16.11.2012 Views

Belimo VRD2 - TROX

Belimo VRD2 - TROX

Belimo VRD2 - TROX

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

VARYCONTROL<br />

Reference List<br />

Design and Areas of Application<br />

Installation<br />

Commissioning<br />

Maintenance<br />

Control Components<br />

Technical Leaflets


Reference list<br />

VARYCONTROL<br />

Agrippina Versicherung<br />

Köln/G<br />

Autostadt Hotel Ritz, Wolfsburg<br />

Wolfsburg/G<br />

Axel-Springer-Verlag<br />

Hamburg/G<br />

Bankhaus Lampe<br />

Düsseldorf/G<br />

Bausparkasse Schwäbisch Hall<br />

Schwäbisch Hall/G<br />

Bayer Leverkusen<br />

Leverkusen/G<br />

Bertelsmann<br />

Gütersloh/G<br />

BHW<br />

Hameln/G<br />

Biozentrum Frankfurt<br />

Frankfurt/G<br />

Boehringer Ingelheim<br />

Ingelheim/G<br />

Boehringer-Biberach<br />

Biberach/G<br />

Bosch-Stuttgart<br />

Stuttgart/G<br />

Bundesanstalt für Arbeit<br />

Nürnberg/G<br />

Bundeskanzleramt Berlin<br />

Berlin/G<br />

Bundesprüfanstalt für Arzneimittel<br />

Bonn/G<br />

City Carrè Magdeburg<br />

Magdeburg/G<br />

City Point Nürnberg<br />

Nürnberg/G<br />

Citybank Duisburg<br />

Duisburg/G<br />

CIV Europa-Parlament Brüssel<br />

Brüssel/B<br />

Commerzbank Frankfurt<br />

Frankfurt/G<br />

Condor-Versicherung<br />

Hamburg/G<br />

Daimler-Benz Düsseldorf<br />

Düsseldorf/G<br />

Daimler-Benz Germersheim<br />

Germersheim/G<br />

Daimler-Benz-Sindelfingen<br />

Sindelfingen/G<br />

Demirbank Esentepe<br />

Istanbul/T<br />

Deutsche Bank Düsseldorf<br />

Düsseldorf/G<br />

Deutsche Bank Mannheim<br />

Mannheim/G<br />

Deutsche Lufthansa<br />

Frankfurt/G<br />

DMC-Headquarter Degussa<br />

Hüls/G<br />

Erasmus-Universität, Rotterdam<br />

Rotterdam/NL<br />

Flughafen Bremen<br />

Bremen/G<br />

Flughafen Düsseldorf<br />

Düsseldorf/G<br />

Flughafen Frankfurt, Terminal Ost<br />

Frankfurt/G<br />

Flughafen Friedrichshafen<br />

Friedrichshafen/G<br />

Flughafen Hamburg<br />

Hamburg/G<br />

Flughafen München I und II<br />

München/G<br />

Flughafen Warschau<br />

Warschau/G<br />

Flughafen Zürich<br />

Zürich/S<br />

Gödeke-Freiburg<br />

Freiburg/G<br />

Heidelberger Druckmaschinen<br />

Heidelberg/G<br />

Henkel Z21<br />

Düsseldorf/G<br />

Hoechst-Frankfurt<br />

Frankfurt/G<br />

IBM-Heidelberg<br />

Heidelberg/G<br />

Immuno Wien<br />

Wien/Aus<br />

Industriekreditbank Düsseldorf<br />

Düsseldorf/G<br />

Investbank Berlin<br />

Berlin/G<br />

12/2001


Reference list<br />

VARYCONTROL<br />

KADEWE-Berlin<br />

Berlin/G<br />

Karstadt-Bielefeld<br />

Bielefeld/G<br />

Lufthansa-Bremen<br />

Bremen/G<br />

LZB Bremen<br />

Bremen/G<br />

LZB-Kiel<br />

Kiel/G<br />

Maintower Frankfurt<br />

Frankfurt/G<br />

Merck Darmstadt<br />

Darmstadt/G<br />

MTZ-Dresden<br />

Dresden/G<br />

NG-Bank Hannover<br />

Hannover/G<br />

Office-World-Bremen<br />

Bremen/G<br />

OPZ-Berlin<br />

Berlin/G<br />

Pharmazentrum-Oranienburg<br />

Oranienburg/G<br />

Provinzial-Versicherung Düsseldorf<br />

Düsseldorf/G<br />

Queens Tower, Amsterdam<br />

Amsterdam/NL<br />

Rheinbraun-Köln<br />

Köln/G<br />

Roche Penzberg<br />

Penzberg/G<br />

Schering Berlin<br />

Berlin/G<br />

Sony-Center Berlin<br />

Berlin/G<br />

Sophia-Krankenhaus Rotterdam<br />

Rotterdam/NL<br />

Sozial-Versicherungsbank<br />

Amsterdam<br />

Amsterdam/NL<br />

Stadhuis Den Haag<br />

Den Haag/NL<br />

Thomae-Biberach<br />

Biberach/G<br />

TKK-Hamburg<br />

Hamburg/G<br />

TU-Eindhoven<br />

Eindhoven/NL<br />

Universität Amsterdam<br />

Amsterdam/NL<br />

Universität Mainz<br />

Mainz/G<br />

Universitäts-Klinikum Leipzig<br />

Leipzig/G<br />

Urban-Medical-Center, Moskau<br />

Moskau/R<br />

Volksfürsorge<br />

Hamburg/G<br />

WDR-Köln<br />

Köln/G<br />

West-LB Münster<br />

Münster/G<br />

Zentralklinikum-Dresden<br />

Dresden/G<br />

Zentral-Klinikum-Köln<br />

Köln/G<br />

ZF-Friedrichshafen<br />

Friedrichshafen/G


Design and Areas of Application<br />

1<br />

Contents<br />

Subject Page<br />

Volume Flow Control Terminal Units<br />

for VAV Systems 2<br />

Trox Scope of Supply 3<br />

Description of Function 4<br />

Single Duct System,<br />

Suply Air/Extract Air Slave Control 5<br />

Single Duct System with Reheat Coil 6<br />

Dual Duct System Type TVM 6<br />

Room Pressure Control 7<br />

Duct Pressure Control 7<br />

Explanation of Order Codes 8<br />

Nomenclature<br />

9<br />

Design changes reserved · All rights reserved · ® Gebrüder Trox GmbH (12/2001) · Leaflet No. E016NA1


TVZ · TVA<br />

TVM<br />

TVR<br />

TVRK<br />

TVJ/TVT<br />

Design and Areas of Application<br />

2<br />

Volume Flow Control Terminal Units<br />

for VAV Systems<br />

The VARYCONTROL VAV terminal units are designed for<br />

variable air volume flow systems (VAV). The types are<br />

selected according to various project-specific criteria:<br />

Selection Criterion Terminal Unit Type<br />

System Supply air<br />

Type Single duct TVZ/TVS/TVR/TVJ/TVT<br />

Dual duct TVM<br />

Extract air TVA/TVR(K)/TVJ/TVT<br />

By acoustic<br />

criteria Very high TVZD + TS<br />

TVAD + TS<br />

TVMD + TS<br />

TVJD/TVTD + TX<br />

High criteria TVZ/TVA/TVM<br />

Low criteria TVR/TVJ/TVT<br />

Reduction in<br />

duct velocity TVZ/TVA/TVS/TVM<br />

Low installation height TVR/TVJ/TVT<br />

Chemical resistance<br />

Coating TVR-P1/TVJ-P1<br />

Stainless steel TVR-A2<br />

plastic TVRK<br />

Volume flow ranges<br />

15 to 1680 l/s TVZ/TVA/TVS<br />

10 to 1680 l/s TVR/TVRK<br />

40 to 615 l/s TVM<br />

45 to 10100 l/s TVJ/TVT<br />

The volume flow is controlled by a volume flow controller<br />

which uses pneumatic or electrical energy. These controllers<br />

and the associated measurement and activating<br />

elements are integral parts of the volume flow control terminal<br />

unit. The overall design of the air conditioning<br />

system results in the VAV terminal unit being the connecting<br />

element between the system and the room, with the<br />

following functions:<br />

• to adjust the volume flow within specified tolerances<br />

irrespective of duct pressure<br />

• as an auxiliary parameter for the room temperature<br />

controller, to maintain a constant room temperature.<br />

To achieve the correct control strategy, various tasks<br />

must be noted when planning volume flow control<br />

systems. The system designer, contractor, manufacturer<br />

of the control system and Trox must collaborate and the<br />

exchange of information is essential.


Design and Areas of Application<br />

VAV System with Electronic or<br />

Pneumatic Volume Flow Control<br />

t<br />

VAV System with Digital Single Room Control<br />

t<br />

Room Temperature Controller<br />

Trox scope of supply<br />

Volume Flow Controller<br />

Volume Flow and<br />

Room Temperature<br />

Controller (DDC)<br />

Guarantee limit between Trox and system<br />

manufacturer or manufacturer of control<br />

components<br />

3<br />

Trox Scope of Supply<br />

The guarantee limits for VAV terminal units are set by the<br />

control function. The diagrams show the usual control<br />

systems used today. When a volume flow controller is<br />

used, this limit is defined by input and output signals.<br />

With combined room temperature and volume flow controllers,<br />

this limit passes through the controller. In these<br />

cases, the manufacturer of the VAV terminal unit guarantees<br />

to maintain the volume flow, and the supplier of the<br />

temperature controller guarantees the control of room<br />

temperature.<br />

The scope of supply for VARYCONTROL systems<br />

includes:<br />

• the VAV terminal unit with its flow and acoustic properties<br />

as given in the sales literature, and the control<br />

components ordered<br />

• installation, wiring and tubing connections of the control<br />

components mounted on the unit<br />

• volume flow adjustment and individual calibration test<br />

of unit and control components<br />

• guarantee for the above system according to the terms<br />

and conditions of order<br />

• technical documentation<br />

The following are not included:<br />

• fixing and sealing materials<br />

• water control valves and fittings for the reheat coils<br />

• transformers, unless specified and shown on order<br />

paperwork<br />

• pressure regulators to the operating pressure of the<br />

pneumatic controller of 1.3 bar<br />

The guarantee for the “room temperature” control system<br />

and customer overrides in principle the responsibility of<br />

the building control system/BMS company. Information<br />

on power consumption, connections etc. is given in the<br />

technical documentation from the control component<br />

manufacturer.


Room Temperature Control Circuit<br />

Set point<br />

Effect on room<br />

temperature<br />

Volume Flow Control Circuit<br />

3 2<br />

Control<br />

deviation<br />

Variable<br />

volume flow<br />

∆p w<br />

5 M<br />

4<br />

1 Volume flow controller<br />

2 Differential pressure sensor<br />

3 Control damper blade<br />

4 Differential pressure transducer<br />

5 Actuator<br />

6 Room temperature controller<br />

Room<br />

temperature<br />

controller<br />

Volume flow<br />

controller<br />

1 6<br />

Energy<br />

requirement<br />

Design and Areas of Application<br />

4<br />

Description of Function<br />

“Room Temperature” Control Circuit<br />

In a VAV system, the volume flow control circuit is governed<br />

by a room temperature-dependent signal. The<br />

room temperature is measured with a temperature<br />

sensor. The room temperature controller compares the<br />

actual value with the set value and provides an output<br />

signal corresponding to the resulting energy requirement<br />

which is used as a set point signal for the volume flow<br />

controller. If the room temperature rises, the cooling<br />

effect is increased by increasing the volume flow (with<br />

cold supply air) and the room temperature held at its set<br />

point.<br />

Volume Flow Cascade Control Circuit<br />

The volume flow control has a closed control circuit:<br />

measurement – comparison – adjustment.<br />

As volume measurement accuracy is essential for quality,<br />

an optimised differential pressure sensor was developed<br />

for the Trox VARYCONTROL VAV terminal units. Differential<br />

pressures are measured at the inlet to the multi point<br />

flow grid. The particular arrangement of the measurement<br />

points gives an amplifica-tion of the dynamic pressure<br />

as a mean value. The differential pressure thus measured<br />

is a function of the volume flow and is converted<br />

into an electrical or pneumatic signal by a transducer.<br />

The volume flow controller determines the volume flow<br />

from the transducer signal.<br />

Depending on the control deviation between actual and<br />

set values, the control damper blade is adjusted by the<br />

actuator until the actual value and set point are equal<br />

(P or Pl control depending on controller type). The volume<br />

flow controller maintains a constant volume flow over the<br />

specified pressure range within controller-dependent<br />

tolerances. Duct pressure fluctuations cannot therefore<br />

have a disruptive effect on the room temperature control.


Design and Areas of Application<br />

Single Duct with Supply Air/<br />

Extract Air Dependent Control<br />

Extract<br />

air<br />

TVA<br />

TVR<br />

TVJ<br />

Constant Differential Control<br />

Extract air volume flow<br />

Ratio Control<br />

Extract air volume flow<br />

250<br />

l/s<br />

200<br />

150<br />

100<br />

50<br />

Differential ± 0<br />

TVR + 50 m 3 /h<br />

TVJ - 50 m 3 /h<br />

Ratio ± 0<br />

Ratio + 10 %<br />

Ratio - 10 %<br />

TVZ<br />

TVS<br />

TVR<br />

TVJ<br />

0<br />

0 50 100 150 200 l/s 250<br />

250<br />

l/s<br />

200<br />

150<br />

100<br />

50<br />

t<br />

Supply air volume flow (actual value)<br />

0<br />

0 50 100 150 200 l/s 250<br />

Supply air volume flow (actual value)<br />

Supply<br />

air<br />

5<br />

Single Duct System<br />

The supply air volume flow controller receives a control<br />

signal from the room temperature controller and holds<br />

the supply air volume flow, at the specified set value. The<br />

controller adjusts the air quantity between the specified<br />

V · min and V · max values.<br />

Suply Air/Extract Air Slave Control<br />

In individual rooms and closed office areas, the balance<br />

between supply air and extract air must be maintained to<br />

avoid whistling noises through gaps around doors etc.,<br />

or making doors difficult to open and close. For this, the<br />

actual value of the supply air is monitored at the extract<br />

air volume flow controller. Thus the extract air volume<br />

flow in every operating situation follows the supply air.<br />

When designing the required volume flow differences,<br />

it must be ensured that the proposed controller can<br />

achieve the required constant differential or ratio control.<br />

When ordering VAV terminal units, the allocation by room<br />

numbers must be given. This allocation must be taken<br />

into account when the units are installed. VAV terminal<br />

units types TVA, TVR and TVJ are designed for use in<br />

normal air conditioning systems with extract air without<br />

high dust levels and without aggressive elements in the<br />

air. For extremely dusty extract air (grease, sticky dust),<br />

membrane pressure transducers must be provided and<br />

regular maintenance planned. For aggressive extract air,<br />

volume flow controllers of suitable materials are available.<br />

Order Example<br />

In accordance with sales leaflet and price list for ratio<br />

control:<br />

TVZ-R/160/B13/M2-30-250 l/s<br />

TVA -R/160/B13/S2-27-225 l/s


Single Duct System with Reheat Coil<br />

for LPHW Heating<br />

Order Example<br />

as per sales leaflet and price list:<br />

TVZ-R-1/200/B13/E2-200-400 l/s<br />

Dual Duct System<br />

t<br />

t<br />

TVZ<br />

TVS<br />

TVR<br />

TVJ<br />

TVM<br />

Order Example<br />

as per sales leaflet and price list:<br />

TVM-R-/200/B27/E2-200-400 l/s<br />

Supply air<br />

Warm<br />

Cold<br />

Design and Areas of Application<br />

6<br />

Single Duct System with Reheat Coil<br />

The room temperature controller must have two outputs<br />

in sequence, heating and cooling. The cooling output is<br />

connected to the volume flow controller which controls<br />

the supply air volume flow between V · min and V · max. The<br />

heating output acts directly on the water valve actuator.<br />

The reheat coil selection can be carried out by the designer<br />

from Trox leaftets. Trox can also carry out the calculations<br />

if the following information is given in full:<br />

t e : air inlet temperature<br />

t a : air outlet temperature<br />

t wm : mean water temperature<br />

Unless specified otherwise, the heating volume is taken<br />

as V · min. The water control valve sizing is the responsibility<br />

of the system designer.<br />

Dual Duct System<br />

With a dual duct system, both heating and cooling air<br />

is available at all times for room temperature control.<br />

Cooling takes place due to the variable cold supply air<br />

volume flow with the warm air duct closed. In the heating<br />

mode, the warm air volume flow is increased as required.<br />

The room temperature controller is connected to the cold<br />

air volume flow controller.<br />

Control Diagram TVM<br />

Volume flow<br />

Room temperature<br />

Cold<br />

Warm<br />

Total volume flow


Design and Areas of Application<br />

Room Pressure Control<br />

Extract<br />

air<br />

TVA<br />

TVR<br />

TVJ<br />

Order Example<br />

as per sales leaflet and price list:<br />

TVZ-R-1/160/B13/E2-25-250 l/s<br />

TVR/160/BG3/F2- -25 Pa, Extract Air<br />

Duct Pressure Control<br />

Order Example<br />

as per sales leaflet and price list:<br />

TVR/160/BH3/F2-110 Pa, Supply Air<br />

t<br />

TVZ<br />

TVS<br />

TVR<br />

TVJ<br />

Supply<br />

air<br />

7<br />

Room Pressure Control<br />

In sealed rooms, as a result of control deviations, with<br />

supply air/extract air slave control systems, unacceptably<br />

high room pressure differences can occur. It is therefore<br />

recommended that the room pressure be controlled. In<br />

the example shown, the room temperature is controlled<br />

via variable supply air (VAV). The room pressure is also<br />

controlled via the extract air. The room pressure controller<br />

acts directly on the actuator of the extract air<br />

damper. The membrane pressure transducer is connected<br />

to the room and a reference room (e.g. corridor) with<br />

measurement tubing. The specified maximum permitted<br />

tube length and installation position of the transducer<br />

must be observed. If an additional extract air volume flow<br />

controller is integrated, the extract air volume flow may<br />

be limited. This avoids extreme positions on the extract<br />

air damper (open or closed) when the doors are open or<br />

if there is any room leakage. This type of control is not<br />

possible with all controllers.<br />

The following combinations are possible:<br />

Supply air Extract air<br />

Constant/variable Room pressure<br />

positive or negative<br />

Room pressure Constant/variable<br />

positive or negative<br />

The proposed application and positive or negative pressure<br />

in Pa must be stated at the time of order.<br />

Duct Pressure Control<br />

All single duct VAV terminal units can have duct pressure<br />

control. A controller with a membrane pressure transducer<br />

acts directly on the damper actuator. The existing<br />

differential pressure sensor can also be fitted with a<br />

transducer to measure the actual volume flow for secondary<br />

control. The order should state the application of<br />

supply or extract air and the pressure to be calibrated in<br />

Pa. The reference pressure connection of the duct<br />

pressure transducer remains open. The duct pressure<br />

take-off is connected by the customer. The measurement<br />

point must be selected according to flow and system<br />

related criteria. The measurement connection must be<br />

mounted at right angles, without burrs, and connected<br />

via tubing to the plus (high) or minus (low) connection of<br />

the transducer. The notes in the controller descriptions<br />

on maximum tubing lengths, installation position must be<br />

observed.


Explanation of Order Codes<br />

The control components (controller, transmitter, actuators)<br />

are identified by a three point code (see price list).<br />

Code Make of<br />

control<br />

components<br />

B<br />

L<br />

H<br />

C<br />

P<br />

<strong>Belimo</strong><br />

Sauter, pneumatic Sauter, elektronic Honeywell Siemens-Landis&Staefa<br />

Volume flow<br />

device<br />

Type …<br />

TVZ/TVA/TVS/TVR/<br />

TVRK/TVJ/TVT<br />

TVZ/TVA/TVS/TVR/<br />

TVRK/TVJ/TVT<br />

TVM<br />

TVZ/TVA/TVS/TVR/<br />

TVRK/TVJ/TVT<br />

TVZ/TVA/TVS/TVR/<br />

TVRK/TVJ/TVT<br />

TVZ/TVA/TVS/TVR/<br />

TVRK/TVJ/TVT<br />

TVM<br />

TVZ/TVA/TVS/TVR/<br />

TVRK/TVJ/TVT<br />

TVM<br />

TVZ/TVA/TVS/TVR/<br />

TVRK/TVJ/TVT<br />

TVM<br />

TVZ/TVA/TVS/TVR/<br />

TVRK/TVJ/TVT<br />

TVM<br />

1) for TVT only; depending of necessary torque, selected by Trox<br />

Code Controller/Transmitter<br />

Type …<br />

1<br />

B<br />

G<br />

J<br />

H<br />

C<br />

2<br />

E<br />

F<br />

N<br />

P<br />

L<br />

Y<br />

M<br />

M<br />

N<br />

Q<br />

R<br />

B<br />

C<br />

J<br />

Q<br />

R<br />

D<br />

S<br />

A<br />

B<br />

D<br />

E<br />

N<br />

P<br />

R<br />

S<br />

U<br />

V<br />

X<br />

Y<br />

1<br />

2<br />

3<br />

Design and Areas of Application<br />

<strong>VRD2</strong><br />

VRP + VFP 300<br />

VRP-STP + VFP100<br />

VRP-STP + VFP300<br />

VRP-STP + VFP600<br />

NMV-D2<br />

2 x <strong>VRD2</strong><br />

2 x VRP + 2 x VFP300<br />

2 x NMV-D2<br />

GLB181.1E/3<br />

ASV181.1/E<br />

PRVU<br />

2 x GLB181.1E/3<br />

2 x PRVU<br />

W7751H2009<br />

W7751F2003<br />

2 x W7751H2009<br />

2 x W7751F2003<br />

RLE150F003<br />

RLE150F013<br />

RLE150F013 + …F100<br />

EYE205<br />

EYE206<br />

RLE150F003 + RLE150F001<br />

2 x EYE205<br />

RLP10, NO, PN21<br />

RLP10, NO, PN61<br />

RLP10, NZ, PN21<br />

RLP10, NZ, PN61<br />

RLP100, NO, PN21<br />

RLP100, NO, PN61<br />

RLP100, NZ, PN21<br />

RLP100, NZ, PN61<br />

RLP100 (NO, PN21) + RLP100<br />

RLP100 (NZ, PN21) + RLP100<br />

RLP100 (NO, PN21) + RLP100<br />

RLP100 (NZ, PN21) + RLP100<br />

2 x RLP10 (NO, PN21)<br />

2 x RLP10, (NZ, PN21)<br />

1 x RLP100F918<br />

(NZ/NO, 2 x PN21)<br />

8<br />

This table shows the connections between code numbers<br />

and technical basic functions.<br />

Application Code Actuator<br />

Type …<br />

Standard VAV-Control<br />

VAV-Control for polluted air<br />

Room- or duct pressure control<br />

Standard VAV-Control<br />

Standard dual duct control<br />

VAV-Control for polluted air<br />

Standard dual duct control<br />

Standard VAV-Control<br />

Standard VAV-Control,<br />

for higher torque<br />

resp. Spring return function<br />

Standard VAV-Control,<br />

digital communication<br />

Standard dual duct control<br />

Standard dual duct control<br />

Standard VAV-Control,<br />

digital communication, LON-Bus<br />

Standard VAV-Control,<br />

digital communication, LON-Bus<br />

Standard VAV-Control,<br />

digital communication, LON-Bus<br />

Standard VAV-Control,<br />

digital communication, LON-Bus<br />

Standard VAV-Control<br />

Room pressure/volume flow<br />

cascade<br />

Standard VAV-Control,<br />

digital communication<br />

Standard dual duct control<br />

Standard dual duct control,<br />

digital communication<br />

Standard VAV-Control<br />

Standard VAV-Control,<br />

lower volume flow rates<br />

Volume flow/room pressure<br />

cascade<br />

Standard dual duct control<br />

Standard dual duct control<br />

Standard dual duct control<br />

1<br />

3<br />

B<br />

D<br />

5<br />

7<br />

8<br />

C<br />

0<br />

A<br />

1<br />

2<br />

3<br />

4<br />

5<br />

A<br />

5<br />

0<br />

D<br />

0<br />

5<br />

0<br />

6<br />

2<br />

6<br />

4<br />

1<br />

4<br />

1)<br />

1)<br />

1)<br />

1)<br />

1)<br />

1)<br />

1)<br />

SM24-V<br />

NM24-V<br />

AF24-V<br />

GM24-V<br />

VAV-Compact<br />

2 x NM24-V<br />

2 x AF24-V<br />

(spring return function)<br />

2 x VAV-Compact<br />

Compact controller<br />

GBB131.1E<br />

GEB131.1E<br />

GIB131.1E<br />

GMA131.1E<br />

(spring return function)<br />

GCA131.1E<br />

(spring return function)<br />

GLB131.1E<br />

GBB131.1E<br />

GLB131.1E<br />

2 x compact controller<br />

2 x GLB131.1E<br />

VAV compact controller<br />

ML6174E2008<br />

2 x compact controller<br />

2 x ML6174E2008<br />

ASM113F902<br />

SA1.12<br />

2 x ASM113F902<br />

B555DC2<br />

2 x B555DC2


Design and Areas of Application<br />

Nomenclature<br />

TVZ VAV terminal box with integrated silencer,<br />

for supply air<br />

TVA VAV terminal box with integrated silencer,<br />

for extract air<br />

TVR VAV terminal box with integrated silencer,<br />

for supply and extract air<br />

9<br />

TVJ VAV terminal box, casing rectangular<br />

TVT VAV controller, casing rectangular, control<br />

damper leakage complies with DIN 1946, part 4<br />

TVM VAV dual duct etrminal box<br />

...-D Additional acoustic cladding


Installation<br />

1<br />

Contents<br />

Subject Page<br />

Safety Instructions 2<br />

Delivery and Storage 3<br />

Transport on Site 3<br />

Reheat Coil Connections 4<br />

Wiring and Tubing Connections 4<br />

Secondary Silencer 4<br />

Installation TVJ/TVT 5<br />

Design changes reserved · All rights reserved · ® Gebrüder Trox GmbH (12/2001) · Leaflet No. E016NA2


Before installing the VAV terminal<br />

units, read and observe these<br />

installation instructions!<br />

Proper Application<br />

The VAV terminal units are suitable for use in ventilation<br />

and air conditioning systems. Particular conditions can<br />

restrict the functioning capacity and must be taken into<br />

account during the design stage:<br />

• If the air is very dusty or contains fluff or sticky particles,<br />

e.g. extract air, units with membrane pressure<br />

transducers must be used. Access to the units for<br />

maintenance must be allowed.<br />

• For aggressive air, only volume flow control units made<br />

of plastic materials should be used after extensive<br />

tests for suitability.<br />

• Galvanised sheet steel units must not be installed in<br />

contaminated environments (e.g. acetic acid).<br />

• For hazardous areas, only use units with explosionproof<br />

electrical components.<br />

• For protected exterior areas, only use units with membrane<br />

pressure transducers. Larger volume flow tolerances<br />

occur due to the wider temperature range.<br />

2<br />

Safety Instructions<br />

Installation<br />

• Installation and wiring should only be carried out by<br />

specialists.<br />

• During installation, wiring and commissioning, the normal<br />

rules of site working, in particular the safety and<br />

accident prevention regulations, must be observed.<br />

• Because of the risk of injury from edges and burrs,<br />

carry and install units only while wearing gloves.<br />

• Mount devices properly and secure fixings with locking<br />

nuts. Suspension points must only carry the weight of<br />

the unit. Adjacent components and connecting ducts<br />

must be supported separately.<br />

Wiring the Control Components<br />

• The electrical connection must be made by an electrical<br />

engineer with observation of all safety measures.<br />

• Safety transformers must be used (EN 60742).<br />

• The following regulations and conditions must be<br />

observed:<br />

National IEE regulations<br />

Health and Safety directives<br />

Wiring instructions and circuit diagrams from<br />

the manufacturer of the control components.<br />

Residual Risks<br />

• Under extremely rare and unfavourable conditions,<br />

despite observation of the regulations listed, faults can<br />

occur in the controller due to electromagnetic fields.<br />

These can usually be remedied by screening or relocating<br />

the controller.<br />

• Foreseeable damage which could occur due to the<br />

failure of control components must be prevented in<br />

critical cases by corresponding measures (e.g. pressure<br />

relief openings in sealed rooms).


Installation<br />

TVZ . TVA Delivery and Storage<br />

5<br />

TVR<br />

4<br />

6<br />

2<br />

2<br />

1 Trox differential pressure sensor<br />

2 Control components with actuator<br />

3 Label with arrow showing air flow direction<br />

4 Circular connection duct<br />

5 Rectangular connection duct<br />

6 Suspension rods (supplied by customer)<br />

3<br />

3<br />

1<br />

4<br />

1 4<br />

3<br />

Several devices are supplied on each pallet, held by<br />

bands against sliding. TVR’s are packed in non-returnable<br />

containers.<br />

• Immediately after delivery, check units for completeness<br />

and transport damage. If delivery is incomplete or<br />

if transport damage has occured, inform the carriers<br />

and Trox immediately.<br />

• Do not expose the units (even when packed) to the<br />

direct effect of weather. Protect from water, direct sunlight<br />

and dirt.<br />

• Do not store in temperatures above 50 °C.<br />

Transport on Site<br />

Units should not be carried by the control components<br />

but only by the terminal unit edges.<br />

• The differential pressure sensor in the spigot connection<br />

is a measuring instrument which is extremely<br />

important for correct functioning, and must be handled<br />

with particular care. Do not therefore pull on the aluminium<br />

tubes of the sensors.<br />

Installation Point<br />

• Select the installation point such that the control components<br />

and maintenance openings remain accessible.<br />

• Do not confuse supply and extract air units. Note the<br />

air flow direction arrow on the unit label.<br />

• Do not confuse the units for master and slave control<br />

units (e.g. supply and extract air).<br />

• Units with membrane pressure transducers should be<br />

mounted in the position shown by the label. Consult<br />

Trox before fitting in other positions or moving the<br />

pressure transducer.<br />

• For installation before and after bends, dampers or<br />

other flow distortion elements, note that an increase in<br />

flow tolerance and noise level can result.


Reheat Coil Connections Fixing<br />

4<br />

Secondary Silencer Connections<br />

1 Rectangular end wall of terminal box<br />

2 Inser nut M8<br />

3 Reheat coil<br />

4 Water flow and return<br />

5 Additional decondary silencer TS<br />

3<br />

1<br />

2 5<br />

4<br />

Installation<br />

TVZ/TVS/TVA/TVM boxes have 10.5 mm dia. mounting<br />

holes on the top edge to take threaded drop rods up to<br />

10 mm in diameter. The circular spigots on all boxes fit<br />

into circular ducts to DIN 24145 and 24146. The rectangular<br />

end wall on the boxes has 4 M 8 inserts with<br />

centres that match 30 mm (TVS 20 mm) slide on frames<br />

or suitably prepared angle flanges. The protective cardboard<br />

can be used as a drilling template for duct flanges.<br />

TVJ/TVT has 4 corner flange holes 13 mm dia. on both<br />

mounting flanges.<br />

Duct Connections<br />

• Before connecting the ducts, check the inside of the<br />

unit for damage and any loose parts, and check the<br />

connecting ducts for contamination.<br />

• Seal the duct connections well with conventional<br />

sealing materials.<br />

• Because of the plastic components in the immediate<br />

vicinity of the connector, heat shrink tape should be<br />

used with care.<br />

Wiring and Tubing Connections<br />

Control components mounted on the unit are connected<br />

together by cables and tubing in the factory. Each unit is<br />

calibrated individually on an air flow test rig. The complete<br />

function and direction of rotation of the actuators/<br />

controller is tested.<br />

• Customer connections should be carried out carefully<br />

and tested, taking into account the technical literature<br />

issued and the project specification.<br />

Reheat Coils<br />

Units with reheat coils are supplied fully mounted. The<br />

reheat coil fins are covered by a protective steel plate.<br />

Remove the protective plate before connecting to<br />

the duct. The customer must connect the flow and return<br />

pipe connections (for 1, 2 and 4 row coils, 1 off each).<br />

Air venting and water draining/isolation facilities must be<br />

provided.<br />

Secondary Silencer TS<br />

The secondary silencers are supplied separately and<br />

must be mounted at the point of installation directly onto<br />

the unit or reheat coil.<br />

• Fix secondary silencer to the terminal unit end wall or<br />

reheat coil using 4 x M 8 bolts.


Installation<br />

TVJ with TX TVJ/TVT with Silencer TX<br />

1 TVJ/TVT<br />

2 Silencer TX<br />

1 2 1<br />

Acoustic media<br />

1<br />

Acoustic media<br />

TVJ/TVJD, H = 100 1) mm, with TX<br />

Acoustic media at top Acoustic media on bottom<br />

2<br />

5<br />

For aerodynamic and acoustic reasons, direct connection<br />

of TVJ control units and TX silencers is not recommended.<br />

To achieve the technical data as specified, a<br />

duct section must be installed between the damper and<br />

the silencer. The units are supplied separately and must<br />

be mounted by the customer as shown. TX and the duct<br />

section both have 4 corner flange holes for bolting to the<br />

TVJ/TVT.<br />

Unit with 1001) mm Height<br />

For this height, to achieve the aerodynamic data given in<br />

the sales leaflet, the TX must be installed as shown. Note<br />

the unit labels relating to the installation position.<br />

1) Also valid for the former height 107 mm


Commissioning<br />

1<br />

Contents<br />

Subject Page<br />

Function Test 2<br />

C-Values 3<br />

Transducer Curve 3<br />

Volume Flow Adjustment 3<br />

TVRK 4<br />

Design changes reserved · All rights reserved · ® Gebrüder Trox GmbH (12/2001) · Leaflet No. E016NA4


Disengaging the Drive Function Test<br />

1 Button for disengaging the drive<br />

2 Control damper shaft with position indicator<br />

Control Damper Actuator<br />

Most electric actuators can be adjusted by hand. The<br />

drive is disengaged via a button so that the blade shaft<br />

can be turned. For larger sizes and greater pressure<br />

differentials, high torque loadings occur.<br />

• To avoid injury, only move the damper shaft using<br />

pliers.<br />

A slot in the damper shaft indicates the position of the<br />

blade. The direction of rotation can be reversed with<br />

most electric actuators. However, the rotation is correctly<br />

set in the Trox works. If the actuator runs in one direction<br />

only, changing the direction of rotation will show whether<br />

there is a fault with the actuator. If, after changing direction,<br />

the drive rotates in the other direction, there is a<br />

wiring fault or the controller is faulty.<br />

Dampers which are permanently open or closed may<br />

have the following faults in addition to wiring faults:<br />

Open<br />

• Static differential pressure too low<br />

• No air flow (fan stopped, fire damper closed)<br />

Closed<br />

• Override position control in action<br />

• (e.g. window switch/shut off)<br />

1<br />

2<br />

2<br />

Commissioning<br />

Safety notes<br />

• Commissioning should only be carried out by specialists.<br />

• To ensure complete functioning, check the customer<br />

connections carefully before commissioning.<br />

• The control damper blade may only be manually<br />

adjusted using pliers when the actuator drive has been<br />

disconnected.<br />

The function of the volume flow control has been tested<br />

in the Trox works. If all customer connections have been<br />

correctly made, the system is ready for operation.<br />

For function testing and commissioning:<br />

• All control components must be wired and the<br />

wiring/tubing connections tested.<br />

• The duct system to the VAV terminal unit must be<br />

complete.<br />

• The fans must be running.<br />

• The supply voltage or compressed air must be connected.<br />

The basic procedure for function testing during commissioning<br />

is described below. Further details are given in<br />

the VARYCONTROL Product Information under the heading<br />

“Control Components” and the documentation from<br />

the control component manufacturer.<br />

Volume Flow Controllers and Transducers<br />

The volume flow controllers can only be site tested in<br />

conjunction with transducers and actuators. It must be<br />

checked that the supply voltage or operating pressure is<br />

present at the terminal unit.<br />

The controller/transducer function unit is tested by adjusting<br />

the actuator position by hand or through the controller.<br />

The transducer signal must change position in<br />

accordance with the setting.<br />

To test the actuator, ensure that the controller opens and<br />

closes the damper blade. Further details are given in the<br />

information for the controller type concerned. External<br />

control functions are tested as specified by the controller<br />

manufacturer.


Commissioning<br />

C-Values TVZ, TVS, TVR, TVM and TVA Transducer Curve<br />

Size TVZ/TVR/TVS TVM-cold TVM-tot. TVA<br />

10 6.11) 12 9.7 9.7 16.8 9.0<br />

16 15.9 15.9 29.1 15.2<br />

20 25.5 25.5 44 24.2<br />

25 39 39 61 38<br />

31 65 63<br />

40 106 103<br />

1) TVR only<br />

C-Values TVJ/TVT<br />

B x H<br />

mm<br />

C<br />

200 x 100 14.8<br />

300 x 100 21.2<br />

400 x 100 28.8<br />

500 x 100 35<br />

600 x 100 44<br />

200 x 200 30<br />

300 x 200 45<br />

400 x 200 60<br />

500 x 200 75<br />

600 x 200 90<br />

700 x 200 107<br />

800 x 200 120<br />

300 x 300 75<br />

400 x 300 100<br />

500 x 300 137<br />

600 x 300 147<br />

700 x 300 174<br />

800 x 300 207<br />

900 x 300 228<br />

1000 x 300 254<br />

B x H<br />

mm<br />

C<br />

400 x 400 146<br />

500 x 400 183<br />

600 x 400 212<br />

700 x 400 239<br />

800 x 400 281<br />

900 x 400 320<br />

1000 x 400 359<br />

500 x 500 207<br />

600 x 500 234<br />

700 x 500 284<br />

800 x 500 318<br />

900 x 500 361<br />

1000 x 500 409<br />

600 x 600 297<br />

700 x 600 344<br />

800 x 600 396<br />

900 x 600 461<br />

1000 x 600 508<br />

Measuring the Effectiv Pressure ∆p e<br />

1<br />

1 Remove test point cap and replace after<br />

measurement<br />

2 Manometer<br />

2<br />

B x H<br />

mm<br />

C<br />

700 x 700 415<br />

800 x 700 469<br />

900 x 700 535<br />

1000 x 700 597<br />

800 x 800 543<br />

900 x 800 636<br />

1000 x 800 681<br />

900 x 900 720<br />

1000 x 900 786<br />

1000 x 1000 904<br />

3<br />

The transducers are calibrated in the Trox works such<br />

that the transducer output signal shown on the curve<br />

agrees with the actual volume flows. This setting is<br />

sealed. If the transducers are tested, the differential<br />

pressure must be measured at the differential pressure<br />

sensor. If the measuring lines contain T-pieces, a manometer<br />

can be connected. If the transducer has no T-piece<br />

at the effectiv pressure sensor, parallel measurement is<br />

not possible. In this case, the actuator must be locked in<br />

position (release wiring, program manual operation etc).<br />

After measuring the transducer output voltage, the tubes<br />

are carefully removed from the transducer connections<br />

and the effectiv pressure measured. The volume flow is<br />

calculated according to the formula below.<br />

V · l/s = C . ∆p e<br />

V · m 3 /h =C . ∆p e . 3.6<br />

in l/s<br />

in m 3/h<br />

V ·<br />

: volume flow<br />

�pe : measured effectiv pressure in Pa<br />

C : constant for air density � = 1.2 kg/m3 The accuracy for the measurement is ± 7 % (for TVM total<br />

± 12 %).<br />

If the minimum requirements given in the leaflets for the<br />

flow conditions are not observed, this tolerance will be<br />

greater.<br />

Volume Flow Adjustment<br />

The volume flow limit value can be changed, depending<br />

on controller type, by adjusting setting knobs with percentage<br />

scales, manual operation devices or by computer.<br />

For analogue controllers, the adjustment accuracy<br />

can be increased if the transducer signal is measured<br />

and the volume flow set according to the voltage curve.<br />

Ensure that the controller will actually control at<br />

V · min or V · max and that the system pressure is adequate.<br />

The DDC controller parameters are reprogrammed using<br />

a laptop P.C. or through the network via the central computer.


TVRK Volume Flow Controller and Transducer<br />

C-Values TVRK<br />

Size<br />

110 6.5<br />

C-Value<br />

Star shaped grid Flow grid<br />

125 9.7 8.6<br />

160 15.8 15.1<br />

200 27 24.3<br />

250 41 38<br />

315 73 62<br />

400 116 103 1)<br />

1) From January 1997 no longer included in the delivery programme<br />

Effective Pressure Sensors<br />

Star shaped grid Flow grid<br />

Delivered until<br />

end of<br />

1995, approx.<br />

Delivered from<br />

beginning of<br />

1996, approx.<br />

4<br />

The TVRK plastic controllers have been developed for<br />

the use in air-conditioning systems, where the air contains<br />

agressive media. For this reason only membrane<br />

pressure transducers are used.<br />

Membrane pressure transducers are depending on position<br />

(installation position to be indicated when ordering).<br />

The intended installation position will be considered at<br />

adjustment in the factory and is marked with an arrow.<br />

Should another installation position be requested at site,<br />

the zero point adjustment of the membrane pressure<br />

transducer as per individual product information has<br />

again to be carried out be the customer.<br />

Transducer Curve<br />

The differential (effective) pressure can be measured<br />

direct at the differential pressure sensor in order to check<br />

the membrane pressure transducer. For this purpose a<br />

pressure gauge (manometer) is connected to the measuring<br />

lines. The pressure gauge (manometer) can also be<br />

connected parallely to the membrane pressure transducer.<br />

The volume flow is calculated according to the following<br />

formulae:<br />

‡ = C . �p e<br />

‡ = C . �p e . 3.6<br />

Commissioning<br />

in l/s<br />

in m 3/h<br />

V ·<br />

: Volume flow<br />

�pe : Measured effective pressure in Pa<br />

C : Constant for air density � = 1.2 kg/m3 The accuracy for the measurement is ± 7 %.<br />

If the minimum requirements given in the leaflets for the<br />

flow conditions are not observed, this tolerance will be<br />

greater.


