16.11.2012 Views

Improvement of Material Flow in the Production and Supply Chain of ...

Improvement of Material Flow in the Production and Supply Chain of ...

Improvement of Material Flow in the Production and Supply Chain of ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ROYAL INSTITUTE OF TECHNOLOGY<br />

<strong>Improvement</strong> <strong>of</strong> <strong>Material</strong> <strong>Flow</strong> <strong>in</strong> <strong>the</strong><br />

<strong>Production</strong> <strong>and</strong> <strong>Supply</strong> Cha<strong>in</strong> <strong>of</strong> ADB<br />

Products<br />

By<br />

Jie Jiang & Yuran Zhu<br />

Supervised by Daniel T. Semere<br />

Stockholm, Sweden<br />

March, 2008


<strong>Improvement</strong> <strong>of</strong> <strong>Material</strong> <strong>Flow</strong> <strong>in</strong> <strong>the</strong> <strong>Production</strong> <strong>and</strong> <strong>Supply</strong><br />

Cha<strong>in</strong> <strong>of</strong> ADB Products<br />

Jie Jiang & Yuran Zhu<br />

Dept. <strong>of</strong> Industrial production, Royal Institute <strong>of</strong> Technology<br />

SE-100 44 Stockholm, Sweden<br />

ABSTRACT<br />

With economic globalization <strong>and</strong> <strong>the</strong> advent <strong>of</strong> <strong>the</strong> knowledge-based economy era, as<br />

well as <strong>the</strong> emergence <strong>of</strong> global manufactur<strong>in</strong>g, supply cha<strong>in</strong> management <strong>in</strong> <strong>the</strong><br />

manufactur<strong>in</strong>g sector have universal application. <strong>Material</strong> flow throughout <strong>the</strong> supply<br />

cha<strong>in</strong>, <strong>the</strong> merits <strong>and</strong> demerits <strong>of</strong> <strong>the</strong> material flow <strong>in</strong> <strong>the</strong> supply cha<strong>in</strong> is vital impact.<br />

Based on <strong>the</strong> <strong>in</strong>vestigation <strong>in</strong> <strong>the</strong> factory <strong>the</strong>re are two ma<strong>in</strong> problems when produce<br />

<strong>the</strong> ADB (Air Disc Brake) <strong>in</strong> Haldex, AB. Because <strong>the</strong> rapid growth <strong>of</strong> market dem<strong>and</strong><br />

<strong>the</strong> first challenge is production volume <strong>of</strong> <strong>the</strong> present assembly l<strong>in</strong>e can not satisfy<br />

<strong>the</strong> market dem<strong>and</strong>. Ano<strong>the</strong>r problem is when <strong>the</strong> production volume <strong>of</strong> ADB<br />

<strong>in</strong>creased <strong>the</strong> <strong>in</strong>ventory space is too small to store <strong>the</strong> productions.<br />

The objectives <strong>of</strong> <strong>the</strong> research <strong>in</strong>clude improv<strong>in</strong>g <strong>the</strong> current production capacity <strong>and</strong><br />

readapt<strong>in</strong>g <strong>the</strong> relationships with suppliers <strong>and</strong> customers to achieve <strong>the</strong> <strong>in</strong>creas<strong>in</strong>g<br />

market dem<strong>and</strong> <strong>in</strong> <strong>the</strong> com<strong>in</strong>g future. And discuss <strong>the</strong> <strong>in</strong>ventory problem associate<br />

with <strong>the</strong> suppliers <strong>and</strong> customers. The paper beg<strong>in</strong>s with <strong>the</strong> research <strong>in</strong>side <strong>the</strong><br />

production l<strong>in</strong>e. First <strong>of</strong> all ga<strong>the</strong>r data from <strong>the</strong> practical production l<strong>in</strong>e <strong>of</strong> ADB <strong>in</strong><br />

L<strong>and</strong>skrona. Then analyze <strong>the</strong> data by statistical method. Depend<strong>in</strong>g on <strong>the</strong> results <strong>of</strong><br />

data analysis, a model has been developed to simulate <strong>the</strong> production l<strong>in</strong>e. By<br />

simulat<strong>in</strong>g <strong>and</strong> analyz<strong>in</strong>g, a bunch <strong>of</strong> methods <strong>in</strong> improv<strong>in</strong>g <strong>the</strong> production volume<br />

have been proposed <strong>and</strong> an appropriate proposal is concluded after comparisons<br />

accord<strong>in</strong>g to cost, reliability <strong>and</strong> lead time. As soon as <strong>the</strong> productivity is able to reach<br />

<strong>the</strong> market, researches <strong>in</strong> supply cha<strong>in</strong> is tak<strong>in</strong>g place from suppliers’ aspect, <strong>in</strong>ventory<br />

<strong>and</strong> delivery. Current suppliers are evaluated based on multiple criteria, such as quality,<br />

delivery, cost, co-design capability, <strong>and</strong> so on. Consider<strong>in</strong>g <strong>the</strong> forecast <strong>of</strong> market <strong>and</strong><br />

<strong>in</strong>tegrated a number <strong>of</strong> factors advices are given for <strong>the</strong> supplier selections <strong>in</strong> <strong>the</strong><br />

future. At last, current <strong>in</strong>ventory <strong>and</strong> delivery statues are stated <strong>and</strong> correspond<strong>in</strong>g<br />

improvement with <strong>the</strong> <strong>in</strong>creas<strong>in</strong>g production volume are calculated to reduce <strong>the</strong><br />

<strong>in</strong>ventory <strong>and</strong> optimize <strong>the</strong> delivery. Meanwhile, <strong>the</strong>oretical advices are given to deal<br />

with <strong>the</strong> package <strong>and</strong> delivery problem due to unpredictable situation <strong>of</strong> <strong>the</strong> future<br />

market.<br />

i


Needs to be po<strong>in</strong>ted out is that <strong>in</strong> this paper chapter 1 <strong>and</strong> chapter 6 are written by<br />

Yuran Zhu. Chapter 2, chapter 3 <strong>and</strong> chapter 5 are written by Jie Jiang. Chapter 4 <strong>and</strong><br />

chapter 7 are written by <strong>the</strong> two co-operations.<br />

Key words: <strong>Supply</strong> Cha<strong>in</strong>, <strong>Material</strong> flow, Model<strong>in</strong>g, Simulation, Assembly l<strong>in</strong>e.<br />

*The contents <strong>of</strong> table 4.1, table 5.1 <strong>and</strong> table 5.2 are hidden by black because <strong>the</strong>se<br />

are sensitive <strong>in</strong>formation. The detail <strong>in</strong>formation <strong>of</strong> <strong>the</strong>m shows <strong>in</strong> appendix A but not<br />

published.<br />

ii


ACKNOWLEDGEMENTS<br />

The report is <strong>the</strong> result <strong>of</strong> our <strong>the</strong>sis project at Royal Institute <strong>of</strong> Technology. It is <strong>the</strong><br />

f<strong>in</strong>al part <strong>in</strong> our study <strong>in</strong> <strong>the</strong> master’s program <strong>of</strong> <strong>Production</strong> Eng<strong>in</strong>eer<strong>in</strong>g <strong>and</strong><br />

Management. The <strong>in</strong>itiator <strong>of</strong> <strong>the</strong> project was <strong>the</strong> Commercial Vehicle System<br />

deviation <strong>of</strong> Haldex AB.<br />

We would like to first <strong>and</strong> foremost like to express our gratitude to supervisors: Jonas<br />

Warn<strong>and</strong>er <strong>in</strong> Haldex AB, who provided us with valuable <strong>in</strong>formation <strong>and</strong> advices<br />

throughout <strong>the</strong> project, as well as his k<strong>in</strong>dly reception when we visited <strong>the</strong> factory;<br />

Daniel T. Semere <strong>in</strong> Royal Institute <strong>of</strong> Technology particularly for his guidance on our<br />

project <strong>and</strong> paper all <strong>the</strong> time. Thanks to <strong>the</strong>ir <strong>in</strong>valuable guidance <strong>and</strong> support we can<br />

f<strong>in</strong>ish this paper smooth. Thank you for Haldex gave us <strong>the</strong> chance to perform our<br />

<strong>the</strong>sis work at Haldex AB, arranged our visit to <strong>the</strong> factory <strong>in</strong> L<strong>and</strong>skrona <strong>and</strong> all<br />

<strong>in</strong>terviewees who have taken <strong>the</strong>ir time to answer our questions.<br />

Special thanks are extended to Pr<strong>of</strong>essor Mihai Nicolescu, for provid<strong>in</strong>g additional<br />

opportunities to perform work relat<strong>in</strong>g to our <strong>the</strong>sis at Haldex AB.<br />

F<strong>in</strong>ally, we would like to express our appreciation to all <strong>of</strong> those at <strong>the</strong> factory <strong>in</strong> who<br />

provided a friendly <strong>and</strong> <strong>in</strong>spirational environment.<br />

iii


TABLE OF CONTENTS<br />

ABSTRACT...................................................................................................................................... I<br />

ACKNOWLEDGEMENTS........................................................................................................... III<br />

TABLE OF CONTENTS................................................................................................................IV<br />

LIST OF TABLES ..........................................................................................................................VI<br />

LIST OF FIGURES...................................................................................................................... VII<br />

CHAPTER 1 INTRODUCTION OF THE RESEARCH.................................................................1<br />

1.1 BRIEF BACKGROUND OF THE RESEARCH......................................................................................1<br />

1.2 PRESENT PROBLEMS HALDEX FACES IN THE ADB PRODUCTS.......................................................3<br />

1.3 AIM AND OBJECTIVES.................................................................................................................3<br />

CHAPTER 2 RESEARCH THEORY AND METHODOLOGY.....................................................5<br />

2.1 RESEARCH FRAMEWORK............................................................................................................5<br />

2.2 SCIENCE AND PRACTICAL SIGNIFICANCE OF THE STUDY ...............................................................8<br />

2.3 RESEARCH METHODOLOGY ........................................................................................................8<br />

CHAPTER 3 DATA ANALYSIS OF PRODUCTION LINE..........................................................10<br />

3.1 INTRODUCE OF DATA ANALYSIS.................................................................................................10<br />

3.2 PREASSEMBLY LINE DATA ANALYSIS..........................................................................................12<br />

3.2.1 PRIMARY DATA ANALYSIS OF PREASSEMBLY LINE ..............................................................12<br />

3.2.2 FURTHER DATA ANALYSIS FOR TTF OF PREASSEMBLY LINE................................................14<br />

3.2.3 FURTHER DATA ANALYSIS FOR TTR OF PREASSEMBLY LINE................................................15<br />

3.3 MAIN ASSEMBLY LINE DATA ANALYSIS ......................................................................................16<br />

3.3.1 PRIMARY DATA ANALYSIS FOR MAIN ASSEMBLY LINE .........................................................16<br />

3.3.2 FURTHER DATA ANALYSIS FOR TTF OF MAIN ASSEMBLY LINE.............................................17<br />

3.3.3 FURTHER DATA ANALYSIS FOR TTR OF MAIN ASSEMBLY LINE ............................................17<br />

3.4 RESULTS .................................................................................................................................18<br />

CHAPTER 4 MODELING AND ANALYSIS OF PRODUCTION LINE .....................................20<br />

4.1 MODELING..............................................................................................................................20<br />

4.2 SIMULATION AND ANALYSIS .....................................................................................................22<br />

4.3 SOLUTIONS..............................................................................................................................26<br />

4.3.1 INVESTING NEW MACHINES IN THE BOTTLENECKS.............................................................26<br />

4.3.2 CUTTING DOWN THE TIME TO REPAIR IN BOTTLENECKS ....................................................27<br />

4.3.3 INCREASING THE OPERATION TIME OF BOTTLENECKS ........................................................29<br />

4.3.4 SOLUTION FROM INTEGRATIVE ASPECTS IN BOTTLENECKS.................................................29<br />

4.3.5 PROLONG THE PRODUCTION HOURS..................................................................................31<br />

4.3.6 IMPROVE THE EMPLOYEES’ SKILLS ...................................................................................31<br />

4.4 COMPARISONS AND RESULTS ....................................................................................................31<br />

4.4.1 COST COMPARING ...........................................................................................................32<br />

iv


4.4.2 RELIABILITY COMPARING ................................................................................................33<br />

4.4.3 LEAD TIME COMPARING...................................................................................................34<br />

4.5 RESULTS .................................................................................................................................35<br />

CHAPTER 5 SELECTION AND ASSESSMENT OF SUPPLIERS..............................................37<br />

5.1 RULES AND METHODS OF SELECTING SUPPLIERS........................................................................39<br />

5.2 CURRENT SITUATION AND PROBLEMS OF SUPPLIERS...................................................................39<br />

5.2.1 CURRENT DISTRIBUTION OF SUPPLIERS.............................................................................40<br />

5.2.2 EVALUATION OF CURRENT SUPPLIERS ...............................................................................40<br />

5.3 SELECTION OF FUTURE SUPPLIERS ............................................................................................44<br />

5.3.1 MARKET DISTRIBUTION AND SUPPLIERS’ SELECTION.........................................................44<br />

5.3.2 INVENTORY AND SUPPLIERS’ SELECTION...........................................................................46<br />

5.4 INTEGRATIVE SELECTION OF SUPPLIERS ....................................................................................47<br />

5.5 RESULT ...................................................................................................................................49<br />

CHAPTER 6 INVENTORY REDUCTION AND DELIVERY OPTIMIZATION........................50<br />

6.1 RULES AND METHODS TO BALANCE THE PROFIT BETWEEN FACTORY AND CUSTOMERS .................50<br />

6.2 CURRENT STATUE ANALYSIS .....................................................................................................53<br />

6.2.1 SITUATION OF INVENTORY ...............................................................................................53<br />

6.2.2 DISTRIBUTION OF THE MARKET........................................................................................54<br />

6.2.3 DELIVERY DETAILS..........................................................................................................55<br />

6.3 ANALYSIS AND SUGGESTIONS...................................................................................................57<br />

6.4 RESULTS .................................................................................................................................58<br />

CHAPTER 7 CONCLUSION AND FUTURE WORK..................................................................60<br />

7.1 CONCLUSION...........................................................................................................................60<br />

7.2 FUTURE WORK.........................................................................................................................61<br />

REFERENCE .................................................................................................................................62<br />

APPENDIX A .................................................................................................................................66<br />

APPENDIX B .................................................................................................................................70<br />

v


List <strong>of</strong> Tables<br />

Table 3.1 Descriptive Statistic <strong>of</strong> TTF <strong>and</strong> TTR <strong>of</strong> Preassembly L<strong>in</strong>e....................................13<br />

Table 3.2 Results <strong>of</strong> One-Sample Kolmogorov-Smirnov Test for Preassembly L<strong>in</strong>e’s TTF ..14<br />

Table 3.3 Descriptive Statistic <strong>of</strong> TTF <strong>and</strong> TTR <strong>of</strong> Ma<strong>in</strong> Assembly L<strong>in</strong>e...............................16<br />

Table 3.4 Results <strong>of</strong> One-Sample Kolmogorov-Smirnov Test for Ma<strong>in</strong> Assembly L<strong>in</strong>e’s TTF<br />

.........................................................................................................................................17<br />

Table 3.5 Values <strong>of</strong> Parameters <strong>of</strong> Different Distribution .......................................................18<br />

Table 3.6 Values <strong>of</strong> Parameters <strong>of</strong> Triangular Distribution .....................................................19<br />

Table 4.1 Work<strong>in</strong>g Parameters <strong>of</strong> Each Station.......................................................................21<br />

Table 4.2 First Time Pass Rate <strong>of</strong> Station 5b, 6, 8, 10 <strong>and</strong> 11.................................................22<br />

Table 4.3 Output Date Come From <strong>the</strong> Simulation.................................................................23<br />

Table 4.4 Length <strong>of</strong> <strong>the</strong> Transient State (Time).......................................................................24<br />

Table 4.5 Current <strong>Production</strong> Volumes per Year (Model set follow<strong>in</strong>g table 3.5)...................25<br />

Table 4.6 Current <strong>Production</strong> Volumes per Year (Model set follow<strong>in</strong>g table 3.6)...................25<br />

Table 4.7 Simulation Results with Different Mach<strong>in</strong>e Numbers.............................................26<br />

Table 4.8 Simulation Results with Different TTR Values .......................................................28<br />

Table 4.9 Simulation Results with Different TTR Values & Mach<strong>in</strong>e Number ......................30<br />

Table 4.10 Comparison Results <strong>of</strong> Different Solutions...........................................................35<br />

Table 5.1 Suppliers & Suppliers’ Location <strong>and</strong> Quality Criterion..........................................41<br />

Table 5.2 Delivery Information <strong>of</strong> Current Suppliers .............................................................42<br />

Table 5.3 Integrative Estimation <strong>of</strong> Selection Suppliers .........................................................48<br />

Table 6.1 Capacity <strong>of</strong> Warehouse for <strong>the</strong> F<strong>in</strong>ished ADBs ......................................................54<br />

Table 6.2 Transportation Fee Paid by Haldex dur<strong>in</strong>g Nov.13, 2007 <strong>and</strong> Jan. 31, 2008..........56<br />

Table 6.3 Transportation Amount under Different Suggestions .............................................58<br />

vi


List <strong>of</strong> Figures<br />

Figure 3.1 Simplified Assembly L<strong>in</strong>e .....................................................................................11<br />

Figure 3.2 TTF & TTR <strong>of</strong> Preassembly L<strong>in</strong>e..........................................................................12<br />

Figure 3.3 TTF & TTR Trend <strong>of</strong> Preassembly L<strong>in</strong>e................................................................13<br />

Figure 3.4 Results <strong>of</strong> P-P Plots for Preassembly L<strong>in</strong>e’s TTR .................................................15<br />

Figure 3.5 TTF & TTR <strong>of</strong> Ma<strong>in</strong> Assembly L<strong>in</strong>e.....................................................................16<br />

Figure 3.6 Results <strong>of</strong> P-P Plots for Ma<strong>in</strong> Assembly L<strong>in</strong>e’s TTR ............................................18<br />

Figure 4.1 Simplified Assembly L<strong>in</strong>e Model ..........................................................................20<br />

Figure 4.2 Transient State <strong>and</strong> Steady State (Semere, 2007)...................................................22<br />

Figure 4.3 <strong>Production</strong> Rate <strong>of</strong> <strong>the</strong> Assembly L<strong>in</strong>e ..................................................................23<br />

Figure 5.1 General <strong>Supply</strong> Cha<strong>in</strong> Model ................................................................................37<br />

Figure 5.2 <strong>Supply</strong> Cha<strong>in</strong> <strong>in</strong> <strong>the</strong> Past <strong>and</strong> Present ....................................................................38<br />

Figure 5.3 Current Suppliers Distribution...............................................................................40<br />

Figure 5.4 Current Market Distribution <strong>of</strong> ADB.....................................................................44<br />

Figure 5.5 Current Market Distributions <strong>of</strong> Commercial Vehicle Systems.............................45<br />

Figure 5.6 Net Inventories <strong>in</strong> <strong>Supply</strong> Cha<strong>in</strong>............................................................................46<br />

Figure 6.1 <strong>Flow</strong>s <strong>in</strong> <strong>Supply</strong> Cha<strong>in</strong> Between Factory <strong>and</strong> Customers......................................51<br />

Figure 6.2 Market Distributions dur<strong>in</strong>g Nov.13,2007 <strong>and</strong> Jan.31, 2008.................................54<br />

vii


CHAPTER 1<br />

INTRODUCTION OF THE RESEARCH<br />

1.1 Brief background <strong>of</strong> <strong>the</strong> research<br />

The pioneer <strong>of</strong> logistics appeared <strong>in</strong> <strong>the</strong> United States <strong>of</strong> America <strong>in</strong> <strong>the</strong> earlier<br />

twentieth Century. And it is improved <strong>and</strong> perfected with <strong>the</strong> development <strong>of</strong> society<br />

<strong>and</strong> technology. There is more than one def<strong>in</strong>ition <strong>of</strong> logistics, but <strong>in</strong> general, <strong>the</strong> goal<br />

<strong>of</strong> logistics is meet<strong>in</strong>g <strong>the</strong> requirements <strong>of</strong> customers; it is <strong>the</strong> art <strong>of</strong> manag<strong>in</strong>g <strong>the</strong><br />

supply cha<strong>in</strong> <strong>and</strong> science <strong>of</strong> manag<strong>in</strong>g <strong>and</strong> controll<strong>in</strong>g <strong>the</strong> flow <strong>of</strong> goods, <strong>in</strong>formation<br />

<strong>and</strong> o<strong>the</strong>r resources between <strong>the</strong> po<strong>in</strong>t <strong>of</strong> orig<strong>in</strong> <strong>and</strong> <strong>the</strong> po<strong>in</strong>t <strong>of</strong> consumption. The<br />

scope <strong>of</strong> logistics <strong>in</strong>cludes <strong>the</strong> <strong>in</strong>tegration <strong>of</strong> <strong>in</strong>formation, transportation, <strong>in</strong>ventory,<br />

warehous<strong>in</strong>g, material h<strong>and</strong>l<strong>in</strong>g, <strong>and</strong> packag<strong>in</strong>g (Wikipedia, viewed 2007). Accord<strong>in</strong>g<br />

to <strong>the</strong> different effects, logistics is classified <strong>in</strong>to five varieties: <strong>Supply</strong> Cha<strong>in</strong> Logistics,<br />

Bus<strong>in</strong>ess Logistics, <strong>Production</strong> logistics, Reclamation Logistics, <strong>and</strong> Cast<strong>of</strong>f Logistics<br />

(Q<strong>in</strong> & Wang, 2001). In fact, logistics management is part <strong>of</strong> supply cha<strong>in</strong> management<br />

<strong>and</strong> also <strong>the</strong> genesis <strong>of</strong> supply cha<strong>in</strong> management.<br />

<strong>Supply</strong> cha<strong>in</strong> management (SCM) is <strong>the</strong> activity <strong>of</strong> <strong>in</strong>tegrat<strong>in</strong>g <strong>the</strong> whole bus<strong>in</strong>ess, from<br />

procurement to production (process<strong>in</strong>g), storage <strong>and</strong> sale for <strong>the</strong> products <strong>and</strong> services<br />

provided by a company (Takenaka, viewed 2007). It is <strong>the</strong> process <strong>of</strong> plann<strong>in</strong>g,<br />

implement<strong>in</strong>g, <strong>and</strong> controll<strong>in</strong>g <strong>the</strong> operations <strong>of</strong> <strong>the</strong> supply cha<strong>in</strong> with <strong>the</strong> purpose to<br />

satisfy customer requirements as efficiently as possible. It spans all movement <strong>and</strong><br />

storage <strong>of</strong> raw materials, work-<strong>in</strong>-process <strong>in</strong>ventory, <strong>and</strong> f<strong>in</strong>ished goods from<br />

po<strong>in</strong>t-<strong>of</strong>-orig<strong>in</strong> to po<strong>in</strong>t-<strong>of</strong>-consumption. (Wikipedia, viewed 2007). Generally<br />

speak<strong>in</strong>g, supply cha<strong>in</strong> management is concerned with management <strong>of</strong> <strong>the</strong> material<br />

flow, <strong>in</strong>formation flow, <strong>and</strong> fund flow (Luo, 2006). From this po<strong>in</strong>t, “its scope <strong>in</strong>cludes<br />

tim<strong>in</strong>g <strong>and</strong> quantity <strong>of</strong> material flow, logistics, improv<strong>in</strong>g efficiencies <strong>in</strong> problems with<br />

several decision makers, etc” (Sosic, 2002). Among <strong>the</strong> three flows, material flow is <strong>the</strong><br />

focus <strong>and</strong> keystone <strong>of</strong> <strong>the</strong> research <strong>of</strong> supply cha<strong>in</strong> management.<br />

“<strong>Material</strong> flow is a significant factor <strong>in</strong> <strong>the</strong> design <strong>of</strong> manufactur<strong>in</strong>g systems. To design<br />

1


a material system, not only <strong>the</strong> specifications <strong>of</strong> <strong>in</strong>dividual system components but also<br />

<strong>the</strong> overall objective <strong>of</strong> <strong>the</strong> manufactur<strong>in</strong>g system should be considered” (Tanchoco,<br />

1994). For a production enterprise material flow run through <strong>the</strong> production l<strong>in</strong>e, <strong>the</strong><br />

route ways between factory <strong>and</strong> suppliers <strong>and</strong> customers. Manage <strong>and</strong> control<br />

material flow effectively is a method to <strong>in</strong>crease pr<strong>of</strong>it. How to optimize <strong>the</strong> material<br />

flow takes important part <strong>in</strong> production. In order to optimize production l<strong>in</strong>e <strong>and</strong><br />

supply cha<strong>in</strong>, material flow analysis is necessary.<br />

To analyze material flow, each po<strong>in</strong>t <strong>in</strong> it needs to be clearly presented. In <strong>the</strong><br />

manufactur<strong>in</strong>g system, <strong>the</strong>re are lots <strong>of</strong> steps <strong>and</strong> workstations. It is hard to keep all <strong>of</strong><br />

<strong>the</strong>m with a high reliability. <strong>Material</strong> flow through all over <strong>the</strong> steps <strong>and</strong> can be<br />

divided <strong>in</strong>to several types. In real production <strong>the</strong>re is usually at least one unreliable<br />

component <strong>in</strong> different types <strong>of</strong> material flow system. This feature makes it particularly<br />

important to design such a system carefully by tak<strong>in</strong>g <strong>in</strong>to account <strong>the</strong> uncerta<strong>in</strong>ties<br />

<strong>in</strong>troduced by <strong>the</strong> component unreliability (Yu., S. & J., 2000). After found <strong>the</strong> most<br />

critical stations or <strong>the</strong> bottleneck <strong>of</strong> system, model<strong>in</strong>g tools can be used to simulate <strong>and</strong><br />

help to analysis such problem to f<strong>in</strong>d out possible solutions. Then based on <strong>the</strong> analysis,<br />

material flow system model can be improved <strong>and</strong> evaluated accord<strong>in</strong>g to <strong>the</strong> expected<br />

performance.<br />

Model<strong>in</strong>g is a powerful tool deal with practical problems. It can be used to analyze,<br />

design, <strong>and</strong> operate complex systems. Models are used to assess real-world processes<br />

too complex to analyze via spreadsheets or flowcharts, test<strong>in</strong>g hypo<strong>the</strong>ses at a fraction<br />

<strong>of</strong> <strong>the</strong> cost <strong>of</strong> undertak<strong>in</strong>g <strong>the</strong> actual activities. As an efficient communication tool,<br />

model<strong>in</strong>g shows how an operation works <strong>and</strong> stimulates creative th<strong>in</strong>k<strong>in</strong>g about how to<br />

improve it. Models <strong>in</strong> <strong>in</strong>dustry, government, <strong>and</strong> educational <strong>in</strong>stitutions shorten design<br />

cycles, reduce costs, <strong>and</strong> enhance knowledge (Farris, viewed 2007). There are many<br />

Visual simulation tools explored to do <strong>the</strong> model<strong>in</strong>g job such as VisSim, SIMUL8,<br />

Extend, SimCreator, etc. Although each <strong>of</strong> <strong>the</strong>m is especially good at certa<strong>in</strong> area, <strong>in</strong><br />

many fields performances <strong>of</strong> Extend are outst<strong>and</strong><strong>in</strong>g <strong>and</strong> general applications. Along<br />

with <strong>the</strong> development <strong>of</strong> Extend, more <strong>and</strong> more cases use it to analyze, especially<br />

about <strong>the</strong> supply cha<strong>in</strong> problems.<br />

Extend TM is designed from <strong>the</strong> ground up to be a flexible, extendable simulation tool. It<br />

can be used to model every aspect <strong>of</strong> an organization at all levels <strong>of</strong> expertise - from<br />

manager to eng<strong>in</strong>eer/scientist <strong>and</strong> from novice to pr<strong>of</strong>essional modeler (Farris, viewed<br />

2007). Build<strong>in</strong>g <strong>the</strong> model with variances <strong>of</strong> <strong>the</strong> most critical stations is a shortcut to<br />

analyze problems <strong>of</strong> a production flow.<br />

Subsequent to <strong>the</strong> analysis <strong>of</strong> <strong>the</strong> material flow, evaluation based on reliability helps to<br />

filter <strong>the</strong> possible solutions. System reliability is <strong>the</strong> probability that <strong>the</strong> system will<br />

perform its <strong>in</strong>tended function under specified work<strong>in</strong>g condition for a specified period<br />

<strong>of</strong> time. Analysis <strong>of</strong> system reliability toge<strong>the</strong>r with feasibility <strong>and</strong> cost leads to <strong>the</strong><br />

optimal solution.<br />

2


1.2 Present problems Haldex faces <strong>in</strong> <strong>the</strong> ADB products<br />

The Haldex Commercial Vehicle Systems division develops, manufactures <strong>and</strong> markets<br />

brake systems for heavy trucks, trailers <strong>and</strong> buses. The product <strong>of</strong>fer<strong>in</strong>g <strong>in</strong>cludes all<br />

ma<strong>in</strong> components <strong>and</strong> subsystems <strong>in</strong>cluded <strong>in</strong> a complete brake system. Disc brakes are<br />

one <strong>of</strong> <strong>the</strong> ma<strong>in</strong> products <strong>in</strong> Commercial Vehicle Systems division <strong>in</strong> L<strong>and</strong>skrona.<br />

There are two types <strong>of</strong> products: ABA (Automatic brake adjuster) <strong>and</strong> ADB (Air disc<br />

brake). Each <strong>of</strong> <strong>the</strong> products has several types to satisfy special customer requirements.<br />

The volume <strong>of</strong> ABA is 1.6 million per year <strong>and</strong> it shares more than sixty percent market.<br />

While <strong>the</strong> volume <strong>of</strong> ADB is only 30,000 <strong>in</strong> 2006 <strong>and</strong> it got two percent <strong>of</strong> <strong>the</strong> market.<br />

However, with <strong>the</strong> development <strong>of</strong> technology, production volume <strong>of</strong> ADB products<br />

<strong>in</strong>creased sharply. They will share more <strong>and</strong> more market <strong>and</strong> might even replace<br />

ABA products <strong>in</strong> a few years. It is predicted that it will reach 200,000 <strong>in</strong> 2008.<br />

Therefore, capacity <strong>of</strong> <strong>in</strong>ventory will become a critical issue <strong>in</strong> <strong>the</strong> supply cha<strong>in</strong> <strong>of</strong><br />

ADB products. Besides, both ABA <strong>and</strong> ADB products are packed with st<strong>and</strong>ard pallets,<br />

which can pack 600 ABA items or 9 ADB items each. Along with <strong>the</strong> <strong>in</strong>creas<strong>in</strong>g<br />

production volume <strong>of</strong> ADB products, more pallets will be needed. The products will<br />

occupy much more space <strong>in</strong> <strong>the</strong> warehouse, especially <strong>the</strong> ADB, because <strong>of</strong> its big<br />

volume <strong>and</strong> non-isochronous shape.<br />

Beside <strong>of</strong> this, ano<strong>the</strong>r problem <strong>the</strong> company faces at present is <strong>the</strong> unstable assembly<br />

l<strong>in</strong>e <strong>of</strong> ADB products. The manufactur<strong>in</strong>g system has difficulties <strong>in</strong> adapt<strong>in</strong>g to <strong>the</strong><br />

rapid growth <strong>of</strong> production volume. Bottlenecks appear <strong>in</strong> <strong>the</strong> assembly l<strong>in</strong>e, which<br />

shut down <strong>the</strong> l<strong>in</strong>e frequently <strong>and</strong> slow down <strong>the</strong> system. In this project study, an<br />

attempt is made to address <strong>the</strong> follow<strong>in</strong>g issues:<br />

1. <strong>Material</strong> flow along <strong>the</strong> assembly l<strong>in</strong>e;<br />

2. Supplier selection based on multiple criteria, especially consider<strong>in</strong>g select<br />

suppliers associate with <strong>the</strong> <strong>in</strong>ventory <strong>and</strong> market;<br />

3. Reduction <strong>of</strong> <strong>in</strong>ventory <strong>of</strong> ADB items <strong>and</strong> more reliable delivery to customer.<br />

1.3 Aim <strong>and</strong> objectives<br />

As stated above, <strong>the</strong>re are two ma<strong>in</strong> aims <strong>of</strong> <strong>the</strong> project. One is to optimize <strong>the</strong> material<br />

flow <strong>of</strong> ADB from both <strong>in</strong>ternal <strong>and</strong> external material flows to meet <strong>the</strong> future dem<strong>and</strong>.<br />

