundw<strong>at</strong>er, through <strong>the</strong> effect <strong>of</strong> root exud<strong>at</strong>es on soil bacteria7


(Narayanan et al., 1995). Newman et al. (1999) did not find anyrhizodegrad<strong>at</strong>ion <strong>of</strong> TCE in a two-week long labor<strong>at</strong>ory experimentusing hybrid poplars; however, <strong>the</strong>y could not conclusively ruleout <strong>the</strong> occurrence <strong>of</strong> microbial degrad<strong>at</strong>ion <strong>of</strong> TCE in <strong>the</strong> soil.O<strong>the</strong>r contaminants are also candid<strong>at</strong>es for rhizodegrad<strong>at</strong>ion,as indic<strong>at</strong>ed by a variety <strong>of</strong> greenhouse, labor<strong>at</strong>ory, and growthchamber studies. Mineraliz<strong>at</strong>ion r<strong>at</strong>es <strong>of</strong> 100 mg/kg PCP weregre<strong>at</strong>er in soil planted with Hycrest crested whe<strong>at</strong>grass than inunplanted controls (Ferro et al., 1994). Proso millet (Panicummiliaceum L.) seeds tre<strong>at</strong>ed with a PCP-degrading bacteriumgermin<strong>at</strong>ed and grew well in soil containing 175 mg/L PCP,compared to untre<strong>at</strong>ed seeds (Pfender, 1996). Compounds(such as flavonoids and coumarins) found in leach<strong>at</strong>e from roots<strong>of</strong> specific plants stimul<strong>at</strong>ed <strong>the</strong> growth <strong>of</strong> PCB-degrading bacteria(Donnelly et al., 1994; Gilbert and Crowley, 1997). Spearmint(Mentha spic<strong>at</strong>a) extracts contained a compound th<strong>at</strong> inducedcometabolism <strong>of</strong> a PCB (Gilbert and Crowley, 1997). Redmulberry (Morus rubra L.), crabapple (Malus fusca (Raf.) Schneid),and osage orange (Maclura pomifera (Raf.) Schneid) producedexud<strong>at</strong>es with rel<strong>at</strong>ively high levels <strong>of</strong> phenolic compounds, <strong>at</strong>concentr<strong>at</strong>ions capable <strong>of</strong> supporting growth <strong>of</strong> PCB-degradingbacteria (Fletcher and Hegde, 1995). A variety <strong>of</strong> ectomycorrhizalfungi, which grow symbiotically with <strong>the</strong> roots <strong>of</strong> a host plant,metabolized various congenors <strong>of</strong> PCBs (Donnelly and Fletcher,1995). The surfactants linear alkylbenzene sulfon<strong>at</strong>e (LAS) andlinear alcohol ethoxyl<strong>at</strong>e (LAE) <strong>at</strong> 1 mg/L had gre<strong>at</strong>ermineraliz<strong>at</strong>ion r<strong>at</strong>es in <strong>the</strong> presence <strong>of</strong> c<strong>at</strong>tail (Typha l<strong>at</strong>ifolia)root microorganisms than in non-rhizosphere sediments (Federleand Schwab, 1989).Phytodegrad<strong>at</strong>ionPhytodegrad<strong>at</strong>ion is <strong>the</strong> uptake, metabolizing, and degrad<strong>at</strong>ion<strong>of</strong> contaminants within <strong>the</strong> plant, or <strong>the</strong> degrad<strong>at</strong>ion <strong>of</strong>contaminants in <strong>the</strong> soil, sediments, sludges, ground w<strong>at</strong>er, orsurface w<strong>at</strong>er by enzymes produced and released by <strong>the</strong> plant.Phytodegrad<strong>at</strong>ion is not dependent on microorganismsassoci<strong>at</strong>ed with <strong>the</strong> rhizosphere. Contaminants subject tophytodegrad<strong>at</strong>ion include organic compounds such as munitions,chlorin<strong>at</strong>ed solvents, herbicides, and insecticides, and inorganicnutrients. Phytodegrad<strong>at</strong>ion is also known as phytotransform<strong>at</strong>ion,and is a contaminant destruction process.For phytodegrad<strong>at</strong>ion to occur within <strong>the</strong> plant, <strong>the</strong> plant must beable to take up <strong>the</strong> compound. Uptake <strong>of</strong> contaminants requiresth<strong>at</strong> <strong>the</strong>y have a moder<strong>at</strong>e log k ow, and labor<strong>at</strong>ory experiments <strong>at</strong><strong>the</strong> <strong>Univ</strong>ersity <strong>of</strong> Washington indic<strong>at</strong>ed th<strong>at</strong> short chainhalogen<strong>at</strong>ed aliph<strong>at</strong>ic compounds could be taken up by plants(Newman et al., 1998). <strong>Plant</strong>s can metabolize a variety <strong>of</strong>organic compounds, including TCE (Newman et al., 1997),trinitrotoluene (TNT) (Thompson et al., 1998), and <strong>the</strong> herbicide<strong>at</strong>razine (Burken and Schnoor, 1997). Partial metabolism bywhe<strong>at</strong> and soybean plant cell cultures was found for a variety <strong>of</strong>compounds, including 2,4-dichlorophenoxyacetic acid (2,4-D);2,4,5-trichlorophenoxyacetic acid (2,4,5-T), 4-chloroaniline; 3,4-dichloroaniline; PCP; diethylhexylphthal<strong>at</strong>e (DEHP); perylene;benzo(a)pyrene; hexachlorobenzene; DDT; and PCBs(Sandermann et al., 1984; Harms and Langebartels, 1986; andWilken et al., 1995). In phytodegrad<strong>at</strong>ion applic<strong>at</strong>ions,transform<strong>at</strong>ion <strong>of</strong> a contaminant within <strong>the</strong> plant to a more toxicform, with subsequent release to <strong>the</strong> <strong>at</strong>mosphere throughtranspir<strong>at</strong>ion, is undesirable. The form<strong>at</strong>ion and release <strong>of</strong> vinylchloride resulting from <strong>the</strong> uptake and phytodegrad<strong>at</strong>ion <strong>of</strong> TCEhas been a concern. However, although low levels <strong>of</strong> TCEmetabolites have been found in plant tissue (Newman et al.,1997), vinyl chloride has not been reported.<strong>Plant</strong>-produced enzymes th<strong>at</strong> metabolize contaminants may bereleased into <strong>the</strong> rhizosphere, where <strong>the</strong>y can remain active incontaminant transform<strong>at</strong>ion. <strong>Plant</strong>-formed enzymes have beendiscovered in plant sediments and soils. These enzymesinclude dehalogenase, nitroreductase, peroxidase, laccase, andnitrilase (Schnoor et al., 1995). These enzymes are associ<strong>at</strong>edwith transform<strong>at</strong>ions <strong>of</strong> chlorin<strong>at</strong>ed compounds, munitions,phenols, <strong>the</strong> oxid<strong>at</strong>ive step in munitions, and herbicides,respectively. In one week, <strong>the</strong> dissolved TNT concentr<strong>at</strong>ions inflooded soil decreased from 128 ppm to 10 ppm in <strong>the</strong> presence<strong>of</strong> <strong>the</strong> aqu<strong>at</strong>ic plant parrot fe<strong>at</strong>her (Myriophyllum aqu<strong>at</strong>icum),which produces nitroreductase enzyme th<strong>at</strong> can partially degradeTNT (Schnoor et al., 1995). The nitroreductase enzyme has alsobeen identified in a variety <strong>of</strong> algae, aqu<strong>at</strong>ic plants, and trees(Schnoor et al., 1995). Hybrid poplar trees metabolized TNT to4-amino-2,6-dinitrotoluene (4-ADNT), 2-amino-4,6-dinitrotoluene(2-ADNT), and o<strong>the</strong>r unidentified compounds in labor<strong>at</strong>oryhydroponic and soil experiments (Thompson et al., 1998).Uptake and degrad<strong>at</strong>ion <strong>of</strong> TCE has been confirmed in poplarcell cultures and in hybrid poplars. About one to two percent <strong>of</strong>applied TCE was completely mineralized to carbon dioxide bycell cultures (Newman et al., 1997). After exposure to groundw<strong>at</strong>er containing about 50 ppm TCE, unaltered TCE was presentin <strong>the</strong> stems <strong>of</strong> hybrid poplars (Newman et al., 1997). In additionto unaltered TCE, TCE metabolites were detected in <strong>the</strong>aboveground portion <strong>of</strong> hybrid poplars exposed to TCE inground w<strong>at</strong>er in a controlled field experiment. These metabolitesincluded trichloroethanol, trichloroacetic acid, and dichloroaceticacid, as well as reductive dechlorin<strong>at</strong>ion products, but vinylchloride was not reported (Newman et al., 1999).Labor<strong>at</strong>ory studies have demonstr<strong>at</strong>ed <strong>the</strong> metabolism <strong>of</strong> methyltertiary-butyl e<strong>the</strong>r (MTBE) by poplar cell cultures, and providedsome indic<strong>at</strong>ion <strong>of</strong> MTBE uptake by eucalyptus trees (Newmanet al., 1998).Atrazine degrad<strong>at</strong>ion has occurred in hybrid poplars (Populusdeltoides × nigra DN34, Imperial Carolina). Atrazine in soil wastaken up by trees and <strong>the</strong>n hydrolyzed and dealkyl<strong>at</strong>ed within <strong>the</strong>roots, stems, and leaves. Metabolites were identified within <strong>the</strong>plant tissue, and a review <strong>of</strong> <strong>at</strong>razine metabolite toxicity studiesindic<strong>at</strong>ed th<strong>at</strong> <strong>the</strong> metabolites were less toxic than <strong>at</strong>razine(Burken and Schnoor, 1997).The herbicide bentazon was degraded within black willow (Salixnigra) trees, as indic<strong>at</strong>ed by loss during a nursery study and byidentific<strong>at</strong>ion <strong>of</strong> metabolites within <strong>the</strong> tree. Bentazon wasphytotoxic to six tree species <strong>at</strong> concentr<strong>at</strong>ions <strong>of</strong> 1000 and 2000mg/L, but allowed growth <strong>at</strong> 150 mg/L. At this concentr<strong>at</strong>ion,bentazon metabolites were detected within tree trunk and canopytissue samples. Black willow, yellow poplar (Liriodendrontulipifera), bald cypress (Taxodium distichum), river birch (Betulanigra), cherry bark oak (Quercus falc<strong>at</strong>a), and live oak (Quercusviginiana) were all able to support some degrad<strong>at</strong>ion <strong>of</strong> bentazon(Conger and Portier, 1997).Deep-rooted poplars have also been used to remove nutrientsfrom ground w<strong>at</strong>er. Nitr<strong>at</strong>e can be taken up by plants andincorpor<strong>at</strong>ed into proteins or o<strong>the</strong>r nitrogen-containingcompounds, or transformed into nitrogen gas (Licht and Schnoor,1993). Deep-rooting techniques can increase <strong>the</strong> effectivedepth <strong>of</strong> this applic<strong>at</strong>ion.<strong>Plant</strong>-derived m<strong>at</strong>erials have been used in waste w<strong>at</strong>er tre<strong>at</strong>ment.Waste w<strong>at</strong>er contamin<strong>at</strong>ed with chlorin<strong>at</strong>ed phenolic compoundswas tre<strong>at</strong>ed in ex-situ reactors using oxidoreductase enzymesderived from horseradish roots, and minced horseradish roots8


successfully tre<strong>at</strong>ed wastew<strong>at</strong>er containing up to 850 ppm <strong>of</strong>2,4-dichlorophenol (Dec and Bollag, 1994). Applic<strong>at</strong>ion <strong>of</strong>phytoremedi<strong>at</strong>ion, however, has more typically focused on using<strong>the</strong> whole, living plant.<strong>Research</strong> and pilot-scale field demonstr<strong>at</strong>ion studies <strong>of</strong>phytodegrad<strong>at</strong>ion have been conducted for a number <strong>of</strong> sites,primarily Army Ammunition <strong>Plant</strong>s (AAPs) contamin<strong>at</strong>ed withmunitions waste, including <strong>the</strong> Iowa AAP, Volunteer AAP, andMilan AAP. At <strong>the</strong> Milan AAP, emergent aqu<strong>at</strong>ic plants in a fielddemonstr<strong>at</strong>ion decreased TNT concentr<strong>at</strong>ions from over 4,000ppb to <strong>the</strong> remedial goal <strong>of</strong> less than 2 ppb, except during <strong>the</strong>winter months (ESTCP, 1999). Phytodegrad<strong>at</strong>ion <strong>of</strong> munitionsis part <strong>of</strong> <strong>the</strong> remedy in <strong>the</strong> Record <strong>of</strong> Decision (ROD) for <strong>the</strong> IowaAAP.Phytovol<strong>at</strong>iliz<strong>at</strong>ionPhytovol<strong>at</strong>iliz<strong>at</strong>ion is <strong>the</strong> uptake <strong>of</strong> a contaminant by a plant, and<strong>the</strong> subsequent release <strong>of</strong> a vol<strong>at</strong>ile contaminant, a vol<strong>at</strong>iledegrad<strong>at</strong>ion product <strong>of</strong> a contaminant, or a vol<strong>at</strong>ile form <strong>of</strong> aninitially non-vol<strong>at</strong>ile contaminant. For effective phytoremedi<strong>at</strong>ion,<strong>the</strong> degrad<strong>at</strong>ion product or modified vol<strong>at</strong>ile form should be lesstoxic than <strong>the</strong> initial contaminant. Phytovol<strong>at</strong>iliz<strong>at</strong>ion is primarilya contaminant removal process, transferring <strong>the</strong> contaminantfrom <strong>the</strong> original medium (ground w<strong>at</strong>er or soil w<strong>at</strong>er) to <strong>the</strong><strong>at</strong>mosphere. However, metabolic processes within <strong>the</strong> plantmight alter <strong>the</strong> form <strong>of</strong> <strong>the</strong> contaminant, and in some casestransform it to less toxic forms. Examples include <strong>the</strong> reduction<strong>of</strong> highly toxic mercury species to less toxic elemental mercury,or transform<strong>at</strong>ion <strong>of</strong> toxic selenium (as selen<strong>at</strong>e) to <strong>the</strong> less toxicdimethyl selenide gas (Adler, 1996). In some cases, contaminanttransfer to <strong>the</strong> <strong>at</strong>mosphere allows much more effective or rapidn<strong>at</strong>ural degrad<strong>at</strong>ion processes to occur, such asphotodegrad<strong>at</strong>ion. Because phytovol<strong>at</strong>iliz<strong>at</strong>ion involves transfer<strong>of</strong> contaminants to <strong>the</strong> <strong>at</strong>mosphere, a risk analysis <strong>of</strong> <strong>the</strong> impact<strong>of</strong> this transfer on <strong>the</strong> ecosystem and on human health may benecessary.Phytovol<strong>at</strong>iliz<strong>at</strong>ion can occur with soluble inorganic contaminantsin ground w<strong>at</strong>er, soil, sediment, or sludges. In labor<strong>at</strong>oryexperiments, tobacco (Nicotiana tabacum) and a small modelplant (Arabidopsis thaliana) th<strong>at</strong> had been genetically modifiedto include a gene for mercuric reductase converted ionic mercury(Hg(II)) to <strong>the</strong> less toxic metallic mercury (Hg(0)) and vol<strong>at</strong>ilizedit (Meagher et al., 2000). Similarly transformed yellow poplar(Liriodendron tulipifera) plantlets had resistance to, and grewwell in, normally toxic concentr<strong>at</strong>ions <strong>of</strong> ionic mercury. Thetransformed plantlets vol<strong>at</strong>ilized about ten times more elementalmercury than did untransformed plantlets (Rugh et al., 1998).Indian mustard and canola (Brassica napus) may be effective forphytovol<strong>at</strong>iliz<strong>at</strong>ion <strong>of</strong> selenium, and, in addition, accumul<strong>at</strong>e <strong>the</strong>selenium (Bañuelos et al., 1997).Phytovol<strong>at</strong>iliz<strong>at</strong>ion can also occur with organic contaminants,such as TCE, generally in conjunction with o<strong>the</strong>r phytoremedi<strong>at</strong>ionprocesses. Over a three year-period, test cells containing hybridpoplar trees exposed under field conditions to 50 ppm TCE inground w<strong>at</strong>er lost from 98% to 99% <strong>of</strong> <strong>the</strong> TCE from <strong>the</strong> w<strong>at</strong>er,compared to about 33% TCE lost in an unplanted test cell(Newman et al., 1999). Of this amount <strong>of</strong> TCE loss, a companionstudy indic<strong>at</strong>ed th<strong>at</strong> about 5% to 7% <strong>of</strong> added TCE was mineralizedin <strong>the</strong> soil. Uptake <strong>of</strong> TCE by <strong>the</strong> trees occurred, with unalteredTCE being found within <strong>the</strong> trees. Oxid<strong>at</strong>ion <strong>of</strong> TCE alsooccurred within <strong>the</strong> trees, indic<strong>at</strong>ed by <strong>the</strong> presence <strong>of</strong> TCEoxid<strong>at</strong>ive metabolites. Analysis <strong>of</strong> entrapped air in bags placedaround leaves indic<strong>at</strong>ed th<strong>at</strong> about 9% <strong>of</strong> <strong>the</strong> applied TCE wastranspired from <strong>the</strong> trees during <strong>the</strong> second year <strong>of</strong> growth, butno TCE was detected during <strong>the</strong> third year (Newman et al.,1999).It is not clear to wh<strong>at</strong> degree phytovol<strong>at</strong>iliz<strong>at</strong>ion <strong>of</strong> TCE occursunder different conditions and with different plants, since someo<strong>the</strong>r studies have not detected transpir<strong>at</strong>ion <strong>of</strong> TCE. However,measurement <strong>of</strong> transpired TCE can be difficult, andmeasurements must differenti<strong>at</strong>e between vol<strong>at</strong>iliz<strong>at</strong>ion from <strong>the</strong>plant and vol<strong>at</strong>iliz<strong>at</strong>ion from <strong>the</strong> soil. In addition, it is almostcertain th<strong>at</strong> several phytoremedi<strong>at</strong>ion processes(rhizodegrad<strong>at</strong>ion, phytodegrad<strong>at</strong>ion, and phytovol<strong>at</strong>iliz<strong>at</strong>ion)occur concurrently in varying proportions, depending on <strong>the</strong> siteconditions and on <strong>the</strong> plant. Questions remain as to chlorin<strong>at</strong>edsolvent metabolism within plants and transpir<strong>at</strong>ion from <strong>the</strong>plants.In a study (Burken and Schnoor, 1998, 1999) <strong>of</strong> poplar cuttingsin hydroponic solution, about 20% <strong>of</strong> <strong>the</strong> benzene and TCE in <strong>the</strong>initial solution was vol<strong>at</strong>ilized from <strong>the</strong> leaves, with little remainingwithin <strong>the</strong> plant. About 10% <strong>of</strong> toluene, ethylbenzene, and m-xylene was vol<strong>at</strong>ilized. There was little vol<strong>at</strong>iliz<strong>at</strong>ion <strong>of</strong>nitrobenzene and no vol<strong>at</strong>iliz<strong>at</strong>ion <strong>of</strong> 1,2,4-trichlorobenzene,aniline, phenol, pentachlorophenol, or <strong>at</strong>razine. The percentage<strong>of</strong> applied compound taken up into <strong>the</strong> plant was 17.3% for 1,2,4-trichlorobenzene, 40.5% for aniline, 20.0% for phenol, 29.0% forpentachlorophenol, and 53.3% for <strong>at</strong>razine. For 1,2,4-trichlorobenzene, aniline, phenol, and pentachlorophenol, <strong>the</strong>largest percentage <strong>of</strong> compound taken up was found in <strong>the</strong>bottom stem, as opposed to <strong>the</strong> root, upper stem, or leaves. For<strong>at</strong>razine, <strong>the</strong> largest percentage <strong>of</strong> compound taken up wasfound in <strong>the</strong> leaves. Of <strong>the</strong> eleven compounds tested, nine had2.4% or less <strong>of</strong> <strong>the</strong> applied compound in <strong>the</strong> leaves, but anilinehad 11.4% and <strong>at</strong>razine had 33.6% in <strong>the</strong> leaves. All compoundshad 3.8% or less in <strong>the</strong> upper stem (Burken and Schnoor, 1998,1999). However, <strong>the</strong> chemical f<strong>at</strong>e and transloc<strong>at</strong>ion is mostlikely concentr<strong>at</strong>ion-dependent, and o<strong>the</strong>r concentr<strong>at</strong>ions maygive different results.Hydraulic ControlHydraulic control (or hydraulic plume control) is <strong>the</strong> use <strong>of</strong>veget<strong>at</strong>ion to influence <strong>the</strong> movement <strong>of</strong> ground w<strong>at</strong>er and soilw<strong>at</strong>er, through <strong>the</strong> uptake and consumption <strong>of</strong> large volumes <strong>of</strong>w<strong>at</strong>er. Hydraulic control may influence and potentially containmovement <strong>of</strong> a ground-w<strong>at</strong>er plume, reduce or prevent infiltr<strong>at</strong>ionand leaching, and induce upward flow <strong>of</strong> w<strong>at</strong>er from <strong>the</strong> w<strong>at</strong>ertable through <strong>the</strong> vadose zone. O<strong>the</strong>r phytoremedi<strong>at</strong>ionprocesses, such as rhizodegrad<strong>at</strong>ion, phytodegrad<strong>at</strong>ion, andphytovol<strong>at</strong>iliz<strong>at</strong>ion, may occur as <strong>the</strong> contamin<strong>at</strong>ed w<strong>at</strong>er isbrought to and into <strong>the</strong> plant. In some cases and under certainconditions, veget<strong>at</strong>ive hydraulic control may be used in place <strong>of</strong>,or to supplement, an engineered pump-and-tre<strong>at</strong> system. Rootpenetr<strong>at</strong>ion throughout <strong>the</strong> soil can help counteract <strong>the</strong> slow flow<strong>of</strong> w<strong>at</strong>er in low-conductivity soils.Veget<strong>at</strong>ion w<strong>at</strong>er uptake and transpir<strong>at</strong>ion r<strong>at</strong>es are importantfor hydraulic control and remedi<strong>at</strong>ion <strong>of</strong> ground w<strong>at</strong>er. <strong>W<strong>at</strong>er</strong>uptake and <strong>the</strong> transpir<strong>at</strong>ion r<strong>at</strong>e depend on <strong>the</strong> species, age,mass, size, leaf surface area, and growth stage <strong>of</strong> <strong>the</strong> veget<strong>at</strong>ion.They also are affected by clim<strong>at</strong>ic factors, such as temper<strong>at</strong>ure,precipit<strong>at</strong>ion, humidity, insol<strong>at</strong>ion, and wind velocity, and willvary seasonally. Deciduous trees will be dormant for part <strong>of</strong> <strong>the</strong>year, resulting in lowered transpir<strong>at</strong>ion and w<strong>at</strong>er uptake r<strong>at</strong>es.Thus, well-defined typical r<strong>at</strong>es are difficult to provide for a giventype <strong>of</strong> veget<strong>at</strong>ion. For this reason, design and oper<strong>at</strong>ion <strong>of</strong>phytoremedi<strong>at</strong>ion hydraulic control will likely require site-specific9