Maintenance<br />

1<br />

Contents<br />

Subject Page<br />

Maintenance 2<br />

Blade Position Indicator 2<br />

Replacement of Control Components 2<br />

Design changes reserved · All rights reserved · ® Gebrüder Trox GmbH (12/2001) · Leaflet No. E016NA6


Removing tubes Maintenance<br />

1 Special tool for removing tubing<br />

Blade Position Indicator<br />

5 4 3 2<br />

1 VAV terminal unit<br />

2 Actuator<br />

3 Shaft with position indicator<br />

Measuring Equipment Required:<br />

4 Rotation angle limiter<br />

5 Control damper blade<br />

Electronic control Pneumatic control<br />

• Digital voltmeter • Pressure gauge, 0 to 1.5 bar<br />

• Manometer, 0 to 1000 Pa • Manometer, 0 to 1000 Pa<br />

• Service unit<br />

DDC control<br />

• Service computer<br />

• Digital voltmeter<br />

• Manometer, 0 to 1000 Pa<br />

1<br />

1<br />

2<br />

Maintenance<br />

Safety Note<br />

• Maintenance should only be carried out by specialists!<br />

The control damper mechanism on the VAV terminal unit<br />

is maintenance-free. To ensure perfect functioning of<br />

the entire system, function tests should be carried out as<br />

part of the regular system maintenance.<br />

The following criteria should be used:<br />

1. Does the room temperature controller function?<br />

2. Does the volume flow controller function?<br />

3. Does the actuator turn in both directions?<br />

4. Does the transducer output signal vary according to<br />

the actuator movements?<br />

5. Do the override controls such as shut off function?<br />

6. Are the tubing connections airtight?<br />

Further details on fault diagnosis are given in the information<br />

on each controller type.<br />

Replacement of Control Components<br />

If faulty control components have to be replaced, the<br />

following principles must be observed:<br />

• Spare parts must comply with the technical requirements<br />

of the manufacturer.<br />

Only use original spare parts.<br />

• Disconnect supply voltage 24 volts or operating pressure.<br />

• Mark wiring/tubing connections before releasing.<br />

• Carefully remove pneumatic tubing without pulling.<br />

• Replace component and all connections.<br />

When replacing controllers and transducers, they must<br />

be adjusted to suit the unit size. Therefore electronic<br />

and pneumatic components are preset in the Trox works.<br />

Digital controllers can be set up by the customer.<br />

When changing actuators, note the following:<br />

• Mechanical rotation angle limiters on the new actuator<br />

should be set as the existing unit. A slot in the control<br />

damper shaft shows the position of the blade.<br />

• Direction of rotation should be set as before (switch or<br />

plug setting).


<strong>Belimo</strong> <strong>VRD2</strong><br />

1<br />

Contents<br />

Subject Page<br />

Area of Application 2<br />

Description of Function 3<br />

Volume Flow Control 4<br />

Volume Flow Adjustment on Site 5<br />

Volume Flow Ranges, Single Duct Units 6<br />

Single Duct Units, Order Code, Examples 7<br />

Dual Duct Units Series TVM 8<br />

Terminal Connections 9<br />

Override Controls 10<br />

Volume Flow Control of TVM Units 11<br />

Function Test, Commissioning 12<br />

Design changes reserved · All rights reserved · ® Gebrüder Trox GmbH (12/2001) · Leaflet No. E016NL0


<strong>VRD2</strong><br />

<strong>VRD2</strong><br />

Tube connection for transducer<br />

V · min-adjustment knob (0 to 80 % of V · max)<br />

V · max-adjustment knob (30 to 100 % of V · Nenn)<br />

Reference value potentiometer<br />

Connection terminals<br />

Actuator connection cable<br />

VAV Control<br />

Room temperature<br />

controller, DDCoutstation,<br />

etc.<br />

Command variable<br />

<strong>VRD2</strong><br />

Override control<br />

Actual value<br />

Window<br />

switch, etc.<br />

Slave,<br />

monitoring,<br />

etc.<br />

2<br />

<strong>Belimo</strong> <strong>VRD2</strong><br />

Area of Application<br />

The <strong>VRD2</strong> electronic volume flow controller from <strong>Belimo</strong><br />

is designed for use in VAV systems. A dynamic differential<br />

pressure transducer and electronic controller are<br />

combined in one housing.<br />

The principle requirements for variable volume flow control<br />

are a suitable room temperature controller or a DDC<br />

outstation or similar. The output signal from this controller<br />

serves as a command variable for the <strong>VRD2</strong>.<br />

Switches or relays are used for override control. The<br />

actual value of the volume flow is monitored as a standard<br />

linear, electrical signal. This signal can be used for<br />

example to control a slave unit in the extract air duct. The<br />

voltage range for the actual and control value is standardised<br />

between 2 and 10 VDC. Using the adjuster ZEV, the<br />

customer can change from 0 to 10 VDC.<br />

The <strong>VRD2</strong> has adjustment knobs for setting V · min and<br />

V · max. All the controller parameters are set by Trox and the<br />

unit is supplied with the knobs sealed. No adjustment is<br />

necessary by the customer. As soon as the supply voltage<br />

and the room temperature controller have been connected,<br />

the volume flow control unit is ready for use. Any<br />

volume flow changes which may be necessary to the<br />

<strong>VRD2</strong> can easily be carried out by the customer.<br />

For parallel operation, several <strong>VRD2</strong> controllers can be<br />

connected up to one room temperature controller. Supply<br />

air/extract air slave control is possible.<br />

The <strong>VRD2</strong> is capable of communication through the PP<br />

connection (terminal 5). With the aid of the <strong>Belimo</strong> adjuster<br />

ZEV, the parameter settings can be read and the<br />

voltage ranges changed.<br />

Standard filtration in air conditioning systems allows the<br />

use of the <strong>VRD2</strong> in the supply air without dust protection<br />

filters. Since a small volume flow is passed through the<br />

transducer in order to monitor the volume flow, the following<br />

must be noted:<br />

• With heavy dust in the room, suitable extract air<br />

filters must be provided.<br />

• If the air is contaminated with fluff or sticky particles<br />

or contains aggressive media, the <strong>VRD2</strong><br />

should not be used.


<strong>Belimo</strong> <strong>VRD2</strong><br />

Characteristic of Actual Value Signal Description of Function<br />

V · nom<br />

(100 %)<br />

Volume flow<br />

V · min pub.<br />

A 2 to 10 VDC (standard)<br />

V · actual = V · nom<br />

U 5 - 2<br />

8<br />

B 0 to 10 VDC<br />

V · actual = V · nom<br />

Adjustment<br />

range<br />

0<br />

0 2 Actual value signal U5 10 VDC<br />

U 5<br />

10<br />

Characteristic of Volume Flow Control Variable<br />

Volume flow<br />

V · max<br />

V · min<br />

A 2 to 10 VDC (standard)<br />

V · set = U3 - 2<br />

(V<br />

8<br />

· max -V · min) + V · min<br />

V · nom<br />

(100 %)<br />

V · min pub.<br />

0<br />

0 2 Control signal U3 10 VDC<br />

B 0 to 10 VDC<br />

V · set = U 3<br />

10<br />

(V · max -V · min) + V · min<br />

3<br />

The volume flow is measured on the dynamic differential<br />

pressure principle. The effective pressure ∆p w of the<br />

differential pressure sensor in the terminal unit allows the<br />

detection of a partial volume flow passing trough the<br />

transducer. This partial volume flow which is proportional<br />

to the total volume flow is measured, temperature compensated<br />

and linearised with two temperature-dependent<br />

resistors.<br />

The measurement range is set to suit the unit size during<br />

factory calibration, so that 10 VDC always corresponds<br />

to the unit nominal volume flow rate (V · nom).<br />

The signal is processed by a microprocessor. The actual<br />

volume flow is available as a linear voltage signal U 5.<br />

The required volume flow is set by the room temperature<br />

controller via the control signal within the limits of V · min<br />

and V · max.<br />

It is possible to select either 2 to 10 VDC (standard) or<br />

0 to 10 VDC as the voltage range for signal transmission.<br />

This facilitates an adjustment to the working ranges<br />

of different room temperature controllers or DDC outstations.<br />

The set volume flow can be overridden using<br />

switched controls.<br />

The <strong>VRD2</strong> determines the required volume flow in<br />

accordance with the characteristic shown and compares<br />

this with the actual value. The damper actuator is controlled<br />

according to the deviation.<br />

The <strong>Belimo</strong> volume flow controller <strong>VRD2</strong> can only operate<br />

with the matched <strong>Belimo</strong> actuators which are optimised<br />

for volume flow control. It is not possible to connect<br />

other 3-point or 0 to 10 VDC actuators.


Pressure Independent Control Characteristic<br />

Pressure differential<br />

1000<br />

Pa<br />

800<br />

600<br />

400<br />

200<br />

% of V<br />

Volume flow<br />

· 20 40 60 80 100<br />

nom<br />

V · max-set value = V · nom<br />

V · min-set value = V· min<br />

V · max<br />

V · max M<br />

V · min M<br />

V · max-set value =<br />

=<br />

V · max S<br />

V · max M<br />

V · max<br />

V · max S<br />

V · min S<br />

. 100 %<br />

. 100 %<br />

. V· nom M<br />

V · nom S<br />

. 100 %<br />

4<br />

Volume Flow Control<br />

The volume flow controller works independently of<br />

the duct pressure, i. e. pressure fluctuations cause no<br />

changes to volume flow.<br />

To prevent the volume flow control becoming unstable, a<br />

dead zone is allowed within which the damper does not<br />

move. This dead zone and the accuracy of site measurements<br />

lead to volume flow deviation ∆V · shown opposite.<br />

If the conditions given in the sales brochure (static minimum<br />

pressure differential, inlet flow conditions etc.) are<br />

not observed, greater deviations must be expected.<br />

V · max Setting<br />

The V · max value corresponds to the volume flow which is<br />

set with a 10 VDC control signal or V · max override control.<br />

The setting range is from 30 to 100 %. The percentage<br />

figures relate to V · nom.<br />

V · min Setting<br />

<strong>Belimo</strong> <strong>VRD2</strong><br />

The V · min value corresponds to the volume flow which is<br />

set with a 0 V (alternatively 2 VDC) control signal or V · min<br />

override control.<br />

V · min may be set between 0 and 80 % of V · max The percentage<br />

figures relate to the V · max volume flow setting. If<br />

V · min is set at 0 %, the damper will be moved to the<br />

CLOSED position (leakage depends on the type of unit)<br />

with a control signal of 0 V (alternatively 2 VDC).<br />

Slave Control<br />

The <strong>VRD2</strong> only provides for ratio control, i.e. the supply<br />

and extract air must be in the same ratio under all<br />

operating conditions.<br />

The volume flow ratio is set using the V · max adjustment<br />

knob on the slave controller, according to the formula<br />

shown opposite.<br />

Where the volume flows are the same and the units of<br />

equal size, the setting will be 100 %. The setting range is<br />

from 30 to 100 %.<br />

If V · max set value > 100 %, the master and slave functions<br />

must be reversed. As a rule, the V · min adjustment knob on<br />

the slave is set to 0 %.


<strong>Belimo</strong> <strong>VRD2</strong><br />

<strong>VRD2</strong> Adjustment Knobs<br />

Formula for V · max<br />

ZEV Adjuster<br />

V · min adjustment knob<br />

V · max adjustment knob<br />

Reference value potentiometer<br />

Important:<br />

The reference value potentiometer<br />

must not be adjusted.<br />

2 to 10 VDC (standard)<br />

U 5 = V· max<br />

V · nom<br />

Formula for V · min<br />

. 8V + 2V<br />

2 to 10 VDC (standard)<br />

U 5 = V· min<br />

V · nom<br />

0 to 10 VDC<br />

U 5 = V· max<br />

V · nom<br />

0 to 10 VDC<br />

. 8V + 2V U5 = V· min<br />

V · nom<br />

. 10 V<br />

. 10 V<br />

Operating mode<br />

selector knob<br />

5<br />

Volume Flow Adjustment on Site<br />

Volume Flow Adjustment<br />

The set volume flow limit values can be adjusted on site<br />

using the V · min and V · max adjustment knobs on the <strong>VRD2</strong>.<br />

Calculations are based on the formulae shown on page 4.<br />

Adjustment Procedure<br />

• First set V · max and then V· min .<br />

• If the ratio of V · max to V· min is to remain constant (e.g.<br />

V · min = 50 % of V· max ), only the V· max adjustment knob<br />

must be moved.<br />

• Moving the V · min adjustment knob will have no effect on<br />

the V · max value.<br />

• If V · max is to be altered and V· min to remain unchanged,<br />

V · max , must be reset first, followed by V· min .<br />

Calculating the Volume Flow<br />

Using the Actual Value Signal U5 The accuracy of the setting can be increased if the<br />

actual value signal U5 is also measured with the system<br />

switched on (note the voltage range 0/10 V or 2/10 V).<br />

As a rule, the controller must have been connected to the<br />

operating voltage for at least 15 minutes before measurements<br />

begin.<br />

• Calculate the required value for U5 at V · max<br />

• Disconnect all the wires from the terminal block, except<br />

for terminals 1 and 2<br />

• Insert a link between terminals 2 and 7<br />

• Move the V · max adjustment knob until the voltage U5 dem corresponds to the calculated value (wait approx.<br />

2 minutes after the adjustment, then read the voltage)<br />

• Remove the link between 2 and 7<br />

• Calculate the voltage for U5 at V · min<br />

• Proceed with the V · min setting as for V · max<br />

• Replace the original wiring<br />

Using the ZEV to Adjust the Voltage Range<br />

The <strong>VRD2</strong> is factory-set to the required voltage range<br />

(the standard range is 2 to 10 VDC). The voltage range<br />

can only be altered by the customer using the <strong>Belimo</strong><br />

adjuster ZEV. If the ZEV operating mode selector knob is<br />

set to const. operating mode, the <strong>VRD2</strong> will automatically<br />

revert to 2 to 10 VDC mode.


Volume Flow Ranges TVZ, TVA, TVR, TVS<br />

Size<br />

V · min-<br />

V<br />

unit<br />

· to<br />

to from min-<br />

V to from<br />

unit<br />

· l/s m<br />

nom<br />

3 /h<br />

V<br />

1) 1)<br />

· V max<br />

· min<br />

V · min<br />

Volume Flow Ranges TVJ/TVT<br />

V · min-unit 1)<br />

V · max<br />

to<br />

V · nom<br />

1002) 10 75 30 95 36 270 108 342<br />

125 15 120 45 150 54 432 162 540<br />

160 25 200 75 250 90 720 270 900<br />

200 40 325 120 405 144 1170 432 1458<br />

250 60 490 185 615 216 1764 666 2214<br />

315 105 820 310 1025 378 2952 1116 3690<br />

400 170 1345 505 1680 612 4842 1818 6048<br />

B x H<br />

mm<br />

l/s m 3 /h<br />

to from<br />

200 x 100 45 170 65 215 162 612 234 774<br />

300 x 100 65 255 95 320 234 918 342 1152<br />

400 x 100 85 340 130 425 306 1224 468 1530<br />

500 x 100 105 430 160 535 378 1548 576 1926<br />

600 x 100 130 520 195 650 468 1872 702 2340<br />

200 x 200 85 330 125 415 306 1188 450 1494<br />

300 x 200 125 495 185 620 450 1782 666 2232<br />

400 x 200 165 660 250 825 594 2376 900 2970<br />

500 x 200 205 830 310 1035 738 2988 1116 3726<br />

600 x 200 250 1000 375 1250 900 3600 1350 4500<br />

700 x 200 290 1160 435 1450 1044 4176 1566 5220<br />

800 x 200 330 1320 495 1650 1188 4752 1782 5940<br />

300 x 300 185 735 275 920 666 2646 990 3312<br />

400 x 300 245 985 370 1230 882 3546 1332 4428<br />

500 x 300 305 1230 460 1535 1098 4428 1656 5526<br />

600 x 300 370 1480 555 1850 1332 5328 1998 6660<br />

700 x 300 430 1720 645 2150 1548 6192 2322 7740<br />

800 x 300 490 1960 735 2450 1764 7056 2646 8820<br />

900 x 300 555 2215 830 2770 1998 7974 2988 9972<br />

1000 x 300 620 2480 930 3100 2232 8928 3348 11160<br />

400 x 400 325 1305 490 1630 1170 4698 1764 5868<br />

500 x 400 410 1630 610 2040 1476 5868 2196 7344<br />

600 x 400 490 1960 735 2450 1764 7056 2646 8820<br />

700 x 400 570 2280 855 2850 2052 8208 3078 10260<br />

800 x 400 650 2600 975 3250 2340 9360 3510 11700<br />

900 x 400 735 2935 1100 3670 2646 10566 3960 13212<br />

1000 x 400 820 3280 1230 4100 2952 11808 4428 14760<br />

500 x 500 510 2030 760 2540 1836 7308 2736 9144<br />

600 x 500 610 2440 915 3050 2196 8784 3294 10980<br />

700 x 500 710 2840 1065 3550 2556 10224 3834 12780<br />

800 x 500 810 3240 1215 4050 2916 11664 4374 14580<br />

900 x 500 915 3655 1370 4570 3294 13158 4932 16452<br />

1000 x 500 1020 4080 1530 5100 3672 14688 5508 18360<br />

600 x 600 730 2920 1095 3650 2628 10512 3942 13140<br />

700 x 600 850 3400 1275 4250 3060 12240 4590 15300<br />

800 x 600 970 3880 1455 4850 3492 13968 5238 17460<br />

900 x 600 1100 4400 1650 5500 3960 15840 5940 19800<br />

1000 x 600 1220 4880 1830 6100 4392 17568 6588 21960<br />

700 x 700 990 3960 1485 4950 3564 14256 5346 17820<br />

800 x 700 1140 4560 1710 5700 4104 16416 6156 20520<br />

900 x 700 1280 5120 1920 6400 4608 18432 6912 23040<br />

1000 x 700 1420 5680 2130 7100 5112 20448 7668 25560<br />

800 x 800 1300 5200 1950 6500 4680 18720 7020 23400<br />

900 x 800 1460 5840 2190 7300 5256 21024 7884 26280<br />

1000 x 800 1620 6480 2430 8100 5832 23328 8748 29160<br />

900 x 900 1640 6560 2460 8200 5904 23616 8856 29520<br />

1000 x 900 1820 7280 2730 9100 6552 26208 9828 32760<br />

1000 x 1000 2020 8080 3030 10100 7272 29088 10908 36360<br />

1) V · min = 0 is also possible 2) Only TVR<br />

V · min V · max V · min V · max<br />

6<br />

to V · nom<br />

V · min-unit 1)<br />

<strong>Belimo</strong> <strong>VRD2</strong><br />

to from to V · nom


<strong>Belimo</strong> <strong>VRD2</strong><br />

Volume Flow Control Tolerances 1)<br />

Volume flow<br />

as % of V · nom<br />

100 5 5<br />

80 5 5<br />

60 7 7<br />

40 7 8<br />

20 9 14<br />

10 20 >14<br />

20 >14<br />

1) Percentage figures based on V · actual<br />

∆V · in ± %<br />

TVZ, TVA, TVR, TVS TVJ/TVT<br />

7<br />

Single Duct Units<br />

Order Code / Examples<br />

The available options are given in the current price list.<br />

TVZ-R / 160 / 00 / B13 / E2 - 50 - 240 l/s<br />

TVR / 160 / 00 / B13 / M2 - 50 - 240 l/s<br />

TVA-R / 160 / 00 / B13 / S2 - 50 - 240 l/s<br />

Operating Mode Voltage Range<br />

E Individual<br />

M Master<br />

S Slave<br />

F Constant<br />

Volume Flow Parameters<br />

Operating<br />

Mode<br />

E2; E0<br />

M2; M0<br />

S2; S0<br />

F2; F0<br />

Factory Setting<br />

V · min<br />

2 = Voltage range 2 to 10 VDC<br />

(standard range)<br />

0 = Voltage range 0 to 10 VDC<br />

V · min adjustment knob set at required V· min<br />

V · max adjustment knob set at required V· max<br />

V · min adjustment knob set at 0 %<br />

V · max adjustment knob set at volume flow<br />

ratio to the master controller<br />

V · � 80 % of V · nom<br />

V · min adjustment knob set at required<br />

constant volume flow<br />

V · max adjustment knob set at 100 % (V· nom )<br />

V · � 80 % of V · nom<br />

V · min adjustment knob set at 0 %<br />

V · max adjustment knob set at required<br />

constant volume flow<br />

Link between terminal 2 and 4<br />

V · max


Volume Flow Ranges TVM<br />

Size V · min -<br />

unit<br />

V · min- V<br />

unit<br />

· l/s m<br />

nom<br />

3/h<br />

125 45 150 162 540<br />

160 75 250 270 900<br />

200 120 405 432 1458<br />

250 185 615 666 2214<br />

Volume Flow Control Tolerances TVM 1)<br />

Volume flow<br />

as % of V · nom<br />

TVM cold<br />

1) Percentage figures based on V · actual<br />

∆V · in ± %<br />

V · nom<br />

TVM total<br />

100 5 7<br />

80 5 10<br />

60 5 12<br />

40 7 15<br />

30 8 17<br />

20 9 -<br />

10 20 -<br />

20 -<br />

8<br />

Dual Duct Units<br />

Order Code / Examples<br />

The available options are given in the current price list.<br />

TVM-R / 160 / B27 / E2 - 50 - 240 l/s<br />

TVM-R / 160 / B27 / F2 - 400 l/s<br />

Operating Mode Voltage Range<br />

E Individual<br />

M Master<br />

F Constant<br />

Volume Flow Parameters<br />

Operating<br />

Mode Cold Duct<br />

Controller<br />

E2<br />

E0<br />

M2<br />

M0<br />

F2<br />

F0<br />

V · min adjustment<br />

knob set at 0 %<br />

V · max adjustment<br />

knob set at<br />

required volume<br />

flow (V · cold )<br />

<strong>Belimo</strong> <strong>VRD2</strong><br />

Factory Setting<br />

V · warm<br />

2 = Voltage range 2 to 10 VDC<br />

(standard range)<br />

0 = Voltage range 0 to 10 VDC<br />

V · cold<br />

V · warm = V · cold<br />

Warm Duct Controller<br />

V · warm � 80 % of V· nom<br />

V · min adjustment knob set<br />

at required volume flow<br />

V · warm<br />

V · max adjustment knob set<br />

at 100 %<br />

V · warm � 80 % of V· nom<br />

V · min adjustment knob set<br />

at 0 %<br />

V · max adjustment knob set<br />

at required volume flow<br />

V · warm<br />

Link between 2 and 4


<strong>Belimo</strong> <strong>VRD2</strong><br />

Terminal Connections<br />

IMPORTANT<br />

The examples illustrated show the most common<br />

arrangements for volume flow control. The <strong>Belimo</strong><br />

specifications must be observed in the overall control<br />

system design, selection of the other control components<br />

and wire sizing.<br />

Details of other circuits are available from <strong>Belimo</strong>.<br />

Room Temperature Control<br />

RT Controller<br />

Operating mode E, M<br />

Parallel controller <strong>VRD2</strong><br />

Operating mode E, M<br />

9<br />

Nomenclature<br />

�, - Ground, neutral<br />

~, + Supply voltage 24 VAC or 24 VDC<br />

w Input voltage for set volume flow U 3<br />

U/pp Output voltage U 5<br />

and communication signal<br />

y Actuator signal<br />

z Input for override control<br />

Wiring<br />

Actuator and volume flow controller are factory wired.<br />

The 24 VAC/VDC voltage supply must be wired up by the<br />

customer. Safety transformers must be used (EN 60742).<br />

If several volume flow controllers are connected to one<br />

24 V network, it is important to ensure that a common<br />

neutral or ground wire is used and that this is not connected<br />

to other wires.<br />

Room Temperature Control<br />

A suitable room temperature controller or a DDC outstation<br />

with a 2 - 10 VDC- or 0 - 10 VDC output is connected<br />

with at least two wires (terminals 1 and 3) as<br />

shown in the circuit diagram. If there is a common 24 V<br />

mains supply voltage, it is important to ensure that<br />

terminal 1 on the <strong>VRD2</strong> is also the ground for the control<br />

signal.<br />

Parallel Control<br />

Several volume flow controllers (supply or extract air)<br />

can be operated in parallel by one room temperature<br />

controller.<br />

If the terminal units are the same size and the V · min and<br />

V · max adjustment knobs are set at the same values, all the<br />

units control the same volume flow. If the settings differ,<br />

the units control an equal percentage.


Override Controls<br />

RT Controller<br />

Operating mode E, M<br />

Slave Control<br />

Master controller<br />

Operating mode M..<br />

Operating mode S..<br />

V · min / V· max / Shut Off Switching<br />

Operating mode E, M<br />

RT Controller<br />

All Switches<br />

open<br />

S1 open V · min<br />

S1 closed V · max<br />

Control<br />

mode<br />

S2 closed Closed<br />

S3 closed<br />

closed<br />

V · S4<br />

min<br />

V · max<br />

1) e.g. diode 1N 4007<br />

Slave controller<br />

S2 open V · min / V· max<br />

S2 closed Closed<br />

10<br />

Override Controls<br />

<strong>Belimo</strong> <strong>VRD2</strong><br />

The variable volume flow control can be overridden using<br />

zero-potential switch contacts supplied by the customer.<br />

This override control can be used with any controller,<br />

either separately or centrally, for individual rooms or parts<br />

of the system. If several override controls are combined,<br />

the contacts must be linked in relation to one another, to<br />

prevent short circuits. Several volume flow controllers<br />

can also be actuated using one switch, if a joint ground<br />

wire is available and the control signal is connected in<br />

parallel.<br />

These circuits will only work on an AC supply voltage!<br />

Supply/Extract Air Slave Control (Master/Slave)<br />

With parallel control of the units, an undesirable difference<br />

between supply and extract air can occur if the<br />

pressure in one duct is to low. It is therefore preferable to<br />

use the volume flow actual value, usually of the supply<br />

air, as the control signal for the slave volume flow controller.<br />

V · min / V· max / Shut Off Switching<br />

By means of simple switch contacts between the supply<br />

voltage connections and terminals 3 and 7, it is possible<br />

to change over to different set values for the volume flow.<br />

No control signal is necessary.<br />

Switch S1 enables a V · min /V · max changeover to take place<br />

at the controller connected.<br />

Using the S2 switch, several volume flow controllers can<br />

be actuated if a joint ground wire is available and the<br />

control signal is switched in parallel. This means that full<br />

shut off is given priority over V · min /V · max mode.<br />

These circuits will only work on an AC supply voltage!


<strong>Belimo</strong> <strong>VRD2</strong><br />

Supply/Extract Air Slave Control<br />

for Dual Duct Unit TVM<br />

Commissioning Signal<br />

Adjuster ZEV Connections<br />

Room temperature<br />

controller<br />

Cold duct controller <strong>VRD2</strong><br />

Warm duct controller <strong>VRD2</strong><br />

Slave controller<br />

<strong>VRD2</strong> (NMV-D2)<br />

Operating mode S<br />

Room temperature<br />

controller<br />

Operating mode M, F<br />

Room Temperature<br />

controller, switch<br />

cabinet or step<br />

distributor<br />

11<br />

Volume Flow Control of TVM Units<br />

The two controllers fitted to the dual duct unit TVM (cold,<br />

warm) must be wired by the customer as shown in the<br />

circuit diagram opposite (including the 24 VAC/VDC<br />

cross-connection).<br />

The room temperature controller provides the cold duct<br />

controller with its set point signal.<br />

In most cases, the proportion of warm air is increased<br />

from 0 to the required V · warm as a maximum set point.<br />

The warm duct controller (V · total is measured) is therefore<br />

set as a constant value controller and does not require<br />

a control signal.<br />

For a more detailed functional description, refer to the<br />

TVM literature.<br />

Supply/Extract Air Slave Control with<br />

Dual Duct TVM<br />

The actual value output signal U5 of the warm duct controller<br />

is proportional to the total volume flow V · total. It<br />

can therefore be used as the control signal for a slave<br />

controller.<br />

Commissioning Connections<br />

It is advisable that the signal line for connecting the adjuster<br />

ZEV is linked up in an easily accessible location.<br />

This means that ceiling panels do not need be removed<br />

in order to take measurements.<br />

Suitable locations include: spare terminals in room temperature<br />

controller or wall mounted enclosure.<br />

It is important to ensure that the ground (and 24 V) is also<br />

available. Therefore, a 3-wire connection is required to<br />

the commissioning point connection.<br />

IMPORTANT<br />

The commissioning connection will also work if the U5 signal is used for slave circuits or monitoring. However,<br />

the U5 signal differs from the actual value when the ZEV<br />

unit is connected.<br />

ZEV Function<br />

The indicating lights come on when the control knob<br />

settings match the current values. To adjust the control<br />

mode, set the mode knob, for example to 0 - 10 VDC,<br />

and press the Set button. The volume settings can only<br />

be read.


Function Test<br />

Fault Finding Check<br />

Check wiring<br />

Connect supply voltage<br />

Connect air supply systems<br />

Measure the actuator signal U 6<br />

Record actual value signal U 5<br />

for override control V · min<br />

Record actual value signal U 5<br />

for override control V · max<br />

Wiring correct?<br />

yes<br />

Supply voltage within<br />

the <strong>Belimo</strong> specifications?<br />

yes<br />

Actual value signals U 5<br />

and U 6 consistent?<br />

yes<br />

Actuator opens and closes?<br />

yes<br />

Volume flow V · min ?<br />

yes<br />

Volume flow V · max ?<br />

yes<br />

Volume flow control signal?<br />

yes<br />

Override controls?<br />

Correct wiring error<br />

Check Transformer<br />

etc.<br />

Controller faulty<br />

Actuator rotation correct?<br />

Damper obstructed?<br />

Duct pressure<br />

sufficient?<br />

Measuring tubing to<br />

the transducer<br />

damaged?<br />

Check room<br />

temperature controller<br />

Check window<br />

switch, relays, etc.<br />

Order Example Replacement Controller<br />

<strong>Belimo</strong> <strong>VRD2</strong>,<br />

preset for TVR / 125 / E2 - 140 - 300 m 3 /h<br />

Voltage range 2 to 10 VDC, Replacement for VRD/<strong>VRD2</strong><br />

no<br />

no<br />

no<br />

no<br />

no<br />

no<br />

no<br />

no<br />

12<br />

<strong>Belimo</strong> <strong>VRD2</strong><br />

Commissioning<br />

A function test for commissioning can be carried out by<br />

measuring the actuator signal U6 (terminal 6 to 1). If U6 is<br />

between 5.8 and 6.2 VDC, the required volume flow is<br />

controlled. If U6 deviates from this range, wait for the<br />

actuator to settle. If the commissioning procedure is to<br />

include verification of the set volume flows V · min and V · max,<br />

these must be set as described below. The actual value<br />

signal U5 is measured in each operating situation (check<br />

U6 first) and the volume flow is then calculated using the<br />

formulae given on page 3 (note the voltage range).<br />

In many cases, incorrect wiring can be the cause of the<br />

faults. Therefore a careful check should be carried out to<br />

ensure that all connections are secure. Wires in terminals<br />

3 to 7 should be disconnected and the actuator connection<br />

plug removed before the following checks are made.<br />

If the actuator drive is disengaged and the damper<br />

opened manually, the voltage U5 must increase and the<br />

voltage U6 deviate from 6 V.<br />

Connect the actuator plug, link terminals 1 and 7:<br />

The actuator must close.<br />

Change link to terminals 2 and 7: The actuator must<br />

open.<br />

Remove the link. The controller must control V · min If U6 is<br />

approx. 6 volts, measure U5, calculate the volume flow<br />

and compare it with the design value.<br />

Link terminals 2 and 7: Repeat measurement for V · max, as<br />

above.<br />

Remove link. Apply the control signal U3 . Calculate the<br />

set volume flow and compare it with the actual volume<br />

flow.<br />

Apply the override control (terminal 7) and test the desired<br />

functions in sequence.<br />

Replacement Controller<br />

When replacing faulty controllers, calibrated controllers<br />

set for the terminal box type and size must be used.<br />

Uncalibrated controllers can only be used as a temporary<br />

solution.<br />

The following must be specified when ordering a replacement<br />

controller:<br />

• Terminal unit type and size and in the case of TVM<br />

units, hot duct or cold duct controller<br />

• Operating mode<br />

• V · min and V · max<br />

• Voltage range<br />

• Delivery date of the faulty controller


<strong>Belimo</strong> VRP<br />

1<br />

Contents<br />

Subject Page<br />

Area of Application 2<br />

Description of Function 2<br />

Volume Flow Control 3<br />

Volume Flow Adjustment on Site 4<br />

Volume Flow Ranges Single Duct Units 5<br />

Order Code, Single Duct Units 6<br />

Volume Flow Ranges and Order Code<br />

Dual Duct Units 7<br />

Terminal Connections 8<br />

Slave Control 9<br />

Function Test, Commissioning 10<br />

Design changes reserved · All rights reserved · ® Gebrüder Trox GmbH (12/2001) · Leaflet No. E016NB1


VRP<br />

�<br />

�<br />

�<br />

�<br />

Characteristic of Actual Value Signal<br />

‡ nom<br />

(100 %)<br />

Volume flow<br />

‡ min unit<br />

Controller VRP Reference value<br />

Transducer VFP 300<br />

‡ min adjustment<br />

knob<br />

‡ max adjustment<br />

knob<br />

0<br />

potentiometer<br />

Actuator connection<br />

cable<br />

Transducer connection<br />

cable<br />

Offset indicating lights<br />

Characteristic of Volume Flow Control Variable<br />

‡ max<br />

Volume flow<br />

‡ min<br />

�<br />

0<br />

�<br />

�<br />

�<br />

�<br />

‡ i = ‡ nom · U5 – 2<br />

8<br />

0 2 Actual value signal U5 10 VDC<br />

‡ S = U 3 – 2 · (‡ max – ‡ min ) + ‡ min<br />

8<br />

�<br />

� �<br />

�<br />

�<br />

�<br />

�<br />

0 2 Control signal U3 10 VDC<br />

2<br />

Area of Application<br />

<strong>Belimo</strong> VRP<br />

The <strong>Belimo</strong> VRP electronic volume flow controller, combined<br />

with a membrane differential pressure transducer<br />

VFP 300, is designed for use in VAV systems and requires<br />

a room temperature controller.<br />

Control signals can be in the range of 2 to 10 VDC (0 to<br />

20 V phasecut also possible). Override control can be<br />

achieved by external switches. Several controllers may<br />

be connected to one room temperature controller. Supply<br />

air/extract air slave circuits are also possible.<br />

Static Measuring Principle<br />

The volume flow is measured using a membrane pressure<br />

transducer. Therefore the VRP is suitable for the<br />

control of extract air with contaminants and/or which is<br />

dust-loden. Terminal units with painted finish or made of<br />

plastic should be considered in such situations.<br />

IMPORTANT<br />

In critical cases, a material test should be carried out<br />

on the terminal unit and membrane pressure transducer,<br />

to prove suitability for chemicals and concentrations<br />

concerned.<br />

Description of Function<br />

The volume flow is measured on the static differential<br />

pressure principle. The differential pressure sensor in<br />

the terminal unit measures the effective pressure (�pe ).<br />

This causes a membrane in the pressure transducer to<br />

deflect, the movement is detected and converted into a<br />

linear pressure voltage signal. The linearisation of the<br />

volume flow is carried out in the VRP.<br />

The measurement range is set to suit the unit size during<br />

factory calibration, so that 10 VDC always corresponds<br />

to the unit nominal volume flow rate (‡ nom). The actual<br />

volume flow is available as a 2 to 10 VDC signal (U5). The required volume flow is set by the room temperature<br />

controller via the control signal within the limits of ‡ min<br />

and ‡ max. The VRP determines the required volume flow<br />

in accordance with the characteristic shown and compares<br />

this with the actual value. The damper actuator is<br />

controlled according to the deviation. The <strong>Belimo</strong> VRP<br />

can only operate with the matched <strong>Belimo</strong> actuators<br />

which are optimized for volume flow control. It is not<br />

possible to connect other 3-point or 0 to 10 VDC actuators.<br />

Gravity Dependency<br />

Because of the weight of the membrane the positioning<br />

of the VFP affects the measured signal. The VFP is normally<br />

calibrated for a vertical position of the membrane,<br />

i.e. pressure tube connections above or below horizontal<br />

plane. Other installation positions must be specified on<br />

order.


<strong>Belimo</strong> VRP<br />

Pressure Independent Control Characteristic<br />

Pressure differential<br />

1000<br />

Pa<br />

800<br />

600<br />

400<br />

200<br />

V min<br />

� V<br />

Volume flow<br />

‡ max set value =<br />

‡ min set value =<br />

‡ max M<br />

‡ min M<br />

·<br />

Vmax set value =<br />

=<br />

‡ max S<br />

‡ max M<br />

‡ max<br />

‡ nom<br />

‡ min<br />

‡ max<br />

‡ max S<br />

‡ min S<br />

.<br />

. 100 %<br />

. 100 %<br />

‡ nom M<br />

‡ nom S<br />

V max<br />

� V<br />

20 40 60 80 100<br />

% of ‡ nom<br />

. 100 %<br />

3<br />

Volume Flow Control<br />

The volume flow controller works independently of<br />

the duct pressure, i.e. pressure fluctuations cause no<br />

changes to volume flow<br />

To prevent the volume flow control becoming unstable, a<br />

dead zone is allowed within which the damper does not<br />

move. This dead zone and the accuracy of site measurements<br />

lead to volume flow deviation �‡ shown opposite.<br />

If the conditions given in the sales brochure (static minimum<br />

pressure differential, inlet flow conditions etc.) are<br />

not observed, greater deviations must be expected.<br />

V · max Setting<br />

The ‡ max value corresponds to the volume flow which is<br />

set with a 10 VDC control signal or ‡ max override control.<br />

The setting range is from 30 to 100 %. The percentage<br />

figures relate to ‡ nom.<br />

V · min Setting<br />

The ‡ min value corresponds to the volume flow which is<br />

set with a 2 VDC control signal or ‡ min override control.<br />

‡ min may be set between 0 and 80 % of ‡ max. The percentage<br />

figures relate to the ‡ max volume flow setting. If<br />

‡ min is set to 0 %, a tight shut off of the damper is not<br />

guaranteed. The controller closes the damper until the<br />

actual value signal is 2 VDC corresponding to 0 l/s.<br />

Measurement tolerances mean that a leakage air flow is<br />

present. Override control should be used for tight shut<br />

off.<br />

Slave Control<br />

The VRP only provides for ratio control, i.e. the supply<br />

and extract air must be in the same ratio under all<br />

operating conditions.<br />

The volume flow ratio is set using the ‡ max adjustment<br />

knob on the slave controller, according to the formula<br />

shown opposite. Where the volume flows are the same<br />

and the units of equal size, the setting will be 100 %.<br />

The setting range is from 30 to 100 %. If ‡ max set value<br />

>100 %, the master and slave functions must be reversed.<br />

As a rule, the ‡ min adjustment knob on the slave<br />

is set to 0 %.


VRP Adjustment Knobs<br />

�<br />

�<br />

�<br />

� �<br />

IMPORTANT<br />

The reference value potentiometer must not be<br />

adjusted.<br />

Formula for V · max<br />

U 5 = ‡ max<br />

‡ nom<br />

Formula for V · min<br />

U 5 = ‡ min<br />

‡ nom<br />

‡ min<br />

% of ‡ max<br />

. 8 V + 2 V<br />

. 8 V + 2 V<br />

�<br />

‡ min adjustment knob<br />

‡ max adjustment knob<br />

Reference value potentiometer<br />

‡ max<br />

4<br />

Volume Flow Adjustment on Site<br />

Volume Flow Adjustment<br />

The set volume flow limit values can be adjusted on site<br />

using the ‡ min and ‡ max adjustment knobs on the VRP.<br />

Calculations are based on the formulae shown on<br />

page 3.<br />

Adjustment Procedure<br />

• First set ‡ max and then ‡ min .<br />

• If the ratio of ‡ max to ‡ min is to remain constant<br />

(e.g. ‡ min = 50 % of ‡ max ), only the ‡ max adjustment<br />

knob must be moved.<br />

• Moving the ‡ min adjustment knob will have no effect<br />

on the ‡ max value.<br />

• If ‡ max is to be altered and ‡ min to remain unchanged,<br />

‡ max must be reset first, followed by ‡ min .<br />

Calculating the Volume Flow Using<br />

the Actual Value Signal U5 The accuracy of the setting can be increased if the actual<br />

value signal U5 is also measured with the system switched<br />

on.<br />

As a rule, the controller must have been connected to the<br />

operating voltage for at least 15 minutes before measurements<br />

begin.<br />

• Calculate the required value for U5 at ‡ max<br />

• Disconnect all the wires from the terminal block,<br />

except for terminals 1 and 2<br />

• Insert a link between terminals 2 and 7<br />

• Move the ‡ max adjustment knob until the voltage U5 corresponds to the calculated value (wait approx.<br />

2 minutes after the adjustment, then read the voltage)<br />

• Remove the link between 2 and 7<br />

• Calculate the voltage for U5 at ‡ min<br />

• Proceed with the ‡ min setting as for ‡ max<br />

• Replace original wiring<br />

Zero Point Adjustment<br />

<strong>Belimo</strong> VRP<br />

It is necessary to readjust the zero point, when one of the<br />

indicating lights show a measurement off limits with<br />

measurement tubing pushed off. For further information<br />

about zero point adjustment see product information<br />

VFP.