Internal material flow <strong>in</strong>dicates <strong>the</strong> material flow <strong>in</strong> <strong>the</strong> assembly l<strong>in</strong>e, ma<strong>in</strong>ly <strong>in</strong> <strong>the</strong><br />

ma<strong>in</strong> assembly l<strong>in</strong>e. Model <strong>of</strong> <strong>the</strong> current manufactur<strong>in</strong>g l<strong>in</strong>e needs to be built up to<br />

simulate <strong>the</strong> com<strong>in</strong>g situation. By sett<strong>in</strong>g variances <strong>in</strong> <strong>the</strong> critical stations, check<br />

whe<strong>the</strong>r <strong>the</strong> current l<strong>in</strong>e able to susta<strong>in</strong> <strong>the</strong> com<strong>in</strong>g big dem<strong>and</strong>. Then, give advises<br />

about improv<strong>in</strong>g <strong>the</strong> <strong>in</strong>ternal material flow. While external material flows <strong>in</strong>dicate <strong>the</strong><br />

flows from supplier to Haldex <strong>and</strong> from Haldex to customers. It can be treated as part <strong>of</strong><br />

f<strong>in</strong>d<strong>in</strong>g a way to optimize <strong>the</strong> supply cha<strong>in</strong>.<br />

3


The o<strong>the</strong>r aim is to reduce <strong>the</strong> <strong>in</strong>ventory, as soon as <strong>the</strong> production l<strong>in</strong>e is able to<br />

achieve <strong>the</strong> requirement <strong>of</strong> market after optimization. Based on <strong>in</strong>vestigation <strong>and</strong><br />

analysis <strong>of</strong> current situation, authors optimized <strong>the</strong> supply cha<strong>in</strong> <strong>in</strong> order to f<strong>in</strong>d some<br />

reasonable <strong>and</strong> feasible solutions to reduce <strong>the</strong> <strong>in</strong>ventory. Cost, lead-time <strong>and</strong> reliability<br />

are taken as parameters to compare <strong>the</strong> advantages <strong>and</strong> disadvantages <strong>of</strong> different<br />

methods <strong>and</strong> approaches.<br />

In a short word <strong>the</strong> aim <strong>of</strong> this paper is to improve <strong>the</strong> material flow <strong>of</strong> <strong>the</strong> ADB<br />

production <strong>and</strong> reduce <strong>in</strong>ventory to satisfy <strong>the</strong> future market <strong>and</strong> achieve most<br />

economical supply cha<strong>in</strong>.<br />

4


CHAPTER 2<br />

RESEARCH THEORY AND METHODOLOGY<br />

2.1 Research framework<br />

Accord<strong>in</strong>g to Luo, <strong>the</strong> research <strong>of</strong> logistics beg<strong>in</strong>s from last century. There is a relative<br />

entire system till present. The focus <strong>of</strong> <strong>the</strong> research is <strong>the</strong> manag<strong>in</strong>g <strong>and</strong> control <strong>of</strong> <strong>the</strong><br />

whole logistics <strong>and</strong> supply cha<strong>in</strong>. The aim <strong>of</strong> supply cha<strong>in</strong> management is decrease <strong>the</strong><br />

cost <strong>of</strong> logistics <strong>and</strong> <strong>in</strong>ventory, at <strong>the</strong> same time, <strong>in</strong>crease <strong>the</strong> efficiency <strong>of</strong> all k<strong>in</strong>ds <strong>of</strong><br />

sources <strong>and</strong> <strong>in</strong>formation <strong>in</strong> order to satisfy <strong>the</strong> requirements <strong>of</strong> market (Luo, 2006).<br />

There are many modes to describe <strong>the</strong> production material flow. Such as MRP (<strong>Material</strong><br />

Requirements Plann<strong>in</strong>g), JIT (Just In Time), Lean <strong>Production</strong>, AM (Agile<br />

Manufactur<strong>in</strong>g), TOC (Theory <strong>of</strong> Constra<strong>in</strong>t), supply cha<strong>in</strong> management <strong>and</strong> so on. It is<br />

well-known that many challenges will appear when <strong>the</strong> production volume <strong>in</strong>creased<br />

sharply. In this case, all <strong>of</strong> <strong>the</strong> modes mentioned above can be use to analyze <strong>and</strong><br />

optimize manufactur<strong>in</strong>g. But for <strong>the</strong> enterprises, <strong>the</strong>y usually select one or two <strong>of</strong> <strong>the</strong><br />

method to analyze <strong>the</strong>ir own situation <strong>and</strong> <strong>the</strong>n adopt <strong>the</strong> correspond<strong>in</strong>g method to<br />

solve problems <strong>and</strong> enhance productivities. In ano<strong>the</strong>r word, each <strong>of</strong> <strong>the</strong> mode is<br />

advantage at certa<strong>in</strong> filed <strong>in</strong>stead <strong>of</strong> outst<strong>and</strong><strong>in</strong>g all-around.<br />

“MRP (<strong>Material</strong> Requirements Plann<strong>in</strong>g) is a set <strong>of</strong> algorithms designed to establish<br />

material requirements based upon known sales orders (or forecast), bills <strong>of</strong> materials<br />

<strong>and</strong> material supplier lead times.”(OSIRS, viewed 2008) The limitation with MRP<br />

about <strong>the</strong> pr<strong>in</strong>ciple is that <strong>the</strong> algorithms are normally carried out <strong>in</strong> sequence. In a word,<br />

<strong>the</strong> materials requirements are calculated advance, <strong>and</strong> <strong>the</strong>n plan <strong>the</strong> capacity. In<br />

practice, this would lead to a situation where capacity constra<strong>in</strong>ts mean that materials<br />

could be delivered later or may be required earlier; hence re-plann<strong>in</strong>g <strong>of</strong> materials is<br />

required. In this case, <strong>the</strong>re would be more problems, for example <strong>the</strong> lead-time is long.<br />

And all <strong>of</strong> this could impact <strong>the</strong> capacity plann<strong>in</strong>g <strong>and</strong> so <strong>the</strong> process goes on. (OSIRS,<br />

viewed 2008) Except that, MRP plays a role <strong>in</strong> part <strong>of</strong> <strong>the</strong> production l<strong>in</strong>e <strong>and</strong> this is a<br />

limitation <strong>of</strong> MRP.<br />

5


JIT was firstly occurred <strong>in</strong> Japan <strong>in</strong> <strong>the</strong> early 1970s. It decreases waste by supply<strong>in</strong>g<br />

parts only when <strong>the</strong> assembly process ask for <strong>the</strong>m. And <strong>the</strong> heart <strong>of</strong> JIT is <strong>the</strong> kanban<br />

card. (12MANAGE, viewed 2008) “In a JIT environment, both earl<strong>in</strong>ess <strong>and</strong> tard<strong>in</strong>ess<br />

must be discouraged s<strong>in</strong>ce early f<strong>in</strong>ished jobs <strong>in</strong>crease <strong>in</strong>ventory cost while late jobs<br />

lead to customers’ dissatisfaction <strong>and</strong> loss <strong>of</strong> bus<strong>in</strong>ess goodwill” (Wong, Kwong & etc.,<br />

2006). The typical attention areas <strong>of</strong> Just-In-Time <strong>in</strong>clude: Inventory reduction;<br />

Smaller production lots <strong>and</strong> batch sizes; Quality control; Complexity reduction <strong>and</strong><br />

transparency; Flat organization structure <strong>and</strong> delegation; <strong>and</strong> Waste m<strong>in</strong>imization.<br />

(12MANAGE, viewed 2008) Even though, <strong>the</strong>re is a high risk <strong>of</strong> <strong>the</strong> reliability <strong>of</strong><br />

suppliers. And <strong>the</strong> production might be great <strong>in</strong>fluenced by <strong>the</strong> cost <strong>of</strong> material <strong>and</strong><br />

market. In this paper, when discuss <strong>the</strong> filed <strong>of</strong> optimize <strong>the</strong> supply cha<strong>in</strong> management,<br />

it would be considered to use <strong>the</strong> JIT method.<br />

Lean production was raised by MIT (Massachusettes Institute <strong>of</strong> Technology). It is an<br />

approach to improve a manufactur<strong>in</strong>g performance. The key <strong>of</strong> lean production is <strong>the</strong><br />

m<strong>in</strong>imization <strong>of</strong> <strong>the</strong> amount <strong>of</strong> all <strong>the</strong> resources used <strong>in</strong> <strong>the</strong> various activities <strong>of</strong> <strong>the</strong><br />

enterprise. At all levels <strong>of</strong> <strong>the</strong> organization lean production employ teams <strong>of</strong><br />

multi-skilled workers. Except that it use highly flexible, <strong>in</strong>creas<strong>in</strong>gly automated<br />

mach<strong>in</strong>es to produce volumes <strong>of</strong> products <strong>in</strong> potentially enormous variety. It helps<br />

identify<strong>in</strong>g <strong>and</strong> elim<strong>in</strong>at<strong>in</strong>g no value add<strong>in</strong>g actives <strong>in</strong> design, production, supply cha<strong>in</strong><br />

management, <strong>and</strong> deal<strong>in</strong>g with <strong>the</strong> customers. (12MANAGE, viewed 2008)<br />

Agile Manufactur<strong>in</strong>g is based on low cost <strong>and</strong> high quality, improve <strong>and</strong> change <strong>the</strong><br />

productions follow<strong>in</strong>g <strong>the</strong> market as soon as possible. The keystone <strong>of</strong> AM is time.<br />

Dur<strong>in</strong>g <strong>the</strong> whole cycle life <strong>of</strong> production, fur<strong>the</strong>st satisfy <strong>the</strong> customers’ requirements<br />

to enhance <strong>the</strong> enterprise ascendancy.<br />

Theory <strong>of</strong> Constra<strong>in</strong>t is used to cont<strong>in</strong>ually improve <strong>and</strong> solve <strong>the</strong> constra<strong>in</strong>t <strong>of</strong><br />

bottleneck resources dur<strong>in</strong>g <strong>the</strong> production material flow. The application <strong>of</strong> TOC is<br />

broad <strong>in</strong> various <strong>in</strong>dustries, for example Distribution, <strong>Supply</strong> Cha<strong>in</strong>, Project<br />

Management, etc. The rationale <strong>of</strong> TOC is to f<strong>in</strong>d out <strong>the</strong> bottleneck <strong>in</strong> <strong>the</strong> production<br />

l<strong>in</strong>e, <strong>and</strong> try to solve <strong>the</strong> problems <strong>in</strong> order to make <strong>the</strong> production cycle short, also<br />

reduce <strong>the</strong> <strong>in</strong>ventory. The th<strong>in</strong>k<strong>in</strong>g processes <strong>of</strong> TOC give us a series <strong>of</strong> steps, which<br />

comb<strong>in</strong>e cause-effect <strong>and</strong> our experience <strong>and</strong> <strong>in</strong>tuition to ga<strong>in</strong> knowledge. TOC can<br />

lead people how should <strong>the</strong>y th<strong>in</strong>k. By this way, <strong>the</strong> manager can better underst<strong>and</strong> <strong>the</strong><br />

world around <strong>and</strong> better underst<strong>and</strong> how to improve. (12MANAGE, viewed 2008)<br />

Depend on <strong>the</strong> project researched <strong>in</strong> this paper, production l<strong>in</strong>e model to simulate<br />

assembly l<strong>in</strong>e <strong>and</strong> improve supply cha<strong>in</strong> management will be set up. Simulation is an<br />

important topic <strong>in</strong> a wide scope, <strong>and</strong> it is a powerful <strong>and</strong> economical way to solve<br />

problems. With <strong>the</strong> development <strong>of</strong> society <strong>and</strong> technology <strong>the</strong>re are more <strong>and</strong> more<br />

k<strong>in</strong>ds <strong>of</strong> simulation s<strong>of</strong>tware. Some <strong>of</strong> <strong>the</strong> simulation s<strong>of</strong>tware have mentioned <strong>and</strong><br />

discussed <strong>in</strong> <strong>the</strong> first chapter. Here only gives a short abstract. Discrete event<br />

simulation has traditionally been def<strong>in</strong>ed by items. This model<strong>in</strong>g paradigm has served<br />

<strong>the</strong> simulation <strong>in</strong>dustry well, but fell far short for many <strong>in</strong>dustries <strong>in</strong> which <strong>the</strong> pieces<br />

6


m<strong>in</strong>dset simply does not accurately portray <strong>the</strong>ir particular processes. Dur<strong>in</strong>g recent<br />

years Simulation Dynamics has been work<strong>in</strong>g with <strong>in</strong>dustries where <strong>the</strong> item paradigm<br />

falls short as a descriptive tool. This work has led to <strong>the</strong> development <strong>of</strong> a revolutionary<br />

set <strong>of</strong> simulation tool built on <strong>the</strong> Extend simulation eng<strong>in</strong>e (Pheips, Parsons & Siprelle,<br />

2002).<br />

In order to set up a simulation model <strong>the</strong> first th<strong>in</strong>g have to do is build up a basic<br />

model <strong>and</strong> f<strong>in</strong>d out <strong>the</strong> parameters required. The orig<strong>in</strong>al data have to be analyzed<br />

firstly. In recent years, <strong>the</strong> s<strong>of</strong>tware Statistical Program for Social Science (SPSS) is<br />

used more <strong>and</strong> more <strong>in</strong> statistical analysis work. It is proved that SPSS is a great<br />

method to analysis statistical data. Because <strong>of</strong> it outst<strong>and</strong><strong>in</strong>g performances, <strong>in</strong> this<br />

paper <strong>the</strong> SPSS will be used to analyze <strong>the</strong> data <strong>in</strong> a fur<strong>the</strong>r step. Before that a primary<br />

data analysis will be given.<br />

SPSS is a k<strong>in</strong>d <strong>of</strong> pr<strong>of</strong>essional statistical analysis s<strong>of</strong>tware. It takes a very important<br />

role both <strong>in</strong> social science <strong>and</strong> natural science. As Cai <strong>and</strong> Zhuang described <strong>in</strong> 2001<br />

from <strong>the</strong> po<strong>in</strong>t <strong>of</strong> data statistical analysis, <strong>the</strong>re are three categories.<br />

1. The first is basic statistic. It <strong>in</strong>cludes Descriptive Statistic, Explore Statistic,<br />

Crosstabs’ Analysis, L<strong>in</strong>ear Compound<strong>in</strong>g Measurement, T-Test, One-Way<br />

ANOVA Analysis, Multiple Response Analysis, L<strong>in</strong>ear Regression Analysis,<br />

Correlativity Analysis, Nonparametric Tests, etc.<br />

2. The second is pr<strong>of</strong>essional statistic. The scope <strong>of</strong> this field <strong>in</strong>cludes Discrim<strong>in</strong>atory<br />

Analysis, Factor Analysis, Cluster Analysis, Range Analysis, Reliability Analysis,<br />

<strong>and</strong> o<strong>the</strong>rwise.<br />

3. The third is advanced pr<strong>of</strong>essional statistic. Such as Logistic Regression Analysis,<br />

MANOVA Analysis, Repeated Measure Variance Analysis, Nonl<strong>in</strong>ear Regression,<br />

Probit Regression, Cox Regression, Curve Estimation <strong>and</strong> so on.<br />

Accord<strong>in</strong>g to significances <strong>of</strong> different parameters, <strong>the</strong> functions used <strong>in</strong> this paper<br />

cover all <strong>of</strong> <strong>the</strong> three categories. After all required parameters are collected, a<br />

production l<strong>in</strong>e model will be set up by <strong>the</strong> Extend s<strong>of</strong>tware.<br />

Extend is able to model a wide range <strong>of</strong> systems. It is a general purpose graphically<br />

oriented discrete event <strong>and</strong> cont<strong>in</strong>uous simulation application with an <strong>in</strong>tegrated<br />

author<strong>in</strong>g environment <strong>and</strong> development system. The Extend family <strong>of</strong> simulation<br />

packages <strong>in</strong>cludes Extend CP, Extend OR, Extend Industry, <strong>and</strong> Extend Suite. All levels<br />

<strong>of</strong> modelers can efficiently create accurate, credible, <strong>and</strong> usable models <strong>in</strong> <strong>the</strong> Extend<br />

simulation environment by <strong>the</strong> tools it provides. Extend Design facilitates every phase<br />

<strong>of</strong> <strong>the</strong> simulation project, from creat<strong>in</strong>g, validat<strong>in</strong>g, <strong>and</strong> verify<strong>in</strong>g <strong>the</strong> model, to <strong>the</strong><br />

construction <strong>of</strong> a user <strong>in</strong>terface which allows o<strong>the</strong>rs to analyze <strong>the</strong> system. For <strong>the</strong><br />

simulation tool developers, <strong>the</strong>y can use Extend Built-<strong>in</strong>, compiled language, to create<br />

reusable model<strong>in</strong>g components. All <strong>of</strong> this is done with<strong>in</strong> a s<strong>in</strong>gle, self-conta<strong>in</strong>ed<br />

s<strong>of</strong>tware program. (Krahl, 2003)<br />

7


2.2 Science <strong>and</strong> practical significance <strong>of</strong> <strong>the</strong> study<br />

As <strong>the</strong> annual report <strong>of</strong> 2006 said Haldex Company <strong>in</strong>cludes four parts, which are<br />

Commercial Vehicle Systems, Hydraulis Systems, Garphyttan Wire, <strong>and</strong> Traction<br />

Systems. From <strong>the</strong> annual report for <strong>the</strong> Commercial Vehicle Systems <strong>the</strong> operations<br />

are divided <strong>in</strong>to five bus<strong>in</strong>ess units: Actuators, Air Management, Brake Controls,<br />

Foundation Brake <strong>and</strong> Friction Products. Aftermarket sales count for nearly half <strong>of</strong><br />

sales. Commercial Vehicle Systems shares sixty percent <strong>of</strong> group sales (SEK 4,765<br />

Million to SEK 7,890 Million) (Haldex, 2007). So <strong>the</strong> Commercial Vehicle Systems<br />

deviation acts an important role <strong>in</strong> <strong>the</strong> company. Disc brakes are one <strong>of</strong> <strong>the</strong> ma<strong>in</strong><br />

products <strong>in</strong> Commercial Vehicle System deviation. Moreover, ADB is <strong>the</strong> development<br />

trend <strong>of</strong> disc break, which def<strong>in</strong>es its important role. It is necessary to go deep <strong>in</strong>to <strong>the</strong><br />

research <strong>of</strong> ADB production l<strong>in</strong>e.<br />

Extend s<strong>of</strong>tware is wildly applied <strong>in</strong> simulation. Till now Extend Simulation shows<br />

positive effect around production logistics, supply cha<strong>in</strong> management, bus<strong>in</strong>ess flow,<br />

medical service, transports, quality control, etc (EdgeStone, viewed 2008). For <strong>the</strong> part<br />

<strong>of</strong> analysis problems exist <strong>in</strong> assembly l<strong>in</strong>e, <strong>the</strong> Extend Simulation will be used <strong>in</strong> this<br />

research. By optimiz<strong>in</strong>g <strong>the</strong> simulation model f<strong>in</strong>d out <strong>the</strong> methods to improve <strong>the</strong><br />

assembly l<strong>in</strong>e to achieve <strong>the</strong> requirements <strong>of</strong> market. The <strong>in</strong>ventory problem will be<br />

discussed depend<strong>in</strong>g on <strong>the</strong> data ga<strong>the</strong>red currently <strong>and</strong> some <strong>the</strong>oretic proposals will<br />

be given afterwards. With <strong>the</strong> suggestions, <strong>the</strong> company is able to f<strong>in</strong>d a feasible <strong>and</strong><br />

economical way to solve problems.<br />

2.3 Research methodology<br />

In this paper, for <strong>the</strong> problem <strong>of</strong> assembly l<strong>in</strong>e, <strong>the</strong> ma<strong>in</strong> method is model<strong>in</strong>g. At <strong>the</strong><br />

beg<strong>in</strong>n<strong>in</strong>g, <strong>in</strong> order to make constra<strong>in</strong>s <strong>of</strong> <strong>the</strong> production prom<strong>in</strong>ent, an ideal<br />

simplified model is set up based on <strong>the</strong> current component <strong>of</strong> <strong>the</strong> assembly l<strong>in</strong>e. Then<br />

accord<strong>in</strong>g to <strong>the</strong> real situation, bottlenecks <strong>and</strong> constra<strong>in</strong>s <strong>in</strong> critical stations are added<br />

<strong>in</strong> to <strong>the</strong> model. There are various parameters for different distributions <strong>and</strong> <strong>the</strong> values<br />

<strong>of</strong> parameters have to be ga<strong>in</strong>ed. So <strong>the</strong> statistic data analysis is done before sett<strong>in</strong>g up<br />

<strong>the</strong> real simplified model. For this step <strong>in</strong>cludes two phases: primary analysis will be<br />

use <strong>the</strong> Micros<strong>of</strong>t Excel s<strong>of</strong>tware <strong>and</strong> <strong>the</strong> fur<strong>the</strong>r data analysis will be use <strong>the</strong><br />

pr<strong>of</strong>essional statistic analysis s<strong>of</strong>tware SPSS. After test<strong>in</strong>g, modifications are applied<br />

to smooth <strong>the</strong> model. Different models are set up to simulate from different<br />

optimiz<strong>in</strong>g methods. Simulations results aimed at reach<strong>in</strong>g <strong>the</strong> required production<br />

volume come out afterwards. Then take cost, reliability, <strong>and</strong> lead time as parameters<br />

to compare suggestions.<br />

As soon as <strong>the</strong> production volume is able to <strong>in</strong>crease <strong>and</strong> satisfied <strong>the</strong> requirement <strong>of</strong><br />

market, <strong>the</strong> <strong>in</strong>ventory issue is brought to <strong>the</strong> front. For <strong>the</strong> <strong>in</strong>ventory problem <strong>the</strong>re are<br />

two aspects to be discussed. One is from <strong>the</strong> po<strong>in</strong>t <strong>of</strong> suppliers <strong>and</strong> <strong>the</strong> o<strong>the</strong>r is from<br />

8


<strong>the</strong> customers. Both <strong>of</strong> <strong>the</strong>m are primary roles <strong>in</strong> <strong>the</strong> supply cha<strong>in</strong>. In this paper <strong>the</strong><br />

supplier selection will base on <strong>the</strong> general rules as well as associate with <strong>the</strong> <strong>in</strong>ventory<br />

problem. The <strong>in</strong>ventory reduction methods <strong>of</strong> <strong>the</strong> f<strong>in</strong>ished products will be stated<br />

toge<strong>the</strong>r with <strong>the</strong> optimization <strong>of</strong> delivery to customers. In like wise, <strong>the</strong> proposals are<br />

evaluated from multiple criteria.<br />

Depend<strong>in</strong>g on <strong>the</strong> analysis <strong>and</strong> discussion, feasible <strong>and</strong> economic approaches for <strong>the</strong><br />

company to optimize assembly l<strong>in</strong>es <strong>and</strong> reduce <strong>in</strong>ventory will be found.<br />

9


Chapter 3<br />

Data analysis <strong>of</strong> production l<strong>in</strong>e<br />

<strong>Material</strong> flow is through all over <strong>the</strong> production l<strong>in</strong>e. From very beg<strong>in</strong> <strong>the</strong> raw <strong>and</strong><br />

processed materials to each step <strong>of</strong> process even to f<strong>in</strong>ished product. So material flow<br />

analysis is <strong>the</strong> base <strong>of</strong> optimize production l<strong>in</strong>e. An operator-paced l<strong>in</strong>e flow production<br />

system produces products on equipment arranged <strong>in</strong> a l<strong>in</strong>e layout. The material flow <strong>in</strong><br />

an operator-paced l<strong>in</strong>e flow production system is regular mostly (John Miltenburg,<br />

2005). In this chapter, data collected from factory will be analyzed by Micros<strong>of</strong>t Excel<br />

<strong>and</strong> SPSS (Statistical Program for Social Science).<br />

3.1 Introduce <strong>of</strong> data analysis<br />

Data ga<strong>the</strong>red is <strong>the</strong> first step <strong>in</strong> <strong>the</strong> research. Accord<strong>in</strong>g to <strong>the</strong> requirement <strong>in</strong> sett<strong>in</strong>g up<br />

production l<strong>in</strong>e model, <strong>the</strong> data around <strong>the</strong> production l<strong>in</strong>e are ga<strong>the</strong>red from <strong>the</strong><br />

workshop dur<strong>in</strong>g <strong>the</strong> early period <strong>of</strong> research. The scope <strong>of</strong> <strong>the</strong> data <strong>in</strong>cludes process<strong>in</strong>g<br />

time, maximum queue length <strong>of</strong> each step, percentage <strong>of</strong> scraps, production cycle time,<br />

stop time <strong>and</strong> so on. Time to Failure (TTF) (or Time between Failures (TBF)) <strong>and</strong> Time<br />

to Repair (TTR) are acquired through statistical analysis <strong>in</strong> this chapter.<br />

The whole production <strong>of</strong> ADBs <strong>in</strong>cludes several sub-l<strong>in</strong>es, such as ma<strong>in</strong> production l<strong>in</strong>e,<br />

sub-production l<strong>in</strong>e, preassembly l<strong>in</strong>e, ma<strong>in</strong> assembly l<strong>in</strong>e <strong>and</strong> so on. In this study,<br />

analysis is emphasized <strong>in</strong> <strong>the</strong> key issues. The research is taken out on <strong>the</strong> ADB (Air<br />

Disc Brake) assembly l<strong>in</strong>e, which is comprised <strong>of</strong> a preassembly l<strong>in</strong>e (assemble <strong>the</strong><br />

magnetism part) <strong>and</strong> <strong>the</strong> ma<strong>in</strong> assembly l<strong>in</strong>e (f<strong>in</strong>al assembly l<strong>in</strong>e). Meanwhile, variety<br />

<strong>of</strong> <strong>the</strong> ADB products is ignored to simplify <strong>the</strong> analysis <strong>and</strong> simulation. Instead, <strong>the</strong><br />

company provides <strong>in</strong>tegrative data on assembly l<strong>in</strong>e. The preassembly conta<strong>in</strong>s four<br />

stations <strong>and</strong> <strong>the</strong> ma<strong>in</strong> l<strong>in</strong>e has ten stations. A general layout sketch <strong>of</strong> <strong>the</strong> whole<br />

assembly l<strong>in</strong>e <strong>of</strong> ADB is shown <strong>in</strong> Figure 3.1. The blue rectangles are <strong>the</strong> preassembly<br />

l<strong>in</strong>e stations <strong>and</strong> <strong>the</strong> gray ones are <strong>the</strong> f<strong>in</strong>al assembly l<strong>in</strong>e stations. The yellow triangles<br />

mean <strong>the</strong> buffers <strong>of</strong> material, which are used to store <strong>the</strong> components, will be used <strong>in</strong><br />

<strong>the</strong> correspond<strong>in</strong>g stations. The preassembly l<strong>in</strong>e jo<strong>in</strong>s <strong>the</strong> ma<strong>in</strong> l<strong>in</strong>e at station 5 after<br />

10


process<strong>in</strong>g <strong>in</strong> station 5b. In <strong>the</strong> real production, preassembly l<strong>in</strong>e <strong>and</strong> f<strong>in</strong>al assembly<br />

l<strong>in</strong>e operate <strong>in</strong>dependently. At <strong>the</strong> end <strong>of</strong> preassembly l<strong>in</strong>e <strong>the</strong>re is an area used to<br />

deposit <strong>the</strong> first f<strong>in</strong>ished production i.e. <strong>the</strong> magnetism part <strong>of</strong> Air Disc Brake. In this<br />

sketch <strong>in</strong> order to show <strong>the</strong> relationship <strong>of</strong> <strong>the</strong> two assembly l<strong>in</strong>es, a connection l<strong>in</strong>e is<br />

used between station 4 <strong>of</strong> <strong>the</strong> preassembly <strong>and</strong> station 5b <strong>of</strong> <strong>the</strong> ma<strong>in</strong> l<strong>in</strong>e <strong>in</strong>stead <strong>of</strong> <strong>the</strong><br />

deposited area. Among <strong>the</strong> stations PA2, MA4, MA7 <strong>and</strong> MA8 are auto process<strong>in</strong>g<br />

<strong>and</strong> worked by robots.<br />

Figure 3.1 Simplified Assembly L<strong>in</strong>e<br />

Among <strong>the</strong> data <strong>of</strong> assembly l<strong>in</strong>e ga<strong>the</strong>red from <strong>the</strong> workshop, process<strong>in</strong>g time <strong>and</strong><br />

maximum queue length <strong>of</strong> each step can be used <strong>in</strong> “Extend v6” directly when set up<br />

simulation model. While <strong>the</strong> data <strong>of</strong> TTF <strong>and</strong> TTR are statistic data, which has to<br />

analyze before used <strong>in</strong> build<strong>in</strong>g model. In this paper, <strong>the</strong> data will be analyzed <strong>in</strong><br />

Micros<strong>of</strong>t Excel <strong>and</strong> SPSS. The two groups <strong>of</strong> data for different stations will be<br />

analyzed separately. First data for station 2 <strong>in</strong> preassembly l<strong>in</strong>e will be analyzed <strong>and</strong><br />

<strong>the</strong>n <strong>the</strong> f<strong>in</strong>al assembly l<strong>in</strong>e data for station 8. The analysis methods <strong>and</strong> threads are<br />

similar.<br />

11


3.2 Preassembly l<strong>in</strong>e data analysis<br />

Accord<strong>in</strong>g to <strong>the</strong> statistic data ga<strong>the</strong>red from <strong>the</strong> workshop, <strong>the</strong> bottleneck <strong>of</strong><br />

preassembly l<strong>in</strong>e is station 2. Thus, use <strong>the</strong> operation data ga<strong>the</strong>red from station 2 to<br />

represent <strong>the</strong> whole preassembly l<strong>in</strong>e. The data is ga<strong>the</strong>red from week twenty to week<br />

twenty-six <strong>in</strong> 2007 (The data show <strong>in</strong> appendix A, Table 1).<br />

3.2.1 Primary data analysis <strong>of</strong> preassembly l<strong>in</strong>e<br />

Micros<strong>of</strong>t Excel is used <strong>in</strong> <strong>the</strong> phase <strong>of</strong> <strong>the</strong> primary data analysis. Curves shown <strong>in</strong><br />

Figure 3.2 are <strong>the</strong> variation tendency <strong>of</strong> TTF <strong>and</strong> TTR. The left one is <strong>the</strong> TTF <strong>of</strong><br />

preassembly l<strong>in</strong>e <strong>and</strong> <strong>the</strong> right one is <strong>the</strong> TTR <strong>of</strong> preassembly l<strong>in</strong>e. Compar<strong>in</strong>g <strong>the</strong> two<br />

curves <strong>the</strong> tendencies <strong>of</strong> <strong>the</strong>m are similar. Both <strong>of</strong> <strong>the</strong>m have some data <strong>in</strong>creased<br />

sharply, especially <strong>the</strong> data from week twenty-n<strong>in</strong>e to week thirty-two. There is no<br />

function <strong>in</strong> Excel can be used to describe <strong>the</strong> trend.<br />