observ<strong>at</strong>ions <strong>of</strong> w<strong>at</strong>er levels, flow p<strong>at</strong>terns, and w<strong>at</strong>er uptaker<strong>at</strong>es. Some estim<strong>at</strong>es <strong>of</strong> w<strong>at</strong>er uptake r<strong>at</strong>es indic<strong>at</strong>e <strong>the</strong>possible magnitude: 100 to 200 L/day for a five-year old poplartree (Newman et al., 1997); 5000 gal/day transpired by a singlewillow tree, comparable to <strong>the</strong> transpir<strong>at</strong>ion r<strong>at</strong>e <strong>of</strong> 0.6 acre <strong>of</strong>alfalfa (G<strong>at</strong>liff, 1994); between 50 and 350 gal/day per tree forindividual 40-foot tall cottonwood trees in southwestern Ohio,based on analysis <strong>of</strong> drawdown near <strong>the</strong> trees (G<strong>at</strong>liff, 1994);and approxim<strong>at</strong>ely 5 to 13 gal/day for four-year-old hybridpoplars (Hinckley et al., 1994). A phre<strong>at</strong>ophyte is a plant or tree,such as tamarisk and eucalyptus, th<strong>at</strong> is deep-rooted and th<strong>at</strong>can draw a large amount <strong>of</strong> w<strong>at</strong>er from a deep w<strong>at</strong>er table.Phre<strong>at</strong>ophytes may be desirable for hydraulic control <strong>of</strong> groundw<strong>at</strong>er, especially from deeper zones.Cottonwood and hybrid poplar trees were used <strong>at</strong> seven sites in<strong>the</strong> eastern and midwestern United St<strong>at</strong>es to contain and tre<strong>at</strong>shallow ground w<strong>at</strong>er contamin<strong>at</strong>ed with heavy metals, nutrients,or pesticides. At one site, poplar trees were combined with anengineered pump-and-tre<strong>at</strong> system to control a contamin<strong>at</strong>edground-w<strong>at</strong>er plume (G<strong>at</strong>liff, 1994). At least five U.S. companiesare active in installing phytoremedi<strong>at</strong>ion systems th<strong>at</strong> incorpor<strong>at</strong>ehydraulic control.Veget<strong>at</strong>ed CapsA veget<strong>at</strong>ed cap (or cover) is a long-term, self-sustaining cap <strong>of</strong>plants growing in and/or over contamin<strong>at</strong>ed m<strong>at</strong>erials, designedto minimize exposure p<strong>at</strong>hways and risk. The primary purpose<strong>of</strong> <strong>the</strong> veget<strong>at</strong>ion is to provide hydraulic control and prevent orminimize infiltr<strong>at</strong>ion <strong>of</strong> precipit<strong>at</strong>ion and snowmelt into <strong>the</strong>contamin<strong>at</strong>ed subsurface, thus preventing or minimizing leach<strong>at</strong>eform<strong>at</strong>ion. This is done by maximizing evapotranspir<strong>at</strong>ion andmaximizing <strong>the</strong> storage capacity <strong>of</strong> <strong>the</strong> soil. A cap designed forthis purpose is called an evapotranspir<strong>at</strong>ion cap or w<strong>at</strong>erbalancecover. The veget<strong>at</strong>ion can also increase stability <strong>of</strong> <strong>the</strong>soil, thus preventing erosion, and could potentially destroy orremove contaminants through rhizodegrad<strong>at</strong>ion,phytodegrad<strong>at</strong>ion, or phytovol<strong>at</strong>iliz<strong>at</strong>ion. A cap designed toincorpor<strong>at</strong>e contaminant destruction or removal in addition to <strong>the</strong>prevention <strong>of</strong> infiltr<strong>at</strong>ion is called a phytoremedi<strong>at</strong>ion cap. Aveget<strong>at</strong>ed cap can be constructed over landfills, or overcontamin<strong>at</strong>ed soil or ground w<strong>at</strong>er. Long-term maintenance <strong>of</strong><strong>the</strong> cap might be required, or <strong>the</strong> cap veget<strong>at</strong>ion may bedesigned to allow an appropri<strong>at</strong>e plant succession th<strong>at</strong> willmaintain <strong>the</strong> cap integrity.Significant issues remain with <strong>the</strong> use <strong>of</strong> veget<strong>at</strong>ive caps onlandfills for evapotranspir<strong>at</strong>ive control or for contaminantdestruction. These include <strong>the</strong> equivalency to standard,regul<strong>at</strong>ory-approved landfill covers; <strong>the</strong> potential for contaminantuptake; <strong>the</strong> possibility <strong>of</strong> plant roots breaching <strong>the</strong> cap integrity;and <strong>the</strong> gener<strong>at</strong>ion <strong>of</strong> gas in landfills.<strong>Plant</strong>s for evapotranspir<strong>at</strong>ion covers should have rel<strong>at</strong>ivelyshallow root depths so th<strong>at</strong> <strong>the</strong> cap is not breached; however,trees with weak root systems should be avoided as <strong>the</strong>y maytopple in high winds and jeopardize <strong>the</strong> integrity <strong>of</strong> <strong>the</strong> cap. Incases where prevention <strong>of</strong> infiltr<strong>at</strong>ion is not a concern, aphytoremedi<strong>at</strong>ion cover may use deeper-rooted plants to allowpenetr<strong>at</strong>ion <strong>of</strong> <strong>the</strong> roots into <strong>the</strong> underlying waste. <strong>Plant</strong>s forevapotranspir<strong>at</strong>ion covers should also be capable <strong>of</strong>evapotranspiring <strong>the</strong> desired amount <strong>of</strong> w<strong>at</strong>er. Poplar trees andgrasses have been used commercially to construct veget<strong>at</strong>ivecovers over landfills. The soils used in a veget<strong>at</strong>ive cover shouldalso be carefully selected. Soils with a high capacity to storew<strong>at</strong>er are desired, and soils with rapid drainage are to beavoided. In humid areas, <strong>the</strong>re might be inadequ<strong>at</strong>eevapotranspir<strong>at</strong>ion on a seasonal basis, and soil layers will needto be thicker than in arid regions.Buffer Strips and Riparian CorridorsBuffer strips are areas <strong>of</strong> veget<strong>at</strong>ion placed downgradient <strong>of</strong> acontaminant source or plume, or along a w<strong>at</strong>erway (i.e., ripariancorridor). The veget<strong>at</strong>ion contains, extracts, and/or destroyscontaminants in soil, surface w<strong>at</strong>er, and ground w<strong>at</strong>er passingunderne<strong>at</strong>h <strong>the</strong> buffer through hydraulic control,phytodegrad<strong>at</strong>ion, phytostabiliz<strong>at</strong>ion, rhizodegrad<strong>at</strong>ion,phytovol<strong>at</strong>iliz<strong>at</strong>ion, and perhaps phytoextraction. The use <strong>of</strong>buffer strips might be limited to easily assimil<strong>at</strong>ed and metabolizedcompounds. Rel<strong>at</strong>ively soluble contaminants, such as nutrientsand some organics (especially pesticides), have been addressedusing buffer strips and riparian corridors. Agricultural run<strong>of</strong>f hasbeen a target <strong>of</strong> buffer strips and riparian corridors. Additionalbenefits <strong>of</strong> riparian corridors are <strong>the</strong> stabiliz<strong>at</strong>ion <strong>of</strong> stream banksand prevention <strong>of</strong> soil erosion, and <strong>the</strong> improvement <strong>of</strong> aqu<strong>at</strong>icand terrestrial habit<strong>at</strong>s. To be remedi<strong>at</strong>ed, ground w<strong>at</strong>er must bewithin <strong>the</strong> depth <strong>of</strong> influence <strong>of</strong> <strong>the</strong> roots. Sufficient land must beavailable for <strong>the</strong> establishment <strong>of</strong> <strong>the</strong> veget<strong>at</strong>ion. Monitoring islikely to be required to ensure th<strong>at</strong> contaminant removal hasoccurred. Poplars have been used successfully in ripariancorridors and buffer strips to remove nitr<strong>at</strong>e (Licht, 1990).Labor<strong>at</strong>ory and field experiments have indic<strong>at</strong>ed th<strong>at</strong> soil plantedwith poplars can degrade <strong>at</strong>razine (CO 2production presumablyindic<strong>at</strong>ed mineraliz<strong>at</strong>ion in <strong>the</strong> root zone) and slow migr<strong>at</strong>ion <strong>of</strong>vol<strong>at</strong>ile organics (Licht and Schnoor, 1993; Nair et al., 1993).Commercial install<strong>at</strong>ion <strong>of</strong> buffer strips and riparian corridors hasbeen successfully accomplished. Correll (1999) provides anextensive annot<strong>at</strong>ed and indexed bibliography on veget<strong>at</strong>edriparian zones.Constructed WetlandsConstructed wetlands or tre<strong>at</strong>ment wetlands are artificial wetlandsth<strong>at</strong> are used for tre<strong>at</strong>ing organic, inorganic, and nutrientcontaminants in contamin<strong>at</strong>ed surface w<strong>at</strong>er, municipal wastew<strong>at</strong>er, domestic sewage, refinery effluents, acid mine drainage,or landfill leach<strong>at</strong>e. A considerable amount <strong>of</strong> research andapplied work has been conducted using constructed wetlandsfor <strong>the</strong>se applic<strong>at</strong>ions. Cole (1998) provides an overview <strong>of</strong>constructed wetlands, and more detailed discussions are providedin Kadlec and Knight (1996). N<strong>at</strong>ural wetlands have also beenexamined for tre<strong>at</strong>ment <strong>of</strong> <strong>the</strong>se wastes. <strong>Ground</strong>-w<strong>at</strong>er tre<strong>at</strong>mentis less common, though conceivable. Except in a few cases,constructed wetlands generally have not been used in remedi<strong>at</strong>ion<strong>of</strong> hazardous waste sites; however, constructed and n<strong>at</strong>uralwetlands have been investig<strong>at</strong>ed for <strong>the</strong> phytodegrad<strong>at</strong>ion <strong>of</strong>munitions-contamin<strong>at</strong>ed w<strong>at</strong>er. In <strong>the</strong> future, constructedwetlands might become an option for tre<strong>at</strong>ment <strong>of</strong> w<strong>at</strong>er extractedfrom hazardous waste sites, using rhiz<strong>of</strong>iltr<strong>at</strong>ion andphytodegrad<strong>at</strong>ion. Integr<strong>at</strong>ion <strong>of</strong> hazardous waste sitephytoremedi<strong>at</strong>ion and constructed wetland technologies mightincrease in <strong>the</strong> future.Combin<strong>at</strong>ions <strong>of</strong> Phytoremedi<strong>at</strong>ion ProcessesAt a phytoremedi<strong>at</strong>ion site, combin<strong>at</strong>ions <strong>of</strong> <strong>the</strong> phytoremedi<strong>at</strong>ionprocesses discussed above may occur simultaneously or insequence for a particular contaminant, or different processesmay act on different contaminants or <strong>at</strong> different exposureconcentr<strong>at</strong>ions. For example, TCE in soil can be subject tobiodegrad<strong>at</strong>ion in <strong>the</strong> root zone (rhizodegrad<strong>at</strong>ion) andmetabolism within <strong>the</strong> plant (phytodegrad<strong>at</strong>ion), with loss <strong>of</strong>some contaminant or metabolite through vol<strong>at</strong>iliz<strong>at</strong>ion from <strong>the</strong>10


plant (phytovol<strong>at</strong>iliz<strong>at</strong>ion). Some metals or radionuclides inw<strong>at</strong>er can be accumul<strong>at</strong>ed on or within roots (rhiz<strong>of</strong>iltr<strong>at</strong>ion)while o<strong>the</strong>r metals or radionuclides are simultaneously taken upinto <strong>the</strong> aerial portion <strong>of</strong> <strong>the</strong> plant (phytoextraction).Forensic Phytoremedi<strong>at</strong>ionSome undisturbed contamin<strong>at</strong>ed sites, such as inactive landtre<strong>at</strong>ment units, will n<strong>at</strong>urally reveget<strong>at</strong>e. Veget<strong>at</strong>ion may becomeestablished after <strong>the</strong> phytotoxic contamin<strong>at</strong>ion has been reducedthrough n<strong>at</strong>urally-occurring biodegrad<strong>at</strong>ion, abiotic processessuch as vol<strong>at</strong>iliz<strong>at</strong>ion, or through intentional traditional remedialtechnologies. In <strong>the</strong>se cases, <strong>the</strong> veget<strong>at</strong>ion would indic<strong>at</strong>e th<strong>at</strong><strong>the</strong> contaminants are no longer bioavailable or toxic to <strong>the</strong>established plant species. Altern<strong>at</strong>ively, a plant th<strong>at</strong> can withstand<strong>the</strong> contaminant might preferentially become established, andperhaps <strong>the</strong>n contribute to additional contaminant loss through<strong>the</strong> phytoremedi<strong>at</strong>ion processes discussed above. This hasapparently happened <strong>at</strong> a petroleum refinery waste sludgeimpoundment, in which mulberry trees became establishedthrough n<strong>at</strong>ural reveget<strong>at</strong>ion on sludges containing PAHs (Olsonand Fletcher, 2000). Root exud<strong>at</strong>es from mulberry trees werefound to be good substr<strong>at</strong>es for microbial degrad<strong>at</strong>ion <strong>of</strong>recalcitrant compounds such as PAHs (Hegde and Fletcher,1996). Examin<strong>at</strong>ion <strong>of</strong> n<strong>at</strong>urally-reveget<strong>at</strong>ed sites has beentermed forensic phytoremedi<strong>at</strong>ion, in which <strong>the</strong> beneficial effects<strong>of</strong> <strong>the</strong> veget<strong>at</strong>ion, reasons for <strong>the</strong> veget<strong>at</strong>ion re-establishment,contaminant loss mechanisms, and prediction <strong>of</strong> future impactshave to be deduced after <strong>the</strong> veget<strong>at</strong>ion has appeared. Forensicphytoremedi<strong>at</strong>ion investig<strong>at</strong>ions seek to verify and quantifyn<strong>at</strong>urally-occurring phytoremedi<strong>at</strong>ion <strong>at</strong> a contamin<strong>at</strong>ed site.The study cited above is <strong>the</strong> only in-depth forensicphytoremedi<strong>at</strong>ion study to d<strong>at</strong>e, although n<strong>at</strong>urally-reveget<strong>at</strong>edsites have been examined in a number <strong>of</strong> studies in an <strong>at</strong>temptto identify potentially useful plant species. N<strong>at</strong>ural reveget<strong>at</strong>ion<strong>of</strong> a site th<strong>at</strong> leads to contaminant <strong>at</strong>tenu<strong>at</strong>ion could be considereda form <strong>of</strong> or enhancement <strong>of</strong> n<strong>at</strong>ural <strong>at</strong>tenu<strong>at</strong>ion. Asphytoremedi<strong>at</strong>ion is likely to be a lengthy process due to <strong>the</strong>rel<strong>at</strong>ively slow growth <strong>of</strong> veget<strong>at</strong>ion, n<strong>at</strong>urally-reveget<strong>at</strong>ed sitesare useful because <strong>the</strong>y provide <strong>the</strong> equivalent <strong>of</strong> a longestablishedresearch plot.Environmental Monitoring and Bioassays(Phytoinvestig<strong>at</strong>ion)Bioassays using plants have been used routinely in <strong>the</strong>environmental sciences. In some cases, <strong>the</strong> effectiveness <strong>of</strong>bioremedi<strong>at</strong>ion efforts <strong>at</strong> hazardous waste sites has beenassessed using plant bioassays. Phytotoxicity testing was usedto determine <strong>the</strong> extent <strong>of</strong> bioremedi<strong>at</strong>ion <strong>of</strong> a contamin<strong>at</strong>ed soil(Baud-Grasset et al., 1993). A plant assay was used on site totest for levels <strong>of</strong> arsenic, chromium, and copper in soil (Sandhuet al., 1991). In o<strong>the</strong>r cases, potential impacts on <strong>the</strong> environmenthave been investig<strong>at</strong>ed or monitored using plants, such as inassessing <strong>the</strong> uptake <strong>of</strong> metals from land-applied sludges. Airpollution has been monitored by analysis <strong>of</strong> plant tissues and <strong>of</strong>particul<strong>at</strong>es deposited on leaves.In geobotany, <strong>the</strong> presence <strong>of</strong> a particular plant species such asa hyperaccumul<strong>at</strong>or can be indic<strong>at</strong>ive <strong>of</strong> an underlying ore body.In biogeochemistry, <strong>the</strong> change in metals concentr<strong>at</strong>ions withina particular plant species, over a wide area, can also indic<strong>at</strong>e ahost rock for an ore body. Analysis <strong>of</strong> previously collectedherbarium specimens can also lead to identific<strong>at</strong>ion <strong>of</strong> areas th<strong>at</strong>could contain ore bodies (Brooks, 1998d).The presence <strong>of</strong> different species <strong>of</strong> plants also provides cluesas to <strong>the</strong> presence and depth <strong>of</strong> ground w<strong>at</strong>er (Meinzer, 1927).<strong>Ground</strong>-w<strong>at</strong>er plume movement has been investig<strong>at</strong>ed throughanalysis <strong>of</strong> tree samples. Tree ring d<strong>at</strong>a indic<strong>at</strong>ed <strong>the</strong> directionand velocity <strong>of</strong> a chloride plume in ground w<strong>at</strong>er near a landfill(Vroblesky and Yanosky, 1990) and were correl<strong>at</strong>ed with nickelconcentr<strong>at</strong>ions in a ground-w<strong>at</strong>er plume near a landfill andstainless steel plant (Yanosky and Vroblesky, 1992). Failure inportions <strong>of</strong> a phytoremedi<strong>at</strong>ion project might provide inform<strong>at</strong>ionabout <strong>the</strong> contamin<strong>at</strong>ed soil or ground w<strong>at</strong>er, as unhealthy ordying veget<strong>at</strong>ion might indic<strong>at</strong>e previously undetected hot spots<strong>of</strong> higher contamin<strong>at</strong>ion.Applicable Media<strong>Ground</strong> <strong>W<strong>at</strong>er</strong>For selected site conditions, contaminants in ground w<strong>at</strong>er maybe addressed using phytodegrad<strong>at</strong>ion, phytovol<strong>at</strong>iliz<strong>at</strong>ion,hydraulic control, veget<strong>at</strong>ive caps, constructed wetlands, ripariancorridors, and buffer strips. Extracted ground w<strong>at</strong>er may betre<strong>at</strong>ed using rhiz<strong>of</strong>iltr<strong>at</strong>ion, or in some cases, used as irrig<strong>at</strong>ionw<strong>at</strong>er th<strong>at</strong> <strong>the</strong>n undergoes rhizodegrad<strong>at</strong>ion andphytodegrad<strong>at</strong>ion.The primary consider<strong>at</strong>ions for ground-w<strong>at</strong>er contamin<strong>at</strong>ion are<strong>the</strong> depth to <strong>the</strong> ground w<strong>at</strong>er and <strong>the</strong> depth to <strong>the</strong> contamin<strong>at</strong>edzone. In-situ ground-w<strong>at</strong>er phytoremedi<strong>at</strong>ion is essentially limitedto unconfined aquifers in which <strong>the</strong> w<strong>at</strong>er table depths are within<strong>the</strong> reach <strong>of</strong> plant roots and to a zone <strong>of</strong> contamin<strong>at</strong>ion in <strong>the</strong>uppermost portion <strong>of</strong> <strong>the</strong> w<strong>at</strong>er table th<strong>at</strong> is accessible to <strong>the</strong>plant roots. <strong>Plant</strong> roots will not grow through clean ground w<strong>at</strong>erto a deeper contamin<strong>at</strong>ed zone. If in-situ remedi<strong>at</strong>ion <strong>of</strong> deepercontamin<strong>at</strong>ed w<strong>at</strong>er is desired, modeling may be useful todetermine if <strong>the</strong> w<strong>at</strong>er table can be lowered by <strong>the</strong> plants orthrough pumping, or if ground w<strong>at</strong>er movement can be inducedtowards <strong>the</strong> roots. However, modeling may be hindered by <strong>the</strong>uncertainty and seasonality <strong>of</strong> w<strong>at</strong>er uptake r<strong>at</strong>es by plants.Careful field measurements and conserv<strong>at</strong>ive estim<strong>at</strong>es <strong>of</strong> w<strong>at</strong>eruptake will be necessary, and modeling results should beconfirmed by observ<strong>at</strong>ions <strong>of</strong> <strong>the</strong> w<strong>at</strong>er table. Deep groundw<strong>at</strong>er th<strong>at</strong> is beyond <strong>the</strong> reach <strong>of</strong> plant roots could be remedi<strong>at</strong>edby phytoremedi<strong>at</strong>ion after <strong>the</strong> w<strong>at</strong>er is pumped from <strong>the</strong>subsurface using extraction wells, and <strong>the</strong>n applied to aphytoremedi<strong>at</strong>ion tre<strong>at</strong>ment system. For ground-w<strong>at</strong>ercontainment, <strong>the</strong> r<strong>at</strong>e <strong>of</strong> ground-w<strong>at</strong>er flow into <strong>the</strong>phytoremedi<strong>at</strong>ion area should be m<strong>at</strong>ched by <strong>the</strong> r<strong>at</strong>e <strong>of</strong> w<strong>at</strong>eruptake by <strong>the</strong> plants to prevent migr<strong>at</strong>ion past <strong>the</strong> veget<strong>at</strong>ion.Surface <strong>W<strong>at</strong>er</strong> and Waste <strong>W<strong>at</strong>er</strong>Surface w<strong>at</strong>er can be tre<strong>at</strong>ed using rhiz<strong>of</strong>iltr<strong>at</strong>ion orphytodegrad<strong>at</strong>ion, in ponds, engineered tanks, n<strong>at</strong>ural wetlands,or constructed wetlands. In some cases, <strong>the</strong> contamin<strong>at</strong>edw<strong>at</strong>er can be used as irrig<strong>at</strong>ion w<strong>at</strong>er in which <strong>the</strong> contaminants<strong>the</strong>n undergo rhizodegrad<strong>at</strong>ion and phytodegrad<strong>at</strong>ion.Soil, Sediment, and SludgeContamin<strong>at</strong>ed soil, sediment, or sludge can be tre<strong>at</strong>ed usingphytoextraction, phytostabiliz<strong>at</strong>ion, rhizodegrad<strong>at</strong>ion,phytodegrad<strong>at</strong>ion, and phytovol<strong>at</strong>iliz<strong>at</strong>ion, or through veget<strong>at</strong>ivecap applic<strong>at</strong>ions. Phytoremedi<strong>at</strong>ion is most appropri<strong>at</strong>e for largeareas <strong>of</strong> a rel<strong>at</strong>ively thin surface layer <strong>of</strong> contamin<strong>at</strong>ed soil,within <strong>the</strong> root depth <strong>of</strong> <strong>the</strong> selected plant. Deeper soilcontamin<strong>at</strong>ion, high contaminant concentr<strong>at</strong>ions, or small soilvolumes might be more effectively tre<strong>at</strong>ed using conventionaltechnologies, although through future phytoremedi<strong>at</strong>ion research,<strong>the</strong> capabilities <strong>of</strong> phytoremedi<strong>at</strong>ion might be increased. Soilcharacteristics, such as texture and w<strong>at</strong>er content (degree <strong>of</strong>s<strong>at</strong>ur<strong>at</strong>ion), should be conducive to plant growth.11