<strong>Belimo</strong> VRP<br />

Volume Flow Ranges TVZ, TVA, TVR, TVRK<br />

Size<br />

V · min-<br />

V<br />

unit<br />

· to<br />

to from min-<br />

V to from<br />

unit<br />

· l/s m<br />

nom<br />

3 /h<br />

V<br />

1) 1)<br />

· V max<br />

· min<br />

V · min<br />

V · max<br />

to<br />

V · nom<br />

1002) 15 75 30 95 54 270 108 342<br />

125 25 120 45 150 90 432 162 540<br />

160 40 200 75 250 144 720 270 900<br />

200 65 325 120 405 234 1170 432 1458<br />

250 95 490 185 615 342 1764 666 2214<br />

315 155 820 310 1025 558 2952 1116 3690<br />

400 255 1345 505 1680 918 4842 1818 6048<br />

Volume Flow Ranges TVJ/TVT<br />

B x H<br />

mm<br />

V · min-unit 1)<br />

l/s m 3 /h<br />

to from<br />

200 x 100 45 170 65 215 162 612 234 774<br />

300 x 100 65 255 95 320 234 918 342 1152<br />

400 x 100 85 340 130 425 306 1224 468 1530<br />

500 x 100 105 430 160 535 378 1548 576 1926<br />

600 x 100 130 520 195 650 468 1872 702 2340<br />

200 x 200 85 330 125 415 306 1188 450 1494<br />

300 x 200 125 495 185 620 450 1782 666 2232<br />

400 x 200 165 660 250 825 594 2376 900 2970<br />

500 x 200 205 830 310 1035 738 2988 1116 3726<br />

600 x 200 250 1000 375 1250 900 3600 1350 4500<br />

700 x 200 290 1160 435 1450 1044 4176 1566 5220<br />

800 x 200 330 1320 495 1650 1188 4752 1782 5940<br />

300 x 300 185 735 275 920 666 2646 990 3312<br />

400 x 300 245 985 370 1230 882 3546 1332 4428<br />

500 x 300 305 1230 460 1535 1098 4428 1656 5526<br />

600 x 300 370 1480 555 1850 1332 5328 1998 6660<br />

700 x 300 430 1720 645 2150 1548 6192 2322 7740<br />

800 x 300 490 1960 735 2450 1764 7056 2646 8820<br />

900 x 300 555 2215 830 2770 1998 7974 2988 9972<br />

1000 x 300 620 2480 930 3100 2232 8928 3348 11160<br />

400 x 400 325 1305 490 1630 1170 4698 1764 5868<br />

500 x 400 410 1630 610 2040 1476 5868 2196 7344<br />

600 x 400 490 1960 735 2450 1764 7056 2646 8820<br />

700 x 400 570 2280 855 2850 2052 8208 3078 10260<br />

800 x 400 650 2600 975 3250 2340 9360 3510 11700<br />

900 x 400 735 2935 1100 3670 2646 10566 3960 13212<br />

1000 x 400 820 3280 1230 4100 2952 11808 4428 14760<br />

500 x 500 510 2030 760 2540 1836 7308 2736 9144<br />

600 x 500 610 2440 915 3050 2196 8784 3294 10980<br />

700 x 500 710 2840 1065 3550 2556 10224 3834 12780<br />

800 x 500 810 3240 1215 4050 2916 11664 4374 14580<br />

900 x 500 915 3655 1370 4570 3294 13158 4932 16452<br />

1000 x 500 1020 4080 1530 5100 3672 14688 5508 18360<br />

600 x 600 730 2920 1095 3650 2628 10512 3942 13140<br />

700 x 600 850 3400 1275 4250 3060 12240 4590 15300<br />

800 x 600 970 3880 1455 4850 3492 13968 5238 17460<br />

900 x 600 1100 4400 1650 5500 3960 15840 5940 19800<br />

1000 x 600 1220 4880 1830 6100 4392 17568 6588 21960<br />

700 x 700 990 3960 1485 4950 3564 14256 5346 17820<br />

800 x 700 1140 4560 1710 5700 4104 16416 6156 20520<br />

900 x 700 1280 5120 1920 6400 4608 18432 6912 23040<br />

1000 x 700 1420 5680 2130 7100 5112 20448 7668 25560<br />

800 x 800 1300 5200 1950 6500 4680 18720 7020 23400<br />

900 x 800 1460 5840 2190 7300 5256 21024 7884 26280<br />

1000 x 800 1620 6480 2430 8100 5832 23328 8748 29160<br />

900 x 900 1640 6560 2460 8200 5904 23616 8856 29520<br />

1000 x 900 1820 7280 2730 9100 6552 26208 9828 32760<br />

1000 x 1000 2020 8080 3030 10100 7272 29088 10908 36360<br />

1) V · min = 0 is also possible 2) Only TVR<br />

V · min V · max V · min V · max<br />

5<br />

to V · nom<br />

V · min-unit 1)<br />

to from to V · nom


Volume Flow Control Tolerances 1)<br />

Volume flow<br />

in % of V · nom<br />

1) Percentage figures based on V · actual<br />

∆V · in ± %<br />

TVZ, TVA, TVR, TVRK TVJ/TVT<br />

100 5 5<br />

80 5 5<br />

60 7 7<br />

40 7 8<br />

20 9 14<br />

10 20 >14<br />

20 >14<br />

6<br />

Single Duct Units<br />

Order Code / Examples<br />

The available options are given in the current price list.<br />

TVZ-R / 160 / 00 / BB3 / E - 50 - 240 l/s<br />

TVR / 160 / 00 / BB3 / M - 50 - 240 l/s<br />

TVA-R / 160 / 00 / BB1 / S - 50 - 240 l/s<br />

Volume Flow Parameters<br />

Operating<br />

mode<br />

E<br />

M<br />

S<br />

F<br />

<strong>Belimo</strong> VRP<br />

E Individual<br />

M Master<br />

S Slave<br />

F Fixed<br />

Factory Setting<br />

.<br />

Vmin Operating mode<br />

‡ min adjustment knob set at required ‡ min<br />

‡ max adjustment knob set at required ‡ max<br />

‡ min adjustment knob set at 0 %<br />

‡ max adjustment knob set at volume flow<br />

ratio to the master controller<br />

V · < 80 % of V · nom<br />

‡ min adjustment knob set at required<br />

constant volume flow<br />

‡ max adjustment knob set at 100 % (‡ nom )<br />

V · > 80 % of V · nom<br />

‡ min adjustment knob set at 0 %<br />

‡ max adjustment knob set at required<br />

constant volume flow<br />

Link between terminal 2 and 4<br />

.<br />

Vmax


<strong>Belimo</strong> VRP<br />

Volume Flow Ranges TVM<br />

Size<br />

Volume Flow Control Tolerances TVM 1)<br />

Volume flow<br />

in % of V · nom<br />

1) Percentages related to ‡ actual<br />

l/s m 3 /h<br />

V · min-unit V · V min-unit<br />

· nom<br />

TVM cold<br />

∆V · in ± %<br />

100 5 7<br />

80 5 10<br />

60 5 12<br />

40 7 15<br />

30 8 17<br />

20 9 -<br />

10 20 -<br />

20 -<br />

V · nom<br />

125 45 150 162 540<br />

160 75 250 270 900<br />

200 120 405 432 1458<br />

250 185 615 666 2214<br />

TVM total<br />

7<br />

Dual Duct Units Type TVM<br />

Order Code / Examples<br />

The available options are given in the current price list.<br />

TVM-R / 160 / BE7 / E - 50 - 240 l/s<br />

TVM-R / 160 / BE7 / F - 400 l/s<br />

Volume Flow Parameters<br />

Operating<br />

mode Cold Duct<br />

Controller<br />

E<br />

M<br />

F<br />

‡ min adjustment<br />

knob set<br />

at 0 %<br />

‡ max adjustment<br />

knob set<br />

at required<br />

volume flow<br />

(‡ cold )<br />

Operating mode<br />

E Individual<br />

M Master<br />

F Fixed<br />

Factory Setting<br />

.<br />

Vwarm .<br />

Vcold . .<br />

Vwarm = Vcold Warm Duct Controller<br />

V · warm < = 80 % of V · nom<br />

‡ min adjustment knob set at<br />

required volume flow ‡ warm<br />

‡ max adjustment knob set at<br />

100 %<br />

V · warm > 80 % of V· nom<br />

‡ min adjustment knob set at<br />

0%<br />

‡ max adjustment knob set at<br />

required volume flow ‡ warm<br />

Link between 2 and 4


Terminal Connections<br />

Plug connection to<br />

Transducer VFP<br />

Plug connection to<br />

actuator<br />

IMPORTANT<br />

The examples illustrated show the most common<br />

arrangements for volume flow control. The <strong>Belimo</strong><br />

specifications must be observed in the overall control<br />

system design, selection of the other control components<br />

and wire sizing. Details of other circuits are<br />

available from <strong>Belimo</strong>.<br />

Room Temperature Control with Override<br />

and Parallel Control<br />

�<br />

24 VAC<br />

RT Controller<br />

y<br />

˜<br />

1 2 3 4 5 6 7<br />

VRP<br />

Diode 1N 4007<br />

S1<br />

S2<br />

S3<br />

1 2 3 4 5 6 7<br />

VRP Parallel Controller<br />

1<br />

Operating mode M, E<br />

Operating mode M, E<br />

8<br />

<strong>Belimo</strong> VRP<br />

Nomenclature<br />

Ground, neutral<br />

� Supply voltage 24 VAC<br />

w1 Input voltage for set volume flow (2 to 10 VDC)<br />

w2 Input voltage for set volume flow<br />

(0 to 20 V phasecut)<br />

U5 Output voltage for actual volume flow (2 to 10 VDC)<br />

U6 Actuator signal<br />

z Input for override control<br />

Wiring<br />

Actuator and volume flow controller are factory wired.<br />

The 24 VAC voltage supply must be wired up by the<br />

customer. Safety transformers must be used (EN 60742).<br />

If several volume flow controllers are connected to one<br />

24 V network, it is important to ensure that a common<br />

neutral or ground wire is used and that this is not connected<br />

to other wires.<br />

Room Temperature Control<br />

A suitable room temperature controller or a DDC outstation<br />

with a 2-10 VDC output is connected with at least<br />

two wires (terminals 1 and 3) as shown in the circuit diagram.<br />

If there is a common 24 VAC mains supply voltage,<br />

it is important to ensure that terminal 1 on the VRP is<br />

also the ground for the control signal.<br />

Parallel Control<br />

Several volume flow controllers (supply or extract air) can<br />

be operated in parallel by one room temperature controller.<br />

If the terminal units are the same size and the ‡ min<br />

and ‡ max adjustment knobs are set at the same values,<br />

all the units control the same volume flow. If the settings<br />

differ, the units control an equal percentage.<br />

Override Controls<br />

Potential-free switch contacts provided by the customer<br />

can override the variable volume flow control. This forced<br />

control can be applied separately for each controller (see<br />

overleaf for examples) or centrally as in the circuit diagram<br />

shown for one building section.<br />

S1, S2, S3 open : Room temperature control mode<br />

S1 closed : Shut off<br />

S2 closed : Constant volume flow ‡ max<br />

S3 closed : Constant volume flow ‡ min<br />

With a combination of several override controls, the<br />

switches must be interlocked such that no short-circuits<br />

occur. One switch can control several volume flow controllers<br />

if there is a common ground and the control signal<br />

is wired in parallel. The circuits apply even if room<br />

temperature controller with 0 to 20 V phase cut signal is<br />

used.


<strong>Belimo</strong> VRP<br />

Slave Control<br />

RT Controller<br />

Master Controller<br />

Operating Mode M, E<br />

Slave Controller<br />

Supply/Extract Air Slave Control<br />

for Dual Duct Unit TVM<br />

Operating Mode S<br />

RT Controller<br />

Cold Controller<br />

Warm Controller<br />

Operating Mode M, (E,F)<br />

Slave<br />

Controller<br />

Operating Mode S<br />

TVM<br />

9<br />

Supply/Extract Air Slave Control (Master/Slave)<br />

With parallel control of the units, an undesirable difference<br />

between supply and extract air can occur if the<br />

pressure in one duct is to low. It is therefore preferable to<br />

use the volume flow actual value, usually of the supply<br />

air, as the control signal for the slave volume flow controller.<br />

Volume Flow Control of TVM Units<br />

The two controllers fitted to the dual duct unit TVM (cold,<br />

warm) must be wired by the customer as shown in the<br />

circuit diagram opposite (including the 24 VAC crossconnection).<br />

The room temperature controller provides the cold duct<br />

controller with its set point signal.<br />

In most cases, the proportion of warm air is increased<br />

from 0 to the required ‡ warm as a maximum set point. The<br />

warm duct controller (‡ total is measured) is therefore set<br />

as a constant value controller and does not require a<br />

control signal.<br />

For a more detailed functional description, refer to the<br />

TVM literature.<br />

Supply/Extract Air Slave Control<br />

with Dual Duct TVM<br />

The actual value output signal U5 of the warm duct controller<br />

is proportional to the total volume flow ‡ total. It can<br />

therefore be used as the control signal for a slave controller.


Function Test<br />

Fault Finding Check<br />

Check wiring<br />

Connect supply voltage<br />

Connect air supply system<br />

Pressure transducer zero point<br />

Measure actuator signal U 6<br />

Record actual value signal U 5<br />

for override control ‡ min<br />

Record actual value signal U 5<br />

for override control ‡ max<br />

Supply voltage due to<br />

<strong>Belimo</strong> requirements?<br />

Signals U 5 and U 6<br />

consistent?<br />

Actuator opening and<br />

closing?<br />

Volume flow ‡ min ?<br />

Volume flow ‡ max ?<br />

Volume flow control<br />

signal?<br />

Override controls?<br />

Check transformer<br />

etc.<br />

Controller<br />

faulty, replace<br />

Actuator rotation<br />

correct?<br />

Damper blocked?<br />

Duct pressure<br />

sufficient?<br />

Measurement<br />

tubes to transducer<br />

damaged?<br />

Protective wrapping<br />

removed?<br />

Check room temperature<br />

controller<br />

Check window<br />

switch, relay etc.<br />

Order Example Replacement Controller<br />

<strong>Belimo</strong> VRP, preset for TVZ 125, 60...140 l/s<br />

and VFP 300<br />

<strong>Belimo</strong> VFP 300<br />

10<br />

Commissioning<br />

<strong>Belimo</strong> VRP<br />

A function test for commissioning can be carried out by<br />

measuring the actuator signal U 6 (terminal 6 to 1). If U 6 is<br />

between 5.8 and 6.2 VDC, the required volume flow is<br />

controlled. If U 6 deviates from this range, wait for the<br />

actuator to settle.<br />

If the commissioning procedure is to include verification<br />

of the set volume flows ‡ min and ‡ max, these must be set<br />

as described below.<br />

The actual value signal U 5 is measured in each operating<br />

situation (check U 6 first) and the volume flow is then calculated<br />

using the formulae given on page 4.<br />

NOTE<br />

Severe vibration during transport or caused by different<br />

installation conditions can necessitate subsequent zero<br />

point adjustment. The procedure is described in the<br />

product information for VFP.<br />

In many cases, incorrect wiring can be the cause of the<br />

faults. Therefore a careful check should be carried out to<br />

ensure that all connections are secure. Wires in terminals<br />

3 to 7 should be disconnected and the actuator connection<br />

plug removed before the following checks are made.<br />

If the actuator drive is disengaged and the damper<br />

opened manually, the voltage U5 must increase and the<br />

voltage U6 deviate from 6 VDC.<br />

Connect the actuator plug, link terminals 1 and 7: The<br />

actuator must close.<br />

Change link to terminals 2 and 7: The actuator must<br />

open.<br />

Remove the link. The controller must control ‡ min. If U6 is<br />

approx. 6 volts, measure U5, calculate the volume flow<br />

and compare it with the design value.<br />

Link terminals 2 and 7: Repeat measurement for ‡ max, as<br />

above.<br />

Remove link. Apply the control signal U3 . Calculate the<br />

set volume flow and compare it with the actual volume<br />

flow.<br />

Apply the override control (terminal 7) and test the<br />

desired functions in sequence.<br />

Replacement Controller<br />

When replacing faulty controllers, calibrated controllers<br />

set for the terminal box type and size must be used.<br />

Uncalibrated controllers can only be used as a temporary<br />

solution. When ordering replacement controllers, specify<br />

‡ min and ‡ max.


<strong>Belimo</strong> VRP-STP<br />

1<br />

Contents<br />

Subject Page<br />

Area of Application 2<br />

Description of Function 2<br />

Differential Pressure Control 3<br />

Differential Pressure Adjustment on Site 3<br />

Order Code, Examples 4<br />

Terminal Connections 5<br />

Examples 6<br />

Override Control 6<br />

Function Test, Commissioning 7<br />

Design changes reserved · All rights reserved · ® Gebrüder Trox GmbH (12/2001) · Leaflet No. E016NB5


VRP-STP Area of Application<br />

��<br />

The <strong>Belimo</strong> VRP-STP differential pressure controller<br />

�<br />

combined with a membrane differential pressure transducer<br />

VFP 100, is designed for room pressure control<br />

�� �<br />

of sealed rooms; when combined with a VFP 300 or<br />

VFP 600, it is designed for control of duct pressure. No<br />

control signal is required if constant differential pressure<br />

�<br />

is to be maintained. The constant differential pressure<br />

can be set manually in the range from 30 to 100 % on the<br />

adjustment knob. Alternatively, the set value can be preset<br />

externally by a control signal between 2 to 10 VDC.<br />

�<br />

�<br />

Override controls can be achieved by external switches.<br />

For parallel operation, several controllers can be connected<br />

to a common control signal. Supply air/extract<br />

duct pressure control sequence available.<br />

�<br />

�<br />

�<br />

Controller VRP-STP<br />

Transducer VFP 300<br />

�p adjustment knob<br />

�<br />

�<br />

�<br />

�<br />

Characteristic of Differential<br />

Pressure Control Variable<br />

Reference value<br />

potentiometer<br />

Actuator connection<br />

Characteristic of Actual Value Signal<br />

�p nom<br />

(Pa)<br />

Differential<br />

Pressure<br />

�pmin 0<br />

�p max<br />

Differential pressure<br />

0<br />

�pact = �pnom · U5 – 2<br />

8<br />

U3 –2<br />

�preqd = ·�p<br />

8 max<br />

Transducer connection<br />

cable<br />

Offset indicating lights<br />

0 2 Actual value signal U5 10VDC<br />

0 2 Control signal U3 10VDC<br />

2<br />

<strong>Belimo</strong> VRP-STP<br />

Static Measuring Principle<br />

The volume flow is measured using a membrane pressure<br />

transducer. Therefore the VRP-STP is suitable for<br />

the control of extract air with contaminants and/or which<br />

is dust-loden. Terminal units with painted finish or made<br />

of plastic should be considered in such situations.<br />

IMPORTANT<br />

In critical cases, a material test should be carried out<br />

on the terminal unit and membrane pressure transducer,<br />

to prove suitability for chemicals and concentrations<br />

concerned.<br />

Description of Function<br />

The differential pressure is measured on the static principle.<br />

The differential pressure causes a membrane in the<br />

pressure transducer to deflect, the movement is detected<br />

and converted into a linear pressure-voltage signal. The<br />

transducer pressure range is selected and factory-set to<br />

the measurement range required such that the differential<br />

pressure can be adjusted up or down by the customer.<br />

10 VDC (100 %) always corresponds to the nominal differential<br />

pressure (�pnom). The actual differential pressure<br />

is measured as a 2 to 10 VDC signal (U5). The nominal<br />

differential pressure is preset via the �p adjustment<br />

knob. For variable set values, an external 2 to 10 VDC<br />

signal controls the differential pressure in the range from<br />

0 to �pmax. The VRP-STP determines the required pressure in accordance<br />

with the characteristic shown and compares<br />

this with the actual value. The damper actuator is controlled<br />

according to the deviation. The <strong>Belimo</strong> VRP-STP<br />

can only operate with the matched <strong>Belimo</strong> actuators<br />

which are optimized for volume flow control. It is not<br />

possible to connect other 3-point or 0 to 10 VDC actuators.<br />

Gravity Dependent<br />

Because of the weight of the membrane the positioning<br />

of the VFP affects the measured signal. The VFP is normally<br />

calibrated for a vertical position of the membrane,<br />

i.e. pressure tube connections above or below horizontal<br />

plane. Other installation positions must be specified on<br />

order.


<strong>Belimo</strong> VRP-STP<br />

Pressure Independent Control Characteristic<br />

1000<br />

Pa<br />

800<br />

Differential<br />

pressure (duct)<br />

600<br />

400<br />

200<br />

Adjustment Knob<br />

�<br />

�<br />

1<br />

2<br />

IMPORTANT<br />

20 40 60 80 % 100<br />

Differential pressure<br />

(controller set value)<br />

�pmax �pmax set value = · 100 %<br />

�pnom �p adjustment knob<br />

Reference value potentiometer<br />

The reference value potentiometer must not be<br />

adjusted.<br />

�pmax U5 = · 8 V + 2 V<br />

�pnom 3<br />

Differential Pressure Control<br />

The volume flow controller works independently of<br />

the duct pressure, i.e. pressure fluctuations cause no<br />

changes to volume flow.<br />

To prevent the volume flow control becoming unstable, a<br />

dead zone is allowed within which the damper does not<br />

move. This dead zone and the accuracy of site measurements<br />

lead to volume flow deviation �‡ shown opposite.<br />

If the conditions given in the sales brochure (static minimum<br />

pressure differential, inlet flow conditions etc.) are<br />

not observed, greater deviations must be expected.<br />

�p Adjustment<br />

The �p adjustment knob is used to set the required differential<br />

pressure. With variable control, the pressure can<br />

be limited to the maximum value �p max which is held<br />

constant at full control value (10 VDC).<br />

The percentages refer to the nominal differential pressure<br />

(�p nom). The adjustment range is from 30 to 100 %.<br />

Differential Pressure Adjustment on Site<br />

If later adjustment to the differential pressure is required,<br />

the potentiometer is set to the new value using the formula<br />

specified. The accuracy of the setting can be increased<br />

if the actual value signal U 5 is also measured and<br />

the following procedure carried out with the system<br />

switched on:<br />

• Calculate U 5 voltage for �p<br />

• If control signal U 5 is present set U 3 to 10 VDC or set<br />

wire bridge from terminal 2 to 4<br />

• Adjust �p potentiometer until voltage U 5 corresponds<br />

to the calculated value (wait approx. 2 minutes after<br />

adjustment, then read voltage)<br />

• If the VRP-STP is operated with control signal U 3,<br />

remove bridge 2 to 4 again.


Room Pressure Ranges<br />

Differential<br />

pressure<br />

transducer<br />

VFP 100<br />

Duct Pressure Ranges<br />

Differential<br />

pressure<br />

transducer<br />

VFP 300<br />

VFP 600<br />

Differential Pressure Control Tolerances<br />

�p<br />

in % of �p nom<br />

100<br />

< 80<br />

< 60<br />

< 40<br />

< 30<br />

< 30<br />

�p min 1)<br />

Pa<br />

2.5 30 100<br />

1.5 15 50<br />

1.5 7.5 25<br />

�p min 1)<br />

Pa<br />

�p<br />

from<br />

Pa<br />

�p<br />

from<br />

Pa<br />

to �p nom<br />

Pa<br />

7.5 90 300<br />

4 30 100<br />

15 180 600<br />

7.5 90 300<br />

Control tolerance<br />

± %<br />

>15<br />

>15<br />

>17<br />

>18<br />

> 10<br />

>10<br />

to �p nom<br />

Pa<br />

1) With a control signal the set value could be lower than 30 %<br />

of �p nom. But pressure diffrentials < �p min are set to 0, resp. could<br />

not be controlled stable.<br />

2) It is possible to control negative room pressure with a supply<br />

terminal unit.<br />

4<br />

Order Code / Examples<br />

The available options are given in the current price list.<br />

TVR / 160 / 00 / BG3 / Z - 15 Pa<br />

TVR -15 Pa2) / 160 / 00 / BG3 / Z -<br />

TVR / 160 / 00 / BH3 / A - -250 Pa<br />

Factory Differential Pressure Setting<br />

TVZ, TVA, TVR, TVRK, TVJ, TVT<br />

Room pressure<br />

control<br />

Duct pressure<br />

control<br />

Customers Fittings<br />

Operating mode<br />

A Extract air<br />

Z Supply air<br />

Operating mode Factory setting<br />

Positive room<br />

pressure<br />

Negative room<br />

pressure<br />

Supply air duct<br />

pressure<br />

Extract air duct<br />

pressure<br />

<strong>Belimo</strong> VRP-STP<br />

�p<br />

Differential pressure sensor of terminal<br />

unit short-circuited<br />

�p potentiometer to pressure<br />

difference ordered<br />

�p potentiometer to pressure<br />

difference ordered<br />

Operating mode Measures<br />

Room measuring tube to plus<br />

reference room measuring<br />

Room measuring tube to minus<br />

Reference room measuring tube on plus<br />

Duct measuring tube to plus<br />

Duct measuring tube to minus


<strong>Belimo</strong> VRP-STP<br />

Terminal Connections<br />

IMPORTANT<br />

Plug connection to<br />

Transducer VFP ...<br />

The examples illustrated show the most common<br />

arrangements for pressure control. The <strong>Belimo</strong> specifications<br />

must be observed in the overall control<br />

system design, selection of the other control components<br />

and wire sizing. Details of other circuits are<br />

available from <strong>Belimo</strong>.<br />

Room Pressure Control<br />

Reference<br />

Room<br />

Duct Pressure Control<br />

Supply air<br />

Plug connection<br />

to actuator<br />

Room<br />

Unit Unit<br />

Positive Pressure<br />

Negative Pressure<br />

Extract air<br />

IMPORTANT<br />

For VAV terminal boxes for room pressure control and<br />

required “shut off”:<br />

The options “supply air/room negative pressure” and<br />

“extract air/room positive pressure” needs a wiring<br />

on site for “damper open”, so that the damper will be<br />

closed (see page 6).<br />

5<br />

Nomenclature<br />

Ground, neutral<br />

� Supply voltage 24 VAC<br />

w1 Input voltage for set differential pressure (2 to 10 VDC)<br />

w2 Input voltage for set differential pressure<br />

(0 to 20 V phasecut)<br />

U5 Output voltage for differential pressure (2 to 10 VDC)<br />

U6 Actuator signal<br />

z Input for override control<br />

Wiring<br />

Actuator and volume flow controller are factory wired.<br />

The 24 VAC voltage supply must be wired up by the<br />

customer. Safety transformers must be used (EN 60742).<br />

If several volume flow controllers are connected to one<br />

24 VAC network, it is important to ensure that a common<br />

neutral or ground wire is used and that this is not connected<br />

to other wires.<br />

The control signal for the nominal value emitter has<br />

2 cores connected to the differential pressure controller.<br />

If the the measurement and adjustment sites are far<br />

apart, remove the made-up plug on the actuator cable<br />

and extend the cable. This is easier and more reliable<br />

than extending the measurement tube.<br />

Tube Connections<br />

Tube dimensions : di = 6 mm<br />

Max. Lengths : 10 m<br />

(Plus and Minus total) 1)<br />

Material : Polyurethane1) Room Pressure Control<br />

The VFP100 has the tube connections shown for room<br />

pressure control. The measurement points in the room<br />

and in the reference room must be turbulence-free (no<br />

influence by room flow, no dynamic part pd). Note:<br />

If groups of rooms with different set points of differential<br />

pressure are arranged in sequence, all transducers<br />

VFP100 should work with a common reference pressure,<br />

e.g. atmospheric pressure.<br />

Duct Pressure Control<br />

The tube connections for supply and extraction air differ<br />

as shown on the sketch. The pressure connection not<br />

used must remain open or connected to the reference<br />

pressure via a tube.<br />

1) Recommendation


Parallel Differential Pressure Control with<br />

Override Control<br />

24 VAC<br />

VRP-STP<br />

Set point adjuster<br />

S1*<br />

S2*<br />

S3*<br />

Operating mode<br />

Z, A<br />

VRP-STP<br />

Operating mode<br />

Z, A<br />

* Switch S2 only in combination with<br />

control signal w1 or w2 Combination of Duct-Pressure and<br />

Volume Flow Control<br />

Room<br />

Nomenclature<br />

1 Terminal unit, extract air<br />

2 Measuring point for extract air duct pressure<br />

3 Measuring point for extract air volume flow<br />

4 Terminal unit, supply air<br />

6<br />

Override Controls<br />

Potential-free switch contacts provided by the customer<br />

can override the variable volume flow control. This forced<br />

control can be applied separately for each controller<br />

(see overleaf for examples) or centrally as in the circuit<br />

diagram shown for one building section.<br />

Shut off<br />

Closing switch S1 (e.g. by window contact) causes the<br />

damper to close. This override control provides shut off<br />

for unit types TVZ/TVA/TVR while maintaining the permitted<br />

leakage air volume flow to DIN 1946 Part 4.<br />

S1 open : control mode<br />

S1 closed : shut off<br />

S3 closed : Override Control OPEN<br />

�p max Override Control<br />

The variable differential pressure control is interrupted by<br />

closing the switch. Control of the maximum differential<br />

pressure takes priority.<br />

S2 open : variable control mode<br />

S2 closed : constant pressure �p max<br />

NOTE<br />

<strong>Belimo</strong> VRP-STP<br />

With a combination of several override controls, the<br />

switches must be interlocked such that no short-circuits<br />

occur. One switch can control several volume flow controllers<br />

if there is a common ground and the control<br />

signal is wired in parallel. The circuits apply even if room<br />

temperature controller with 0 to 20 V phase cut signal is<br />

used.<br />

Parallel Control<br />

Several differential pressure controllers can be operated<br />

in parallel by one set point adjuster from one nominal<br />

vatue emitter. Thus the nominal values for several rooms<br />

or ducts can be altered simultaneously.<br />

Example application:<br />

Day/night switching or sliding operation. For example<br />

several room or duct pressures can be controlled following<br />

the same percentage values.<br />

Extract Air Duct Pressure Control and<br />

Supply Air Slave Control<br />

The VRP-STP controls the pressure in the extract air duct<br />

on the low pressure side as it acts directly on the damper<br />

of the terminal unit. The controller VRD of the terminal<br />

unit is used to measure the extract air volume flow.<br />

The actual value output signal U5 for the extract air VRD<br />

is used to control the VRD on the supply air terminal unit.<br />

This ensures that the supply and extract air volume flows<br />

are always identical or stand in the required ratio to each<br />

other.


<strong>Belimo</strong> VRP-STP<br />

Function Test<br />

Fault Finding Check<br />

Check wiring<br />

Connect supply voltage<br />

Connect air control systems<br />

�<br />

Pressure transducer zero point<br />

Measure actuator signal U 6<br />

Override control �p max :<br />

Record actual value signal U 5<br />

(Only for control signal U 3 and U 4 )<br />

Supply voltage due to<br />

<strong>Belimo</strong> requirements?<br />

� yes<br />

Signals U 5 and U 6<br />

consistent?<br />

�<br />

Actuator opening<br />

and closing?<br />

yes<br />

�<br />

Differential<br />

pressure �p?<br />

yes<br />

�<br />

Differential<br />

pressure �pmax ?<br />

yes<br />

� yes<br />

Control signal<br />

� yes<br />

Override controls?<br />

Check transformer<br />

etc.<br />

Regulator<br />

faulty, replace<br />

Actuator rotation<br />

correct?<br />

Damper blocked?<br />

Duct pressure<br />

sufficient?<br />

Measurement<br />

tubes to transducer<br />

VFP... damaged?<br />

Check position encoder,<br />

wire bridge<br />

2 to 4 removed<br />

Check window<br />

switches, relays<br />

etc.<br />

Order Example for Replacement Controller<br />

�<br />

�<br />

no<br />

no<br />

<strong>Belimo</strong> VRP-STP and VFP300, preset for TVR 125,<br />

and supply air duct pressure 250 Pa<br />

<strong>Belimo</strong> VRP-STP and VFP100, preset for TVR 125,<br />

and negative room pressure, extract air, 20 Pa<br />

no �<br />

no �<br />

no �<br />

no �<br />

�<br />

no �<br />

�<br />

<strong>Belimo</strong> VFP300<br />

7<br />

Commissioning<br />

A function test for commissioning can be carried out by<br />

measuring the actuator signal U 6 (terminal 6 to 1). If U 6 is<br />

between 5.8 and 6.2 VDC, the required differential pressure<br />

is controlled.<br />

If the maximum differential pressure �p max should be<br />

shown for variable control, proceed as described below.<br />

Measure the actual value signal U 5 (having first checked<br />

U 6) and then determine the differential pressure from the<br />

formula on page 2.<br />

NOTE<br />

Severe vibration during transport or other installation<br />

situations can necessitate subsequent adjustment of the<br />

zero point setting. The procedure is described in the<br />

product information for VFP...<br />

In many cases, incorrect wiring can be the cause of the<br />

faults. Therefore a careful check should be carried out to<br />

ensure that all connections are secure. Wires in terminals<br />

3 to 7 should be disconnected and the actuator connection<br />

plug removed before the following checks are made<br />

except link 2 to 4.<br />

If the actuator drive is disengaged and the damper<br />

opened manually, the voltage U5 must increase and the<br />

voltage U6 deviate from 6 VDC.<br />

Connect the actuator plug, link terminals 1 and 7: The<br />

actuator must close.<br />

Change link to terminals 2 and 7: The actuator must<br />

open.<br />

Wire bridge from 2 to 7: the actuator must open1). Remove the link. The controller must control ‡ min. If U6 is<br />

approx. 6 volts, measure U5, calculate the volume flow<br />

and compare it with the design value.<br />

If a control signal U3 or U4 is used, link terminal 2 and 7<br />

and repeat the measurement for �pmax as before.<br />

Remove the link from 2 to 4. Apply control signal U3. Calculate the set differential pressure and compare with<br />

the actual differential pressure.<br />

Apply override control (terminal 7) and test the desired<br />

functions in sequence.<br />

Replacement Controller<br />

When replacing faulty controllers, calibrated controllers<br />

set for the terminal box type and size must be used.<br />

Uncalibrated controllers can only be used as a temporary<br />

solution. When ordering replacement controllers, specify<br />

�pmax. 1) The direction can be reversed for room pressure control.


<strong>Belimo</strong> VFP<br />

1<br />

Contents<br />

Subject Page<br />

Area of Application 2<br />

Description of Function 2<br />

Gravity-Dependency 3<br />

Zero Point Adjustment 3<br />

Design changes reserved · All rights reserved · ® Gebrüder Trox GmbH (12/2001) · Leaflet No. E016NB6


VFP<br />

� Transducer VFP<br />

� Positive pressure<br />

connection<br />

Measurement Range<br />

Characteristic of Actual Value Signal<br />

�p nom<br />

(100%)<br />

Differential pressure<br />

0<br />

0<br />

Made-Up Plug Connector<br />

Tube for pressure<br />

measurement point<br />

� Negative pressure<br />

connection<br />

� Transducer connection<br />

Transducer Range<br />

Pa<br />

VFP 100 100<br />

VFP 300 300<br />

VFP 600 600<br />

Actual value signal*<br />

* Actual value signal of the VFP not identical<br />

with the U 5 output signal of the regulator VRP<br />

2<br />

Area of Application<br />

The electronic membrane pressure transducer VFP... is<br />

designed for use in VAV systems. Combined with the<br />

<strong>Belimo</strong> VRP controller, it is used for measuring actual<br />

values for volume flow control and with the VRP-STP<br />

controller, for room and duct pressure control. The<br />

mounting and wiring and tube connections for volume<br />

flow control are factory-fitted. The tube connections for<br />

room or duct pressure control must be made by the<br />

customer. The gravity-dependency must be taken into<br />

account during installation. The correct installation position<br />

is shown by an arrow for factory mounting. VFP... is<br />

supplied with voltage via the VRP(-STP) controller.<br />

Because of the static membrane measuring principle, the<br />

VFP... is suitable for VAV-systems with contaminated air<br />

with fluff or sticky particles or aggressive media.<br />

IMPORTANT<br />

In critical cases, a material test should be carried out<br />

on the terminal unit and membrane pressure transducer,<br />

to prove suitability for chemicals and concentrations<br />

concerned.<br />

Description of Function<br />

The differential pressure is measured on the static principle.<br />

The differential pressure causes a membrane in the<br />

pressure transducer to deflect, the movement is detected<br />

and converted into a linear pressure-voltage signal.<br />

The transducer pressure range is selected and factoryset<br />

to the measurement range required such that the<br />

differential pressure can be adjusted up or down by the<br />

customer.<br />

Nomenclature<br />

1 Supply voltage<br />

2 Ground<br />

3 Actual value signal (0 to 10 VDC)<br />

<strong>Belimo</strong> VFP


<strong>Belimo</strong> VFP<br />

Zero Point Adjustment<br />

� Measurement range potentiometer<br />

(do not adjust!)<br />

� Zero point potentiometer<br />

Measurement Points for Static Pressure<br />

Room<br />

Pressure measurement point<br />

Pressure measurement point<br />

Pressure measurement point<br />

3<br />

Gravity-Dependency, Zero Point Adjustment<br />

Because of the weight of the membrane the positioning<br />

of the VFP affects the measured signal. The VFP is normally<br />

calibrated for a vertical position of the membrane,<br />

i.e. pressure tube connections above or below horizontal<br />

plane. Other installation positions must be specified on<br />

order.If necessary, using the zero point potentiometer, the<br />

transducer can be customer-set to another mounting<br />

position. The supply voltage must be connected to the<br />

VFP for at least an hour before carrying out measurements.<br />

It is necessary to readjust the zero point if with<br />

diconnected tubes:<br />

• One of the VRP offset indicating lights is on<br />

• The U 5 signal is measured at between > 2.5 VDC and<br />

> 1.7 (prior version without indicating lights).<br />

Proceed as follows:<br />

• open housing cover<br />

• remove measurement tube<br />

• adjust zero point potentiometer until the actual value<br />

output signal U 5 (on regulator VRP) is 2 VDC +/-0.1 V<br />

• replace tube connection<br />

• close housing cover<br />

• The centre line of the pressure measurement point<br />

must intersect the pipe axis at right angles. 1)<br />

• The drilling diameter (d) should be as small as possible<br />

but sufficiently large to minimize risks of blocking and<br />

insufficient dynamics. 1)<br />

• Minimum distance 2 D must be maintained in the<br />

neutral wire before and after the air control damper.<br />

Requirements for Measurement Point<br />

• Minimum distance 2 D must be maintained in the<br />

neutral wire behind elbows and bends.<br />

• Room pressure assessment points must not be<br />

arranged in areas influenced by room flows.<br />

1) DIN 1952


<strong>Belimo</strong> Actuators<br />

1<br />

Contents<br />

Subject Page<br />

NM24-V 2<br />

AF24-V 2<br />

SM24-V 3<br />

GM24-V 3<br />

Design changes reserved · All rights reserved · ® Gebrüder Trox GmbH (12/2001) · Leaflet No. E016NB2


NM 24-V<br />

� Shaft clamp<br />

� Direction of<br />

rotation switch<br />

AF 24-V<br />

5<br />

1<br />

2<br />

3<br />

1 Shaft clamp<br />

2 Hexagon socket for<br />

manual damper driving<br />

3 Direction of rotation<br />

switch<br />

� Gear release button<br />

� Connection cable<br />

� Rotation angle limiter<br />

4<br />

4<br />

5<br />

Connection cable<br />

Rotation angle limiter<br />

2<br />

Actuator NM 24-V<br />

Application<br />

Maintenance free damper actuator for VAV terminal units<br />

with <strong>Belimo</strong> volume flow controllers.<br />

Function<br />

The actuator is factory mounted and fixed to the damper<br />

shaft. The integral rotation angle limiter is set. The<br />

actuator is overload protected. When the end stops are<br />

reached, the actuator stops automatically; limit switches<br />

are not required.<br />

The direction of rotation can be set via a switch (factory<br />

set). For manual adjustment, the gears can be disengaged<br />

via a button.<br />

Spring Return Actuator AF 24-V<br />

<strong>Belimo</strong> Actuators<br />

Application<br />

Maintenance-free damper actuator for VAV terminal units<br />

with <strong>Belimo</strong> volume flow controllers for applications<br />

where, for safety reasons, either an open or closed<br />

damper position must be guaranteed in the event of a<br />

power failure (order to state fail position).<br />

Function<br />

The open or closed damper position is factory set when<br />

mounting the actuator. If the voltage fails or is interrupted,<br />

the return spring moves the damper to the fail<br />

position. The rotation angle limiter is fitted and set.<br />

The actuator is overload-protected. When the end stops<br />

are reached, the actuator stops automatically; limit<br />

switches are not necessary.<br />

The direction of rotation can be set via a switch (factory<br />

set). For manual adjustment the actuator can be turned<br />

by crank to any position and fixed.