The data <strong>of</strong> time between failures equal to <strong>the</strong> sum <strong>of</strong> data <strong>of</strong> time to repair <strong>and</strong><br />

operation time. So ei<strong>the</strong>r time to repair or operation time changes <strong>the</strong> time between<br />

failures will change. Because <strong>the</strong> operation time depends on <strong>the</strong> work schedule <strong>of</strong><br />

factory <strong>and</strong> it is relative steady. Besides <strong>of</strong> this it is evident that <strong>the</strong> variety <strong>of</strong><br />

observation po<strong>in</strong>ts on <strong>the</strong> two curves are synchronous. It is can be said that <strong>the</strong> data <strong>of</strong><br />

time between failures changes ma<strong>in</strong>ly because <strong>of</strong> <strong>the</strong> time to repair changes. There are<br />

several factors can affect <strong>the</strong> time to repair. The reasons lead to <strong>the</strong> repair time <strong>in</strong>crease<br />

may be <strong>the</strong> mach<strong>in</strong>es are <strong>in</strong> a serious problem <strong>and</strong> hard to repair; lack <strong>of</strong> components to<br />

repair <strong>the</strong> mach<strong>in</strong>e <strong>and</strong> <strong>the</strong> lead time is long for some certa<strong>in</strong> components; or <strong>the</strong><br />

repairers are <strong>in</strong> a holiday <strong>and</strong> so on. In any case <strong>the</strong> data recorded is not a usual one. So<br />

when discuss <strong>the</strong> distribution <strong>of</strong> <strong>the</strong> TTF <strong>and</strong> TTR data, <strong>the</strong> usual data should be<br />

deleted.<br />

TTF/sec.<br />

1600.0<br />

1400.0<br />

1200.0<br />

1000.0<br />

800.0<br />

600.0<br />

400.0<br />

200.0<br />

0.0<br />

20<br />

22<br />

TTF <strong>of</strong> Preassembly L<strong>in</strong>e<br />

24<br />

26<br />

28<br />

30<br />

week<br />

32<br />

34<br />

36<br />

38<br />

40<br />

TTR/sec.<br />

1600.0<br />

1400.0<br />

1200.0<br />

1000.0<br />

800.0<br />

600.0<br />

400.0<br />

200.0<br />

TTR <strong>of</strong> Preassembly L<strong>in</strong>e<br />

Figure 3.2 TTF & TTR <strong>of</strong> Preassembly L<strong>in</strong>e<br />

0.0<br />

20<br />

22<br />

24<br />

26<br />

28<br />

30<br />

Week<br />

32<br />

34<br />

36<br />

38<br />

40<br />

12


After delet<strong>in</strong>g <strong>the</strong> un-normal data <strong>in</strong> <strong>the</strong> samples <strong>of</strong> TTF <strong>and</strong> TTR, <strong>the</strong> tendency <strong>of</strong><br />

each curve is shown <strong>in</strong> Figure 3.3. Try to add <strong>the</strong> tendency l<strong>in</strong>es for <strong>the</strong> observational<br />

l<strong>in</strong>es by Excel, <strong>the</strong> tendency l<strong>in</strong>es can be described by <strong>the</strong> function <strong>of</strong> mov<strong>in</strong>g average.<br />

The mov<strong>in</strong>g averages are usually used <strong>in</strong> <strong>the</strong> f<strong>in</strong>ancial field while <strong>the</strong> parameters<br />

studied <strong>in</strong> this paper are around <strong>the</strong> production. So <strong>the</strong>re is no real significance to add<br />

<strong>the</strong> tendency l<strong>in</strong>es for <strong>the</strong> observational data. The mov<strong>in</strong>g average here only shows a<br />

trend <strong>of</strong> <strong>the</strong> real observational l<strong>in</strong>es.<br />

TTF/sec.<br />

500.0<br />

400.0<br />

300.0<br />

200.0<br />

100.0<br />

0.0<br />

20<br />

TTF <strong>of</strong> Preassembly L<strong>in</strong>e<br />

23<br />

25<br />

27<br />

33<br />

week<br />

35<br />

37<br />

39<br />

Figure 3.3 TTF & TTR Trend <strong>of</strong> Preassembly L<strong>in</strong>e<br />

In <strong>the</strong> primary analysis phase it can be given a descriptive statistic. The results are<br />

shown <strong>in</strong> Table 3.1. Associat<strong>in</strong>g with <strong>the</strong> Extend <strong>the</strong>re is a Triangular Distribution can<br />

be used. The parameters are <strong>the</strong> maximum data, m<strong>in</strong>imum data <strong>and</strong> <strong>the</strong> most likely<br />

data. The maximum data <strong>and</strong> m<strong>in</strong>imum data can get from <strong>the</strong> table directly. The most<br />

likely data is <strong>the</strong> mode, if follow <strong>the</strong> orig<strong>in</strong>al data <strong>the</strong>re is no mode. But if deal <strong>the</strong><br />

data with <strong>the</strong> rounded method up to <strong>the</strong> tens digit <strong>the</strong>n <strong>the</strong> modes <strong>of</strong> TTF <strong>and</strong> TTR are<br />

ga<strong>in</strong>ed. And <strong>the</strong>y can be approximately seemed as <strong>the</strong> most likely data.<br />

Table 3.1 Descriptive Statistic <strong>of</strong> TTF <strong>and</strong> TTR <strong>of</strong> Preassembly L<strong>in</strong>e<br />

TTF <strong>of</strong> Preassembly L<strong>in</strong>e TTR <strong>of</strong> Preassembly L<strong>in</strong>e<br />

Mean 328.44 Mean 177.31<br />

St<strong>and</strong>ard Error 14.91 St<strong>and</strong>ard Error 16.22<br />

Median 310.95 Median 151.65<br />

Mode 280 Mode 140<br />

St<strong>and</strong>ard Deviation 59.65 St<strong>and</strong>ard Deviation 64.90<br />

Sample Variance 3557.73 Sample Variance 4211.82<br />

Kurtosis -0.56 Kurtosis -0.67<br />

Skewness 0.82 Skewness 0.87<br />

Range 193.40 Range 200.90<br />

M<strong>in</strong>imum 256.90 M<strong>in</strong>imum 100.90<br />

Maximum 450.30 Maximum 301.80<br />

Sum 5255.10 Sum 2836.90<br />

Count 16 Count 16<br />

TTR/sec.<br />

400.0<br />

300.0<br />

200.0<br />

100.0<br />

0.0<br />

20<br />

TTR <strong>of</strong> Preassembly L<strong>in</strong>e<br />

23<br />

25<br />

27<br />

33<br />

Week<br />

35<br />

37<br />

39<br />

13


From <strong>the</strong> curves analyzed <strong>in</strong> Micros<strong>of</strong>t Excel, it is hard to identify which distribution is<br />

suitable to describe <strong>the</strong> trend although <strong>the</strong> trend l<strong>in</strong>es follow <strong>the</strong> mov<strong>in</strong>g average. As<br />

discussed <strong>in</strong> last section it does not mean any real significance for <strong>the</strong> production field.<br />

Data has to be fur<strong>the</strong>r analysis. It is obviously samples ga<strong>the</strong>red <strong>in</strong> preassembly l<strong>in</strong>e are<br />

stochastic. It can be discussed <strong>and</strong> analyzed by more pr<strong>of</strong>essional statistical analysis<br />

s<strong>of</strong>tware. In <strong>the</strong> fur<strong>the</strong>r data analysis <strong>the</strong> SPSS (Statistical Package for Social Science)<br />

is used to study whe<strong>the</strong>r <strong>the</strong>re is a certa<strong>in</strong> ma<strong>the</strong>matic model or statistic distribution<br />

can used to describe <strong>the</strong> data <strong>of</strong> TTF <strong>and</strong> TTR.<br />

3.2.2 Fur<strong>the</strong>r data analysis for TTF <strong>of</strong> preassembly l<strong>in</strong>e<br />

Among <strong>the</strong> SPSS functions One-Sample Kolmogorov-Smirnov Test belongs to<br />

nonparametric tests, which can validate whe<strong>the</strong>r or not <strong>the</strong> samples follow Normal<br />

Distribution, Uniform Distribution, Poisson Distribution or Exponential Distribution.<br />

S<strong>in</strong>ce it is necessary to know whe<strong>the</strong>r <strong>the</strong> Time to Failure <strong>and</strong> Time to Repair follow<br />

any distribution, it is considerable to identify by One-Sample Kolmogorov-Smirnov<br />

Test. Based on <strong>the</strong> significations <strong>of</strong> TTF <strong>of</strong> preassembly l<strong>in</strong>e nei<strong>the</strong>r Normal<br />

Distribution nor Poisson Distribution can describe <strong>the</strong> trend. S<strong>in</strong>ce <strong>the</strong> data is limited,<br />

<strong>the</strong> statistic analysis may be not ideal. Accord<strong>in</strong>g to <strong>the</strong> primary analysis <strong>the</strong><br />

distribution <strong>of</strong> TTF data is not Uniform Distribution. So first assume <strong>the</strong> TTF data<br />

follow <strong>the</strong> Exponential Distribution <strong>and</strong> <strong>the</strong>n test <strong>the</strong> supposition by <strong>the</strong> One-Sample<br />

Kolmogorov-Smirnov Test.<br />

Table 3.2 Results <strong>of</strong> One-Sample Kolmogorov-Smirnov Test<br />

for Preassembly L<strong>in</strong>e’s TTF<br />

N<br />

One-Sample Kolmogorov-Smirnov Test<br />

TTF<br />

16<br />

Exponential parameter.(a) Mean 328.444<br />

Most Extreme Differences Absolute .543<br />

Positive .254<br />

Negative -.543<br />

Kolmogorov-Smirnov Z 2.170<br />

Asymp. Sig. (2-tailed) .000<br />

a Test Distribution is Exponential.<br />

b Calculated from data.<br />

Generally speak<strong>in</strong>g, <strong>the</strong> probability <strong>of</strong> two tailed test is <strong>the</strong> yardstick to estimate<br />

whe<strong>the</strong>r or not variable accords with a certa<strong>in</strong> distribution. Accord<strong>in</strong>g to <strong>the</strong> statistical<br />

<strong>the</strong>ory when <strong>the</strong> probability <strong>of</strong> two-tailed test value is smaller than 0.05 shows <strong>the</strong><br />

positive answer, i.e. <strong>the</strong> variable follows <strong>the</strong> selected distribution. O<strong>the</strong>rwise <strong>the</strong> answer<br />

is negative. In ano<strong>the</strong>r word <strong>the</strong>re are some differences between variable <strong>and</strong><br />

distribution. The One-Sample Kolmogorov-Smirnov Test results <strong>of</strong> preassembly l<strong>in</strong>e’s<br />

Time to Failure are shown <strong>in</strong> Table 3.2. The probability <strong>of</strong> two tailed test value <strong>of</strong><br />

Exponential distribution’s value smaller than 0.05. Consequently <strong>the</strong> Time to Failure<br />

14


data <strong>of</strong> preassembly l<strong>in</strong>e accords with exponential distribution. And <strong>the</strong> exponential<br />

parameter, <strong>the</strong> mean is 328.444 seconds.<br />

3.2.3 Fur<strong>the</strong>r data analysis for TTR <strong>of</strong> preassembly l<strong>in</strong>e<br />

When analyz<strong>in</strong>g <strong>the</strong> Time to Repair (TTR) data <strong>of</strong> <strong>the</strong> preassembly l<strong>in</strong>e, consider<strong>in</strong>g <strong>the</strong><br />

signification <strong>of</strong> TTR <strong>and</strong> associated with <strong>the</strong> primary analysis result, <strong>the</strong> One-Sample<br />

Kolmogorov-Smirnov Test cannot be used to analyze <strong>the</strong> data. In this case, it is have to<br />

try to use o<strong>the</strong>r functions <strong>of</strong> SPSS. There is a function named P-P Plots, which used to<br />

describe <strong>the</strong> probability distribution trend. The test distribution <strong>in</strong>cludes Beta,<br />

Chi-square, Exponential, Gamma, Half Normal, Laplace, Logistic, Lognormal, Normal,<br />

Pareto, Student, Weibull <strong>and</strong> Uniform. S<strong>in</strong>ce as above discussed <strong>the</strong> data can not<br />

follow <strong>the</strong> Normal Distribution, Uniform Distribution, Poisson Distribution,<br />

Exponential Distribution, all <strong>of</strong> <strong>the</strong> four k<strong>in</strong>ds <strong>of</strong> distributions can be ignored. Associate<br />

with <strong>the</strong> distribution k<strong>in</strong>ds supported by Extend s<strong>of</strong>tware, <strong>and</strong> compare <strong>the</strong><br />

significations <strong>of</strong> different distributions, f<strong>in</strong>ally only Lognormal Distribution is selected<br />

to analyze <strong>the</strong> data.<br />

Figure 3.4 Results <strong>of</strong> P-P Plots for Preassembly L<strong>in</strong>e’s TTR<br />

The results are shown <strong>in</strong> Figure 3.4. Theoretically speak<strong>in</strong>g, if <strong>the</strong> data trend follows<br />

<strong>the</strong> distribution <strong>the</strong> po<strong>in</strong>ts <strong>of</strong> observational various are near <strong>the</strong> diagonal l<strong>in</strong>e <strong>and</strong> <strong>the</strong><br />

closer <strong>the</strong> better. The observational po<strong>in</strong>t distribute around <strong>the</strong> diagonal l<strong>in</strong>e closely, so<br />

<strong>the</strong> Lognormal Distribution can be used <strong>in</strong> <strong>the</strong> simulation model. The parameters <strong>of</strong><br />

Lognormal Distribution required <strong>in</strong> Extend model are mean <strong>and</strong> st<strong>and</strong>ard deviation.<br />

The values <strong>of</strong> <strong>the</strong>m can get directly from <strong>the</strong> analysis results by SPSS <strong>and</strong> <strong>the</strong>y are<br />

177.306 seconds <strong>and</strong> 64.899 seconds separately.<br />

15


3.3 Ma<strong>in</strong> assembly l<strong>in</strong>e data analysis<br />

Because <strong>the</strong> bottleneck <strong>of</strong> <strong>the</strong> ma<strong>in</strong> assembly l<strong>in</strong>e is station eight, data <strong>of</strong> Time to<br />

Failure <strong>and</strong> Time to Repair are ga<strong>the</strong>red from this station. Data ga<strong>the</strong>red from week<br />

thirty to week fifty <strong>in</strong> 2007. (See data show <strong>in</strong> Appendix A, Table 2) The analysis<br />

methods are similar to <strong>the</strong> preassembly l<strong>in</strong>e.<br />

3.3.1 Primary data analysis for ma<strong>in</strong> assembly l<strong>in</strong>e<br />

The results <strong>of</strong> Excel are shown <strong>in</strong> Figure 3.5. The left one <strong>the</strong> time between failures data<br />

<strong>and</strong> <strong>the</strong> right one is <strong>the</strong> time to repair data. It is evident <strong>the</strong> equations or functions<br />

<strong>of</strong>fered by Excel nei<strong>the</strong>r suit to describe <strong>the</strong> trend <strong>of</strong> TTF nor <strong>the</strong> trend <strong>of</strong> TTR. All <strong>of</strong><br />

<strong>the</strong> data are stochastic. Because <strong>the</strong> limited sample <strong>and</strong> <strong>the</strong> complex practical situations<br />

it is hard to say which <strong>of</strong> <strong>the</strong>m are normal data. But <strong>the</strong> data for week fifty can be<br />

deleted because this is <strong>the</strong> vacation week for all <strong>of</strong> <strong>the</strong> employees <strong>and</strong> <strong>the</strong> production<br />

l<strong>in</strong>e stopped.<br />

TTF/sec.<br />

450.0<br />

400.0<br />

350.0<br />

300.0<br />

250.0<br />

200.0<br />

150.0<br />

100.0<br />

50.0<br />

0.0<br />

30<br />

32<br />

TTF <strong>of</strong> Ma<strong>in</strong> Assembly L<strong>in</strong>e<br />

34<br />

36<br />

38<br />

40<br />

week<br />

42<br />

44<br />

47<br />

49<br />

TTR <strong>of</strong> Ma<strong>in</strong> Assembly L<strong>in</strong>e<br />

Figure 3.5 TTF & TTR <strong>of</strong> Ma<strong>in</strong> Assembly L<strong>in</strong>e<br />

In order to get <strong>the</strong> parameters <strong>of</strong> Triangular Distribution <strong>the</strong> descriptive statistics used<br />

to analysis <strong>the</strong> data. And <strong>the</strong> method has been <strong>in</strong>troduced <strong>in</strong> <strong>the</strong> process <strong>of</strong> analyz<strong>in</strong>g<br />

<strong>the</strong> data <strong>of</strong> preassembly l<strong>in</strong>e. The results <strong>of</strong> descriptive statistics for TTF <strong>and</strong> TTR <strong>of</strong><br />

ma<strong>in</strong> assembly l<strong>in</strong>e are shown <strong>in</strong> Table 3.3. The parameters <strong>of</strong> Triangular Distribution<br />

are maximum data, m<strong>in</strong>imum data <strong>and</strong> most likely data. The values are maximum<br />

data <strong>and</strong> m<strong>in</strong>imum data are show directly <strong>and</strong> <strong>the</strong> most likely value, which is <strong>the</strong><br />

mode value, is still <strong>the</strong> estimation value.<br />

Table 3.3 Descriptive Statistic <strong>of</strong> TTF <strong>and</strong> TTR <strong>of</strong> Ma<strong>in</strong> Assembly L<strong>in</strong>e<br />

TTF <strong>of</strong> Ma<strong>in</strong> Assembly L<strong>in</strong>e TTR <strong>of</strong> Ma<strong>in</strong> Assembly L<strong>in</strong>e<br />

Mean 276.32 Mean 187.32<br />

St<strong>and</strong>ard Error 15.71 St<strong>and</strong>ard Error 16.08<br />

Median 278.07 Median 179.33<br />

Mode 320 Mode 130<br />

TTR/sec.<br />

350.0<br />

300.0<br />

250.0<br />

200.0<br />

150.0<br />

100.0<br />

50.0<br />

0.0<br />

30<br />

32<br />

34<br />

36<br />

38<br />

40<br />

week<br />

42<br />

44<br />

47<br />

49<br />

16


St<strong>and</strong>ard Deviation 68.49 St<strong>and</strong>ard Deviation 70.07<br />

Sample Variance 4690.93 Sample Variance 4909.82<br />

Kurtosis -0.41 Kurtosis -0.57<br />

Skewness 0.54 Skewness 0.61<br />

Range 236.87 Range 224.05<br />

M<strong>in</strong>imum 186.65 M<strong>in</strong>imum 99.49<br />

Maximum 423.52 Maximum 323.53<br />

Sum 5250.15 Sum 3559.17<br />

Count 19 Count 19<br />

3.3.2 Fur<strong>the</strong>r data analysis for TTF <strong>of</strong> ma<strong>in</strong> assembly l<strong>in</strong>e<br />

As <strong>the</strong> method used to analysis <strong>the</strong> TTF <strong>of</strong> preassembly l<strong>in</strong>e, <strong>in</strong> this section also assume<br />

<strong>the</strong> TTF data follow<strong>in</strong>g <strong>the</strong> Exponential Distribution. And <strong>the</strong>n test <strong>the</strong> hypo<strong>the</strong>sis by<br />

One-Sample Kolmogorov-Smirnov. The results <strong>of</strong> One-Sample Kolmogorov-Smirnov<br />

Test for ma<strong>in</strong> assembly L<strong>in</strong>e’s Time to Failure are shown <strong>in</strong> Table 3.4. The probability<br />

<strong>of</strong> two-tailed test value <strong>of</strong> <strong>the</strong> Exponential Distribution is smaller than 0.05, so <strong>the</strong><br />

Exponential Distribution satisfy <strong>the</strong> data trend. And <strong>the</strong> Exponential parameter: mean is<br />

276.3210 seconds.<br />

Table 3.4 Results <strong>of</strong> One-Sample Kolmogorov-Smirnov Test<br />

for Ma<strong>in</strong> Assembly L<strong>in</strong>e’s TTF<br />

N<br />

One-Sample Kolmogorov-Smirnov Test<br />

TTF<br />

19<br />

Exponential parameter.(a) Mean 276.3210<br />

Most Extreme Differences Absolute .491<br />

Positive .216<br />

Negative -.491<br />

Kolmogorov-Smirnov Z 2.141<br />

Asymp. Sig. (2-tailed) .000<br />

a Test Distribution is Exponential.<br />

b Calculated from data.<br />

3.3.3 Fur<strong>the</strong>r data analysis for TTR <strong>of</strong> ma<strong>in</strong> assembly l<strong>in</strong>e<br />

The data <strong>of</strong> Time to Repair <strong>of</strong> <strong>the</strong> f<strong>in</strong>al assembly is analyzed by <strong>the</strong> same method: P-P<br />

Plots. Still select Lognormal Distribution to analyze <strong>the</strong> TTR data. The results <strong>of</strong> P-P<br />

Plots <strong>of</strong> ma<strong>in</strong> assembly l<strong>in</strong>e’s Time to Repair are shown <strong>in</strong> Figure 3.6. The mean <strong>and</strong><br />

st<strong>and</strong>ard deviation are 187.3263 seconds <strong>and</strong> 70.0659 seconds separately.<br />

17


3.4 Results<br />

Figure 3.6 Results <strong>of</strong> P-P Plots for Ma<strong>in</strong> Assembly L<strong>in</strong>e’s TTR<br />

Based on <strong>the</strong> analysis above, <strong>the</strong> results are shown that for <strong>the</strong> data <strong>of</strong> Time to Failure,<br />

both station 2 <strong>in</strong> preassembly l<strong>in</strong>e <strong>and</strong> station 8 <strong>in</strong> ma<strong>in</strong> assembly l<strong>in</strong>e can take<br />

Exponential Distribution <strong>in</strong>to <strong>the</strong> simulation model. And for <strong>the</strong> data <strong>of</strong> Time to Repair<br />

both <strong>of</strong> <strong>the</strong>m should take Lognormal Distribution <strong>in</strong>to <strong>the</strong> model. And <strong>the</strong> value <strong>of</strong> each<br />

parameter for different distribution can get <strong>in</strong> <strong>the</strong> Table 3.5 followed. S<strong>in</strong>ce station 2 <strong>of</strong><br />

preassembly l<strong>in</strong>e is <strong>the</strong> ma<strong>in</strong> bottleneck <strong>of</strong> this assembly l<strong>in</strong>e <strong>and</strong> station 8 <strong>of</strong> ma<strong>in</strong><br />

assembly l<strong>in</strong>e also is <strong>the</strong> ma<strong>in</strong> bottleneck, <strong>the</strong> TTF <strong>and</strong> TTR <strong>of</strong> <strong>the</strong> whole assembly l<strong>in</strong>e<br />

depends on <strong>the</strong> two bottlenecks.<br />

Table 3.5 Values <strong>of</strong> Parameters <strong>of</strong> Different Distribution<br />

Distribution Parameters Preassembly Ma<strong>in</strong><br />

L<strong>in</strong>e Assembly<br />

TTF Exponential Distribution Mean 328.4 276.3<br />

TTR Lognormal Distribution Mean 177.3 187.3<br />

St<strong>and</strong>ard Deviation 64.9 70.1<br />

As discussed above <strong>the</strong> sample size is small. The reliability <strong>of</strong> statistic analysis <strong>and</strong><br />

results are not so high. In order to solve <strong>the</strong> problem <strong>and</strong> test <strong>the</strong> analysis results <strong>the</strong><br />

Triangular Distribution is used at <strong>the</strong> same time <strong>in</strong> <strong>the</strong> assembly l<strong>in</strong>e simulation model.<br />

After compar<strong>in</strong>g <strong>the</strong> simulation models with different parameter functions f<strong>in</strong>d out <strong>the</strong><br />

better one. And <strong>the</strong>n use <strong>the</strong> simulation model with better function <strong>in</strong> <strong>the</strong> future<br />

discussions. The parameters <strong>of</strong> Triangular are m<strong>in</strong>imal data, maximum data <strong>and</strong> <strong>the</strong><br />

most likely data. The parameters have studied above <strong>and</strong> values are shown <strong>in</strong> <strong>the</strong> Table<br />

3.6 followed.<br />

18


Table 3.6 Values <strong>of</strong> Parameters <strong>of</strong> Triangular Distribution<br />

Preassembly L<strong>in</strong>e Ma<strong>in</strong> Assembly L<strong>in</strong>e<br />

TTF TTR TTF TTR<br />

Maximum Data 450.3 301.8 423.5 323.5<br />

M<strong>in</strong>imal Data 256.9 100.9 186.7 99.5<br />

Most Likely Data 280 140 320 130<br />

19


CHAPTER 4<br />

MODELING AND ANALYSIS OF<br />

PRODUCTION LINE<br />

4.1 Model<strong>in</strong>g<br />

Figure 4.1 Simplified Assembly L<strong>in</strong>e Model<br />

Depend on <strong>the</strong> sketch layout <strong>of</strong> Figure 3.1 production l<strong>in</strong>e model is set up by s<strong>of</strong>tware<br />

Extend v6 after data analysis. The simplified assembly l<strong>in</strong>e <strong>in</strong> <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g is detailed<br />

by add<strong>in</strong>g variances <strong>in</strong> critical stations <strong>and</strong> bottlenecks. Figure 4.1 is a copy <strong>of</strong> <strong>the</strong><br />

simplified assembly l<strong>in</strong>e model sett<strong>in</strong>g <strong>in</strong> Extend v6. There are two stocks at <strong>the</strong><br />

beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> <strong>the</strong> flow, one for <strong>the</strong> ma<strong>in</strong> assembly l<strong>in</strong>e <strong>and</strong> <strong>the</strong> o<strong>the</strong>r for <strong>the</strong> preassembly<br />

20


l<strong>in</strong>e. In order to simplify <strong>the</strong> model <strong>and</strong> br<strong>in</strong>g <strong>the</strong> keystones to <strong>the</strong> front, <strong>the</strong> two l<strong>in</strong>es<br />

are jo<strong>in</strong>ed toge<strong>the</strong>r <strong>and</strong> work<strong>in</strong>g simultaneously. The detail situation about <strong>the</strong><br />

preassembly l<strong>in</strong>e <strong>and</strong> ma<strong>in</strong> assembly l<strong>in</strong>e has described <strong>in</strong> chapter three.<br />

Dur<strong>in</strong>g <strong>the</strong> process <strong>of</strong> sett<strong>in</strong>g up model, <strong>the</strong>re is a problem when associat<strong>in</strong>g <strong>the</strong><br />

preassembly l<strong>in</strong>e to <strong>the</strong> ma<strong>in</strong> assembly l<strong>in</strong>e. As shown <strong>in</strong> Figure 3.1, <strong>the</strong>re are five<br />

stations before <strong>in</strong>sert <strong>the</strong> preassembly l<strong>in</strong>e at station 5b. Accord<strong>in</strong>g to <strong>the</strong> data <strong>of</strong><br />

process time shown <strong>in</strong> Table 4.1 below, from <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g to output <strong>the</strong> first product,<br />

<strong>the</strong> work<strong>in</strong>g time <strong>of</strong> first five stations <strong>in</strong> ma<strong>in</strong> assembly l<strong>in</strong>e is 105s, which is shorter<br />

than <strong>the</strong> work<strong>in</strong>g time <strong>of</strong> preassembly l<strong>in</strong>e that is 179s. As a result, for <strong>the</strong> early period<br />

preassembly l<strong>in</strong>e is beh<strong>in</strong>d <strong>the</strong> ma<strong>in</strong> assembly l<strong>in</strong>e. So a buffer with <strong>the</strong> products <strong>of</strong> <strong>the</strong><br />

preassembly l<strong>in</strong>e is needed. By sett<strong>in</strong>g ano<strong>the</strong>r “Stock” block between station 5b <strong>and</strong><br />

station 5, <strong>the</strong> two assembly l<strong>in</strong>es jo<strong>in</strong> toge<strong>the</strong>r at station 5 <strong>of</strong> <strong>the</strong> ma<strong>in</strong> production l<strong>in</strong>e to<br />

smooth <strong>the</strong> simulation. This solution is not discrete form <strong>the</strong> reality s<strong>in</strong>ce <strong>in</strong> <strong>the</strong> virtual<br />

assembly process, <strong>the</strong>re is a small hold<strong>in</strong>g area used to store <strong>the</strong> magnetism parts from<br />

<strong>the</strong> preassembly l<strong>in</strong>e, which can satisfied <strong>the</strong> requirement <strong>of</strong> ma<strong>in</strong> assembly l<strong>in</strong>e. The<br />

“Stock” block <strong>in</strong> <strong>the</strong> model has <strong>the</strong> same function as <strong>the</strong> hold<strong>in</strong>g area. There are several<br />

reasons lead to <strong>the</strong> necessary <strong>of</strong> a hold<strong>in</strong>g area; one <strong>of</strong> <strong>the</strong>m is that <strong>the</strong> cycle time <strong>of</strong> <strong>the</strong><br />

ma<strong>in</strong> assembly is longer than <strong>the</strong> cycle time <strong>of</strong> <strong>the</strong> preassembly l<strong>in</strong>e, which can be<br />

confirmed by <strong>the</strong> data shown <strong>in</strong> Table 4.1. Calculated <strong>the</strong> delayed time, <strong>the</strong> model can<br />

work smoothly as long as more than three items are held <strong>in</strong> <strong>the</strong> stock.<br />

Table 4.1* Work<strong>in</strong>g Parameters <strong>of</strong> Each Station<br />

Station/Ma<strong>in</strong> TID Queue Station/Pre. TID Queue<br />

Capacity<br />

Capacity<br />

1&2 1<br />

3 2<br />

4 3<br />

5b<br />

5<br />

6<br />

4<br />

7<br />

*Because <strong>of</strong> <strong>the</strong> different<br />

8<br />

configurations, TID <strong>of</strong> station 10 <strong>in</strong><br />

9<br />

10<br />

11<br />

ma<strong>in</strong> assembly l<strong>in</strong>e is variation. 7/30<br />

<strong>of</strong> <strong>the</strong> products cost 55s at this station<br />

<strong>and</strong> <strong>the</strong> rests cost 35s.<br />

In <strong>the</strong> model, each buffer before <strong>the</strong> stations is to simulate <strong>the</strong> length <strong>of</strong> <strong>the</strong> queue. All<br />

<strong>the</strong> stations <strong>in</strong>dicate <strong>the</strong> actual work<strong>in</strong>g times <strong>in</strong> <strong>the</strong> assembly l<strong>in</strong>e. The detailed<br />

<strong>in</strong>formation <strong>of</strong> process<strong>in</strong>g time (TID) <strong>and</strong> queue length for each station are listed <strong>in</strong><br />

Table 4.1 above.<br />

Generally speak<strong>in</strong>g, scraps occur <strong>in</strong> station 5b, 6, 8, 10 <strong>and</strong> 11 <strong>of</strong> ma<strong>in</strong> assembly l<strong>in</strong>e.<br />

Statistical analysis work focus on <strong>the</strong>se five stations. First time pass rates <strong>of</strong> <strong>the</strong> five<br />

stations are shown <strong>in</strong> Table 4.2 separately. “Select DE Output” blocks are added after<br />

<strong>the</strong>se stations to simulate <strong>the</strong> pass rates.<br />

21


Table 4.2 First Time Pass Rate <strong>of</strong> Station 5b, 6, 8, 10 <strong>and</strong> 11<br />

Station 5b 6 8 10 11<br />

First Time Pass Rate 98~99% 99.2% 99.2% 99.2% 99.2%<br />

Based on <strong>the</strong> result analyzed by Haldex, <strong>the</strong> bottlenecks <strong>of</strong> <strong>the</strong> whole assembly l<strong>in</strong>e<br />

system are station 2 <strong>in</strong> <strong>the</strong> preassembly l<strong>in</strong>e <strong>and</strong> station 8 <strong>in</strong> <strong>the</strong> ma<strong>in</strong> assembly l<strong>in</strong>e. For<br />

<strong>the</strong>se two parts, extra “Downtime” blocks are added. Those blocks have set TTF (or TBF,<br />

Time between Failures) i.e. <strong>the</strong> time to fail mentioned <strong>in</strong> data analysis section <strong>and</strong> TTR (Time to<br />

Repair) value to shut down <strong>and</strong> restart <strong>the</strong> system as time flows by. In <strong>the</strong> end <strong>of</strong> <strong>the</strong><br />

model, a “Plotter” is <strong>the</strong>re, plott<strong>in</strong>g <strong>the</strong> output rate correspond<strong>in</strong>g to <strong>the</strong> two “shutdown”.<br />

It is easier to detect that where <strong>the</strong> simulation is stuck by check<strong>in</strong>g <strong>the</strong> plot.<br />

Based on <strong>the</strong> simplified model, some fur<strong>the</strong>r modifications are added <strong>in</strong> <strong>the</strong> model due<br />

to different requirements <strong>of</strong> <strong>the</strong> solution <strong>and</strong> <strong>the</strong> chang<strong>in</strong>g situations. Detailed reasons<br />

<strong>and</strong> approaches are specifically presented <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g section.<br />

4.2 Simulation <strong>and</strong> analysis<br />

After <strong>the</strong> model<strong>in</strong>g <strong>of</strong> current situation is f<strong>in</strong>ished, simulation <strong>and</strong> analysis are tak<strong>in</strong>g<br />

place. First <strong>of</strong> all, <strong>the</strong>re is a Transient State before <strong>the</strong> system run <strong>in</strong>to a steady state.<br />