AirPhytoremedi<strong>at</strong>ion research and applic<strong>at</strong>ion have focused oncontamin<strong>at</strong>ed solid or liquid media. There has been littlediscussion <strong>of</strong> phytoremedi<strong>at</strong>ion <strong>of</strong> contamin<strong>at</strong>ed air or soil gas,and no such applic<strong>at</strong>ion <strong>of</strong> phytoremedi<strong>at</strong>ion. However, airbornecontaminants can be directly withdrawn from <strong>the</strong><strong>at</strong>mosphere through uptake <strong>of</strong> gaseous contaminants by plantleaves or by deposition <strong>of</strong> contamin<strong>at</strong>ed particul<strong>at</strong>e m<strong>at</strong>ter onto<strong>the</strong> leaves. Some plants appear to remove vol<strong>at</strong>ile compoundsfrom air, in addition to removing <strong>the</strong> contaminants through <strong>the</strong>action <strong>of</strong> roots and soil microbes. In one study, potted mumsremoved 61% <strong>of</strong> formaldehyde, 53% <strong>of</strong> benzene, and 41% <strong>of</strong>TCE (Ral<strong>of</strong>f, 1989). A critical review paper on phytoremedi<strong>at</strong>ioncited a study indic<strong>at</strong>ing th<strong>at</strong> planted soil was a sink for benzenevapor in air, with subsequent soil biodegrad<strong>at</strong>ion <strong>of</strong> benzene; <strong>the</strong>r<strong>at</strong>e <strong>of</strong> benzene depletion for <strong>the</strong> planted soil was twice as gre<strong>at</strong>as for unplanted soil (Shimp et al., 1993). Contamin<strong>at</strong>ed air hasbeen remedi<strong>at</strong>ed by drawing <strong>the</strong> air through soil beds in whichmicrobial activity helps to degrade <strong>the</strong> contaminants. It isconceivable th<strong>at</strong> this applic<strong>at</strong>ion <strong>of</strong> biodegrad<strong>at</strong>ion could beenhanced by <strong>the</strong> presence <strong>of</strong> <strong>the</strong> root zone <strong>of</strong> plants.Phytoremedi<strong>at</strong>ion <strong>of</strong> contamin<strong>at</strong>ed air and soil gas may becomea subject for future research.Applicable ContaminantsInorganic contaminants amenable to phytoremedi<strong>at</strong>ion includemetals (Table 1) and metalloids, non-metals, radionuclides, andnutrients (Table 2). Organic contaminants amenable tophytoremedi<strong>at</strong>ion include petroleum hydrocarbons, chlorin<strong>at</strong>edsolvents, pesticides, munitions, wood-preserving wastes,surfactants, and some o<strong>the</strong>rs (Table 3). These tables listcontaminants, phytoremedi<strong>at</strong>ion processes, and media, alongwith some examples <strong>of</strong> contaminant concentr<strong>at</strong>ions and plantsth<strong>at</strong> have been investig<strong>at</strong>ed for phytoremedi<strong>at</strong>ion. <strong>Research</strong>and applic<strong>at</strong>ion <strong>of</strong> phytoremedi<strong>at</strong>ion has provided a large body<strong>of</strong> knowledge which cannot be given in <strong>the</strong>se summary tablesand which can be obtained from <strong>the</strong> phytoremedi<strong>at</strong>ion liter<strong>at</strong>ure.Some additional sources include <strong>the</strong> Intern<strong>at</strong>ional Journal <strong>of</strong>Phytoremedi<strong>at</strong>ion, for all contaminants; INEEL (2000) and Terryand Bañuelos (2000) for inorganic contaminants; and Frick et al.(1999) for petroleum hydrocarbon contamin<strong>at</strong>ion.Phytoremedi<strong>at</strong>ion may be limited by high contaminantconcentr<strong>at</strong>ions, as <strong>the</strong>se concentr<strong>at</strong>ions are likely to be phytotoxicor could cause an unacceptable decrease in plant growth. Areas<strong>of</strong> higher, phytotoxic contaminant concentr<strong>at</strong>ions may have to betre<strong>at</strong>ed using o<strong>the</strong>r technologies, or excav<strong>at</strong>ed and landfilled,with phytoremedi<strong>at</strong>ion being used for <strong>the</strong> lower contaminantconcentr<strong>at</strong>ion areas <strong>of</strong> a site. Phytoremedi<strong>at</strong>ion (such asrhizodegrad<strong>at</strong>ion) may be suited for a “polishing” or final step, forexample, if active land tre<strong>at</strong>ment bioremedi<strong>at</strong>ion has endedwithout having achieved a desired low contaminant concentr<strong>at</strong>ion.Future long-term field studies with additional plant species mayindic<strong>at</strong>e th<strong>at</strong> <strong>the</strong>re are fewer limit<strong>at</strong>ions than currently thought.The contaminant concentr<strong>at</strong>ions th<strong>at</strong> are phytotoxic to specificplants are likely to be site-specific, and affected by soil, clim<strong>at</strong>e,and bioavailability. Aged compounds in soil can be much lessbioavailable. This will decrease phytotoxicity, but can alsodecrease <strong>the</strong> effectiveness <strong>of</strong> phytoremedi<strong>at</strong>ion. Site-specificphytotoxicity or tre<strong>at</strong>ability studies should use contamin<strong>at</strong>ed soilfrom <strong>the</strong> site r<strong>at</strong>her than uncontamin<strong>at</strong>ed soil spiked with <strong>the</strong>contaminant. Phytotoxic concentr<strong>at</strong>ion levels will need to bedetermined on a site-specific basis, although liter<strong>at</strong>ure valuescan provide a first approxim<strong>at</strong>ion. Inform<strong>at</strong>ion on concentr<strong>at</strong>ionsfrom one site or from a labor<strong>at</strong>ory study may not be applicable toano<strong>the</strong>r site with different soil and geochemical conditions.Robinson et al. (1997) found th<strong>at</strong> nickel content in ahyperaccumul<strong>at</strong>or plant was correl<strong>at</strong>ed with <strong>the</strong> ammoniumacet<strong>at</strong>e-extractable nickel concentr<strong>at</strong>ion <strong>of</strong> <strong>the</strong> soil. This suggeststh<strong>at</strong> <strong>the</strong> potential for successful hyperaccumul<strong>at</strong>ion <strong>of</strong> a metalfrom a soil might best be predicted by <strong>the</strong> soil concentr<strong>at</strong>iongiven by a specific extraction th<strong>at</strong> reflects bioavailable metal,r<strong>at</strong>her than by <strong>the</strong> total metal content <strong>of</strong> <strong>the</strong> soil.The presence <strong>of</strong> dense non-aqueous phase liquids (DNAPLs) orlight non-aqueous phase liquids (LNAPLs) will adversely affectplant growth due to <strong>the</strong> rel<strong>at</strong>ively high contaminant concentr<strong>at</strong>ionsresulting from <strong>the</strong> NAPL and <strong>the</strong> physical impact <strong>of</strong> <strong>the</strong> NAPLfluid which interferes with oxygen and w<strong>at</strong>er transfer. The pH <strong>of</strong>a contamin<strong>at</strong>ed medium can also affect plant growth by changing<strong>the</strong> bioavailability <strong>of</strong> nutrients or toxic compounds. Mixtures <strong>of</strong>different contaminants might not be effectively tre<strong>at</strong>ed using oneplant or individual phytoremedi<strong>at</strong>ion method. The use <strong>of</strong> severalplants, or a tre<strong>at</strong>ment train approach with o<strong>the</strong>r remedialtechnologies, might be required. When applying <strong>the</strong> results <strong>of</strong>labor<strong>at</strong>ory studies th<strong>at</strong> examined contaminants individually,synergistic or antagonistic effects need to considered whentre<strong>at</strong>ing mixtures <strong>of</strong> wastes. For example, <strong>the</strong> phytoremedi<strong>at</strong>ionbehavior <strong>of</strong> a plant (i.e., uptake <strong>of</strong> metals) may be different formixtures <strong>of</strong> metals than for one metal alone (Ebbs et al., 1997).Veget<strong>at</strong>ionRoot morphology and depth are important plant characteristicsfor phytoremedi<strong>at</strong>ion. A fibrous root system, such as found ingrasses (e.g., fescue), has numerous fine roots spread throughout<strong>the</strong> soil and will provide maximum contact with <strong>the</strong> soil due to <strong>the</strong>high surface area <strong>of</strong> <strong>the</strong> roots. A tap root system (such as inalfalfa) is domin<strong>at</strong>ed by one larger central root. Manyhyperaccumul<strong>at</strong>ors, such as Thlaspi caerulescens, have a taproot system, which limits root contact to rel<strong>at</strong>ively small volumes<strong>of</strong> soil (Ernst, 1996).Root depth directly impacts <strong>the</strong> depth <strong>of</strong> soil th<strong>at</strong> can be remedi<strong>at</strong>edor depth <strong>of</strong> ground w<strong>at</strong>er th<strong>at</strong> can be influenced, as close contactis needed between <strong>the</strong> root and <strong>the</strong> contaminant or w<strong>at</strong>er. Thefibrous root systems <strong>of</strong> some prairie grasses can extend to about6 to 10 feet. Alfalfa roots can potentially reach quite deep, downto about 30 feet. However, <strong>the</strong>se values represent maximumdepths th<strong>at</strong> are not likely to occur in most cases. The effectivedepth for phytoremedi<strong>at</strong>ion using most non-woody plant speciesis likely to be only one or two feet. Most metal accumul<strong>at</strong>ors haveroot zones limited to <strong>the</strong> top foot <strong>of</strong> soil, which restricts <strong>the</strong> use<strong>of</strong> phytoextraction to shallow soils. The effective depth <strong>of</strong> treeroots is likely to be in <strong>the</strong> few tens <strong>of</strong> feet or less, with oneoptimistic estim<strong>at</strong>e th<strong>at</strong> trees will be useful for extraction <strong>of</strong>ground w<strong>at</strong>er up to 30 feet deep (G<strong>at</strong>liff, 1994). <strong>Ground</strong> w<strong>at</strong>erfrom depths below <strong>the</strong> root zone can be pumped to <strong>the</strong> surfaceusing extraction wells and <strong>the</strong>n applied to a phytoremedi<strong>at</strong>ionsystem.Root depth can be manipul<strong>at</strong>ed to some degree during plantingby placement <strong>of</strong> a root ball <strong>at</strong> a desired depth or by using plantingtubes, or during growth, by restricting w<strong>at</strong>er infiltr<strong>at</strong>ion, thusforcing roots to extend deeper to obtain w<strong>at</strong>er. Root depth variesgre<strong>at</strong>ly among different types <strong>of</strong> plants, and can also varysignificantly for one species depending on local conditions suchas depth to w<strong>at</strong>er, soil w<strong>at</strong>er content, soil structure, depth <strong>of</strong> ahard pan, soil fertility, cropping pressure, contaminantconcentr<strong>at</strong>ion, or o<strong>the</strong>r conditions. The bulk <strong>of</strong> root mass will befound <strong>at</strong> shallower depths, with much less root mass <strong>at</strong> deeper12


depths. For example, measurement <strong>of</strong> <strong>the</strong> distribution <strong>of</strong> roots<strong>of</strong> three-year old oak trees (Quercus phellos L.) in <strong>the</strong> top 30 cm<strong>of</strong> soil indic<strong>at</strong>ed th<strong>at</strong> 90% <strong>of</strong> <strong>the</strong> root density was found in <strong>the</strong> top20 cm (K<strong>at</strong>ul et al., 1997). Ano<strong>the</strong>r survey <strong>of</strong> tree root systemsindic<strong>at</strong>ed th<strong>at</strong> most roots were in <strong>the</strong> first one or two meters(Dobson and M<strong>of</strong>f<strong>at</strong>, 1995). Also, deeper roots will provide avery small proportion <strong>of</strong> <strong>the</strong> w<strong>at</strong>er needed by <strong>the</strong> plant, except incases <strong>of</strong> drought.A large root mass and large biomass may be advantageous forvarious forms <strong>of</strong> phytoremedi<strong>at</strong>ion, for example, to allow agre<strong>at</strong>er mass <strong>of</strong> metals accumul<strong>at</strong>ion, gre<strong>at</strong>er transpir<strong>at</strong>ion <strong>of</strong>w<strong>at</strong>er, gre<strong>at</strong>er assimil<strong>at</strong>ion and metabolism <strong>of</strong> contaminants, orproduction <strong>of</strong> a gre<strong>at</strong>er amount <strong>of</strong> exud<strong>at</strong>es and enzymes.However, <strong>the</strong>re may be characteristics <strong>of</strong> a plant, such as <strong>the</strong>types <strong>of</strong> exud<strong>at</strong>es produced by <strong>the</strong> roots, th<strong>at</strong> are more importantto phytoremedi<strong>at</strong>ion effectiveness than biomass. Screeningstudies could help identify such characteristics. If a largebiomass is important, a fast growth r<strong>at</strong>e could potentially decrease<strong>the</strong> time required for remedi<strong>at</strong>ion. Liter<strong>at</strong>ure values for growthr<strong>at</strong>es and biomass production may be from studies in whichveget<strong>at</strong>ion was grown under normal agricultural practices (i.e.,in uncontamin<strong>at</strong>ed soil) and thus may not reflect <strong>the</strong> lower valuesth<strong>at</strong> are likely to occur under stressed conditions in contamin<strong>at</strong>edsoils.The different forms <strong>of</strong> phytoremedi<strong>at</strong>ion require different generalplant characteristics for optimum effectiveness. In rhiz<strong>of</strong>iltr<strong>at</strong>ionand phytostabiliz<strong>at</strong>ion, <strong>the</strong>se are <strong>the</strong> ability to remove metals, notransloc<strong>at</strong>ion <strong>of</strong> metals from <strong>the</strong> roots to <strong>the</strong> shoots, and rapidlygrowing roots. For phytoextraction, <strong>the</strong> plant should toler<strong>at</strong>e,transloc<strong>at</strong>e, and accumul<strong>at</strong>e high concentr<strong>at</strong>ions <strong>of</strong> heavy metalsin <strong>the</strong> shoots and leaves, and have a rapid growth r<strong>at</strong>e and highbiomass production. For rhizodegrad<strong>at</strong>ion, a plant should releaseappropri<strong>at</strong>e enzymes and o<strong>the</strong>r substances th<strong>at</strong> enhancebiodegrad<strong>at</strong>ion, not take up <strong>the</strong> contaminant, and have <strong>the</strong>appropri<strong>at</strong>e depth, r<strong>at</strong>e, and extent <strong>of</strong> root growth and decay.Phytodegrad<strong>at</strong>ion requires a plant th<strong>at</strong> can take up and metabolize<strong>the</strong> contaminant, without producing toxic degrad<strong>at</strong>ion products.For phytovol<strong>at</strong>iliz<strong>at</strong>ion, <strong>the</strong> plant must be able to take up andtransform <strong>the</strong> contaminant to a less toxic vol<strong>at</strong>ile form.Phytoremedi<strong>at</strong>ion research studies have examined numerousplants, but interest has focused on a smaller group for reasonssuch as widespread distribution, ready availability, ease <strong>of</strong>growth, an existing large knowledge base, or even <strong>the</strong> plant’scommodity value. Terrestrial plants are more likely to beeffective for phytoremedi<strong>at</strong>ion than aqu<strong>at</strong>ic plants due to <strong>the</strong>irlarger root systems. Poplar (or hybrid poplar) and cottonwoodtrees, such as <strong>the</strong> Eastern cottonwood (Populus deltoides), arefast-growing trees (some can grow more than 3 m/year (Newmanet al., 1997)) with a wide geographic distribution th<strong>at</strong> have <strong>the</strong>ability to take up or degrade contaminants. Indian mustard is arel<strong>at</strong>ively high biomass and fast-growing accumul<strong>at</strong>or plantwhich has <strong>the</strong> ability to take up and accumul<strong>at</strong>e metals andradionuclides. Sunflower (Helianthus annuus) can accumul<strong>at</strong>emetals and has about <strong>the</strong> same biomass as Indian mustard.Examples <strong>of</strong> metal hyperaccumul<strong>at</strong>ors th<strong>at</strong> have beeninvestig<strong>at</strong>ed include Thlaspi caerulescens (Alpine pennycress),but which is slow-growing and has a low biomass; Thlaspirotundifolium spp. cepaeifolium, <strong>the</strong> only knownhyperaccumul<strong>at</strong>or <strong>of</strong> Pb (Brooks, 1998e); and o<strong>the</strong>r Thlaspispecies th<strong>at</strong> can hyperaccumul<strong>at</strong>e cadmium, nickel, or zinc(Brooks, 1998c). Grasses have been investig<strong>at</strong>ed forrhizodegrad<strong>at</strong>ion and phytostabiliz<strong>at</strong>ion due to <strong>the</strong>ir widespreadgrowth and <strong>the</strong>ir extensive root systems. Examples includeryegrass, prairie grasses, and fescues. Some grasses, such asFestuca ovina, can take up metals but are not hyperaccumul<strong>at</strong>ors(Ernst, 1996). Alfalfa, a legume, has been investig<strong>at</strong>ed due to itsdeep root system, its ability to fix nitrogen, and a large knowledgebase about this plant. Although <strong>the</strong>se plants are some th<strong>at</strong> havebeen popular for research to d<strong>at</strong>e, future screening studies willundoubtedly add many more candid<strong>at</strong>es, some <strong>of</strong> which mayprove to be much more effective for phytoremedi<strong>at</strong>ion.Aqu<strong>at</strong>ic plants such as <strong>the</strong> flo<strong>at</strong>ing plants w<strong>at</strong>er hyacinth(Eichhornia crassipes), pennywort (Hydrocotyle umbell<strong>at</strong>a),duckweed (Lemna minor), and w<strong>at</strong>er velvet (Azolla pinn<strong>at</strong>a)(Salt et al., 1995) have been investig<strong>at</strong>ed for use in rhiz<strong>of</strong>iltr<strong>at</strong>ion,phytodegrad<strong>at</strong>ion, and phytoextraction. These plants havebeen used in w<strong>at</strong>er tre<strong>at</strong>ment, but are smaller and have smaller,slower-growing root systems than terrestrial plants (Dushenkovet al., 1995). Based on metals content and degree <strong>of</strong>bioaccumul<strong>at</strong>ion, Zayed et al. (1998) found th<strong>at</strong> duckweed couldbe an effective phytoremedi<strong>at</strong>or <strong>of</strong> cadmium, selenium, andcopper in waste w<strong>at</strong>er, and Zhu et al. (1999) found th<strong>at</strong> w<strong>at</strong>erhyacinth was a promising candid<strong>at</strong>e for phytoremedi<strong>at</strong>ion <strong>of</strong>cadmium, chromium, copper, and selenium. O<strong>the</strong>r aqu<strong>at</strong>icplants th<strong>at</strong> have been investig<strong>at</strong>ed include parrot fe<strong>at</strong>her,Phragmites reeds, and c<strong>at</strong>tails.The uptake <strong>of</strong> metals into plants was investig<strong>at</strong>ed during researchin <strong>the</strong> 1970s and 1980s on land applic<strong>at</strong>ion <strong>of</strong> sludges andwastes, in order to study <strong>the</strong> potential impacts on consumers(human or animal) <strong>of</strong> <strong>the</strong> plants grown on sludge-amended land(Chaney, 1983). Inform<strong>at</strong>ion on potentially useful plants, as wellas on <strong>the</strong>ir cultural requirements, may be found in <strong>the</strong> liter<strong>at</strong>ureresulting from this research (U.S. EPA, 1983).Careful selection <strong>of</strong> <strong>the</strong> plant and plant variety is critical, first, toensure th<strong>at</strong> <strong>the</strong> plant is appropri<strong>at</strong>e for <strong>the</strong> clim<strong>at</strong>ic and soilconditions <strong>at</strong> <strong>the</strong> site, and second, for effectiveness <strong>of</strong> <strong>the</strong>phytoremedi<strong>at</strong>ion. <strong>Plant</strong> species th<strong>at</strong> are long-term competitorsand survivors under adverse changing conditions will have anadvantage. Depending on <strong>the</strong> clim<strong>at</strong>ic and soil conditions, <strong>the</strong>plant may need resistance to or tolerance <strong>of</strong> disease, he<strong>at</strong>, cold,insects, drought, chemicals, and stress. In some cases, saltresistantplants (halophytes), such as salt cedar, might benecessary in cases <strong>of</strong> saline soils or ground w<strong>at</strong>er. The use <strong>of</strong>phre<strong>at</strong>ophytes can enhance hydraulic control <strong>of</strong> ground w<strong>at</strong>er.O<strong>the</strong>r consider<strong>at</strong>ions in plant selection include <strong>the</strong> use <strong>of</strong> annualsor perennials, <strong>the</strong> use <strong>of</strong> a monoculture or several plant species,and <strong>the</strong> use <strong>of</strong> deciduous trees. The seeds or plants (or variety<strong>of</strong> <strong>the</strong> plant) should be from, or adapted to, <strong>the</strong> clim<strong>at</strong>e <strong>of</strong> <strong>the</strong>phytoremedi<strong>at</strong>ion site. Viable seeds and disease-free plants areimportant in establishing <strong>the</strong> veget<strong>at</strong>ion. There should be notransport, import, quarantine, or use restrictions. A sufficientquantity <strong>of</strong> plants or seeds should be available when needed.Variability in phytoremedi<strong>at</strong>ion efficacy in varieties, cultivars, orgenotypes <strong>of</strong> a given species has been encountered in alfalfa forhydrocarbon rhizodegrad<strong>at</strong>ion (Wiltse et al., 1998), Brassicajuncea for metals uptake (Kumar et al., 1995), and possibly inpoplars. Biomass and zinc content varied significantly betweendifferent popul<strong>at</strong>ions <strong>of</strong> Thlaspi caerulescens (Brooks, 1998b)and cadmium, copper, and zinc uptake varied widely amongwillow clones (Greger and Landberg, 1999). The type, amount,and effectiveness <strong>of</strong> exud<strong>at</strong>es and enzymes produced by aplant’s root will vary between species and even within subspeciesor varieties <strong>of</strong> one species. A screening <strong>of</strong> phytotoxicity andeffectiveness <strong>of</strong> cultivars/varieties might be required on a sitespecificbasis as an initial step in plant selection.13