<strong>Belimo</strong> Actuators<br />

SM 24-V<br />

1<br />

2<br />

3<br />

4<br />

GM 24-V<br />

3<br />

Shaft clamp<br />

Direction of rotation switch<br />

Gear release button<br />

Connection cable<br />

3<br />

1 Shaft clamp<br />

2 Direction of rotation switch<br />

3 Gear release button<br />

4<br />

Connection cable<br />

1<br />

2<br />

4<br />

1<br />

2<br />

4<br />

3<br />

Actuator SM 24-V<br />

Application<br />

Maintenance free damper actuator for VAV terminal units<br />

with higher torques and <strong>Belimo</strong> volume flow controllers.<br />

Function<br />

The actuator is factory mounted and fixed to the damper<br />

shaft. The integral rotation angle limiter is set. The actuator<br />

is overload protected. When the end stops are<br />

reached, the actuator stops automatically; limit switches<br />

are not required.<br />

The direction of rotation can be set via a switch (factory<br />

set). For manual adjustment, the gears can be disengaged<br />

via a button.<br />

Actuator GM 24-V<br />

Application<br />

Maintenance free damper actuator for VAV terminal units<br />

with highest torques and <strong>Belimo</strong> volume flow controllers.<br />

Function<br />

The actuator is factory mounted and fixed to the damper<br />

shaft. The integral rotation angle limiter is set. The actuator<br />

is overload protected. when the end stops are<br />

reached, the actuator stops automatically; limit switches<br />

are not required.<br />

The direction of rotation can be set via a switch (factory<br />

set). For manual adjustment, the gears can be disengaged<br />

via a button.


<strong>Belimo</strong> VAV-Compact NMV-D2<br />

1<br />

Contents<br />

Subject Page<br />

Area of Application 2<br />

Description of Function 3<br />

Volume Flow Control Tolerances 4<br />

Volume Flow Adjustment on Site 4<br />

Volume Flow Ranges Single-duct Units 5<br />

Order Code, Examples, Single-duct Units 6<br />

Dual-duct Unit TVM 7<br />

Wiring Connections 8<br />

Variable Volume Flow Operating Mode 9<br />

Constant Volume flow Control 10<br />

Slave Control 11<br />

Function Test, Commissioning 12<br />

Design changes reserved · All rights reserved · ® Gebrüder Trox GmbH (12/2001) · Leaflet No. E016MB9


VAV-Compact, NMV-D2<br />

NMV-D2<br />

Tube connection for transducer<br />

Gear release button<br />

Connection cable<br />

Variable Volume Flow Operating Mode<br />

Room temperature controller,<br />

DDC-outstation etc.<br />

Set-<br />

Volume flow<br />

Constant Volume Flow Operating Mode<br />

Volume flow<br />

control setting<br />

Set-<br />

Volume flow<br />

Actual<br />

Volume flow<br />

NMV-D2<br />

Slave controller,<br />

monitoring, etc.<br />

Actual<br />

Volume flow<br />

NMV-D2<br />

<strong>Belimo</strong> VAV-Compact NMV-D2<br />

2<br />

Area of Application<br />

The VAV Compact NMV-D2 from <strong>Belimo</strong> is a complete<br />

control unit designed for VAV volume flow control units.<br />

The dynamic differential pressure transducer, damper<br />

actuator and electronic controls are combined in one<br />

housing. There are two operating modes available for the<br />

control function. For variable volume flow control, a suitable<br />

room temperature controller (alternatively, an air<br />

quality controller or similar) or a DDC outstation must be<br />

used. The control signal provides the volume set point.<br />

Switches or relays are used for constant volume flow<br />

control with up to 3 set values.<br />

The actual value of the volume flow is output as a standard<br />

linear, electrical signal. The voltage range for the<br />

actual and set values is standardised at 0 to 10 VDC.<br />

Using the ZEV setting unit, the customer can change to<br />

2 to 10 VDC.<br />

The volume flow is microprocessor-controlled on a digital<br />

basis. The VAV Compact has no potentiometer or<br />

switches, because all the parameters, including V · min and<br />

V · max, are stored in memory. Trox supplies the controller<br />

with all the parameters set. The volume flow can be<br />

changed by the customer easily and reliably using an<br />

adjuster (<strong>Belimo</strong> ZEV) and certain parameters can be<br />

read.<br />

Several controllers can be connected to a common room<br />

temperature controller for parallel operation. Supply/<br />

extract air slave circuits can be provided.<br />

Standard filtration in air-conditioning systems allows the<br />

use of the NMV-D2 in the supply air without dust protection<br />

filters. Since a small volume flow is passed through<br />

the transmitter in order to monitor the volume flow, the<br />

following must be noted:<br />

• With heavy dust in the room, suitable extract air<br />

filters must be provided.<br />

• If the air is contaminated with fluff or sticky particles<br />

or contains aggressive media, the NMV-D2<br />

should not be used.<br />

Variable Volume Flow Operating Mode<br />

The VAV Compact acts as a volume flow controller. The<br />

external room temperature controller determines the control<br />

signal used for volume set point. The actual value of<br />

the volume flow can be monitored as an option. The<br />

room temperature controller must have at least one analogue<br />

output.<br />

Constant Volume Flow Operating Mode<br />

By means of simple switches, the VAV Compact can be<br />

set at the programmed set values or the OPEN or<br />

CLOSED damper position. Relay circuits or a controller<br />

(DDC outstation) enable a changeover to be made. The<br />

controller must have corresponding outputs which switch<br />

accordingly. The actual value of the volume flow can be<br />

monitored.


<strong>Belimo</strong> VAV-Compact NMV-D2<br />

Characteristic of the Actual Value Signal<br />

Volume flow<br />

A 0 to 10 VDC (standard) B 2 to 10 VDC<br />

V · actual = V· nom<br />

Characteristic of Volume Flow Variable<br />

Volume flow<br />

‡ nom<br />

(100 %)<br />

‡ min unit<br />

U 5<br />

10<br />

V · actual = V· U5-2 nom<br />

8<br />

A 0 to 10 VDC (standard) B 2 to 10 VDC<br />

V · set = U 3<br />

10 (V· max - V · min) + V · min<br />

Actual value signal U 5<br />

‡ nom<br />

V .<br />

min unit<br />

Control signal U 3<br />

V · set = U 3 - 2<br />

8<br />

Adjustment range<br />

(V · max -V · min)+V · min<br />

3<br />

Description of Function<br />

The volume flow is measured on the dynamic differential<br />

pressure principle. The effective pressure (∆p w) of the differential<br />

pressure sensor in the volume flow terminal unit<br />

enables a partial volume flow passing through the transmitter<br />

to be detected and measured. Two temperaturedependent<br />

resistors are used to measure this partial<br />

volume flow, which is proportional to the total volume<br />

flow, linearised, and temperature compensated. The<br />

volume flow is calculated by the controller's microprocessor.<br />

The characteristic of the effective pressure is calibrated<br />

in the controller, so that linearisation can be executed<br />

by the microprocessor. The actual volume flow can<br />

be monitored as the voltage signal U 5 The measuring<br />

range is set to suit each unit size during factory calibration,<br />

so that the maximum rated volume flow (V · nom) is<br />

always 10 VDC.<br />

The required volume flow is set by the room temperature<br />

controller or by switch contacts. The controller determines<br />

the set volume flow in accordance with the characteristic<br />

shown opposite and compares this with the<br />

actual value. The damper actuator is controlled according<br />

to the deviation. The volume flow values V · min and<br />

V · max which are parameters are factory set can be altered<br />

by the customer using an adjuster (<strong>Belimo</strong> ZEV).<br />

Variable Volume Flow Operating Mode<br />

The VAV Compact controls the set volume flow, between<br />

V · min and V · max, from the control signal according to the<br />

characteristic shown opposite. Override shut off is possible.<br />

Constant Volume Flow Operating Mode<br />

By wiring the control signal input terminal via switch contacts,<br />

constant volume flows V · min and V · max, and override<br />

control can be achieved.<br />

Control Signal Range Limiting<br />

For settings between V · min = 0 % and V · max = 100 %, the<br />

control signal must be limited in the DDC outstation. In<br />

this case, the full published volume range can be used<br />

for future adjustment via the BMS. If the design volume<br />

flow rates are set in the unit, a full voltage signal range of<br />

0-10 VDC or 2-10 VDC can be used. However, these settings<br />

can only be changed by using the <strong>Belimo</strong> ZEV<br />

which involve gaining access to the terminal box.


Pressure Independent Control Characteristic<br />

Pressure differential<br />

V · max Formula<br />

V · min Formula<br />

ZEV Adjuster<br />

V · max set value = V· max<br />

V · nom<br />

V · min set value = V· min<br />

V · max<br />

Operating mode selector<br />

knob<br />

V · min adjustment knob<br />

V · max adjustment knob<br />

Reset (Trox values)<br />

Volume flow % of ‡ nom<br />

. 100 %<br />

. 100 %<br />

Status display (LED)<br />

Set-button<br />

Control circuit state<br />

<strong>Belimo</strong> VAV-Compact NMV-D2<br />

4<br />

Volume Flow Control Tolerances<br />

The volume flow controller works independently of the<br />

duct pressure, which means that pressure fluctuations do<br />

not cause permanent volume flow changes. To prevent<br />

the volume flow control from becoming unstable, a dead<br />

zone is provided within which the damper is not moved.<br />

This dead zone, coupled with the measuring tolerances,<br />

produces a volume flow deviation AV shown opposite.<br />

If the conditions shown in the sales brochure (e.g. minimum<br />

pressure differential, inlet flow conditions, etc.) are<br />

not observed, greater deviations must be expected.<br />

V · max Setting<br />

The V · max value corresponds to the volume flow which is<br />

set with a 10 VDC control signal or V · max overridecontrol.<br />

The setting range for adjustment using the ZEV unit is<br />

from 30 to max 100 %. The percentage figures relate to<br />

V · nom.<br />

V · min Setting<br />

The V · min value corresponds to the volume flow which<br />

V · min override control. V · min may be set between 0 and<br />

100 % 1) of V · max, using the ZEV. The percentage figures<br />

relate to theV · max volume flow setting.<br />

If V · min is set at 0 %, the damper will be moved to the<br />

CLOSED position with a control signal of 0 VDC (alternatively<br />

2 VDC) (leakage depends on the type of unit).<br />

Volume Flow Adjustment on Site<br />

The volume flow set values and the voltage ranges can<br />

be adjusted on site with the aid of the adjuster ZEV. To<br />

achieve this, the ZEV is connected to the controller or<br />

remote position via a cable.<br />

The calculated V · min and V · max values are set on the corresponding<br />

potentiometers. These settings are input to the<br />

controller when the set buttons are pressed.<br />

1) Possible from approx. Jan. 1997, previously 80 %


<strong>Belimo</strong> VAV-Compact NMV-D2<br />

Volume Flow Ranges TVZ, TVA, TVR, TVS<br />

V<br />

100 10 75 30 95 36 270 108 342<br />

125 15 120 45 150 54 432 162 540<br />

160 25 200 75 250 90 720 270 900<br />

200 40 325 120 405 144 1170 432 1458<br />

250 60 490 185 615 216 1764 666 2214<br />

315 105 820 310 1025 378 2952 1116 3690<br />

400 170 1345 505 1680 612 4842 1818 6048<br />

· minpub.<br />

V · to<br />

to<br />

from V<br />

min- to<br />

pub.<br />

from<br />

· 1)<br />

nom<br />

1) to<br />

V<br />

2)<br />

· V<br />

nom<br />

· V max<br />

· min<br />

V · V max<br />

· min<br />

Size<br />

l/s m 3 /h<br />

Volume Flow Ranges TVJ/TVT<br />

B x H<br />

mm<br />

V · min-pub. 1)<br />

l/s m 3 /h<br />

V · min V · max V · min V · max<br />

to from<br />

200 x 100 45 170 65 215 162 612 234 774<br />

300 x 100 65 255 95 320 234 918 342 1152<br />

400 x 100 85 340 130 425 306 1224 468 1530<br />

500 x 100 105 430 160 535 378 1548 576 1926<br />

600 x 100 130 520 195 650 468 1872 702 2340<br />

200 x 200 85 330 125 415 306 1188 450 1494<br />

300 x 200 125 495 185 620 450 1782 666 2232<br />

400 x 200 165 660 250 825 594 2376 900 2970<br />

500 x 200 205 830 310 1035 738 2988 1116 3726<br />

600 x 200 250 1000 375 1250 900 3600 1350 4500<br />

700 x 200 290 1160 435 1450 1044 4176 1566 5220<br />

800 x 200 330 1320 495 1650 1188 4752 1782 5940<br />

300 x 300 185 735 275 920 666 2646 990 3312<br />

400 x 300 245 985 370 1230 882 3546 1332 4428<br />

500 x 300 305 1230 460 1535 1098 4428 1656 5526<br />

600 x 300 370 1480 555 1850 1332 5328 1998 6660<br />

700 x 300 430 1720 645 2150 1548 6192 2322 7740<br />

800 x 300 490 1960 735 2450 1764 7056 2646 8820<br />

900 x 300 555 2215 830 2770 1998 7974 2988 9972<br />

1000 x 300 620 2480 930 3100 2232 8928 3348 11160<br />

400 x 400 325 1305 490 1630 1170 4698 1764 5868<br />

500 x 400 410 1630 610 2040 1476 5868 2196 7344<br />

600 x 400 490 1960 735 2450 1764 7056 2646 8820<br />

700 x 400 570 2280 855 2850 2052 8208 3078 10260<br />

800 x 400 650 2600 975 3250 2340 9360 3510 11700<br />

900 x 400 735 2935 1100 3670 2646 10566 3960 13212<br />

1000 x 400 820 3280 1230 4100 2952 11808 4428 14760<br />

500 x 500 510 2030 760 2540 1836 7308 2736 9144<br />

600 x 500 610 2440 915 3050 2196 8784 3294 10980<br />

700 x 500 710 2840 1065 3550 2556 10224 3834 12780<br />

800 x 500 810 3240 1215 4050 2916 11664 4374 14580<br />

900 x 500 915 3655 1370 4570 3294 13158 4932 16452<br />

1000 x 500 1020 4080 1530 5100 3672 14688 5508 18360<br />

600 x 600 730 2920 1095 3650 2628 10512 3942 13140<br />

700 x 600 850 3400 1275 4250 3060 12240 4590 15300<br />

800 x 600 970 3880 1455 4850 3492 13968 5238 17460<br />

900 x 600 1100 4400 1650 5500 3960 15840 5940 19800<br />

1000 x 600 1220 4880 1830 6100 4392 17568 6588 21960<br />

700 x 700 990 3960 1485 4950 3564 14256 5346 17820<br />

800 x 700 1140 4560 1710 5700 4104 16416 6156 20520<br />

900 x 700 1280 5120 1920 6400 4608 18432 6912 23040<br />

1000 x 700 1420 5680 2130 7100 5112 20448 7668 25560<br />

800 x 800 1300 5200 1950 6500 4680 18720 7020 23400<br />

900 x 800 1460 5840 2190 7300 5256 21024 7884 26280<br />

1000 x 800 1620 6480 2430 8100 5832 23328 8748 29160<br />

900 x 900 1640 6560 2460 8200 5904 23616 8856 29520<br />

1000 x 900 1820 7280 2730 9100 6552 26208 9828 32760<br />

1000 x 1000 2020 8080 3030 10100 7272 29088 10908 36360<br />

5<br />

to V · nom<br />

V · min-pub. 1)<br />

to from to V · nom<br />

1) V · min = 0 is also possible 2) Only TVR Grey colored sizes not deliverable with NMV-D2 (torques too high)!


Volume Flow Control Tolerances 1)<br />

Volume flow<br />

as % of V · nom<br />

1) Percentage figures based on V · actual<br />

∆V · in ± %<br />

TVZ, TVA, TVR, TVS TVJ/TVT<br />

100 5 5<br />

80 5 5<br />

60 7 7<br />

40 7 8<br />

20 9 14<br />

10 20 >14<br />

20 >14<br />

2) Operating modes U and F only 2 to 10 VDC<br />

3) It is possible to use a fixed value controller as master<br />

<strong>Belimo</strong> VAV-Compact NMV-D2<br />

6<br />

Single-Duct Units<br />

Order Code / Examples<br />

The available options are given in the current price list.<br />

TVZ-R / 160 / 00 / BC5 / E0 - 50 - 240 l/s<br />

TVZ-R / 160 / 00 / BC5 / M0 - 50 - 240 l/s<br />

TVZ-R / 160 / 00 / BC5 / S0 - 50 - 240 l/s<br />

TVZ-R / 160 / 00 / BC5 / F2 - 100 l/s<br />

Operating Mode Voltage Range<br />

E Individual<br />

M Master<br />

S Slave<br />

U Changeover<br />

F Constant<br />

Volume Flow Parameters<br />

Operating<br />

Mode<br />

E0; E2<br />

M2; M0<br />

S0; S2<br />

U2 3)<br />

F2 3)<br />

Factory Setting<br />

V · min set at required V· min<br />

V · max set at required V· max<br />

V · min set at 0 %<br />

V · max set at volume flow ratio to master<br />

controller<br />

V · min set at required volume flow 1<br />

(lower value)<br />

V · max set at required volume flow 2<br />

(higher value)<br />

V · min set at required volume flow<br />

V · max set at 100 %.<br />

V · min<br />

0 = Voltage range 0 to 10 VDC<br />

(standard range) 2)<br />

2 = Voltage range 2 to 10 VDC<br />

V · max


<strong>Belimo</strong> VAV-Compact NMV-D2<br />

Volume Flow Ranges TVM<br />

Size V · min -<br />

unit<br />

1) Percentage figures based on V · actual<br />

V · min- V<br />

unit<br />

· l/s m<br />

nom<br />

3 /h<br />

125 45 150 162 540<br />

160 75 250 270 900<br />

200 120 405 432 1458<br />

250 185 615 666 2214<br />

Volume Flow Tolerances TVM 1)<br />

V · nom<br />

Volume flow<br />

as % of V<br />

100 5 7<br />

80 5 10<br />

60 5 12<br />

40 7 15<br />

20 9 -<br />

10 20 -<br />

20 -<br />

· ∆V<br />

nom<br />

· in ± %<br />

TVMcold TVMtotal 7<br />

Dual-Duct Unit TVM<br />

Order Code / Examples<br />

The available options are given in the current price list.<br />

V · warm<br />

V · cold<br />

TVM-R / 160 / BFC / M0 - 75 - 240 l/s<br />

V · warm = V · cold<br />

TVM-R / 160 / BFC / F2 - 200 l/s<br />

Operating Mode Voltage Range<br />

E Individual<br />

M Master<br />

F Constant<br />

Volume Flow Parameters<br />

Operating<br />

Mode<br />

E0<br />

E2<br />

M0<br />

M2<br />

F0<br />

F2<br />

0 = Voltage range 0 to 10 VDC<br />

(standard range)<br />

2 = Voltage range 2 to 10 VDC<br />

V · min set at 0 %<br />

V · max set at required<br />

Volume flow (V · cold )<br />

Factory Setting<br />

Cold duct controller Warm duct controller<br />

V · min set at required<br />

Volume flow V · warm<br />

V · max set at 100 %


Wiring Connections<br />

IMPORTANT<br />

The examples illustrated show the most common<br />

arrangements for volume flow control. The <strong>Belimo</strong><br />

specifications must be observed in the overall<br />

control system design, selection of the other control<br />

components and wire sizing.<br />

Service Signal<br />

Room<br />

temperature<br />

controller<br />

Suitable<br />

enclosure,<br />

terminal block<br />

<strong>Belimo</strong> VAV-Compact NMV-D2<br />

8<br />

Nomenclature<br />

�, - Ground, neutral<br />

~, + Supply voltage 24 VAC or 24 VDC<br />

w<br />

z<br />

Input voltage for set volume flow U3 Input operating control<br />

U/pp Actual volume flow U5 and communication signal<br />

Wiring<br />

The 24 VAC/VDC voltage supply must be wired up by the<br />

customer. Safety transformers must be used (EN 60742).<br />

If several volume flow controllers are connected to one<br />

24 V network, it is important to ensure that a common<br />

neutral or ground wire is used and that this is not connected<br />

to other wires.<br />

Commissioning Connections<br />

It is advisable that the signal line for connecting the<br />

adjuster ZEV is linked up in an easily accessible location.<br />

This means that ceiling panels do not need be removed in<br />

order to take measurements. Suitable locations include:<br />

Spare terminals in room temperature controller or wall<br />

mounted enclosure.<br />

It is important to ensure that the ground (and 24 V) is also<br />

available. Therefore, a 3-wire connection is required to<br />

the commissioning connection.<br />

IMPORTANT<br />

The commissioning connection will also work if the<br />

U5 signal is used for slave controls or monitoring.<br />

However, the U5 signal differs from the actual value<br />

when the ZEV unit is connected.


<strong>Belimo</strong> VAV-Compact NMV-D2<br />

Variable Volume Flow Operating Mode<br />

with Override Control CLOSED<br />

Supply Voltage 24 VAC,<br />

Input Voltage 0 to 10 or 2 to 10 VDC<br />

24 VAC<br />

Input voltage 2 to 10 VDC<br />

1) e.g. Diode 1N 4007<br />

RT Controller<br />

1 2 3 5<br />

NMV-D2<br />

Operating Mode E0, E2, M0, M2<br />

NMV-D2<br />

Operating Mode E0, E2, M0, M2<br />

24 VAC<br />

(24 VDC)<br />

1)<br />

1 2 3 5<br />

RT Controller<br />

1 2 3 5<br />

NMV-D2<br />

Operating Mode E2, M2<br />

1 2 3 5<br />

NMV-D2<br />

Operating Mode E2, M2<br />

1<br />

1<br />

1<br />

Override<br />

Control<br />

CLOSED<br />

Parallel<br />

connection<br />

of other<br />

controllers<br />

1<br />

Override<br />

Control<br />

CLOSED<br />

Parallel<br />

connection<br />

of other<br />

controllers<br />

9<br />

Variable Volume Flow Control<br />

The VAV Compact is connected to the 24 VAC mains. If<br />

the DDC outstation/controller is on the same mains network,<br />

the control signal can be applied through a single<br />

wire. If the mains networks are separate, the control<br />

signal is connected by two wires. The actual value signal<br />

for the volume flow can be used.<br />

It is possible to connect several VAV Compacts in parallel.<br />

Several volume flow controllers (supply or extract air) are<br />

run in parallel by one DDC outstation/controller. If the<br />

volume flow terminal units are of the same size and the<br />

V · min and V · max values are programmed the same, all units<br />

control the same volume flow. If there are different settings,<br />

the units conduct equal percentages. In this way, a<br />

ratio control between the supply and extract air controllers<br />

can be achieved.<br />

A volt free switch contact provided by the customer enables<br />

the variable volume flow control to be overridden<br />

and a CLOSED override control achieved. The control<br />

wire to the room temperature controller should be interrupted.


Constant Volume Flow Control<br />

Supply Voltage 24 VAC<br />

Input Voltage 2 to 10 VDC<br />

24 VAC<br />

Supply Voltage 24 VAC<br />

Input Voltage 0 to 10 VDC<br />

24 VAC<br />

S1<br />

S2<br />

S3<br />

S4<br />

1) e.g. Diode 1N 4007<br />

1)<br />

1 2 3 5<br />

NMV-D2<br />

Operating Mode U2<br />

S2<br />

S3<br />

S4<br />

1)<br />

1 2 3 5<br />

NMV-D2<br />

Operating Mode E0<br />

Parallel<br />

connection of<br />

other controllers<br />

possible<br />

Parallel<br />

connection of<br />

other controllers<br />

possible<br />

<strong>Belimo</strong> VAV-Compact NMV-D2<br />

10<br />

Changeover Mode<br />

By means of simple switching between the supply voltage<br />

connections and the control input z, override controls<br />

at various volume flow set values or Open/Closed<br />

damper positions are possible in constant volume flow<br />

operating mode. If several functions are combined, the<br />

contacts must be linked in relation to one another, to prevent<br />

a short circuit.<br />

Several volume flow controllers can also be operated by<br />

one switch, if there is a common ground wire and the<br />

control signal is connected in parallel.<br />

All Switches<br />

OPEN V<br />

·<br />

min<br />

S1 closed CLOSED<br />

S2 closed<br />

S3 closed<br />

V<br />

·<br />

max<br />

·<br />

VZS S4 closed CLOSED<br />

Override Controls<br />

Designation Control<br />

CLOSED<br />

‡ min<br />

‡ max<br />

Damper Closed<br />

Constant Volume Flow ‡ min<br />

Constant Volume Flow ‡ max<br />

Constant Volume Flow<br />

Intermediate setting<br />

VZS =(Vmax-Vmin) . ‡ ZS · · ·<br />

0.5+V<br />

·<br />

min<br />

• Override Control “Damper OPEN” possible<br />

if required<br />

• Constant Volume Flow with DC-Supply Voltage is<br />

not recommended


<strong>Belimo</strong> VAV-Compact NMV-D2<br />

Slave Control<br />

24 VAC<br />

(24 VDC)<br />

RT-Controller<br />

Master Controller NMV-D2<br />

Operating Mode M<br />

Slave Controller NMV-D2<br />

Operating Mode S<br />

Dual Duct Terminal Unit TVM<br />

24 VAC<br />

(24 VDC)<br />

RT-Controller<br />

Cold Controller NMV-D2<br />

Warm Controller NMV-D2<br />

Operating Mode E, M, F<br />

To possible<br />

slave controller<br />

11<br />

Supply/Extract Air Slave Control<br />

If the units are controlled in parallel, there may be an<br />

incorrect difference in volume between the supply and<br />

extract air flows, if the pressure in one duct region is too<br />

low. It is therefore more beneficial to use the actual<br />

volume flow value, usually that of the supply air flow, as<br />

the control signal for the slave volume flow controller. If<br />

the extract air flow is not to be controlled by the DDC<br />

controller, a slave control is also used.<br />

A ratio control can be achieved using the VAV Compact,<br />

i.e. extract and supply air flows are in the same ratio to<br />

one another under all operating conditions.<br />

V · max Supply<br />

V · V<br />

min Supply<br />

· max Extract<br />

V · =<br />

min Extract<br />

The volume flow ratio is set on the slave controller as<br />

follows:<br />

V · max Extract<br />

V · V<br />

·<br />

max set value =<br />

max Supply<br />

. V· nom Supply<br />

V · nom Extract<br />

. 100 %<br />

If the volume flows are the same, the setting will be<br />

100 %. The setting range is up to max. 100 % (up to<br />

120 % via factory software).<br />

Volume Flow Control of TVM Units<br />

Two VAV Compacts are necessary in order to control a<br />

dual duct terminal box type TVM.<br />

The room temperature controller controls the cold duct<br />

volume flow controller. In most cases, the proportion of<br />

warm air is increased in the heating cycle from 0 to the<br />

required V · min. The warm duct controller (V · total is measured)<br />

is therefore set as a constant volume controller and<br />

does not require a control signal.


Function Test<br />

Check wiring<br />

Connect supply voltage<br />

Connect air supply systems<br />

Input control voltage for V · min<br />

Record the actual value signal U 5<br />

Input control voltage for V · max<br />

Record the actual value signal U 5<br />

Fault Finding Check<br />

Supply voltage within <strong>Belimo</strong><br />

specifications?<br />

yes<br />

Actual value signal U5 consistent?<br />

yes<br />

Actuator opens and<br />

closes?<br />

yes<br />

Volume flow V · min ?<br />

yes<br />

Volume flow V · max ?<br />

yes<br />

Set volume flow signal?<br />

yes<br />

Override controls?<br />

Check transformer,<br />

etc.<br />

Controller faulty<br />

Damper<br />

obstructed?<br />

Duct pressure<br />

sufficient?<br />

Measuring tubes to<br />

the transducer<br />

damaged?<br />

Packing materials<br />

removed?<br />

Check room temperature<br />

controller<br />

Check window<br />

switch, relays, etc.<br />

Sample Order Replacement Controller<br />

<strong>Belimo</strong> NMV-D2,<br />

preset for TVR / 125 / E0 - 140 - 300 m 3 /h<br />

voltage range 0 to 10 VDC, replacement for NMV24-D/NMV-D2<br />

no<br />

no<br />

no<br />

no<br />

no<br />

no<br />

no<br />

<strong>Belimo</strong> VAV-Compact NMV-D2<br />

12<br />

Commissioning<br />

The functional check prior to commissioning cannot be<br />

carried out without the signal controller (DDC). The DDC<br />

controller is used to set a particular volume flow.<br />

The actual volume flow is calculated from the monitored<br />

actual value signal and compared with the set value.<br />

In many cases, incorrect wiring can be the reason for<br />

malfunction. Therefore a close examination of all connections<br />

should be made. Connections to wires 3 to 5<br />

should be disconnected before the following checks are<br />

made:<br />

If the actuator drive is disengaged and the damper<br />

opened manually, the voltage U 5 must increase. The<br />

volume flow control is checked by setting a control voltage<br />

on wire 3 to which the monitored value must correspond<br />

after a short time, within ± 0.1V.<br />

Actuate the operating control and test the desired functions.<br />

The functional check can be simplified using the adjuster<br />

ZEV. The set volume values V · min and V · max can be read.<br />

Furthermore, the ZEV indicates whether the monitored<br />

value agrees with the set value.<br />

Replacement Controller<br />

As a general rule, controllers intended for replacement<br />

must be calibrated for the terminal box type and size of<br />

unit. When ordering the replacement controller, V · min and<br />

V · max must be indicated. Controllers which have not been<br />

set can only be accepted as a temporary solution.


<strong>Belimo</strong> VAV-Compact NMV-D2M<br />

1<br />

Contents<br />

Subject Page<br />

Areas of Application 2<br />

Description of Function 3<br />

Volume Flow Control 4<br />

Volume Flow Adjustment on Site 4<br />

Volume Flow Ranges Single-duct Units 5<br />

Order Code, Examples, Single-duct Units 6<br />

Dual-duct Unit TVM 7<br />

Wiring Connections 8<br />

Variable Volume Flow Control 9<br />

Constant Volume flow Control 10<br />

Slave Control 11<br />

Function Test, Commissioning 12<br />

Design changes reserved · All rights reserved · ® Gebrüder Trox GmbH (02/2002) · Leaflet No. E016KM1


VAV-Compact, NMV-D2M<br />

2<br />

1<br />

3<br />

1 NMV-D2M<br />

2 Tube connection for transducer<br />

3 Gear release button<br />

4 Connection service unit<br />

5 Connection cable<br />

6 Shaft clamp<br />

7 Direction of rotation display<br />

8 Rotation limiter<br />

Variable Volume Flow Operating Mode<br />

Room temperature controller,<br />

DDC-outstation etc.<br />

Set-<br />

Volume flow<br />

Constant Volume Flow Operating Mode<br />

Volume flow<br />

control setting<br />

Set-<br />

Volume flow<br />

Actual<br />

Volume flow<br />

NMV-D2M<br />

Slave controller,<br />

monitoring, etc.<br />

Actual<br />

Volume flow<br />

NMV-D2M<br />

Area of Application<br />

The VAV Compact NMV-D2M from <strong>Belimo</strong> is a complete<br />

control unit designed for VAV volume flow control units.<br />

The dynamic differential pressure transducer, damper<br />

actuator and electronic controls are combined in one<br />

housing. There are two operating modes available for the<br />

control function. For variable volume flow control, a suitable<br />

room temperature controller (alternatively, an air<br />

quality controller or similar) or a DDC outstation must be<br />

used. The control signal provides the volume set point.<br />

Switches or relays are used for constant volume flow<br />

control with up to 3 set values.<br />

6<br />

7<br />

8<br />

4<br />

5<br />

<strong>Belimo</strong> VAV-Compact NMV-D2M<br />

2<br />

The actual value of the volume flow is output as a standard<br />

linear, electrical signal. The voltage range for the<br />

actual and set values is standardised at 0 to 10 VDC.<br />

Using the ZEV setting unit, the customer can change to<br />

2 to 10 VDC.<br />

The volume flow is microprocessor-controlled on a digital<br />

basis. The VAV Compact has no potentiometer or<br />

switches, because all the parameters, including V · min and<br />

V · max, are stored in memory. Trox supplies the controller<br />

with all the parameters set. The volume flow can be<br />

changed by the customer easily and reliably using an<br />

adjuster (<strong>Belimo</strong> ZEV) and certain parameters can be<br />

read.<br />

Several controllers can be connected to a common room<br />

temperature controller for parallel operation. Supply/<br />

extract air slave circuits can be provided.<br />

Standard filtration in air-conditioning systems allows the<br />

use of the NMV-D2 in the supply air without dust protection<br />

filters. Since a small volume flow is passed through<br />

the transmitter in order to monitor the volume flow, the<br />

following must be noted:<br />

• With heavy dust in the room, suitable extract air<br />

filters must be provided.<br />

• If the air is contaminated with fluff or sticky particles<br />

or contains aggressive media, the NMV-D2M<br />

should not be used.<br />

Variable Volume Flow Operating Mode<br />

The VAV Compact acts as a volume flow controller. The<br />

external room temperature controller determines the control<br />

signal used for volume set point. The actual value of<br />

the volume flow can be monitored as an option. The<br />

room temperature controller must have at least one analogue<br />

output.<br />

Constant Volume Flow Operating Mode<br />

By means of simple switches, the VAV Compact can be<br />

set at the programmed set values or the OPEN or<br />

CLOSED damper position. Relay circuits or a controller<br />

(DDC outstation) enable a changeover to be made. The<br />

controller must have corresponding outputs which switch<br />

accordingly. The actual value of the volume flow can be<br />

monitored.<br />

PP/MP-Bus Function and Integration<br />

in LONWORKS ® -Systems (on Site)<br />

The VAV-Compact NMV-D2M incorporates the <strong>Belimo</strong><br />

MP-Bus system which allowsup to 8 VAV units to be<br />

linked together in a very simple way and in the following<br />

systems:<br />

• LONWORKS ® -Systems in connection with <strong>Belimo</strong> interface<br />

UK24LON<br />

• DDC controllers with integrated MP-Bus interface<br />

For more information please contact <strong>Belimo</strong>!


<strong>Belimo</strong> VAV-Compact NMV-D2M<br />

Characteristic of the Actual Value Signal<br />

Volume flow<br />

A 0 to 10 VDC (standard) B 2 to 10 VDC<br />

V · actual = V· nom<br />

Characteristic of Volume Flow Variable<br />

Volume flow<br />

‡ nom<br />

(100 %)<br />

‡ min unit<br />

U 5<br />

10<br />

V · actual = V· U5-2 nom<br />

8<br />

A 0 to 10 VDC (standard) B 2 to 10 VDC<br />

V · set = U 3<br />

10 (V· max - V · min) + V · min<br />

Actual value signal U 5<br />

‡ nom<br />

V .<br />

min unit<br />

Control signal U 3<br />

V · set = U 3 - 2<br />

8<br />

Adjustment range<br />

(V · max -V · min)+V · min<br />

3<br />

Description of Function<br />

The volume flow is measured on the dynamic differential<br />

pressure principle. The effective pressure (∆p w) of the differential<br />

pressure sensor in the volume flow terminal unit<br />

enables a partial volume flow passing through the transmitter<br />

to be detected and measured. Two temperaturedependent<br />

resistors are used to measure this partial<br />

volume flow, which is proportional to the total volume<br />

flow, linearised, and temperature compensated. The<br />

volume flow is calculated by the controller's microprocessor.<br />

The characteristic of the effective pressure is calibrated<br />

in the controller, so that linearisation can be executed<br />

by the microprocessor. The actual volume flow can<br />

be monitored as the voltage signal U 5 The measuring<br />

range is set to suit each unit size during factory calibration,<br />

so that the maximum rated volume flow (V · nom) is<br />

always 10 VDC.<br />

The required volume flow is set by the room temperature<br />

controller or by switch contacts. The controller determines<br />

the set volume flow in accordance with the characteristic<br />

shown opposite and compares this with the<br />

actual value. The damper actuator is controlled according<br />

to the deviation. The volume flow values V · min and<br />

V · max which are parameters are factory set can be altered<br />

by the customer using an adjuster (<strong>Belimo</strong> ZEV).<br />

Variable Volume Flow Operating Mode<br />

The VAV Compact controls the set volume flow, between<br />

V · min and V · max, from the control signal according to the<br />

characteristic shown opposite. Override shut off is possible.<br />

Constant Volume Flow Operating Mode<br />

By wiring the control signal input terminal via switch contacts,<br />

constant volume flows V · min and V · max, and override<br />

control can be achieved.<br />

Control Signal Range Limiting<br />

For settings between V · min = 0 % and V · max = 100 %, the<br />

control signal must be limited in the DDC outstation. In<br />

this case, the full published volume range can be used<br />

for future adjustment via the BMS. If the design volume<br />

flow rates are set in the unit, a full voltage signal range of<br />

0-10 VDC or 2-10 VDC can be used. However, these settings<br />

can only be changed by using the <strong>Belimo</strong> ZEV or<br />

MFT-H which involve gaining access to the terminal box.


Pressure Independent Control Characteristic<br />

Pressure differential<br />

V · max Formula<br />

V · min Formula<br />

ZEV Adjuster<br />

Volume flow % of ‡ nom<br />

V · max set value = V· max<br />

V · nom<br />

V · min set value = V· min<br />

V · max<br />

Operating mode selector<br />

knob<br />

V · min adjustment knob<br />

V · max adjustment knob<br />

Reset (Trox values)<br />

. 100 %<br />

. 100 %<br />

Status display (LED)<br />

Set-button<br />

Control circuit state<br />

<strong>Belimo</strong> VAV-Compact NMV-D2M<br />

4<br />

Volume Flow Control Tolerances<br />

The volume flow controller works independently of the<br />

duct pressure, which means that pressure fluctuations do<br />

not cause permanent volume flow changes. To prevent<br />

the volume flow control from becoming unstable, a dead<br />

zone is provided within which the damper is not moved.<br />

This dead zone, coupled with the measuring tolerances,<br />

produces a volume flow deviation AV shown opposite.<br />

If the conditions shown in the sales brochure (e.g. minimum<br />

pressure differential, inlet flow conditions, etc.) are<br />

not observed, greater deviations must be expected.<br />

V · max Setting<br />

The V · max value corresponds to the volume flow which is<br />

set with a 10 VDC control signal or V · max overridecontrol.<br />

The setting range for adjustment using the ZEV unit is<br />

from 30 to max 100 %. The percentage figures relate to<br />

V · nom.<br />

V · min Setting<br />

The V · min value corresponds to the volume flow which<br />

V · min override control. V · min may be set between 0 and<br />

100 % of V · max, using the ZEV. The percentage figures<br />

relate to theV · max volume flow setting.<br />

If V · min is set at 0 %, the damper will be moved to the<br />

CLOSED position with a control signal of 0 VDC (alternatively<br />

2 VDC) (leakage depends on the type of unit).<br />

Volume Flow Adjustment on Site<br />

The volume flow set values and the voltage ranges can<br />

be adjusted on site with the aid of the adjuster ZEV. To<br />

achieve this, the ZEV is connected to the controller or<br />

remote position via a cable.<br />

The calculated V · min and V · max values are set on the corresponding<br />

potentiometers. These settings are input to the<br />

controller when the set buttons are pressed.<br />

IMPORTANT<br />

The Service unit ZEV can’t display the actual mode<br />

but mode changing is possible.<br />

Service Unit MFT-H and PC Software Tool<br />

The <strong>Belimo</strong> Service unit MFT-H and the PC software Tool<br />

offers further functions and possibilities.<br />

For more information please contact <strong>Belimo</strong>!