This situation only happens at <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> <strong>the</strong> production s<strong>in</strong>ce <strong>the</strong> flow <strong>of</strong><br />

material is from <strong>the</strong> head <strong>of</strong> <strong>the</strong> assembly l<strong>in</strong>e. Besides, all <strong>the</strong> constra<strong>in</strong>ts are set <strong>in</strong><br />

discipl<strong>in</strong>ary values, which will not cause big fluctuations dur<strong>in</strong>g <strong>the</strong> steady state. For<br />

example, <strong>the</strong> <strong>in</strong>terrupts caused by failures will only make <strong>the</strong> production pause <strong>in</strong> a<br />

discipl<strong>in</strong>ary time <strong>in</strong>terval all through <strong>the</strong> assembly period. Figure 4.2 below can<br />

describe <strong>the</strong> work<strong>in</strong>g state <strong>of</strong> <strong>the</strong> assembly l<strong>in</strong>e. In <strong>the</strong> figure, x could represent <strong>the</strong><br />

production rate <strong>and</strong> t could represent time or certa<strong>in</strong> stops, such <strong>the</strong> number <strong>of</strong> outputs.<br />

Figure 4.2 Transient State <strong>and</strong> Steady State (Semere, 2007)<br />

Simulate <strong>the</strong> current l<strong>in</strong>e for a period <strong>of</strong> time, until 50 items are outputted. Table 4.3<br />

listed <strong>the</strong> time when each item is f<strong>in</strong>ished <strong>and</strong> <strong>the</strong> calculated production rate, output<br />

numbers divided by <strong>the</strong> time.<br />

22


Table 4.3 Output Date Come From <strong>the</strong> Simulation<br />

Output Time (sec.) <strong>Production</strong> Output Time (sec.) <strong>Production</strong><br />

no.<br />

rate (pcs/sec) no.<br />

rate (pcs/sec)<br />

0 0 0 26 3318.292037 0.007835356<br />

1 466.6531527 0.002142919 27 3384.292037 0.007978035<br />

2 526.6531527 0.003797566 28 3450.292037 0.008115255<br />

3 598.6531527 0.005011249 29 3516.292037 0.008247324<br />

4 658.6531527 0.006072999 30 3582.292037 0.008374527<br />

5 718.6531527 0.006957459 31 3648.292037 0.008497127<br />

6 778.6531527 0.007705613 32 3714.292037 0.00861537<br />

7 939.2833014 0.007452491 33 3780.292037 0.008729484<br />

8 1025.283301 0.007802721 34 3846.292037 0.008839682<br />

9 1085.283301 0.008292766 35 3932.292037 0.008900661<br />

10 1145.283301 0.008731464 36 3992.292037 0.009017376<br />

11 1223.283301 0.008992193 37 4052.292037 0.009130635<br />

12 1283.283301 0.009351014 38 4112.292037 0.009240589<br />

13 1841.517721 0.007059394 39 4368.044535 0.00892848<br />

14 1901.517721 0.00736254 40 4610.691915 0.008675487<br />

15 1961.517721 0.00764714 41 4670.691915 0.008778143<br />

16 2039.517721 0.007844992 42 4730.691915 0.008878194<br />

17 2099.517721 0.008097098 43 4808.691915 0.008942141<br />

18 2159.517721 0.008335194 44 4868.691915 0.009037335<br />

19 2237.517721 0.008491553 45 5393.005303 0.008344142<br />

20 2303.517721 0.008682373 46 5619.69396 0.008185499<br />

21 2363.517721 0.008885061 47 5679.69396 0.008275094<br />

22 2423.517721 0.009077714 48 5952.749388 0.008063501<br />

23 2873.895077 0.008003076 49 6038.749388 0.008114263<br />

24 2959.895077 0.008108396 50 6098.749388 0.008198402<br />

25 3252.292037 0.007686887<br />

Figure 4.3 <strong>Production</strong> Rate <strong>of</strong> <strong>the</strong> Assembly L<strong>in</strong>e<br />

23


Figure 4.3 is <strong>the</strong> production rate correspond<strong>in</strong>g to <strong>the</strong> output number. It is clear from <strong>the</strong><br />

figure that <strong>the</strong> system enters <strong>in</strong>to <strong>the</strong> steady state after approximately twelve items are<br />

f<strong>in</strong>ished. Run <strong>the</strong> system ten times to get a mean value <strong>of</strong> time <strong>in</strong>terval <strong>of</strong> <strong>the</strong> transient<br />

state. The results <strong>of</strong> <strong>the</strong> simulations are similar to <strong>the</strong> result shown <strong>in</strong> Table 4.3 <strong>and</strong><br />

Figure 4.3. It is can be concluded that <strong>the</strong> correspond<strong>in</strong>g po<strong>in</strong>t is when twelve items are<br />

produced. Table 4.4 conta<strong>in</strong>s <strong>the</strong> results <strong>of</strong> <strong>the</strong> ten runs toge<strong>the</strong>r with <strong>the</strong> mean value <strong>in</strong><br />

seconds. After transformation, <strong>the</strong> transient state lasts 32.5 m<strong>in</strong>utes, about half hour.<br />

Table 4.4 Length <strong>of</strong> <strong>the</strong> Transient State (Time)<br />

No. 1 2 3 4 5<br />

Time (Sec) 1598 2157 1557 1944 2360<br />

No. 6 7 8 9 10<br />

Time (Sec) 1711 2450 1532 1792 2422<br />

Mean<br />

1952<br />

There are ma<strong>in</strong>ly three ways to deal with <strong>the</strong> transient data to avoid bias (Semere,<br />

2007).<br />

1. Delete <strong>the</strong> transient data;<br />

2. Overwhelm it by runn<strong>in</strong>g for sufficiently long time;<br />

3. Initial data as close as <strong>the</strong> steady situation.<br />

Consider<strong>in</strong>g <strong>the</strong> real production situation, <strong>the</strong> first method is preferred if <strong>the</strong> simulation<br />

time period is not very long, such as one or two days. However, s<strong>in</strong>ce <strong>the</strong> production<br />

volume is count <strong>in</strong> pieces per year, take <strong>the</strong> whole year <strong>in</strong>to simulation. The runn<strong>in</strong>g<br />

time is sufficiently long <strong>and</strong> <strong>the</strong> transient state can be ignored.<br />

Check<strong>in</strong>g <strong>the</strong> data from <strong>the</strong> company, <strong>the</strong>re are two shifts per day for both <strong>the</strong><br />

preassembly l<strong>in</strong>e <strong>and</strong> <strong>the</strong> ma<strong>in</strong> assembly l<strong>in</strong>e, <strong>and</strong> each shift works 8 hours. At <strong>the</strong><br />

beg<strong>in</strong>n<strong>in</strong>g, assume <strong>the</strong> assembly l<strong>in</strong>e is under <strong>the</strong> most ideal condition for <strong>the</strong><br />

production, which means <strong>the</strong>re is no scrap <strong>and</strong> stop. If <strong>the</strong> parameters are set to achieve<br />

this ideal situation, <strong>the</strong> simulation result <strong>of</strong> output came out to be 200721 items per year<br />

(count 230 work<strong>in</strong>g days per year) without fluctuation. The output is more than <strong>the</strong><br />

predicted production value <strong>in</strong> 2008, which goal is 200,000 items (also is <strong>the</strong> forecast <strong>of</strong><br />

market dem<strong>and</strong>). In a word, under <strong>the</strong> ideal circumstance <strong>the</strong> production capability can<br />

satisfy <strong>the</strong> requirement <strong>of</strong> market. However, it is impossible to achieve this result s<strong>in</strong>ce<br />

<strong>the</strong>re are some constra<strong>in</strong>ts all through <strong>the</strong> assembly l<strong>in</strong>e.<br />

Accord<strong>in</strong>g to <strong>the</strong> <strong>in</strong>formation <strong>and</strong> experiences <strong>of</strong> <strong>the</strong> factory, <strong>the</strong> ma<strong>in</strong> bottlenecks <strong>of</strong><br />

<strong>the</strong> whole assembly l<strong>in</strong>e are station two <strong>of</strong> preassembly l<strong>in</strong>e <strong>and</strong> station eight <strong>of</strong> f<strong>in</strong>al<br />

assembly l<strong>in</strong>e. It is necessary to consider this limit <strong>in</strong>to simulation. Accord<strong>in</strong>g to <strong>the</strong><br />

result <strong>of</strong> data analysis, <strong>the</strong> assembly l<strong>in</strong>e shuts down frequently <strong>and</strong> <strong>the</strong> repair time is<br />

really long, which is almost half <strong>of</strong> <strong>the</strong> TTF. In ano<strong>the</strong>r word, <strong>the</strong> operation time <strong>and</strong><br />

repair time are almost <strong>the</strong> same. When <strong>in</strong>sert <strong>the</strong> parameters <strong>and</strong> constra<strong>in</strong>ts <strong>in</strong>to <strong>the</strong><br />

ideal model, <strong>the</strong> outputs through ten times’ simulation are shown <strong>in</strong> Table 4.5.<br />

24


Table 4.5 Current <strong>Production</strong> Volumes per Year (Model set follow<strong>in</strong>g table 3.5)<br />

No. 1 2 3 4 5 Mean<br />

Output 116769 115982 116771 116668 116882<br />

No. 6 7 8 9 10<br />

Output 116367 116407 116851 116697 116789 116799<br />

This average output (116799 items/year) is far away from <strong>the</strong> ideal operation output<br />

(200721 items/year), which means <strong>the</strong>re are many pitfalls with <strong>the</strong> assembly l<strong>in</strong>e. And<br />

<strong>the</strong>re would be a huge potential to improve <strong>the</strong> assembly l<strong>in</strong>e.<br />

The ma<strong>in</strong> disturbances are from <strong>the</strong> bottlenecks. In station eight <strong>of</strong> <strong>the</strong> ma<strong>in</strong> assembly<br />

l<strong>in</strong>e <strong>and</strong> station two <strong>in</strong> <strong>the</strong> preassembly l<strong>in</strong>e, even though <strong>the</strong> data count <strong>in</strong>to analysis<br />

may not from pure technique aspect (conta<strong>in</strong> c<strong>of</strong>fee break, etc), <strong>the</strong> repair time <strong>of</strong><br />

assembly l<strong>in</strong>e are too long. From <strong>the</strong> Table 3.5, <strong>the</strong> mean value <strong>of</strong> TTF is 276.3 sec <strong>and</strong><br />

TTR is 187.3 sec, which <strong>in</strong>dicates that <strong>in</strong> station eight <strong>of</strong> <strong>the</strong> ma<strong>in</strong> assembly l<strong>in</strong>e <strong>the</strong><br />

TTR is almost half <strong>of</strong> <strong>the</strong> TTF value. It is quite a critical phenomenon. The same<br />

problem exists <strong>in</strong> station two <strong>of</strong> <strong>the</strong> preassembly l<strong>in</strong>e, which can be pro<strong>of</strong>ed by values<br />

also shown <strong>in</strong> Table 3.5 (mean value <strong>of</strong> preassembly l<strong>in</strong>e, TTF <strong>and</strong> TTR are 328.4 sec<br />

<strong>and</strong> 177.3 sec separately). Moreover, <strong>the</strong>re are some scraps com<strong>in</strong>g out dur<strong>in</strong>g <strong>the</strong><br />

assembly l<strong>in</strong>e process, which consequentially reduce <strong>the</strong> productivity as well. If all <strong>the</strong><br />

disturbances are reduced to an optimal level, productivity will enhance by a big range.<br />

Hence, optimization <strong>of</strong> <strong>the</strong> assembly l<strong>in</strong>e is extremely urgent <strong>in</strong> order to nip on ahead<br />

<strong>the</strong> market dem<strong>and</strong>.<br />

As discussed at <strong>the</strong> end <strong>of</strong> chapter three because <strong>of</strong> <strong>the</strong> sample size is limited <strong>the</strong><br />

statistic analysis might not <strong>in</strong> a high reliability. In order to estimate <strong>the</strong> statistic results<br />

<strong>the</strong> Triangular Distribution is used. The parameters <strong>of</strong> Triangular Distribution are<br />

shown <strong>in</strong> Table 3.6. The simulation results are shown <strong>in</strong> Table 4.6. The model shows<br />

<strong>in</strong> appendix B. It is obviously that <strong>the</strong> results <strong>of</strong> <strong>the</strong>se two methods are different.<br />

Because one <strong>of</strong> <strong>the</strong> Triangular Distribution parameters is most likely value <strong>and</strong> this<br />

data <strong>in</strong> <strong>the</strong> model is not an exact most likely data, it is an approximate value based on<br />

deal<strong>in</strong>g data by around method to <strong>the</strong> tens digit. It is hard to say which <strong>of</strong> <strong>the</strong>m is<br />

better to simulate <strong>the</strong> real production l<strong>in</strong>e. It is said that <strong>the</strong> production volume is<br />

about 3,000 per week. In <strong>the</strong> simulation <strong>the</strong> simulate time is set as 230 workdays per<br />

year. Calculate <strong>the</strong> production volume <strong>of</strong> one year, which should be about 130,000<br />

pieces. Compare <strong>the</strong> simulation results with <strong>the</strong> real production volume it can be<br />

concluded that when set <strong>the</strong> simulation model <strong>the</strong> functions <strong>of</strong> bottlenecks should<br />

select <strong>the</strong> Exponential Distribution for TTF <strong>and</strong> Lognormal Distribution for TTR.<br />

So <strong>the</strong> follow<strong>in</strong>g discuss will not consider <strong>the</strong> model sett<strong>in</strong>g Triangular Distribution.<br />

Table 4.6 Current <strong>Production</strong> Volumes per Year (Model set follow<strong>in</strong>g table 3.6)<br />

No. 1 2 3 4 5<br />

Output 89775 89892 89723 89771 89683<br />

No. 6 7 8 9 10<br />

Output 89679 89994 89662 89719 89735<br />

Mean<br />

89763<br />

25


The methods <strong>and</strong> suggestions to improve <strong>the</strong> situation will be discussed <strong>in</strong> <strong>the</strong> next<br />

section. Most <strong>of</strong> <strong>the</strong> methods <strong>and</strong> solutions proposed <strong>in</strong> this paper will be simulated by<br />

<strong>the</strong> Extend model. The o<strong>the</strong>rs will be discussed from <strong>the</strong> view <strong>of</strong> <strong>the</strong>ory.<br />

4.3 Solutions<br />

S<strong>in</strong>ce <strong>the</strong> scrap rates <strong>of</strong> different stations are <strong>in</strong> a reasonable range, reduce <strong>the</strong> scrap<br />

rates will not be considered as one <strong>of</strong> <strong>the</strong> methods to improve <strong>the</strong> productivity. In <strong>the</strong><br />

follow<strong>in</strong>g discussion <strong>the</strong> focuses are <strong>the</strong> bottlenecks, TTF, TTR, employees,<br />

management <strong>and</strong> so on. Follow<strong>in</strong>g are some solution po<strong>in</strong>ts aga<strong>in</strong>st <strong>the</strong> shortcom<strong>in</strong>gs<br />

toge<strong>the</strong>r with simulation results <strong>in</strong> hypo<strong>the</strong>tical situations.<br />

4.3.1 Invest<strong>in</strong>g new mach<strong>in</strong>es <strong>in</strong> <strong>the</strong> bottlenecks<br />

S<strong>in</strong>ce bottlenecks are <strong>the</strong> ma<strong>in</strong> stick<strong>in</strong>g po<strong>in</strong>t <strong>of</strong> <strong>the</strong> assembly l<strong>in</strong>e, it is discussed prior<br />

to o<strong>the</strong>r solutions. If do not consider <strong>the</strong> cost <strong>and</strong> space, one <strong>of</strong> <strong>the</strong> simplest <strong>and</strong> most<br />

efficient methods to solve <strong>the</strong> bottleneck problem is <strong>in</strong>vest<strong>in</strong>g new mach<strong>in</strong>e. S<strong>in</strong>ce<br />

ABD is a k<strong>in</strong>d <strong>of</strong> new product <strong>the</strong> robots <strong>in</strong> assembly l<strong>in</strong>e are almost with <strong>the</strong><br />

advanced technology. Therefore when <strong>in</strong>vest new robots <strong>the</strong>y will have <strong>the</strong> same<br />

capability as exist<strong>in</strong>g ones. Theoretically, <strong>in</strong>vest one new mach<strong>in</strong>e will produce double<br />

<strong>of</strong> <strong>the</strong> orig<strong>in</strong>al volume <strong>in</strong> <strong>the</strong> same period <strong>of</strong> time even <strong>the</strong> TTF <strong>and</strong> TTR are still <strong>the</strong><br />

same. Meanwhile, <strong>the</strong> frequent systematic shutdowns caused by <strong>the</strong> bottlenecks will be<br />

reduced.<br />

Table 4.7 Simulation Results with Different Mach<strong>in</strong>e Numbers<br />

No. <strong>of</strong> MA 8 1 2 2<br />

mach<strong>in</strong>es PA 2 1 1 2<br />

1 116448 154973 210764<br />

2 116714 154215 210659<br />

3 117387 153907 210386<br />

4 116981 155143 210698<br />

5 117058 155092 210478<br />

6 117284 154867 210648<br />

7 117277 154980 210560<br />

8 116539 154282 210559<br />

9 117281 155102 210384<br />

10 117099 154690 210646<br />

11 116471 155032 210591<br />

12 116756 155617 210442<br />

13 116526 154334 210685<br />

14 116656 154877 210546<br />

15 116694 154158 210632<br />

Average 116878 154751 210579<br />

Simulation Results (items/year)<br />

26


Table 4.7 listed <strong>the</strong> simulation results due to different number <strong>of</strong> mach<strong>in</strong>es that<br />

participate <strong>in</strong> <strong>the</strong> production <strong>in</strong> station 8 <strong>of</strong> <strong>the</strong> ma<strong>in</strong> assembly l<strong>in</strong>e (MA 8) <strong>and</strong> station 2<br />

<strong>in</strong> <strong>the</strong> preassembly l<strong>in</strong>e (PA 2). In order to get more precise results, each condition has<br />

been taken fifteen times’ simulations. And at last calculate <strong>the</strong> average value. Take <strong>the</strong><br />

average value as <strong>the</strong> measurement <strong>of</strong> <strong>the</strong> solution.<br />

When add more mach<strong>in</strong>es <strong>in</strong> <strong>the</strong> assembly l<strong>in</strong>e, a problem <strong>in</strong> <strong>the</strong> simulation process<br />

occurred. As <strong>the</strong> production rate <strong>in</strong>creased, blocks happened <strong>in</strong> station 10 <strong>of</strong> <strong>the</strong> ma<strong>in</strong><br />

assembly l<strong>in</strong>e. Accord<strong>in</strong>g to <strong>the</strong> animation around <strong>the</strong> block po<strong>in</strong>t, it is <strong>in</strong>ferred that <strong>the</strong><br />

causes <strong>of</strong> <strong>the</strong> block are <strong>the</strong> stochastic split stream <strong>in</strong> station 10 <strong>and</strong> <strong>the</strong> small queue<br />

length between station 10 <strong>and</strong> station 11.<br />

The stochastic choice <strong>of</strong> <strong>the</strong> direction <strong>of</strong> each <strong>in</strong>com<strong>in</strong>g item <strong>in</strong> station 10 may cause <strong>the</strong><br />

disorder <strong>and</strong> block <strong>in</strong> <strong>the</strong> system. In <strong>the</strong> reality, products <strong>in</strong> different operat<strong>in</strong>g time<br />

(TID) <strong>in</strong> station 10 are <strong>in</strong> batches. Therefore, not each item chooses <strong>the</strong> different<br />

streams stochastically. In order to <strong>in</strong>vestigate whe<strong>the</strong>r this block problem would happen<br />

<strong>in</strong> <strong>the</strong> batch production or not, simulate <strong>the</strong> system with one stream only for <strong>the</strong> two<br />

situations. The results came out to be no block for each s<strong>in</strong>gle stream. So <strong>the</strong> block <strong>in</strong><br />

station 10 only happens <strong>in</strong> simulation model, while <strong>in</strong> <strong>the</strong> real production l<strong>in</strong>e it will not<br />

happen. Thus, it is feasible to smooth <strong>the</strong> model by <strong>in</strong>creas<strong>in</strong>g queue length between<br />

station 10 <strong>and</strong> station 11.<br />

In order to f<strong>in</strong>d out <strong>the</strong> ideal queue length, several tests are operated. When <strong>the</strong> queue<br />

length <strong>in</strong>creased to three or four items, <strong>the</strong> block rate is reduced but not elim<strong>in</strong>ated. If<br />

<strong>the</strong> value <strong>in</strong>creases to 5, most <strong>of</strong> <strong>the</strong> simulations can run well. So <strong>the</strong> queue length can<br />

be set to 5 items between station 10 <strong>and</strong> station 11 <strong>in</strong> <strong>the</strong> model. However, s<strong>in</strong>ce <strong>the</strong><br />

change <strong>of</strong> queue length is only <strong>in</strong> <strong>the</strong> model to keep simulation smooth, set <strong>the</strong> value to<br />

a bigger one to get a stable simulation environment. Based on this po<strong>in</strong>t, <strong>the</strong> queue<br />

length <strong>in</strong>creased to 10 when run <strong>the</strong> simulation model.<br />

As mentioned above, compar<strong>in</strong>g station 2 <strong>in</strong> preassembly l<strong>in</strong>e <strong>and</strong> station 8 <strong>in</strong> ma<strong>in</strong><br />

assembly l<strong>in</strong>e, station 8 is <strong>the</strong> ma<strong>in</strong> bottleneck. So at first, <strong>the</strong> author tries to only <strong>in</strong>sert<br />

one mach<strong>in</strong>e at station 8 to improve <strong>the</strong> current situation. From <strong>the</strong> last raw <strong>of</strong> Table 4.7,<br />

which shows <strong>the</strong> average output <strong>of</strong> <strong>the</strong> assembly l<strong>in</strong>e, it is can not satisfy <strong>the</strong> market<br />

requirement. If <strong>in</strong>crease mach<strong>in</strong>es both at station 8 <strong>and</strong> station 2, <strong>the</strong> production volume<br />

will hit <strong>the</strong> market <strong>in</strong> 2008.<br />

4.3.2 Cutt<strong>in</strong>g down <strong>the</strong> Time to Repair <strong>in</strong> bottlenecks<br />

As mentioned earlier, current production is too far away to <strong>the</strong> ideal situation because<br />

<strong>of</strong> <strong>the</strong> frequent shut down <strong>and</strong> long TTR. The TTF is greatly relat<strong>in</strong>g to <strong>the</strong> technical<br />

parameter <strong>of</strong> <strong>the</strong> mach<strong>in</strong>e, thus it is not easy to change <strong>the</strong> value. Never<strong>the</strong>less, TTR can<br />

be reduced by effort <strong>of</strong> <strong>the</strong> company.<br />

27


In Table 4.8 <strong>the</strong>re are output rates per year after resett<strong>in</strong>g <strong>the</strong> TTR value <strong>in</strong> <strong>the</strong> two<br />

bottlenecks. From data analysis results <strong>in</strong> chapter three <strong>of</strong> this paper, <strong>the</strong> TTR values <strong>of</strong><br />

both station 2 <strong>in</strong> preassembly l<strong>in</strong>e <strong>and</strong> station 8 <strong>in</strong> ma<strong>in</strong> assembly l<strong>in</strong>e follow <strong>the</strong><br />

lognormal distribution. Accord<strong>in</strong>g to <strong>the</strong> technical reference from <strong>the</strong> company, <strong>the</strong><br />

TTR can be reduced at most to 20% <strong>of</strong> <strong>the</strong> cycle time, which means, TTR can be 20% <strong>of</strong><br />

<strong>the</strong> TTF value <strong>in</strong>stead <strong>of</strong> more than 50%. The simulation will not cont<strong>in</strong>ue after <strong>the</strong><br />

TTR value hit <strong>the</strong> limitation. Along with <strong>the</strong> reduction <strong>of</strong> TTR, TTF reduced. But<br />

operation time is equal to TTF m<strong>in</strong>us TTR <strong>and</strong> it is <strong>the</strong> constant value here. Set formula<br />

<strong>in</strong> Ms Excel to calculate <strong>the</strong> parameters <strong>of</strong> both TTR (<strong>in</strong>clud<strong>in</strong>g Mean <strong>and</strong> St<strong>and</strong>ard<br />

Deviation) <strong>and</strong> TTF. Table 4.8 shows <strong>the</strong> simulation results when TTR values reduce to<br />

20% <strong>of</strong> <strong>the</strong> TTF values <strong>in</strong> both station 2 <strong>of</strong> <strong>the</strong> preassembly l<strong>in</strong>e <strong>and</strong> station 8 <strong>in</strong> <strong>the</strong><br />

ma<strong>in</strong> assembly l<strong>in</strong>e.<br />

Table 4.8 Simulation Results with Different TTR Values<br />

MA 8<br />

PA 2<br />

Simulation Results (items/year)<br />

TTF Mean 276.3 111.3<br />

TTR Mean 187.3 22.3<br />

Std Dev 70.1 8.3<br />

TTF Mean 328.4 188.9<br />

TTR Mean 177.3 37.8<br />

Std Dev 64.9 13.8<br />

1 117353 163087<br />

2 116713 163269<br />

3 116928 163310<br />

4 117129 163321<br />

5 117215 163177<br />

6 116592 163108<br />

7 116821 163103<br />

8 117005 163369<br />

9 116706 163275<br />

10 116663 163301<br />

11 116829 163142<br />

12 117362 163299<br />

13 116998 163310<br />

14 117214 163257<br />

15 116527 163040<br />

Average 116937 163225<br />

Obviously, conclud<strong>in</strong>g from Table 4.8, it is hard to achieve <strong>the</strong> goal (200,000 ADBs per<br />

year), even decrease <strong>the</strong> TTR to a very low value, which is close to <strong>the</strong> limitation. These<br />

solutions may not be used <strong>in</strong>dividually to achieve <strong>the</strong> required production volume <strong>in</strong><br />

2008.<br />

28


4.3.3 Increas<strong>in</strong>g <strong>the</strong> operation time <strong>of</strong> bottlenecks<br />

Operation time is relative stable under a certa<strong>in</strong> circumstance. It will be varied with <strong>the</strong><br />

condition changes. If try to ma<strong>in</strong>ta<strong>in</strong> mach<strong>in</strong>es <strong>in</strong> a more suitable schedule, <strong>the</strong><br />

operation time can be <strong>in</strong>creased. There are many good examples <strong>in</strong> both academic<br />

fields <strong>and</strong> practices. It is necessary <strong>and</strong> important to optimal terms <strong>of</strong> ma<strong>in</strong>tenance<br />

(Peschanskii, 2006).<br />

As data analyzed <strong>in</strong> chapter three, <strong>the</strong> operation time <strong>of</strong> <strong>the</strong> whole assembly l<strong>in</strong>e is half<br />

<strong>of</strong> <strong>the</strong> TTF at present. There is a huge potential to <strong>in</strong>crease <strong>the</strong> operation time. One <strong>of</strong><br />

<strong>the</strong> methods has been discussed <strong>in</strong> last section 4.3.2, but <strong>in</strong> fact that method is only<br />

<strong>in</strong>crease <strong>the</strong> percentage <strong>of</strong> operation time <strong>in</strong> <strong>the</strong> cycle time between <strong>the</strong> failures, <strong>the</strong><br />

operation time still keeps <strong>the</strong> same. Because <strong>the</strong>re is no exact <strong>in</strong>formation <strong>of</strong><br />

ma<strong>in</strong>tenance about Hadelx, this solution only discussed from <strong>the</strong> po<strong>in</strong>t <strong>of</strong> <strong>the</strong> <strong>the</strong>ory.<br />

The results show <strong>in</strong> Table 4.8 means if keep o<strong>the</strong>rs <strong>in</strong> <strong>the</strong> same situation only cut down<br />

<strong>the</strong> time to repair, it is impossible to achieve <strong>the</strong> goal. Better ma<strong>in</strong>tenance can lead <strong>the</strong><br />

mach<strong>in</strong>es <strong>in</strong> more efficient <strong>and</strong> effective state, <strong>and</strong> <strong>the</strong>n <strong>the</strong> operation time would<br />

<strong>in</strong>crease. As a result, <strong>the</strong> volume <strong>of</strong> production will <strong>in</strong>crease. Assume <strong>the</strong> operation<br />

time could double, simulate this condition by <strong>the</strong> model. Compared with <strong>the</strong> yield show<br />

<strong>in</strong> Table 4.8, it is only <strong>in</strong>crease about twelve percent, which still can not meet <strong>the</strong> goal <strong>of</strong><br />

2008.<br />

4.3.4 Solution from <strong>in</strong>tegrative aspects <strong>in</strong> bottlenecks<br />

Consider<strong>in</strong>g <strong>the</strong> reality <strong>and</strong> economy factors, <strong>the</strong> solution <strong>of</strong> <strong>the</strong> assembly l<strong>in</strong>e came out<br />

to be a comb<strong>in</strong>ation <strong>of</strong> <strong>the</strong> solutions mentioned above. Associate reduce <strong>the</strong> TTR to<br />

different value with <strong>in</strong>vest mach<strong>in</strong>es <strong>in</strong> <strong>the</strong> bottlenecks.<br />

Table 4.9 lists <strong>the</strong> outputs <strong>in</strong> different assembles <strong>of</strong> data. From <strong>the</strong> table, once each <strong>of</strong><br />

station 8 <strong>in</strong> <strong>the</strong> ma<strong>in</strong> assembly l<strong>in</strong>e <strong>and</strong> station 2 <strong>in</strong> preassembly l<strong>in</strong>e has one more<br />

mach<strong>in</strong>e, as well as reduce <strong>the</strong> TTR to approximately 20% <strong>of</strong> <strong>the</strong> TTF value, <strong>the</strong><br />

production volume per year (210 622 items) will exceed <strong>the</strong> dem<strong>and</strong> <strong>in</strong> 2008, which is<br />

200 000 items.<br />

In fact <strong>the</strong> production volume by add<strong>in</strong>g one more mach<strong>in</strong>e <strong>in</strong> station 8 <strong>of</strong> <strong>the</strong> ma<strong>in</strong><br />

assembly l<strong>in</strong>e toge<strong>the</strong>r with reduction <strong>of</strong> TTR to limited value is already close to<br />

200,000 per year, only about 1330 pieces beh<strong>in</strong>d. And <strong>the</strong>se 1330 pieces can be<br />

achieved by over work<strong>in</strong>g 24.6 hours, which three or four more shifts under certa<strong>in</strong><br />

productivity.<br />

29


Table 4.9 Simulation Results with Different TTR Values & Mach<strong>in</strong>e Number<br />

No. <strong>of</strong> MA 8 1 2 2<br />

Mach<strong>in</strong>es PA 2 1 1 2<br />

TTF 276.3 111.3 111.3<br />

TTR Mean 187.3 22.3 22.3<br />

MA 8<br />

Std Dev 70.1 8.3 8.3<br />

TTF 328.4 188.9 188.9<br />

TTR Mean 177.3 37.8 37.8<br />

PA 2<br />

Std Dev 64.9 13.8 13.8<br />

1 116584 198812 210646<br />

2 117226 198607 210619<br />

3 117011 198833 210571<br />

4 116922 198529 210613<br />

5 116553 198440 210687<br />

6 116648 198769 210659<br />

7 117097 198484 210621<br />

8 116731 198789 210538<br />

9 116839 198611 210682<br />

10 117300 198597 210546<br />

11 116662 198616 210626<br />

12 117371 198662 210599<br />

13 117196 198756 210683<br />

14 116470 198849 210545<br />

15 116708 198696 210690<br />

Average 116888 198670 210622<br />

Simulation Results (items/year)<br />

The optional solution to optimize <strong>the</strong> material <strong>in</strong>side <strong>the</strong> assembly l<strong>in</strong>e can be:<br />

1. Invest a new robot <strong>in</strong> station 8 <strong>of</strong> <strong>the</strong> ma<strong>in</strong> assembly l<strong>in</strong>e<br />

2. Reduce <strong>the</strong> repair time both <strong>in</strong> <strong>the</strong> robot <strong>of</strong> station 8 <strong>in</strong> ma<strong>in</strong> assembly l<strong>in</strong>e <strong>and</strong><br />

<strong>the</strong> mach<strong>in</strong>e <strong>in</strong> station 2 <strong>of</strong> <strong>the</strong> preassembly l<strong>in</strong>e to <strong>the</strong> limited value, which is<br />