Genetic engineering <strong>of</strong> plants has <strong>the</strong> potential to increase <strong>the</strong>effectiveness and use <strong>of</strong> phytoremedi<strong>at</strong>ion, as plants can begenetically modified using specific bacterial, fungal, animal, orplant genes th<strong>at</strong> are known to have useful properties forcontaminant uptake, degrad<strong>at</strong>ion, or transform<strong>at</strong>ion. Stomp etal. (1994) discuss <strong>the</strong> potential benefits <strong>of</strong> genetic engineeringfor phytoremedi<strong>at</strong>ion, with some examples <strong>of</strong> wh<strong>at</strong> geneticallyengineeredplants can achieve. Numerous examples <strong>of</strong> promisingresearch into genetic engineering for phytoremedi<strong>at</strong>ion aregiven by Gleba et al. (1999). Genetically-modified canola andtobacco were able to survive concentr<strong>at</strong>ions <strong>of</strong> Hg(II) th<strong>at</strong> killednon-modified control plants, and <strong>the</strong> tobacco converted <strong>the</strong> toxicHg(II) to <strong>the</strong> less toxic metallic mercury and vol<strong>at</strong>ilized it (Meagheret al., 2000). These results were also seen with geneticallymodifiedyellow poplar plantlets (Rugh et al., 1998). Geneticengineering <strong>of</strong> tobacco seedlings to express a bacterialnitroreductase increased <strong>the</strong>ir tolerance ten-fold to TNT andnitroglycerine, and apparently doubled <strong>the</strong> r<strong>at</strong>e <strong>of</strong> nitroglycerinedegrad<strong>at</strong>ion by <strong>the</strong> seedlings (Meagher, 2000). Transgenictobacco plants containing mammalian cytochrome P450 2E1had higher concentr<strong>at</strong>ions <strong>of</strong> a metabolite <strong>of</strong> TCE in <strong>the</strong> planttissue than did transgenic control plants without P450 2E1,indic<strong>at</strong>ing increased transform<strong>at</strong>ion <strong>of</strong> TCE within <strong>the</strong> plant (Dotyet al., 2000). A similar experiment indic<strong>at</strong>ed an apparentincrease in dehalogen<strong>at</strong>ion <strong>of</strong> ethylene dibromide by plantscontaining P450 2E1 (Doty et al., 2000). The use <strong>of</strong> appropri<strong>at</strong>egenes could increase <strong>the</strong> accumul<strong>at</strong>ion <strong>of</strong> toxic metals by fastergrowing,higher-biomass plants, and bacterial genes th<strong>at</strong> enhancePCB biodegrad<strong>at</strong>ion could assist in degrad<strong>at</strong>ion <strong>of</strong> PCBs byplants (Meagher, 2000). In conjunction with research ongenetically-engineered plants for phytoremedi<strong>at</strong>ion, however,regul<strong>at</strong>ory and public concerns will have to be addressed for thisrel<strong>at</strong>ively new technology.Cost Inform<strong>at</strong>ionWhen research <strong>of</strong> phytoremedi<strong>at</strong>ion began, initial cost estim<strong>at</strong>espredicted th<strong>at</strong> phytoremedi<strong>at</strong>ion would have lower costs thano<strong>the</strong>r remedial technologies. Actual cost d<strong>at</strong>a forphytoremedi<strong>at</strong>ion technologies are sparse, and currently arefrom pilot-scale or experimental studies th<strong>at</strong> may not accur<strong>at</strong>elyreflect expected costs once <strong>the</strong> technology m<strong>at</strong>ures.Phytoremedi<strong>at</strong>ion costs will include preliminary tre<strong>at</strong>ability studiesto select <strong>the</strong> proper plant and to assess its effectiveness; soilprepar<strong>at</strong>ion; planting; maintenance such as irrig<strong>at</strong>ion andfertiliz<strong>at</strong>ion; monitoring, which may include plant nutrient st<strong>at</strong>us,plant contaminant concentr<strong>at</strong>ions, as well as soil or w<strong>at</strong>erconcentr<strong>at</strong>ions, and air monitoring in <strong>the</strong> case <strong>of</strong>phytovol<strong>at</strong>iliz<strong>at</strong>ion; and disposal <strong>of</strong> contamin<strong>at</strong>ed biomass.Estim<strong>at</strong>ed costs for an actual field-scale research study <strong>of</strong>rhizodegrad<strong>at</strong>ion <strong>of</strong> petroleum hydrocarbons in soil were $240/yd 3 or $160/ton. The costs for a full-scale system were estim<strong>at</strong>edto be significantly lower, <strong>at</strong> $20/yd 3 or $13/ton, due to economy<strong>of</strong> scale and lack <strong>of</strong> research-oriented expenses (AATDF, 1998).Based on a small-scale field applic<strong>at</strong>ion <strong>of</strong> lead phytoextraction,predicted costs for removal <strong>of</strong> lead from surface soils usingphytoextraction were 50% to 75% <strong>of</strong> traditional remedialtechnology costs (Blaylock et al., 1999). The cost forphytoremedi<strong>at</strong>ion <strong>of</strong> 60-cm deep lead-contamin<strong>at</strong>ed soil wasestim<strong>at</strong>ed <strong>at</strong> $6/m 2 (in 1996 dollars), compared to <strong>the</strong> range <strong>of</strong>about $15/m 2 for a soil cap to $730/m 2 for excav<strong>at</strong>ion, stabiliz<strong>at</strong>ion,and <strong>of</strong>f-site disposal (Berti and Cunningham, 1997). Costestim<strong>at</strong>es made for remedi<strong>at</strong>ion <strong>of</strong> a hypo<strong>the</strong>tical case <strong>of</strong> a 20 in.-thick layer <strong>of</strong> cadmium-, zinc-, and cesium-137-contamin<strong>at</strong>edsediments from a 1.2 acre chemical waste disposal pond indic<strong>at</strong>edth<strong>at</strong> phytoextraction would cost about one third <strong>the</strong> amount <strong>of</strong> soilwashing (Cornish et al., 1995). Costs were estim<strong>at</strong>ed to be$60,000 to $100,000 using phytoextraction for remedi<strong>at</strong>ion <strong>of</strong>one acre <strong>of</strong> 20 in.-thick sandy loam compared to a minimum <strong>of</strong>$400,000 for just excav<strong>at</strong>ion and storage <strong>of</strong> this soil (Salt et al.,1995).The estim<strong>at</strong>ed cost for removal <strong>of</strong> explosives contamin<strong>at</strong>ion(TNT, RDX, HMX) from ground w<strong>at</strong>er using aqu<strong>at</strong>ic plants in afull-scale gravel-based system was $1.78 per thousand gallons(ESTCP, 1999). The estim<strong>at</strong>ed cost <strong>of</strong> removing radionuclidesfrom w<strong>at</strong>er with sunflowers in a rhiz<strong>of</strong>iltr<strong>at</strong>ion system was $2.00to $6.00 per thousand gallons (Cooney, 1996). Forphytostabiliz<strong>at</strong>ion, cropping system costs have been estim<strong>at</strong>ed<strong>at</strong> $200 to $10,000 per hectare, equivalent to $0.02 to $1.00 percubic meter <strong>of</strong> soil, assuming a one-meter root depth (Cunninghamet al., 1995). Estim<strong>at</strong>ed costs for hydraulic control and remedi<strong>at</strong>ion<strong>of</strong> an unspecified contaminant in a 20-foot deep aquifer <strong>at</strong> a oneacresite were $660,000 for conventional pump-and-tre<strong>at</strong>, and$250,000 for phytoremedi<strong>at</strong>ion using trees (G<strong>at</strong>liff, 1994). Costestim<strong>at</strong>es have been presented th<strong>at</strong> indic<strong>at</strong>e a very substantialsavings for an evapotranspir<strong>at</strong>ion cap compared to excav<strong>at</strong>ion,a RCRA Subtitle C cap, or a RCRA Subtitle D cap (RTDF, 1998).Recovery <strong>of</strong> some remedial costs through <strong>the</strong> sale <strong>of</strong> recoveredmetals when using phytoextraction has been proposed; however,it might be difficult to find a processor and market for <strong>the</strong> metalcontamin<strong>at</strong>edplant m<strong>at</strong>erial. Similarly, recovery <strong>of</strong> costs byselling a commodity type <strong>of</strong> veget<strong>at</strong>ion, such as alfalfa, lumber,or o<strong>the</strong>r wood products, could be difficult due to potentialconcerns about contaminant residues in <strong>the</strong> crop. Confirm<strong>at</strong>ionth<strong>at</strong> <strong>the</strong> veget<strong>at</strong>ion is uncontamin<strong>at</strong>ed may be required. In onecase, however, a contaminant in one geographic loc<strong>at</strong>ion maybe a desired nutrient in ano<strong>the</strong>r loc<strong>at</strong>ion. Biomass th<strong>at</strong> containsselenium (an essential nutrient) potentially could be transportedfrom areas with excessive selenium to areas th<strong>at</strong> are deficient inselenium and used for animal feed (Bañuelos et al., 1997). Costrecovery, and <strong>the</strong> appropri<strong>at</strong>eness <strong>of</strong> including it as a plantselection criterion, is an issue th<strong>at</strong> will likely have to wait untilgre<strong>at</strong>er experience has been gained in phytoremedi<strong>at</strong>ion, and itsapplic<strong>at</strong>ion becomes more accepted and widespread.Advantages(1) Early estim<strong>at</strong>es <strong>of</strong> <strong>the</strong> costs <strong>of</strong> phytoremedi<strong>at</strong>ion indic<strong>at</strong>eda substantial savings over <strong>the</strong> cost <strong>of</strong> traditionaltechnologies. As actual cost d<strong>at</strong>a are developed duringpilot-scale studies, it appears th<strong>at</strong> phytoremedi<strong>at</strong>ion willbe a lower-cost technology, although actual costs <strong>of</strong>routine applic<strong>at</strong>ion <strong>of</strong> phytoremedi<strong>at</strong>ion are still unclear.(2) Phytoremedi<strong>at</strong>ion has been perceived to be a moreenvironmentally-friendly “green” and low-tech altern<strong>at</strong>iveto more active and intrusive remedial methods. As such,public acceptance could be gre<strong>at</strong>er.(3) Phytoremedi<strong>at</strong>ion can be applied in situ to remedi<strong>at</strong>eshallow soil and ground w<strong>at</strong>er, and can be used in surfacew<strong>at</strong>er bodies.(4) Phytoremedi<strong>at</strong>ion does not have <strong>the</strong> destructive impacton soil fertility and structure th<strong>at</strong> some more vigorousconventional technologies may have, such as acidextraction and soil washing (Greger and Landberg, 1999).Instead, <strong>the</strong> presence <strong>of</strong> plants is likely to improve <strong>the</strong>overall condition <strong>of</strong> <strong>the</strong> soil, regardless <strong>of</strong> <strong>the</strong> degree <strong>of</strong>contaminant reduction.14


(5) Veget<strong>at</strong>ion can also reduce or prevent erosion and fugitivedust emissions.Disadvantages(1) A significant disadvantage <strong>of</strong> phytoremedi<strong>at</strong>ion is <strong>the</strong>depth limit<strong>at</strong>ion due to <strong>the</strong> generally shallow distribution<strong>of</strong> plant roots. Effective phytoremedi<strong>at</strong>ion <strong>of</strong> soil or w<strong>at</strong>ergenerally requires th<strong>at</strong> <strong>the</strong> contaminants be within <strong>the</strong>zone <strong>of</strong> influence <strong>of</strong> <strong>the</strong> plant roots. Selection <strong>of</strong> deeprootedplants and <strong>the</strong> use <strong>of</strong> techniques to induce deeprooting could help allevi<strong>at</strong>e this disadvantage.(2) A longer time period is likely to be required forphytoremedi<strong>at</strong>ion, as this technology is dependent onplant growth r<strong>at</strong>es for establishment <strong>of</strong> an extensive rootsystem or significant above-ground biomass. For example,in one estim<strong>at</strong>e <strong>the</strong> low growth r<strong>at</strong>e and biomass <strong>of</strong>hyperaccumul<strong>at</strong>ors meant th<strong>at</strong> remedi<strong>at</strong>ion <strong>of</strong> metalscould not be achieved within even 10 to 20 years (Ernst,1996). Ano<strong>the</strong>r estim<strong>at</strong>e was th<strong>at</strong> a heavy-metalcontamin<strong>at</strong>edsite would require 13 to 14 years to beremedi<strong>at</strong>ed, based on a field trial using Thlaspicaerulescens (Salt et al., 1995). Str<strong>at</strong>egies to addressthis potential difficulty include <strong>the</strong> selection <strong>of</strong> fastergrowingplants than hyperaccumul<strong>at</strong>ors, and <strong>the</strong>harvesting <strong>of</strong> <strong>the</strong> veget<strong>at</strong>ion several times a year. A fielddemonstr<strong>at</strong>ion <strong>of</strong> lead phytoextraction had three harvests<strong>of</strong> Indian mustard in one growing season to achieveacceptable levels <strong>of</strong> lead in <strong>the</strong> soil (Blaylock et al., 1999).However, a long time for remedi<strong>at</strong>ion may still occur witha high biomass plant; a period <strong>of</strong> 12 years was calcul<strong>at</strong>edfor removal <strong>of</strong> 0.6 mg/kg <strong>of</strong> cadmium, based on realisticwillow tree biomass production r<strong>at</strong>es and experimentallydeterminedcadmium uptake r<strong>at</strong>es (Greger and Landberg,1999).A need for rapid <strong>at</strong>tainment <strong>of</strong> remedial goals or imminentre-use <strong>of</strong> <strong>the</strong> land could elimin<strong>at</strong>e some forms <strong>of</strong>phytoremedi<strong>at</strong>ion (such as phytoextraction andrhizodegrad<strong>at</strong>ion) as an altern<strong>at</strong>ive. However, o<strong>the</strong>rforms <strong>of</strong> phytoremedi<strong>at</strong>ion, for o<strong>the</strong>r media, might occur<strong>at</strong> faster r<strong>at</strong>es, such as rhiz<strong>of</strong>iltr<strong>at</strong>ion for cleaning upcontamin<strong>at</strong>ed w<strong>at</strong>er.(3) <strong>Plant</strong> m<strong>at</strong>ter th<strong>at</strong> is contamin<strong>at</strong>ed will require ei<strong>the</strong>r properdisposal or an analysis <strong>of</strong> risk p<strong>at</strong>hways. Harvesting andproper disposal is required for plant biomass th<strong>at</strong>accumul<strong>at</strong>es heavy metals or radionuclides inphytoextraction and rhiz<strong>of</strong>iltr<strong>at</strong>ion, and may be necessaryfor o<strong>the</strong>r forms <strong>of</strong> phytoremedi<strong>at</strong>ion if contaminantsaccumul<strong>at</strong>e within <strong>the</strong> plant. The biomass may be subjectto regul<strong>at</strong>ory requirements for handling and disposal, andan appropri<strong>at</strong>e disposal facility will need to be identified.For example, sunflower plants th<strong>at</strong> extracted 137 Cs and90Sr from surface w<strong>at</strong>er were disposed <strong>of</strong> as radioactivewaste (Adler, 1996). The growth <strong>of</strong> plant m<strong>at</strong>ter representsan addition <strong>of</strong> mass to a contamin<strong>at</strong>ed site, since 94% to99.5% <strong>of</strong> fresh plant tissue is made up <strong>of</strong> carbon, hydrogen,and oxygen (Brady, 1974) which come from <strong>of</strong>fsite and<strong>the</strong> <strong>at</strong>mosphere. Should <strong>the</strong> phytoremedi<strong>at</strong>ion effort fail,an increased mass <strong>of</strong> m<strong>at</strong>erial will need to be remedi<strong>at</strong>ed.(4) A phytoremedi<strong>at</strong>ion system can lose its effectivenessduring winter (when plant growth slows or stops) or whendamage occurs to <strong>the</strong> veget<strong>at</strong>ion from we<strong>at</strong>her, disease,or pests. A back-up remedial technology might benecessary.(5) As with all remedial technologies, in some cases, <strong>the</strong>remay be uncertainty about <strong>at</strong>tainment <strong>of</strong> remedial goals,such as meeting concentr<strong>at</strong>ion goals in soil or groundw<strong>at</strong>er, or in achieving hydraulic containment. Benchscaleor pilot-scale tests to assess <strong>at</strong>tainment might notbe possible in some cases if rapid remedi<strong>at</strong>ion is desired,due to <strong>the</strong> potential rel<strong>at</strong>ively long periods <strong>of</strong> time forsome forms <strong>of</strong> phytoremedi<strong>at</strong>ion.(6) High initial contaminant concentr<strong>at</strong>ions can be phytotoxic,and prevent plant growth. Preliminary phytotoxicity studiesare likely to be necessary to screen candid<strong>at</strong>e plants.(7) There are a number <strong>of</strong> potential adverse effects. Theplant species should be selected, in part, to minimize<strong>the</strong>se potential problems, or managed to prevent suchproblems.(a) Introduction or spread <strong>of</strong> an inappropri<strong>at</strong>e or invasiveplant species (e.g., tamarisk or saltcedar) should beavoided. Noxious or invasive veget<strong>at</strong>ion canneg<strong>at</strong>ively impact <strong>the</strong> local ecosystem by escaping<strong>the</strong> phytoremedi<strong>at</strong>ion site and <strong>the</strong>n outcompetingand elimin<strong>at</strong>ing local species. This could neg<strong>at</strong>ivelyimpact animals and o<strong>the</strong>r plants in <strong>the</strong> ecosystem.O<strong>the</strong>r potential problems caused by inappropri<strong>at</strong>eplant species include allergy-causing pollens; odorsfrom veget<strong>at</strong>ion decay or <strong>at</strong> certain growth stages;plant debris such as fallen leaves or released seeds;hazards arising from <strong>the</strong> plant itself (such as adversehuman health effects <strong>of</strong> parts <strong>of</strong> <strong>the</strong> plant); <strong>at</strong>traction<strong>of</strong> pests; or root damage to underground utilities orfound<strong>at</strong>ions.(b) Potential transfer <strong>of</strong> contaminants to ano<strong>the</strong>r medium,<strong>the</strong> environment, and/or <strong>the</strong> food chain should beprevented, especially if <strong>the</strong>re is transform<strong>at</strong>ion <strong>of</strong> <strong>the</strong>contaminant into a more toxic, mobile, or bioavailableform. Bioconcentr<strong>at</strong>ion <strong>of</strong> toxic contaminants inplants and ingestion <strong>of</strong> those contaminants byecosystem consumers is a concern. However,p<strong>at</strong>hogen or herbivore pred<strong>at</strong>ion on metalaccumul<strong>at</strong>ingplants might not occur or might bereduced due to <strong>the</strong> presence <strong>of</strong> <strong>the</strong> metal (Boyd,1998). Phytovol<strong>at</strong>iliz<strong>at</strong>ion does involve release <strong>of</strong><strong>the</strong> contaminant to <strong>the</strong> <strong>at</strong>mosphere. In this case, itshould be confirmed th<strong>at</strong> an adequ<strong>at</strong>e destructionmechanism, such as photodegrad<strong>at</strong>ion in <strong>the</strong><strong>at</strong>mosphere, will occur. A risk analysis might berequired in cases such as elemental mercuryvol<strong>at</strong>iliz<strong>at</strong>ion, to ensure th<strong>at</strong> <strong>the</strong> degree <strong>of</strong> risk islessened through <strong>the</strong> use <strong>of</strong> phytovol<strong>at</strong>iliz<strong>at</strong>ion.(c) Potential adverse impacts on surrounding areasinclude drift <strong>of</strong> sprayed pesticides and hybridiz<strong>at</strong>ion<strong>of</strong> certain plant species.(8) <strong>Plant</strong> species or varieties <strong>of</strong> one species can varysignificantly in <strong>the</strong>ir efficacy for phytoremedi<strong>at</strong>ion. Therecan be a wide range in <strong>the</strong>ir response to a contaminantand concentr<strong>at</strong>ion <strong>of</strong> th<strong>at</strong> contaminant, in <strong>the</strong>ir uptake ormetabolism <strong>of</strong> <strong>the</strong> contaminant, or in <strong>the</strong>ir ability to growunder specific soil and clim<strong>at</strong>ic conditions. Due to <strong>the</strong>sefactors, phytoremedi<strong>at</strong>ion may not be an “<strong>of</strong>f-<strong>the</strong>-shelf”technology; r<strong>at</strong>her, site-specific studies may always benecessary prior to implement<strong>at</strong>ion.(9) Cultiv<strong>at</strong>ion <strong>of</strong> veget<strong>at</strong>ion <strong>of</strong>ten requires gre<strong>at</strong> care due tostresses <strong>of</strong> clim<strong>at</strong>e and pests; under <strong>the</strong> adverse conditions15


<strong>of</strong> contamin<strong>at</strong>ed soil or ground w<strong>at</strong>er, successful cultiv<strong>at</strong>ioncan be much more difficult. Additions to or modific<strong>at</strong>ions<strong>of</strong> normal agronomic practices might be required, andmay have to be determined through greenhouse or pilotscaletests. However, stressing <strong>of</strong> veget<strong>at</strong>ion might havebeneficial impacts as this may increase root exud<strong>at</strong>eproduction.(10) Phytoremedi<strong>at</strong>ion might require use <strong>of</strong> a gre<strong>at</strong>er landarea than o<strong>the</strong>r remedial methods. This might interferewith o<strong>the</strong>r remedi<strong>at</strong>ion or site activities.(11) Amendments and cultiv<strong>at</strong>ion practices might haveunintended consequences on contaminant mobility. Forexample, applic<strong>at</strong>ion <strong>of</strong> many common ammoniumcontainingfertilizers can lower <strong>the</strong> soil pH, which mightresult in increased metal mobility and leaching <strong>of</strong> metalsto ground w<strong>at</strong>er. Potential effects <strong>of</strong> soil amendmentsshould be understood before <strong>the</strong>ir use.Design Consider<strong>at</strong>ionsPhytoremedi<strong>at</strong>ion is one more potential technology to be appliedto remedi<strong>at</strong>ing a hazardous waste site. If initially proposed for asite, <strong>the</strong> phytoremedi<strong>at</strong>ion altern<strong>at</strong>ive will need to be comparedto o<strong>the</strong>r remedial technologies to determine which best suits <strong>the</strong>remedial goals. It is possible th<strong>at</strong> o<strong>the</strong>r technologies will be ableto remedi<strong>at</strong>e <strong>the</strong> site more effectively, th<strong>at</strong> several technologieswill be used, or th<strong>at</strong> phytoremedi<strong>at</strong>ion can fit into a tre<strong>at</strong>menttrain.Successful veget<strong>at</strong>ion growth depends strongly on <strong>the</strong> properclim<strong>at</strong>ic conditions. The correct amount and timing <strong>of</strong> precipit<strong>at</strong>ion,sunlight, shade, and wind, and <strong>the</strong> proper air temper<strong>at</strong>ure andgrowing season length are necessary to ensure growth. Localconditions and <strong>the</strong> suitability <strong>of</strong> <strong>the</strong> selected plant for <strong>the</strong>seconditions should always be assessed. Sources <strong>of</strong> knowledge<strong>of</strong> <strong>the</strong>se local conditions, such as agricultural extension agents,can be very beneficial.Soil amendments such as compost, manure, or fertilizersgenerally benefit veget<strong>at</strong>ion growth when added to soil before orafter planting. However, potential adverse effects <strong>of</strong> <strong>the</strong>iraddition must be considered before <strong>the</strong>y are added. Theseinclude <strong>the</strong> mobiliz<strong>at</strong>ion <strong>of</strong> contaminants through changes in soilchemistry, immobiliz<strong>at</strong>ion <strong>of</strong> contaminants through sorption ontoorganic m<strong>at</strong>ter or through humific<strong>at</strong>ion, changes in microbialpopul<strong>at</strong>ions, or reduction <strong>of</strong> phytoremedi<strong>at</strong>ion efficiency throughcompetitive uptake <strong>of</strong> nutrients r<strong>at</strong>her than contaminants.Veget<strong>at</strong>ion growth should be optimized through monitoring andmaintenance <strong>of</strong> proper soil or w<strong>at</strong>er pH, nutrient levels, and soilw<strong>at</strong>er content. Weeds and plant diseases can be controlledthrough cultural practices such as tilling or pesticide applic<strong>at</strong>ion,and by removal <strong>of</strong> diseased plant m<strong>at</strong>ter. Pests (insects, birds,or herbivores) can be controlled through <strong>the</strong> use <strong>of</strong> pesticides,netting, fencing, or traps. This can also help prevent undesirabletransfer <strong>of</strong> contaminants to <strong>the</strong> food chain.Monitoring Consider<strong>at</strong>ionsThe primary monitoring requirement and measure <strong>of</strong> remedialeffectiveness is likely to be <strong>the</strong> contaminant concentr<strong>at</strong>ion in <strong>the</strong>contamin<strong>at</strong>ed media. Due to <strong>the</strong> role <strong>of</strong> plant roots inphytoremedi<strong>at</strong>ion, <strong>the</strong> loc<strong>at</strong>ion <strong>of</strong> <strong>the</strong> roots will be important inplanning sample collection and in assessing sampling results.Sampling and analysis <strong>of</strong> plant tissues may be necessary tomeasure accumul<strong>at</strong>ion <strong>of</strong> contaminants within <strong>the</strong> plant andform<strong>at</strong>ion <strong>of</strong> metabolites. Inform<strong>at</strong>ion on methods for samplingand analyzing plant m<strong>at</strong>ter and transpir<strong>at</strong>ion gases will need tobecome available to phytoremedi<strong>at</strong>ion practitioners and tolabor<strong>at</strong>ories, and development <strong>of</strong> new analytical methods maybe necessary. Involvement <strong>of</strong> agricultural and botanical scientistswill be crucial in this effort. Their knowledge will also beimportant in maintaining and optimizing <strong>the</strong> plant system, asclim<strong>at</strong>ic, seasonal, plant growth stage, and o<strong>the</strong>r factors willimpact <strong>the</strong> effectiveness <strong>of</strong> <strong>the</strong> phytoremedi<strong>at</strong>ion. Development<strong>of</strong> protocols for performance monitoring are part <strong>of</strong> <strong>the</strong> goal <strong>of</strong> <strong>the</strong>Total Petroleum Hydrocarbons (TPH) in Soil and <strong>the</strong> Altern<strong>at</strong>iveCover Subgroups <strong>of</strong> <strong>the</strong> Phytoremedi<strong>at</strong>ion <strong>of</strong> Organics ActionTeam sponsored by <strong>the</strong> RTDF.The phytoremedi<strong>at</strong>ion process and loc<strong>at</strong>ion <strong>of</strong> <strong>the</strong> contaminantswithin <strong>the</strong> plant-soil-w<strong>at</strong>er system need to be known to ensureth<strong>at</strong> unplanned transfer <strong>of</strong> <strong>the</strong> contaminant to <strong>the</strong> environmentdoes not occur. For example, a remedi<strong>at</strong>ion system th<strong>at</strong> isdesigned to use rhizodegrad<strong>at</strong>ion should not have excessivecontaminant uptake and accumul<strong>at</strong>ion within <strong>the</strong> plant to <strong>the</strong>point where a risk is introduced. Risk analyses are likely to beimportant and necessary, given <strong>the</strong> potential p<strong>at</strong>hways forcontaminant transform<strong>at</strong>ion and transfer. Sampling and analysis<strong>of</strong> <strong>the</strong> aboveground plant m<strong>at</strong>ter and <strong>of</strong> <strong>the</strong> transpir<strong>at</strong>ion gasesfor contaminants and degrad<strong>at</strong>ion products may be necessary toensure th<strong>at</strong> <strong>the</strong> contaminants are not transferred to <strong>the</strong> foodchain. Calcul<strong>at</strong>ion <strong>of</strong> a bioconcentr<strong>at</strong>ion factor, <strong>the</strong> concentr<strong>at</strong>ionin <strong>the</strong> plant rel<strong>at</strong>ive to <strong>the</strong> concentr<strong>at</strong>ion in <strong>the</strong> soil or groundw<strong>at</strong>er, can be done to estim<strong>at</strong>e <strong>the</strong> effectiveness <strong>of</strong> <strong>the</strong> remedi<strong>at</strong>ionas well as potential transfer to <strong>the</strong> food chain. Proper samplecollection and analysis protocols should be followed to ensurecorrect results; for example, windborne dust could contamin<strong>at</strong>eplant samples (Brooks, 1998b) or contaminants taken in throughaboveground foliage could lead to an erroneous conclusion th<strong>at</strong>uptake is occurring.Visual and chemical analysis <strong>of</strong> <strong>the</strong> plant tissues may benecessary to recognize phytotoxicity symptoms, diagnose nutrientdeficiencies, and optimize nutrient additions. Sap andtranspir<strong>at</strong>ion stream measurement might be necessary todetermine w<strong>at</strong>er usage r<strong>at</strong>es and contaminant uptake.Temper<strong>at</strong>ure and precipit<strong>at</strong>ion d<strong>at</strong>a can be used to time w<strong>at</strong>eringand fertilizing <strong>of</strong> <strong>the</strong> plants. Sequential extraction steps may benecessary to determine <strong>the</strong> bioavailability <strong>of</strong> <strong>the</strong> contaminants to<strong>the</strong> plants. Field-valid<strong>at</strong>ed hydrologic and plant uptake modelswill need to be developed and used to optimize <strong>the</strong>phytoremedi<strong>at</strong>ion system or to predict behavior.St<strong>at</strong>us <strong>of</strong> Phytoremedi<strong>at</strong>ionPhytoremedi<strong>at</strong>ion has been investig<strong>at</strong>ed in <strong>the</strong> labor<strong>at</strong>ory andfield by government, industry, and university research groups.The Phytoremedi<strong>at</strong>ion <strong>of</strong> Organics Action Team <strong>of</strong> <strong>the</strong> RTDF isa phytoremedi<strong>at</strong>ion research collabor<strong>at</strong>ion between industryand EPA. Team Subgroups include <strong>the</strong> Total PetroleumHydrocarbons (TPH) in Soil, Chlorin<strong>at</strong>ed Solvents, and Altern<strong>at</strong>iveCover Subgroups. Goals <strong>of</strong> <strong>the</strong> team are to develop protocols forphytoremedi<strong>at</strong>ion site evalu<strong>at</strong>ion, designs for implement<strong>at</strong>ion,and monitoring for efficacy/risks; and to establish standardizedfield test plots in different regions <strong>of</strong> <strong>the</strong> country. The TPH in SoilSubgroup established several field test plots starting in 1998.Inform<strong>at</strong>ion about <strong>the</strong> activities and meetings <strong>of</strong> this Action Teamis accessible <strong>at</strong> http://www.rtdf.org. The Petroleum Environmental<strong>Research</strong> Forum (PERF) is a consortium <strong>of</strong> industries th<strong>at</strong> isexamining phytoremedi<strong>at</strong>ion <strong>of</strong> petroleum hydrocarboncontamin<strong>at</strong>ion. Greenhouse and field studies have beenconducted by member industries.16