<strong>Belimo</strong> VAV-Compact NMV-D2M<br />

Volume Flow Ranges TVZ, TVA, TVR, TVS<br />

V<br />

100 10 75 30 95 36 270 108 342<br />

125 15 120 45 150 54 432 162 540<br />

160 25 200 75 250 90 720 270 900<br />

200 40 325 120 405 144 1170 432 1458<br />

250 60 490 185 615 216 1764 666 2214<br />

315 105 820 310 1025 378 2952 1116 3690<br />

400 170 1345 505 1680 612 4842 1818 6048<br />

· minunit<br />

V · to<br />

to<br />

from V<br />

min- to<br />

unit<br />

from<br />

· 1)<br />

nom<br />

1) to<br />

V<br />

2)<br />

· V<br />

nom<br />

· V max<br />

· min<br />

V · V max<br />

· min<br />

Size<br />

l/s m 3 /h<br />

Volume Flow Ranges TVJ/TVT<br />

B x H<br />

mm<br />

V · min-unit 1)<br />

l/s m 3 /h<br />

V · min V · max V · min V · max<br />

to from<br />

200 x 100 45 170 65 215 162 612 234 774<br />

300 x 100 65 255 95 320 234 918 342 1152<br />

400 x 100 85 340 130 425 306 1224 468 1530<br />

500 x 100 105 430 160 535 378 1548 576 1926<br />

600 x 100 130 520 195 650 468 1872 702 2340<br />

200 x 200 85 330 125 415 306 1188 450 1494<br />

300 x 200 125 495 185 620 450 1782 666 2232<br />

400 x 200 165 660 250 825 594 2376 900 2970<br />

500 x 200 205 830 310 1035 738 2988 1116 3726<br />

600 x 200 250 1000 375 1250 900 3600 1350 4500<br />

700 x 200 290 1160 435 1450 1044 4176 1566 5220<br />

800 x 200 330 1320 495 1650 1188 4752 1782 5940<br />

300 x 300 185 735 275 920 666 2646 990 3312<br />

400 x 300 245 985 370 1230 882 3546 1332 4428<br />

500 x 300 305 1230 460 1535 1098 4428 1656 5526<br />

600 x 300 370 1480 555 1850 1332 5328 1998 6660<br />

700 x 300 430 1720 645 2150 1548 6192 2322 7740<br />

800 x 300 490 1960 735 2450 1764 7056 2646 8820<br />

900 x 300 555 2215 830 2770 1998 7974 2988 9972<br />

1000 x 300 620 2480 930 3100 2232 8928 3348 11160<br />

400 x 400 325 1305 490 1630 1170 4698 1764 5868<br />

500 x 400 410 1630 610 2040 1476 5868 2196 7344<br />

600 x 400 490 1960 735 2450 1764 7056 2646 8820<br />

700 x 400 570 2280 855 2850 2052 8208 3078 10260<br />

800 x 400 650 2600 975 3250 2340 9360 3510 11700<br />

900 x 400 735 2935 1100 3670 2646 10566 3960 13212<br />

1000 x 400 820 3280 1230 4100 2952 11808 4428 14760<br />

500 x 500 510 2030 760 2540 1836 7308 2736 9144<br />

600 x 500 610 2440 915 3050 2196 8784 3294 10980<br />

700 x 500 710 2840 1065 3550 2556 10224 3834 12780<br />

800 x 500 810 3240 1215 4050 2916 11664 4374 14580<br />

900 x 500 915 3655 1370 4570 3294 13158 4932 16452<br />

1000 x 500 1020 4080 1530 5100 3672 14688 5508 18360<br />

600 x 600 730 2920 1095 3650 2628 10512 3942 13140<br />

700 x 600 850 3400 1275 4250 3060 12240 4590 15300<br />

800 x 600 970 3880 1455 4850 3492 13968 5238 17460<br />

900 x 600 1100 4400 1650 5500 3960 15840 5940 19800<br />

1000 x 600 1220 4880 1830 6100 4392 17568 6588 21960<br />

700 x 700 990 3960 1485 4950 3564 14256 5346 17820<br />

800 x 700 1140 4560 1710 5700 4104 16416 6156 20520<br />

900 x 700 1280 5120 1920 6400 4608 18432 6912 23040<br />

1000 x 700 1420 5680 2130 7100 5112 20448 7668 25560<br />

800 x 800 1300 5200 1950 6500 4680 18720 7020 23400<br />

900 x 800 1460 5840 2190 7300 5256 21024 7884 26280<br />

1000 x 800 1620 6480 2430 8100 5832 23328 8748 29160<br />

900 x 900 1640 6560 2460 8200 5904 23616 8856 29520<br />

1000 x 900 1820 7280 2730 9100 6552 26208 9828 32760<br />

1000 x 1000 2020 8080 3030 10100 7272 29088 10908 36360<br />

5<br />

to V · nom<br />

V · min-unit 1)<br />

to from to V · nom<br />

1) V · min = 0 is also possible 2) Only TVR Grey colored sizes not deliverable with NMV-D2M (torques too high)!


Volume Flow Control Tolerances 1)<br />

Volume flow<br />

as % of V · nom<br />

1) Percentage figures based on V · actual<br />

∆V · in ± %<br />

TVZ, TVA, TVR, TVS TVJ/TVT<br />

100 5 5<br />

80 5 5<br />

60 7 7<br />

40 7 8<br />

20 9 14<br />

10 20 >14<br />

20 >14<br />

2) It is possible to use a fixed value controller as master<br />

<strong>Belimo</strong> VAV-Compact NMV-D2M<br />

6<br />

Single-Duct Units<br />

Order Code / Examples<br />

The available options are given in the current price list.<br />

TVZ-R / 160 / 00 / BC0 / E0 - 50 - 240 l/s<br />

TVZ-R / 160 / 00 / BC0 / M0 - 50 - 240 l/s<br />

TVZ-R / 160 / 00 / BC0 / S0 - 50 - 240 l/s<br />

TVZ-R / 160 / 00 / BC0 / F2 - 100 l/s<br />

Operating Mode Voltage Range<br />

E Individual<br />

M Master<br />

S Slave<br />

U Changeover<br />

F Constant<br />

Volume Flow Parameters<br />

Operating<br />

Mode<br />

E0; E2<br />

M2; M0<br />

S0; S2<br />

U0; U2 2)<br />

F0; F2 2)<br />

Factory Setting<br />

V · min set at required V· min<br />

V · max set at required V· max<br />

V · min set at 0 %<br />

V · max set at volume flow ratio to master<br />

controller<br />

V · min set at required volume flow 1<br />

(lower value)<br />

V · max set at required volume flow 2<br />

(higher value)<br />

V · min set at required volume flow<br />

V · max set at 100 %<br />

V · min<br />

0 = Voltage range 0 to 10 VDC<br />

(standard range)<br />

2 = Voltage range 2 to 10 VDC<br />

V · max


<strong>Belimo</strong> VAV-Compact NMV-D2M<br />

Volume Flow Ranges TVM<br />

Size V · min -<br />

unit<br />

1) Percentage figures based on V · actual<br />

V · min- V<br />

unit<br />

· l/s m<br />

nom<br />

3 /h<br />

125 45 150 162 540<br />

160 75 250 270 900<br />

200 120 405 432 1458<br />

250 185 615 666 2214<br />

Volume Flow Tolerances TVM 1)<br />

V · nom<br />

Volume flow<br />

as % of V<br />

100 5 7<br />

80 5 10<br />

60 5 12<br />

40 7 15<br />

20 9 -<br />

10 20 -<br />

20 -<br />

· ∆V<br />

nom<br />

· in ± %<br />

TVMcold TVMtotal 7<br />

Dual-Duct Unit TVM<br />

Order Code / Examples<br />

The available options are given in the current price list.<br />

V · warm<br />

V · cold<br />

TVM-R / 160 / BF0 / M0 - 75 - 240 l/s<br />

V · warm = V · cold<br />

TVM-R / 160 / BF0 / F2 - 200 l/s<br />

Operating Mode Voltage Range<br />

E Individual<br />

M Master<br />

F Constant<br />

Volume Flow Parameters<br />

Operating<br />

Mode<br />

E0<br />

E2<br />

M0<br />

M2<br />

F0<br />

F2<br />

0 = Voltage range 0 to 10 VDC<br />

(standard range)<br />

2 = Voltage range 2 to 10 VDC<br />

V · min set at 0 %<br />

V · max set at required<br />

Volume flow (V · cold )<br />

Factory Setting<br />

Cold duct controller Warm duct controller<br />

V · min set at required<br />

Volume flow V · warm<br />

V · max set at 100 %


Wiring Connections<br />

IMPORTANT<br />

The examples illustrated show the most common<br />

arrangements for volume flow control. The <strong>Belimo</strong><br />

specifications must be observed in the overall<br />

control system design, selection of the other control<br />

components and wire sizing.<br />

Service Signal<br />

Room<br />

temperature<br />

controller<br />

NMV-D2M<br />

NMV-D2M<br />

Suitable<br />

enclosure,<br />

terminal block<br />

<strong>Belimo</strong> VAV-Compact NMV-D2M<br />

8<br />

Nomenclature<br />

�, - Ground, neutral<br />

~, + Supply voltage 24 VAC or 24 VDC<br />

w<br />

z<br />

Input voltage for set volume flow U3 Input operating control<br />

U/MP Actual volume flow U5 and communication signal<br />

Wiring<br />

The 24 VAC/VDC voltage supply must be wired up by the<br />

customer. Safety transformers must be used (EN 60742).<br />

If several volume flow controllers are connected to one<br />

24 V network, it is important to ensure that a common<br />

neutral or ground wire is used and that this is not connected<br />

to other wires.<br />

Commissioning Connections<br />

It is advisable that the signal line for connecting the<br />

adjuster ZEV is linked up in an easily accessible location.<br />

This means that ceiling panels do not need be removed in<br />

order to take measurements. Suitable locations include:<br />

Spare terminals in room temperature controller or wall<br />

mounted enclosure.<br />

It is important to ensure that the ground (and 24 V) is also<br />

available. Therefore, a 3-wire connection is required to<br />

the commissioning connection.<br />

IMPORTANT<br />

The commissioning connection will also work if the<br />

U5 signal is used for slave controls or monitoring.<br />

However, the U5 signal differs from the actual value<br />

when the ZEV unit is connected.<br />

NOTE<br />

When using MP bus system the NMV-D2M gets the input<br />

signal from DDC or BMS on the MP-connection (U/MP).<br />

An indication of actual volume flow rate with the U5 signal isn’t possible in this configuration. The actual<br />

volume flow rate is assigned by the communication into<br />

the DDC/BMS.<br />

When using MP bus the control units MFT-H or PC-Tool<br />

has to be connected central to the UK24LON and not to<br />

the NMV-D2M directly.


<strong>Belimo</strong> VAV-Compact NMV-D2M<br />

Variable Volume Flow Operating Mode<br />

with Override Control CLOSED<br />

Supply Voltage 24 VAC,<br />

Input Voltage 0 to 10 or 2 to 10 VDC<br />

24 VAC<br />

Input Voltage 2 to 10 VDC<br />

1) e.g. Diode 1N 4007<br />

RT Controller<br />

1 2 3 5<br />

NMV-D2M<br />

Operating Mode E0, E2, M0, M2<br />

NMV-D2M<br />

Operating Mode E0, E2, M0, M2<br />

24 VAC<br />

(24 VDC)<br />

1)<br />

1 2 3 5<br />

RT Controller<br />

1 2 3 5<br />

NMV-D2M<br />

Operating Mode E2, M2<br />

1 2 3 5<br />

NMV-D2M<br />

Operating Mode E2, M2<br />

1<br />

1<br />

1<br />

Override<br />

Control<br />

CLOSED<br />

Parallel<br />

connection<br />

of other<br />

controllers<br />

1<br />

Override<br />

Control<br />

CLOSED<br />

Parallel<br />

connection<br />

of other<br />

controllers<br />

9<br />

Variable Volume Flow Control<br />

The VAV Compact is connected to the 24 VAC mains. If<br />

the DDC outstation/controller is on the same mains network,<br />

the control signal can be applied through a single<br />

wire. If the mains networks are separate, the control<br />

signal is connected by two wires. The actual value signal<br />

for the volume flow can be used.<br />

It is possible to connect several VAV Compacts in parallel.<br />

Several volume flow controllers (supply or extract air) are<br />

run in parallel by one DDC outstation/controller. If the<br />

volume flow terminal units are of the same size and the<br />

V · min and V · max values are programmed the same, all units<br />

control the same volume flow. If there are different settings,<br />

the units conduct equal percentages. In this way, a<br />

ratio control between the supply and extract air controllers<br />

can be achieved.<br />

A volt free switch contact provided by the customer enables<br />

the variable volume flow control to be overridden<br />

and a CLOSED override control achieved. The control<br />

wire to the room temperature controller should be interrupted.


Constant Volume Flow Control<br />

Supply Voltage 24 VAC<br />

Input Voltage 2 to 10 VDC<br />

24 VAC<br />

24 VAC<br />

1) e.g. Diode 1N 4007<br />

S1<br />

S2<br />

S3<br />

S4<br />

Supply Voltage 24 VAC<br />

Input Voltage 0 to 10 VDC<br />

1)<br />

1 2 3 5<br />

NMV-D2M<br />

Operating Mode U2<br />

S2<br />

S3<br />

S4<br />

1)<br />

1 2 3 5<br />

NMV-D2M<br />

Operating Mode U0<br />

Parallel<br />

connection of<br />

other controllers<br />

possible<br />

Parallel<br />

connection of<br />

other controllers<br />

possible<br />

<strong>Belimo</strong> VAV-Compact NMV-D2M<br />

10<br />

Changeover Mode<br />

By means of simple switching between the supply voltage<br />

connections and the control input z, override controls<br />

at various volume flow set values or Open/Closed<br />

damper positions are possible in constant volume flow<br />

operating mode. If several functions are combined, the<br />

contacts must be linked in relation to one another, to prevent<br />

a short circuit.<br />

Several volume flow controllers can also be operated by<br />

one switch, if there is a common ground wire and the<br />

control signal is connected in parallel.<br />

Switch Switch Override Effect<br />

position controls<br />

S1 . . . S4 open V . min Constant Volume Flow V . min<br />

S1 closed CLOSED Damper closed<br />

S2 closed V . max Constant Volume Flow V . max<br />

Constant Volume Flow V . ZS<br />

S3 closed V . ZS interim position<br />

V . ZS = (V . max – V . min) · 0.5 + V . min<br />

S4 closed CLOSED Damper closed<br />

• Override Control “Damper OPEN” possible<br />

if required<br />

• Constant Volume Flow with DC-Supply Voltage is<br />

not recommended<br />

• Override controls with diodes not possible with<br />

supply voltage 24 VDC


<strong>Belimo</strong> VAV-Compact NMV-D2M<br />

Slave Control<br />

24 VAC<br />

(24 VDC)<br />

RT-Controller<br />

Master Controller NMV-D2M<br />

Operating Mode M<br />

Slave Controller NMV-D2M<br />

Operating Mode S<br />

Dual Duct Terminal Unit TVM<br />

24 VAC<br />

(24 VDC)<br />

RT-Controller<br />

Cold Controller NMV-D2M<br />

Warm Controller NMV-D2M<br />

Operating Mode E, M, F<br />

To possible<br />

slave controller<br />

11<br />

Supply/Extract Air Slave Control<br />

If the units are controlled in parallel, there may be an<br />

incorrect difference in volume between the supply and<br />

extract air flows, if the pressure in one duct region is too<br />

low. It is therefore more beneficial to use the actual<br />

volume flow value, usually that of the supply air flow, as<br />

the control signal for the slave volume flow controller. If<br />

the extract air flow is not to be controlled by the DDC<br />

controller, a slave control is also used.<br />

A ratio control can be achieved using the VAV Compact,<br />

i.e. extract and supply air flows are in the same ratio to<br />

one another under all operating conditions.<br />

V · max Supply<br />

V · V<br />

min Supply<br />

· max Extract<br />

V · =<br />

min Extract<br />

The volume flow ratio is set on the slave controller as<br />

follows:<br />

V · max Extract<br />

V · V<br />

·<br />

max set value =<br />

max Supply<br />

. V· nom Supply<br />

V · nom Extract<br />

. 100 %<br />

If the volume flows are the same, the setting will be<br />

100 %. The setting range is up to max. 100 % (up to<br />

120 % via factory software).<br />

Volume Flow Control of TVM Units<br />

Two VAV Compacts are necessary in order to control a<br />

dual duct terminal box type TVM.<br />

The room temperature controller controls the cold duct<br />

volume flow controller. In most cases, the proportion of<br />

warm air is increased in the heating cycle from 0 to the<br />

required V · min. The warm duct controller (V · total is measured)<br />

is therefore set as a constant volume controller and<br />

does not require a control signal.


Function Test<br />

Check wiring<br />

Connect supply voltage<br />

Connect air supply systems<br />

Fault Finding Check<br />

Input control voltage for V · min<br />

Record the actual value signal U 5<br />

Input control voltage for V · max<br />

Record the actual value signal U 5<br />

Supply voltage within <strong>Belimo</strong><br />

specifications?<br />

yes<br />

Actual value signal U5 consistent?<br />

yes<br />

Actuator opens and<br />

closes?<br />

yes<br />

Volume flow V · min ?<br />

yes<br />

Volume flow V · max ?<br />

yes<br />

Set volume flow signal?<br />

yes<br />

Override controls?<br />

Check transformer,<br />

etc.<br />

Controller faulty<br />

Damper<br />

obstructed?<br />

Duct pressure<br />

sufficient?<br />

Measuring tubes to<br />

the transducer<br />

damaged?<br />

Check room temperature<br />

controller<br />

Check window<br />

switch, relays, etc.<br />

Sample Order Replacement Controller<br />

<strong>Belimo</strong> NMV-D2M,<br />

preset for TVR / 125 / E0 - 45 - 100 l/s<br />

voltage range 0 to 10 VDC, replacement for NMV24-D/NMV-D2M<br />

no<br />

no<br />

no<br />

no<br />

no<br />

no<br />

no<br />

<strong>Belimo</strong> VAV-Compact NMV-D2M<br />

12<br />

Commissioning<br />

The functional check prior to commissioning cannot be<br />

carried out without the signal controller (DDC). The DDC<br />

controller is used to set a particular volume flow.<br />

The actual volume flow is calculated from the monitored<br />

actual value signal and compared with the set value.<br />

In many cases, incorrect wiring can be the reason for<br />

malfunction. Therefore a close examination of all connections<br />

should be made. Connections to wires 3 to 5<br />

should be disconnected before the following checks are<br />

made:<br />

If the actuator drive is disengaged and the damper<br />

opened manually, the voltage U 5 must increase. The<br />

volume flow control is checked by setting a control voltage<br />

on wire 3 to which the monitored value must correspond<br />

after a short time, within ± 0.1V.<br />

Actuate the operating control and test the desired functions.<br />

The functional check can be simplified using the adjuster<br />

ZEV or MFT-H. The set volume values V · min and V · max can<br />

be read. Furthermore, the ZEV indicates whether the<br />

monitored value agrees with the set value.<br />

Replacement Controller<br />

When replacing faulty controllers, calibrated controllers<br />

set for the terminal unit type and size must be used.<br />

Uncalibrated controllers can only be used as a temporary<br />

solution. The following must be specified when ordering<br />

a replacement controller:<br />

• Terminal unit type and size and in the case of TVM<br />

units, warm duct or cold duct controller<br />

• Operating mode<br />

• V · min and V · max<br />

• Voltage range<br />

• Delivery date of the faulty controller


<strong>Belimo</strong> Adjuster ZEV<br />

1<br />

Contents<br />

Subject Page<br />

Areas of Application 2<br />

Description of Function 2<br />

Operation 3<br />

Design changes reserved · All rights reserved · ® Gebrüder Trox GmbH (12/2001) · Leaflet No. E016MM2


ZEV Adjuster<br />

9<br />

8<br />

� Mode - control knob<br />

� Mode Display LED<br />

� Setting knob<br />

for operating mode<br />

� ‡ max control knob<br />

� Display LED ‡ max<br />

� Set knob for<br />

‡ max setting<br />

� ‡ min control knob 1)<br />

Connection to NVM-D2 / <strong>VRD2</strong><br />

7<br />

1<br />

12<br />

13<br />

2<br />

3<br />

4<br />

5<br />

10 11<br />

1) Setting range 0 to 100 % from February 1997<br />

2) As of approx. January 1998 no longer available<br />

24 VAC NMV-D2, <strong>VRD2</strong><br />

ZEV<br />

6<br />

� Display LED w=x/w�x<br />

� Adapter with cable<br />

� Power cut-off 2)<br />

� Display LED ‡ min<br />

� Set knob for<br />

‡ min setting<br />

� Reset knob for<br />

‡ min /‡ max setting<br />

1 2 5<br />

1 2 5<br />

1 Earth, ground<br />

2 Power supply 24 VAC<br />

5 U/pp, output actual volume flow U 5 and<br />

communication signal<br />

2<br />

Areas of Application<br />

<strong>Belimo</strong> Adjuster ZEV<br />

The <strong>Belimo</strong> ZEV control unit is designed for operating<br />

and servicing the <strong>Belimo</strong> <strong>VRD2</strong> and NVM-D2 electronic<br />

volume flow controllers. On this device the customer's<br />

volume flow control parameters are easily visible and<br />

accessible (the NVM-D2 controller has no potentiometer).<br />

In the function test a light diode (LED) indicates whether<br />

the required volume flow has been reached. The set<br />

limit values, ‡ min and ‡ max, are read on the control knobs<br />

and can be reset if necessary. The operating mode of the<br />

NMV-D2 (VAV Compact) can also be set with the ZEV.<br />

The ZEV is connected to the controller to be tested.<br />

A separate power supply is not necessary.<br />

Description of Function<br />

The control unit communicates by cable U5 with the<br />

controller to be tested. The respective parameters are<br />

located by the control buttons which incorporate light<br />

diodes. New values are set and sent to the controller,<br />

where they are stored in non-volatile memory. The factory<br />

set volume flow parameters ‡ min and ‡ max can be recalled<br />

by the reset button. This function does not apply to the<br />

operating mode.<br />

At times the control unit can become blocked. Pressing<br />

the button will shut off the power supply so that the ZEV<br />

can be initialized again.<br />

IMPORTANT<br />

As long as connection 5 is connected to the ZEV, the<br />

actual value output signal U5 will not correspond to<br />

the current value. If slave controllers or display devices<br />

are connected, greater differentials between<br />

supply air and extract air can be set and the correct<br />

values displayed. Disconnect when in doubt.


<strong>Belimo</strong> Adjuster ZEV<br />

Condition: Parameters Located<br />

Display Volume Flow Actual Value<br />

LED lights up: Volume flow set<br />

LED flashes: Volume flow not set<br />

New Parameters<br />

Factory Setting Recall<br />

3<br />

Locating the Parameters<br />

• Applies to <strong>VRD2</strong> and NMV-D2.<br />

• Connect ZEV.<br />

• Turn ‡ min control knob slowly backwards and forwards<br />

over the whole setting range until the appropriate LED<br />

lights up and remains on.<br />

• The value to be read corresponds to the currently<br />

stored value.<br />

• Repeat the procedure for ‡ max and the operating<br />

mode.<br />

If no setting ‡ min and ‡ max can be found and the LED<br />

does not light up, this value may lie outside the range<br />

(older ZEVs). The parameters can be changed and reset<br />

(to the outside value), but not the location. If all 3 LED's<br />

are flashing at irregular intervals a different operating<br />

mode has been programmed. (It is also possible to<br />

change the parameters here).<br />

Function Testing Volume Flow Control<br />

• Applies to <strong>VRD2</strong> and NVM-D2.<br />

• Connect ZEV.<br />

• Green LED flashes constantly (w=x):<br />

The current volume flow corresponds to the rated<br />

value and the damper goes into the required override<br />

position OPEN or SHUT. In this case the control circuit<br />

is functioning correctly. In some circumstances the<br />

damper is wide open and the volume flow is still too<br />

low. This indicates low duct pressure.<br />

• Green LED flashes (wx):<br />

The set volume is not reached yet. In some circumstances<br />

the damper is wide open and the volume flow<br />

is still too low. This indicates low duct pressure.<br />

It is not possible for the LED to show the size of the<br />

volume flow.<br />

Changing the Parameters<br />

• NMV-D2: All parameters.<br />

• <strong>VRD2</strong>: Only operating mode 0/2 to 10 VDC.<br />

• Connect ZEV.<br />

• Set ‡ min control button at the required percentage<br />

value.<br />

• Press appropriate set button.<br />

• Appropriate LED lights up and indicates that the new<br />

programme has been accepted.<br />

• Carry out the procedure for ‡ max and the operating<br />

mode if necessary.<br />

The factory set values for ‡ min and ‡ max are reactivated<br />

by the RESET button. Any changes are lost.<br />

If the control unit becomes blocked – all LED’s behave<br />

illogically – press the power off button (terminal 2) until<br />

the green light goes out.


Staefa PRVU<br />

1<br />

Contents<br />

Subject Page<br />

Areas of Application 2<br />

Description of Function 2<br />

Volume Flow Control 3<br />

Volume Flow Adjustment on Site 4<br />

Service Unit ZS 1 4<br />

Volume Flow Ranges Single Duct Units 5<br />

Order Code, Order Example, Single Duct Units 6<br />

Volume Flow Ranges<br />

Dual Duct Units TVM 7<br />

Order Code, Order Examples TVM 7<br />

Terminal Identification 8<br />

Supply Air/Extract Air Slave Control 9<br />

Supply Air/Extract Air Slave Control with TVM 9<br />

Function Test, Commissioning 10<br />

Design changes reserved · All rights reserved · ® Gebrüder Trox GmbH (12/2001) · Leaflet No. E016MF3


PRVU<br />

Characteristic Curve of Actual Value<br />

‡ nom<br />

Volume flow<br />

‡ min pub.<br />

6<br />

1<br />

3<br />

4<br />

� PRVU controller<br />

� LED Function control<br />

� Control value - potentiometer<br />

� Connection terminals<br />

� Tube connections for transducer<br />

� Service unit connection<br />

2<br />

D 1)<br />

‡ CMD<br />

actual = . ‡ Nom<br />

100<br />

0 0 Actual value command<br />

1) Data of actual value command<br />

4<br />

5<br />

Setting range<br />

100 %<br />

2<br />

Areas of Application<br />

Staefa PRVU<br />

The room temperature and volume flow controller Staefa<br />

PRVU is designed for use in volume flow controllers in<br />

VAV systems. The main control parameter, room temperature,<br />

is kept constant with the supply air volume flow<br />

as auxiliary parameter.<br />

The control circuits are digital with a microprocessor. The<br />

controllers can function independently. The Pronto bus<br />

can network the controller to a communication module or<br />

an adapter and so provide a link to a higher level system.<br />

The room temperature is measured by a room control<br />

unit which also allows the room occupant to make any<br />

necessary changes. The controller can function in<br />

various operating modes (comfort, standby), which can<br />

be set locally or via the Pronto bus. There is also a heating<br />

sequence.<br />

All control parameters including ‡ min and ‡ max are stored<br />

in non-volatile memory. The controllers are supplied by<br />

Trox with all parameters set. The service unit enables<br />

customers to change the volume flow easily and reliably.<br />

Supply and extract air slave systems are possible with<br />

further PRVUs.<br />

With normal filters in comfort air conditioning systems<br />

the controller can be used in the supply air without additional<br />

dust prevention measures. As a part of the volume<br />

flow passes through the transducer to detect volume<br />

flow, the following should be noted:<br />

• Always use the correct extract air filter when there<br />

is a heavy accumulation of dust in the rooms.<br />

• The PRVU cannot be used if the air is polluted by<br />

fibres, adhesive matter or aggressive media.<br />

Description of Function<br />

The volume flow is measured on the dynamic differential<br />

pressure principle. The effective pressure (�pw) of the differential<br />

pressure sensor in the volume flow control unit<br />

allows a partial volume flow to be sensed. This volume<br />

flow, which is proportional to the total volume flow, is<br />

measured, temperature compensated and linearised by a<br />

thermal measuring process. The measurement range<br />

(control value) is adjusted at the factory to the size of the<br />

unit, so that 10 VDC corresponds to the unit nominal<br />

volume flow (‡ nom).<br />

The rated volume flow is set by the room temperature<br />

control circuit within the limits of ‡ max and ‡ min. This<br />

volume flow is compared with the actual value. The damper<br />

actuator is controlled according to the volume flow<br />

control deviation. The PRVU controller has a three point<br />

actuator adjusted to the controller.


Staefa PRVU<br />

Duct Pressure Independent Control<br />

Pressure differential<br />

1000<br />

Pa<br />

800<br />

600<br />

400<br />

200<br />

Ratio Control<br />

‡ max parameter = ‡nom<br />

‡ min parameter =<br />

CMD 44 =<br />

If < 0 add 100<br />

‡ min<br />

‡ nom<br />

Constant Differential Control<br />

CMD 44 =<br />

‡ min<br />

‡ S<br />

‡ M<br />

�‡ �‡<br />

‡ S<br />

.<br />

‡ nomS<br />

‡ max<br />

.<br />

.<br />

‡ nomM<br />

‡ nomS<br />

-<br />

‡ M<br />

‡ nomM<br />

100 %<br />

100 %<br />

.<br />

‡ max<br />

20 40 60 80 100<br />

% of ‡ nom<br />

Volume flow<br />

50<br />

. 100<br />

3<br />

Volume Flow Control<br />

The volume flow controller works independently of the<br />

duct pressure, i.e. the fluctuations in pressure do not<br />

cause permanent changes in volume flow.<br />

To prevent the volume flow from becoming unstable a<br />

neutral zone (hysteresis) must be allowed, within which<br />

the damper blade does not move. This dead zone and<br />

the measurement tolerances lead to a volume flow deviation<br />

�‡ as shown in the diagram opposite.<br />

If the conditions mentioned in the leaflets (e.g. lowest<br />

pressure differential, supply air conditions) are not observed,<br />

larger deviations can be expected.<br />

V · max Setting<br />

The ‡ max value corresponds to the volume flow for a<br />

large room load. The values range from 0 to 100 %.<br />

Values over 97 % should not be entered. The percentage<br />

figures relate to ‡ nom.<br />

V · min Setting<br />

The ‡ min value corresponds to the volume flow for the<br />

smallest room load. ‡ min can be entered between 0 and<br />

100 % (max. 97 %). The percentage figures relate to<br />

‡ nom.<br />

It must be noted that, if the parameter is set at ‡ min =<br />

0 %, the damper should not shut tight as happens in<br />

override control. The controller closes the damper until<br />

the actual value is 0 % equals 0 l/s. A leakage flow rate is<br />

possible because of the dimensional tolerances.<br />

Slave Control<br />

PRVU can provide constant differential or ratio<br />

control.<br />

The master controller is set at the appropriate mode<br />

when initialized:<br />

Ratio control: Mode 3<br />

Differential control: Mode 2<br />

The slave controller is always set at Mode 0.


Service Unit ZS 1<br />

Parameters of Volume Flow Control<br />

Command<br />

L S<br />

38<br />

39<br />

40<br />

41<br />

44<br />

58<br />

59<br />

60<br />

61<br />

64<br />

PRVU<br />

ZS1<br />

Parameter<br />

‡ max H<br />

‡ min H<br />

‡ min K<br />

‡ max K<br />

Factor<br />

Control value setting<br />

potentiometer<br />

IMPORTANT<br />

The control value setting potentiometer should<br />

not be adjusted.<br />

Description<br />

Max. volume flow, heating (H)<br />

Min volume flow, heating (H)<br />

Min. volume flow, cooling (K)<br />

Max. volume flow, cooling (K)<br />

Differential and ratio<br />

4<br />

Volume Flow Adjustment on Site<br />

Staefa PRVU<br />

Volume Flow Parameters<br />

Customers can adjust the volume flow limit values only<br />

with the communication interface. This can be done<br />

locally by the ZS 1 service unit ZS 1 or centrally on the<br />

WSE communications unit at the control terminal.<br />

Setting Guide<br />

• The operation of the roll display service and the communication<br />

unit is basically the same.<br />

• Before each write function select Command 30 and<br />

“ENTER”. This loads the data for the whole group into<br />

the service unit and control unit.<br />

• The new rated parameters are calculated to the formula<br />

on page 3.<br />

• Changing the individual values does not affect the<br />

remaining volume flows.<br />

• It is possible to parameter larger ‡ min values than ‡ max<br />

and vice versa. The operator must ensure that programmes<br />

do not overlap.<br />

• For single duct systems (cold air only) Commands<br />

38 to 40 (58 to 60) are set at the same value.<br />

• The parameter for slave control (constant differential or<br />

ratio) is set on the master controller.


Staefa PRVU<br />

Volume Flow Ranges TVZ, TVA, TVR<br />

Size<br />

l/s m 3 /h<br />

V · min-<br />

V<br />

unit<br />

· 1) V<br />

nom<br />

· 2)<br />

max-<br />

V<br />

unit<br />

· 1)<br />

min- V<br />

unit<br />

· 2)<br />

maxunit<br />

V · nom<br />

3) 100 15 90 95 54 324 342<br />

125 20 145 150 72 522 540<br />

160 35 245 250 126 882 900<br />

200 50 395 405 180 1422 1458<br />

250 80 595 615 288 2142 2214<br />

315 130 995 1025 468 3582 3690<br />

400 215 1630 1680 774 5868 6048<br />

Volume Flow Ranges TVJ/TVT<br />

V · min-unit 1) V · min-unit 1)<br />

V · max-unit 2) V · max-unit 2)<br />

l/s m3 B x H<br />

/h<br />

mm<br />

V<br />

200 x 100 50 210 215 180 756 774<br />

300 x 100 75 310 320 270 1116 1152<br />

400 x 100 100 410 425 360 1476 1530<br />

500 x 100 125 520 535 450 1872 1926<br />

600 x 100 145 630 650 522 2268 2340<br />

200 x 200 95 405 415 342 1458 1494<br />

300 x 200 145 605 620 522 2178 2232<br />

400 x 200 195 800 825 702 2880 2970<br />

500 x 200 235 1005 1035 846 3618 3726<br />

600 x 200 305 1215 1250 1098 4374 4500<br />

700 x 200 330 1410 1450 1188 5076 5220<br />

800 x 200 400 1600 1650 1440 5760 5940<br />

300 x 300 220 895 920 792 3222 3312<br />

400 x 300 295 1195 1230 1062 4302 4428<br />

500 x 300 370 1490 1535 1332 5364 5526<br />

600 x 300 475 1795 1850 1710 6462 6660<br />

700 x 300 520 2090 2150 1872 7524 7740<br />

800 x 300 625 2375 2450 2250 8550 8820<br />

900 x 300 665 2690 2770 2394 9684 9972<br />

1000 x 300 780 3010 3100 2808 10836 11160<br />

400 x 400 410 1585 1630 1476 5706 5868<br />

500 x 400 505 1980 2040 1818 7128 7344<br />

600 x 400 635 2380 2450 2286 8568 8820<br />

700 x 400 710 2770 2850 2556 9972 10260<br />

800 x 400 845 3150 3250 3042 11340 11700<br />

900 x 400 915 3560 3670 3294 12816 13212<br />

1000 x 400 1035 3980 4100 3726 14328 14760<br />

500 x 500 615 2470 2540 2214 8892 9144<br />

600 x 500 740 2960 3050 2664 10656 10980<br />

700 x 500 865 3450 3550 3114 12420 12780<br />

800 x 500 990 3930 4050 3564 14148 14580<br />

900 x 500 1110 4440 4570 3996 15984 16452<br />

1000 x 500 1235 4950 5100 4446 17820 18360<br />

600 x 600 910 3550 3650 3276 12780 13140<br />

700 x 600 1060 4130 4250 3816 14868 15300<br />

800 x 600 1210 4710 4850 4356 16956 17460<br />

900 x 600 1360 5340 5500 4896 19224 19800<br />

1000 x 600 1515 5920 6100 5454 21312 21960<br />

700 x 700 1215 4810 4950 4374 17316 17820<br />

800 x 700 1385 5530 5700 4986 19908 20520<br />

900 x 700 1560 6210 6400 5616 22356 23040<br />

1000 x 700 1735 6900 7100 6246 24840 25560<br />

800 x 800 1610 6310 6500 5796 22716 23400<br />

900 x 800 1810 7100 7300 6516 25560 26280<br />

1000 x 800 2010 7875 8100 7236 28350 29160<br />

900 x 900 2065 7975 8200 7434 28710 29520<br />

1000 x 900 2300 8850 9100 8280 31860 32760<br />

1000 x 1000 2575 9800 10100 9270 35280 36360<br />

· nom<br />

V · nom<br />

1) V · min = 0 is also possible 2) Maximum 97 % of V · nom 3) Only TVR<br />

5


Volume Flow Control Deviations 1)<br />

Volume flow<br />

in % of V<br />

100 5 5<br />

80 5 5<br />

60 7 7<br />

40 7 8<br />

20 9 14<br />

15 20 >14<br />

20 >14<br />

· nom<br />

∆V · in ± %<br />

TVZ, TVA, TVR, TVRK, TVS TVJ<br />

1) Percentages relate to V · actual<br />

6<br />

Single Duct Units<br />

Order Code / Order Example<br />

The constructions available can be found in the current<br />

price list.<br />

‡ min<br />

‡ max<br />

TVZ-R / 160 / 00 / SL7 / M - 50 - 240 l/s<br />

TVA-R / 160 / 00 / SL7 / S - 50 - 240 l/s<br />

TVR / 160 / 00 / SL7 / F - 200 l/s<br />

TVJ-R / 400 x 107 / 00 / SL7 / E - 200 - 400 l/s<br />

Volume Flow Parameters<br />

Operating<br />

mode<br />

E<br />

M<br />

S<br />

F<br />

Addressing<br />

CMD<br />

90<br />

Operating mode<br />

E Individual<br />

M Master<br />

S Slave<br />

F Fixed<br />

Factory setting<br />

Mode = 0<br />

CMD 38, 39, 40: Required ‡ min<br />

CMD 41 : Required ‡ max<br />

Mode = 3 (Ratio control, standard)<br />

CMD 38, 39, 40: Required ‡ min<br />

CMD 41 : Required ‡ max<br />

CMD 44 : Ratio to Slave<br />

Mode = 0<br />

CMD 38, 39, 40: 0<br />

CMD 41 : 97<br />

Mode = 0<br />

CMD 38 to 41 : ‡ const<br />

Staefa PRVU<br />

Factory setting<br />

Address as in order range 1 to 60.<br />

Unless specified the item no. of the<br />

order is used as the address.<br />

If more than 60 items, continue with 1.


Staefa PRVU<br />

Volume Flow Ranges TVM<br />

Size ‡ minunit<br />

V ‡ Ref-<br />

Warm<br />

· l/s m<br />

nom<br />

3 /h<br />

1)<br />

‡ maxunit<br />

2)<br />

‡minunit<br />

V ‡ Ref-<br />

Warm<br />

· 1)<br />

‡ maxunit<br />

nom<br />

2)<br />

125 45 145 150 185 162 522 540 666<br />

160 75 245 250 305 270 882 900 1098<br />

200 120 395 405 425 432 1422 1458 1530<br />

250 185 595 615 615 666 2142 2214 2214<br />

Volume Flow Deviations TVM 3)<br />

Volume flow<br />

in % of V · nom<br />

TVM cold<br />

∆V · in ± %<br />

TVM total<br />

100 5 7<br />

80 5 10<br />

60 5 12<br />

40 7 15<br />

30 8 17<br />

20 9 -<br />

15 20 -<br />

20 -<br />

1) Maximum 97% of ‡ nom<br />

2) The value ‡ ref is only used as reference to calculate the actual<br />

volume flow and if necessary for CMD 44 for supply air and<br />

extract air slave control. It is used in the formula as ‡ nom.<br />

3) Percentages relate to ‡ actual<br />

7<br />

Dual Duct Units TVM<br />

Order Code / Order Examples<br />

The constructions available can be found in the current<br />

price list.<br />

‡ warm<br />

‡ cold<br />

TVM-R / 160 / SM8 / E - 120 - 200 l/s<br />

‡ warm = ‡ cold<br />

TVM-R / 160 / SM8 / F - 150 l/s<br />

Volume Flow Parameters<br />

Operating<br />

mode<br />

E<br />

M<br />

F<br />

Adressing<br />

CMD<br />

90<br />

Operating mode<br />

E Individual<br />

M Master<br />

F Fixed<br />

Factory setting<br />

Cold Controller Warm Controller<br />

Mode = 0<br />

CMD 38, 39, 40: 0<br />

CMD 41:<br />

Required ‡ cold<br />

Mode = 0 (Master: 3)<br />

CMD 38 to 41:<br />

Required ‡ warm<br />

(Master: CMD 44:<br />

Ratio to Slave)<br />

Factory setting<br />

Address as in order range 1 to 60.<br />

Unless specified the item no. of the<br />

order is used as the address.<br />

If more than 60 items, continue with 1.


Terminal Identification<br />

PRVU<br />

IMPORTANT<br />

The following diagrams show the important signals<br />

for volume flow control. The Staefa specifications<br />

must be observed when incorporating them into the<br />

whole control technology concept, selecting the control<br />

components and dimensioning the cable. Further<br />

switching is possible (Apply to Fa. Staefa).<br />

Room Temperature and Volume Flow Control<br />

with Override Control<br />

24 VAC<br />

Room control unit<br />

S1<br />

Operating mode M, E<br />

8<br />

Staefa PRVU<br />

Nomenclature<br />

1 Bus controller (pronto-Bus)<br />

2 Bus controller (pronto-Bus)<br />

3 Screening PBUS (optional)<br />

4 to 9 Connection room control unit<br />

10 Input control signal, Master or energy barrier<br />

12 Earth signal<br />

14 Technical earthing<br />

15, 16 Power supply 24 VAC<br />

17 Control signal 1: open<br />

18 Common for 3 point actuator<br />

19 Control signal: close<br />

25 Earth signal<br />

26 Output control signal to slave<br />

Wiring<br />

The controller and actuator are factory wired together.<br />

The power supply, room control unit and control signal to<br />

the extract air controller and any override switching are<br />

wired by the customer.<br />

Safety transformers must be used (EN 60 742).<br />

If several controllers are connected together by<br />

0-10 VDC signals, short circuits could be caused in the<br />

24 VAC network. It is recommended that a 24 VAC<br />

controller be defined as live and always applied to<br />

terminal 16.<br />

Room Temperature Control<br />

The PRVU includes the room temperature and volume<br />

flow circuit. The room temperature is measured by the<br />

room control unit which also enables the room occupant<br />

to make any adjustments.<br />

The parameters for the effect of room temperature control<br />

on the volume flow circuit are customer set.<br />

Override Control<br />

The customer can install a dead make and break contact<br />

to override the variable volume flow control. Several<br />

units can be controlled by one switch if there is a common<br />

earth line and the control signals are parallel<br />

switched. Switch S1 shuts off the damper completely.<br />

The customer sets the parameters.