20% <strong>of</strong> <strong>the</strong> TTF value. Thus, <strong>the</strong> TTR for robot will be lognormal distributed<br />

with a mean value <strong>of</strong> 22.3 seconds <strong>and</strong> st<strong>and</strong>ard deviation value <strong>of</strong> 8.3 seconds.<br />

And <strong>the</strong> TTR for <strong>the</strong> mach<strong>in</strong>e <strong>in</strong> station 2 <strong>of</strong> <strong>the</strong> preassembly l<strong>in</strong>e will also be<br />

lognormal distributed but with a mean value <strong>of</strong> 37.8 seconds <strong>and</strong> st<strong>and</strong>ard<br />

deviation <strong>of</strong> 13.8 seconds.<br />

3. Over work<strong>in</strong>g about 24.6 hours per year to supplement <strong>the</strong> production volume<br />

to 200,000 pieces.<br />

Generally speak<strong>in</strong>g, focus on <strong>the</strong> bottlenecks <strong>the</strong>re are three ma<strong>in</strong> solutions. The first<br />

one is <strong>in</strong>vest<strong>in</strong>g mach<strong>in</strong>es <strong>in</strong> both <strong>of</strong> <strong>the</strong> two bottlenecks. Second, <strong>in</strong>crease one mach<strong>in</strong>e<br />

at station 8 <strong>of</strong> <strong>the</strong> ma<strong>in</strong> assembly l<strong>in</strong>e <strong>and</strong> at <strong>the</strong> same time cut down <strong>the</strong> repair time to a<br />

low value which is about twenty percent <strong>of</strong> time between failures. The last is decrease<br />

repair time <strong>of</strong> <strong>the</strong> assembly l<strong>in</strong>e; at <strong>the</strong> same time add one mach<strong>in</strong>e at each <strong>of</strong> <strong>the</strong><br />

30


ottlenecks. Obviously, from <strong>the</strong> po<strong>in</strong>t <strong>of</strong> economic <strong>the</strong> second solution is better. But<br />

cost is not <strong>the</strong> only measure to compare different solutions. This will be discussed latter<br />

<strong>in</strong> this chapter.<br />

4.3.5 Prolong <strong>the</strong> production hours<br />

Ano<strong>the</strong>r way to enhance production volume is to work more. Currently, <strong>the</strong>re are two<br />

shifts for both preassembly l<strong>in</strong>e <strong>and</strong> <strong>the</strong> ma<strong>in</strong> l<strong>in</strong>e, each <strong>of</strong> which is eight hours. One<br />

more shift could be added. Meanwhile, weekends can be counted <strong>in</strong>to production. S<strong>in</strong>ce<br />

<strong>the</strong>re are actually two assembly l<strong>in</strong>es, each <strong>of</strong> which has different cycle time, additional<br />

work<strong>in</strong>g time may be added asynchronously to where extra work needed. Now <strong>the</strong> yield<br />

is around 120,000. If <strong>the</strong> number <strong>of</strong> shifts <strong>in</strong>creases to three, <strong>the</strong> volume will <strong>in</strong>crease<br />

60,000. The total yield is 180,000 which still can not satisfy <strong>the</strong> requirement <strong>of</strong> market.<br />

But when add <strong>the</strong> shifts’ number <strong>and</strong> cut down <strong>the</strong> TTR as well, <strong>the</strong>n <strong>the</strong> volume would<br />

reach <strong>the</strong> market requirement. From Table 4.8 if cutt<strong>in</strong>g down <strong>the</strong> TTR to <strong>the</strong> ultimate<br />

value, <strong>the</strong> yield will <strong>in</strong>crease up to 163,286. In <strong>the</strong>ory if add one shift <strong>the</strong>n <strong>the</strong> yield will<br />

be <strong>in</strong>crease about 80,000. Then <strong>the</strong> output will achieve about 240,000, which is more<br />

than <strong>the</strong> market requirement 200,000.<br />

4.3.6 Improve <strong>the</strong> employees’ skills<br />

Improve <strong>the</strong> employees <strong>in</strong>cludes two aspects. One is to employ skilled workers who can<br />

work <strong>in</strong> an efficient way. Ano<strong>the</strong>r is to tra<strong>in</strong> <strong>the</strong> present workers. Obviously <strong>the</strong> first<br />

method is faster than <strong>the</strong> second but <strong>the</strong> cost would be higher. The advantage <strong>of</strong> tra<strong>in</strong><strong>in</strong>g<br />

employees is that <strong>the</strong> company’s values are already built <strong>in</strong> <strong>the</strong>ir m<strong>in</strong>d, which gives<br />

great conveniences <strong>in</strong> team work<strong>in</strong>g. Besides, <strong>the</strong> existed employees are familiar with<br />

<strong>the</strong> situation that can help <strong>the</strong>m f<strong>in</strong>d <strong>the</strong> solutions. A successful tra<strong>in</strong>ee plan also can<br />

help <strong>in</strong>crease <strong>the</strong> productivity <strong>in</strong>directly. In a whole, this method requires much time<br />

<strong>and</strong> <strong>the</strong> result is hard to estimate.<br />

In fact, ei<strong>the</strong>r prolong<strong>in</strong>g <strong>the</strong> production time or improv<strong>in</strong>g <strong>the</strong> skills <strong>of</strong> employees can<br />

be replaced by enhanc<strong>in</strong>g <strong>the</strong> effective work hour. At present, <strong>the</strong> average effective<br />

work time <strong>of</strong> each shift is less than five hours. If it reached to seven hours, <strong>the</strong> volume<br />

<strong>of</strong> productions would achieve <strong>the</strong> market requirement.<br />

Based on <strong>the</strong> results <strong>of</strong>fered above, <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g section different solutions will be<br />

compared <strong>and</strong> discussed. And <strong>the</strong> measurement parameters are cost, reliability <strong>and</strong> lead<br />

time.<br />

4.4 Comparisons <strong>and</strong> results<br />

This section will compare <strong>the</strong> methods <strong>and</strong> solutions based on different parameters,<br />

such as <strong>the</strong> reliability, lead time, cost, etc. And <strong>the</strong>n, f<strong>in</strong>d out <strong>the</strong> correspond<strong>in</strong>gly<br />

31


economical <strong>and</strong> feasible method or suggestion to improve <strong>the</strong> current situation <strong>and</strong><br />

satisfy <strong>the</strong> market requirements.<br />

As described <strong>in</strong> last section, <strong>the</strong> feasible solutions <strong>in</strong>clude:<br />

1. Invest new mach<strong>in</strong>es <strong>in</strong> bottlenecks, both at station 2 <strong>of</strong> preassembly l<strong>in</strong>e <strong>and</strong> station<br />

8 <strong>of</strong> ma<strong>in</strong> assembly l<strong>in</strong>e;<br />

2. Cutt<strong>in</strong>g down <strong>the</strong> time to repair to twenty percent <strong>of</strong> time to fail, <strong>in</strong> <strong>the</strong> same time add<br />

a mach<strong>in</strong>e at station 8 <strong>of</strong> ma<strong>in</strong> assembly l<strong>in</strong>e, meanwhile over work<strong>in</strong>g for 3 more<br />

shift per year;<br />

3. Invest new mach<strong>in</strong>es <strong>in</strong> two ma<strong>in</strong> bottlenecks, <strong>and</strong> cutt<strong>in</strong>g down <strong>the</strong> time to repair;<br />

4. Sett<strong>in</strong>g three shifts on <strong>the</strong> assembly l<strong>in</strong>e <strong>and</strong> reduce ten percentage <strong>of</strong> <strong>the</strong> time to<br />

repair;<br />

5. Sett<strong>in</strong>g three shifts <strong>and</strong> improv<strong>in</strong>g <strong>the</strong> employees’ work efficiency. Or <strong>in</strong>crease<br />

effective work time <strong>of</strong> each shift.<br />

In order to f<strong>in</strong>d out <strong>the</strong> better solution, it is necessary to measure <strong>the</strong>m based on<br />

different parameters.<br />

4.4.1 Cost compar<strong>in</strong>g<br />

S<strong>in</strong>ce one <strong>of</strong> <strong>the</strong> important aims <strong>of</strong> every enterprise is to ga<strong>in</strong> marg<strong>in</strong>, cost will be<br />

discussed first. Both station 8 <strong>of</strong> ma<strong>in</strong> assembly l<strong>in</strong>e <strong>and</strong> station 2 <strong>of</strong> preassembly l<strong>in</strong>e<br />

are advanced robot. Investment will be high. And more space will be required<br />

especially at station 8. Then <strong>the</strong> layout <strong>of</strong> current assembly l<strong>in</strong>e will be rearranged. The<br />

<strong>in</strong>vestment <strong>of</strong> a new robot <strong>in</strong> station 8 <strong>of</strong> <strong>the</strong> ma<strong>in</strong> assembly l<strong>in</strong>e costs 1.2 Million SEK<br />

<strong>and</strong> a new mach<strong>in</strong>e <strong>in</strong> station 2 <strong>of</strong> <strong>the</strong> pre assembly l<strong>in</strong>e costs 0.8 Million SEK. For <strong>the</strong><br />

first solution, <strong>the</strong> cost <strong>in</strong>vest mach<strong>in</strong>es is 2 Million SEK. This cost does not <strong>in</strong>clude <strong>the</strong><br />

fee <strong>of</strong> ma<strong>in</strong>tenance, rearrang<strong>in</strong>g assembly l<strong>in</strong>e, etc. In <strong>the</strong> whole, most <strong>of</strong> <strong>the</strong> cost <strong>of</strong> this<br />

solution belongs to equity-type <strong>in</strong>vestment <strong>and</strong> it is one time <strong>in</strong>vestment follow several<br />

years use.<br />

One <strong>of</strong> <strong>the</strong> methods to reduce <strong>the</strong> system repair time is repair quickly <strong>and</strong> effectively.<br />

By calculate <strong>the</strong> values <strong>of</strong> TTR, it is easily to know that to achieve <strong>the</strong> goal described <strong>in</strong><br />

<strong>the</strong> second solution, <strong>the</strong> repair time required to reduce to twenty percent <strong>of</strong> current<br />

value. So <strong>the</strong> upkeep will <strong>in</strong>crease sharply. And it is difficult to calculate <strong>the</strong> cost<br />

because <strong>of</strong> <strong>the</strong> broken down po<strong>in</strong>t <strong>and</strong> frequency are stochastic. Besides, <strong>the</strong> cost is<br />

vary<strong>in</strong>g when <strong>the</strong> operation time is <strong>in</strong>creas<strong>in</strong>g. Beyond a certa<strong>in</strong> year’s operation <strong>the</strong><br />

mach<strong>in</strong>es would become unstable <strong>and</strong> ask for more <strong>and</strong> more repair <strong>and</strong> ma<strong>in</strong>tenance to<br />

keep <strong>the</strong>m work well. As pre-mentioned, <strong>the</strong> second solution asks for <strong>in</strong>vest<strong>in</strong>g one<br />

mach<strong>in</strong>e <strong>in</strong> station 8 which cost is 1.2 Million. So <strong>the</strong> situation is similar with <strong>the</strong> first<br />

solution, which needs cost <strong>of</strong> ma<strong>in</strong>tenance, rearrangement, space <strong>and</strong> so on. But over<br />

<strong>the</strong> long haul, <strong>the</strong> cost <strong>of</strong> <strong>in</strong>vest<strong>in</strong>g new mach<strong>in</strong>es <strong>and</strong> reduc<strong>in</strong>g TTR as well as <strong>in</strong>vest<br />

one mach<strong>in</strong>e are pretty much <strong>the</strong> same th<strong>in</strong>g. In a word, cost is nearly for solutions one<br />

<strong>and</strong> two. But consider<strong>in</strong>g <strong>the</strong> upgrade <strong>of</strong> products <strong>the</strong> second solution should better than<br />

32


<strong>the</strong> first one.<br />

For <strong>the</strong> third solution, it obviously needs more <strong>in</strong>vestment compar<strong>in</strong>g to <strong>the</strong> first two<br />

solutions. However if <strong>the</strong> market requirement much more than <strong>the</strong> forecast, this is <strong>the</strong><br />

mothball plan. The cost <strong>of</strong> reduce repair time is also difficult to estimate <strong>in</strong> <strong>the</strong> forth<br />

solution. But <strong>the</strong> cost to employ more workers can be calculated. In <strong>the</strong> Swedish law <strong>the</strong><br />

average salary is 110 SEK per hour. The shift added is <strong>the</strong> night work shift. So<br />

suppos<strong>in</strong>g <strong>the</strong> average salary is 150 SEK per hour per person. The effective work time<br />

for one shift is about five hours <strong>and</strong> one shift needs about fifteen workers. As a result<br />

<strong>the</strong> cost is 2,587,500 per year. And this does not <strong>in</strong>clude <strong>the</strong> cost to reduce <strong>the</strong> repair<br />

time. The cost <strong>of</strong> solution four is much more than <strong>the</strong> first two solutions. The last<br />

solution goes <strong>the</strong> same situation.<br />

The result is when take cost as parameter among <strong>the</strong> five solutions <strong>the</strong> first <strong>and</strong> second<br />

are similar <strong>and</strong> st<strong>and</strong> head <strong>of</strong> o<strong>the</strong>rs. The third one is better than <strong>the</strong> last two but worse<br />

than <strong>the</strong> first two accord<strong>in</strong>g to <strong>the</strong> cost.<br />

4.4.2 Reliability compar<strong>in</strong>g<br />

It is well known that <strong>the</strong> ability to analyze overall performance is critical to any<br />

organization. When it comes to ma<strong>in</strong>tenance, improv<strong>in</strong>g effectiveness normally<br />

<strong>in</strong>cludes three means: reduc<strong>in</strong>g downtime, reduc<strong>in</strong>g ma<strong>in</strong>tenance costs, <strong>and</strong> extend<strong>in</strong>g<br />

component <strong>and</strong> asset life (Lawson, viewed 2008). In real production, an organization<br />

must focus on susta<strong>in</strong>able results ra<strong>the</strong>r than just focus on cutt<strong>in</strong>g costs.<br />

“Results-oriented organizations focus first on <strong>the</strong> quality <strong>and</strong> volume <strong>of</strong> production<br />

throughput, followed closely by <strong>the</strong> cost to produce <strong>the</strong> required quality <strong>and</strong> volume.<br />

This approach will improve reliability performance, which will drive manufactur<strong>in</strong>g<br />

costs down.” (Idhammar, viewed 2007) Many companies focus more on cutt<strong>in</strong>g<br />

ma<strong>in</strong>tenance costs, as a result, ma<strong>in</strong>tenance costs cuts down temporarily, than <strong>in</strong>crease<br />

much more than <strong>the</strong> <strong>in</strong>itial sav<strong>in</strong>gs. And besides <strong>of</strong> this, reliability goes down, pave <strong>the</strong><br />

way for losses that can be substantial. This phenomenon has been shown many times.<br />

The root cause <strong>of</strong> this phenomenon is <strong>of</strong>ten shortsightedness. (Idhammar, viewed 2007)<br />

Among <strong>the</strong> five solutions, three <strong>of</strong> <strong>the</strong>m require decrease <strong>the</strong> repair time. One way to<br />

achieve <strong>the</strong> aim is to <strong>in</strong>crease ma<strong>in</strong>tenance frequency, which will help <strong>the</strong> system work<br />

<strong>in</strong> a good state. In fact <strong>the</strong>re are many cases shown that ma<strong>in</strong>tenance costs <strong>in</strong>creased <strong>and</strong><br />

consequently also production throughput <strong>in</strong>creased steadily. And <strong>the</strong> <strong>in</strong>creased cost <strong>of</strong><br />

ma<strong>in</strong>tenance is much less than <strong>the</strong> marg<strong>in</strong> ga<strong>in</strong>ed from <strong>the</strong> improvement <strong>of</strong> high<br />

reliability. So for <strong>the</strong> three solutions, if try to cut down <strong>the</strong> repair time by <strong>in</strong>vest<strong>in</strong>g<br />

ma<strong>in</strong>tenance, <strong>the</strong> reliability will <strong>in</strong>crease steadily from a low percentage to a high value.<br />

As pre-mentioned when compare <strong>the</strong> cost <strong>of</strong> different solutions, <strong>the</strong> way to improve <strong>the</strong><br />

repair time is repair <strong>the</strong> broken down po<strong>in</strong>t as soon as possible. S<strong>in</strong>ce repair is a part <strong>of</strong><br />

ma<strong>in</strong>tenance, solutions try to satisfy <strong>the</strong> requirement <strong>of</strong> market at <strong>the</strong> same time<br />

<strong>in</strong>crease <strong>the</strong> reliability. In ano<strong>the</strong>r word, it is sure that <strong>the</strong> second, third <strong>and</strong> forth<br />

solution will improve <strong>the</strong> reliability <strong>of</strong> <strong>the</strong> production system.<br />

33


There are many methods to measure reliability. The purpose <strong>of</strong> this section is to<br />

<strong>in</strong>vestigate <strong>and</strong> compare <strong>the</strong> assembly l<strong>in</strong>e reliability estimated from yield simulation<br />

model. Generally speak<strong>in</strong>g, yield is a measurement <strong>of</strong> reliability. Yield is def<strong>in</strong>ed as <strong>the</strong><br />

ratio <strong>of</strong> <strong>the</strong> number <strong>of</strong> usable devices after <strong>the</strong> completion <strong>of</strong> a production process to <strong>the</strong><br />

number <strong>of</strong> devices at <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> a process (Kyungmee & Kim, 2008). Yield is<br />

related to <strong>the</strong> pr<strong>of</strong>itability <strong>of</strong> any production l<strong>in</strong>e. Predict<strong>in</strong>g yield for new technologies<br />

is important to determ<strong>in</strong>e <strong>the</strong> cost to modify layout for <strong>the</strong> yield improvement<br />

(Kyungmee & Kim, 2008).<br />

Reliability will be estimated from <strong>the</strong> yield simulation model set <strong>in</strong> <strong>the</strong> first part <strong>of</strong> this<br />

chapter. Such reliability is more useful, than reliability estimated from field failure data<br />

(such as failure rate <strong>of</strong> production), for determ<strong>in</strong><strong>in</strong>g whe<strong>the</strong>r a reliability requirement<br />

will be met or not. The volume <strong>of</strong> production <strong>of</strong> <strong>the</strong> first three solutions has been<br />

simulated <strong>in</strong> section 4.3. The results shown <strong>in</strong> Table 4.7 <strong>and</strong> Table 4.9 <strong>in</strong>dicate <strong>the</strong><br />

reliability <strong>of</strong> <strong>the</strong> first <strong>and</strong> third solutions meet <strong>the</strong> requirement while <strong>the</strong> second solution<br />

will satisfy <strong>the</strong> reliability requirement by employ<strong>in</strong>g workers overwork three or four<br />

shifts. The reliability <strong>in</strong> <strong>the</strong> last two solutions is stochastic situation, because both <strong>of</strong> <strong>the</strong><br />

solutions depend on <strong>the</strong> employees <strong>and</strong> workers’ performance are hard to forecast.<br />

So we can say that <strong>in</strong> <strong>the</strong> po<strong>in</strong>t <strong>of</strong> reliability <strong>the</strong> first <strong>and</strong> third methods are <strong>the</strong> best.<br />

Followed is <strong>the</strong> second method. The last two are disadvantaged methods.<br />

4.4.3 Lead Time compar<strong>in</strong>g<br />

“Lead time is <strong>the</strong> total time required to complete one unit <strong>of</strong> a product or service.”<br />

(Elsmar, viewed 2008) Lead-time is typically a product <strong>of</strong>:<br />

1. The frequency with which dealer orders are submitted<br />

2. The relative tim<strong>in</strong>g <strong>of</strong> dealer order entry <strong>and</strong> OEM order review activities<br />

3. The time lag between order entry/acceptance <strong>and</strong> production<br />

4. Order confirmation delays due to limitations posed by supply constra<strong>in</strong>ts, <strong>and</strong><br />

whe<strong>the</strong>r <strong>the</strong> dealer has earned allocation <strong>of</strong> those constra<strong>in</strong>ts (Elsmar, viewed<br />

2008).<br />

Analyze <strong>the</strong> lead time will help people to learn that reduc<strong>in</strong>g lead time contributes<br />

directly to improv<strong>in</strong>g Quality, Safety, Customer Satisfaction, etc. The consequences <strong>of</strong><br />

longer lead times will <strong>of</strong>ten (David, viewed 2007):<br />

1. Less dependable forecasts as <strong>the</strong>se have to be made earlier; <strong>the</strong> long lead times<br />

make <strong>the</strong> manufacturer vulnerable to unforeseen changes <strong>and</strong> <strong>in</strong>accurate<br />

dem<strong>and</strong> forecasts.<br />

2. Reduced production flexibility; i.e. greater difficulties to adjust to order<br />

changes<br />

3. Higher levels <strong>of</strong> <strong>in</strong>ventory; a manufacturer will account for <strong>the</strong> uncerta<strong>in</strong>ties<br />

34


<strong>and</strong> unforeseen events by keep<strong>in</strong>g safety stocks. The safety stocks assure <strong>the</strong><br />

necessary flexibility; or ra<strong>the</strong>r <strong>the</strong>y act as buffers for <strong>the</strong> lacks <strong>of</strong> flexibility <strong>in</strong><br />

supply cha<strong>in</strong>.<br />

4. Miss some customers.<br />

S<strong>in</strong>ce all <strong>of</strong> <strong>the</strong> solutions discussed <strong>in</strong> this paper will help achieve <strong>the</strong> market<br />

requirement, <strong>the</strong> lead time will be reduced. It is evident that <strong>the</strong> third solution will<br />

reduce <strong>the</strong> lead time most s<strong>in</strong>ce two new mach<strong>in</strong>es are <strong>in</strong>vested as well as <strong>the</strong> repair<br />

time is reduced. For <strong>the</strong> first <strong>and</strong> third solutions, it is difficult to compare <strong>the</strong>se two but<br />

both <strong>of</strong> <strong>the</strong>m decrease <strong>the</strong> lead time. And <strong>the</strong>y are better than <strong>the</strong> last two methods.<br />

Compar<strong>in</strong>g <strong>the</strong> last two, it is easy to get <strong>the</strong> result that <strong>the</strong> forth one is better than <strong>the</strong> last<br />

one from <strong>the</strong> aspect <strong>of</strong> reduc<strong>in</strong>g lead time.<br />

So <strong>the</strong> order from <strong>the</strong> lead time view is that <strong>the</strong> third solution takes <strong>the</strong> first; <strong>the</strong>n is <strong>the</strong><br />

first <strong>and</strong> second solutions; <strong>and</strong> next is <strong>the</strong> forth solution; <strong>the</strong> fifth solution st<strong>and</strong>s <strong>the</strong><br />

fifth.<br />

4.5 Results<br />

Based on <strong>the</strong> discussion above, a table is used to shown <strong>the</strong> result clearly. In this table,<br />

us<strong>in</strong>g <strong>the</strong> mark denote different levels. The number one gets five, number two gets four,<br />

<strong>the</strong>n <strong>the</strong> third one gets three, <strong>the</strong> forth gets two, <strong>and</strong> <strong>the</strong> last one get one. After calculate<br />

<strong>the</strong> total mark <strong>of</strong> each solution, <strong>the</strong> solution with <strong>the</strong> maximal mark will be <strong>the</strong> best one.<br />

From <strong>the</strong> result shown <strong>in</strong> Table 4.10, <strong>the</strong> solutions focus on <strong>the</strong> bottlenecks get similar<br />

marks with higher records. So <strong>the</strong> core to improve current situation is manag<strong>in</strong>g to<br />

solve <strong>the</strong> problems <strong>of</strong> bottlenecks.<br />

Table 4.10 Comparison Results <strong>of</strong> Different Solutions<br />

Invest<br />

mach<strong>in</strong>es<br />

at station<br />

8 <strong>and</strong><br />

station 2<br />

Invest<br />

mach<strong>in</strong>e at<br />

station8 &<br />

cut down<br />

TTR &<br />

three shifts<br />

overwork<br />

Invest<br />

mach<strong>in</strong>es at<br />

station 8<br />

<strong>and</strong> 2 & cut<br />

down TTR<br />

Three<br />

shifts &<br />

cut down<br />

TTR<br />

Three<br />

shifts &<br />

more<br />

effective<br />

work time<br />

Cost 5 5 3 2 2<br />

Reliability 5 3 5 2 2<br />

Lead Time 4 4 5 2 1<br />

Once <strong>the</strong> productivity is confirmed to reach <strong>the</strong> production volume dem<strong>and</strong> <strong>in</strong> 2008,<br />

<strong>in</strong>vestigation <strong>in</strong> material flow among suppliers, <strong>the</strong> company <strong>and</strong> customers is tak<strong>in</strong>g<br />

place. In <strong>the</strong> next chapters, pitfalls <strong>in</strong> <strong>the</strong> supply cha<strong>in</strong> will be <strong>in</strong>vestigated <strong>and</strong><br />

suggestions <strong>in</strong> optimization will be given.<br />

35


CHAPTER 5<br />

SELECTION AND ASSESSMENT OF SUPPLIERS<br />

A supply cha<strong>in</strong> system consists <strong>of</strong> suppliers, manufacturers <strong>and</strong> retailers or customers<br />

<strong>in</strong>clud<strong>in</strong>g raw material <strong>in</strong>ventory, work-<strong>in</strong>-process <strong>in</strong>ventory, <strong>and</strong> <strong>the</strong> <strong>in</strong>ventory <strong>of</strong> <strong>the</strong><br />

f<strong>in</strong>ished goods. <strong>Supply</strong> Cha<strong>in</strong> Management regards <strong>the</strong> various activities, functions,<br />

<strong>and</strong> systems required to br<strong>in</strong>g a product or service to market as a holistic perspective. It<br />

advocates that <strong>the</strong> supply cha<strong>in</strong> be strategically managed as a s<strong>in</strong>gle entity or system<br />

<strong>in</strong>stead <strong>of</strong> optimiz<strong>in</strong>g fragmented segments or subsystems <strong>in</strong>dividually (Vickery,<br />

Jayaram & etc, 2003). A supply cha<strong>in</strong> system consists <strong>of</strong> suppliers, manufacturers <strong>and</strong><br />

retailers or customers. It <strong>in</strong>cludes raw material <strong>in</strong>ventory, work-<strong>in</strong>-process <strong>in</strong>ventory,<br />

<strong>and</strong> <strong>the</strong> <strong>in</strong>ventory <strong>of</strong> <strong>the</strong> f<strong>in</strong>ished goods (Biswas, 2007). The general model <strong>of</strong> general<br />

supply cha<strong>in</strong> is shown <strong>in</strong> Figure 5.1 (Li, 1990).<br />

Figure 5.1 General <strong>Supply</strong> Cha<strong>in</strong> Model<br />

The sketch map shown <strong>in</strong> Figure 5.2 compared <strong>the</strong> differences between <strong>the</strong> past <strong>and</strong><br />

present <strong>of</strong> supply cha<strong>in</strong> (Li, 1990). In <strong>the</strong> past <strong>the</strong> factors <strong>in</strong> supply cha<strong>in</strong> are run<br />

37


separately <strong>and</strong> <strong>the</strong> supply cha<strong>in</strong> emphasizes rigor <strong>and</strong> tough barga<strong>in</strong><strong>in</strong>g. But <strong>in</strong> present,<br />

<strong>the</strong> supply cha<strong>in</strong> l<strong>in</strong>ks up all <strong>the</strong> players <strong>in</strong> a horizontal supply cha<strong>in</strong> <strong>and</strong> emphasizes<br />

seamless delivery, optimization <strong>and</strong> <strong>in</strong>tegration (Li, 1990). An <strong>in</strong>tegrative supply cha<strong>in</strong><br />

strategy recognized would create value for both <strong>the</strong> firms <strong>and</strong> customers. Recent years,<br />

lots <strong>of</strong> persons study <strong>the</strong> topic <strong>of</strong> <strong>in</strong>tegrative supply cha<strong>in</strong> <strong>and</strong> some <strong>of</strong> <strong>the</strong>m get a<br />

conclusion that higher <strong>the</strong> degree <strong>of</strong> <strong>in</strong>tegration across <strong>the</strong> supply cha<strong>in</strong>, <strong>the</strong> better a<br />

firm performs (Vickery, Jayaram & etc, 2003).<br />

<strong>Supply</strong> cha<strong>in</strong> is based on “Competition – Cooperation - Harmony” <strong>and</strong> harmony is <strong>the</strong><br />

foundation <strong>of</strong> a steady supply cha<strong>in</strong>. There are two sides <strong>of</strong> supply cha<strong>in</strong> harmony; one<br />

is harmony <strong>in</strong>side <strong>of</strong> a firm <strong>and</strong> <strong>the</strong> o<strong>the</strong>r is <strong>the</strong> harmony among different cooperative<br />

associates. The first one scope <strong>in</strong>cludes material flow, funds flow, <strong>and</strong> <strong>in</strong>formation flow<br />

among different departments <strong>in</strong> one enterprise. While <strong>the</strong> second one means harmony<br />

among suppliers, manufacturers, <strong>and</strong> venders. An effective <strong>and</strong> efficient harmony<br />

among different cooperative associates could reduce cost, enhance manage supply<br />

cha<strong>in</strong> <strong>and</strong> improve <strong>the</strong> efficiency (Jiang, 2006).<br />

Figure 5.2 <strong>Supply</strong> Cha<strong>in</strong> <strong>in</strong> <strong>the</strong> Past <strong>and</strong> Present<br />

In this research <strong>the</strong> goal is optimize <strong>the</strong> material flow <strong>and</strong> <strong>in</strong>ventory, <strong>the</strong> follow section<br />

will focus on <strong>the</strong>m based on an <strong>in</strong>tegrative supply cha<strong>in</strong> strategy. In this chapter, <strong>the</strong><br />

ma<strong>in</strong> research focuses on material flow between suppliers <strong>and</strong> factory.<br />

38


5.1 Rules <strong>and</strong> methods <strong>of</strong> select<strong>in</strong>g suppliers<br />

Supplier is one <strong>of</strong> <strong>the</strong> ma<strong>in</strong> roles <strong>in</strong> a supply cha<strong>in</strong> <strong>and</strong> contributes to <strong>the</strong> comprehensive<br />

performance <strong>of</strong> a supply cha<strong>in</strong>. Poor supplier performance affects <strong>the</strong> whole cha<strong>in</strong>’s<br />

performance. As Araz <strong>and</strong> Ozkarahan (2007) said, select<strong>in</strong>g <strong>the</strong> wrong supplier could<br />

be enough to deteriorate <strong>the</strong> whole supply cha<strong>in</strong>’s f<strong>in</strong>ancial <strong>and</strong> operational position.<br />

The key to achieve <strong>the</strong> goal <strong>of</strong> get a supply cha<strong>in</strong> with good performance is to develop a<br />

healthy buyer–supplier relationship (Sarkar & Mohapatra, 2006). While <strong>the</strong> foundation<br />

<strong>of</strong> healthy relationship is select suitable suppliers.<br />

Supplier selection decisions are complicated by <strong>the</strong> fact that various criteria must be<br />

considered <strong>in</strong> <strong>the</strong> decision-mak<strong>in</strong>g process. Meanwhile, supplier selection <strong>and</strong><br />

evaluation is <strong>in</strong>creas<strong>in</strong>gly seen as a strategic issue for companies (Araz & Ozkarahan,<br />

2007; Choy et al., 2002). Dur<strong>in</strong>g past several years, many scholars researched <strong>in</strong> <strong>the</strong><br />

filed <strong>and</strong> got <strong>the</strong> conclusion that cost, quality, <strong>and</strong> delivery performance were <strong>the</strong> three<br />

most important criteria <strong>in</strong> supplier selection process (Sarkar & Mohapatra, 2006).<br />

Among <strong>the</strong> three, quality is <strong>the</strong> most important selection criterion (Weber et al., 1991).<br />