Phytoremedi<strong>at</strong>ion has been investig<strong>at</strong>ed for inclusion as part <strong>of</strong><strong>the</strong> remedy <strong>at</strong> over a dozen Superfund sites, and has beenincluded in <strong>the</strong> ROD for some <strong>of</strong> <strong>the</strong>se (Idaho N<strong>at</strong>ional Engineeringand Environmental Labor<strong>at</strong>ory, Naval Surface Warfare - Dahlgren,Tibbetts Road, Calhoun Park Area, and Naval Undersea WarfareSt<strong>at</strong>ion Superfund sites).Phytoremedi<strong>at</strong>ion research to d<strong>at</strong>e indic<strong>at</strong>es th<strong>at</strong> some <strong>of</strong> <strong>the</strong>most promising applic<strong>at</strong>ions are for chlorin<strong>at</strong>ed solvents(especially TCE) in shallow ground w<strong>at</strong>er; metals in w<strong>at</strong>er;radionuclides (especially 137 Cs and 90 Sr) in soil and w<strong>at</strong>er;petroleum hydrocarbons in soil; munitions such as TNT and RDXin soil and surface w<strong>at</strong>er; excessive nutrients in ground w<strong>at</strong>er;and selenium from soil and ground w<strong>at</strong>er. Some successfulextraction <strong>of</strong> metals from soil has been accomplished, althoughmore research is needed before full-scale applic<strong>at</strong>ions can bedone. Indian mustard, poplar trees, and certain grasses andlegumes have been popular plants for phytoremedi<strong>at</strong>ion studies;however, screening <strong>of</strong> many o<strong>the</strong>r candid<strong>at</strong>e plants will likely bebeneficial to find <strong>the</strong> most effective plant species. Field studieswill be necessary and may have to include a range <strong>of</strong> contaminantconcentr<strong>at</strong>ions, mixtures <strong>of</strong> contaminants, and variedexperimental tre<strong>at</strong>ments; be longer-term; and examine additionaltypes <strong>of</strong> contaminants. In general, phytoremedi<strong>at</strong>ion appears tobe one altern<strong>at</strong>ive, innov<strong>at</strong>ive technology th<strong>at</strong> might be applied<strong>at</strong> hazardous wastes sites. Careful evalu<strong>at</strong>ion <strong>of</strong> its applicabilityand effectiveness <strong>at</strong> <strong>the</strong>se sites will be required. Successfulphytoremedi<strong>at</strong>ion is likely to be achieved only through <strong>the</strong>combining <strong>of</strong> expertise from numerous scientific disciplines.General guidance and recommend<strong>at</strong>ions for applic<strong>at</strong>ion <strong>of</strong>phytoremedi<strong>at</strong>ion are now available. Documents prepared bygovernment and industry groups (ITRC, 1999; CH2M HILL,1999; and U.S. EPA, 2000) present general decision-makingguidance and recommend<strong>at</strong>ions on practices to be followed inconducting phytoremedi<strong>at</strong>ion projects. As gre<strong>at</strong>er field experienceis gained, it is likely th<strong>at</strong> more detailed and specific practices willbe available in design manual or handbook form for routine use.However, it is unclear th<strong>at</strong> universally-applicable specificguidelines will become available as <strong>the</strong> technology m<strong>at</strong>ures;phytoremedi<strong>at</strong>ion may continue to require site-specific studies.Notice/DisclaimerThe U.S. Environmental Protection Agency through its Office <strong>of</strong><strong>Research</strong> and Development partially funded and collabor<strong>at</strong>ed in<strong>the</strong> research described here under Contract No. 68-C-98-138 toManTech Environmental <strong>Research</strong> Services Corpor<strong>at</strong>ion. Thisdocument has been subjected to <strong>the</strong> Agency’s peer andadministr<strong>at</strong>ive review and has been approved for public<strong>at</strong>ion asan EPA document. Mention <strong>of</strong> trade names or commercialproducts does not constitute endorsement or recommend<strong>at</strong>ionfor use.Quality Assurance St<strong>at</strong>ementAll research projects making conclusions or recommend<strong>at</strong>ionsbased on environmentally-rel<strong>at</strong>ed measurements and funded by<strong>the</strong> Environmental Protection Agency are required to particip<strong>at</strong>ein <strong>the</strong> Agency Quality Assurance (QA) program. This project didnot involve physical measurements and as such did not requirea QA plan.ReferencesAATDF. 1998. AATDF Technology Evalu<strong>at</strong>ion Report,Phytoremedi<strong>at</strong>ion <strong>of</strong> Hydrocarbon-Contamin<strong>at</strong>ed Soil.Advanced Applied Technology Demonstr<strong>at</strong>ion Facility,Report TR-98-16.Adler, T. 1996. Botanical cleanup crews. Sci. News. 150:42-43.Anderson, T.A., and B.T. Walton. 1995. Compar<strong>at</strong>ive f<strong>at</strong>e <strong>of</strong>[ 14 C]trichloroethylene in <strong>the</strong> root zone <strong>of</strong> plants from a formersolvent disposal site. Environ. Toxicol. Chem. 14:2041-2047.Anderson, T.A., E.L. Kruger, and J.R. Co<strong>at</strong>s. 1994. Enhanceddegrad<strong>at</strong>ion <strong>of</strong> a mixture <strong>of</strong> three herbicides in <strong>the</strong> rhizosphere<strong>of</strong> a herbicide-tolerant plant. Chemosphere. 28:1551-1557.Aprill, W., and R.C. Sims. 1990. Evalu<strong>at</strong>ion <strong>of</strong> <strong>the</strong> use <strong>of</strong> prairiegrasses for stimul<strong>at</strong>ing polycyclic arom<strong>at</strong>ic hydrocarbontre<strong>at</strong>ment in soil. Chemosphere. 20:253-265.Bañuelos, G.S. 1996. Managing high levels <strong>of</strong> boron andselenium with trace element accumul<strong>at</strong>or crops. J. Environ.Sci. Health. A31(5):1179-1196.Bañuelos, G.S., H.A. Ajwa, B. Mackey, L.L. Wu, C. Cook, S.Akohoue, and S. Zambrzuski. 1997. Evalu<strong>at</strong>ion <strong>of</strong> differentplant species used for phytoremedi<strong>at</strong>ion <strong>of</strong> high soil selenium.J. Environ. Qual. 26(3):639-646.Bañuelos, G.S., M.C. Shannon, H. Ajwa, J.H. Draper, J. Jordahl,and L. Licht. 1999. Phytoextraction and accumul<strong>at</strong>ion <strong>of</strong>boron and selenium by poplar (Populus) hybrid clones. Int.J. Phytoremedi<strong>at</strong>ion. 1(1):81-96.Baud-Grasset, F., S. Baud-Grasset, and S.I. Safferman. 1993.Evalu<strong>at</strong>ion <strong>of</strong> <strong>the</strong> bioremedi<strong>at</strong>ion <strong>of</strong> a contamin<strong>at</strong>ed soil withphytotoxicity tests. Chemosphere. 26:1365-1374.Bell, R.M. 1992. Higher plant accumul<strong>at</strong>ion <strong>of</strong> organic pollutantsfrom soils. Risk Reduction Engineering Labor<strong>at</strong>ory,Cincinn<strong>at</strong>i, OH. EPA/600/R-92/138.Bellin, C.A., and G.A. O’Connor. 1990. <strong>Plant</strong> uptake <strong>of</strong>pentachlorophenol from sludge-amended soils. J. Environ.Qual. 19:598-602.Berti, W.R., and S.D. Cunningham. 1997. In-place inactiv<strong>at</strong>ion<strong>of</strong> Pb in Pb-contamin<strong>at</strong>ed soils. Environ. Sci. Technol.31(5):1359-1364.Blaylock, M.J., D.E. Salt, S. Dushenkov, O. Zakharova, C.Gussman, Y. Kapulnik, B.D. Ensley, and I. Raskin. 1997.Enhanced accumul<strong>at</strong>ion <strong>of</strong> Pb in Indian Mustard by soilappliedchel<strong>at</strong>ing agents. Environ. Sci. Technol. 31:860-865.Blaylock, M.J., M.P. Elless, J.W. Huang, and S.M. Dushenkov.1999. Phytoremedi<strong>at</strong>ion <strong>of</strong> lead-contamin<strong>at</strong>ed soil <strong>at</strong> a NewJersey brownfield site. Remedi<strong>at</strong>ion. 9(3):93-101.Boyd, R.S. 1998. Hyperaccumul<strong>at</strong>ion as a plant defensivestr<strong>at</strong>egy. In R.R. Brooks (ed.), <strong>Plant</strong>s th<strong>at</strong> Hyperaccumul<strong>at</strong>eHeavy Metals. CAB Intern<strong>at</strong>ional, New York, NY, pp. 181-201.Boyle, J.J., and J.R. Shann. 1995. Biodegrad<strong>at</strong>ion <strong>of</strong> phenol,2,4-DCP, 2,4-D, and 2,4,5-T in field-collected rhizosphereand nonrhizosphere soils. J. Environ. Qual. 24:782-785.Brady, N.C. 1974. The N<strong>at</strong>ure and Properties <strong>of</strong> Soils (8thEdition). Macmillan Publishing Co., New York, NY.17


Briggs, G.G., R.H. Bromilow, and A.A. Evans. 1982. Rel<strong>at</strong>ionshipsbetween lipophilicity and root uptake and transloc<strong>at</strong>ion <strong>of</strong>non-ionized chemicals by barley. Pestic. Sci. 13:495-504.Brooks, R.R. 1998a. General introduction. In R.R. Brooks (ed.),<strong>Plant</strong>s th<strong>at</strong> Hyperaccumul<strong>at</strong>e Heavy Metals. CABIntern<strong>at</strong>ional, New York, NY, pp. 1-14.Brooks, R.R. 1998b. Phytochemistry <strong>of</strong> hyperaccumul<strong>at</strong>ors. InR.R. Brooks (ed.), <strong>Plant</strong>s th<strong>at</strong> Hyperaccumul<strong>at</strong>e HeavyMetals. CAB Intern<strong>at</strong>ional, New York, NY, pp. 15-53.Brooks, R.R. 1998c. Geobotany and hyperaccumul<strong>at</strong>ors. InR.R. Brooks (ed.), <strong>Plant</strong>s th<strong>at</strong> Hyperaccumul<strong>at</strong>e HeavyMetals. CAB Intern<strong>at</strong>ional, New York, NY, pp. 55-94.Brooks, R.R. 1998d. Biogeochemistry and hyperaccumul<strong>at</strong>ors.In R.R. Brooks (ed.), <strong>Plant</strong>s th<strong>at</strong> Hyperaccumul<strong>at</strong>e HeavyMetals. CAB Intern<strong>at</strong>ional, New York, NY, pp. 95-118.Brooks, R.R. 1998e. Phytoarcheology and hyperaccumul<strong>at</strong>ors.In R.R. Brooks (ed.), <strong>Plant</strong>s th<strong>at</strong> Hyperaccumul<strong>at</strong>e HeavyMetals. CAB Intern<strong>at</strong>ional, New York, NY, pp. 153-180.Brooks, R.R., A. Chiarucci, and T. Jaffré. 1998. Reveget<strong>at</strong>ionand stabilis<strong>at</strong>ion <strong>of</strong> mine dumps and o<strong>the</strong>r degraded terrain.In R.R. Brooks (ed.), <strong>Plant</strong>s th<strong>at</strong> Hyperaccumul<strong>at</strong>e HeavyMetals. CAB Intern<strong>at</strong>ional, New York, NY, pp. 227-247.Brooks, R.R., and B.H. Robinson. 1998. Aqu<strong>at</strong>icphytoremedi<strong>at</strong>ion by accumul<strong>at</strong>or plants. In R.R. Brooks(ed.), <strong>Plant</strong>s th<strong>at</strong> Hyperaccumul<strong>at</strong>e Heavy Metals. CABIntern<strong>at</strong>ional, New York, NY, pp. 203-226.Burken, J.G., and J.L. Schnoor. 1997. Uptake and metabolism<strong>of</strong> <strong>at</strong>razine by poplar trees. Environ. Sci. Technol. 31:1399-1406.Burken, J.G., and J.L. Schnoor. 1998. Predictive rel<strong>at</strong>ionshipsfor uptake <strong>of</strong> organic contaminants by hybrid poplar trees.Environ. Sci. Technol. 32(21):3379-3385.Burken, J.G., and J.L. Schnoor. 1999. Distribution andvol<strong>at</strong>iliz<strong>at</strong>ion <strong>of</strong> organic compounds following uptake byhybrid poplars. Int. J. Phytoremedi<strong>at</strong>ion. 1(2):39-151.Buyanovsky, G.A., R.J. Kremer, A.M. Gajda, and H.V. Kazemi.1995. Effect <strong>of</strong> corn plants and rhizosphere popul<strong>at</strong>ions onpesticide degrad<strong>at</strong>ion. Bull. Environ. Contam. Toxicol.55:689-696.Carman, E.P., T.L. Crossman, and E.G. G<strong>at</strong>liff. 1998.Phytoremedi<strong>at</strong>ion <strong>of</strong> No. 2 fuel oil-contamin<strong>at</strong>ed soil. J. SoilContam. 7(4):455-466.Chandra, P., S. Sinha, and U.N. Rai. 1997. Bioremedi<strong>at</strong>ion <strong>of</strong>chromium from w<strong>at</strong>er and soil by vascular aqu<strong>at</strong>ic plants. p.274. In E.L. Kruger, T.A. Anderson, and J.R. Co<strong>at</strong>s (eds.),Phytoremedi<strong>at</strong>ion <strong>of</strong> Soil and <strong>W<strong>at</strong>er</strong> Contaminants, ACSSymposium Series No. 664. American Chemical Society,Washington, DC.Chaney, R.L. 1983. <strong>Plant</strong> uptake <strong>of</strong> inorganic waste constituents.pp. 50-76. In J.F. Parr, P.B. Marsh, and J.M. Kla (eds.),Land Tre<strong>at</strong>ment <strong>of</strong> Hazardous Waste. Noyes D<strong>at</strong>aCorpor<strong>at</strong>ion, Park Ridge, NJ.CH2M HILL. 1999. Guidance for Successful Phytoremedi<strong>at</strong>ion.American Institute <strong>of</strong> Chemical Engineers/Center for WasteReduction Technologies, New York, NY. 192 pp.Cole, S. 1998. The emergence <strong>of</strong> tre<strong>at</strong>ment wetlands. Environ.Sci. Technol. 32(9):218A-223A.Conger, R.M., and R. Portier. 1997. Phytoremedi<strong>at</strong>ionexperiment<strong>at</strong>ion with <strong>the</strong> herbicide bentazon. Remedi<strong>at</strong>ion.7(2):19-37.Cooney, C.M. 1996. Sunflowers remove radionuclides fromw<strong>at</strong>er in ongoing phytoremedi<strong>at</strong>ion field tests. Environ. Sci.Technol. 30(5):194A.Cornish, J.E., W.C. Goldberg, R.S. Levine, and J.R. Benemann.1995. Phytoremedi<strong>at</strong>ion <strong>of</strong> soils contamin<strong>at</strong>ed with toxicelements and radionuclides. pp. 55-63. In R.E. Hinchee,J.L. Means, and D.R. Burris (eds.), Bioremedi<strong>at</strong>ion <strong>of</strong>Inorganics. B<strong>at</strong>telle Press, Columbus, OH.Correll, D. 1999. Veget<strong>at</strong>ed Stream Riparian Zones: TheirEffects on Stream Nutrients, Sediments, and ToxicSubstances, 8th Ed. Smithsonian Environmental<strong>Research</strong> Center, Edgew<strong>at</strong>er, MD. Available <strong>at</strong>http://www.serc.si.edu/SERC_web_html/pub_ripzone.htmlCunningham, S.D., W.R. Berti, and J.W. Huang. 1995.Phytoremedi<strong>at</strong>ion <strong>of</strong> contamin<strong>at</strong>ed soils. Trends Biotechnol.13:393-397.Cunningham, S.D., J.R. Shann, D.E. Crowley, and T.A. Anderson.1997. Phytoremedi<strong>at</strong>ion <strong>of</strong> contamin<strong>at</strong>ed w<strong>at</strong>er and soil. InE.L. Kruger, T.A. Anderson, and J.R. Co<strong>at</strong>s (eds.),Phytoremedi<strong>at</strong>ion <strong>of</strong> Soil and <strong>W<strong>at</strong>er</strong> Contaminants, ACSSymposium Series No. 664. American Chemical Society,Washington, DC.Dec, J., and J.-M. Bollag. 1994. Use <strong>of</strong> plant m<strong>at</strong>erial for <strong>the</strong>decontamin<strong>at</strong>ion <strong>of</strong> w<strong>at</strong>er polluted with phenols. Biotechnol.Bioeng. 44:1132-1139.Dobson, M.C., and A.J. M<strong>of</strong>f<strong>at</strong>. 1995. A re-evalu<strong>at</strong>ion <strong>of</strong>objections to tree planting on containment landfills. WasteManagement & <strong>Research</strong>. 13(6):579-600.Donnelly, P.K., and J.S. Fletcher. 1995. PCB metabolism byectomycorrhizal fungi. Bull. Environ. Contam. Toxicol.54:507-513.Donnelly, P.K., R.S. Hegde, and J.S. Fletcher. 1994. Growth <strong>of</strong>PCB-degrading bacteria on compounds from photosyn<strong>the</strong>ticplants. Chemosphere. 28:981-988.Doty, S.L., T.Q. Shang, A.M. Wilson, J. Tangen, A.D.Westergreen, L.A. Newman, S.E. Strand, and M.P. Gordon.2000. Enhanced metabolism <strong>of</strong> halogen<strong>at</strong>ed hydrocarbonsin transgenic plants containing mammalian cytochromeP450 2E1. Proc. N<strong>at</strong>l. Acad. Sci. USA. 97(12):6287-6291.Dushenkov, V., P.B.A. Nanda Kumar, H. Motto, and I. Raskin.1995. Rhiz<strong>of</strong>iltr<strong>at</strong>ion: The use <strong>of</strong> plants to remove heavymetals from aqueous streams. Environ. Sci. Technol.29:1239-1245.18