Staefa PRVU<br />

Supply Air/Extract Air Slave Control<br />

24 VAC<br />

PRVU<br />

Master<br />

PRVU<br />

Slave<br />

Room<br />

control unit<br />

Supply Air / Extract Air Slave Control with<br />

Dual Duct Unit TVM<br />

24 VAC<br />

Operating mode M<br />

Cold Controller<br />

PRVU<br />

Warm Controller<br />

PRVU<br />

Room control unit<br />

Operating mode<br />

M, E<br />

Operating mode S<br />

Extract Air<br />

Controller<br />

Operating mode S<br />

10<br />

TVM<br />

9<br />

Supply Air / Extract Air Slave Control<br />

In parallel controlled units an unwanted differential between<br />

supply air and extract air can arise if the pressure<br />

in a duct area is too low. Therefore it is preferable to use<br />

the volume flow actual value, mostly that of the supply<br />

air, as reference variable for the second volume flow controller.<br />

The actual value of the supply air volume flow is used as<br />

0 to 100 VDC X V signal to steer the extract air. A constant<br />

or percentage differential is set between the supply air<br />

and extract air. Ratio control or constant differential control<br />

is determined by the mode set on the master controller.<br />

The controller parameters are factory set so that the<br />

required values are achieved. The customer must ensure<br />

that the allocation of supply air and extract air units<br />

remains constant.<br />

Volume Flow Control of TVM Units<br />

The two controllers of the dual duct mixing boxes Type<br />

TVM (cold, warm) are wired by the customer according to<br />

the circuit diagram opposite (also the 24 VAC tie circuit).<br />

The room temperature sensor (room control unit) operates<br />

the cold controller.<br />

In most cases the proportion of warm air is increased<br />

from 0 to maximum to the required ‡ warm. The warm<br />

controller is therefore set as fixed command controller<br />

and requires no control signal (measured ‡ total). See<br />

Leaflet TVM for description of function and control diagram.<br />

Supply Air / Extract Air Slave Control with<br />

Dual Duct Unit TVM<br />

The actual value output signal XV of the warm controller<br />

is programmed to the total volume flow ‡ total.<br />

It can therefore be used in sequence switching as the<br />

control signal for the slave controller (extract air controller).


Function Test<br />

Trouble Shooting<br />

Connect wiring<br />

Switch on power supply<br />

Switch on air conditioning systems<br />

Function test<br />

according to Staefa documentation<br />

Power supply conforms<br />

to Staefa regulations?<br />

yes<br />

Actual value output<br />

signal constent?<br />

yes<br />

Actuator opens and<br />

closes?<br />

yes<br />

Volume flow ‡ min ?<br />

yes<br />

Volume flow ‡ max ?<br />

yes<br />

Room temperature<br />

Control?<br />

yes<br />

� � � � � �<br />

Override control?<br />

Check Transformer<br />

etc.<br />

Faulty transformer or<br />

controller?<br />

Motor rotation correct?<br />

Damper blocked?<br />

Duct pressure<br />

sufficient?<br />

Tubing to transducer<br />

damaged?<br />

Protective covering<br />

removed?<br />

Check room<br />

temperature sensor<br />

Check window switch,<br />

etc.<br />

Order Example Replacement Controller<br />

�<br />

no<br />

no<br />

no<br />

no<br />

no<br />

no<br />

no<br />

Staefa PRVU,<br />

set for TVR / 125 / M - 140 - 300 m3 /h<br />

�<br />

�<br />

�<br />

�<br />

�<br />

�<br />

�<br />

10<br />

Commissioning<br />

Staefa PRVU<br />

A rapid function test of the volume flow control can be<br />

carried out on systems with communication by rated/<br />

actual value comparison. If there is no communication<br />

facility the volume flow circuit is functioning correctly<br />

when the actuator returns to its previous position once<br />

the damper blade is manually adjusted.<br />

If, for commissioning, the limit volume flows ‡ min and<br />

‡ max, must be proved, these must be set to the Staefa<br />

documentation.<br />

At every operation the theoretical actual value Command<br />

14 (Data to command 14) is read and the volume flow<br />

calculated to the formula on page 3.<br />

In many cases faulty wiring is the cause of malfunction.<br />

Therefore all customer wiring should be disconnected<br />

before the volume flow controllers are thoroughly<br />

checked.<br />

If the motor drive is overridden and the damper opened<br />

manually, the voltage at terminal 26 must first rise in relation<br />

to 25 (X V). The damper is closed again by motor control.<br />

Replacement Controller<br />

Faulty controllers must be replaced with controllers parametered<br />

to the volume flow controller type and size.<br />

Name plate data must be supplied when ordering replacement<br />

controllers.


Staefa Actuator AS1D8<br />

1<br />

Contents<br />

Subject Page<br />

AS1D8 2<br />

Design changes reserved · All rights reserved · ® Gebrüder Trox GmbH (12/2001) · Leaflet No. E016MF2


AS1D8<br />

� Shaft clamp<br />

� Direction of rotation<br />

switch<br />

� Gear release button<br />

� Connecting cable<br />

� Rotation angle limiter<br />

2<br />

Actuator AS1D8<br />

Staefa Actuator AS1D8<br />

Application<br />

Maintenance free air damper actuator for volume control<br />

systems with Staefa volume flow controllers.<br />

Function<br />

The actuator is factory mounted on the damper shaft and<br />

wired. The integrated stroke angle limiter is adjusted.<br />

The drive is overload-protected. When the end stops are<br />

reached the motor stops automatically.<br />

The direction of the rotation is set by a switch (factory<br />

set). For manual adjustment of the damper the drive can<br />

be disconnected by a button.


Siemens Compact Volume Flow Controller<br />

VAV Static GLB181.1E/3<br />

1<br />

Contents<br />

Subject Page<br />

Applications 2<br />

Functions 3<br />

Characteristic curves 3<br />

Functions 3<br />

Pressure-independent control characteristics 4<br />

Volume flow control and adjustment 4<br />

Adjuster AST10 4<br />

Volume-flow range for single duct units 5<br />

Order codes for single duct units 6<br />

Volume flow ranges for dual duct units,<br />

Order codes 7<br />

Terminal connections, DIL switch settings 8<br />

Continuous controlling, Override control 9<br />

Examples of application 10<br />

Commissioning 11<br />

Design changes reserved · All rights reserved · ® Gebrüder Trox GmbH (12/2001) · Leaflet No. E016MS0


Compact Controller GLB181.1E/3<br />

2<br />

1<br />

3<br />

7<br />

1 Shaft clamp<br />

2 Rotation angle limiter<br />

3 Position display<br />

4 Gear release button<br />

5 Connecting cable<br />

6 Transducer tubing connector<br />

7 DIL switch (series A)<br />

Socket for AST10 connecting cable (series B)<br />

Operating Modes<br />

The GLB181.1E/3 has two operating modes, “CON” and<br />

“3P” (see circuit diagram below).<br />

Operating Mode “CON”<br />

Room temperature controller<br />

Required volume flow, 0 to 10 VDC<br />

GLB181.1E/3<br />

Siemens Compact Volume Flow Controller<br />

VAV Static GLB181.1E/3<br />

4<br />

6<br />

5<br />

2<br />

Applications<br />

The Siemens electronic volume flow controller<br />

GLB181.1E/3 is a control unit for VAV volume control<br />

units in VVS systems. The membrane pressure transducer<br />

and control electronics are integrated into one<br />

housing. For variable volume flow control, a suitable<br />

room termperature controller (or air quality controller),<br />

a DDC outstation or a similar device must be used.<br />

A 0 to 10 VDC signal or three-point signal (TEC controller,<br />

DESIGO RXC31.1 etc.) can be used as the voltage range.<br />

To do this, volume flow control is deactivated. Switches<br />

or relays with a maximum of 2 set points are used for<br />

constant volume flow control.<br />

The GLB181.1E/3 is not outfitted with adjustment knobs<br />

for performing V .<br />

min and V .<br />

max settings. All controller parameters<br />

are factory-set by Trox. The customer does not<br />

need to make any adjustments. As soon as the supply<br />

voltage and room temperature controller have been connected,<br />

the terminal unit is ready for use.<br />

Any volume flow changes that may be necessary can<br />

easily be carrried out by the customer with the AST10<br />

adjustment device. For parallel operation, several controllers<br />

can be connected up to one room temperature<br />

controller. Supply/extract air slave control can be<br />

realized.<br />

Static Measuring Principle<br />

The actual value of the volume flow is monitored as a<br />

standard, linear electrical signal and can be switched to<br />

a DDC or used for the display. The voltage range for<br />

the actual and command value is standardized at 0 to<br />

10 VDC. Volume flow is measured with a membrane<br />

pressure transducer. In automatic, recovered zero point<br />

calibration via an integrated air valve, minimum flow<br />

briefly occurs in the measuring line. This flow level is so<br />

low that as a rule the measuring element is not soiled.<br />

However, if the unit is used in unclean air, a plastic or<br />

coated VAV should be used.<br />

IMPORTANT<br />

Make certain that in critical situations the VAV<br />

terminal unit and membrane pressure transducer<br />

are tested for the resistance of their materials to<br />

hazardous materials and particle concentrations in<br />

ambient air.<br />

Operating Mode “3P”<br />

Operator terminal with<br />

communication capability, DDC<br />

Actual volume flow 3-point signal 24 VAC<br />

0 to 10 VDC GLB181.1E/3<br />

Root extraction<br />

of transmitter<br />

signal<br />

Actuator


Siemens Compact Volume Flow Controller<br />

VAV Static GLB181.1E/3<br />

Characteristic Curve of the Actual Value Signal<br />

V · nom<br />

Volume flow<br />

V · min unit<br />

0 Actual value signal UC 10 VDC<br />

Characteristic Curve of the Command Variable<br />

Volume flow<br />

V · nom<br />

V · max<br />

V · min<br />

V · min unit<br />

V · req. = (V· max – V· min ) + V· Y<br />

min<br />

10<br />

0 Command signal Y 10 VDC<br />

3<br />

Functions<br />

The volume flow is measured with a membrane pressure<br />

transducer. The effective pressure of the differential pressure<br />

sensor in the terminal unit allows the detectionThe<br />

effective pressure ∆pw of the differential pressure sensor<br />

in the VAV terminal unit is measured in the membrane<br />

pressure transmitter of the GLB181.1E/3 and linearized.<br />

The volume flow is calculated by a microprocessor in the<br />

controller.<br />

The actual volume flow is available as a linear voltage<br />

signal U. The measurement range (reference value) is set<br />

during factory calibration to suit the unit size in such a<br />

way that 10 VDC always corresponds to the unit nominal<br />

volume flow rate (V .<br />

nom).<br />

The required volume flow is set by the room temperature<br />

controller or by switches. The controller determines the<br />

required volume flow in accordance with the characteristic<br />

curve shown in the illustration and compares this<br />

with the actual value. The external damper actuator is<br />

controlled according to the deviation. The factory-set<br />

volume flow ranges V .<br />

min and V .<br />

max can be altered by the<br />

customer using a Siemens AST10 adjuster, which can<br />

also be used to change the operating mode.<br />

IMPORTANT<br />

The operating mode must be set for each system<br />

because otherwise the desired function will not be<br />

available!<br />

Operating Mode “CON”<br />

Variable Volume Flow<br />

Using the command variables shown in the illustration<br />

as a basis, the GLB181.1E/3 calculates the volume flow,<br />

which can range from V .<br />

min to V .<br />

max. Override controls<br />

CLOSED or OPEN can be realized.<br />

Constant Volume Flow<br />

To realize override control as well as constant volume<br />

flows V .<br />

min and V .<br />

max, wire the input terminals for the command<br />

signal via relays or contacts.<br />

Command Signal Range Limiting<br />

In the DDC outstation, the command signal must be limited<br />

for settings between V .<br />

min = 0 % and V .<br />

max = 100 %. In<br />

this situation, the full published volume range can be<br />

used for parameterizing. If the desired volume flow rates<br />

are set in the unit, a standard voltage signal range of<br />

0-10 VDC can be used to control all units. However,<br />

these settings can only be changed individually by using<br />

the AST10, which involves gaining access to the terminal<br />

unit.<br />

(Operating Mode “3P”)<br />

In this operating mode, the internal controller electronics<br />

are inactivated. Only the reference value is factory set.<br />

Any parameterized V .<br />

min or V .<br />

max values have no impact on<br />

function.


Duct Pressure-independent<br />

Control Characteristics<br />

Pressure differential<br />

1000<br />

Pa<br />

800<br />

600<br />

400<br />

200<br />

Formula for V . max<br />

Formula for V . min<br />

Adjuster AST10<br />

9<br />

2<br />

1<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

% of V<br />

Volume flow<br />

· 20 40 60 80 100<br />

nom<br />

V · V<br />

max setting =<br />

V<br />

·<br />

nom<br />

· max<br />

V · min setting = V· min<br />

V · nom<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

Siemens Compact Volume Flow Controller<br />

VAV Static GLB181.1E/3<br />

. 100 %<br />

. 100 %<br />

Liquid crystal display<br />

Plus/minus keys<br />

for changing parameters<br />

Cursor key<br />

(to toggle<br />

“Type” and “U”)<br />

Save key<br />

(to send data to the<br />

controller)<br />

Reset key<br />

for factory settings<br />

Rocker switch V . n 1) / V . min<br />

Rocker switch V . max / Y<br />

Not allocated (reserved<br />

for future applications)<br />

Socket for connecting cable<br />

(make certain that plug is<br />

inserted correctly)<br />

4<br />

Volume Flow Control<br />

The volume flow controller works independently of duct<br />

pressure, which means that pressure fluctuations result<br />

in only transient changes in volume flow.<br />

To prevent destabilization of volume flow control, a dead<br />

zone is provided within which the damper does not<br />

move. This dead zone, in conjunction with measuring<br />

tolerances, produces the volume flow deviation ∆V .<br />

illustrated here.<br />

If the conditions mentioned in the unit documentation<br />

are not met (e.g., lowest differential pressure, supply air<br />

conditions), larger deviations are likely to occur.<br />

V . max Setting<br />

The V .<br />

max value is the equivalent of the volume flow that is<br />

set with a 10 VDC command signal or V .<br />

max override control.<br />

The setting range for adjustments with the AST10<br />

adjuster is from 20 to 120 %. The percentage figures are<br />

based on V .<br />

nom.<br />

V . min Setting<br />

The V .<br />

min value is the equivalent of the volume flow that is<br />

set with a 0 VDC command signal or V .<br />

min override control.<br />

V .<br />

min may be set between –20 and 100 % of V .<br />

nom<br />

using the AST10.<br />

If V .<br />

min is set between –20 bis 0 %, the damper will be<br />

closed and leakproof with a command signal of 0 VDC.<br />

In case of value deviation, shut-off can be realized with<br />

input Y2 (see p. 9).<br />

Volume Flow Adjustment on Site<br />

The volume flow threshold ranges can be adjusted on<br />

site using adjuster AST10. To do this, connect the AST10<br />

to the controller (see AST10 product information). The<br />

calibrated V .<br />

min or V .<br />

max values can be set using the keys<br />

by the same names. The controller adopts these settings<br />

when the Set key is pressed.<br />

In 3P operating mode, the volume flow ranges can be<br />

changed only on operator terminals with communication<br />

capabilities (e.g., TEC).<br />

1) V .<br />

n equals V .<br />

nom


Siemens Compact Volume Flow Controller<br />

VAV Static GLB181.1E/3<br />

Volume Flow Ranges for TVZ, TVA, TVR, TVS, TVRK<br />

Size<br />

V · min-unit<br />

V · min-unit<br />

from to V from<br />

· nom<br />

to V · l/s m<br />

unit<br />

3 /h<br />

V · max<br />

V · max<br />

1002) 10 20 95 36 72 342<br />

125 15 30 150 54 108 540<br />

160 25 50 250 90 180 900<br />

200 40 80 405 144 288 1458<br />

250 60 125 615 216 450 2214<br />

315 105 205 1025 378 738 3690<br />

400 170 335 1680 612 1206 6048<br />

Volume Flow Ranges for TVJ/TVT<br />

B x H<br />

mm<br />

V · min<br />

l/s m3 /h<br />

V · V min<br />

· max<br />

V · min-unit 1) V · min-unit 1)<br />

from to V from<br />

· nom<br />

200 x 100 45 45 215 162 162 774<br />

300 x 100 65 65 320 234 234 1152<br />

400 x 100 85 85 425 306 306 1530<br />

500 x 100 110 105 535 396 378 1926<br />

600 x 100 130 130 650 468 468 2340<br />

200 x 200 85 85 415 306 306 1494<br />

300 x 200 125 125 620 450 450 2232<br />

400 x 200 165 165 825 594 594 2970<br />

500 x 200 205 205 1035 738 738 3726<br />

600 x 200 250 250 1250 900 900 4500<br />

700 x 200 290 290 1450 1044 1044 5220<br />

800 x 200 330 330 1650 1188 1188 5940<br />

300 x 300 185 185 920 666 666 3312<br />

400 x 300 245 245 1230 882 882 4428<br />

500 x 300 305 305 1535 1098 1098 5526<br />

600 x 300 370 370 1850 1332 1332 6660<br />

700 x 300 430 430 2150 1548 1548 7740<br />

800 x 300 490 490 2450 1764 1764 8820<br />

900 x 300 555 555 2770 1998 1998 9972<br />

1000 x 300 620 620 3100 2232 2232 11160<br />

400 x 400 325 325 1630 1170 1170 5868<br />

500 x 400 410 410 2040 1476 1476 7344<br />

600 x 400 490 490 2450 1764 1764 8820<br />

700 x 400 570 570 2850 2052 2052 10260<br />

800 x 400 650 650 3250 2340 2340 11700<br />

900 x 400 735 735 3670 2646 2646 13212<br />

1000 x 400 820 820 4100 2952 2952 14760<br />

500 x 500 510 510 2540 1836 1836 9144<br />

600 x 500 610 610 3050 2196 2196 10980<br />

700 x 500 710 710 3550 2556 2556 12780<br />

800 x 500 810 810 4050 2916 2916 14580<br />

900 x 500 915 915 4570 3294 3294 16452<br />

1000 x 500 1020 1020 5100 3672 3672 18360<br />

600 x 600 730 730 3650 2628 2628 13140<br />

700 x 600 850 850 4250 3060 3060 15300<br />

800 x 600 970 970 4850 3492 3492 17460<br />

900 x 600 1100 1100 5500 3960 3960 19800<br />

1000 x 600 1220 1220 6100 4392 4392 21960<br />

700 x 700 990 990 4950 3564 3564 17820<br />

800 x 700 1140 1140 5700 4104 4104 20520<br />

900 x 700 1280 1280 6400 4608 4608 23040<br />

1000 x 700 1420 1420 7100 5112 5112 25560<br />

800 x 800 1300 1300 6500 4680 4680 23400<br />

900 x 800 1460 1460 7300 5256 5256 26280<br />

1000 x 800 1620 1620 8100 5832 5832 29160<br />

900 x 900 1640 1640 8200 5904 5904 29520<br />

1000 x 900 1820 1820 9100 6552 6552 32760<br />

1000 x 1000 2020 2020 10100 7272 7272 36360<br />

5<br />

V · max<br />

to V · nom<br />

1) V · min = 0 can also be realized 2) TVR only Values highlighted in gray not allowable for TVT with GLB181.1E/3 due to high torque!


Volume Flow Control Tolerances 1)<br />

Volume flow<br />

as % of V<br />

100 5 5<br />

80 5 5<br />

60 7 7<br />

40 7 8<br />

20 9 14<br />

15 20 >14<br />

20 >14<br />

· nom<br />

∆V · in ± %<br />

TVZ, TVA, TVR, TVS, TVRK TVJ/TVT<br />

1) Percentage figures based on V · actual<br />

2) A constant value controller can be used as a master<br />

3) Indicate configurations for master and slave devices<br />

when ordering<br />

Siemens Compact Volume Flow Controller<br />

VAV Static GLB181.1E/3<br />

6<br />

Single Duct Units<br />

Order Code / Ordering Example<br />

The available options are given in the current price list.<br />

TVZ / 160 / 00 / LN0 / E - 50 - 240 l/s<br />

TVZ / 160 / 00 / LN0 / M - 50 - 240 l/s<br />

TVZ / 160 / 00 / LN0 / S - 240 l/s<br />

TVZ / 160 / 00 / LN0 / F - 100 l/s<br />

Volume Flow Parameters<br />

Operating<br />

mode<br />

E<br />

M<br />

S<br />

U<br />

F 2)<br />

2) 3)<br />

X V · nom set<br />

Factory settings<br />

V · min at required V · min<br />

V · max at required V · max<br />

Operating mode<br />

V · min at 0 %<br />

V · max at volume flow ratio to master<br />

controller<br />

V · min at required volume flow 1<br />

(smaller value)<br />

V · max at required volume flow 2<br />

(larger value)<br />

V · min<br />

E Individual<br />

M Master<br />

S Slave<br />

F Constant value<br />

X 3-point<br />

V · min at required volume flow<br />

V · max at 100 %<br />

V · max<br />

3)<br />

3)


Siemens Compact Volume Flow Controller<br />

VAV Static GLB181.1E/3<br />

Volume Flow Ranges for TVM<br />

Size<br />

Volume Flow Control Tolerances TVM 1)<br />

Volume flow<br />

as % of V · nom<br />

V · min-unit<br />

1) Percentage figures based on ‡ actual<br />

l/s m 3 /h<br />

V · nom<br />

TVM cold<br />

V · min-unit<br />

∆V · in ± %<br />

100 5 7<br />

80 5 10<br />

60 5 12<br />

40 7 15<br />

20 9 -<br />

10 20 -<br />

20 -<br />

V · nom<br />

125 45 150 162 540<br />

160 75 250 270 900<br />

200 120 405 432 1458<br />

250 185 615 666 2214<br />

TVM total<br />

7<br />

Two Duct Combined Unit TVM<br />

Order Code / Ordering Example<br />

The available options are given in the current price list.<br />

TVM / 160 / LY0 / M - 50 - 240 l/s<br />

TVM / 160 / LY0 / F - 400 l/s<br />

Volume Flow Parameters<br />

Operating<br />

mode<br />

E<br />

M<br />

‡ min at – 5 %<br />

‡ max at required<br />

volume flow (‡ cold )<br />

Factory settings<br />

Cold duct controller Warm duct controller<br />

F ‡ min at – 5 %<br />

‡ max at required<br />

Constant volume<br />

flow<br />

Operating mode<br />

E Individual<br />

M Master<br />

F Festwert<br />

X 3-point<br />

‡ min at required<br />

volume flow ‡ warm<br />

‡ max at 100 %<br />

X ‡ nom set ‡ nom set<br />

.<br />

Vwarm ‡ min at required<br />

Constant volume<br />

flow<br />

‡ max at 100 %<br />

.<br />

Vcold . .<br />

Vwarm = Vcold


Terminal Connections<br />

DIL Switch Settings, GLB181.1E (series A)<br />

DIL switch Function Remark<br />

3 (S3)<br />

1 and 2 (S1, S2) Not allocated<br />

Service Signal<br />

GLB181.1E/3 series A<br />

GLB181.1E/3 series B<br />

24 VAC<br />

Motor rotational<br />

direction<br />

Room<br />

temperature<br />

controller<br />

GLB181.1E/3 series A<br />

24 VAC<br />

Room<br />

temperature<br />

controller<br />

GLB181.1E/3 series B<br />

Siemens Compact Volume Flow Controller<br />

VAV Static GLB181.1E/3<br />

Factory setting:<br />

DO NOT<br />

CHANGE!<br />

Switch cabinet<br />

or wall mounted<br />

enclosure<br />

Switch cabinet<br />

or wall mounted<br />

enclosure<br />

8<br />

Nomenclature<br />

Key to wire Bedeutung<br />

wires Code colors<br />

G red Phase AC 24 V<br />

G0 black Ground AC 24 V<br />

Y1 purple Position signal “open” (3P) or<br />

override control (CON)<br />

Y2 orange Position signal “close” (3P) or<br />

override control (CON)<br />

Y (Series A) gray Volume flow position signal<br />

0 to 10 VDC and communication<br />

signal<br />

YC (Series B) gray Volume flow position signal<br />

0 to 10 VDC and communication<br />

signal<br />

UC (Series A) pink Actual value output signal<br />

0 to 10 VDC<br />

U (Series B) pink Actual value output signal<br />

0 to 10 VDC<br />

U (Series A) pink Communication signal, Series A<br />

Wiring<br />

Wiring for the 24 VAC voltage supply must be performed<br />

by the customer. Safety transformers are to be used<br />

(EN 60742).<br />

If several controllers are connected to one 24 VAC network,<br />

it is important to ensure that a common neutral or<br />

ground wire is used.<br />

Service Connection<br />

It is recommended that the signal line for connecting the<br />

AST10 adjuster be linked up in an easily accessible<br />

location. This avoids having to remove ceiling panels<br />

when service is performed. Suitable locations include:<br />

spare terminals in room temperature controllers, or wall<br />

mounted enclosures.<br />

It is important to ensure that G and G0 are available.<br />

Therefore, a 4-wire connection is required to the commissioning<br />

point connection.<br />

IMPORTANT<br />

Series A and B are connected differently. Follow the<br />

relevant recommendations in the documentation for<br />

adjuster AST10.


Siemens Compact Volume Flow Controller<br />

VAV Static GLB181.1E/3<br />

Continuous Controlling between V . min and V . max<br />

Operating Mode “CON”<br />

24 VAC<br />

Command<br />

signal<br />

0 to 10 VDC<br />

G G0 Y1 Y2 YC Y UC U<br />

GLB181.1E/3 series B<br />

Actual value<br />

of output signal<br />

0 to 10 VDC<br />

Controlling with an External Digital Operator Terminal,<br />

Room Temperature Volume Flow Cascade<br />

Operating Mode “3P”<br />

24 VAC<br />

G<br />

G0<br />

Override Controls<br />

Digital Digitaleroperator Einzelraumregler terminal<br />

G G0<br />

GLB181.1E/3 series B<br />

24 VAC<br />

S1 S2<br />

Y1 Y2 U<br />

G G0 Y1 Y2 YC U<br />

GLB181.1E/3 series B<br />

9<br />

Variable Volume Flow Controlling<br />

The GLB 181.1E/3 is connected to the 24 VAC grid. If the<br />

DDC outstation/controller is in the same grid, the command<br />

signal can be applied through a single wire. If the<br />

grids are separate, the command signal is connected by<br />

two wires. The actual value signal for the volume flow<br />

can be used.<br />

Several GLB181.1E/3 units can be connected in parallel.<br />

Several volume flow controllers (supply or extract air) are<br />

operated in parallel by one room temperature controller.<br />

If the terminal units are the same size and V .<br />

min and V .<br />

max<br />

parameters are set at the same values, all the units control<br />

the same volume flow. If the settings differ, the units<br />

control an equal proportion of flow. This allows ratio<br />

control to be achieved between the supply and extract<br />

air controllers.<br />

The variable volume flow control can be overridden<br />

for shut-off and startup using zero-potential switches<br />

(supplied by customer).<br />

Function<br />

S1<br />

Switch<br />

S2<br />

(window<br />

switch)<br />

Cont. controlling open open<br />

Shut-off open closed<br />

Fully open closed open<br />

Controlling V . min open open<br />

Controlling V . max closed closed<br />

Shut-off open closed<br />

Fully open closed open<br />

Type<br />

of controlling<br />

VVS,<br />

supply or<br />

extract air<br />

KVS,<br />

supply or<br />

extract air


Slave Control<br />

24 VAC<br />

G<br />

G G0 Y1 Y2<br />

Raumtem-<br />

Room<br />

temperature<br />

peratur-Regler<br />

controller<br />

Two Duct Combined Unit TVM<br />

G<br />

G0<br />

G0<br />

Y1 Y2 YC U<br />

Outstation/Controller<br />

GLB181.1E/3 series B<br />

Outstation/Controller<br />

GLB181.1E/3 series B<br />

24 VAC<br />

G<br />

Y<br />

YC U<br />

Raumtem- Room<br />

temperature<br />

peratur-Regler<br />

controller<br />

G G0 Y1 Y2 YC U<br />

G<br />

G0<br />

G0<br />

Y1 Y2 YC U<br />

Cold Duct Controller<br />

GLB181.1E/3 series B<br />

Warm Duct Controller<br />

GLB181.1E/3 series B<br />

Siemens Compact Volume Flow Controller<br />

VAV Static GLB181.1E/3<br />

Y<br />

possibly to slave controller<br />

10<br />

Supply or Extract Air Slave Control<br />

In the case of parallel control of the units, an unfavorable<br />

difference between supply and extract air can occur if<br />

the pressure in one duct is too low. Therefore, the more<br />

favorable actual volume flow value (usually of the supply<br />

air) should be used as the command variable for the<br />

second volume flow controller. If the extract air flow is<br />

not to be controlled by the DDC controller, a slave control<br />

is also used.<br />

Ratio control can be achieved using the GLB181.1E/3 i.e.<br />

the reatio of extract air to supply air must be the same<br />

ratio under all operating conditions.<br />

‡ max M<br />

‡ min M<br />

‡ max S<br />

‡ min S<br />

The volume flow ratio is set on the slave controller as<br />

follows:<br />

‡ max setting =<br />

If the volume flows are the same, the setting will be<br />

100 %. The maximum setting is 120 %.<br />

=<br />

‡ max S<br />

‡ max M<br />

Volume Flow Control of TVM Units<br />

The two controllers fitted to the dual duct unit TVM (cold<br />

duct, warm duct) are to be wired by the customer as illustrated<br />

in the circuit diagram on this page (including the<br />

24 VAC/VDC cross-connection).<br />

The room temperature controller provides the cold duct<br />

controller with its set point signal.<br />

In most instances, the proportion of warm air is increased<br />

from 0 to the required V .<br />

warm as a maximum set point.<br />

The warm duct controller (V .<br />

total is measured) is therefore<br />

set as a constant value controller and does not require a<br />

control signal.<br />

For more information and a control diagram, refer to the<br />

TVM product documentation.<br />

·<br />

‡ nom M<br />

‡ nom S<br />

· 100 %


Siemens Compact Volume Flow Controller<br />

VAV Static GLB181.1E/3<br />

Commissioning Commissioning<br />

Check wiring<br />

Activate power supply<br />

Switch on air conditioning system<br />

Record actual value signal U for override<br />

control V . min . Record the actual value signal U<br />

Record actual value signal U for override<br />

control V . max . Record the actual value signal U<br />

Fault Diagnosis<br />

Supply voltage in conformance<br />

with Siemens specifications?<br />

yes<br />

Signal U consistent?<br />

yes<br />

Actuator opens<br />

and closes?<br />

yes<br />

Volume flow V . min?<br />

yes<br />

Volume flow V . max?<br />

yes<br />

Volume flow<br />

command signal?<br />

yes<br />

Override controls?<br />

no<br />

no<br />

no<br />

no<br />

no<br />

no<br />

no<br />

Check transformer<br />

etc.<br />

Controller faulty<br />

Damper<br />

obstructed?<br />

Duct pressure<br />

sufficient?<br />

Measurement<br />

tubing to the<br />

transducer<br />

damaged?<br />

Check room temperature<br />

controller<br />

Check window<br />

switch, relays etc.<br />

Ordering Example for a Replacement Controller<br />

Siemens GLB181.1E/3,<br />

calibrated for TVR / 125 / E0 - 45 - 100 l/s<br />

11<br />

A function test for commissioning can be carried out<br />

using adjuster AST10 or the DDC outstation/controller.<br />

A defined volume flow is set for both of these units.<br />

The actual volume flow is calculated on the basis of the<br />

monitored actual value signal and is compared with the<br />

set value.<br />

In many instances, the faults can result from incorrect<br />

wiring. Therefore, when checking an individual volume<br />

flow controller, first disconnect all lines except for G and<br />

G0.<br />

The power supply is then switched off and a zero point<br />

comparison is performed automatically. The actual output<br />

signal is then set to zero for about 2 minutes.<br />

If the actuator drive is disengaged and the damper is<br />

opened manually, the voltage U will increase. Then briefly<br />

disconnect the supply voltage so that the actuator can<br />

be resynchronized.<br />

Volume flow control is checked by setting a command<br />

signal to which the monitored value must correspond<br />

after a short time.Set points are defined by a linear voltage<br />

signal, a switch or adjuster AST10.<br />

Apply the override control and test the desired functions.<br />

The function test can be simplified using the AST10<br />

adjuster. The function test can be simplified using the<br />

AST10 adjuster. The set volume values V .<br />

min and V .<br />

max<br />

can be read. The AST10 can also simulate a command<br />

signal. Operating mode and direction of flow in the<br />

actuator are displayed. The Trox factory settings can<br />

be restored with the “Factory settings” key.<br />

Replacement Controllers<br />

When replacing faulty controllers, controllers calibrated<br />

to the terminal unit type and size must be used. Noncalibrated<br />

controllers may only be used as a stopgap<br />

solution.<br />

The following must be specified when ordering a replacement<br />

controller:<br />

• Unit type and size; for TVM units: whether the unit<br />

is a cold or warm duct controller.<br />

• Operating mode<br />

• V .<br />

min and V .<br />

max


Siemens Adjuster AST10<br />

1<br />

Contents<br />

Subject Page<br />

Application 2<br />

Function 2<br />

Information regarding operation and use 3<br />

Table of parameters 3<br />

Operation the unit 3<br />

Mounting 4<br />

Connection to GLB... 4<br />

Design changes reserved · All rights reserved · ® Gebrüder Trox GmbH (12/2001) · Leaflet No. E016MS1


AST10<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

1 Liquid crystal<br />

display<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

Plus/minus key to change parameters<br />

Cursor key (toggles “Type”, “U” and “DIR”)<br />

“Save” key (to send data to the controller)<br />

“Reset” key to restore factory settings<br />

Rocker switch V .<br />

n / V .<br />

min<br />

Rocker switch V .<br />

max / Y<br />

Not allocated (reserved for future application)<br />

Connecting cable<br />

2<br />

Siemens Adjuster AST10<br />

Application<br />

The adjuster AST10 is used to display and set parameters<br />

for Siemens compact controllers GLB181.1E/3<br />

and GDB 181.1E/TR. As the compact controllers are<br />

not outfitted with a trim potentiometer, the AST10 is used<br />

to render the parameters accessible and to visualize<br />

them.<br />

Functions<br />

The AST10 is connected to the GLB181.E/3 using one of<br />

the included connecting cables (GLB... A with clipped<br />

connection, GLB... B with plug-in or clipped connection).<br />

Power is supplied to the AST10 via the connecting cable.<br />

Values are shown on a liquid crystal display (LCD). The<br />

AST10 is operated with four keys, two of which are dual<br />

function rocker switches.<br />

“Srch” is displayed when communication is interrupted<br />

and during the startup process while the unit carries out<br />

a search to determine which type of device is attached.<br />

Values that are altered will blink in the display. After<br />

changing a parameter, send the new value to the connected<br />

unit by pressing the “Set” key. The value will<br />

then stop blinking.<br />

The Trox factory settings for the GLB181.1E/3 can be<br />

restored by pressing the “Factory settings” key.<br />

Any communication problems with the connected device<br />

are signaled by the message “Err” in the LCD.


Siemens Adjuster AST10<br />

Table of Parameters<br />

Symbol<br />

V<br />

Key Meaning Application<br />

. n V . V<br />

n Display of Vnom volume flow Factory setting,<br />

read only!<br />

. min [%] V . V<br />

min Setting or display of minimum volume flow – 20 to 100 % in 1 percent increments<br />

. max [%] V . max Setting or display of maximum volume flow 20 to 120 % in 1 percent increments<br />

YC [V] Y Setting or display of required volume flow 0 to 11 V in 0.05 V increments<br />

DIR Setting or display of direction of rotation of motor Factory setting, DO NOT CHANGE!<br />

Factory setting,<br />

only change if absolutely necessary!<br />

TYP Setting or display of function type con = controlling operation VVS or KVS;<br />

“3P” = 3-point motor operation + sensor function<br />

(no internal controlling function)<br />

U [V] Display of actual volume flow 0 to 12.8 V in 0.05 V increments<br />

Adjustment, Display and Connecting Elements<br />

9<br />

2<br />

1<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

Information Regarding Operation and Use<br />

When an AST10 is connected to a type A or B GLB, the<br />

parameters can be displayed and changed during operation.<br />

With type A GLB, the connecting cable with an<br />

unused wire end is used, and with type B, the wire with<br />

the plug-in connection is used.<br />

When the AST10 is connected to a type B GLB via the<br />

connecting cable with an unused wire, care must be<br />

taken to ensure that the communication signal is transmitted<br />

over the same wire as the 0 to 10 VDC command<br />

signal. Therefore, when the AST10 is connected, the<br />

command signal must be disconnected! If a command<br />

signal is to be transmitted nonetheless, this can be done<br />

by setting the required volume flow via the “Y” key.<br />

6a<br />

7a<br />

3<br />

Operation<br />

• Connect AST10 to GLB using compatible connecting<br />

cable (9); wait until message appears on the display.<br />

• Changing V .<br />

min:<br />

Press key 6a “V .<br />

min”, the required V .<br />

min temperature will<br />

be displayed as a percentage of V .<br />

nom (V .<br />

n).<br />

Change the displayed percentage value with the plus<br />

or minus key 2. Then press “Set” key 4. The new value<br />

will be sent to the controller.<br />

• Changing V .<br />

max:<br />

The required V .<br />

max temperature is displayed as a<br />

percentage of Vnom. To change V .<br />

max, press the “V .<br />

max”<br />

key 7 and follow the procedure for V .<br />

min.<br />

• To control V .<br />

max, a 10 VDC command signal (Y) must<br />

be transmitted to GLB. This is done with the “Y” key<br />

7a on the AST10. Enter the desired command signal<br />

and then confirm with the “Set” key.<br />

• After entering each parameter (value blinks), send the<br />

value to the controller via the “Set” key 4.<br />

• To restore the Trox factory settings, press the “Factory<br />

settings” key 5.<br />

Display of the Actual Value of the Output Signal<br />

U or UC<br />

To display the actual value of the output signal in volts,<br />

press key 3 “” This applies to all operating modes.<br />

Display of V . nom (V . n)<br />

To display the factory reference values (variables for<br />

V .<br />

nom), press key 6a (V .<br />

n).<br />

IMPORTANT<br />

Changes made in the operating mode of the controller<br />

(from “con” to “3Poder” or vice versa) only<br />

take effect after the device has been reset (briefly<br />

cut off the supply voltage to the controller).


AST10 Connection to GLB..., Series A<br />

in the control cabinet<br />

Connecting cable<br />

with unused wire ends<br />

Strain Relief Clamp on the Connecting Cable<br />

AST10<br />

GLB..., Series A<br />

AST10 Connection to GLB..., Series B<br />

in the control cabinet<br />

Connecting cable<br />

Connecting cable<br />

with unused wire ends<br />

GLB181.1E/3<br />

Strain relief clamp<br />

4<br />

Siemens Adjuster AST10<br />

Connection to GLB...<br />

The AST10 is connected to GLB… as illustrated in the<br />

circuit diagrams on this page.<br />

With GLB Series A, the included connecting cable with<br />

an unused wire end is used; then connect YC on the<br />

AST10 with UC on GLB… Series A.<br />

For the connection with GLB… Series B, use the<br />

connecting cable with the ready-made plug.<br />

The connecting cable with an unused wire end can also<br />

be used for Series B if the ceiling panels are closed but<br />

changes still need to be undertaken. In this case, it’s<br />

advisable to establish a connection from the junction box<br />

(YC must be available for this).<br />

However, for the duration of the communication, the<br />

line to clamp YC must be disconnected!<br />

AST10 Connection to GLB..., Series B<br />

directly to the unit<br />

GLB..., Series B GLB..., Series B<br />

Connecting cable<br />

with two-sided<br />

plug-in connection<br />

Mounting Advisory<br />

When using the connecting cable with a plug-in connection<br />

(with GLB… Type B) the strain relief clamp attached<br />

to the connecting cable is to be used as illustrated here.