The quality is followed by delivery <strong>and</strong> cost. However, with <strong>the</strong> development <strong>of</strong> society,<br />

especially <strong>the</strong> <strong>in</strong>creas<strong>in</strong>g significance <strong>of</strong> strategic sourc<strong>in</strong>g <strong>and</strong> competition <strong>of</strong> global<br />

environment, <strong>the</strong> criteria <strong>of</strong> supplier changed (Choy et al., 2005). Except <strong>the</strong><br />

traditional factors: quality, cost <strong>and</strong> delivery, supplier practices which <strong>in</strong>cludes<br />

managerial, quality <strong>and</strong> f<strong>in</strong>ancial, etc. <strong>and</strong> supplier capabilities that range over<br />

co-design capabilities, cost reduction capabilities, technical skills, <strong>and</strong> so on have to<br />

be considered (Sarkar & Mohapatra, 2006; Dowlatshahi, 2000).<br />

There are lots <strong>of</strong> methods to select suppliers. And some ma<strong>the</strong>matical models have<br />

been developed for model<strong>in</strong>g <strong>the</strong> supplier selection problem (Kheljania et al., 2007).<br />

Supplier selection problem typically consists <strong>of</strong> four phases as De Boer et al. reported<br />

<strong>in</strong> 2001: first step is problem def<strong>in</strong>ition; second is formulation <strong>of</strong> criteria; third one is<br />

<strong>the</strong> qualification <strong>of</strong> suitable supplier (or pre-qualification) <strong>and</strong> <strong>the</strong> last is f<strong>in</strong>al<br />

selection. Follow<strong>in</strong>g <strong>the</strong> steps <strong>the</strong> first th<strong>in</strong>g to do is <strong>in</strong>vestigation current situation <strong>and</strong><br />

f<strong>in</strong>d out <strong>the</strong> problems.<br />

5.2 Current situation <strong>and</strong> problems <strong>of</strong> suppliers<br />

For <strong>the</strong> assembly l<strong>in</strong>e, <strong>the</strong> assignment is assembly. All <strong>of</strong> <strong>the</strong> components are prepared<br />

before this step. Because <strong>of</strong> <strong>the</strong> globalization, competition becomes keener day by day.<br />

Factories have to manufacture productions flexible, economical, effective <strong>and</strong><br />

efficient. Accord<strong>in</strong>g to <strong>the</strong> circumstance, most <strong>of</strong> <strong>the</strong> components Haldex uses <strong>in</strong> <strong>the</strong><br />

production <strong>of</strong> ADB are mach<strong>in</strong><strong>in</strong>g or produced by <strong>the</strong> suppliers.<br />

39


5.2.1 Current distribution <strong>of</strong> suppliers<br />

At present for <strong>the</strong> ADB assembly l<strong>in</strong>e <strong>the</strong>re are about twenty-four suppliers. Among<br />

<strong>the</strong>m seventeen suppliers locate <strong>in</strong> Sweden, five lies <strong>in</strong> German, one from Denmark<br />

<strong>and</strong> one from India. The pie chart <strong>in</strong> Figure 5.3 is <strong>the</strong> distribution <strong>of</strong> current suppliers.<br />

S<strong>in</strong>ce <strong>the</strong> workshop <strong>of</strong> ADB products locates <strong>in</strong> Sweden, <strong>the</strong> current distribution <strong>of</strong><br />

suppliers is beneficial for <strong>the</strong> factory <strong>in</strong> some aspects, such as <strong>the</strong> delivery time is<br />

short, <strong>the</strong> transport cost is low, <strong>and</strong> it is convenient for <strong>the</strong> company to communicate<br />

with <strong>the</strong> suppliers, etc. In order to scale <strong>the</strong> current suppliers, it is necessary to assess<br />

<strong>the</strong>m accord<strong>in</strong>g to different parameters.<br />

21%<br />

Distribution <strong>of</strong> Current Suppliers<br />

4%<br />

4%<br />

71%<br />

Figure 5.3 Current Suppliers Distribution<br />

5.2.2 Evaluation <strong>of</strong> current suppliers<br />

Sweden<br />

Germany<br />

Danmark<br />

India<br />

There are several criterions to measure suppliers, such as cost, quality, delivery,<br />

supplier practices <strong>and</strong> capabilities. S<strong>in</strong>ce this is an assembly l<strong>in</strong>e example, supplier<br />

capabilities are very important. For this po<strong>in</strong>t it could be evaluated by three factors:<br />

co-design capabilities, cost reduction capabilities, <strong>and</strong> technical skills. De Toni <strong>and</strong><br />

Nassimbeni (2001) researched evaluation <strong>of</strong> supplier’s co-design. They suggest that<br />

most <strong>of</strong> capabilities <strong>in</strong> co-design activities are concurrent eng<strong>in</strong>eer<strong>in</strong>g techniques,<br />

<strong>of</strong>fered by suppliers <strong>in</strong> <strong>the</strong> development stages as evaluation criteria, such as support<br />

<strong>in</strong> product simplification, support <strong>in</strong> component selection, <strong>and</strong> support <strong>in</strong> design for<br />

manufactur<strong>in</strong>g/assembly activities, etc. These techniques lead to substantial<br />

improvement <strong>in</strong> quality, cost <strong>and</strong> delivery performance. (Ceyhun Araz, Irem<br />

Ozkarahan, 2007)<br />

40


Table 5.1 * Suppliers & Suppliers’ Location <strong>and</strong> Quality Criterion<br />

Name <strong>of</strong> Supplier Location Quality Certify<strong>in</strong>g Environment Certify<strong>in</strong>g L<strong>and</strong><br />

41


Table 5.2* Delivery Information <strong>of</strong> Current Suppliers<br />

Name <strong>of</strong> Suppliers Delivery Condition Delivery Way Supplementary Item Post<strong>in</strong>g Type L<strong>and</strong><br />

42


Quality is <strong>the</strong> most important factor to select supplier. Table 5.1 above <strong>in</strong>dicates <strong>the</strong><br />

suppliers <strong>and</strong> <strong>the</strong>ir <strong>in</strong>formation about <strong>the</strong> location, quality certification, environment<br />

certification, etc. All <strong>of</strong> <strong>the</strong> suppliers follow <strong>the</strong>ir st<strong>and</strong>ards, so at least <strong>the</strong> quality<br />

should satisfy <strong>the</strong> requirements <strong>of</strong> <strong>the</strong> products. In a word, <strong>in</strong> normal situation <strong>the</strong><br />

suppliers can guarantee quality. In case a certa<strong>in</strong> supplier produces products<br />

imperfectly or <strong>the</strong> company asks for a higher quality, it is easy for <strong>the</strong> factory<br />

communicates with supplier or even br<strong>in</strong>gs <strong>the</strong>ir own technologist to <strong>the</strong> supplier’s<br />

factory s<strong>in</strong>ce all <strong>of</strong> <strong>the</strong> suppliers except one locate <strong>in</strong> Europe. There is only one<br />

supplier, who lies <strong>in</strong> India, far away from <strong>the</strong> company. If it is necessary, <strong>the</strong><br />

company may send delegates to India or hire some permanent delegates <strong>in</strong> India <strong>and</strong><br />

help <strong>the</strong> supplier to improve <strong>the</strong>ir technology. From <strong>the</strong> measurement <strong>of</strong> quality, all <strong>of</strong><br />

<strong>the</strong> current suppliers can satisfy <strong>the</strong> requirements.<br />

In traditional <strong>the</strong>ory, quality is <strong>the</strong> most important selection criterion <strong>and</strong> it is followed<br />

by delivery <strong>and</strong> cost. The <strong>in</strong>formation <strong>of</strong> delivery is shown <strong>in</strong> Table 5.2. It is well<br />

known that <strong>in</strong> a similar area, <strong>the</strong> shorter <strong>the</strong> distance is, <strong>the</strong> cheaper it cost on<br />

transportation. Although <strong>the</strong> suppliers pay <strong>the</strong> transportation fee, <strong>the</strong> company should<br />

consider it as well because <strong>the</strong> transportation cost is more or less counted <strong>in</strong>to <strong>the</strong> price<br />

<strong>of</strong> products. From Table 5.2, all <strong>of</strong> <strong>the</strong> suppliers except <strong>the</strong> supplier locate <strong>in</strong> Denmark<br />

<strong>and</strong> India ask DHL deliver <strong>the</strong>ir productions. The cost could not have very huge<br />

difference. For <strong>the</strong> Indian supplier <strong>the</strong> cost is 17,000 SEK per truck (transport by l<strong>and</strong>).<br />

If productions transported by <strong>the</strong> waterway <strong>the</strong> cost will much lower with a longer lead<br />

time. But <strong>the</strong>re is a benefit for <strong>the</strong> Indian supplier that <strong>the</strong> salary <strong>the</strong>re is much cheaper<br />

than <strong>in</strong> Europe. Consider<strong>in</strong>g this factor, <strong>the</strong> total cost may be similar or even lower than<br />

suppliers locate <strong>in</strong> Europe. Beside <strong>of</strong> this, it can be as a support center to <strong>the</strong> Asian<br />

market. Customers <strong>in</strong> Asia can get a better technology support <strong>in</strong> this way <strong>the</strong>. In fact<br />

this is also one <strong>of</strong> <strong>the</strong> reasons that more <strong>and</strong> more global enterprises <strong>in</strong>vest <strong>in</strong> Asia<br />

dur<strong>in</strong>g recently years.<br />

As discussed <strong>in</strong> section 5.1, supplier capabilities are one <strong>of</strong> important measurement <strong>in</strong><br />

<strong>the</strong> global circumstance. This can be evaluated by three views co-design capabilities,<br />

cost reduction capabilities, <strong>and</strong> technical skills. In respect that Dulm<strong>in</strong> <strong>and</strong> M<strong>in</strong><strong>in</strong>no<br />

(2003) def<strong>in</strong>e <strong>the</strong> co-design criteria as supplier’s effort with<strong>in</strong> <strong>the</strong> project team (Araz<br />

& Ozkarahan, 2007). First <strong>of</strong> all, <strong>the</strong> research focuses on <strong>the</strong> co-design capabilities.<br />

The company does not have any plan to <strong>in</strong>vest R & D department <strong>in</strong> India so far,<br />

though <strong>the</strong>re locates its fur<strong>the</strong>st supplier. It plays a role only as a manufacturer. But it<br />

cannot be concluded that this supplier’s co-design capability is worse than o<strong>the</strong>r<br />

suppliers. German companies are always well known for <strong>the</strong>ir advanced technology,<br />

high quality <strong>and</strong> <strong>the</strong> very positive attitude dur<strong>in</strong>g work, as well as seek<strong>in</strong>g for greater<br />

perfection. Therefore, <strong>in</strong> <strong>the</strong> field <strong>of</strong> technology, <strong>the</strong> German suppliers hold an<br />

advantage to some extent. Regard<strong>in</strong>g <strong>the</strong> cost reduction capabilities, more detail<br />

<strong>in</strong>formation is needed <strong>in</strong> order to discuss from this aspect. Based on <strong>the</strong> discussion<br />

around <strong>the</strong> supplier capabilities from different views, German suppliers are <strong>in</strong> some<br />

range better than <strong>the</strong> o<strong>the</strong>rs. But this cannot be considered as a compar<strong>in</strong>g result<br />

43


ecause this only gets from experience <strong>and</strong> under normal situation.<br />

In a whole, evaluat<strong>in</strong>g current suppliers by quality, delivery, cost as well as supplier<br />

capabilities, all <strong>of</strong> <strong>the</strong>m are able to satisfy requirements <strong>of</strong> Haldex <strong>in</strong> current situation.<br />

But <strong>the</strong> dense distribution <strong>of</strong> suppliers has a problem with risks. Risks here <strong>in</strong>cludes<br />

both natural factors <strong>and</strong> man-made factors, such as energy crisis, raw material<br />

shortage, natural disasters, strike, enhanced social welfare or salary <strong>and</strong> so on. Some<br />

<strong>of</strong> <strong>the</strong> risks could be avoid if suppliers distribute <strong>in</strong> a large scope. Fur<strong>the</strong>rmore, with<br />

<strong>the</strong> change <strong>of</strong> market, it will be a good idea to select some suppliers as well as <strong>in</strong>vest<br />

new workshop close to <strong>the</strong> market to save transportation cost <strong>and</strong> reduce risks.<br />

Certa<strong>in</strong>ly, <strong>in</strong> that situation, evaluations from many aspects are needed before<br />

<strong>in</strong>vestment.<br />

5.3 Selection <strong>of</strong> future suppliers<br />

5.3.1 Market distribution <strong>and</strong> suppliers’ selection<br />

Beside <strong>of</strong> <strong>the</strong> quality, cost <strong>and</strong> delivery, distribution <strong>of</strong> market is a pivotal factor to<br />

decide <strong>the</strong> area to f<strong>in</strong>d suppliers. From <strong>the</strong> order quantity dur<strong>in</strong>g <strong>the</strong> period <strong>of</strong><br />

November 2007 to January 2008, <strong>the</strong> ma<strong>in</strong> market <strong>of</strong> ADB locates <strong>in</strong> Europe. The<br />

distribution is shown <strong>in</strong> Figure 5.4. Most <strong>of</strong> <strong>the</strong> suppliers locate <strong>in</strong> Europe <strong>and</strong> two<br />

with smallest percentage locate <strong>in</strong> Asia. Compar<strong>in</strong>g to <strong>the</strong> current suppliers<br />

distribution, <strong>the</strong> two distributions generally match well with each o<strong>the</strong>r.<br />

Korea<br />

Ch<strong>in</strong>a<br />

Austria<br />

Spa<strong>in</strong><br />

Belgium<br />

Pol<strong>and</strong><br />

Holl<strong>and</strong><br />

Turkey<br />

Sweden<br />

Russia<br />

France<br />

Percentage <strong>of</strong> <strong>the</strong> whole market<br />

0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00% 70.00% 80.00% 90.00%<br />

Figure 5.4 Current Market Distribution <strong>of</strong> ADB<br />

44


The market <strong>of</strong> <strong>the</strong> Commercial Vehicle Systems deviation <strong>in</strong> Haldx distribute <strong>in</strong> a<br />

very different way. From <strong>the</strong> distribution shown <strong>in</strong> Figure 5.5, more than half <strong>of</strong> <strong>the</strong><br />

products are sold <strong>in</strong> North America <strong>and</strong> <strong>the</strong> second biggest market is <strong>in</strong> Europe. S<strong>in</strong>ce<br />

ADB is a small branch <strong>and</strong> quite new product <strong>in</strong> <strong>the</strong> Commercial Vehicle System<br />

deviation, <strong>the</strong> market is not ripe. With <strong>the</strong> development <strong>of</strong> technology <strong>in</strong> Haldex ADB<br />

products <strong>and</strong> chang<strong>in</strong>g dem<strong>and</strong> <strong>in</strong> <strong>the</strong> general automobile <strong>in</strong>dustry, Air Disc Brakes<br />

st<strong>and</strong> a good chance to be <strong>the</strong> ma<strong>in</strong> production <strong>in</strong> <strong>the</strong> deviation. It can be forecasted<br />

that <strong>the</strong> distribution will change a lot <strong>in</strong> <strong>the</strong> com<strong>in</strong>g future. Assum<strong>in</strong>g <strong>the</strong> market<br />

distribution <strong>of</strong> ADB will be similar to Figure 5.5, <strong>the</strong> distribution <strong>of</strong> suppliers will no<br />

longer corresponds to <strong>the</strong> market. Compar<strong>in</strong>g <strong>the</strong> distribution <strong>of</strong> suppliers <strong>and</strong> <strong>the</strong><br />

distribution <strong>of</strong> <strong>the</strong> market, it seems that f<strong>in</strong>d<strong>in</strong>g some suppliers located <strong>in</strong> North<br />

America is a motivation for <strong>the</strong> development. But consider<strong>in</strong>g <strong>the</strong> long distance <strong>and</strong><br />

cost, construct<strong>in</strong>g a sound technology-support system is much better for <strong>the</strong><br />

development <strong>of</strong> <strong>the</strong> factory. It will be propitious to re<strong>in</strong>force <strong>the</strong> cooperation between<br />

<strong>the</strong> suppliers, factory <strong>and</strong> markets as well.<br />

South America<br />

Asia<br />

Europe<br />

North America<br />

Net Sales<br />

0% 10% 20% 30% 40% 50% 60% 70%<br />

Figure 5.5 Current Market Distributions <strong>of</strong> Commercial Vehicle Systems<br />

With <strong>the</strong> <strong>in</strong>creas<strong>in</strong>g market, more suppliers will be required <strong>and</strong> it is an opportunity for<br />

<strong>the</strong> factory to select suppliers <strong>in</strong> global scope. Of course <strong>the</strong> criterions discussed<br />

before-mentioned <strong>in</strong> this paper, such as quality, cost, delivery, supplier practice,<br />

supplier capabilities, etc. are still <strong>the</strong> basic measurements. Market distribution chang<strong>in</strong>g<br />

trend should be considered <strong>in</strong> real-time. From <strong>the</strong> forecast <strong>of</strong> <strong>the</strong> market, Asia market<br />

will <strong>in</strong>crease sharply <strong>in</strong> a few years while <strong>the</strong> North America <strong>and</strong> Europe market would<br />

keep steady. Nowadays <strong>the</strong> st<strong>and</strong>ards <strong>of</strong> manufactur<strong>in</strong>g are perfect. So as long as<br />

produc<strong>in</strong>g with an effective control system, quality will not be a problem for most<br />

suppliers. Regards current suppliers distribution <strong>and</strong> <strong>the</strong> cost <strong>of</strong> suppliers <strong>in</strong> different<br />

area, f<strong>in</strong>d some suppliers or copartners <strong>in</strong> Asia is a sane choose.<br />

45


5.3.2 Inventory <strong>and</strong> suppliers’ selection<br />

Under <strong>the</strong> circumstance <strong>of</strong> supply cha<strong>in</strong> management, <strong>the</strong> ideal goal <strong>of</strong> <strong>in</strong>ventory<br />

management is manag<strong>in</strong>g to reduce <strong>the</strong> <strong>in</strong>ventory with low cost as well as satisfy <strong>the</strong><br />

production <strong>and</strong> market requirement. Achiev<strong>in</strong>g an optimization is from both <strong>the</strong> area<br />

<strong>of</strong> <strong>in</strong>ventory control <strong>and</strong> supply cha<strong>in</strong> management. Giannocaro et al. (2003) def<strong>in</strong>ed a<br />

supply cha<strong>in</strong> <strong>in</strong>ventory management policy utiliz<strong>in</strong>g fuzzy set <strong>the</strong>ory to model<br />

uncerta<strong>in</strong>ty <strong>of</strong> dem<strong>and</strong> <strong>and</strong> costs. S<strong>in</strong>ce <strong>in</strong>ventory cost could up to seventy percentage<br />

<strong>of</strong> <strong>the</strong> total cost <strong>of</strong> a production l<strong>in</strong>e, procedures that comb<strong>in</strong>e m<strong>in</strong>imization <strong>of</strong><br />

<strong>in</strong>ventories or <strong>in</strong>ventory costs, <strong>and</strong> coverage <strong>of</strong> satisfactory service levels have<br />

attracted significant attention (Sk<strong>in</strong>tzi et al., 2007).<br />

Figure 5.6 Net Inventories <strong>in</strong> <strong>Supply</strong> Cha<strong>in</strong><br />

One method to resolve <strong>the</strong> problem <strong>of</strong> <strong>in</strong>ventory is shar<strong>in</strong>g <strong>in</strong>formation among<br />

cooperators. Traditionally, <strong>the</strong> management <strong>of</strong> <strong>in</strong>formation has been somewhat<br />

neglected. Information management system is separate for different roles <strong>in</strong> <strong>the</strong><br />

supply cha<strong>in</strong>. Now <strong>the</strong> global market develops <strong>in</strong>creas<strong>in</strong>gly. It is widely recognized<br />

<strong>the</strong> importance <strong>of</strong> shar<strong>in</strong>g <strong>in</strong>formation <strong>in</strong> <strong>the</strong> whole supply cha<strong>in</strong>. More <strong>and</strong> more<br />

cases prove that advancements <strong>of</strong> technologies <strong>in</strong> <strong>the</strong> fields <strong>of</strong> <strong>in</strong>formation,<br />

manufactur<strong>in</strong>g, <strong>and</strong> distribution systems have driven much change through <strong>the</strong> supply<br />

cha<strong>in</strong>. Especially, improv<strong>in</strong>g <strong>in</strong>formation technology enable follow <strong>in</strong>stantaneous<br />

global <strong>in</strong>formation shar<strong>in</strong>g with more powerful <strong>in</strong>formation process<strong>in</strong>g (Byrne &<br />

Heavey 2006). Figure 5.6 (Machuca & Barajas, 2004) shows <strong>the</strong> <strong>in</strong>ventory problem<br />

clearly. This is also a performance <strong>of</strong> Bullwhip Effect, which is caused by lack <strong>of</strong><br />

<strong>in</strong>formation shar<strong>in</strong>g.<br />

For <strong>the</strong> factory, select<strong>in</strong>g a supplier who can share <strong>in</strong>formation effectively <strong>and</strong><br />

efficiently <strong>in</strong> <strong>the</strong> supply cha<strong>in</strong> is necessary <strong>and</strong> important to solve <strong>the</strong> <strong>in</strong>ventory<br />

problem. Come to <strong>the</strong> situation <strong>of</strong> Haldex, <strong>the</strong> problem is that <strong>the</strong>re is no enough space<br />

to deposit <strong>the</strong> products. This problem can be solved from several po<strong>in</strong>ts <strong>of</strong> view, for<br />

example, reduc<strong>in</strong>g <strong>the</strong> warehouse occupancies from both raw material <strong>and</strong> f<strong>in</strong>ished<br />

46


products. Select<strong>in</strong>g suitable suppliers is <strong>the</strong> first choice. For <strong>the</strong> current suppliers, <strong>the</strong><br />

factory could construct a benefit shar<strong>in</strong>g system with <strong>the</strong>m. Ask <strong>the</strong> suppliers <strong>in</strong>crease<br />

<strong>the</strong> delivery frequency <strong>in</strong> order to save <strong>the</strong> space used to store raw material for <strong>the</strong><br />

production <strong>of</strong> ADB. Fur<strong>the</strong>rmore, <strong>the</strong> factory can evaluate suppliers <strong>and</strong> discuss with<br />

<strong>the</strong>m <strong>and</strong> <strong>the</strong>n try<strong>in</strong>g to improve <strong>the</strong> assembly l<strong>in</strong>e work under an environment similar<br />

with JIT (Just In Time) system. “Just In Time (JIT) is an <strong>in</strong>ventory strategy<br />

implemented to improve <strong>the</strong> return on <strong>in</strong>vestment <strong>of</strong> a bus<strong>in</strong>ess by reduc<strong>in</strong>g <strong>in</strong>-process<br />

<strong>in</strong>ventory <strong>and</strong> its associated carry<strong>in</strong>g costs” (Wikipedia, viewed Feb.2008). This<br />

method can lead to huge improvement <strong>in</strong> <strong>the</strong> areas <strong>of</strong> <strong>in</strong>ventory, quality, <strong>in</strong>vestment,<br />

efficiency <strong>and</strong> so on. The key <strong>of</strong> <strong>the</strong> JIT system is that, items should arrive when <strong>the</strong><br />

production system needs, nei<strong>the</strong>r earlier nor later. By this way <strong>the</strong> raw <strong>in</strong>ventory level<br />

can be reduce to very low. So it can help <strong>the</strong> factory improve <strong>the</strong> <strong>in</strong>ventory problem.<br />

However, <strong>the</strong> requirements towards <strong>the</strong> suppliers are higher. The factory has to pay<br />

much more attention on this po<strong>in</strong>t. Under this situation, suppliers should manufacture<br />

<strong>the</strong> products <strong>in</strong> high quality <strong>and</strong> low cost. Reliability <strong>and</strong> flexibility are also very<br />

important factors when select<strong>in</strong>g suppliers because only reliably <strong>and</strong> flexible suppliers<br />

can reduce <strong>the</strong> lost caused by unpredictable disaster fur<strong>the</strong>st.<br />

Consider<strong>in</strong>g <strong>the</strong> risk <strong>of</strong> apply<strong>in</strong>g JIT system <strong>in</strong> <strong>the</strong> workshop, <strong>the</strong> order<strong>in</strong>g quantity by<br />

Haldex should lower than half <strong>of</strong> <strong>the</strong> production volume <strong>of</strong> <strong>the</strong> supplier <strong>in</strong> order to<br />

garentee <strong>the</strong> timly supply. O<strong>the</strong>rwise <strong>in</strong> case <strong>the</strong>re is anyth<strong>in</strong>g wrong with <strong>the</strong> supplier,<br />

<strong>the</strong> production <strong>in</strong> <strong>the</strong> workshop will be disastrous. There should be two to three<br />

suppliers <strong>of</strong>fer <strong>the</strong> same components. If <strong>the</strong>re are too many suppliers, <strong>the</strong> cost will high.<br />

The suppliers do not st<strong>and</strong> at <strong>the</strong> same level. They are divided <strong>in</strong>to major <strong>and</strong> m<strong>in</strong>or.<br />

Then <strong>the</strong> factory can reduce <strong>the</strong> management cost while <strong>in</strong>crease <strong>the</strong> management<br />

effect <strong>and</strong> keep a stable source <strong>of</strong> raw materials. (Sun, 2005)<br />

5.4 Integrative selection <strong>of</strong> suppliers<br />

Based on <strong>the</strong> discussions above when select suppliers <strong>the</strong> factory should consider<br />

several k<strong>in</strong>ds <strong>of</strong> factors. Table 5.3 concluded most <strong>of</strong> <strong>the</strong> factors above-mentioned.<br />

Because <strong>the</strong> distribution covered a huge scope <strong>and</strong> detail <strong>in</strong>formation is lack, this<br />

paper only discuss on <strong>the</strong> level <strong>of</strong> cont<strong>in</strong>ent. In this table <strong>the</strong> supplier will get a plus if<br />

he takes an advantage on <strong>the</strong> factor, o<strong>the</strong>rwise <strong>the</strong>re is a m<strong>in</strong>us. At <strong>the</strong> end an<br />

<strong>in</strong>tegrative estimate will be received.<br />

Accord<strong>in</strong>g to <strong>the</strong> total score <strong>in</strong> <strong>the</strong> future <strong>the</strong> selected suppliers should ma<strong>in</strong>ly locate<br />

<strong>in</strong> Europe. The followed are Asia <strong>and</strong> North America. For <strong>the</strong> detail <strong>in</strong>formation about<br />

which countries selected will depend on <strong>the</strong> practical <strong>in</strong>formation.<br />

47


Table 5.3 Integrative Estimation <strong>of</strong> Selection Suppliers<br />

Supplier’s<br />

Cost Supplier Capabilities<br />

Location<br />

Delivery<br />

Total<br />

Technology Labors Transport<br />

Co-design Cost Technical<br />

Quality Performance<br />

Score<br />

Support<br />

To To<br />

Capabilities Reduction Skills<br />

Factory Market<br />

Capabilities<br />

Europe + - + + + + + - + 5<br />

Asia - + - - + + - + + 1<br />

North<br />

- - - + + + - + - -1<br />

America<br />

South<br />

- + - - + + - - - -3<br />

America<br />

Forecast <strong>the</strong> Market <strong>of</strong> ADB<br />

3%<br />

5%<br />

North America<br />

Europe<br />

Asia<br />

South America<br />

58%<br />

34%<br />

Note: A presupposition is <strong>the</strong> suppliers locate <strong>in</strong> different area;<br />

Assume <strong>the</strong> market distribution <strong>in</strong> <strong>the</strong> table follow<strong>in</strong>g <strong>the</strong><br />

figure show on <strong>the</strong> right;<br />

All <strong>the</strong> factors are estimated <strong>and</strong> compared based on <strong>the</strong><br />

current situation;<br />

For <strong>the</strong> delivery performance all <strong>the</strong> suppliers get a plus<br />

because <strong>the</strong> transport <strong>of</strong>ten h<strong>and</strong> pr<strong>of</strong>essional delivery<br />

companies to do;<br />

For <strong>the</strong> quality s<strong>in</strong>ce all suppliers test by similar st<strong>and</strong>ard<br />

criterion, all <strong>of</strong> <strong>the</strong>m receive a plus <strong>in</strong> <strong>the</strong> table.<br />

48


5.5 Result<br />

There are many rules <strong>and</strong> methods to select a supplier. In a real case it is necessary to<br />

evaluate <strong>and</strong> select suppliers accord<strong>in</strong>g with <strong>the</strong> practical situation. The st<strong>and</strong>ards for<br />

each supplier-buyer are also different. But for all <strong>of</strong> <strong>the</strong>m <strong>the</strong> buyers <strong>and</strong> suppliers<br />

should construct a long period partnership based on trust <strong>and</strong> cooperation. For Haldex<br />

<strong>the</strong> ideal suppliers should cooperate with <strong>the</strong>m to solve <strong>in</strong>ventory problem <strong>in</strong> current<br />

situation. In <strong>the</strong> future suppliers selection should be <strong>in</strong> Europe first <strong>and</strong> <strong>the</strong>n <strong>in</strong> Asia<br />

<strong>and</strong> North America. The suppliers should ensure satisfy <strong>the</strong> basic requirements quality,<br />

cost <strong>and</strong> delivery at first. Besides <strong>of</strong> this, factory <strong>and</strong> supplies should construct<br />

<strong>in</strong>formation shar<strong>in</strong>g system toge<strong>the</strong>r <strong>and</strong> keep a long steady partner-ship.<br />

49


CHAPTER 6<br />

INVENTORY REDUCTION AND<br />

DELIVERY OPTIMIZATION<br />

<strong>Supply</strong> cha<strong>in</strong> management is a cross-functional approach to manag<strong>in</strong>g <strong>the</strong> movement <strong>of</strong><br />

raw materials <strong>in</strong>to an organization, certa<strong>in</strong> aspects <strong>of</strong> <strong>the</strong> <strong>in</strong>ternal process<strong>in</strong>g <strong>of</strong><br />

materials <strong>in</strong>to f<strong>in</strong>ished goods, <strong>and</strong> <strong>the</strong>n <strong>the</strong> movement <strong>of</strong> f<strong>in</strong>ished goods out <strong>of</strong> <strong>the</strong><br />

organization toward <strong>the</strong> end-consumer. (Wikipedia, viewed 2007). So far, this paper<br />

has conta<strong>in</strong>ed <strong>the</strong> optimizations <strong>of</strong> <strong>the</strong> first two segments <strong>in</strong> supply cha<strong>in</strong> management.<br />

Relationships between <strong>the</strong> company <strong>and</strong> <strong>the</strong> customers are complicated <strong>and</strong> <strong>the</strong> ability<br />

to effectively match dem<strong>and</strong> <strong>and</strong> supply is fundamental to nearly all supply cha<strong>in</strong><br />

management processes. As <strong>the</strong> production volume <strong>in</strong>creases, <strong>the</strong> balance between <strong>the</strong><br />

company <strong>and</strong> its customer may be destroyed <strong>and</strong> affect <strong>the</strong> company’s reputation if <strong>the</strong><br />

management <strong>of</strong> supply cha<strong>in</strong> is not updated toge<strong>the</strong>r <strong>the</strong> fluctuation. Besides, <strong>the</strong><br />

<strong>in</strong>ventory is ano<strong>the</strong>r consideration <strong>in</strong> operation management, which is chang<strong>in</strong>g along<br />

with <strong>the</strong> production volume also <strong>and</strong> needs to be optimized. In this chapter, authors did<br />

<strong>the</strong> research based on <strong>the</strong>ories <strong>and</strong> experiences from successful cases <strong>of</strong> o<strong>the</strong>r<br />

enterprises. Threads <strong>and</strong> opportunities will be analyzed <strong>and</strong> <strong>the</strong>n, feasible solutions will<br />

be proposed <strong>and</strong> evaluated.<br />

6.1 Rules <strong>and</strong> methods to balance <strong>the</strong> pr<strong>of</strong>it between factory<br />

<strong>and</strong> customers<br />

The supply cha<strong>in</strong> is <strong>the</strong> total flow <strong>of</strong> materials, <strong>in</strong>formation <strong>and</strong> cash, from <strong>the</strong><br />

suppliers' suppliers, right through an enterprise to <strong>the</strong> customers' customers. (Ahmad &<br />

Benson, 1999). Figure 6.1 shows <strong>the</strong> flows between <strong>the</strong> supplier <strong>and</strong> customer. It is<br />

clear that materials flow from <strong>the</strong> supplier’s supplier to <strong>the</strong> supplier, which can be <strong>the</strong><br />

role <strong>of</strong> <strong>the</strong> company here, <strong>and</strong> <strong>the</strong>n to <strong>the</strong> company’s customer <strong>and</strong> to <strong>the</strong> customer’s<br />

customer. Cash flows <strong>in</strong> <strong>the</strong> reverse direction, from <strong>the</strong> customer to <strong>the</strong> supplier.<br />