Dushenkov, S., D. Vasudev, Y. Kapulnik, D. Gleba, D. Fleisher,K.C. Ting, and B. Ensley. 1997. Removal <strong>of</strong> uranium fromw<strong>at</strong>er using terrestrial plants. Environ. Sci. Technol.31(12):3468-3474.Dushenkov, S., A. Mikheev, A. Prokhnevsky, M. Ruchko, and B.Sorochinsky. 1999. Phytoremedi<strong>at</strong>ion <strong>of</strong> radiocesiumcontamin<strong>at</strong>edsoil in <strong>the</strong> vicinity <strong>of</strong> Chernobyl, Ukraine.Environ. Sci. Technol. 33(3):469-475.Ebbs, S.D., M.M. Las<strong>at</strong>, D.J. Brady, J. Cornish, R. Gordon, andL.V. Kochian. 1997. Phytoextraction <strong>of</strong> cadmium and zincfrom a contamin<strong>at</strong>ed soil. J. Environ. Qual. 26(5):1424-1430.Entry, J.A., L.S. W<strong>at</strong>rud, and M. Reeves. 1999. Accumul<strong>at</strong>ion<strong>of</strong> 137 Cs and 90 Sr from contamin<strong>at</strong>ed soil by three grassspecies inocul<strong>at</strong>ed with mycorrhizal fungi. Environ. Pollut.104(3):449-457.Ernst, W.H.O. 1996. Bioavailability <strong>of</strong> heavy metals anddecontamin<strong>at</strong>ion <strong>of</strong> soils by plants. Appl. Geochem.11(1/2):163-167.ESTCP. 1999. The Use <strong>of</strong> Constructed Wetlands toPhytoremedi<strong>at</strong>e Explosives-Contamin<strong>at</strong>ed <strong>Ground</strong>w<strong>at</strong>er <strong>at</strong><strong>the</strong> Milan Army Ammunition <strong>Plant</strong>, Milan, Tennessee. ESTCPCost and Performance Report, Environmental SecurityTechnology Certific<strong>at</strong>ion Program, U.S. Department <strong>of</strong>Defense.Federle, T.W., and B.S. Schwab. 1989. Mineraliz<strong>at</strong>ion <strong>of</strong>surfactants by microbiota <strong>of</strong> aqu<strong>at</strong>ic plants. Appl. Environ.Microbiol. 55:2092-2094.Ferro, A.M., R.C. Sims, and B. Bugbee. 1994. Hycrest crestedwhe<strong>at</strong>grass acceler<strong>at</strong>es <strong>the</strong> degrad<strong>at</strong>ion <strong>of</strong>pentachlorophenol in soil. J. Environ. Qual. 23:272-279.Ferro, A.M., S.A. Rock, J. Kennedy, J.J. Herrick, and D.L.Turner. 1999. Phytoremedi<strong>at</strong>ion <strong>of</strong> soils contamin<strong>at</strong>ed withwood preserv<strong>at</strong>ives: greenhouse and field evalu<strong>at</strong>ions. Int.J. Phytoremedi<strong>at</strong>ion. 1(3):289-306.Fletcher, J.S., and R.S. Hegde. 1995. Release <strong>of</strong> phenols byperennial plant roots and <strong>the</strong>ir potential importance inbioremedi<strong>at</strong>ion. Chemosphere. 31:3009-3016.Fletcher, J.S., P.K. Donnelly, and R.S. Hegde. 1995.Biostimul<strong>at</strong>ion <strong>of</strong> PCB-degrading bacteria by compoundsreleased from plant roots. pp. 131-136. In R.E. Hinchee,D.B. Anderson, and R.E. Hoeppel (eds.), Bioremedi<strong>at</strong>ion <strong>of</strong>Recalcitrant Organics. B<strong>at</strong>telle Press, Columbus, OH.Frick, C.M., R.E. Farrell, and J.J. Germida. 1999. Assessment<strong>of</strong> Phytoremedi<strong>at</strong>ion as an In-Situ Technique for CleaningOil-Contamin<strong>at</strong>ed Sites. Petroleum Technology Alliance <strong>of</strong>Canada. Available <strong>at</strong> http://www.rtdf.org/public/phyto/phylinks.htmG<strong>at</strong>liff, E.G. 1994. Veget<strong>at</strong>ive remedi<strong>at</strong>ion process <strong>of</strong>fersadvantages over traditional pump-and-tre<strong>at</strong> technologies.Remedi<strong>at</strong>ion. 4(3):343-352.Gilbert, E.S., and D.E. Crowley. 1997. <strong>Plant</strong> compounds th<strong>at</strong>induce polychlorin<strong>at</strong>ed biphenyl biodegrad<strong>at</strong>ion byArthrobacter sp. strain B1B. Applied Environ. Microbiol.63(5):1933-1938.Gleba, D., N.V. Borisjuk, L.G. Borisjuk, R. Kneer, A. Poulev, M.Skarzhinskaya, S. Dushenkov, S. Logendra, Y.Y. Gleba,and I. Raskin. 1999. Use <strong>of</strong> plant roots for phytoremedi<strong>at</strong>ionand molecular farming. Proc. N<strong>at</strong>l. Acad. Sci. USA.96(11):5973-5977.Goel, A., G. Kumar, G.F. Payne, and S.K. Dube. 1997. <strong>Plant</strong> cellbiodegrad<strong>at</strong>ion <strong>of</strong> a xenobiotic nitr<strong>at</strong>e ester, nitroglycerin.N<strong>at</strong>ure Biotechnol. 15(2):174-177.Greger, M., and T. Landberg. 1999. Use <strong>of</strong> willow inphytoremedi<strong>at</strong>ion. Int. J. Phytoremedi<strong>at</strong>ion. 1(2):115-123.Harms, H., and C. Langebartels. 1986. Standardized plant cellsuspension test systems for an ecotoxicologic evalu<strong>at</strong>ion <strong>of</strong><strong>the</strong> metabolic f<strong>at</strong>e <strong>of</strong> xenobiotics. <strong>Plant</strong> Sci. 45:157-165.Harvey, S.D., R.J. Fellows, D.A. C<strong>at</strong>aldo, and R.M. Bean. 1991.F<strong>at</strong>e <strong>of</strong> <strong>the</strong> explosive hexahydro-1,3,5-trinitro-1,3,5-triazine(RDX) in soil and bioaccumul<strong>at</strong>ion in bush bean hydroponicplants. Environ. Toxicol. Chem. 10:845-855.Hegde, R.S., and J.S. Fletcher. 1996. Influence <strong>of</strong> plant growthstage and season on <strong>the</strong> release <strong>of</strong> root phenolics bymulberry as rel<strong>at</strong>ed to development <strong>of</strong> phytoremedi<strong>at</strong>iontechnology. Chemosphere. 32:2471-2479.Hinckley, T.M., J.R. Brooks, J. !"ermák, R. Ceulemans, J.Ku#era, F.C. Meinzer, and D.A. Roberts. 1994. <strong>W<strong>at</strong>er</strong> fluxin a hybrid poplar stand. Tree Physiol. 14:1005-1018.Hoagland, R.E., R.M. Zablotowicz, and M.A. Locke. 1994.Propanil metabolism by rhizosphere micr<strong>of</strong>lora. pp. 160-183. In T.A. Anderson and J.R. Co<strong>at</strong>s (eds.), Bioremedi<strong>at</strong>ionThrough Rhizosphere Technology, ACS Symposium Series,Volume 563. American Chemical Society, Washington,DC.Hsu, T.S., and R. Bartha. 1979. Acceler<strong>at</strong>ed mineraliz<strong>at</strong>ion <strong>of</strong>two organophosph<strong>at</strong>e insecticides in <strong>the</strong> rhizosphere. Appl.Environ. Microbiol. 37:36-41.Huang, J.W., M.J. Blaylock, Y. Kapulnik, and B.D. Ensley. 1998.Phytoremedi<strong>at</strong>ion <strong>of</strong> uranium-contamin<strong>at</strong>ed soils: role <strong>of</strong>organic acids in triggering uranium hyperaccumul<strong>at</strong>ion inplants. Environ. Sci. Technol. 32(13):2004-2008.INEEL. 2000. Proceedings from <strong>the</strong> Workshop onPhytoremedi<strong>at</strong>ion <strong>of</strong> Inorganic Contaminants. November30 - December 2, 1999, Argonne N<strong>at</strong>ional Labor<strong>at</strong>ory,Chicago, IL. Idaho N<strong>at</strong>ional Engineering and EnvironmentalLabor<strong>at</strong>ory, U.S. Department <strong>of</strong> Energy. INEEL/EXT-2000-00207. Available <strong>at</strong> http://www.envnet.org/scfa/conferences/phyto2-00.pdfITRC. 1999. Phytoremedi<strong>at</strong>ion Decision Tree. The Interst<strong>at</strong>eTechnology and Regul<strong>at</strong>ory Cooper<strong>at</strong>ion Work Group,Phytoremedi<strong>at</strong>ion Work Team. Available <strong>at</strong> http://www.cluin.org/search/and http://www.itrcweb.org19


Jonnalagadda, S.B., and G. Nenzou. 1997. Studies on arsenicrich mine dumps. II. The heavy element uptake by veget<strong>at</strong>ion.J. Environ. Sci. Health, Part A. A32:455-464.Jordahl, J.L., L. Foster, J.L. Schnoor, and P.J.J. Alvarez. 1997.Effect <strong>of</strong> hybrid poplar trees on microbial popul<strong>at</strong>ionsimportant to hazardous waste bioremedi<strong>at</strong>ion. Environ.Toxicol. Chem. 16(6):1318-1321.Kadlec, R.H., and R.L. Knight. 1996. Tre<strong>at</strong>ment Wetlands.CRC Press, Boca R<strong>at</strong>on, FL.K<strong>at</strong>ul, G., P. Todd, D. P<strong>at</strong>aki, Z.J. Kabala, and R. Oren. 1997.Soil w<strong>at</strong>er depletion by oak trees and <strong>the</strong> influence <strong>of</strong> rootw<strong>at</strong>er uptake on <strong>the</strong> moisture content sp<strong>at</strong>ial st<strong>at</strong>istics.<strong>W<strong>at</strong>er</strong> Resour. Res. 33(4):611-623.Kelley, C., R.E. Mielke, D. Dimaquibo, A.J. Curtis, and J.G.Dewitt. 1999. Adsorption <strong>of</strong> Eu(III) onto roots <strong>of</strong> w<strong>at</strong>erhyacinth. Environ. Sci. Technol. 33(9):1439-1443.Kumar, P.B.A. Nanda, V. Dushenkov, H. Motto, and I. Raskin.1995. Phytoextraction: The use <strong>of</strong> plants to remove heavymetals from soils. Environ. Sci. Technol. 29(5):1232-1238.Larson, S.L., R.P. Jones, L. Escalon, and D. Parker. 1999.Classific<strong>at</strong>ion <strong>of</strong> explosives transform<strong>at</strong>ion products in planttissue. Environ. Toxicol. Chem. 18(6):1270-1276.Lewis, B.G., and M.M. MacDonell. 1990. Release <strong>of</strong> radon-222by vascular plants: Effect <strong>of</strong> transpir<strong>at</strong>ion and leaf area. J.Environ. Qual. 19:93-97.Licht, L.A. 1990. Poplar tree buffer strips grown in riparian zonesfor biomass production and nonpoint source pollution control.Ph.D. Thesis, <strong>Univ</strong>ersity <strong>of</strong> Iowa, Iowa City, IA.Licht, L.A., and J.L. Schnoor. 1993. Tree buffers protect shallowground w<strong>at</strong>er <strong>at</strong> contamin<strong>at</strong>ed sites. EPA <strong>Ground</strong> <strong>W<strong>at</strong>er</strong>Currents, Office <strong>of</strong> Solid Waste and Emergency Response.EPA/542/N-93/011.Lin, Q., and I.A. Mendelssohn. 1998. The combined effects <strong>of</strong>phytoremedi<strong>at</strong>ion and biostimul<strong>at</strong>ion in enhancing habit<strong>at</strong>restor<strong>at</strong>ion and oil degrad<strong>at</strong>ion <strong>of</strong> petroleum contamin<strong>at</strong>edwetlands. Ecol. Eng. 10(3):263-274.McGr<strong>at</strong>h, S.P. 1998. Phytoextraction for soil remedi<strong>at</strong>ion. InR.R. Brooks (ed.), <strong>Plant</strong>s th<strong>at</strong> Hyperaccumul<strong>at</strong>e HeavyMetals. CAB Intern<strong>at</strong>ional, New York, NY, pp. 261-287.McGr<strong>at</strong>h, S.P., S.J. Dunham, and R.L. Correll. 2000. Potentialfor Phytoextraction <strong>of</strong> Zinc and Cadmium from Soils UsingHyperaccumul<strong>at</strong>or <strong>Plant</strong>s. In N. Terry and G. Bañuelos(eds.). Phytoremedi<strong>at</strong>ion <strong>of</strong> Contamin<strong>at</strong>ed Soil and <strong>W<strong>at</strong>er</strong>.Lewis Publishers, Boca R<strong>at</strong>on, FL. pp. 109-128.Meagher, R.B. 2000. Phytoremedi<strong>at</strong>ion <strong>of</strong> toxic elemental andorganic pollutants. Curr. Opin. <strong>Plant</strong> Biol. 3(2):153-162.Meagher, R.B., C.L. Rugh, M.K. Kandasamy, G. Gragson, andN.J. Wang. 2000. Engineered Phytoremedi<strong>at</strong>ion <strong>of</strong> MercuryPollution in Soil and <strong>W<strong>at</strong>er</strong> Using Bacterial Genes. In N.Terry and G. Bañuelos (eds.). Phytoremedi<strong>at</strong>ion <strong>of</strong>Contamin<strong>at</strong>ed Soil and <strong>W<strong>at</strong>er</strong>. Lewis Publishers, BocaR<strong>at</strong>on, FL. pp. 201-219.Meinzer, O.E. 1927. <strong>Plant</strong>s as indic<strong>at</strong>ors <strong>of</strong> ground w<strong>at</strong>er.United St<strong>at</strong>es Government Printing Office, Washington,DC.Molina, M., R. Araujo, and J.R. Bond. 1995. Abstract: Dynamics<strong>of</strong> oil degrad<strong>at</strong>ion in coastal environments: Effects <strong>of</strong>bioremedi<strong>at</strong>ion products and some environmentalparameters. Symposium on Bioremedi<strong>at</strong>ion <strong>of</strong> HazardousWastes: <strong>Research</strong>, Development, and Field Evalu<strong>at</strong>ions,August 10-12, 1995, Rye Brook, NY. EPA/600/R-95/076.Nair, D.R., J.G. Burken, L.A. Licht, and J.L. Schnoor. 1993.Mineraliz<strong>at</strong>ion and uptake <strong>of</strong> triazine pesticide in soil-plantsystems. J. Environ. Eng. 119:842-854.Narayanan, M., L.C. Davis, and L.E. Erickson. 1995. F<strong>at</strong>e <strong>of</strong>vol<strong>at</strong>ile chlorin<strong>at</strong>ed organic compounds in a labor<strong>at</strong>orychamber with alfalfa plants. Environ. Sci. Technol. 29:2437-2444.Newman, L.A., S.E. Strand, N. Choe, J. Duffy, G. Ekuan, M.Ruszaj, B.B. Shurtleff, J. Wilmoth, P. Heilman, and M.P.Gordon. 1997. Uptake and biotransform<strong>at</strong>ion <strong>of</strong>trichloroethylene by hybrid poplars. Environ. Sci. Technol.31:1062-1067.Newman, L.A., S.L. Doty, K.L. Gery, P.E. Heilman, I. Muiznieks,T.Q. Shang, S.T. Siemieniec, S.E. Strand, X. Wang, A.M.Wilson, and M.P. Gordon. 1998. Phytoremedi<strong>at</strong>ion <strong>of</strong>organic contaminants: A review <strong>of</strong> phytoremedi<strong>at</strong>ion research<strong>at</strong> <strong>the</strong> <strong>Univ</strong>ersity <strong>of</strong> Washington. J. Soil Contam. 7(4):531-542.Newman, L.A., X. Wang, I.A. Muiznieks, G. Ekuan, M. Ruszaj, R.Cortellucci, D. Domroes, G. Karscig, T. Newman, R.S.Crampton, R.A. Hashmonay, M.G. Yost, P.E. Heilman, J.Duffy, M.P. Gordon, and S.E. Strand. 1999. Remedi<strong>at</strong>ion<strong>of</strong> trichloroethylene in an artificial aquifer with trees: Acontrolled field study. Environ. Sci. Technol. 33(13):2257-2265.Nzengung, V.A., C. Wang, and G. Harvey. 1999. <strong>Plant</strong>medi<strong>at</strong>edtransform<strong>at</strong>ion <strong>of</strong> perchlor<strong>at</strong>e into chloride.Environ. Sci. Technol. 33(9):1470-1478.Olson, P.E., and J.S. Fletcher. 1999. Field evalu<strong>at</strong>ion <strong>of</strong>mulberry root structure with regard to phytoremedi<strong>at</strong>ion.Bioremedi<strong>at</strong>ion J. 3(1):27-33.Olson, P.E., and J.S. Fletcher. 2000. Ecological recovery <strong>of</strong>veget<strong>at</strong>ion <strong>at</strong> a former industrial sludge basin and itsimplic<strong>at</strong>ions to phytoremedi<strong>at</strong>ion. Environ. Sci. Pollut. Res.7:1-10.P<strong>at</strong>erson, S., D. Mackay, D. Tam, and W.Y. Shiu. 1990. Uptake<strong>of</strong> organic chemicals by plants: A review <strong>of</strong> processes,correl<strong>at</strong>ions and models. Chemosphere. 21:297-331.Pfender, W.F. 1996. Bioremedi<strong>at</strong>ion bacteria to protect plantsin pentachlorophenol-contamin<strong>at</strong>ed soil. J. Environ. Qual.25:1256-1260.Pierzynski, G.M., J.L. Schnoor, M.K. Banks, J.C. Tracy, L.A.Licht, and L.E. Erickson. 1994. Veget<strong>at</strong>ive remedi<strong>at</strong>ion <strong>at</strong>Superfund Sites. Mining and Its Environ. Impact (RoyalSoc. Chem. <strong>Issue</strong>s in Environ. Sci. Technol. 1). pp. 49-69.20


Pradhan, S.P., J.R. Conrad, J.R. P<strong>at</strong>erek, and V.J. Srivastava.1998. Potential <strong>of</strong> phytoremedi<strong>at</strong>ion for tre<strong>at</strong>ment <strong>of</strong> PAHsin soils <strong>at</strong> MGP sites. J. Soil Contam. 7(4):467-480.Qian, J.-H., A. Zayed, Y.-L. Zhu, M. Yu, and N. Terry. 1999.Phytoaccumul<strong>at</strong>ion <strong>of</strong> trace elements by wetland plants: III.Uptake and accumul<strong>at</strong>ion <strong>of</strong> ten trace elements by twelveplant species. J. Environ. Qual. 28(5):1448-1455.Qiu, X., S.I. Shah, E.W. Kendall, D.L. Sorensen, R.C. Sims, andM.C. Engelke. 1994. Grass-enhanced bioremedi<strong>at</strong>ion forclay soils contamin<strong>at</strong>ed with polynuclear arom<strong>at</strong>ichydrocarbons. pp. 142-157. In T.A. Anderson and J.R.Co<strong>at</strong>s (eds.), Bioremedi<strong>at</strong>ion Through RhizosphereTechnology, ACS Symposium Series, Volume 563.American Chemical Society, Washington, DC.Ral<strong>of</strong>f, J. 1989. Greenery filters out indoor air pollution. Sci.News. 136:212.Reeves, R.D., and R.R. Brooks. 1983. Hyperaccumul<strong>at</strong>ion <strong>of</strong>lead and zinc by two metallophytes from mining areas <strong>of</strong>central Europe. Environ. Pollut. Ser. A. 31:277-285.Reilley, K.A., M.K. Banks, and A.P. Schwab. 1996. Dissip<strong>at</strong>ion<strong>of</strong> polycyclic arom<strong>at</strong>ic hydrocarbons in <strong>the</strong> rhizosphere. J.Environ. Qual. 25:212-219.Rice, P.J., T.A. Anderson, and J.R. Co<strong>at</strong>s. 1997a.Phytoremedi<strong>at</strong>ion <strong>of</strong> herbicide-contamin<strong>at</strong>ed surface w<strong>at</strong>erwith aqu<strong>at</strong>ic plants. In E.L. Kruger, T.A. Anderson, and J.R.Co<strong>at</strong>s (eds.), Phytoremedi<strong>at</strong>ion <strong>of</strong> Soil and <strong>W<strong>at</strong>er</strong>Contaminants, ACS Symposium Series No. 664. AmericanChemical Society, Washington, DC.Rice, P.J., T.A. Anderson, and J.R. Co<strong>at</strong>s. 1997b. Evalu<strong>at</strong>ion <strong>of</strong><strong>the</strong> use <strong>of</strong> veget<strong>at</strong>ion for reducing <strong>the</strong> environmental impact<strong>of</strong> deicing agents. In E.L. Kruger, T.A. Anderson, and J.R.Co<strong>at</strong>s (eds.), Phytoremedi<strong>at</strong>ion <strong>of</strong> Soil and <strong>W<strong>at</strong>er</strong>Contaminants, ACS Symposium Series No. 664. AmericanChemical Society, Washington, DC.Robinson, B.H., R.R. Brooks, A.W. Howes, J.H. Kirkman, andP.E.H. Gregg. 1997. The potential <strong>of</strong> <strong>the</strong> high-biomassnickel hyperaccumul<strong>at</strong>or Berkheya coddii forphytoremedi<strong>at</strong>ion and phytomining. J. Geochem. Explor.60(2):115-126.Rogers, R.D., and S.E. Williams. 1986. Vesicular-arbuscularmycorrhiza: influence on plant uptake <strong>of</strong> cesium and cobalt.Soil Biol. Biochem. 18(4):371-376.RTDF (Remedi<strong>at</strong>ion Technologies Development Forum). 1998.Summary <strong>of</strong> <strong>the</strong> Remedi<strong>at</strong>ion Technologies DevelopmentForum Altern<strong>at</strong>ive Covers Assessment Program Workshop.February 17-18, 1998, Las Vegas, NV. Available <strong>at</strong> http://www.rtdf.org/public/phyto/minutes/altcov/Alt21798.htmRugh, C.L., J.F. Senec<strong>of</strong>f, R.B. Meagher, and S.A Merkle. 1998.Development <strong>of</strong> transgenic yellow poplar for mercuryphytoremedi<strong>at</strong>ion. N<strong>at</strong>. Biotechnol. 16(10):925-928.Ryan, J.A., R.M. Bell, J.M. Davidson, and G.A. O’Connor. 1988.<strong>Plant</strong> uptake <strong>of</strong> non-ionic organic chemicals from spills.Chemosphere. 17:2299-2323.Salt, D.E., M. Blaylock, P.B.A. Nanda Kumar, V. Dushenkov,B.D. Ensley, I. Chet, and I. Raskin. 1995. Phytoremedi<strong>at</strong>ion:A novel str<strong>at</strong>egy for <strong>the</strong> removal <strong>of</strong> toxic metals from <strong>the</strong>environment using plants. Biotechnol. 13:468-474.Salt, D.E., I.J. Pickering, R.C. Prince, D. Gleba, S. Dushenkov,R.D. Smith, and I. Raskin. 1997. Metal accumul<strong>at</strong>ion byaquacultured seedlings <strong>of</strong> Indian Mustard. Environ. Sci.Technol. 31(6):1636-1644.Sandhu, S.S., B.S. Gill, B.C. Casto, and J.W. Rice. 1991.Applic<strong>at</strong>ion <strong>of</strong> Tradescantia micronucleus assay for in situevalu<strong>at</strong>ion <strong>of</strong> potential genetic hazards from exposure tochemicals <strong>at</strong> a wood-preserving site. Hazard. Waste Hazard.M<strong>at</strong>er. 8:257-262.Sandermann, H., Jr., D. Scheel, and Th. V.D. Trenck. 1984. Use<strong>of</strong> play nt cell cultures to study <strong>the</strong> metabolism <strong>of</strong>environmental chemicals. Ecotoxicol. Environ. Safety.8:167-182.Sandmann, E.R.I.C., and M.A. Loos. 1984. Enumer<strong>at</strong>ion <strong>of</strong> 2,4-D degrading microorganisms in soils and crop plantrhizospheres using indic<strong>at</strong>or media: High popul<strong>at</strong>ionsassoci<strong>at</strong>ed with sugarcane (Saccharum <strong>of</strong>ficinarum).Chemosphere. 13:1073-1084.Schnoor, J.L. 1997. Phytoremedi<strong>at</strong>ion. Technology Evalu<strong>at</strong>ionReport TE-98-01. <strong>Ground</strong>-<strong>W<strong>at</strong>er</strong> Remedi<strong>at</strong>ion TechnologiesAnalysis Center, Pittsburgh, PA.Schnoor, J.L., L.A. Licht, S.C. McCutcheon, N.L. Wolfe, and L.H.Carreira. 1995. Phytoremedi<strong>at</strong>ion <strong>of</strong> organic and nutrientcontaminants. Environ. Sci. Technol. 29:318A-323A.Schwab, A.P., and M.K. Banks. 1999. Phytoremedi<strong>at</strong>ion <strong>of</strong>petroleum-contamin<strong>at</strong>ed soils. Chapter 28. In D.C. Adriano,J.-M. Bollag, W.T. Frankenburger, Jr., and R.C. Sims (eds.),Bioremedi<strong>at</strong>ion <strong>of</strong> Contamin<strong>at</strong>ed Soils. AgronomyMonograph 37, American Society <strong>of</strong> Agronomy, Madison,WI. 772 pp.Shimp, J.F., J.C. Tracy, L.C. Davis, E. Lee, W. Huang, L.E.Erickson, and J.L. Schnoor. 1993. Beneficial effects <strong>of</strong>plants in <strong>the</strong> remedi<strong>at</strong>ion <strong>of</strong> soil and groundw<strong>at</strong>ercontamin<strong>at</strong>ed with organic m<strong>at</strong>erials. Crit. Rev. Environ.Sci. Technol. 23:41-77.Siciliano, S.D., and C.W. Greer. 2000. <strong>Plant</strong>-bacterialcombin<strong>at</strong>ions to phytoremedi<strong>at</strong>e soil contamin<strong>at</strong>ed withhigh concentr<strong>at</strong>ions <strong>of</strong> 2,4,6-trinitrotoluene. J. Environ.Qual. 29(1):311-316.Smith, R.A.H., and A.D. Bradshaw. 1979. The use <strong>of</strong> metaltolerant plant popul<strong>at</strong>ions for <strong>the</strong> reclam<strong>at</strong>ion <strong>of</strong> metalliferouswastes. J. Appl. Ecol. 16:595-612.Stomp, A.-M., K.-H. Han, S. Wilbert, M.P. Gordon, and S.D.Cunningham. 1994. Genetic str<strong>at</strong>egies for enhancingphytoremedi<strong>at</strong>ion. Ann. NY Acad. Sci. 721:481-491.Terry, N., and G. Bañuelos (eds.). 2000. Phytoremedi<strong>at</strong>ion <strong>of</strong>Contamin<strong>at</strong>ed Soil and <strong>W<strong>at</strong>er</strong>. Lewis Publishers, BocaR<strong>at</strong>on, FL. 389 pp.Thompson, P.L., L.A. Ramer, and J.L. Schnoor. 1998. Uptakeand transform<strong>at</strong>ion <strong>of</strong> TNT by hybrid poplar trees. Environ.Sci. Technol. 32:975-980.21