Siemens Volume Flow Controller<br />

VAV Modular ASV181.1E/3<br />

1<br />

Contents<br />

Subject Page<br />

Application 2<br />

Functions 3<br />

Characteristic curves 3<br />

Functions 3<br />

Pressure-independent control characteristics 4<br />

Volume flow control and adjustment 4<br />

Adjuster AST10 4<br />

Volume-flow range for single duct units 5<br />

Order codes for single duct units 6<br />

Volume flow ranges for dual duct units,<br />

Order codes 7<br />

Terminal connections 8<br />

Continuous controlling, override control 9<br />

Examples of application 10<br />

Commissioning 11<br />

Design changes reserved · All rights reserved · ® Gebrüder Trox GmbH (12/2001) · Leaflet No. E016EM5


Compact Controller ASV181.1E/3<br />

�<br />

�<br />

� �<br />

� Socket for AST10 connecting cable<br />

� Transducer tubing connector<br />

� Connecting cable to operator terminal or to DDC<br />

� Connecting cable for actuator<br />

� Mounting lug<br />

Operating Modes<br />

The ASV181.1E/3 has two operating modes, “CON” and<br />

“3P” (see circuit diagram below).<br />

Siemens Volume Flow Controller<br />

VAV Modular ASV181.1E/3<br />

2<br />

Application<br />

Operating Mode “CON” Operating Mode “3P”<br />

Room temperature controller<br />

�<br />

required volume flow, 0 to 10 VDC<br />

The Siemens electronic volume flow controller<br />

ASV181.1E/3 is a control unit for VAV terminal units. The<br />

membrane pressure transducer and control electronics<br />

are integrated into one housing. A separate actuator is<br />

connected for damper adjustment. These controllers are<br />

mainly used in VAV terminal units with specialized functions<br />

such as spring return, torque > 10 Nm or adjustable<br />

switch functions on the actuator.<br />

For variable volume flow control, a suitable room temperature<br />

controller (or air quality controller), a DDC outstation<br />

or a similar device must be used. A 0 to 10 VDC<br />

signal or three-point signal (TEC controller, DESIGO<br />

RXC31.1 etc.) can be used as the voltage range. To do<br />

this, the volume flow controller ASV181.1E/3 is deactivated.<br />

Switches or relays with a maximum of 2 set points<br />

are used for constant volume flow control.<br />

The ASV181.1E/3 is not outfitted with adjustment knobs<br />

V · min and V · max. All controller parameters factory-set by<br />

Trox. The customer does not need to make any adjustments.<br />

As soon as the supply voltage and room temperature<br />

controller have been connected, the terminal unit is<br />

ready for use.<br />

Any volume flow changes to the AST10 that may be<br />

necessary can easily be carried out by the customer. For<br />

parallel operation, several controllers can be connected<br />

up to one room temperature controller. Supply or extract<br />

air slave control can be realized.<br />

Static Measuring<br />

The actual value of the volume flow is monitored as a<br />

standard, linear electrical signal and can be switched to a<br />

DDC or used for the display. The voltage range for the<br />

actual and command value is standardized at 0 to 10 VDC.<br />

Volume flow is measured with a membrane pressure<br />

transducer. In automatic, recovered zero point calibration<br />

via an integrated air valve, minimum flow briefly occurs in<br />

the measuring line. This flow level is so low that as a rule<br />

the measuring element is not soiled. However, if the unit<br />

is used in unclean air, a VAV a plastic or coated terminal<br />

unit should be used.<br />

IMPORTANT<br />

Make certain that in critical situations the VAV terminal<br />

unit and membrane pressure transducer are tested<br />

for the resistance of their materials to hazardous<br />

materials and particle concentrations in ambient air.<br />

actual volume flow<br />

0 to 10 VDC<br />

ASV181.1E/3 Actuator ASV181.1E/3<br />

Operator terminal with<br />

communication capability, DDC<br />

3-point signal 24 VAC<br />

Actuator


Siemens Volume Flow Controller<br />

VAV Modular ASV181.1E/3<br />

Characteristic Curve of the Actual Value Signal<br />

Volume flow<br />

V · min unit<br />

· ·<br />

Vactual = V<br />

U<br />

nom<br />

10<br />

Characteristic Curve of the Command Variable<br />

Volume flow<br />

V · nom<br />

V · nom<br />

V · max<br />

V · min<br />

V · min unit<br />

0 Actual value signal UC 10 VDC<br />

Vreq = Y ·<br />

10<br />

(V<br />

· ·<br />

max -Vmin) + V· min<br />

0 Actual command signal Y 10 VDC<br />

3<br />

Functions<br />

The volume flow is measured with a membrane pressure<br />

transducer. The effective pressure ∆pw of the differential<br />

pressure sensor in the VAV terminal unit is measured in<br />

the membrane pressure transducer of the ASV181.1E/3<br />

and linearized. The volume flow is calculated by a microprocessor<br />

in the controller.<br />

The actual volume flow is available as a linear voltage<br />

signal U. The measurement range (reference value) is set<br />

during factory calibration to suit the unit size in such a<br />

way that 10 VDC always corresponds to the unit nominal<br />

volume flow rate (V · nom).<br />

The required volume flow is set by the room temperature<br />

controller or by switches. The controller determines the<br />

required volume flow in accordance with the characteristic<br />

curve shown in the illustration and compares this<br />

with the actual value. The external damper actuator is<br />

controlled according to the volume flow tolerances. The<br />

factory-set volume flow ranges V · min and V · max can be<br />

altered by the customer using a Siemens AST10 adjuster,<br />

which can also be used to change the operating mode.<br />

IMPORTANT<br />

The operating mode must be set for each system<br />

because otherwise the desired function will not be<br />

available!<br />

Operating Mode “CON”<br />

Variable volume flow<br />

Using the command variables shown in the illustration<br />

as a basis, the ASV181.1E/3 calculates the volume flow,<br />

which can range from V · min to V · max. Override controls<br />

CLOSED or OPEN can be realized.<br />

Constant volume flow<br />

To realize override control as well as constant volume<br />

flows V · min and V · max, wire the input terminals for the command<br />

signal via relays or contacts.<br />

Command signal range limiting<br />

In the DDC outstation, the command variable must be<br />

limited for settings between V · min = 0 % and V · max =<br />

100 %. In this situation, the full published volume range<br />

can be used for future adjustment via the BMS. If the<br />

design volume flow rates are set in the unit, a full voltage<br />

signal range of 0-10 or 2-10 VDC can be used. However,<br />

these settings can only be changed by using the AST10,<br />

which involves gaining access to the terminal unit.<br />

(Operating Mode “3P”)<br />

In this operating mode, the internal controller electronics<br />

are inactivated. Only the reference value is factory set.<br />

Any calibrated V · min and V · max values have no impact on<br />

function.


Duct Pressure-Independent Control Characteristics<br />

Pressure differential<br />

1000<br />

Pa<br />

800<br />

600<br />

400<br />

200<br />

Formula for V · max<br />

Formula for V · min<br />

Adjuster AST10<br />

Volume flow<br />

in % of V · 20 40 60 80 100<br />

nom<br />

Vmax setting = V ·<br />

.<br />

max .<br />

·<br />

Vnom Vmin setting = V ·<br />

.<br />

min<br />

·<br />

V nom<br />

9 1<br />

2<br />

1<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

2<br />

3<br />

4<br />

5<br />

100 %<br />

. 100 %<br />

Liquid crystal display<br />

Plus/minus keys<br />

for changing parameters<br />

Cursor key<br />

(to toggle<br />

“Type” and “U”)<br />

Save key<br />

(to send data to the<br />

controller)<br />

Reset key<br />

for factory settings<br />

Rocker switch V · n 1) / V · min<br />

Rocker switch V · 6<br />

7<br />

max / Y<br />

8 Not allocated (reserved<br />

for future application)<br />

9<br />

Socket for connecting cable<br />

(make certain that plug is<br />

inserted correctly)<br />

Siemens Volume Flow Controller<br />

VAV Modular ASV181.1E/3<br />

4<br />

Volume Flow Control<br />

The volume flow controller works independently of duct<br />

pressure, which means that pressure fluctuations result<br />

in only transient changes in volume flow.<br />

To prevent destabilization of volume flow control, a dead<br />

zone is provided within which the damper does not<br />

move. This dead zone, in conjunction with measuring<br />

tolerances, produces the volume flow deviation illustrated<br />

here.<br />

If the conditions mentioned in the product documentation<br />

are not met (e.g., lowest differential pressure, supply<br />

air conditions), larger deviations are likely to occur.<br />

V · max Setting<br />

The V · max value is the equivalent of the volume flow that is<br />

set with a 10 VDC command signal or V · max override control.<br />

The setting range for adjustments with the AST10<br />

adjuster is from 20 to 120 %. The percentage figures are<br />

based on V · nom.<br />

V · min Setting<br />

The V · min value is the equivalent of the volume flow that<br />

is set with a 0 VDC command signal or V · min override<br />

control. V · min may be set between –20 and 100 % of V · nom<br />

using the AST10.<br />

If V · min is set between –20 and 0 %, a command signal of<br />

0 VDC will close the damper, creating a leakproof seal. In<br />

case of value deviation, shut-off can be realized with<br />

input Y2 (see p. 9).<br />

Volume Flow Adjustment on Site<br />

The volume flow ranges can be adjusted on site using<br />

adjuster AST10. To do this, connect the AST10 to the<br />

controller (see AST10 product information). The calibrated<br />

V · min or V · max values can be set using the keys by<br />

the same names. The controller adopts these settings<br />

when the “Set” key is pressed.<br />

In 3P operating mode, the volume flow ranges can be<br />

changed only on operator terminals with communication<br />

capabilities (e.g., TEC).<br />

1) V · n equals V · nom


Siemens Volume Flow Controller<br />

VAV Modular ASV181.1E/3<br />

Volume Flow Ranges for TVZ, TVA, TVR, TVS, TVRK<br />

V<br />

100 10 20 95 36 72 342<br />

125 15 30 150 54 108 540<br />

160 25 50 250 90 180 900<br />

200 40 80 405 144 288 1458<br />

250 60 125 615 216 450 2214<br />

315 105 205 1025 378 738 3690<br />

400 170 335 1680 612 1206 6048<br />

· min<br />

unit<br />

V · to V<br />

min<br />

unit<br />

· nom<br />

to V · l/s<br />

from<br />

m<br />

from nom<br />

3 V<br />

/h<br />

2)<br />

· max<br />

V · max<br />

Size<br />

Volume Flow Ranges for TVJ/TVT<br />

B x H<br />

mm<br />

V · min<br />

l/s m3 /h<br />

V · V min<br />

· max<br />

V · min unit 1) V · min unit 1)<br />

from to V from<br />

· nom<br />

200 x 100 45 45 215 162 162 774<br />

300 x 100 65 65 320 234 234 1152<br />

400 x 100 85 85 425 306 306 1530<br />

500 x 100 105 110 535 378 396 1926<br />

600 x 100 130 130 650 468 468 2340<br />

200 x 200 85 85 415 306 306 1494<br />

300 x 200 125 125 620 450 450 2232<br />

400 x 200 165 165 825 594 594 2970<br />

500 x 200 205 205 1035 738 738 3726<br />

600 x 200 250 250 1250 900 900 4500<br />

700 x 200 290 290 1450 1044 1044 5220<br />

800 x 200 330 330 1650 1188 1188 5940<br />

300 x 300 185 185 920 666 666 3312<br />

400 x 300 245 245 1230 882 882 4428<br />

500 x 300 305 305 1535 1098 1098 5526<br />

600 x 300 370 370 1850 1332 1332 6660<br />

700 x 300 430 430 2150 1548 1548 7740<br />

800 x 300 490 490 2450 1764 1764 8820<br />

900 x 300 555 555 2770 1998 1998 9972<br />

1000 x 300 620 620 3100 2232 2232 11160<br />

400 x 400 325 325 1630 1170 1170 5868<br />

500 x 400 410 410 2040 1476 1476 7344<br />

600 x 400 490 490 2450 1764 1764 8820<br />

700 x 400 570 570 2850 2052 2052 10260<br />

800 x 400 650 650 3250 2340 2340 11700<br />

900 x 400 735 735 3670 2646 2646 13212<br />

1000 x 400 820 820 4100 2952 2952 14760<br />

500 x 500 510 510 2540 1836 1836 9144<br />

600 x 500 610 610 3050 2196 2196 10980<br />

700 x 500 710 710 3550 2556 2556 12780<br />

800 x 500 810 810 4050 2916 2916 14580<br />

900 x 500 915 915 4570 3294 3294 16452<br />

1000 x 500 1020 1020 5100 3672 3672 18360<br />

600 x 600 730 730 3650 2628 2628 13140<br />

700 x 600 850 850 4250 3060 3060 15300<br />

800 x 600 970 970 4850 3492 3492 17460<br />

900 x 600 1100 1100 5500 3960 3960 19800<br />

1000 x 600 1220 1220 6100 4392 4392 21960<br />

700 x 700 990 990 4950 3564 3564 17820<br />

800 x 700 1140 1140 5700 4104 4104 20520<br />

900 x 700 1280 1280 6400 4608 4608 23040<br />

1000 x 700 1420 1420 7100 5112 5112 25560<br />

800 x 800 1300 1300 6500 4680 4680 23400<br />

900 x 800 1460 1460 7300 5256 5256 26280<br />

1000 x 800 1620 1620 8100 5832 5832 29160<br />

900 x 900 1640 1640 8200 5904 5904 29520<br />

1000 x 900 1820 1820 9100 6552 6552 32760<br />

1000 x 1000 2020 2020 10100 7272 7272 36360<br />

1) V · min = 0 can also be realized 2) TVR only<br />

5<br />

V · max<br />

to V · nom


Volume Flow Control Tolerances 1)<br />

Volume flow<br />

as % of V<br />

100 5 5<br />

80 5 5<br />

60 7 7<br />

40 7 8<br />

20 9 14<br />

10 20 >14<br />

20 >14<br />

· nom<br />

∆V · in ± %<br />

TVZ, TVA, TVR, TVS, TVRK TVJ/TVT<br />

1) Percentage figures based on V · actual<br />

2) A constant value controller can be used as a master<br />

3) Indicate configurations for master and slave devices when ordering<br />

Siemens Volume Flow Controller<br />

VAV Modular ASV181.1E/3<br />

6<br />

Single Duct Unit<br />

Order Code / Ordering Example<br />

The available options are given in the current price list.<br />

TVZ / 160 / 00 / LP3 / E - 50 - 240 l/s<br />

TVZ / 160 / 00 / LP3 / M - 50 - 240 l/s<br />

TVZ / 160 / 00 / LP3 / S - 240 l/s<br />

TVZ / 160 / 00 / LP3 / F - 100 l/s<br />

Volume Flow Parameters<br />

Operating mode<br />

E<br />

M<br />

S<br />

U<br />

F 2)<br />

X<br />

2) 3)<br />

Operating mode<br />

Factory settings<br />

V · min at required V · min<br />

V · max at required V · max<br />

V · min<br />

E Individual<br />

M Master<br />

S Slave<br />

F Constant value<br />

X 3-point<br />

V · min at 0 %<br />

V · max at volume flow ratio to master<br />

controller<br />

V · min at required volume flow 1<br />

(smaller value)<br />

V · max at required volume flow 2<br />

(larger value)<br />

V · min at required volume flow<br />

V · max at 100 %<br />

V · nom set<br />

V · max<br />

3)<br />

3)


Siemens Volume Flow Controller<br />

VAV Modular ASV181.1E/3<br />

Volume Flow Ranges for TVM<br />

Size<br />

Volume Flow Control Tolerances for TVM 1)<br />

Volume flow<br />

as % of V · nom<br />

V · min unit<br />

1) Percentage figures based on ‡ actual<br />

l/s m 3 /h<br />

V · nom<br />

TVM cold<br />

V · min unit<br />

∆V · in ± %<br />

100 5 7<br />

80 5 10<br />

60 5 12<br />

40 7 15<br />

20 9 -<br />

10 20 -<br />

20 -<br />

V · nom<br />

125 45 150 162 540<br />

160 75 250 270 900<br />

200 120 405 432 1458<br />

250 185 615 666 2214<br />

TVM total<br />

7<br />

Two Duct Combined Unit TVM<br />

Order Code / Ordering Example<br />

The available options are given in the current price list.<br />

TVM / 160 / LP5 / M - 50 - 240 l/s<br />

TVM / 160 / LP5 / F - 400 l/s<br />

Volume Flow Parameters<br />

Operating<br />

mode<br />

E<br />

M<br />

X<br />

F<br />

‡ min at –5 %<br />

‡ max at required<br />

volume flow (‡ cold)<br />

‡ nom set<br />

‡ min at –5 %<br />

‡ max at required<br />

Constant volume<br />

flow<br />

Operating mode<br />

E Individual<br />

M Master<br />

F Constant value<br />

X 3-point<br />

Factory settings<br />

Cold duct controller Warm duct controller<br />

‡ min at required<br />

volume flow ‡ warm<br />

‡ max at 100 %<br />

‡ nom set<br />

.<br />

Vwarm ‡ min at required<br />

Constant volume<br />

flow<br />

‡ max at 100 %<br />

.<br />

Vcold . .<br />

Vwarm = Vcold


Terminal Connections<br />

G G0 Y1 Y2 YC U<br />

ASV181.1E/3<br />

Service Signal ASV181.1E/3<br />

24 V<br />

G G0<br />

ASV181.1E/3<br />

˜ y<br />

Room<br />

temperature<br />

controller<br />

YC<br />

Switch cabinet<br />

or wall mounted<br />

enclosure<br />

Siemens Volume Flow Controller<br />

VAV Modular ASV181.1E/3<br />

8<br />

Nomenclature<br />

Key to Wire colors Bedeutung<br />

wires Code<br />

G red Phase AC 24 V<br />

G0 black Ground AC 24 V<br />

Y1 purple Position signal “open” (3P)<br />

or override control (CON)<br />

Y2 orange Position signal “open” (3P)<br />

or override control (CON)<br />

YC gray Volume flow position signal<br />

0-10 VDC and<br />

communication signal<br />

U pink Actual value of output signal<br />

0-10 VDC<br />

Wiring<br />

Wiring for the 24 VAC voltage supply must be performed<br />

by the customer. Safety transformers are to be used<br />

(EN 60742).<br />

If several controllers are connected to one 24 VAC grid,<br />

it is important to ensure that a common neutral or ground<br />

wire is used.<br />

Service Connection<br />

It is advisable that the signal line for connecting the<br />

AST10 adjuster be linked up in an easily accessible<br />

location. This avoids having to remove ceiling panels<br />

when service is performed. Suitable locations include:<br />

spare terminals in room temperature controllers, or wall<br />

mounted enclosures.<br />

It is important to ensure that G and G0 are available.<br />

Therefore, a 4-wire connection is required to the commissioning<br />

point connection.


Siemens Volume Flow Controller<br />

VAV Modular ASV181.1E/3<br />

Continuous Controlling between V · min and V · max<br />

Operating Mode “CON”<br />

24 V<br />

Override Controls<br />

Command<br />

signal<br />

0 to 10 VDC<br />

G G0 Y1 Y2 YC U<br />

ASV181.1E/3<br />

G<br />

G0<br />

G G0<br />

S1 S2<br />

Y1 Y2 U<br />

G G0 Y1 Y2 YC U<br />

Actual value<br />

of output signal<br />

0 to 10 VDC<br />

Controlling with an External Digital Operator Terminal<br />

Room Temperature Volume Flow Cascade<br />

Operating Mode “3P”<br />

24 V<br />

ASV181.1E/3<br />

24 V<br />

ASV181.1E/3<br />

Digital operator terminal<br />

9<br />

Variable Volume Flow Controlling<br />

The ASV181.1E/3 is connected to the 24 VAC grid. If the<br />

DDC outstation/controller is in the same grid, the command<br />

signal can be applied via a single wire. If the grids<br />

are separate, the command signal is connected by two<br />

wires. The actual value signal for the volume flow can be<br />

used.<br />

Several ASV181.1E/3 units can be connected in parallel.<br />

Several volume flow controllers (supply or extract air) are<br />

operated in parallel by one room temperature controller.<br />

If the terminal units are the same size and V · min and V · max<br />

parameters are set at the same values, all the units control<br />

the same volume flow. If the settings differ, the units<br />

control an equal proportion of flow. This allows ratio control<br />

to be achieved between the supply and extract air<br />

controllers.<br />

The variable volume flow control can be overridden for<br />

shut-off and startup using zero-potential switches<br />

(supplied by customer).<br />

Continuous<br />

Controlling<br />

open open<br />

Shut-off open closed<br />

Fully open<br />

Controlling V<br />

closed open<br />

. min<br />

Controlling V<br />

open open<br />

. Function S1<br />

Switch<br />

S2<br />

(window<br />

switch)<br />

max closed closed<br />

Shut-off open closed<br />

Fully open closed open<br />

Type<br />

of controlling<br />

VVS,<br />

supply<br />

or extract air<br />

KVS,<br />

supply<br />

or extract air


Slave Control<br />

G G0<br />

Y1 Y2 YC U<br />

DDC outstation/controller<br />

ASV181.1E/3<br />

G G0 Y1 Y2<br />

G<br />

24 V<br />

Room<br />

temperature<br />

controller<br />

G G0 Y<br />

YC U<br />

Slave controller ASV181.1E/3<br />

Two Duct Combined Unit TVM<br />

24 V<br />

Room temperature<br />

controller<br />

G G0 Y1 Y2 YC U<br />

G<br />

G0<br />

G0<br />

Y1 Y2 YC U<br />

Cold duct controller ASV181.1E/3<br />

Warm duct controller ASV181.1E/3<br />

Y<br />

possibly to<br />

slave controller<br />

Siemens Volume Flow Controller<br />

VAV Modular ASV181.1E/3<br />

10<br />

Supply or Extract Air Slave Control (Master/Slave)<br />

In the case of parallel control of the units, an unfavorable<br />

difference between supply and extract air can occur if<br />

the pressure in one duct is too low. Therefore, the actual<br />

volume flow value (usually the value of the supply air)<br />

should be used as the command variable for the volume<br />

flow controller of the slave. If the extract air flow is not to<br />

be controlled by the DDC controller, a slave control is<br />

also used.<br />

Ratio control can be achieved using the ASV181.1E/3<br />

i.e. the ratio of extract air to supply air must be the same<br />

under all operating conditions.<br />

The volume flow ratio is set on the slave controller as<br />

follows:<br />

V · max setting =<br />

V · max M<br />

V · min M<br />

V · max S<br />

V · min S<br />

If the volume flows are the same, the setting will be<br />

100 %. The maximum setting is 120 %.<br />

=<br />

V · max S<br />

V · max M<br />

Volume Flow Controller of TVM Units<br />

The two controllers fitted to the dual duct unit TVM (cold<br />

duct, warm duct) are to be wired by the customer as<br />

illustrated in the circuit diagram on this page (including<br />

the 24 VAC cross-connection).<br />

The room temperature controller provides the cold duct<br />

controller with its set point signal.<br />

In most instances, the proportion of warm air is increased<br />

from 0 to the required V · warm as a maximum set point.<br />

The warm duct controller (V · total is measured) is therefore<br />

set as a constant value controller and does not require a<br />

control signal.<br />

For more information, refer to the TVM product documentation.<br />

·<br />

V · nom M<br />

V · nom S<br />

· 100 %


Siemens Volume Flow Controller<br />

VAV Modular ASV181.1E/3<br />

Commissioning<br />

Fault Diagnosis<br />

Check wiring<br />

Activate power supply<br />

Switch on air conditioning system<br />

Record actual value signal U for override control V · min<br />

Record the actual value signal U<br />

Record actual value signal U for override control V · max<br />

Record the actual value signal U<br />

Supply voltage in conformance<br />

with Siemens specifications?<br />

yes<br />

Check transformer<br />

etc.<br />

Signal U consistent? Controller faulty<br />

yes<br />

Actuator opens<br />

and closes?<br />

yes<br />

Volume flow V · min?<br />

yes<br />

Volume flow V · max ?<br />

yes<br />

Volume flow<br />

command signal?<br />

yes<br />

Override controls?<br />

Damper<br />

obstructed?<br />

Duct pressure<br />

sufficient?<br />

Measurement<br />

tubing to the<br />

transducer<br />

damaged?<br />

Check room temperature<br />

controller<br />

Check window<br />

switch, relays etc.<br />

Ordering Example for a Replacement Controller<br />

no<br />

no<br />

no<br />

no<br />

no<br />

no<br />

no<br />

Siemens ASV181.1E/3,<br />

vorjustiert für TVR / 125 / E0 - 45 - 100 l/s<br />

11<br />

Commissioning<br />

A function test for commissioning can be carried out<br />

using adjuster AST10 or the DDC outstation/controller.<br />

A defined volume flow is set for both of these units.<br />

The actual volume flow is calculated on the basis of the<br />

monitored actual value signal and is compared with the<br />

set value.<br />

In many instances the faults can result from incorrect<br />

wiring. Therefore, when checking an individual volume<br />

flow controller, first disconnect all lines except for<br />

G and G0.<br />

The power supply is then switched off and a zero point<br />

comparison is performed automatically. The actual output<br />

signal is then set to zero for about 2 minutes.<br />

If the actuator drive is disengaged and the damper is<br />

opened manually, the voltage will increase. Then briefly<br />

disconnect the supply voltage so that the actuator can<br />

be resynchronized.<br />

Volume flow control is checked by setting a command<br />

signal to which the monitored value must correspond<br />

after a short time. Set points are defined by a linear voltage<br />

signal, a switch or by adjuster AST10.<br />

Apply the override control and test the desired functions.<br />

The function test can be simplified using the AST10 adjuster.<br />

The set volume values V · min and V · max can be read.<br />

The AST10 can also simulate a command signal. Operating<br />

mode and direction of flow in the actuator are<br />

displayed. The Trox factory settings can be restored with<br />

the “Factory settings” key.<br />

Replacement Controllers<br />

When replacing faulty controllers, controllers calibrated<br />

to the terminal unit type and size must be used. Noncalibrated<br />

controllers may only be used as a stopgap<br />

solution.<br />

The following must be specified when ordering a replacement<br />

controller:<br />

• Unit type and size; for TVM units: whether the unit is a<br />

cold or warm duct controller<br />

• Operating mode<br />

• V · min and V · max


Siemens Actuator<br />

1<br />

Contents<br />

Subject Page<br />

GLB131.1E 2<br />

GBB131.1E 2<br />

GEB131.1E 3<br />

GIB131.1E 3<br />

GMA131.1E 4<br />

GCA131.1E 4<br />

Design changes reserved · All rights reserved · ® Gebrüder Trox GmbH (12/2001) · Leaflet No. E016EM6


GLB131.1E<br />

�<br />

�<br />

� Shaft clamp<br />

� Gear release button<br />

� Duct position display<br />

GBB131.1E<br />

�<br />

� Shaft clamp<br />

� Gear release button<br />

�<br />

� Connecting cable<br />

� Rotation angle limiter<br />

�<br />

�<br />

�<br />

�<br />

�<br />

� Duct position display<br />

� Connecting cable<br />

2<br />

Actuator GLB131.1E<br />

Siemens Actuator<br />

Application<br />

Maintenance free damper actuator; with 10 Nm torque;<br />

for three-point control of VAV terminal units outfitted<br />

with Siemens-Landis & Staefa volume flow controllers<br />

ASV181.1E/3.<br />

For technical data, see the applicable Siemens product<br />

documentation.<br />

Function<br />

The actuator is factory mounted, fixed to the damper<br />

shaft, and factory-wired to the volume flow controller.<br />

The integral rotation angle limiter is set, and the actuator<br />

is overload protected. When the end stops are reached,<br />

the actuator stops automatically. No limit switches are<br />

required.<br />

For manual adjustment, the gears can be disengaged via<br />

a button.<br />

Actuator GBB131.1E<br />

Application<br />

Maintenance free damper actuator with 20 Nm torque;<br />

for three-point control of VAV terminal units outfitted with<br />

Siemens-Landis & Staefa volume flow controllers<br />

ASV181.1E/3.<br />

For technical data, see the applicable Siemens product<br />

documentation.<br />

Function<br />

The actuator is factory mounted, fixed to the damper<br />

shaft, and factory-wired to the volume flow controller.<br />

The integral rotation angle limiter is set, and the actuator<br />

is overload protected. When the end stops are reached,<br />

the actuator stops automatically. No limit switches are<br />

required.<br />

For manual adjustment, the gears can be disengaged via<br />

a button.


Siemens Actuator<br />

GEB131.1E<br />

GIB131.1E<br />

� �<br />

� Shaft clamp<br />

� Gear release button<br />

�<br />

� Shaft clamp<br />

� Gear release button<br />

�<br />

�<br />

� Duct position display<br />

� Connecting cable<br />

�<br />

�<br />

�<br />

� Duct position display<br />

� Connecting cable<br />

3<br />

Actuator GEB131.1E<br />

Application<br />

Maintenance free damper actuator with 15 Nm torque;<br />

for three-point control of VAV terminal units outfitted with<br />

Siemens-Landis & Staefa volume flow controllers<br />

ASV181.1E/3.<br />

For technical data, see the applicable Siemens product<br />

documentation.<br />

Function<br />

The actuator is factory-mounted on the damper shaft<br />

and factory-wired to the volume flow controller. The<br />

integrated rotation angle limiter is calibrated, and the<br />

actuator is overload protected. When the end stops are<br />

reached, the motor automatically comes to a standstill.<br />

No limit switches are needed.<br />

For manual adjustment, the gears can be disengaged via<br />

a button.<br />

Actuator GIB131.1E<br />

Application<br />

Maintenance free damper actuator with 35 Nm torque;<br />

for three-point control of VAV terminal units outfitted with<br />

Siemens-Landis & Staefa volume flow controllers<br />

ASV181.1E/3.<br />

For technical data, see the applicable Siemens product<br />

documentation.<br />

Function<br />

The actuator is factory mounted on the damper shaft<br />

and factory-wired to the volume flow controller. The<br />

integrated rotation angle limiter is calibrated, and the<br />

actuator is overload protected. When the end stops are<br />

reached, the motor automatically comes to a standstill.<br />

No limit switches are needed.<br />

For manual adjustment, the gears can be disengaged via<br />

a button.


GMA131.1E<br />

�<br />

� Shaft clamp<br />

� Hand adjustment<br />

� Gear arrestor<br />

GCA131.1E<br />

�<br />

� Shaft clamp<br />

� Hand adjustment<br />

� Gear arrestor<br />

�<br />

�<br />

�<br />

�<br />

� Duct position display<br />

� Connecting cable<br />

�<br />

�<br />

�<br />

�<br />

� Duct position display<br />

� Connecting cable<br />

4<br />

Actuator GMA131.1E<br />

Siemens Actuator<br />

Application<br />

Maintenance free actuator with 7 Nm torque and spring<br />

return; for three-point control of VAV terminal units outfitted<br />

with Siemens-Landis & Staefa volume flow controllers<br />

ASV181.1E/3.<br />

The actuator is used in the event of a power failure when,<br />

for safety reasons, either an open or a closed damper<br />

position is required.<br />

For technical data, see the applicable Siemens product<br />

documentation.<br />

Function<br />

The actuator is factory mounted on the damper shaft and<br />

factory-wired to the volume flow controller. The integrated<br />

rotation angle limiter is calibrated, and the actuator<br />

is overload protected. When the end stops are reached,<br />

the motor automatically comes to a standstill. No limit<br />

switches are needed.<br />

A hexagonal wrench can be used to perform manual<br />

adjustments on the actuator, which can be secured with<br />

a screwdriver.<br />

Actuator GCA131.1E<br />

Application<br />

Maintenance free damper actuator with 16 Nm torque<br />

and spring return; for volume flow controllers outfitted<br />

with Siemens-Landis & Staefa actuators ASV181.1E/3.<br />

The actuator is used in the event of a power failure when,<br />

for safety reasons, either an open or a closed damper<br />

position is required.<br />

For technical data, see the applicable Siemens product<br />

documentation.<br />

Function<br />

The actuator is factory mounted on the damper shaft and<br />

factory-wired to the volume flow controller. The integrated<br />

rotation angle limiter is calibrated and the actuator<br />

is overload protected. When the end stops are reached,<br />

the motor automatically comes to a standstill. No limit<br />

switches are needed.<br />

For manual adjustment, the gears can be disengaged via<br />

a hexagonal wrench.


Honeywell<br />

Compact Volume Flow Controller W7751H2009<br />

1<br />

Contents<br />

Subject Page<br />

Application 2<br />

Functions 3<br />

On-site changes in volume flow 3<br />

Volume flow ranges for single duct units 4<br />

Order codes for single duct units 5<br />

Volume flow ranges for dual duct units,<br />

Order codes 6<br />

Terminal connections 7<br />

Commissioning 8<br />

Design changes reserved · All rights reserved · ® Gebrüder Trox GmbH (12/2001) · Leaflet No. E016MS2


Compact Controller W7751H2009<br />

1<br />

2<br />

5<br />

6<br />

1 Shaft clamp<br />

2 Rotation angle limiter<br />

3 Position display<br />

4 Gear release button<br />

5 Transducer tubing connector<br />

6 Service pin 1)<br />

1) Hole in circuit board; operate switch<br />

with non-metallic pin only.<br />

Honeywell<br />

Compact Volume Flow Controller W7751H2009<br />

3<br />

4<br />

2<br />

Application<br />

The Honeywell electronic volume flow controller<br />

W7751H2009 is a complete control unit for volume flow<br />

control in VAV systems. The dynamic differential pressure<br />

transducers, actuators and electronic controls are integrated<br />

into one housing. A LON bus interface makes the<br />

unit suitable for systems using LON bus technology. For<br />

technical data regarding LON interfaces, consult the<br />

applicable Honeywell product documentation.<br />

The W7751H2009 is not outfitted with adjustment knobs<br />

for V .<br />

min and V .<br />

max settings. The controllers are factorycalibrated<br />

by Trox to the required volume flow using an<br />

OEM tool. All remaining function parameters are set on<br />

site by Honeywell technicians.<br />

An operator terminal (T7560/T7460; on customer’s premises;<br />

see Honeywell product documentation) is used to<br />

control room temperature and volume flow.<br />

Standard filtration in air conditioning systems allows use<br />

of the W7751H2009 without dust protection filters.<br />

Commissioning<br />

The controllers are integrated into the LON network via<br />

the system integrator (binding). These services are to be<br />

provided by the system builder or the controller vendor,<br />

and are to be integrated into the planning and bid submission<br />

phases.<br />

Any additional changes in volume flow can be carried<br />

out on site via the LON bus. Supply or extract air slave<br />

control can also be realized (contact Honeywell).


Honeywell<br />

Compact Volume Flow Controller W7751H2009<br />

Functions<br />

The volume flow is measured according to the dynamic<br />

differential pressure principle. The effective pressure of<br />

the differential pressure sensor in the terminal unit allows<br />

the detection of a partial volume flow passing through<br />

the transducer. This partial volume flow, which is proportional<br />

to the total volume flow, is measured and temperature-compensated<br />

using two temperature-dependent<br />

resistors. The volume flow is calculated by a microprocessor<br />

in the controller. The characteristic curve of the<br />

effective pressure is reflected in the controller so that the<br />

linearization can be carried out by the computer. As a<br />

result, the linearized volume flow is presented as a value<br />

in physical units.<br />

The required volume flow is calculated by the room temperature<br />

control circuit between the limit values V .<br />

min and<br />

V .<br />

max. Special operating conditions (presence detectors<br />

and window switches) can be taken into account.<br />

The computed volume flow is compared with the actual<br />

volume flow. The damper actuator is controlled in accordance<br />

with the volume flow tolerances. The parameters<br />

relevant to volume flow control are factory-programmed.<br />

After the customer has set the address, the<br />

controllers are ready for use.<br />

3<br />

Volume Flow Ranges<br />

The unit nominal flow rate V .<br />

nom is stored as a parameter.<br />

This value must not be exceeded or changed. The range<br />

for minimum and maximum design volume flow can be<br />

changed, but the limits given in the tables must be<br />

observed. For constant volume flow control, both parameters<br />

can be set to the same value.<br />

Volume Flow Adjustment on Site<br />

The volume flow ranges can be adjusted on site using<br />

suitable programming aids (software, central control<br />

unit). The controllers must be wired to the LON network<br />

and the supply voltage must be present. For detailed<br />

information regarding changing of parameters, consult<br />

the relevant Honeywell product documentation.<br />

Adjustment Guidelines<br />

• V .<br />

min values that fall below the minimum values given<br />

in the table should not be entered, as this could destabilize<br />

volume flow control.<br />

• V .<br />

min- and V .<br />

max values must not be confused when they<br />

are entered.<br />

• No other parameters for volume flow control such as<br />

actuator running times, unit nominal flows etc. may be<br />

changed.


Volume Flow Ranges TVZ, TVA, TVR, TVS, TVRK<br />

Nominal<br />

size<br />

V · min<br />

V<br />

unit<br />

· to<br />

from to min<br />

V from to<br />

unit<br />

· l/s m<br />

nom<br />

3 /h<br />

V<br />

1) 1)<br />

· V max<br />

· min<br />

V · min<br />

Volume Flow Ranges TVJ/TVT<br />

B x H<br />

mm<br />

V · min unit 1)<br />

V · max<br />

to<br />

V · nom<br />

l/s m 3 /h<br />

from to<br />

200 x 100 45 170 65 215 162 612 234 774<br />

300 x 100 65 255 95 320 234 918 342 1152<br />

400 x 100 85 340 130 425 306 1224 468 1530<br />

500 x 100 105 430 160 535 378 1548 576 1926<br />

600 x 100 130 520 195 650 468 1872 702 2340<br />

200 x 200 85 330 125 415 306 1188 450 1494<br />

300 x 200 125 495 185 620 450 1782 666 2232<br />

400 x 200 165 660 250 825 594 2376 900 2970<br />

500 x 200 205 830 310 1035 738 2988 1116 3726<br />

600 x 200 250 1000 375 1250 900 3600 1350 4500<br />

700 x 200 290 1160 435 1450 1044 4176 1566 5220<br />

800 x 200 330 1320 495 1650 1188 4752 1782 5940<br />

300 x 300 185 735 275 920 666 2646 990 3312<br />

400 x 300 245 985 370 1230 882 3546 1332 4428<br />

500 x 300 305 1230 460 1535 1098 4428 1656 5526<br />

600 x 300 370 1480 555 1850 1332 5328 1998 6660<br />

700 x 300 430 1720 645 2150 1548 6192 2322 7740<br />

800 x 300 490 1960 735 2450 1764 7056 2646 8820<br />

900 x 300 555 2215 830 2770 1998 7974 2988 9972<br />

1000 x 300 620 2480 930 3100 2232 8928 3348 11160<br />

400 x 400 325 1305 490 1630 1170 4698 1764 5868<br />

500 x 400 410 1630 610 2040 1476 5868 2196 7344<br />

600 x 400 490 1960 735 2450 1764 7056 2646 8820<br />

700 x 400 570 2280 855 2850 2052 8208 3078 10260<br />

800 x 400 650 2600 975 3250 2340 9360 3510 11700<br />

900 x 400 735 2935 1100 3670 2646 10566 3960 13212<br />

1000 x 400 820 3280 1230 4100 2952 11808 4428 14760<br />

500 x 500 510 2030 760 2540 1836 7308 2736 9144<br />

600 x 500 610 2440 915 3050 2196 8784 3294 10980<br />

700 x 500 710 2840 1065 3550 2556 10224 3834 12780<br />

800 x 500 810 3240 1215 4050 2916 11664 4374 14580<br />

900 x 500 915 3655 1370 4570 3294 13158 4932 16452<br />

1000 x 500 1020 4080 1530 5100 3672 14688 5508 18360<br />

600 x 600 730 2920 1095 3650 2628 10512 3942 13140<br />

700 x 600 850 3400 1275 4250 3060 12240 4590 15300<br />

800 x 600 970 3880 1455 4850 3492 13968 5238 17460<br />

900 x 600 1100 4400 1650 5500 3960 15840 5940 19800<br />

1000 x 600 1220 4880 1830 6100 4392 17568 6588 21960<br />

700 x 700 990 3960 1485 4950 3564 14256 5346 17820<br />

800 x 700 1140 4560 1710 5700 4104 16416 6156 20520<br />

900 x 700 1280 5120 1920 6400 4608 18432 6912 23040<br />

1000 x 700 1420 5680 2130 7100 5112 20448 7668 25560<br />

800 x 800 1300 5200 1950 6500 4680 18720 7020 23400<br />

900 x 800 1460 5840 2190 7300 5256 21024 7884 26280<br />

1000 x 800 1620 6480 2430 8100 5832 23328 8748 29160<br />

900 x 900 1640 6560 2460 8200 5904 23616 8856 29520<br />

1000 x 900 1820 7280 2730 9100 6552 26208 9828 32760<br />

1000 x 1000 2020 8080 3030 10100 7272 29088 10908 36360<br />

1) V · min = 0 can also be realized 2) TVR only<br />

Honeywell<br />

Compact Volume Flow Controller W7751H2009<br />

1002) 10 75 30 95 36 270 108 342<br />

125 15 120 45 150 54 432 162 540<br />

160 25 200 75 250 90 720 270 900<br />

200 40 325 120 405 144 1170 432 1458<br />

250 60 490 185 615 216 1764 666 2214<br />

315 105 820 310 1025 378 2952 1116 3690<br />

400 170 1345 505 1680 612 4842 1818 6048<br />

V · min V · max V · min V · max<br />

4<br />

to V · nom<br />

V · min unit 1)<br />

from to to V · nom


Honeywell<br />

Compact Volume Flow Controller W7751H2009<br />

Volume Flow Control Tolerances 1)<br />

Volume flow<br />

as % of V · nom<br />

100 5 5<br />

80 5 5<br />

60 7 7<br />

40 7 8<br />

20 9 14<br />

10 20 >14<br />

20 >14<br />

1) Percentage figures based on V · actual<br />

∆V · in ± %<br />

TVZ, TVA, TVR, TVS, TVRK TVJ/TVT<br />

2) A constant value controller can be used as a master<br />

5<br />

Single Duct Unit<br />

Order Codes / Examples<br />

The available options are given in the current price list.<br />

TVZ-R / 160 / 00 / HM0 / E - 50 - 240 l/s<br />

TVZ-R / 160 / 00 / HM0 / M - 50 - 240 l/s<br />

TVZ-R / 160 / 00 / HM0 / S - 50 - 240 l/s<br />

TVZ-R / 160 / 00 / HM0 / F - 100 l/s<br />

Volume Flow Parameters<br />

Operating mode<br />

E<br />

M<br />

S<br />

F 2)<br />

Operating mode<br />

E Individual<br />

M Master<br />

S Slave<br />

F Constant<br />

Factory setting<br />

V · min at required V · min<br />

V · max at required V · max<br />

V · min<br />

V · max<br />

V · min at 0 %<br />

V · max at V · max, equivalent of volume<br />

flow ratio to master controller<br />

V · min at required volume flow<br />

V · max at 100 %


Volume Flow Ranges TVM<br />

Nominal<br />

size V · min unit V · V min unit<br />

· l/s m<br />

nom<br />

3 /h<br />

Volume Flow Control Tolerances TVM 1)<br />

Volume flow<br />

as % of V · Nenn<br />

1) Percentage figures based on ‡ actual<br />

Honeywell<br />

Compact Volume Flow Controller W7751H2009<br />

TVM cold<br />

∆V · in ± %<br />

100 5 7<br />

80 5 10<br />

60 5 12<br />

40 7 15<br />

20 9 -<br />

10 20 -<br />

20 -<br />

V · nom<br />

125 45 150 162 540<br />

160 75 250 270 900<br />

200 120 405 432 1458<br />

250 185 615 666 2214<br />

TVM total<br />

6<br />

Dual Duct Unit TVM<br />

Order Codes / Examples<br />

The available options are given in the current price list.<br />

TVM-R / 160 / HQ0 / M - 50 - 240 l/s<br />

TVM-R / 160 / HQ0 / F - 400 l/s<br />

Volume Flow Parameters<br />

Operating<br />

mode<br />

E<br />

E<br />

M<br />

F<br />

‡ min at 0 %<br />

‡ max at required<br />

volume flow (‡ cold )<br />

Operating mode<br />

E Individual<br />

M Master<br />

F Constant value<br />

Factory setting<br />

.<br />

Vwarm Cold duct controller Warm duct controller<br />

‡ min adjustment at<br />

required volume flow<br />

‡ warm<br />

‡ max at 100 %<br />

.<br />

Vcold . .<br />

Vwarm = Vcold


Honeywell<br />

Compact Volume Flow Controller W7751H2009<br />

Terminal Connections<br />

1 2 3 4 5 6 7 8 9 10 11 12<br />

W7751H2009<br />

LED Status Information<br />

LED status Controller status<br />

Off No supply voltage<br />

On<br />

Not in working order<br />

or not configured<br />

Slow<br />

Blinking<br />

Running, normal communication<br />

Fast Alarm ready<br />

Blinking or in manual test mode<br />

7<br />

Nomenclature<br />

1, 2 Supply voltage (24 V)<br />

3 Technical earthing<br />

Connection for Wall Module T7560/T7460<br />

4 Command signal input<br />

5 Ground, neutral, non-earthed<br />

6 Temperature signal input, sensor<br />

7 Bypass switch input<br />

8 LED<br />

Triac Output for Valve Actuator,<br />

Fan or Reheat Coils<br />

9 Position signal OPEN<br />

10 Position signal CLOSED<br />

11, 12 LON bus<br />

Wiring<br />

Wiring for the 24 VAC supply voltage must be performed<br />

by the customer. Safety transformers are to be used<br />

(EN 60742).<br />

If several controllers are connected to one 24 VAC grid,<br />

it is important to ensure that a common neutral or ground<br />

wire is used.<br />

The earth terminals (terminal 3) of each controller in the<br />

system must be connected to a high-value earth junction<br />

box. Lines should be as short as possible and wires<br />

should be at least 1-2 mm wide.