50


Information flows both way through <strong>the</strong> system <strong>and</strong> meanwhile gives <strong>the</strong> visibility to<br />

<strong>the</strong> whole system. Some <strong>of</strong> <strong>the</strong> problems can be predicted, while o<strong>the</strong>rs are occasional.<br />

The company always has to optimize <strong>the</strong> supply cha<strong>in</strong>, no matter <strong>in</strong> production or<br />

delivery or some o<strong>the</strong>r aspects, to deal with <strong>the</strong> problems may happen accord<strong>in</strong>g to<br />

prediction.<br />

S<strong>in</strong>ce <strong>the</strong>re are so many flows through out <strong>the</strong> supply cha<strong>in</strong>, problems are easy to<br />

happen. Sometimes products are wrong or late delivered. In some cases, <strong>in</strong>correct<br />

<strong>in</strong>voices are sent out. From time to time, <strong>in</strong>ventory <strong>in</strong> <strong>the</strong> warehouse is counted wrong<br />

aga<strong>in</strong>st <strong>the</strong> data <strong>in</strong> <strong>the</strong> computer. In <strong>the</strong> warehouse, it happens now <strong>and</strong> <strong>the</strong>n that too<br />

much <strong>in</strong>ventory or not enough <strong>of</strong> what is wanted. When changes happen <strong>in</strong> <strong>the</strong> supply<br />

cha<strong>in</strong>, no matter <strong>the</strong> dem<strong>and</strong> or <strong>the</strong> production technology, <strong>the</strong> system is <strong>in</strong>terrupted <strong>and</strong><br />

need to be rebalanced ahead <strong>of</strong> time. To those problems cannot be predicted by time,<br />

preventive measures are necessary to deal with <strong>the</strong> unexpected situation.<br />

Figure 6.1 <strong>Flow</strong>s <strong>in</strong> <strong>Supply</strong> Cha<strong>in</strong> Between Factory <strong>and</strong> Customers<br />

(Clermiston Consult<strong>in</strong>g Pty Ltd, viewed 2008)<br />

Generally, <strong>the</strong> goal to optimize <strong>the</strong> supply cha<strong>in</strong> is on one h<strong>and</strong> to reduce <strong>the</strong> cost <strong>of</strong><br />

materials, h<strong>and</strong>l<strong>in</strong>g <strong>and</strong> process<strong>in</strong>g, <strong>and</strong> on <strong>the</strong> o<strong>the</strong>r h<strong>and</strong> to establish a steady <strong>and</strong><br />

potential system that is able to deal with <strong>the</strong> similar situation <strong>in</strong> <strong>the</strong> future. Prerequisite<br />

<strong>of</strong> <strong>the</strong> optimizations is <strong>the</strong> processes <strong>in</strong>side <strong>the</strong> cha<strong>in</strong> must work, which must be<br />

confirmed ahead <strong>of</strong> time. Ano<strong>the</strong>r goal to optimize <strong>the</strong> supply cha<strong>in</strong> is to achieve a<br />

critical <strong>in</strong>formation system that matches <strong>the</strong> physical <strong>and</strong> transactional processes <strong>in</strong> real<br />

time. The <strong>in</strong>formation is through out <strong>the</strong> supply cha<strong>in</strong> <strong>in</strong> both directions, which means<br />

suppliers <strong>and</strong> customers must have close relationships that conta<strong>in</strong> synchronized<br />

communications.<br />

51


How to get <strong>the</strong> best value from a supply cha<strong>in</strong>? First <strong>of</strong> all, one should underst<strong>and</strong> <strong>the</strong><br />

processes. Investigations are necessary to get first a general ideal <strong>and</strong> <strong>the</strong>n <strong>the</strong> details <strong>of</strong><br />

<strong>the</strong> whole supply cha<strong>in</strong> or <strong>the</strong> special area that need to be optimized. After <strong>the</strong><br />

<strong>in</strong>vestigation, improve <strong>and</strong> reorganize <strong>the</strong> processes to match <strong>the</strong> best-<strong>in</strong>-class practice.<br />

Then, match <strong>the</strong> <strong>in</strong>formation to <strong>the</strong> processes <strong>and</strong> measure <strong>the</strong> processes <strong>and</strong><br />

<strong>in</strong>formation performance. Sometimes if provided that circumstances permit, simulation<br />

<strong>of</strong> <strong>the</strong> optimized supply cha<strong>in</strong> can take place before <strong>the</strong> proposal is carried out.<br />

(Clermiston Consult<strong>in</strong>g Pty Ltd, viewed 2008).<br />

There are many benefits <strong>of</strong> general supply cha<strong>in</strong> optimization <strong>in</strong> <strong>the</strong> situation that <strong>the</strong><br />

optimization is not aim at a certa<strong>in</strong> purpose. Susta<strong>in</strong>ed improvement <strong>in</strong> sales <strong>and</strong> pr<strong>of</strong>it,<br />

problem can be fixed without necessarily major capital or big IT spends. Reduction <strong>in</strong><br />

warehouse <strong>and</strong> total <strong>in</strong>ventory will be achieved if <strong>the</strong> approach is effective. After<br />

optimization, a supply cha<strong>in</strong> performance can be improved <strong>in</strong> variety areas (Larry<br />

Lapide, viewed 2008):<br />

• Reduced supply cha<strong>in</strong> costs<br />

• Improved product marg<strong>in</strong>s<br />

• Lower <strong>in</strong>ventories<br />

• Increased manufactur<strong>in</strong>g throughput<br />

• Better return on assets<br />

• Reduced lead times<br />

By optimiz<strong>in</strong>g <strong>the</strong> supply cha<strong>in</strong>, <strong>the</strong> goal <strong>of</strong> balance <strong>the</strong> benefit <strong>of</strong> factory <strong>and</strong><br />

customer will be achieved. Many <strong>the</strong>ories can be used <strong>in</strong> optimiz<strong>in</strong>g <strong>the</strong> supply cha<strong>in</strong>,<br />

such as operation research <strong>and</strong> Six Sigma. Operation research has been applied <strong>in</strong><br />

Haier Co., Ltd’s products delivery process <strong>in</strong> 2004 <strong>and</strong> reduced <strong>the</strong> delivery time by<br />

nearly 50%. Associate with <strong>the</strong> reduction <strong>of</strong> delivery time, <strong>in</strong>ventory was reduced <strong>and</strong><br />

cash turnover was speeded up. (Haier, viewed 2008) Six Sigma is widely used <strong>in</strong> supply<br />

cha<strong>in</strong> optimization. Ford Motor Company has achieved significant success <strong>in</strong> apply<strong>in</strong>g<br />

Six Sigma to its supply cha<strong>in</strong> processes. (Marx, viewed 2008). Some o<strong>the</strong>r<br />

methodologies can also be used <strong>in</strong> <strong>the</strong> supply cha<strong>in</strong> optimization accord<strong>in</strong>g to specific<br />

requirement <strong>of</strong> different systems. In <strong>the</strong> supply cha<strong>in</strong> <strong>of</strong> ADB products, optimization<br />

also can be a method to balance <strong>the</strong> benefit between customers <strong>and</strong> <strong>the</strong> company <strong>and</strong><br />

make <strong>the</strong> products more competitive <strong>in</strong> <strong>the</strong> future market. Apropos <strong>of</strong> how to improve<br />

<strong>the</strong> supply cha<strong>in</strong>, <strong>the</strong> authors referred to select<strong>in</strong>g suitable suppliers <strong>in</strong> last chapter.<br />

Beside <strong>of</strong> that, many o<strong>the</strong>r methods are suitable to be applied to improve <strong>the</strong> supply<br />

cha<strong>in</strong> <strong>of</strong> <strong>the</strong> ADB products. Detailed proposals will be discusses later <strong>in</strong> this chapter.<br />

The ma<strong>in</strong> purpose <strong>of</strong> optimize <strong>the</strong> supply cha<strong>in</strong> <strong>in</strong> this case is not only achieve better<br />

performance <strong>of</strong> <strong>the</strong> current l<strong>in</strong>e, but also create a strategy to deal with <strong>the</strong> <strong>in</strong>creas<strong>in</strong>g<br />

production volume.<br />

52


6.2 Current statue analysis<br />

The current sales part <strong>of</strong> <strong>the</strong> supply cha<strong>in</strong> works <strong>in</strong> an appropriate way. However, it is<br />

not stable <strong>and</strong> problems are popp<strong>in</strong>g up as <strong>the</strong> market dem<strong>and</strong> <strong>in</strong>crease day by day. The<br />

urgent task at present is to solve <strong>the</strong> <strong>in</strong>creas<strong>in</strong>g <strong>in</strong>ventory problem, which is a<br />

significant element <strong>of</strong> <strong>the</strong> supply cha<strong>in</strong>.<br />

Before optimization, current situation needs to be <strong>in</strong>vestigated clearly. In this section,<br />

<strong>the</strong> authors start with <strong>the</strong> capability <strong>of</strong> <strong>the</strong> warehouse <strong>and</strong> <strong>the</strong> transportation from <strong>the</strong><br />

end <strong>of</strong> <strong>the</strong> production l<strong>in</strong>e to <strong>the</strong> warehouse. Afterwards, distribution <strong>of</strong> <strong>the</strong> market is<br />

<strong>in</strong>vestigated <strong>and</strong> related data are analyzed. And <strong>the</strong>n, a forecast <strong>of</strong> future market will be<br />

given. Related delivery detail between <strong>the</strong> company <strong>and</strong> its customers are stated<br />

followed. And at last, suggestions to optimize <strong>the</strong> sales part <strong>of</strong> this supply cha<strong>in</strong> will be<br />

proposed.<br />

6.2.1 Situation <strong>of</strong> <strong>in</strong>ventory<br />

Inventory is a keystone <strong>in</strong> <strong>the</strong> supply cha<strong>in</strong>. It is held not only as a stock <strong>of</strong> goods, but<br />

also <strong>in</strong> order to manage <strong>and</strong> hide from <strong>the</strong> customer <strong>the</strong> fact that manufacture/supply<br />

delay is longer than delivery delay. Besides, <strong>in</strong>ventory is held to ease <strong>the</strong> effect <strong>of</strong><br />

imperfections <strong>in</strong> <strong>the</strong> manufactur<strong>in</strong>g process that lower production efficiencies if<br />

production capacity st<strong>and</strong>s idle for lack <strong>of</strong> materials. (Wikipedia, viewed 2008)<br />

In Haldex, <strong>the</strong> production is accord<strong>in</strong>g to order because each customer has particular<br />

requirements <strong>of</strong> <strong>the</strong> products <strong>and</strong> <strong>the</strong> order is placed long ahead <strong>of</strong> delivery. Hence, <strong>the</strong><br />

<strong>in</strong>ventory is only carry<strong>in</strong>g <strong>the</strong> goods for <strong>the</strong> period <strong>of</strong> time between <strong>the</strong>y are f<strong>in</strong>ished<br />

<strong>and</strong> sent to <strong>the</strong> customers, not <strong>the</strong> backup to respond <strong>the</strong> urgent orders. It simplified <strong>the</strong><br />

<strong>in</strong>ventory <strong>in</strong> a sense.<br />

In <strong>the</strong> workshop, Haldex uses powered pallet jacks to do <strong>the</strong> transportation between <strong>the</strong><br />

production l<strong>in</strong>e <strong>and</strong> <strong>the</strong> warehouse. One powered pallets jack is able to carry two pallets<br />

<strong>of</strong> <strong>the</strong> f<strong>in</strong>ished products. The distance between warehouse <strong>and</strong> <strong>the</strong> end <strong>of</strong> <strong>the</strong> assembly<br />

l<strong>in</strong>e is about 200 meters. It takes 30 seconds to transport a batch <strong>of</strong> pallets <strong>in</strong>clud<strong>in</strong>g<br />

pick up <strong>and</strong> drop times. Hence, it takes around one m<strong>in</strong>ute to do a round transportation,<br />

which means 120 pallets can be transported by one jack <strong>in</strong> one hour. However, a down<br />

time <strong>of</strong> 50% should be considered here. It reduces <strong>the</strong> capacity to 60 pallets per hour.<br />

There are two powered pallets jacks work<strong>in</strong>g <strong>in</strong> <strong>the</strong> workshop, however, <strong>the</strong> ADB<br />

organization is only planned to utilize 20% <strong>of</strong> this capacity. As a result, only 0.4 jack is<br />

work<strong>in</strong>g on <strong>the</strong> ADBs dur<strong>in</strong>g <strong>the</strong> work<strong>in</strong>g time. That is, 24 pallets <strong>of</strong> f<strong>in</strong>ished ADBs are<br />

transported <strong>in</strong> one hour. The warehouse operates from 06:30 <strong>in</strong> <strong>the</strong> morn<strong>in</strong>g until 12:00<br />

<strong>in</strong> <strong>the</strong> even<strong>in</strong>g dur<strong>in</strong>g <strong>the</strong> workdays. And dur<strong>in</strong>g weekends, it works dur<strong>in</strong>g <strong>the</strong> daytime,<br />

which is around 8 hours. In workdays, <strong>the</strong> efficient work<strong>in</strong>g hour is 17.5 hours. After<br />

53


calculation, 420 pallets can be successfully transported. In a similar way, 272 pallets <strong>of</strong><br />

ADBs can be transported dur<strong>in</strong>g a weekend day.<br />

In Chapter three, <strong>the</strong> work<strong>in</strong>g days are calculated as 230 days per year, which is only<br />

<strong>the</strong> sum <strong>of</strong> 46 weeks’ weekdays. S<strong>in</strong>ce <strong>the</strong> warehouse is work<strong>in</strong>g dur<strong>in</strong>g <strong>the</strong> weekend,<br />

<strong>the</strong> same weeks are count <strong>in</strong> to calculation. Therefore, <strong>the</strong> warehouse works 322 days<br />

per year, which <strong>in</strong>cludes 230 workdays <strong>and</strong> 92 weekend days. Altoge<strong>the</strong>r, <strong>the</strong> capacity<br />

<strong>of</strong> <strong>the</strong> <strong>in</strong>ventory can reach 114,264 pallets per year.<br />

Ignor<strong>in</strong>g <strong>the</strong> variety <strong>of</strong> products, one pallet is able to carry 10 ADBs <strong>in</strong> average. Thus,<br />

<strong>the</strong> powered pallets jacks are able to transfer 1,142,640 ADBs <strong>in</strong> a year. This value is<br />

far exceed<strong>in</strong>g <strong>the</strong> production volume at <strong>the</strong> present <strong>and</strong> also much bigger than <strong>the</strong><br />

forecasted value <strong>in</strong> 2008, which is 200, 000 items. Table 6.1 listed out <strong>the</strong> step-by-step<br />

result <strong>of</strong> <strong>the</strong> calculations above.<br />

Table 6.1 Capacity <strong>of</strong> Warehouse for <strong>the</strong> F<strong>in</strong>ished ADBs<br />

Work Pallets/day (24 No.<strong>of</strong> Pallets/year ADBs/year (10<br />

hours pallets/hour) days/year ADBs/pallets)<br />

Weekdays 17.5 420 230 96600 966000<br />

Weeend 8 192 92 17664 176640<br />

Total 4761 hours/ year 114264 1142640<br />

From <strong>the</strong> result, <strong>the</strong> <strong>in</strong>creas<strong>in</strong>g volume <strong>of</strong> production <strong>in</strong> <strong>the</strong> recent years will not affect<br />

<strong>the</strong> warehous<strong>in</strong>g for its big capacity. However, <strong>the</strong> idle time for powered pallets jacks is<br />

two long, which gives an <strong>in</strong>spiration <strong>in</strong> reconsider<strong>in</strong>g <strong>the</strong> dem<strong>and</strong> <strong>of</strong> <strong>the</strong> warehouse to<br />

achieve a more economic way <strong>of</strong> operation.<br />

6.2.2 Distribution <strong>of</strong> <strong>the</strong> market<br />

Currently, <strong>the</strong> market <strong>of</strong> <strong>the</strong> Haldex ADB is ma<strong>in</strong>ly distributed <strong>in</strong> Europe <strong>and</strong> Asia. In<br />

order to estimate <strong>the</strong> product distribution, take <strong>the</strong> customer’s location <strong>in</strong> a period <strong>of</strong><br />

time (from November 13, 2007 to January 31, 2008) <strong>in</strong>to analysis. Market distribution<br />

is shown <strong>in</strong> Figure 6.2 followed. The order list is shown <strong>in</strong> appendix A, table 3.<br />

So far ADB products are only produced <strong>in</strong> L<strong>and</strong>skrona, Sweden, which means all <strong>the</strong><br />

products are shipp<strong>in</strong>g from Sweden. Although <strong>the</strong> distribution above is not precisely<br />

<strong>the</strong> entire market distribution <strong>of</strong> all <strong>the</strong> time, <strong>the</strong> market is ma<strong>in</strong>ly <strong>in</strong> Europe. This<br />

distribution is close to <strong>the</strong> location <strong>of</strong> <strong>the</strong> manufacturer, which won’t transportation<br />

problem <strong>the</strong>oretically. However, <strong>the</strong> market <strong>of</strong> <strong>the</strong> Haldex ADB is exp<strong>and</strong><strong>in</strong>g <strong>and</strong> will<br />

spread to <strong>the</strong> o<strong>the</strong>r side <strong>of</strong> <strong>the</strong> world <strong>in</strong> <strong>the</strong> com<strong>in</strong>g future.<br />

The current market leader <strong>of</strong> Air Disc Brakes is Knorr-Bremse, who occupies 80% <strong>of</strong><br />

<strong>the</strong> market <strong>in</strong> Europe. Up to <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> 2007, Knorr-Bremse already has 12<br />

million ADBs on Europe roads <strong>and</strong> its subsidiary Bendix Spicer Foundation Brake has<br />

110, 000 ADB on North American highways. (Bendix ® Air Disc Brake -- Fact Sheet,<br />

54


viewed 2008). Ano<strong>the</strong>r competitor <strong>of</strong> Haldex is WEBCO, who has big market share <strong>in</strong><br />

North America. Along with <strong>the</strong> development <strong>of</strong> technology <strong>and</strong> new features <strong>of</strong> <strong>the</strong><br />

ADBs, Haldex is by big chance becom<strong>in</strong>g very competitive <strong>in</strong> <strong>the</strong> future <strong>and</strong> possible to<br />

share a big part <strong>in</strong> North America, Asia or o<strong>the</strong>r states. In that case, new sub-factories<br />

are necessary to be built accord<strong>in</strong>g to <strong>the</strong> distribution <strong>of</strong> market. Or else, cooperat<strong>in</strong>g<br />

with a third company is also a good way to solve <strong>the</strong> <strong>in</strong>ventory <strong>and</strong> transportation<br />

problems.<br />

Figure 6.2 Market Distributions dur<strong>in</strong>g Nov.13, 2007 <strong>and</strong> Jan. 31, 2008<br />

6.2.3 Delivery details<br />

Goods delivery is <strong>the</strong> last step <strong>of</strong> material flow <strong>in</strong> a supply cha<strong>in</strong>. Many problems may<br />

happen <strong>in</strong> this segment such as late delivery, wrong quantity, wrong location, etc. When<br />

<strong>the</strong> production volume <strong>in</strong>creases, <strong>the</strong> delivery is usually becom<strong>in</strong>g more frequently.<br />

At present, <strong>the</strong>re is a truck leav<strong>in</strong>g with ADB daily. However, customers are different<br />

55


each day. The maximum load <strong>of</strong> one truck is 24 000kg, <strong>and</strong> <strong>the</strong> average weight <strong>of</strong> ADB<br />

is 47kg. Thus, a truck can carry maximum 51 pallets full <strong>of</strong> ADBs. Never<strong>the</strong>less, <strong>the</strong><br />

utilization <strong>of</strong> <strong>the</strong> truck is <strong>of</strong>ten less than 100%. The manager believes that a utilization<br />

<strong>of</strong> around 75% is <strong>the</strong> best average possible today. So <strong>in</strong>stead <strong>of</strong> 51 pallets per truck <strong>the</strong><br />

average at <strong>the</strong> moment is around 38 pallets per truck.<br />

Tak<strong>in</strong>g <strong>the</strong> same work<strong>in</strong>g day as <strong>the</strong> warehouse per year, <strong>the</strong>re are 322 days <strong>in</strong> a year<br />

that <strong>the</strong> truck is transport<strong>in</strong>g <strong>the</strong> goods from <strong>the</strong> warehouse <strong>in</strong> L<strong>and</strong>skrona. Multiply<strong>in</strong>g<br />

322 by 38, <strong>the</strong>re are 12 236 pallet sent out from <strong>the</strong> warehouse. As mentions above,<br />

each pallet conta<strong>in</strong>s 10 ADBs, <strong>the</strong>refore, <strong>the</strong> truck is able to transfer 122 360 ADB<br />

items every year. Compar<strong>in</strong>g to <strong>the</strong> simulation result from Chapter 3, <strong>the</strong> delivery is<br />

able to deal with <strong>the</strong> current production volume, which is 120 127 per year. However, it<br />

cannot satisfy <strong>the</strong> delivery requirement if <strong>the</strong> optimized production volume.<br />

Transportation costs <strong>of</strong> ADBs from Haldex <strong>and</strong> customers are <strong>in</strong> big percents paid by<br />

<strong>the</strong> customers. Tak<strong>in</strong>g <strong>the</strong> same sample from November 13, 2007 to January 31, 2008 <strong>in</strong><br />

to analysis, which has been used to analyze <strong>the</strong> market distribution above,<br />

transportation paid by Haldex is sorted out <strong>and</strong> compared to <strong>the</strong> total amount <strong>in</strong> Table<br />

6.2.<br />

Table 6.2 Transportation Fee Paid by Haldex dur<strong>in</strong>g Nov.13, 2007 <strong>and</strong> Jan. 31,<br />

2008<br />

Customers’ Location Order<br />

France (Max 25ton) 108<br />

Holl<strong>and</strong> 240<br />

France (Max 25ton) 3984<br />

Russian (Max 21,5 ton) 1752<br />

France (Max 25ton) 6<br />

Total 6090<br />

Percentage <strong>in</strong> all <strong>the</strong> orders 33.61%<br />

The result shows that 33.61% <strong>of</strong> <strong>the</strong> products’ transportation is paid by Haldex. S<strong>in</strong>ce<br />

<strong>the</strong> cost varied from different dest<strong>in</strong>ations <strong>and</strong> those paid by customers are not<br />

available, it is hard to calculate by how many percent <strong>in</strong> cash are paid by <strong>the</strong> company.<br />

Accord<strong>in</strong>g to <strong>the</strong> manager <strong>of</strong> Haldex, customers pay around 80% <strong>of</strong> <strong>the</strong> transportation<br />

costs while Haldex pays <strong>the</strong> rests.<br />

A very important factor to mention is that <strong>the</strong> company has its own st<strong>and</strong>ard pallets to<br />

carry all <strong>the</strong> products <strong>and</strong> most <strong>of</strong> <strong>the</strong> orig<strong>in</strong>al materials. The pallets are also <strong>the</strong><br />

package <strong>of</strong> <strong>the</strong> products, thus <strong>the</strong>y are sent to customers toge<strong>the</strong>r with <strong>the</strong> products.<br />

Some <strong>of</strong> <strong>the</strong> customers will send <strong>the</strong> empty pallets back after <strong>the</strong> goods arrived, but <strong>the</strong><br />

o<strong>the</strong>rs won’t. As <strong>the</strong> result <strong>the</strong> company has to procure new pallets frequently. The<br />

pallets are big <strong>and</strong> made <strong>of</strong> wood <strong>and</strong> one pallet with two layers can only carry 10<br />

pieces <strong>of</strong> ADBs. Cost <strong>of</strong> packages will <strong>in</strong>crease rapidly along with <strong>the</strong> production<br />

56


volume.<br />

6.3 Analysis <strong>and</strong> Suggestions<br />

Generally speak<strong>in</strong>g, <strong>the</strong> ma<strong>in</strong> cause <strong>of</strong> all <strong>the</strong> threats <strong>in</strong> supply cha<strong>in</strong> is <strong>the</strong> rapid<br />

<strong>in</strong>creas<strong>in</strong>g production volume. Because <strong>of</strong> <strong>the</strong> <strong>in</strong>creas<strong>in</strong>g, many difficulties will pop up<br />

very soon, or even some have already happened <strong>and</strong> affect <strong>the</strong> production so far.<br />

Optimization is <strong>of</strong> great urgency.<br />

In conclusion, <strong>the</strong> threats Haldex faces are:<br />

• Big <strong>in</strong>ventory occupancy, <strong>the</strong> warehouse’s capacity is not enough to carry <strong>the</strong><br />

<strong>in</strong>creased products.<br />

• Pallets supply is not enough or not <strong>in</strong> time, which might delay <strong>the</strong> delivery <strong>of</strong><br />

products.<br />

• In <strong>the</strong> future, market both <strong>in</strong>side <strong>and</strong> outside <strong>of</strong> Europe probably will grow fast.<br />

Headquarter <strong>of</strong> ADBs <strong>in</strong> L<strong>and</strong>skrona will not capable to carry <strong>the</strong> big amount <strong>of</strong><br />

manufactur<strong>in</strong>g accord<strong>in</strong>g to <strong>the</strong> dem<strong>and</strong>.<br />

One th<strong>in</strong>g before solv<strong>in</strong>g <strong>the</strong> threats above is that <strong>the</strong> powered pallets jacks have too<br />

much idle time. From Table 6.1, even work only <strong>in</strong> weekdays, <strong>the</strong> truck is able to<br />

transfer 966 000 ADBs every year, which is nearly five time <strong>of</strong> <strong>the</strong> predicted production<br />

volume <strong>in</strong> 2008. To save <strong>the</strong> workforce <strong>and</strong> enhance <strong>the</strong> efficiency <strong>of</strong> <strong>the</strong> jacks, it is<br />

feasible to use only on powered pallets jack <strong>and</strong> work<strong>in</strong>g only dur<strong>in</strong>g <strong>the</strong> weekdays.<br />

Even <strong>in</strong> this way, only 10% <strong>of</strong> <strong>the</strong> jack’s capability is needed <strong>in</strong> 2008.<br />

To deal with <strong>the</strong> <strong>in</strong>creas<strong>in</strong>g <strong>in</strong>ventory, method, which can satisfy customer’s dem<strong>and</strong>, is<br />

<strong>of</strong> higher priority. It has been stated earlier that <strong>the</strong> truck that leave <strong>the</strong> warehouse<br />

everyday will not able to satisfy <strong>the</strong> dem<strong>and</strong> soon. Once <strong>the</strong> production volume exceeds<br />

<strong>the</strong> delivery volume, goods will start accumulat<strong>in</strong>g. Meanwhile, customers’ dem<strong>and</strong><br />

will not be satisfied. Simply <strong>the</strong>re are two methods to solve this problem: deliver more<br />

frequently <strong>and</strong> deliver more each time.<br />

Currently, one truck is usually carry<strong>in</strong>g 38 pallets. Therefore, 200 000 ADB items need<br />

<strong>the</strong> truck to run 527 times, which is much more than <strong>the</strong> work<strong>in</strong>g days per year. S<strong>in</strong>ce<br />

<strong>the</strong> utilization <strong>of</strong> truck is only 75% at present, it is possible to enhance to its capacity,<br />

even to its maximum value 100%. Thus, 200 000 ADB items need <strong>the</strong> truck, who can<br />

carry 51 pallets under full load, to run 393 times. As mentioned <strong>in</strong> Chapter 3 <strong>and</strong><br />

suggested above, both <strong>the</strong> production l<strong>in</strong>e <strong>and</strong> <strong>the</strong> pallets works only dur<strong>in</strong>g weekdays,<br />

<strong>the</strong> truck is also possible work<strong>in</strong>g <strong>in</strong> <strong>the</strong> same day. Table 6.3 lists transportation<br />

amounts under different suggestions.<br />

Once <strong>the</strong> capacity <strong>of</strong> truck reach 90% <strong>and</strong> <strong>the</strong>re are two truck work<strong>in</strong>g every weekday,<br />

all <strong>of</strong> <strong>the</strong> goods will delivered. Moreover, s<strong>in</strong>ce <strong>the</strong> truck can achieve 100% capacity,<br />

57


<strong>and</strong> can also overwork<strong>in</strong>g dur<strong>in</strong>g weekend, some urgent deliveries are also achievable.<br />

There are two ways to arrange <strong>the</strong> two trucks. One is both <strong>of</strong> <strong>the</strong>m leav<strong>in</strong>g toge<strong>the</strong>r, <strong>the</strong><br />

o<strong>the</strong>r is one leaves <strong>in</strong> <strong>the</strong> morn<strong>in</strong>g, <strong>the</strong> left one leaves <strong>in</strong> <strong>the</strong> afternoon. The later<br />

arrangement is better <strong>in</strong> reduc<strong>in</strong>g <strong>the</strong> <strong>in</strong>ventory.<br />

Suggestions<br />

Table 6.3 Transportation Amount under Different Suggestions<br />

No. <strong>of</strong><br />

trucks/day Work<strong>in</strong>g Capacity <strong>of</strong> <strong>the</strong><br />

days/year truck<br />

Current 1 322 75%(38<br />

Statue<br />

pallets/truck)<br />

1 2 230 75%(38<br />

pallets/truck)<br />

2 2 230 85%(43<br />

pallets/truck)<br />

3 2 230 90%(46<br />

pallets/truck)<br />

4 2 230 100%(51<br />

pallets/truck)<br />

Transportation<br />

Amount (Items)<br />

122360<br />

174800<br />

197800<br />

211600<br />

234600<br />

The exhaustion threat <strong>of</strong> pallets is urgent to be elim<strong>in</strong>ated. Procurement department is<br />

work<strong>in</strong>g on f<strong>in</strong>d<strong>in</strong>g <strong>the</strong> suppliers <strong>of</strong> pallets. However, more works can be done to save<br />

<strong>the</strong> space. One suggestion is to design a new k<strong>in</strong>d <strong>of</strong> packages <strong>of</strong> <strong>the</strong> ADBs, ei<strong>the</strong>r for<br />

<strong>in</strong>dividual or for collective, us<strong>in</strong>g lighter <strong>and</strong> easier materials. This is more favorable <strong>in</strong><br />

those orders to customers who will not send <strong>the</strong> pallets back. Ano<strong>the</strong>r way is f<strong>in</strong>d<strong>in</strong>g a<br />

pool<strong>in</strong>g company, who has warehouse close to Haldex workshop, to deal with all <strong>the</strong><br />

delivery <strong>and</strong> packag<strong>in</strong>g. Haldex only need to send <strong>the</strong> goods to <strong>the</strong> <strong>in</strong>ter-warehouse, <strong>and</strong><br />

take <strong>the</strong> pallets back. These suggestions need fur<strong>the</strong>r researches, which will not carry<br />

out <strong>in</strong> this paper. Consider<strong>in</strong>g <strong>the</strong> similar distribution <strong>of</strong> suppliers <strong>and</strong> customer, which<br />

is mentioned <strong>in</strong> chapter 5, <strong>and</strong> <strong>the</strong> same st<strong>and</strong>ard <strong>of</strong> pallets, Haldex could also share<br />

<strong>in</strong>formation with its suppliers <strong>and</strong> customers who are <strong>in</strong> <strong>the</strong> same area to arrange a<br />

better utilization <strong>of</strong> <strong>the</strong> pallets. Never<strong>the</strong>less, this method is only effective <strong>in</strong> those<br />

common areas, not for countries like Russia at present.<br />

Fac<strong>in</strong>g <strong>the</strong> future market, Haldex had better get ready to start manufactur<strong>in</strong>g ADB <strong>in</strong> its<br />

branches or new factories. Because <strong>of</strong> <strong>the</strong> limitation <strong>of</strong> workshop <strong>and</strong> warehouse,<br />

headquarter <strong>in</strong> L<strong>and</strong>skrona might be not capable to susta<strong>in</strong> <strong>the</strong> possible big production<br />

<strong>in</strong> <strong>the</strong> future. Expansion is imperative. Never<strong>the</strong>less, location <strong>of</strong> <strong>the</strong> new factory is<br />

accord<strong>in</strong>g to <strong>the</strong> market <strong>and</strong> <strong>in</strong>vestment environment. The company has to pay close<br />

attention to <strong>the</strong> market <strong>and</strong> environment globally, to balance <strong>the</strong> pr<strong>of</strong>it <strong>of</strong> itself <strong>and</strong> its<br />

customers.<br />

6.4 Results<br />

In conclusion, suggestions to optimize <strong>the</strong> current statue <strong>and</strong> deal with com<strong>in</strong>g threats<br />

are:<br />

• Reduce <strong>the</strong> powered pallets jack to one <strong>and</strong> away from duty dur<strong>in</strong>g <strong>the</strong> weekend.<br />