Thompson, P.L., L.A. Ramer, and J.L. Schnoor. 1999.Hexahydro-1,3,5-trinitro-1,3,5-triazine transloc<strong>at</strong>ion in poplartrees. Environ. Toxicol. Chem. 18(2):279-284.Tremel, A., P. Masson, H. Garraud, O.F.X. Donard, D. Baize, andM. Mench. 1997. Thallium in French agrosystems--II.Concentr<strong>at</strong>ion <strong>of</strong> thallium in field-grown rape and someo<strong>the</strong>r plant species. Environ. Pollut. 97(1-2):161-168.U.S. EPA. 1983. Hazardous waste land tre<strong>at</strong>ment. USEPA SW-874. Municipal Environmental <strong>Research</strong> Labor<strong>at</strong>ory,Cincinn<strong>at</strong>i, OH.U.S. EPA. 1997. St<strong>at</strong>us <strong>of</strong> in situ phytoremedi<strong>at</strong>ion technology.pp. 31-42. In Recent developments for in situ tre<strong>at</strong>ment <strong>of</strong>metal contamin<strong>at</strong>ed soils. March. EPA-542-R-97-004.U.S. EPA. 2000. Introduction to Phytoremedi<strong>at</strong>ion. EPA/600/R-99/107. Office <strong>of</strong> <strong>Research</strong> and Development,Washington, DC. February 2000.Vroblesky, D.A., and T.M. Yanosky. 1990. Use <strong>of</strong> tree-ringchemistry to document historical groundw<strong>at</strong>er contamin<strong>at</strong>ionevents. <strong>Ground</strong> <strong>W<strong>at</strong>er</strong>. 28:677-684.Wang, T.C., J.C. Weissman, G. Ramesh, R. Varadarajan, andJ.R. Benemann. 1996. Parameters for removal <strong>of</strong> toxicheavy metals by w<strong>at</strong>er milfoil (Myriophyllum spic<strong>at</strong>um).Bull. Environ. Contam. Toxicol. 57:779-786.Wilken, A., C. Bock, M. Bokern, and H. Harms. 1995. Metabolism<strong>of</strong> different PCB congeners in plant cell cultures. Environ.Toxicol. Chem. 14(12):2017-2022.Wiltse, C.C., W.L. Rooney, Z. Chen, A.P. Schwab, and M.K.Banks. 1998. Greenhouse evalu<strong>at</strong>ion <strong>of</strong> agronomic andcrude oil-phytoremedi<strong>at</strong>ion potential among alfalfagenotypes. J. Environ. Qual. 27(1)169-173.Wu, J., F.C. Hsu, and S.D. Cunningham. 1999. Chel<strong>at</strong>eassistedPb phytoextraction: Pb availability, uptake, andtransloc<strong>at</strong>ion constraints. Environ. Sci. Technol.33(11):1898-1904.Yanosky, T.M., and D.A. Vroblesky. 1992. Rel<strong>at</strong>ion <strong>of</strong> nickelconcentr<strong>at</strong>ions in tree rings to groundw<strong>at</strong>er contamin<strong>at</strong>ion.<strong>W<strong>at</strong>er</strong> Resour. Res. 28:2077-2083.Zayed, A., S. Gowthaman, and N. Terry. 1998.Phytoaccumul<strong>at</strong>ion <strong>of</strong> trace elements by wetlands plants: I.Duckweed. J. Environ. Qual. 27(3):715-721.Zhu, Y.L., A.M. Zayed, J.-H. Qian, M. de Souza, and N. Terry.1999. Phytoaccumul<strong>at</strong>ion <strong>of</strong> trace elements by wetlandplants: II. w<strong>at</strong>er hyacinth. J. Environ. Qual. 28(1):339-344.22


Table 1. Phytoremedi<strong>at</strong>ion <strong>of</strong> MetalsCONTAMINANT MEDIUM PROCESS CONCENTRATION 1 PLANT 2 REFERENCERESULTS/NOTESCadmium Soil Phytoextraction 7.9 mg/kg Willow (Salix viminalis) Greger and Landberg, 1999The calcul<strong>at</strong>ed removal r<strong>at</strong>e <strong>of</strong> Cd from soil was 216.7 g/ha per year.Phytostabiliz<strong>at</strong>ion 9.4 mg/kg total Cd (in mine tailings) Hybrid poplars Pierzynski et al., 1994Poplar leaves did not accumul<strong>at</strong>e significant amounts <strong>of</strong> Cd when grown in an outdoor plot on mine tailings.<strong>W<strong>at</strong>er</strong> Rhiz<strong>of</strong>iltr<strong>at</strong>ion 2 mg/L Indian mustard Dushenkov et al., 1995Bioaccumul<strong>at</strong>ion coefficient <strong>of</strong> 134 after 24 hours.0.18 to 18 M (20 to 2000 g/L) inhydroponic solutionIndian mustard Salt et al., 1997Bioaccumul<strong>at</strong>ion coefficients <strong>of</strong> 500 to 2000. Seedlings removed 40 to 50% <strong>of</strong> <strong>the</strong> Cd within 24 hours.1 to 16 mg/L <strong>W<strong>at</strong>er</strong> milfoil (Myriophyllum spic<strong>at</strong>um) Wang et al., 199623Minimum residual concentr<strong>at</strong>ion <strong>of</strong> about 0.01 mg/L.0.1 to 10 mg/L Duckweed, w<strong>at</strong>er hyacinth Zayed et al., 1998; Zhu et al., 1999Bioconcentr<strong>at</strong>ion factor <strong>of</strong> 500 to 1300, in duckweed whole plant tissue. <strong>W<strong>at</strong>er</strong> hyacinth bioconcentr<strong>at</strong>ion factor <strong>of</strong> 185 inshoots and 2150 in roots, <strong>at</strong> 0.1 mg/L.Chromium Soil Phytoextraction NA None Brooks, 1998bBrooks (1998b) indic<strong>at</strong>es th<strong>at</strong> <strong>the</strong>re is no evidence <strong>of</strong> Cr hyperaccumul<strong>at</strong>ion by any vascular plants.Phytostabiliz<strong>at</strong>ion Unspecified. Indian mustard (Brassica juncea) Salt et al., 1995Some labor<strong>at</strong>ory evidence indic<strong>at</strong>ed th<strong>at</strong> Cr(VI) might be reduced to Cr(III) by B. juncea roots.Sludge Phytoextraction 214 mg/kg Aqu<strong>at</strong>ic macrophytes: Bacopa monnieri,Scirpus lacustris, Phragmites karka.Chandra et al., 1997Maximum Cr accumul<strong>at</strong>ion was in Phragmites karka (816 mg/kg dry weight) <strong>at</strong> 12 weeks.<strong>W<strong>at</strong>er</strong> Rhiz<strong>of</strong>iltr<strong>at</strong>ion 4 mg/L Cr(VI) Indian mustard Dushenkov et al., 1995Bioaccumul<strong>at</strong>ion coefficient <strong>of</strong> 179 after 24 hours. The roots contained Cr(III), indic<strong>at</strong>ing reduction <strong>of</strong> Cr(VI).0.1 to 10 mg/L Cr(VI) <strong>W<strong>at</strong>er</strong> hyacinth Zhu et al., 1999Maximum w<strong>at</strong>er hyacinth bioconcentr<strong>at</strong>ion factor was 1823 in roots, <strong>at</strong> 0.1 mg/L.


Table 1. continuedCONTAMINANT MEDIUM PROCESS CONCENTRATION 1 PLANT 2 REFERENCERESULTS/NOTESCobalt Soil Phytoextraction NA NA McGr<strong>at</strong>h, 1998Although Co (and Cu) hyperaccumul<strong>at</strong>ors exist, McGr<strong>at</strong>h indic<strong>at</strong>es th<strong>at</strong> no demonstr<strong>at</strong>ion <strong>of</strong> phytoextraction <strong>of</strong> Co and Cuhas been made.Copper Soil Phytoextraction NA NA McGr<strong>at</strong>h, 1998Although Cu (and Co) hyperaccumul<strong>at</strong>ors exist, McGr<strong>at</strong>h indic<strong>at</strong>es th<strong>at</strong> no demonstr<strong>at</strong>ion <strong>of</strong> phytoextraction <strong>of</strong> Cu and Cohas been made.Phytostabiliz<strong>at</strong>ion 25 to 15,400 ppm in mine tailings. Perennial grasses such as Agrostis tenuisand Festuca rubra. Agrostic tenuis cv.Parys is available commercially.Smith and Bradshaw, 1979N<strong>at</strong>urally-occurring metal-tolerant popul<strong>at</strong>ions <strong>of</strong> grasses grew well, provided th<strong>at</strong> fertiliz<strong>at</strong>ion was sufficient.<strong>W<strong>at</strong>er</strong> Rhiz<strong>of</strong>iltr<strong>at</strong>ion 6 mg/L Cu(II) Indian mustard Dushenkov et al., 199524Bioaccumul<strong>at</strong>ion coefficient <strong>of</strong> 490 after 24 hours.1 to 16 mg/L <strong>W<strong>at</strong>er</strong> milfoil (Myriophyllum spic<strong>at</strong>um) Wang et al., 1996Minimum residual concentr<strong>at</strong>ion <strong>of</strong> about 0.01 mg/L.0.1 to 10 mg/L Duckweed, w<strong>at</strong>er hyacinth Zayed et al., 1998; Zhu et al., 1999Bioconcentr<strong>at</strong>ion factor <strong>of</strong> 200 to 800, in duckweed whole plant tissue. Maximum w<strong>at</strong>er hyacinth bioconcentr<strong>at</strong>ion factorwas 595.Lead Soil Phytoextraction At 0 to 15 cm depth:40% <strong>of</strong> site had >400 mg/kg;7% <strong>of</strong> site had >1000 mg/kgIndian mustard Blaylock et al., 1999“Magic Marker” site. After 3 crops, 28% area had > 400 mg/kg, 0% area had > 1000 mg/kg. The 15-30 cm and 30-45 cmdepths did not change significantly. <strong>Plant</strong> shoot lead was 3000 mg/kg. Projected cost is 50-75% <strong>of</strong>traditional costs.625 g/g (dry weight) in sand Brassica juncea cultivars Kumar et al., 1995The best cultivar could <strong>the</strong>oretically remove 630 kg Pb/ha if <strong>the</strong> shoots were harvested.Phytostabiliz<strong>at</strong>ion 625 mg/kg Brassica juncea seedlings Salt et al., 1995Leach<strong>at</strong>e concentr<strong>at</strong>ion was 740 mg/L without plants and was 22 mg/L with plants.


Table 1. continuedCONTAMINANT MEDIUM PROCESS CONCENTRATION 1 PLANT 2 REFERENCERESULTS/NOTES<strong>W<strong>at</strong>er</strong> Rhiz<strong>of</strong>iltr<strong>at</strong>ion 2 to 500 mg/L in hydroponic solution Indian mustard Dushenkov et al., 1995Bioaccumul<strong>at</strong>ion coefficient <strong>of</strong> 563 after 24 hours for 2 mg/L solution.0.096 to 9.6 M (20 to 2000 g/L) inhydroponic solutionIndian mustard Salt et al., 1997Bioaccumul<strong>at</strong>ion coefficients <strong>of</strong> 500 to 2000.1 to 16 mg/L <strong>W<strong>at</strong>er</strong> milfoil (Myriophyllum spic<strong>at</strong>um) Wang et al., 1996Minimum residual concentr<strong>at</strong>ion was below 0.004 mg/L.Manganese <strong>W<strong>at</strong>er</strong> Rhiz<strong>of</strong>iltr<strong>at</strong>ion 1 mg/L in hydroponic solution Twelve wetland plants Qian et al., 1999Smart weed (Polygonum hydropiperoides L.) was most effective <strong>of</strong> <strong>the</strong> plants tested in removing Mn, and could remove 306 gMn/ha per day.25Mercury <strong>W<strong>at</strong>er</strong> Rhiz<strong>of</strong>iltr<strong>at</strong>ion 1 mg/L in hydroponic solution Twelve wetland plants Qian et al., 1999Smart weed (Polygonum hydropiperoides L.) was most effective <strong>of</strong> <strong>the</strong> plants tested in removing Hg, and could remove 71 gHg/ha per day.Soil andground w<strong>at</strong>erPhytovol<strong>at</strong>iliz<strong>at</strong>ion5 M Hg(II) (1 mg/L) in hydroponicsolutionGenetically altered Arabidopsis thalianaand tobacco (Nicotiana tabacum)Meagher et al., 2000At seven days, tobacco plants had decreased Hg(II) in solution from 5 to 1.25 M by reducing it to less toxic metallicmercury, which was vol<strong>at</strong>ilized.Nickel Soil Phytoextraction 14 to 3,333 mg/kg Berkheya coddii Robinson et al., 1997It was estim<strong>at</strong>ed th<strong>at</strong> plants could achieve a Ni content <strong>of</strong> 5000 g/g and remove 110 kg Ni per ha. <strong>Plant</strong>s did not grow insoils with 10,000 mg/kg Ni.Phytostabiliz<strong>at</strong>ionUnspecified concentr<strong>at</strong>ions in minetailings.N<strong>at</strong>ive plants (herbs, shrubs, and trees)including hyperaccumul<strong>at</strong>ors andlegumes.Brooks et al., 1998<strong>Plant</strong>s and soil amendments have been used to reclaim mine tailings in New Caledonia.<strong>W<strong>at</strong>er</strong> Rhiz<strong>of</strong>iltr<strong>at</strong>ion 1 mg/L in hydroponic solution Twelve wetland plants Qian et al., 1999Smart weed (Polygonum hydropiperoides L.) was most effective <strong>of</strong> <strong>the</strong> plants tested in removing Ni, and could remove 108 gNi/ha per day.


Table 1. continuedCONTAMINANT MEDIUM PROCESS CONCENTRATION 1 PLANT 2 REFERENCERESULTS/NOTESThallium Soil Phytoextraction 0.321 to 18 mg/kg Winter rape (Brassica napus L.),winter whe<strong>at</strong>, corn, cabbage, leekTremel et al., 1997The highest average Tl concentr<strong>at</strong>ion was 20 mg/kg in rape shoots, on <strong>the</strong> highest Tl-concentr<strong>at</strong>ion soil. On a dry weightbasis, <strong>the</strong> maximum accumul<strong>at</strong>ion in rape was 2.5x <strong>the</strong> concentr<strong>at</strong>ion <strong>of</strong> Tl in <strong>the</strong> soil.Zinc Soil Phytoextraction 124 to 444 mg/kg Zn (o<strong>the</strong>r metals werealso present <strong>at</strong> lesser concentr<strong>at</strong>ions).Seven species <strong>of</strong> metalshyperaccumul<strong>at</strong>orsMcGr<strong>at</strong>h et al., 2000Thlaspi caerulescens and Cardaminopsis halleri accumul<strong>at</strong>ed high levels <strong>of</strong> Zn, averaging 1232 to 3472 mg/kg. Thesespecies removed 4.6 to 17.6 kg Zn/ha per year.Phytostabiliz<strong>at</strong>ionUp to 43,750 mg/kg in mine rock wastem<strong>at</strong>erial.N<strong>at</strong>ive grasses, tame grasses, leguminousforbs.Pierzynski et al., 1994Mycorrhizae and organic amendments in soil enhanced plant growth. Some uptake <strong>of</strong> Zn by plants occurred.26<strong>W<strong>at</strong>er</strong> Rhiz<strong>of</strong>iltr<strong>at</strong>ion 100 mg/L in hydroponic solution Brassica juncea Dushenkov et al., 1995Over 13,000 g/g Zn accumul<strong>at</strong>ed in roots after 24 hours. Some Zn may have been transloc<strong>at</strong>ed into shoots and root exud<strong>at</strong>esmay have precipit<strong>at</strong>ed Zn from solution.1 Concentr<strong>at</strong>ion units are given as <strong>the</strong>y were reported in <strong>the</strong> original reference. Conversions <strong>of</strong> molar concentr<strong>at</strong>ions have been added.2 <strong>Plant</strong> names are given as <strong>the</strong>y were reported in <strong>the</strong> original reference.


Table 2. Phytoremedi<strong>at</strong>ion <strong>of</strong> Metalloids, Non-metals, Radionuclides, and NutrientsCONTAMINANT MEDIUM PROCESS CONCENTRATION 1 PLANT 2 REFERENCEMetalloids/non-metalsRESULTS/NOTESArsenic Surface w<strong>at</strong>er PhytoextractionRhiz<strong>of</strong>iltr<strong>at</strong>ion>0.05 g/mL Aqu<strong>at</strong>ic plants Cer<strong>at</strong>ophyllum demersum,Egeria densa, and Lagarosiphon majorBrooks and Robinson, 1998Arsenic concentr<strong>at</strong>ions in plants were up to 1200 g/g dry weight. In Cer<strong>at</strong>ophyllum demersum, <strong>the</strong> concentr<strong>at</strong>ions wereabout 10,000 times <strong>the</strong> arsenic concentr<strong>at</strong>ion in <strong>the</strong> w<strong>at</strong>er. The use <strong>of</strong> <strong>the</strong>se plants was suggested as a means <strong>of</strong> reducingarsenic concentr<strong>at</strong>ions in <strong>the</strong> w<strong>at</strong>er.SoilPhytoextractionPhytostabiliz<strong>at</strong>ionUnspecified.Couch grass, i.e., bermudagrass,(Cynodon dactylon), th<strong>at</strong>ch grass(Pinicum s<strong>at</strong>ivum), amaranths(Amaranthus hybridus)Jonnalagadda and Nenzou, 199727Phytostabiliz<strong>at</strong>ionPhytoextractionCouch grass grew on metal-rich mine dumps and accumul<strong>at</strong>ed 10,880 mg/kg arsenic in <strong>the</strong> roots and 1,660 mg/kg in <strong>the</strong>stem/leaves (dry weight).1250 mg/kg (in mine tailings) Lambsquarters, poplars Pierzynski et al., 1994Lambsquarters leaves had rel<strong>at</strong>ively higher As concentr<strong>at</strong>ions (14 mg/kg As) than o<strong>the</strong>r n<strong>at</strong>ive plant or poplar leaves (8mg/kg) in mine-tailing wastes.Selenium<strong>Ground</strong> w<strong>at</strong>er(irrig<strong>at</strong>iondrainagew<strong>at</strong>er)Phytoextraction 100, 300, 500 g/L Hybrid poplar clones (Populus) Bañuelos et al., 1999Maximum Se content was 9.1 mg/kg dry m<strong>at</strong>ter in 500 g/L tre<strong>at</strong>ment, but Se content did not exceed 1 mg/kg dry m<strong>at</strong>ter in100 and 300 g/L tre<strong>at</strong>ments. Poplars accumul<strong>at</strong>ed more Se than o<strong>the</strong>r tree species; however, net accumul<strong>at</strong>ion <strong>of</strong> Se wassaid to be minimal.<strong>W<strong>at</strong>er</strong> Rhiz<strong>of</strong>iltr<strong>at</strong>ion 0.1 to 10 mg/L Duckweed, w<strong>at</strong>er hyacinth Zayed et al., 1998; Zhu et al., 1999Duckweed maximum bioconcentr<strong>at</strong>ion factor was 850, in whole plant tissue.SoilPhytoextractionPhytovol<strong>at</strong>iliz<strong>at</strong>ion40 mg/kg Canola (Brassica napus cv. Westar)kenaf (Hibiscus cannabinus L. cv.Indian), tall fescue (Festuca arundinaceaSchreb cv. Alta)Bañuelos et al., 1997The plants accumul<strong>at</strong>ed Se. Canola reduced total soil by 47%, kenaf reduced it by 23%, and tall fescue reduced it by 21%.


