17.05.2015 Views

Advances in perturbative thermal field theory - Ultra-relativistic ...

Advances in perturbative thermal field theory - Ultra-relativistic ...

Advances in perturbative thermal field theory - Ultra-relativistic ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

414 U Kraemmer and A Rebhan<br />

k 2 = 0<strong>in</strong> B and to def<strong>in</strong>e<br />

∫<br />

−1<br />

∞<br />

t =− A =<br />

k0 2 − k2 − ˆ A (k 0 , |k|) = dk<br />

0<br />

′<br />

−∞ 2π<br />

ˆρ t (k<br />

0 ′ , |k|)<br />

k<br />

0 ′ − k , (A.1)<br />

0<br />

l =− k2<br />

k 2 B =<br />

∫<br />

−1<br />

∞<br />

k 2 + ˆ B (k 0 , |k|) = −∞<br />

dk ′ 0<br />

2π<br />

ˆρ l (k ′ 0 , |k|)<br />

k ′ 0 − k 0<br />

− 1 k 2 ,<br />

(A.2)<br />

where ˆ A,B are the HTL quantities given <strong>in</strong> (5.15) and (5.16). The spectral functions are<br />

given by<br />

ˆρ t,l (k 0 , |k|) = Disc t,l (k 0 , |k|) = 2 lim Im t,l (k 0 +iɛ, |k|)<br />

ɛ→0<br />

= 2πε(k 0 )z t,l (|k|)δ(k0 2 − ω2 t,l (|k|)) + β t,l(k 0 , |k|)θ(−k 2 ) (A.3)<br />

with ωt,l 2 (|k|) as shown <strong>in</strong> figure 9 (for k2 > 0). For small and large values of k 2 , they are<br />

approximated by [217]<br />

ωt 2 ≃ ωpl 2 + 6 5 k2 , ωl 2 ≃ ω2 pl + 3 5 k2 , k 2 ≪ ωpl 2 , (A.4)<br />

( )<br />

ωt 2 ≃ k 2 + m 2 ∞ , ω2 l ≃ k2 +4k 2 exp − k2<br />

− 2 , k 2 ≫ m 2<br />

m 2 ∞ , (A.5)<br />

∞<br />

where ωpl 2 = ˆm 2 D /3 is the plasma frequency common to both modes and m2 ∞ = ˆm2 D /2 is the<br />

asymptotic mass of transverse quasi-particles. The effective <strong>thermal</strong> mass of mode l (or B)<br />

vanishes exponentially for large k 2 .<br />

The residues z t,l are def<strong>in</strong>ed by<br />

[ ] ∣ ∂<br />

∣∣∣<br />

z −1<br />

t,l = ∂k0<br />

2 (− t,l ) −1 (A.6)<br />

−1<br />

t,l =0<br />

and explicitly read<br />

2k 2 ∣<br />

0<br />

z t =<br />

k2 ∣∣∣k0 2k 2 0<br />

ˆm 2 D k2 0 − , z (k2 ) 2 l =<br />

k2<br />

=ω t (|k|) k 2 ( ˆm 2 D − k2 )<br />

∣ (A.7)<br />

k0 =ω l (|k|)<br />

with the follow<strong>in</strong>g asymptotic limits [218]:<br />

( )<br />

z t ≃ 1 − 4k2<br />

5ωpl<br />

2 , z l ≃ ω2 pl<br />

k 2 1 − 3 k 2<br />

10 ωpl<br />

2 , k 2 ≪ ωpl 2 , (A.8)<br />

(<br />

z t ≃ 1 − m2 ∞<br />

2k 2 ln 4k2 − 2<br />

m 2 ∞<br />

)<br />

, z l ≃ 4k2 exp<br />

m 2 ∞<br />

(<br />

− k2<br />

− 2<br />

m 2 ∞<br />

)<br />

, k 2 ≫ m 2 ∞ . (A.9)<br />

The s<strong>in</strong>gular behaviour of z l for k 2 → 0 is <strong>in</strong> fact only due to the factor k 2 /k 2 <strong>in</strong> (A.2);<br />

the residue <strong>in</strong> B approaches 1 <strong>in</strong> this limit. For k 2 ≫ m 2 ∞ , the residue <strong>in</strong> l vanishes<br />

exponentially, as mentioned <strong>in</strong> section 5.1.2.<br />

The Landau-damp<strong>in</strong>g functions β t,l are given by<br />

β t (k 0 , |k|) = π ˆm 2 k 0 (−k 2 )<br />

D |<br />

2|k| 3 t (k 0 , |k|)| 2 , β l (k 0 , |k|) = π ˆm 2 k 0<br />

D<br />

|k| | l(k 0 , |k|)| 2 .<br />

(A.10)<br />

These are odd functions <strong>in</strong> k 0 that vanish at k 0 = 0 and at k0 2 = k2 . For large k 2 and fixed ratio<br />

k 0 /|k|, β t,l decay like 1/k 4 .<br />

The spectral functions ρ t,l satisfy certa<strong>in</strong> sum rules that can be obta<strong>in</strong>ed by a Taylor<br />

expansion of (A.1) and (A.2) <strong>in</strong> k 0 [307, 480, 10]. A special, particularly important case is

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!