58


• Add<strong>in</strong>g one more delivery to customers <strong>in</strong> <strong>the</strong> afternoon <strong>and</strong> enhanc<strong>in</strong>g <strong>the</strong><br />

utilization <strong>of</strong> <strong>the</strong> truck’s capacity at least to 90% <strong>in</strong> average. Delivery truck away<br />

from duty dur<strong>in</strong>g <strong>the</strong> weekend.<br />

• Redesign<strong>in</strong>g <strong>the</strong> packag<strong>in</strong>g <strong>of</strong> <strong>the</strong> ADB products with easier <strong>and</strong> one-<strong>of</strong>f materials.<br />

• Cooperat<strong>in</strong>g with pool<strong>in</strong>g company to do with <strong>the</strong> delivery <strong>and</strong> packag<strong>in</strong>g.<br />

• Shar<strong>in</strong>g <strong>in</strong>formation <strong>of</strong> pallets with suppliers <strong>and</strong> customers <strong>in</strong> <strong>the</strong> same area.<br />

• Invest new factories close to <strong>the</strong> market <strong>in</strong> <strong>the</strong> future to share manufactur<strong>in</strong>g <strong>and</strong><br />

save transportation cost.<br />

Because <strong>of</strong> <strong>in</strong>formation shortage <strong>and</strong> time limitation <strong>in</strong> <strong>the</strong> research, detailed<br />

evaluations <strong>of</strong> <strong>the</strong> last four suggestions are <strong>in</strong>complete. Fur<strong>the</strong>r works based on <strong>the</strong><br />

<strong>in</strong>-time <strong>in</strong>formation are needed if ei<strong>the</strong>r <strong>of</strong> <strong>the</strong>m is <strong>in</strong> need to be evaluated. The work<br />

<strong>in</strong>cludes <strong>in</strong>vestigation <strong>of</strong> <strong>the</strong> market <strong>and</strong> analysis <strong>of</strong> cost <strong>and</strong> feasibility.<br />

59


CHAPTER 7<br />

CONCLUSION AND FUTURE WORK<br />

7.1 Conclusion<br />

Based on <strong>the</strong> <strong>in</strong>vestigation <strong>in</strong> Haldex workshop located <strong>in</strong> L<strong>and</strong>skrona, <strong>the</strong> current<br />

problems are <strong>the</strong> production volume cannot satisfy <strong>the</strong> requirement <strong>of</strong> forecast market<br />

<strong>and</strong> <strong>the</strong> space for <strong>in</strong>ventory is limited. After analyz<strong>in</strong>g <strong>the</strong> data ga<strong>the</strong>red from factory<br />

<strong>the</strong> simulation model was constructed <strong>in</strong> Extend v6. Depend<strong>in</strong>g on <strong>the</strong> simplified<br />

assembly l<strong>in</strong>e model, several methods <strong>and</strong> suggestions were proposed to improve <strong>the</strong><br />

current situation <strong>of</strong> <strong>the</strong> assembly l<strong>in</strong>e. After compar<strong>in</strong>g <strong>the</strong>se proposals by cost, lead<br />

time <strong>and</strong> reliability, three best solutions are selected to solve <strong>the</strong> problem <strong>of</strong><br />

production volume:<br />

1. Invest one mach<strong>in</strong>e at station 8 <strong>of</strong> ma<strong>in</strong> assembly l<strong>in</strong>e <strong>and</strong> cut down <strong>the</strong> TTR <strong>of</strong><br />

both station 8 <strong>of</strong> ma<strong>in</strong> assembly l<strong>in</strong>e <strong>and</strong> station 2 <strong>of</strong> preassembly l<strong>in</strong>e;<br />

2. Invest one mach<strong>in</strong>e at station 8 <strong>of</strong> ma<strong>in</strong> assembly l<strong>in</strong>e <strong>and</strong> at one mach<strong>in</strong>e at station<br />

2 <strong>of</strong> preassembly l<strong>in</strong>e as well;<br />

3. Integrate <strong>the</strong> two solutions above. I.e. <strong>in</strong>vest two mach<strong>in</strong>es one for station 8 <strong>in</strong><br />

ma<strong>in</strong> assembly l<strong>in</strong>e <strong>and</strong> <strong>the</strong> o<strong>the</strong>r one for <strong>the</strong> station 2 <strong>in</strong> preassembly l<strong>in</strong>e. At <strong>the</strong><br />

same time reduce <strong>the</strong> repair time <strong>of</strong> bottlenecks.<br />

The <strong>in</strong>ventory problem can be considered from two aspects. One is from <strong>the</strong> material<br />

flow from suppliers. Select<strong>in</strong>g appropriate suppliers is very important <strong>and</strong> useful to<br />

solve. After compar<strong>in</strong>g suppliers based on multiple criteria, <strong>the</strong> suppliers selected <strong>in</strong><br />

<strong>the</strong> future should ma<strong>in</strong>ly locate <strong>in</strong> Europe <strong>and</strong> Asia, where are close to <strong>the</strong> market. If it<br />

is necessary, suppliers locate <strong>in</strong> North America also can be considered but not<br />

recommended. Haldex should cooperate with suppliers <strong>in</strong> many fields like technology<br />

assistances. Associate with <strong>the</strong> location, suppliers with high quality <strong>and</strong> reliability with<br />

reasonable cost should be selection first. In order to reduce <strong>the</strong> <strong>in</strong>ventory, produce <strong>in</strong> a<br />

similar JIT model is a good selection but <strong>in</strong> this option, reliability <strong>of</strong> supplies should<br />

be estimated at first. Construct<strong>in</strong>g a steady <strong>and</strong> long period partner-ship with suppliers<br />

60


is good for both <strong>of</strong> factory <strong>and</strong> supplier. Because <strong>of</strong> its benefits, an <strong>in</strong>formation<br />

shar<strong>in</strong>g system, which takes an important role <strong>in</strong> reduc<strong>in</strong>g <strong>the</strong> <strong>in</strong>ventory, is strongly<br />

recommended.<br />

The o<strong>the</strong>r way to solve <strong>the</strong> <strong>in</strong>ventory problem is <strong>in</strong> <strong>the</strong> material flow from <strong>the</strong><br />

company to customers. Increas<strong>in</strong>g delivery frequency to customers can help to reduce<br />

<strong>the</strong> <strong>in</strong>ventory. It is also feasible by build<strong>in</strong>g new warehouse to store <strong>the</strong> products <strong>and</strong><br />

f<strong>in</strong>d cooperators close to <strong>the</strong> workshop to take care <strong>of</strong> <strong>the</strong> storage <strong>of</strong> goods.<br />

The <strong>in</strong>ventory problem is com<strong>in</strong>g along with <strong>the</strong> rapid <strong>in</strong>creas<strong>in</strong>g <strong>of</strong> <strong>the</strong> production<br />

volume. Never<strong>the</strong>less, <strong>the</strong> current productivity even cannot satisfy <strong>the</strong> market<br />

requirements. The core assignment for <strong>the</strong> company at present is improv<strong>in</strong>g <strong>the</strong><br />

production l<strong>in</strong>e <strong>in</strong> order to <strong>in</strong>crease <strong>the</strong> production volume.<br />

7.2 Future work<br />

In this paper some solutions are discussed only from <strong>the</strong> view <strong>of</strong> <strong>the</strong>ory. In order to<br />

evaluate solutions <strong>and</strong> suggestions more scientific <strong>and</strong> acquire most feasible solutions,<br />

more detailed <strong>in</strong>formation is needed. For example, when assess<strong>in</strong>g current suppliers by<br />

<strong>the</strong> evaluation criterions, it is necessary to know <strong>the</strong> <strong>in</strong>formation about operation <strong>and</strong><br />

management system <strong>of</strong> each supplier. Then a more veracious evaluation can be ga<strong>in</strong>ed.<br />

As regards build<strong>in</strong>g new factories, it is necessary to <strong>in</strong>vestigate <strong>the</strong> local environment<br />

<strong>and</strong> market carefully, which is time consum<strong>in</strong>g <strong>and</strong> can be ano<strong>the</strong>r big project. As<br />

described <strong>in</strong> chapter 6, for <strong>the</strong> package problem <strong>the</strong>re are many th<strong>in</strong>gs can be<br />

researched <strong>in</strong> <strong>the</strong> future, such as <strong>the</strong> material <strong>of</strong> package, <strong>the</strong> style <strong>and</strong> size <strong>of</strong> package<br />

box, <strong>and</strong> so on.<br />

61


Reference<br />

Books <strong>and</strong> papers<br />

• Ahmad, Munir, Benson, Roger (1999), “Benchmark<strong>in</strong>g <strong>in</strong> <strong>the</strong> Process Industries”<br />

published by Institute <strong>of</strong> Chemical Eng<strong>in</strong>eers<br />

• Araz, Ceyhun, Ozkarahan, Irem (2007), “Supplier evaluation <strong>and</strong> management<br />

system for strategic sourc<strong>in</strong>g based on a new multicriteria sort<strong>in</strong>g procedure”, Int. J.<br />

<strong>Production</strong> Economics 106 (2007) 585–606<br />

• Biswas, Pablo (2007), “Optimal control <strong>of</strong> production <strong>and</strong> distribution <strong>in</strong> a supply<br />

cha<strong>in</strong> system operat<strong>in</strong>g under a JIT delivery policy”, Thesis <strong>of</strong> doctor degree,<br />

Louisiana State University <strong>and</strong> Agricultural <strong>and</strong> Mechanical College<br />

• Byrne,P.J. Heavey, Cathal (2006), “The impact <strong>of</strong> <strong>in</strong>formation shar<strong>in</strong>g <strong>and</strong><br />

forecast<strong>in</strong>g <strong>in</strong> capacitated <strong>in</strong>dustrial supply cha<strong>in</strong>s: A case study”, Int. J.<br />

<strong>Production</strong> Economics 103 (2006) 420–437<br />

• Cai, Chenghui, Zhuang, Yonglong, etc. (2001), “Basic Application <strong>and</strong> Tutorial <strong>of</strong><br />

SPSS v10.0 for W<strong>in</strong>dows”, Beij<strong>in</strong>g Hope Electronic Press<br />

• Choy, K.L., Lee, W.B., Lau, H.C.W., Choy, L.C. (2005), “A knowledge based<br />

supplier <strong>in</strong>telligence retrieval system for outsourc<strong>in</strong>g manufactur<strong>in</strong>g”<br />

Knowledge-Based Systems 18, 1–17<br />

• Choy, K.L., Lee, W.B., Lo, V. (2002), “An <strong>in</strong>telligent supplier management tool<br />

for benchmark<strong>in</strong>g suppliers <strong>in</strong> outsource manufactur<strong>in</strong>g”, Expert Systems with<br />

Applications 22, 213–224<br />

• Cunn<strong>in</strong>gham JA. (1990), “The use <strong>and</strong> evaluation <strong>of</strong> yield models <strong>in</strong> <strong>in</strong>tegrated<br />

circuits manufactur<strong>in</strong>g”. IEEE Trans Semicond Manuf. 1990;3:60–71<br />

• Davidson, Ian, Kowalczyk, Ryszard, “Towards Better Approaches To Decision<br />

Support <strong>in</strong> Logistics Problems”<br />

• De Boer, L., Labro, E., Morlacchi, P. (2001), “A review <strong>of</strong> methods support<strong>in</strong>g<br />

supplier selection”, European Journal <strong>of</strong> Purchas<strong>in</strong>g <strong>and</strong> <strong>Supply</strong> Management 7,<br />

75–89<br />

• De Toni, A., Nassimbeni, G. (2001), “A method for <strong>the</strong> evaluation <strong>of</strong> suppliers’<br />

co-design effort”, International Journal <strong>of</strong> <strong>Production</strong> Economics 72, 169–180<br />

• Dowlatshahi, S. (2000), “Designer–buyer–supplier <strong>in</strong>terface: <strong>the</strong>ory vs. practice”,<br />

International Journal <strong>of</strong> <strong>Production</strong> Economics 63, 111–130<br />

• Dulm<strong>in</strong>, R., M<strong>in</strong><strong>in</strong>no, V. (2003), “Supplier selection us<strong>in</strong>g a multicriteria decision<br />

aid method”, Journal <strong>of</strong> Purchas<strong>in</strong>g <strong>and</strong> <strong>Supply</strong> Management 9, 177–187<br />

• Ferris-Prabhu, AV. (1992), “Introduction to semiconductor device yield model<strong>in</strong>g”.<br />

Artech House<br />

• Giannocaro, I., Pontradolfo, P., Scozzi, B. (2003), “A fuzzy echelon approach for<br />

<strong>in</strong>ventory management is supply cha<strong>in</strong>s”, European Journal <strong>of</strong> Operations<br />

Research 149, 185–196<br />

62


• Jiang, Zhangsheng (2006), “Research on coord<strong>in</strong>ation mechanism <strong>of</strong> shipbuild<strong>in</strong>g<br />

supply cha<strong>in</strong> based on complex system <strong>the</strong>ory”, Thesis <strong>of</strong> Master Degree, Harb<strong>in</strong>,<br />

Harb<strong>in</strong> Institute <strong>of</strong> Technology<br />

• Kheljani, J. Gheidar, et al. (2007), “Optimiz<strong>in</strong>g whole supply cha<strong>in</strong> benefit versus<br />

buyer’s benefit through supplier selection”, International Journal <strong>of</strong> <strong>Production</strong><br />

Economics<br />

• Krahl, David (2003), “Extend: an <strong>in</strong>teractive simulation tool”, W<strong>in</strong>ter Simulation<br />

Conference<br />

• Kuo, W, Kim, T. (1999), “An overview <strong>of</strong> manufactur<strong>in</strong>g yield <strong>and</strong> reliability<br />

model<strong>in</strong>g for semiconductor products”. Proc IEEE;87:1329–44<br />

• Kyungmee, O., Kim, Hee-Seok Ohs. (2008), “Reliability functions estimated from<br />

commonly used yield model”, Microelectronics Reliability 48 (2008) 481–489<br />

• Li, Q<strong>in</strong>gen, (1990), “Strategy <strong>and</strong> method <strong>of</strong> supply cha<strong>in</strong> management”<br />

• Luo, Hucheng (2006), “Research on Plant Logistics Track<strong>in</strong>g System <strong>of</strong> Automobile<br />

Manufactur<strong>in</strong>g Enterprise, Thesis <strong>of</strong> Master Degree, Nanj<strong>in</strong>g, Nanj<strong>in</strong>g University<br />

<strong>of</strong> Aeronautics <strong>and</strong> Astronautics<br />

• Machuca, Jos_e A.D., Barajas, Rafael P. (2004), “The impact <strong>of</strong> electronic data<br />

<strong>in</strong>terchange on reduc<strong>in</strong>g bullwhip effect <strong>and</strong> supply cha<strong>in</strong> <strong>in</strong>ventory costs”,<br />

Transportation Research Part E 40 (2004) 209–228<br />

• Miltenburg, John (2005), “Manufactur<strong>in</strong>g Strategy: How to Formulate <strong>and</strong><br />

Implement a W<strong>in</strong>n<strong>in</strong>g Plan”, published by Productivity Press<br />

• M<strong>in</strong>gsen Q<strong>in</strong> & Fangzhi Wang. (2001), “Logistics Technology Practicality”,<br />

Published by Ch<strong>in</strong>ese <strong>Material</strong> Publish<strong>in</strong>g Company.<br />

• Peschanskii, A.I. (2006), “Optimiz<strong>in</strong>g ma<strong>in</strong>tenance <strong>of</strong> a serial-structure system<br />

depend<strong>in</strong>g on <strong>the</strong> operation time <strong>of</strong> each element”, Cybernetics <strong>and</strong> Systems<br />

Analysis, 876-883. (Volume 42, Issue 6 (November 2006) Pages: 876 -<br />

883 Year <strong>of</strong> Publication: 2006 ISSN:1060-0396 )<br />

• Pheips, Richard A., Parsons, David J., Siprelle, Andrew J. (2002), “Non-item<br />

based tools: non-item based discrete-event simulation tools”, W<strong>in</strong>ter Simulation<br />

Conference<br />

• Sarkar, Ashutosh, Mohapatra, Pratap K.J. (2006), “Evaluation <strong>of</strong> supplier<br />

capability <strong>and</strong> performance: A method for supply base reduction”, Journal <strong>of</strong><br />

Purchas<strong>in</strong>g & <strong>Supply</strong> Management 12 (2006) 148–163<br />

• Semere, Daniel T. (2007), courseware <strong>of</strong> “Process Control <strong>and</strong> Management”,<br />

Stockholm<br />

• Sk<strong>in</strong>tzi, G., et al. (2007), “Investigat<strong>in</strong>g warehous<strong>in</strong>g policies”, International<br />

Journal <strong>of</strong> <strong>Production</strong> Economics, doi:10.1016/j.ijpe.2007.08.004<br />

• Song, Weigang. (2003), “Logistics Eng<strong>in</strong>eer<strong>in</strong>g <strong>and</strong> Practicality”, Published by<br />

Mechanical <strong>and</strong> Industrial Publish<strong>in</strong>g Company.<br />

• Sosic, Greys (2002), “Three Essays <strong>in</strong> <strong>Supply</strong> Cha<strong>in</strong> Management”, Thesis <strong>of</strong><br />

Doctor Degree, The University <strong>of</strong> British Colombia<br />

• Sun, Zhiwei (2005), “Research on supply selection aimed at supply cha<strong>in</strong>”, Thesis<br />

<strong>of</strong> Master Degree, Tianj<strong>in</strong>, Tianj<strong>in</strong> University<br />

• Tanchoco, J. M. A. (1994), “<strong>Material</strong> <strong>Flow</strong> Systems <strong>in</strong> Manufactur<strong>in</strong>g”, Published<br />

63


y Chapman&Hall.<br />

• Vickery, Shawnee K., Jayaram, Jayanth, Droge, Corelia, Calantone, Roger, 2003.<br />

“The effects <strong>of</strong> an <strong>in</strong>tegrative supply cha<strong>in</strong> strategy on customer service <strong>and</strong><br />

f<strong>in</strong>ancial performance: an analysis <strong>of</strong> direct versus <strong>in</strong>direct relationships”, Journal<br />

<strong>of</strong> Operations Management 21, 523–539<br />

• Weber, C.A., Current, J.R., Benton, W.C. (1991), “Vendor selection criteria <strong>and</strong><br />

methods”, European Journal <strong>of</strong> Operational Research 50, 2–18<br />

• Wong, W.K., Kwong, C.K., etc. (2006), “Genetic optimization <strong>of</strong> JIT operation<br />

schedules for fabric-cutt<strong>in</strong>g process <strong>in</strong> apparel manufacture”, J Intell Manuf<br />

17:341-35<br />

• Yu., Ermoliev, S., Uryasev, J., Wessels (2000), “On Optimization <strong>of</strong> Unreliable<br />

<strong>Material</strong> <strong>Flow</strong>”, Probabilistic Constra<strong>in</strong>ed Optimization: Methodology <strong>and</strong><br />

Aplications, pp. 45-66, Kluwer Academic Publishers<br />

Web l<strong>in</strong>ks<br />

• 12MANAGE, “JIT”, viewed January 2008,<br />

http://www.12manage.com/methods_jit.html<br />

• 12MANAGE, “Lean <strong>Production</strong>”, viewed January 2008,<br />

http://www.12manage.com/description_lean_production.html<br />

• 12MANAGE, “TOC”, viewed January 2008,<br />

http://www.12manage.com/methods_goldratt_<strong>the</strong>ory_<strong>of</strong>_constra<strong>in</strong>ts.html<br />

• Bendix Spicer Foundation Brake, “Bendix ® Air Disc Brake -- Fact Sheet”, viewed<br />

February 2008,<br />

http://www.foundationbrakes.com/SiteCollectionDocuments/Bendix%20Air%20D<br />

isc%20Fact%20Sheet.pdf<br />

• Clermiston Consult<strong>in</strong>g Pty Ltd, “<strong>Supply</strong> Cha<strong>in</strong>”, viewed February 2008,<br />

http://www.clermiston.com.au/<strong>Supply</strong>%20Cha<strong>in</strong>.htm<br />

• David, “<strong>Supply</strong> Cha<strong>in</strong> Management”, viewed 2007,<br />

http://www.worldscm.com/publish/article/2007-1-22/37894.htm<br />

• Edgestone, “Extend Simulation”, viewed January 2008,<br />

http://www.edgestone-it.com/extend.htm<br />

• Elsmar, “Lead Time Reduction”, viewed February 2008,<br />

http://elsmar.com/Lead_Time/<br />

• Farris, Dale, “Extend 6”, viewed December 2007,<br />

http://www.gtpcc.org/gtpcc/extend6.htm<br />

• Haier, viewed February 2008<br />

http://<strong>in</strong>fo.jctrans.com/wuliu/aljx/200521649641.shtml<br />

• Idhammar, “Reliability <strong>Improvement</strong>s Drive Down Ma<strong>in</strong>tenance Costs”, viewed<br />

February 2007,<br />

http://www.idcon.com/article-reliabilitycosts.htm<br />

• Larry Lapide, “<strong>Supply</strong> Cha<strong>in</strong> Plann<strong>in</strong>g Optimization: Just <strong>the</strong> Facts”, viewed<br />

64


February 2008,<br />

http://www.e-optimization.com/resources/amr/9805scsreport/9805scsstory1.htm<br />

• Lawson, viewed February 2008,<br />

http://www.lawson.com/wcw.nsf/pub/eam60?opendocument&csref=GLB_KEYW<br />

ORDS_WM_M3_NB_EA_FY08_M009<br />

• Marx, Michael, “Ford Motor Company - Consumer Driven 6-Sigma”, viewed<br />

February 2008,<br />

http://www.sixsigmacompanies.com/archive/ford_motor_company_consumer_dri<br />

ven_6_sigma.html<br />

• Osiris, “MRP”, viewed January 2008,<br />

http://www.osiris-uk.com/supply.htm<br />

• Takenaka Corporation, “Development <strong>of</strong> Logistics Redevelopment System”, viewed<br />

December 2007,<br />

http://www.takenaka.co.jp/takenaka_e/news_e/pr9907/m9907_01.htm<br />

• Wikipedia, “Inventory”, viewed February 2008,<br />

http://en.wikipedia.org/wiki/Inventory<br />

• Wikipedia, “Just In Time”, viewed <strong>in</strong> Febuary 2008,<br />

http://en.wikipedia.org/wiki/Just_In_Time_(bus<strong>in</strong>ess),<br />

• Wikipedia, “Logistics”, viewed December 2007,<br />

http://en.wikipedia.org/wiki/Logistics<br />

• Wikipedia, “Operation research”, viewed February 2008,<br />

http://en.wikipedia.org/wiki/Operations_research<br />

• Wikipedia, “<strong>Supply</strong> Cha<strong>in</strong> Management”, viewed December 2007,<br />

http://en.wikipedia.org/wiki/<strong>Supply</strong>_cha<strong>in</strong>_management<br />

65


Appendix A<br />

Table 1 TTF & TTR Data <strong>of</strong> Preassembly L<strong>in</strong>e<br />

Week Cycle Time / sec. Stop Time / sec. Total Stop Quantity<br />

20 110636 39341 390<br />

21 360014 277367 630<br />

22 140117 62860 440<br />

23 150038 82800 445<br />

24 221853 143892 544<br />

25 203116 136633 492<br />

26 137130 69546 492<br />

27 151036 66546 588<br />

28 151704 84853 567<br />

29 414627 375982 352<br />

30 945970 869390 640<br />

31 724348 657305 577<br />

32 341025 286588 427<br />

33 91267 37233 310<br />

34 110459 49682 364<br />

35 143046 65406 409<br />

36 140084 66361 432<br />

37 108839 75288 388<br />

38 218633 145526 544<br />

39 187309 125563 416<br />

40 137826 62931 495<br />

Table 2 TTF & TTR Data <strong>of</strong> Ma<strong>in</strong> Assembly L<strong>in</strong>e<br />

Week Cycle Time / sec. Stop Time / sec. Total Stop Quantity<br />

30 250217 188252 775<br />

31 288729 233204 771<br />

32 235535 176726 820<br />

33 355117 285262 932<br />

34 218188 130859 1008<br />

35 364177 244152 1275<br />

36 208917 124030 961<br />

37 240848 161272 905<br />

38 289967 204795 975<br />

39 316794 242004 748<br />

40 265803 167308 876<br />

41 267763 162837 977<br />

42 454758 328093 1413<br />

43 263150 132508 1261<br />

44 311439 200849 1120<br />

46 360123 182959 1839<br />

47 216705 149649 1161<br />

48 260296 144848 1296<br />

49 182101 100935 873<br />

50 0 0 0<br />

66


Table 3 Orders <strong>and</strong> Transportation Cost dur<strong>in</strong>g Nov.13, 2007 <strong>and</strong> Jan. 31, 2008<br />

Customers’ Location Order Transport cost, 1/2 Full <strong>and</strong> Full load<br />

L<strong>and</strong>skrona, Sweden. 24 - (Internal)<br />

France (Max 25ton) 563 Customer<br />

France (Max 25ton) 108 9000SEK/ 17000SEK<br />

Holl<strong>and</strong> 240 9000SEK/ 17000SEK<br />

Belgium 6 Customer<br />

Pol<strong>and</strong> 220 Customer<br />

Korea 50 Customer<br />

Austria 10 Customer<br />

Turkey 88 Customer<br />

Ch<strong>in</strong>a 120 Customer<br />

France (Max 25ton) 3984 9000SEK/ 17000SEK<br />

France 2058 Customer<br />

Russian (Max 21,5 ton) 1752 50000 SEK (Always pay for full truck)<br />

France 7423 Customer<br />

Spa<strong>in</strong> 100 Customer<br />

France 198 Customer<br />

Turkey 340 Customer<br />

France (Max 25ton) 6 9000SEK/ 17000SEK<br />

Sweden 816 Customer<br />

Sweden 16 Customer<br />

Total 18122<br />

Table 4.1 Work<strong>in</strong>g Parameters <strong>of</strong> Each Station<br />

Station/Ma<strong>in</strong> TID Queue Station/Pre. TID Queue<br />

Capacity<br />

Capacity<br />

1&2 50s 6 1 52s 10<br />

3 35s 2 2 53s 10<br />

4 20s 4 3 38s 10<br />

5b 60s 12 4 36s 10<br />

5 55s 3<br />

6 55s 4<br />

7 18s 3 *Because <strong>of</strong> <strong>the</strong> different<br />

8<br />

9<br />

10<br />

11<br />

66s<br />

50s<br />

55s/35s*<br />

60s<br />

5<br />

3<br />

2<br />

2<br />

configurations, TID <strong>of</strong> station 10 <strong>in</strong><br />

ma<strong>in</strong> assembly l<strong>in</strong>e is variation. 7/30<br />

<strong>of</strong> <strong>the</strong> products cost 55s at this station<br />

<strong>and</strong> <strong>the</strong> rests cost 35s.<br />

67


Table 5.1 Suppliers & Suppliers’ Location <strong>and</strong> Quality Criterion<br />

Name <strong>of</strong> Supplier Location Quality Certify<strong>in</strong>g Environment Certify<strong>in</strong>g L<strong>and</strong><br />

AB Indoma Sweden ISO 9002 SE<br />

AB L<strong>in</strong>de Mask<strong>in</strong>er Sweden ISO 9001:2000 ISO 14001 SE<br />

Freudenberg Simrit AB Sweden ISO 9001, QS 9000 ISO 14001 SE<br />

Schaeffler Sverige AB Sweden TS 16949:2002 ISO 14001 SE<br />

Nolato Sunne AB Sweden TS 16949 ISO 14001 SE<br />

F<strong>in</strong>nveden Powertra<strong>in</strong> AB Sweden TS 16949 ISO 14001 SE<br />

Svenska Statoil AB Sweden ISO 14001 SE<br />

Henkel Norden AB Sweden TS 16949 ISO 14001 SE<br />

Haldex Garphyttan Wire Sweden TS 16949 ISO 14001 SE<br />

Stece AB Sweden ISO 9001, QS 9000 ISO 14001 SE<br />

Bufab Sweden AB Sweden ISO 9002 SE<br />

Precomp Solutions AB Sweden TS16949 ISO 14001 SE<br />

Tilka Trad<strong>in</strong>g AB Sweden ISO 9001 SE<br />

Lesjöfors Industrifjädrar AB Sweden ISO 9001:2000 ISO 14001 SE<br />

Consafe Logistics Data Capture AB Sweden SE<br />

Nermans Märksystem AB Sweden SE<br />

Nomo Kullager AB Sweden ISO 9001:2000 ISO 14000:2004 SE<br />

Honeywell Bremsbelag GmbH Germany ISO TS 16949 ISO 14001 DE<br />

IMS Gear GmbH Germany TS 16949 Åtgärdsplan DE<br />

Kamax-W. R Kellerman GmbH & Co Germany 9001, QS 9000, VDA 6,1 ISO 14001 DE<br />

Hay Speed Umformtecknik GmbH Germany TS 16949 ISO 14001 DE<br />

Walter Hundhausen GmbH & Co KG Germany ISO/TS 16949 DIN EN ISO 14001:2005 DE<br />

Scan Press A/S Denmark ISO9001:2000 DK<br />

Sakthi Auto Component Ltd USD India TS16949 ISO 14001 IN<br />

68


Table 5.2 Delivery Information <strong>of</strong> Current Suppliers<br />

Name <strong>of</strong> Suppliers Delivery Condition Delivery Way Supplementary Item Post<strong>in</strong>g Type L<strong>and</strong><br />

AB Indoma DHL nat Out Delivery SE<br />

AB L<strong>in</strong>de Mask<strong>in</strong>er DHL nat Out Delivery SE<br />

Freudenberg Simrit AB EXW DHL nat Out Delivery SE<br />

Schaeffler Sverige AB DHL nat Out Delivery SE<br />

Nolato Sunne AB EXW DHL nat Out Delivery SE<br />

F<strong>in</strong>nveden Powertra<strong>in</strong> AB DHL nat Out Delivery SE<br />

Svenska Statoil AB DHL nat Out Delivery SE<br />

Henkel Norden AB DHL nat Out Delivery SE<br />

Haldex Garphyttan Wire DHL nat Out Delivery SE<br />

Stece AB DHL nat Out Delivery SE<br />

Bufab Sweden AB DDP Out Delivery SE<br />

Precomp Solutions AB DHL nat Out Delivery SE<br />

Nomo Kullager AB DHL nat Out Delivery SE<br />

Tilka Trad<strong>in</strong>g AB DHL nat Out Delivery SE<br />

Lesjöfors Industrifjädrar AB DHL nat Out Delivery SE<br />

Consafe Logistics Data Capture AB FCA 002 DHL nat Out Delivery SE<br />

Nermans Märksystem AB DDP Out Delivery SE<br />

Walter Hundhausen GmbH & Co KG DHL <strong>in</strong>t Out Delivery DE<br />

Honeywell Bremsbelag GmbH DHL <strong>in</strong>t Out Delivery DE<br />

IMS Gear GmbH DHL <strong>in</strong>t Out Delivery DE<br />

Kamax-W. R Kellerman GmbH & Co DHL <strong>in</strong>t Out Delivery DE<br />

Hay Speed Umformtecknik GmbH Out Delivery DE<br />

Scan Press A/S Truck/Swed Out Delivery DK<br />

Sakthi Auto Component Ltd USD Out Delivery IN<br />

69


Appendix B<br />

Figure 1 Assembly l<strong>in</strong>e Model <strong>in</strong> Ideal Situation<br />

70


Figure 2 Simplified Current Assembly L<strong>in</strong>e Model<br />

71


Figure 3 Current Assembly L<strong>in</strong>e Model with Data under Triangular analysis<br />

72


Figure 4 Assembly L<strong>in</strong>e Model <strong>in</strong> Solution 1<br />

73


Figure 5 Assembly L<strong>in</strong>e Model <strong>in</strong> Solution 2<br />

74


Figure 6 Assembly L<strong>in</strong>e Model <strong>in</strong> Solution 3<br />

75

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!