Table 2. continuedCONTAMINANT MEDIUM PROCESS CONCENTRATION 1 PLANT 2 REFERENCERESULTS/NOTESBoron<strong>W<strong>at</strong>er</strong> (soilsolution)Phytoextraction 10 mg w<strong>at</strong>er-extractable B/L Indian mustard (Brassica juncea CzernL.), tall fescue (Festuca arundinaceaSchreb. L.), birdsfoot trefoil (Lotuscornicul<strong>at</strong>us L.), kenaf (Hibiscuscannibinus L.)Bañuelos, 1996Mean B concentr<strong>at</strong>ions in shoots ranged from 122 mg B/kg dry m<strong>at</strong>ter in birdsfoot trefoil to 879 mg B/kg dry m<strong>at</strong>ter in kenafleaves. In two years, each plant species lowered extractable B concentr<strong>at</strong>ions in soil by <strong>at</strong> least 25%.Perchlor<strong>at</strong>e<strong>W<strong>at</strong>er</strong>(hydroponicsolution)PhytoextractionPhytodegrad<strong>at</strong>ionRhizodegrad<strong>at</strong>ion10, 22, 100 mg/L Willow (Salix nigra), Eastern cottonwood(Populus deltoides and hybrid populus),and eucalyptus (Eucalyptus cineria).Nzengung et al., 1999Willows had best growth under hydroponic conditions and degraded perchlor<strong>at</strong>e from 10 mg/L to below detection (2 g/L) inabout 20 days, from 22 mg/L to BD in about 35 days, and from 100 mg/L to BD in about 53 days. 1.3% <strong>of</strong> initial perchlor<strong>at</strong>emass was found in willow plant tissues, especially leaves and upper stems (branches). Leaves had 813.1 mg/kg perchlor<strong>at</strong>es.Some evidence for perchlor<strong>at</strong>e degrad<strong>at</strong>ion within leaves. Perchlor<strong>at</strong>e degrad<strong>at</strong>ion r<strong>at</strong>es decreased as nitr<strong>at</strong>e concentr<strong>at</strong>ionincreased, and type <strong>of</strong> nitrogen source affects perchlor<strong>at</strong>e degrad<strong>at</strong>ion r<strong>at</strong>e.28RadionuclidesCesium or 137 Cs Soil Phytoextraction 2600 Bq/kg average Amaranth species Dushenkov et al., 1999<strong>W<strong>at</strong>er</strong>Rhiz<strong>of</strong>iltr<strong>at</strong>ionRhiz<strong>of</strong>iltr<strong>at</strong>ionExtraction <strong>of</strong> 137 Cs was limited by binding to soil; addition <strong>of</strong> amendments did not increase bioavailability.C o = 200 g/L Sunflowers Dushenkov et al., 1997In bench-scale and pilot-scale engineered systems using <strong>the</strong> stable isotope, C o decreased noticeably after 6 hours, <strong>the</strong>n wentbelow 3 g/L after 24 hours.20 to 2000 g/L Indian mustard Salt et al., 1997Accumul<strong>at</strong>ion by <strong>the</strong> roots, with bioaccumul<strong>at</strong>ion coefficients <strong>of</strong> 100 to 250.Eu(III)[surrog<strong>at</strong>e forradionuclideAm(III)]<strong>W<strong>at</strong>er</strong> Rhiz<strong>of</strong>iltr<strong>at</strong>ion 3.3 x 10 -4 M (50 mg/L) <strong>W<strong>at</strong>er</strong> hyacinth (Eichhornia crassipes) Kelley et al., 199926% <strong>of</strong> <strong>the</strong> Eu(III) in solution was removed. Eu(III) on roots was 0.01 g/g dry weight root m<strong>at</strong>erial. Almost all <strong>of</strong> <strong>the</strong>removed Eu(III) was found on <strong>the</strong> roots.60 Co Soil Phytoextraction C o = 1.59 Bq 60 Co/g soil Yellow sweetclover (Melilotus <strong>of</strong>ficinalis(L.) Lam) and Sudan grass (Sorghumsudanese (Piper) Stapf.)Rogers and Williams, 19862.6% <strong>of</strong> <strong>the</strong> total 60 Co in soil was removed by two harvests <strong>of</strong> clover, <strong>at</strong> 65 and 93 days. 1.2% <strong>of</strong> <strong>the</strong> total 60 Co in soil wasremoved by two harvests <strong>of</strong> grass, <strong>at</strong> 85 and 119 days.


Table 2. continuedCONTAMINANT MEDIUM PROCESS CONCENTRATION 1 PLANT 2 REFERENCERESULTS/NOTES226 Ra, 222 Rn Soil Phytoextraction C o = 4.4 x 10 3 Bq 226 Ra/kg soil Corn (Zea mays L.), dwarf sunflower(Helianthus annuus L.), tall fescue(Festuca arundinacea Schreb.)Lewis and MacDonell, 1990226 Ra and 222 Rn are taken up by plants, although percent removal per year <strong>of</strong> 226 Ra from soil is likely to be very low. Aneg<strong>at</strong>ive impact is th<strong>at</strong> 222 Rn taken up is released by plants, with <strong>the</strong> amount released dependant on leaf area. <strong>Plant</strong>s couldincrease <strong>the</strong> escape <strong>of</strong> 222 Rn through a soil cover.Strontium or 90 Sr <strong>Ground</strong> w<strong>at</strong>er Rhiz<strong>of</strong>iltr<strong>at</strong>ion 200 g/L Sunflowers Dushenkov et al., 1997Using <strong>the</strong> stable isotope, C o decreased to 35 g/L within 48 hours, <strong>the</strong>n to 1 g/L by 96 hours20 to 2000 g/L Indian mustard Salt et al., 1997Root bioaccumul<strong>at</strong>ion coefficients were 500 to 200029Soil Phytoextraction 100 Bq 137 Cs/g soil112 Bq 90 Sr/g soilBahia grass (Paspalum not<strong>at</strong>um),johnson grass (Sorghum halpense),switchgrass (Panicum virg<strong>at</strong>um)Entry et al., 1999In 3 harvests in 24 weeks, aboveground biomass <strong>of</strong> bahia grass accumul<strong>at</strong>ed 26.3 to 46.7% <strong>of</strong> applied 137 Cs and 23.8 to 50.1%<strong>of</strong> applied 90 Sr; johnson grass accumul<strong>at</strong>ed 45.5 to 71.7% <strong>of</strong> applied 137 Cs and 52.6 to 88.7% <strong>of</strong> applied 90 Sr; and switchgrassaccumul<strong>at</strong>ed 31.8 to 55.4% <strong>of</strong> applied 137 Cs and 36.8 to 63.4% <strong>of</strong> applied 90 Sr. Mycorrhizal infection <strong>of</strong> all plant speciesincreased amount <strong>of</strong> uptake <strong>of</strong> 137 Cs and 90 Sr. Favorable experimental conditions may have enhanced uptake.Uranium Soil Phytoextraction 280 and 750 mg/kg total U Amaranth (Amaranth cruentus L.),Brassica juncea (various cultivars), bushbean (Phaseolus vulgaris L.), Chinesecabbage (Brassica chinensis L.), Chinesemustard (Brassica narinosa L.), corn (Zeamays), cow pea (Pisum s<strong>at</strong>ivum L.), fieldpea (Pisum s<strong>at</strong>ivum L.), sunflower(Helianthus annuus L.), and winter whe<strong>at</strong>(Triticum aestivum L.)Huang et al., 1998Amaranth, Brassica juncea, Chinese cabbage, and Chinese mustard had significant U concentr<strong>at</strong>ion in shoots, when soil wastre<strong>at</strong>ed with citric acid. Maximum shoot U concentr<strong>at</strong>ions were more than 5000 mg/kg. Different cultivars had significantlydifferent accumul<strong>at</strong>ion <strong>of</strong> U.<strong>W<strong>at</strong>er</strong> Rhiz<strong>of</strong>iltr<strong>at</strong>ion 10 to 2430 g/L Sunflowers Dushenkov et al., 1997Initial concentr<strong>at</strong>ions declined significantly within 48 hours, in some cases to below <strong>the</strong> remedial goal.


Table 2. continuedCONTAMINANT MEDIUM PROCESS CONCENTRATION 1 PLANT 2 REFERENCENutrientsRESULTS/NOTESNO 3-<strong>Ground</strong> w<strong>at</strong>erHydraulic controlRiparian corridorsBuffer strips150 mg/L Poplars (Populus spp.) Licht and Schnoor, 1993Nitr<strong>at</strong>e in ground w<strong>at</strong>er decreased from 150 mg/L <strong>at</strong> <strong>the</strong> edge <strong>of</strong> a corn field, to 8 mg/L below a downgradient poplar bufferstrip, and <strong>the</strong>n to 3 mg/L downgradient <strong>at</strong> <strong>the</strong> edge <strong>of</strong> a stream.1 Concentr<strong>at</strong>ion units are given as <strong>the</strong>y were reported in <strong>the</strong> original reference. Conversions <strong>of</strong> molar concentr<strong>at</strong>ions have been added.2 <strong>Plant</strong> names are given as <strong>the</strong>y were reported in <strong>the</strong> original reference.30


Table 3. Phytoremedi<strong>at</strong>ion <strong>of</strong> Organic ContaminantsCONTAMINANT MEDIUM PROCESS CONCENTRATION 1 PLANT 2 REFERENCEPetroleum hydrocarbons/PAHSRESULTS/NOTESCrude oil Soil Rhizodegrad<strong>at</strong>ion 8200 to 16,000 mg/kg TPH St. Augustine grass (Stenotaphrumsecund<strong>at</strong>um L.), rye (Secale cereale L.)-soybean-rye rot<strong>at</strong>ion, sorghum-sudangrass (Sorghum bicolor sudanese L.)Schwab and Banks, 1999At this Gulf Coast pipeline site, dissip<strong>at</strong>ion <strong>of</strong> TPH <strong>at</strong> 21 months ranged from 35 to 50% in planted plots, compared to 21% inunplanted plots.Diesel (we<strong>at</strong>hered) Soil Rhizodegrad<strong>at</strong>ion 3000 mg/kg TPH Tall fescue, bermudagrass, ryegrass, whitecloverAATDF, 1998Craney Island field phytoremedi<strong>at</strong>ion site. TPH decreased 50% in clover plots, 45% in fescue plots, about 40% in bermudagrass plots, and about 30% in unveget<strong>at</strong>ed plots in 24 months. TPH and PAH decreases in veget<strong>at</strong>ed plots were st<strong>at</strong>isticallysignificantly gre<strong>at</strong>er than in unveget<strong>at</strong>ed plots.No. 2 fuel oil Soil Rhizodegrad<strong>at</strong>ion 40 to 5000 mg/kg DRO Hybrid willow Carman et al., 199831BTEX Soil Rhizodegrad<strong>at</strong>ion Uncontamin<strong>at</strong>ed soil was used foraerobic MPN cultures containing 5mg/L each <strong>of</strong> benzene, toluene, and o-xylene.Willow roots were established in contamin<strong>at</strong>ed soil. Contribution <strong>of</strong> rhizosphere to biodegrad<strong>at</strong>ion had not yet been assessed.Hybrid poplar trees (Populus deltoides ×nigra DN-34, Imperial Carolina)Jordahl et al., 1997R<strong>at</strong>io <strong>of</strong> BTX degraders in rhizosphere soil compared to surrounding soil was 5:1.<strong>W<strong>at</strong>er</strong> Phytovol<strong>at</strong>iliz<strong>at</strong>ion 50 mg/L in hydroponic solution Hybrid poplar Burken and Schnoor, 1998, 199918% <strong>of</strong> applied benzene, 10% <strong>of</strong> applied toluene and ethylbenzene, and 9% <strong>of</strong> applied m-xylene were vol<strong>at</strong>ilized from poplarcuttings in hydroponic solution.PAHs Soil Rhizodegrad<strong>at</strong>ion 10 mg/kg chrysene, benz(a)anthracene,benzo(a)pyrene, anddibenz(a,h)anthraceneEight types <strong>of</strong> prairie grasses Aprill and Sims, 1990The disappearance <strong>of</strong> PAHs was gre<strong>at</strong>er in veget<strong>at</strong>ed soils than in unveget<strong>at</strong>ed soils. From gre<strong>at</strong>est to least, <strong>the</strong> order <strong>of</strong>disappearance was benz(a)anthracene > chrysene > benzo(a)pyrene > dibenz(a,h)anthracene.298 + 169 mg/kg total PAHs for 15PAHsPerennial ryegrass (Lolium perenne) Ferro et al., 1999Fluoran<strong>the</strong>ne, pyrene, and chrysene had gre<strong>at</strong>er disappearance in planted soils compared to unplanted soils.


Table 3. continuedCONTAMINANT MEDIUM PROCESS CONCENTRATION 1 PLANT 2 REFERENCERESULTS/NOTES100 mg/kg anthracene and pyrene Fescue (Festuca arundinacea Schreb.),sudangrass (Sorghum vulgare L.),switchgrass (Panicum virg<strong>at</strong>um L.), andalfalfa (Medicago s<strong>at</strong>iva L.)Reilley et al., 1996MGP site wastes(PAHs)PAH disappearance was gre<strong>at</strong>er in veget<strong>at</strong>ed tre<strong>at</strong>ments than in unveget<strong>at</strong>ed tre<strong>at</strong>ments.Soil Rhizodegrad<strong>at</strong>ion 100 to 200 mg/kg total PAHs Alfalfa (Medicago s<strong>at</strong>iva), switchgrass(Panicum virg<strong>at</strong>um), little bluegrass(Schizachyrium scoparium)Pradhan et al., 1998<strong>Plant</strong>ed soils had a gre<strong>at</strong>er percent reduction in total and carcinogenic PAHs than unplanted soils.Chlorin<strong>at</strong>ed solventsTetrachloroe<strong>the</strong>ne(PCE)<strong>W<strong>at</strong>er</strong> Rhiz<strong>of</strong>iltr<strong>at</strong>ion 0.5 to 10 mg/L <strong>W<strong>at</strong>er</strong>weed (Elodea canidensis), asubmergent aqu<strong>at</strong>ic plantNzengung et al., 199932Trichloroe<strong>the</strong>ne(TCE)SoilRhizodegrad<strong>at</strong>ionPhytodegrad<strong>at</strong>ionPCE rapidly sorbed to plant m<strong>at</strong>ter.Not specified.Chinese lespedeza (Lespedeza cune<strong>at</strong>a(Dumont)), a legume; a composite herb(Solidago sp.); Loblolly pine (Pinus taedaL.); soybean (Glycine max (L.) Merr., cv.Davis)Anderson and Walton, 1995Significantly gre<strong>at</strong>er TCE mineraliz<strong>at</strong>ion occurred in soil veget<strong>at</strong>ed with L. cune<strong>at</strong>a, Loblolly pine, and soybean than in nonveget<strong>at</strong>edsoil, but not with composite herb - Solidago sp.<strong>Ground</strong> w<strong>at</strong>erPhytodegrad<strong>at</strong>ionPhytovol<strong>at</strong>iliz<strong>at</strong>ionAverage <strong>of</strong> 0.38 mM (50 mg/L) duringfirst season and 0.11 mM (14.5 mg/L)during second season.Hybrid poplar (Populus trichocarpa × P.deltoides)Newman et al., 1999Trees removed over 99% <strong>of</strong> added TCE. TCE transpir<strong>at</strong>ion was detected by leaf bag gas analysis, but not detected by openp<strong>at</strong>hFourier transform infrared spectroscopy. During second and third years, less than 9% was transpired. TCE was found inleaves, branches, trunks, and roots (and was generally highest in branches). Low levels <strong>of</strong> metabolites and reductivedechlorin<strong>at</strong>ion products were found in plant tissues.1,1,1-trichloroethane(TCA)<strong>Ground</strong> w<strong>at</strong>erPhytodegrad<strong>at</strong>ionRhizodegrad<strong>at</strong>ionNot given. Hybrid poplar Newman et al., 1998In labor<strong>at</strong>ory tests, hybrid poplars could take up TCA. In <strong>the</strong> field applic<strong>at</strong>ion, an underground irrig<strong>at</strong>ion system appliedcontamin<strong>at</strong>ed ground w<strong>at</strong>er to <strong>the</strong> tree roots.


Table 3. continuedCONTAMINANT MEDIUM PROCESS CONCENTRATION 1 PLANT 2 REFERENCEMunitionsRESULTS/NOTESTNT <strong>W<strong>at</strong>er</strong> Phytodegrad<strong>at</strong>ion 1,250 to 4,440 ppb TNT and 3,250 to9,200 ppb total nitrobodies (TNT, RDX,HMX, TNB, 2A-DNT, 4A-DNT)Emergent aqu<strong>at</strong>ic plants: canary grass(Phalaris arundinacea), wool grass(Scirpus cyperinus), sweetflag (Acoruscalamus), parrotfe<strong>at</strong>her (Myriophyllumaqu<strong>at</strong>icum)ESTCP, 1999An ex-situ gravel-based system with aqu<strong>at</strong>ic plants removed TNT to goal <strong>of</strong>


Table 3. continuedCONTAMINANT MEDIUM PROCESS CONCENTRATION 1 PLANT 2 REFERENCERESULTS/NOTESHMX <strong>W<strong>at</strong>er</strong> Phytodegrad<strong>at</strong>ion 1,250 to 4,440 ppb TNT and 3,250 to9,200 ppb total nitrobodies (TNT, RDX,HMX, TNB, 2A-DNT, 4A-DNT)Emergent aqu<strong>at</strong>ic plants: canary grass(Phalaris arundinacea), wool grass(Scirpus cyperinus), sweetflag (Acoruscalamus), parrotfe<strong>at</strong>her (Myriophyllumaqu<strong>at</strong>icum)ESTCP, 1999An ex-situ gravel-based system with aqu<strong>at</strong>ic plants removed total nitrobodies to goal <strong>of</strong> 10ppm.Kochia sp. Anderson et al., 1994<strong>Ground</strong> w<strong>at</strong>erand soil w<strong>at</strong>er(hydroponicsolution)Phytodegrad<strong>at</strong>ionEnhanced biodegrad<strong>at</strong>ion <strong>of</strong> <strong>at</strong>razine occurred in soil collected from <strong>the</strong> rhizosphere.Unspecified: 48.3 g <strong>at</strong>razine in lessthan 270 mL solution was used in <strong>the</strong>hydroponic reactor.Hybrid poplar (Populus deltoides × nigraDN34, Imperial Carolina)Burken and Schnoor, 1999There was no vol<strong>at</strong>iliz<strong>at</strong>ion <strong>of</strong> <strong>at</strong>razine from <strong>the</strong> poplars. 53.3% <strong>of</strong> <strong>the</strong> applied <strong>at</strong>razine was taken up into <strong>the</strong> plant. Thelargest percentage <strong>of</strong> <strong>at</strong>razine taken up was found in <strong>the</strong> leaves.Surface w<strong>at</strong>er Phytodegrad<strong>at</strong>ion 200 g/L Aqu<strong>at</strong>ic plants: coontail or hornwort(Cer<strong>at</strong>ophyllum demersum), Americanelodea or Canadian pondweed (Elodeacanadensis), common duckweed (Lemnaminor)Rice et al., 1997aAfter 16 days, <strong>at</strong>razine concentr<strong>at</strong>ions were significantly reduced in presence <strong>of</strong> Cer<strong>at</strong>ophyllum demersum (41.3% <strong>of</strong> applied<strong>at</strong>razine remained) and Elodea canadensis (63.2% <strong>of</strong> applied <strong>at</strong>razine remained) but not in unveget<strong>at</strong>ed system or in presence<strong>of</strong> Lemna minor (85% <strong>of</strong> applied <strong>at</strong>razine remained).


Table 3. continuedCONTAMINANT MEDIUM PROCESS CONCENTRATION 1 PLANT 2 REFERENCERESULTS/NOTESCarb<strong>of</strong>uran Soil Rhizodegrad<strong>at</strong>ionPhytodegrad<strong>at</strong>ion3 kg/ha active ingredient in fieldexperimentCorn (Zea mays L.) Buyanovsky et al., 1995In first 30 days <strong>of</strong> greenhouse experiment, mineraliz<strong>at</strong>ion was gre<strong>at</strong>er in soil close to <strong>the</strong> roots than in soil without roots or farfrom roots. Uptake <strong>of</strong> carb<strong>of</strong>uran and/or degrad<strong>at</strong>ion products occurred. In field experiment, concentr<strong>at</strong>ions in top 10 cm <strong>of</strong>planted soil were half <strong>the</strong> concentr<strong>at</strong>ions in unplanted soil.EDB <strong>Ground</strong> w<strong>at</strong>er Phytodegrad<strong>at</strong>ion 25 ppm Koa haole Newman et al., 1998Uptake <strong>of</strong> EDB was investig<strong>at</strong>ed.2,4-D Soil Rhizodegrad<strong>at</strong>ion Uncontamin<strong>at</strong>ed soil was used. Sugarcane (Saccharum <strong>of</strong>ficinarum) Sandmann and Loos, 1984O<strong>the</strong>rMPN counts <strong>of</strong> 2,4-D degraders were significantly gre<strong>at</strong>er for sugarcane rhizosphere soil than for non-rhizosphere soil.35PCP Soil Rhizodegrad<strong>at</strong>ion 100 mg/kg Hycrest crested whe<strong>at</strong>grass (Agropyrondesertorum (Fisher ex Link) Schultes)Ferro et al., 1994After 155 days, 22% <strong>of</strong> PCP was mineralized in planted system, but only 6% in unplanted.PCBs Soil Rhizodegrad<strong>at</strong>ion Not specified Osage orange and mulberry Fletcher et al., 1995Phenolics in leach<strong>at</strong>es from osage orange and mulberry supported growth <strong>of</strong> PCB-degrading bacteria.MTBE <strong>Ground</strong> w<strong>at</strong>er Phytodegrad<strong>at</strong>ionPhytovol<strong>at</strong>iliz<strong>at</strong>ionNot specifiedPoplar tree cell cultures, hybrid poplars,eucalyptusNewman et al., 1998, 1999Eucalyptus transpired 16.5% <strong>of</strong> applied radio-labeled MTBE and hybrid poplar transpired 5.1% in labor<strong>at</strong>ory chambers.Detectable transpir<strong>at</strong>ion <strong>of</strong> MTBE was not measured from m<strong>at</strong>ure eucalyptus in <strong>the</strong> field. Metabolism <strong>of</strong> MTBE by <strong>the</strong> treesis one hypo<strong>the</strong>sis.Surfactants(LAE, LAS)Surface w<strong>at</strong>er Rhizodegrad<strong>at</strong>ion 1 mg/L C<strong>at</strong>tail (Typha l<strong>at</strong>ifolia), duckweed(Lemna minor)Federle and Schwab, 1989Mineraliz<strong>at</strong>ion <strong>of</strong> LAS and LAE was faster and more extensive in w<strong>at</strong>er with c<strong>at</strong>tails than in root-free sediment. LAE wasmineralized by duckweed but LAS was not.


Table 3. continuedCONTAMINANT MEDIUM PROCESS CONCENTRATION 1 PLANT 2 REFERENCERESULTS/NOTESEthylene glycol Soil Rhizodegrad<strong>at</strong>ion 1000 g/g Tall fescue (Festuca arundinacea),perennial rye grass (Lolium perenne L.),Kentucky bluegrass (Poa pr<strong>at</strong>ensis L.),alfalfa (Medicago s<strong>at</strong>iva), birdsfoot trefoil(Lotus cornicul<strong>at</strong>us), and mixed (allexcept birdsfoot trefoil).Rice et al., 1997bAt 30 days, in soils tested <strong>at</strong> 0 o C, <strong>the</strong>re was significantly gre<strong>at</strong>er CO 2 produced from soil planted with tall fescue, perennialrye grass, Kentucky bluegrass, alfalfa, and mixed than from unplanted soil. At 20 o C, <strong>the</strong>re was significantly gre<strong>at</strong>er CO 2produced from all planted soils than from unplanted soil.1 Concentr<strong>at</strong>ion units are given as <strong>the</strong>y were reported in <strong>the</strong> original reference. Conversions <strong>of</strong> molar concentr<strong>at</strong>ions have been added.2 <strong>Plant</strong> names are given as <strong>the</strong>y were reported in <strong>the</strong> original reference.36

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!