Honeywell<br />

Compact Volume Flow Controller W7751H2009<br />

Commissioning Commissioning<br />

Check wiring<br />

Switch on supply voltage<br />

Switch on control and air conditioning systems<br />

As a rule, commissioning of control systems<br />

is carried out by Honeywell technicians.<br />

For information regarding commissioning<br />

(LON networks, communication, binding,<br />

software etc.), consult the releavant Honeywell<br />

product documentation.<br />

8<br />

A function test cannot be carried out without the other<br />

components being connected and without functioning<br />

communication.<br />

In many cases, incorrect wiring can give rise to system<br />

malfunctions. Therefore, a careful check should be<br />

carried out to ensure that all connections are correct.<br />

If the actuator drive is disengaged and the damper is<br />

opened manually, the voltage will increase. This can be<br />

confirmed with the aid of a connected laptop computer<br />

or in the central control unit. After manual adjustment,<br />

the actuator must be moved back to its original position.<br />

Volume flow control is checked by comparing preset<br />

values in the software with the actual values displayed.<br />

Ordering Example for a Replacement Controller Replacement Controllers<br />

Faulty controllers must be replaced by units that are calibrated<br />

to the type and size of terminal unit being used.<br />

Since every LON controller has its own LON ID number,<br />

binding must first be performed (network replace) in<br />

order to restore functionality.<br />

The following must be specified when ordering a replacement<br />

controller:<br />

• Terminal unit type and size and in the case of TVM<br />

units, warm duct or cold duct controller<br />

• Operating mode<br />

• V .<br />

min and V .<br />

Honeywell compact volume flow controller<br />

W7751H2009,<br />

calibrated for TVR / 125 / E0 - 45 - 100 l/s<br />

max<br />

• Commissioning no. and delivery date of the defective<br />

controller


Honeywell Volume Flow Controller W7751F2003<br />

1<br />

Contents<br />

Subject Page<br />

Application 2<br />

Functions 3<br />

On-site changes in volume flow 3<br />

Volume-flow range for single duct units 4<br />

Order codes for single duct units 5<br />

Volume flow ranges for dual duct units,<br />

Order code 6<br />

Terminal connections 7<br />

Commissioning 8<br />

Design changes reserved · All rights reserved · ® Gebrüder Trox GmbH (12/2001) · Leaflet No. E016MS3


Volume Flow Controller W7751F2003<br />

1<br />

1 Terminal block<br />

2 Transducer tubing connector<br />

3 LED function display<br />

4 Service pin<br />

5 Additional LON bus connection<br />

Honeywell Volume Flow Controller W7751F2003<br />

4 5<br />

2<br />

3<br />

2<br />

Application<br />

The Honeywell electronic volume flow controller<br />

W7751F2003 is a digital volume flow controller for VAV<br />

terminal units in VVS systems. A dynamic differential<br />

pressure transducer and controller electronics are integrated<br />

into one housing. A suitable actuator is integrated<br />

as well.<br />

The unit’s LON bus interface enables use in systems with<br />

LON bus technology. For technical data regarding the<br />

LON interface, consult the applicable Honeywell product<br />

documentation.<br />

The W7751F2003 is not outfitted with adjustment knobs<br />

for V .<br />

min and V .<br />

max settings. The controllers are factorycalibrated<br />

(by Trox) to the specified volume flow using<br />

an OEM tool. All remaining parameters for the required<br />

functions are set on site by Honeywell technicians.<br />

An operator terminal (T7560/T7460; customer’s premises;<br />

see Honeywell product documentation) is used to<br />

control room temperature and/ volume flow.<br />

Standard filtration in air conditioning systems allows use<br />

of the W7751F2003 without dust protection filters.<br />

Commissioning<br />

The controllers are integrated into the LON network via<br />

the system integrator (binding). These services are to be<br />

provided by the system builder or the controller vendor,<br />

and are to be integrated into the planning and bid submission<br />

phases.<br />

Any further changes in volume flow are to be carried out<br />

on site via the LON bus. Supply or extract air slave<br />

control and other control functions can also be realized<br />

(by arrangment with Honeywell). Controller functions can<br />

also be realized (contact Honeywell).


Honeywell Volume Flow Controller W7751F2003<br />

Functions<br />

The volume flow is measured according to the dynamic<br />

differential pressure principle. The effective pressure of<br />

the differential pressure sensor passing through the<br />

transducer allows the detection of a partial volume flow.<br />

This partial volume flow, which is proportional to the<br />

total volume flow, is measured and temperature-compensated<br />

by two temperature-dependent resistors. The<br />

volume flow is calculated by a microprocessor in the<br />

controller. The characteristic curve of the effective pressure<br />

is reflected in the controller so that the linearization<br />

can be carried out by the computer. As a result, the<br />

linearized volume flow is presented as a value in physical<br />

units.<br />

The required volume flow is calculated by the room temperature<br />

control circuit between the limit values V .<br />

min and<br />

V .<br />

max. Special operating conditions (presence detectors<br />

and window switches) can be taken into account.<br />

The computed required volume flow is compared with<br />

the actual value. The damper actuator is controlled in<br />

accordance with the volume flow tolerances. The parameters<br />

relevant to volume flow control are factory-programmed.<br />

After the customer has entered the remaining<br />

data, the controllers are ready for use.<br />

3<br />

Volume Flow Ranges<br />

The unit nominal flow rate (V .<br />

nom) is stored as a parameter.<br />

This value must not be exceeded or changed. The<br />

range for minimum and maximum design volume flow<br />

can be changed, but the limits given in the tables must<br />

be observed. For constant volume flow control, both<br />

parameters can be set to the same value.<br />

Volume Flow Adjustment on Site<br />

The volume flow ranges can be adjusted on site using<br />

suitable programming aids (software, central control<br />

unit). The controllers must be wired to the LON network<br />

and the supply voltage must be present.For<br />

detailed information regarding changing of parameters,<br />

consult the relevant Honeywell product documentation.<br />

Adjustment Rules<br />

• V .<br />

min values that fall below the minimum values given in<br />

the table should not be entered, as this could destabilize<br />

volume flow control.<br />

• V .<br />

min and V .<br />

max values must not be confused when they<br />

are entered.<br />

• Other parameters for volume flow control such as<br />

actuator running times, unit nominal flows etc. must<br />

not be changed.


Honeywell Volume Flow Controller W7751F2003<br />

Volume Flow Ranges for TVZ, TVA, TVR, TVS, TVRK<br />

Nominal<br />

size<br />

V · min<br />

V<br />

unit<br />

· to<br />

to from min<br />

V to from<br />

unit<br />

· l/s m<br />

nom<br />

3 /h<br />

V<br />

1) 1)<br />

· V max<br />

· min<br />

V · min<br />

Volume Flow Ranges for TVJ/TVT<br />

V · min unit 1)<br />

V · max<br />

to<br />

V · nom<br />

1002) 10 75 30 95 36 270 108 342<br />

125 15 120 45 150 54 432 162 540<br />

160 25 200 75 250 90 720 270 900<br />

200 40 325 120 405 144 1170 432 1458<br />

250 60 490 185 615 216 1764 666 2214<br />

315 105 820 310 1025 378 2952 1116 3690<br />

400 170 1345 505 1680 612 4842 1818 6048<br />

B x H<br />

mm<br />

l/s m 3 /h<br />

to from<br />

200 x 100 45 170 65 215 162 612 234 774<br />

300 x 100 65 255 95 320 234 918 342 1152<br />

400 x 100 85 340 130 425 306 1224 468 1530<br />

500 x 100 105 430 160 535 378 1548 576 1926<br />

600 x 100 130 520 195 650 468 1872 702 2340<br />

200 x 200 85 330 125 415 306 1188 450 1494<br />

300 x 200 125 495 185 620 450 1782 666 2232<br />

400 x 200 165 660 250 825 594 2376 900 2970<br />

500 x 200 205 830 310 1035 738 2988 1116 3726<br />

600 x 200 250 1000 375 1250 900 3600 1350 4500<br />

700 x 200 290 1160 435 1450 1044 4176 1566 5220<br />

800 x 200 330 1320 495 1650 1188 4752 1782 5940<br />

300 x 300 185 735 275 920 666 2646 990 3312<br />

400 x 300 245 985 370 1230 882 3546 1332 4428<br />

500 x 300 305 1230 460 1535 1098 4428 1656 5526<br />

600 x 300 370 1480 555 1850 1332 5328 1998 6660<br />

700 x 300 430 1720 645 2150 1548 6192 2322 7740<br />

800 x 300 490 1960 735 2450 1764 7056 2646 8820<br />

900 x 300 555 2215 830 2770 1998 7974 2988 9972<br />

1000 x 300 620 2480 930 3100 2232 8928 3348 11160<br />

400 x 400 325 1305 490 1630 1170 4698 1764 5868<br />

500 x 400 410 1630 610 2040 1476 5868 2196 7344<br />

600 x 400 490 1960 735 2450 1764 7056 2646 8820<br />

700 x 400 570 2280 855 2850 2052 8208 3078 10260<br />

800 x 400 650 2600 975 3250 2340 9360 3510 11700<br />

900 x 400 735 2935 1100 3670 2646 10566 3960 13212<br />

1000 x 400 820 3280 1230 4100 2952 11808 4428 14760<br />

500 x 500 510 2030 760 2540 1836 7308 2736 9144<br />

600 x 500 610 2440 915 3050 2196 8784 3294 10980<br />

700 x 500 710 2840 1065 3550 2556 10224 3834 12780<br />

800 x 500 810 3240 1215 4050 2916 11664 4374 14580<br />

900 x 500 915 3655 1370 4570 3294 13158 4932 16452<br />

1000 x 500 1020 4080 1530 5100 3672 14688 5508 18360<br />

600 x 600 730 2920 1095 3650 2628 10512 3942 13140<br />

700 x 600 850 3400 1275 4250 3060 12240 4590 15300<br />

800 x 600 970 3880 1455 4850 3492 13968 5238 17460<br />

900 x 600 1100 4400 1650 5500 3960 15840 5940 19800<br />

1000 x 600 1220 4880 1830 6100 4392 17568 6588 21960<br />

700 x 700 990 3960 1485 4950 3564 14256 5346 17820<br />

800 x 700 1140 4560 1710 5700 4104 16416 6156 20520<br />

900 x 700 1280 5120 1920 6400 4608 18432 6912 23040<br />

1000 x 700 1420 5680 2130 7100 5112 20448 7668 25560<br />

800 x 800 1300 5200 1950 6500 4680 18720 7020 23400<br />

900 x 800 1460 5840 2190 7300 5256 21024 7884 26280<br />

1000 x 800 1620 6480 2430 8100 5832 23328 8748 29160<br />

900 x 900 1640 6560 2460 8200 5904 23616 8856 29520<br />

1000 x 900 1820 7280 2730 9100 6552 26208 9828 32760<br />

1000 x 1000 2020 8080 3030 10100 7272 29088 10908 36360<br />

1) V · min = 0 can also be realized 2) Nur TVR only<br />

V · min V · max V · min V · max<br />

4<br />

to V · nom<br />

V · min unit 1)<br />

to from to V · nom


Honeywell Volume Flow Controller W7751F2003<br />

Volume Flow Control Tolerances 1)<br />

Volume flow<br />

as % of V · nom<br />

100 5 5<br />

80 5 5<br />

60 7 7<br />

40 7 8<br />

20 9 14<br />

10 20 >14<br />

20 >14<br />

1) Percentage figures based on V · actual<br />

∆V · in ± %<br />

TVZ, TVA, TVR, TVS, TVRK TVJ/TVT<br />

2) A constant value controller can be used as a master<br />

5<br />

Single Duct Unit<br />

Order Code / Ordering Example<br />

The available options are given in the current price list.<br />

TVZ-R / 160 / 00 / HN5 / 0 - 50 - 240 l/s<br />

TVZ-R / 160 / 00 / HN5 / M - 50 - 240 l/s<br />

TVZ-R / 160 / 00 / HN5 / S - 50 - 240 l/s<br />

TVZ-R / 160 / 00 / HN5 / F - 100 l/s<br />

Volume Flow Parameters<br />

Operating mode<br />

E<br />

M<br />

S<br />

F 2)<br />

Operating mode<br />

Factory setting<br />

V · min<br />

E Individual<br />

M Master<br />

S Slave<br />

F Constant value<br />

V · min adjustment at required V · min<br />

V · max adjustment at required V · max<br />

V · max<br />

V · min adjustment at 0 %<br />

V · max at V · max, equivalent of<br />

volume/flow ratio to master controller<br />

V · min at required volume flow<br />

V · max at 100 %


Volume Flow Ranges for TVM<br />

Honeywell Volume Flow Controller W7751F2003<br />

Nominal<br />

size V · min unit V · V min unit<br />

· l/s m<br />

nom<br />

3 /h<br />

Volume Flow Control Tolerances for TVM 1)<br />

Volume flow<br />

as % of V · nom<br />

TVM cold<br />

∆V · in ± %<br />

100 5 7<br />

80 5 10<br />

60 5 12<br />

40 7 15<br />

20 9 -<br />

10 20 -<br />

20 -<br />

V · nom<br />

125 45 150 162 540<br />

160 75 250 270 900<br />

200 120 405 432 1458<br />

250 185 615 666 2214<br />

TVM total<br />

1) Percentage figures based on ‡ actual Volume Flow Parameters<br />

6<br />

Two Duct Combined Unit TVM<br />

Order Code / Ordering Example<br />

The available options are given in the current price list.<br />

TVM-R / 160 / HR6 / M - 50 - 240 l/s<br />

TVM-R / 160 / HR6 / F - 400 l/s<br />

Operating<br />

mode<br />

E<br />

E<br />

M<br />

F<br />

‡ min at 0 %<br />

‡ max at required<br />

volume flow (‡ cold )<br />

Operating mode<br />

E Individual<br />

M Master<br />

F Constant value<br />

Factory settings<br />

.<br />

Vwarm Cold duct controller Warm duct controller<br />

‡ min adjustment at<br />

required volume flow<br />

‡ warm<br />

‡ max at 100 %<br />

.<br />

Vcold . .<br />

Vwarm = Vcold


Honeywell Volume Flow Controller W7751F2003<br />

Terminal Connections<br />

32<br />

W7751F2003<br />

31<br />

30<br />

29<br />

LED Status Information<br />

28<br />

1 2 3 4 5 6 19 20 21 22<br />

LED status Controller status<br />

Off No supply voltage<br />

On<br />

Not in working order<br />

or not configured<br />

Slow<br />

Blinking<br />

Running, normal communication<br />

Fast Alarm available<br />

Blinking or in manual test mode<br />

27<br />

26<br />

..............<br />

25<br />

24<br />

23<br />

7<br />

Nomenclature<br />

1, 2 Supply voltage (24 V)<br />

3 Technical earthing<br />

Connection for Wall Module T7770C<br />

23 to 27<br />

Triac Output for External Valve,<br />

Fan or Reheat Coils<br />

3 24 V<br />

5 Position signal OPEN<br />

6 Position signal CLOSED<br />

Lon-Bus<br />

19, 20 E-Bus connection<br />

Function of the other clamps and more technical details<br />

see Honeywell documentation. Clamp 13 to 16 and<br />

21 to 22 not in use.<br />

Wiring<br />

Wiring for the 24 VAC supply voltage must be performed<br />

by the customer. Safety transformers are to be used<br />

(EN 60742).<br />

If several controllers are connected to one 24 VAC grid,<br />

it is important to ensure that a common neutral or ground<br />

wire is used.<br />

The earth terminals (terminal 32) of each controller in the<br />

system must be connected to a high-value earth junction<br />

box. Lines should be as short as possible and wires<br />

should be at least 1-2 mm wide.


Honeywell Volume Flow Controller W7751F2003<br />

Commissioning Commissioning<br />

Check wiring<br />

Activate supply voltage<br />

Switch on control and air conditioning systems<br />

As a rule, commissioning of control systems is<br />

carried out by Honeywell technicians.<br />

For information on commissioning<br />

(LON networks, communication software etc.)<br />

consult the relevant Honeywell product<br />

documentation.<br />

8<br />

A function test must be carried out with the other components<br />

connected and with communication functioning.<br />

In many cases, incorrect wiring can give rise to system<br />

malfunctions. Therefore, a careful check should be carried<br />

out to ensure that all connections are correct.<br />

If the actuator drive is disengaged and the damper is<br />

opened manually, the voltage will increase. This can be<br />

confirmed with the aid of a connected laptop computer<br />

or in the central control unit. After being adjusted manually,<br />

the actuator must be moved back to its original<br />

position.<br />

Volume flow control is checked by comparing preset<br />

values in the software with the actual values on the<br />

display.<br />

Ordering Example for a Replacement Controller Replacement Controllers<br />

When replacing faulty controllers, controllers calibrated<br />

to the terminal unit type and size must be used. Since<br />

every LON controller has its own LON ID number, binding<br />

must first be performed (network replace) in order to<br />

restore the function.<br />

The following must be specified when ordering a replacement<br />

controller:<br />

• Unit type and size; for TVM units, indicate whether the<br />

unit is a cold or warm duct controller<br />

• Operating mode<br />

• V .<br />

min and V .<br />

Honeywell volume flow controller W7751F2003,<br />

calibrated for TVR / 125 / E0 - 45 - 100 l/s<br />

max<br />

• Commissioning no. and delivery date of defects


Honeywell Actuator ML6174E2008<br />

1<br />

Contents<br />

Subject Page<br />

ML6174E2008 2<br />

Design changes reserved · All rights reserved · ® Gebrüder Trox GmbH (12/2001) · Leaflet No. E016MS7


ML6174E2008<br />

1 Shaft clamp<br />

2 Rotation angle limiter<br />

3 Gear release button<br />

4 Connecting cable<br />

1<br />

2<br />

3<br />

4<br />

Honeywell Actuator ML6174E2008<br />

2<br />

Actuator ML6174E2008<br />

Application<br />

Maintenance free damper actuator for VAV terminal units<br />

with Honeywell volume flow controllers.<br />

Functions<br />

The actuator is factory mounted and fixed to the damper<br />

shaft. The unit is factory-wired to the volume flow controller.<br />

The integral rotation angle limiter is set, and the<br />

actuator is overload protected. When the end stops are<br />

reached, the actuator stops automatically. No limit switches<br />

are required.<br />

The direction of rotation can be set via a switch (factory<br />

set).<br />

For manual adjustment, the gears can be disengaged<br />

via a button.


Sauter RLE 150<br />

1<br />

Contents<br />

Subject Page<br />

Area of Application 2<br />

Description of Function 3<br />

Volume Flow Control 4<br />

Volume Flow Adjustment on Site 5<br />

Volume Flow Ranges, Single-Duct Units 6<br />

Single-Duct Units 7<br />

Dual Duct Units TVM 8<br />

Terminal Connections 9<br />

Room Temperature Control 10<br />

Override Control 10<br />

Supply/Extract Air Slave Control 11<br />

Volume Flow Control of TVM Units 12<br />

Function Test, Commissioning 13<br />

Design changes reserved · All rights reserved · ® Gebrüder Trox GmbH (12/2001) · Leaflet No. E016MB7


RLE 150 (Master)<br />

RLE 150 (Slave)<br />

1 Tube connections for transducer<br />

2 V · min adjustment knob<br />

3 V · max adjustment knob<br />

4 Span adjustment knob<br />

5 Connection terminals<br />

6 �V · adjustment knob<br />

Type Range<br />

2<br />

4<br />

6<br />

4<br />

VVS Unit<br />

TVZ, TVA, TVR,<br />

TVRK, TVS, TVM cold<br />

TVM warm<br />

TVJ<br />

1<br />

1<br />

Master Slave<br />

RLE 150 F003 RLE 150 F013<br />

RLE 150 F002<br />

RLE 150 F002<br />

3<br />

5<br />

5<br />

RLE 150 F012<br />

2<br />

Area of Application<br />

The electronic Sauter RLE 150 volume flow controller has<br />

been designed for volume flow control in VAV systems. In<br />

total the control for 1 room comprises 3 controllers.<br />

Master Controller<br />

For the variable volume flow control with V .<br />

min and V .<br />

max<br />

serves the master controller in connection with a suitable<br />

room temperature controller or a DDC substation.<br />

For this purpose the output signal of the controller is<br />

switched onto the RLE 150 as command variable. The<br />

volume flow control can be overrided with switches<br />

(override control closed and V .<br />

max).<br />

Slave Controller<br />

Sauter RLE 150<br />

The slave controller controls a volume flow as slave<br />

control loop of another volume flow (master). The most<br />

frequent application is the supply air/extract air slave<br />

control. A desired volume flow differential between supply<br />

air and extract air is adjusted at the slave controller.<br />

As second command variable the output signal of a room<br />

pressure controller can be switched on. Also here, override<br />

controls are possible.<br />

Room Pressure Controller<br />

The control of extremely dense rooms is not satisfactorily<br />

solved with the supply air / extract air slave control. With<br />

the room pressure controller the differential pressure as<br />

to a reference room is measured and controlled. The<br />

function is explained in detail in a separate Trox product<br />

information.<br />

Static Measuring Principle<br />

The actual value of the volume flow is at both volume<br />

flow controllers available as linear, electric standard<br />

signal and can be switched to a DDC or used for indication.<br />

The voltage range for actual and set value is<br />

0 to 10 VDC.<br />

The volume flow is measured using a membrane pressure<br />

transducer. Therefore the RLE ... is suitable for the<br />

control of extract air with contaminants and/or which is<br />

dust-loden. Terminal units with painted finish or made of<br />

plastic should be considered in such situations.<br />

IMPORTANT<br />

In critical cases, a material test should be carried out<br />

on the terminal unit and membrane pressure transducer,<br />

to prove suitability for chemicals and concentrations<br />

concerned.


Sauter RLE 150<br />

Characteristic of the Actual Value Signal<br />

V · nom<br />

Volume flow<br />

V · min unit<br />

0<br />

V · actual = V · nom .<br />

U xi<br />

10<br />

0 Actual value signal U xi<br />

10 VDC<br />

Characteristic of Volume Flow Variable, Master<br />

V · nom<br />

Volume flow<br />

0<br />

Characteristic of Set Point Adjustment, Slave<br />

V · nomS<br />

Volume flow<br />

slave<br />

0<br />

V · set = V · nom .<br />

V · min<br />

U w1<br />

10<br />

0 Control signal U w1<br />

V · M �V ·<br />

V 100 · V<br />

nomM<br />

· S = + . V · nomS<br />

�V ·<br />

0 Volume flow master<br />

V · max<br />

Adjustment<br />

range<br />

10 VDC<br />

V · nomM<br />

3<br />

Description of Function<br />

Volume Flow Measuring<br />

The volume flow is measured on the static differential<br />

pressure principle. The effective pressure �p w of the differential<br />

pressure sensor in the terminal unit allows the<br />

detection of a partial volume flow passing trough the<br />

transducer. This partial volume flow which is proportional<br />

to the total volume flow is measured, temperature compensated<br />

and linearised with two temperature-dependent<br />

resistors.<br />

The measurement range is set to suit the unit size during<br />

factory calibration, so that 10 VDC always corresponds<br />

to the unit nominal volume flow rate (V · nom). The signal is<br />

processed by a microprocessor. The actual volume flow<br />

is available as a linear voltage signalU xi.<br />

The required volume flow is set by the room temperature<br />

controller via the control signal within the limits of V .<br />

min<br />

and V .<br />

max.<br />

0 to 10 VDC is the voltage range for signal transmission.<br />

This facilitates an adjustment to the working ranges of<br />

different room temperature controllers or DDC outstations.<br />

The set volume flow can be overridden using<br />

switched controls. The RLE 150 determines the required<br />

volume flow in accordance with the characteristic shown<br />

and compares this with the actual value.<br />

The damper actuator is controlled according to the deviation.<br />

The Sauter volume flow controller RLE 150 can<br />

only operate with the matched 3-point actuators.<br />

Gravity Dependent<br />

Because of the weight of the membrane the positioning<br />

of the RLE 150 affects the measured signal. The RLE 150<br />

is normally calibrated for a vertical position of the membrane,<br />

i.e. pressure tube connections above or below<br />

horizontal plane. Other installation positions must be<br />

specified on order.<br />

Master Controller<br />

The room temperature controller determines the set volume<br />

flow using the 0 to 10 VDC command variable within<br />

the limits of V · min and V · max. The slope (incline) of the<br />

characteristic remains always unchanged. The voltage is<br />

limited as to highest and lowest values. The limited voltage<br />

is connected to terminal w2. Slave Controller<br />

Usually, the actual value signal of the supply air is given<br />

as command variable onto the controller. The set volume<br />

flow is determined under consideration of the differential<br />

control. The set value can be further adjusted by the<br />

second command variable input. This possibility is used<br />

for room pressure controls in cascade with volume flow<br />

control.


Pressure Independent Control Characteristic<br />

Pressure differential<br />

1000<br />

Pa<br />

800<br />

600<br />

400<br />

200<br />

% of V<br />

Volume flow<br />

· 20 40 60 80 100<br />

nom<br />

V · max<br />

V · max set value = V · nom<br />

V · max<br />

U w2 upper limit = V · nom<br />

V · min set value = V· min<br />

V · nom<br />

. 100 %<br />

. 10 VDC<br />

. 100 %<br />

V · maxM - V· maxS = V · minM - V · minS<br />

�V · set value =<br />

V · min<br />

�V ·<br />

V · S<br />

V · nomS<br />

V · min<br />

U w2 lower limit = V · nom<br />

�V ·<br />

V · M<br />

V · nomM<br />

V · max<br />

. 10 VDC<br />

. 100<br />

4<br />

Volume Flow Control<br />

The volume flow controller works independently of the<br />

duct pressure, i.e. pressure fluctuations cause no changes<br />

to volume flow.<br />

To prevent the volume flow control becoming unstable, a<br />

dead zone is allowed within which the damper does not<br />

move. This dead zone and the accuracy of site measurements<br />

lead to volume flow deviation �V · shown opposite.<br />

If the conditions given in the sales brochure (static minimum<br />

pressure differential, inlet flow conditions etc.) are<br />

not observed, greater deviations must be expected.<br />

V · max Setting<br />

The V · max value corresponds to the volume flow which is<br />

set with a 10 VDC control signal or V · max override control.<br />

The setting range is from 0 to 100 %. The percentage<br />

figures relate to V · nom.<br />

Control signals > U w2 upper limit doesn’t change the flow<br />

rate.<br />

V · min Setting<br />

Sauter RLE 150<br />

The V · min value corresponds to the volume flow which is<br />

set with a 0 VDC control signal or V · min override control.<br />

V · min may be set between 0 and 100 % of V · nom. The percentage<br />

figures relate to the V · nom volume flow setting.<br />

If V · min = 0 %, the damper will be moved to the CLOSED<br />

position (leakage depends on the type of unit) with a<br />

control signal of 0 VDC (alternatively 2 VDC).<br />

Slave Control<br />

The RLE 150 only provides for ratio control, i.e. the<br />

supply and extract air must be in the same ratio<br />

under all operating conditions.<br />

The volume flow ratio is set using the �V · adjustment<br />

knob on the slave controller, according to the formula<br />

shown opposite. Where the volume flows are the same<br />

and the units of equal size, the setting will be 0 %. The<br />

setting range is from – 10 to + 10 %.


Sauter RLE 150<br />

Adjustment Knobs RLE 150 (Master)<br />

Adjustment Knobs RLE 150 (Slave)<br />

Formula for V · max<br />

U xi = V· max<br />

V · nom<br />

1 2<br />

3<br />

6<br />

3<br />

1 V · min Adjustment Knob<br />

2 V · max Adjustment Knob<br />

3 Span Adjustment Knob<br />

4 Zero Potentiometer<br />

5 NZ Potentiometer (Neutral Zone)<br />

6 �V · Adjustment Knob<br />

IMPORTANT<br />

The Span Adjustment Knob must<br />

not be adjusted.<br />

. 10 V<br />

Uxi = V· min<br />

V · nom<br />

Formula for Volume Flow Difference<br />

U xi = U w2 +<br />

V · S<br />

V · nomS<br />

5<br />

4<br />

5<br />

4<br />

Formula for V · min<br />

- V· M<br />

V · nomM<br />

. 10 V<br />

. 10 V<br />

5<br />

Volume Flow Adjustment on Site<br />

The set volume flow limit values can be adjusted using<br />

the V · min and V · max adjustment knobs on the RLE 150.<br />

Calculations are based on the formulae shown on<br />

page 4.<br />

Adjustment Rules<br />

• The adjustment knobs for V · min and V · max can within<br />

the indicated limits be adjusted independently from<br />

each other. An adjustment of less than 10 % cannot<br />

be recommended, because of the reduced control<br />

accuracy.<br />

• If the V · min adjustment knob is set higher than V · max,<br />

then the maximum volume flow V · max is constantly<br />

controlled.<br />

• A constant volume flow (fixed value) is adjusted using<br />

the V · min adjustment knob; the V · max adjustment knob<br />

must be set at 100 %.<br />

Calculating the Volume Flow Using<br />

the Actual Value Signal Uxi The accuracy of the setting can be increased if the<br />

actual value signal Uxi is also measured with the system<br />

switched on.<br />

As a rule, the controller must have been connected to the<br />

supply voltage for at least 15 minutes before measurements<br />

begin.<br />

• Disconnect all the wires from the terminal block,<br />

except for terminals 1 and 2.<br />

• Calculate the required value for Uxi at V · max.<br />

• Insert a link between terminals 8 and 9.<br />

• Move the V · max adjustment knob until the voltage Uxi corresponds to the calculated value (wait approx.<br />

2 minutes after the adjustment, then read the voltage).<br />

• Remove the link between 8 and 9.<br />

• Calculate the voltage for Uxi at V · min.<br />

• Proceed with the V · min setting as for V · max.<br />

• Replace the original wiring.<br />

• Slave controller: Connect control signal, measure and<br />

calculate the set value Uxi and then adjust �V · .<br />

Zero Point Adjustment<br />

If necessary, the transducer can be adjusted to another<br />

installation situation by customer using the zero-point<br />

potentiometer. For measurement the supply voltage at<br />

the RLE must be alive at least for 15 minutes. The readjustment<br />

of the zero point is necessary in any case, if<br />

the U xi signal is measured at removed measuring tubes<br />

>1 VDC using the following procedure:<br />

• Remove measuring hoses (tubes).<br />

• Adjust zero-point potentiometer until the actual value<br />

output signal U xi is between 0.1 and 0.5 V.<br />

• Reconnect tubing.


Volume Flow Ranges TVZ, TVA, TVR, TVRK, TVS<br />

Size<br />

Volume Flow Ranges TVJ/TVT<br />

B x H<br />

mm<br />

V · min unit<br />

l/s m 3 /h<br />

V · V min unit<br />

· 1) 1)<br />

nom<br />

100 2) 15 95 54 342<br />

125 20 150 72 540<br />

160 35 250 126 900<br />

200 50 405 180 1458<br />

250 80 615 288 2214<br />

315 130 1025 468 3690<br />

400 215 1680 774 6048<br />

V · min unit 1)<br />

l/s m 3 /h<br />

to V · nom<br />

200 x 100 25 215 90 774<br />

300 x 100 40 320 144 1152<br />

400 x 100 50 425 180 1530<br />

500 x 100 65 535 234 1926<br />

600 x 100 70 650 252 2340<br />

200 x 200 50 415 180 1494<br />

300 x 200 70 620 525 2232<br />

400 x 200 100 825 360 2970<br />

500 x 200 120 1035 432 3726<br />

600 x 200 150 1250 540 4500<br />

700 x 200 165 1450 594 5220<br />

800 x 200 200 1650 720 5940<br />

300 x 300 110 920 396 3312<br />

400 x 300 150 1230 540 4428<br />

500 x 300 185 1535 666 5526<br />

600 x 300 240 1850 864 6660<br />

700 x 300 260 2150 936 7740<br />

800 x 300 315 2450 1134 8820<br />

900 x 300 330 2770 1188 9972<br />

1000 x 300 390 3100 1404 11160<br />

400 x 400 205 1630 738 5868<br />

500 x 400 255 2040 918 7344<br />

600 x 400 315 2450 1134 8820<br />

700 x 400 355 2850 1278 10260<br />

800 x 400 420 3250 1512 11700<br />

900 x 400 455 3670 1638 13212<br />

1000 x 400 520 4100 1872 14760<br />

500 x 500 310 2540 1116 9144<br />

600 x 500 370 3050 1332 10980<br />

700 x 500 430 3550 1548 12780<br />

800 x 500 495 4050 1782 14580<br />

900 x 500 555 4570 1998 16452<br />

1000 x 500 620 5100 2232 18360<br />

600 x 600 455 3650 1638 13140<br />

700 x 600 530 4250 1908 15300<br />

800 x 600 605 4850 2178 17460<br />

900 x 600 680 5500 2448 19800<br />

1000 x 600 755 6100 2718 21960<br />

700 x 700 605 4950 2178 17820<br />

800 x 700 690 5700 2484 20520<br />

900 x 700 780 6400 2808 23040<br />

1000 x 700 865 7100 3114 25560<br />

800 x 800 805 6500 2898 23400<br />

900 x 800 905 7300 3258 26280<br />

1000 x 800 1005 8100 3618 29160<br />

900 x 900 1030 8200 3708 29520<br />

1000 x 900 1145 9100 4122 32760<br />

1000 x 1000 1285 10100 4626 36360<br />

1) V · min = 0 is also possible 2) Only TVR<br />

V · nom<br />

6<br />

V · min unit 1)<br />

Sauter RLE 150<br />

to V · nom


Sauter RLE 150<br />

Volume Flow Control Tolerances 1)<br />

Volume flow<br />

in % of V · nom<br />

100 5 5<br />

80 5 5<br />

60 7 7<br />

40 7 8<br />

20 9 14<br />

15 20 >14<br />

20 >14<br />

1) Percentage figures based on V · actual<br />

∆V · in ± %<br />

TVZ, TVA, TVR, TVRK, TVS TVJ/TVT<br />

7<br />

Single-Duct Units<br />

Order Code / Examples<br />

The available options are given in the current price list.<br />

Volume Flow Parameters<br />

Operating<br />

mode<br />

E<br />

M<br />

S<br />

F<br />

Factory Setting<br />

V · min<br />

V · max<br />

TVZ-R / 160 / 00 / CB1 / M - 50 - 240 l/s<br />

TVA-R / 160 / 00 / CC1 / S - 50 - 240 l/s<br />

TVR / 160 / 00 / CB1 / F - 200 l/s<br />

TVJ-R / 400 x 107 / 00 / CE1 / M - 200 - 400 l/s<br />

TVJ-R / 400 x 107 / 00 / CF1 / S - 200 - 400 l/s<br />

Operating mode<br />

E Individual<br />

M Master<br />

S Slave<br />

F Fixed<br />

V · min adjustment knob set at required V · min<br />

V · max adjustment knob set at required V · max<br />

�V · adjustment knob set at volume flow<br />

difference to master<br />

V · min adjustment knob set at required<br />

constant volume flow<br />

V · max adjustment knob set at 100 %


Volume Flow Range TVM<br />

Size<br />

Volume Flow Control Tolerances TVM 1)<br />

Volume flow<br />

in % of V · nom<br />

1) Percentage figures based on ‡ actual<br />

l/s m 3 /h<br />

V · min-unit V · V min-unit<br />

· nom<br />

TVM cold<br />

∆V · in ± %<br />

100 5 7<br />

80 5 10<br />

60 5 12<br />

40 7 15<br />

30 8 17<br />

20 9 -<br />

15 20 -<br />

20 -<br />

V · nom<br />

125 45 150 162 540<br />

160 75 250 270 900<br />

200 120 405 432 1458<br />

250 185 615 666 2214<br />

TVM total<br />

8<br />

Dual Duct Units TVM<br />

Order Code / Examples<br />

The available options are given in the current price list.<br />

TVM-R / 160 / CD3 / E - 120 - 200 l/s<br />

TVM-R / 160 / CD3 / F - 150 l/s<br />

Volume Flow Parameters<br />

Operating<br />

Mode<br />

E<br />

M<br />

F<br />

Operating Mode<br />

E Individual<br />

M Master<br />

F Fixed<br />

Factory Setting<br />

.<br />

Vwarm .<br />

Vcold . .<br />

Vwarm = Vcold Cold Duct Controller Warm Duct Controller<br />

V · min adjustment<br />

knob set at 0 %<br />

V · max adjustment<br />

knob set at required<br />

volume flow (V · cold )<br />

Sauter RLE 150<br />

V · min adjustment<br />

knob set at required<br />

volume flow V · warm<br />

V · max adjustment<br />

knob set at 100 %


Sauter RLE 150<br />

Terminal Connections Nomenclature<br />

Actuator S2<br />

(Shut<br />

RLE 150, Master<br />

off)<br />

Actuator S2<br />

(Shut<br />

RLE 150, Slave off)<br />

IMPORTANT<br />

The examples illustrated show the most common<br />

arrangements for volume flow control. The Sauter<br />

specifications must be observed in the overall control<br />

system design, selection of the other control components<br />

and wire sizing. Details of other circuits are<br />

available from Sauter.<br />

9<br />

Master and Slave Controller<br />

1, 7, 11, 13, 15 N : Ground, neutral<br />

2 L1 : Supply voltage 24 VAC<br />

3, 4, 5 : Connection actuator (24 VAC)<br />

6 : Input override control CLOSED<br />

12 : Output actual volume flow Uxi (0 to 10 VDC)<br />

Master<br />

8 : Input override control V · 9<br />

max<br />

L1 : Auxiliary voltage for override<br />

control<br />

10 : Input set volume flow Uw1 (0 to 10 VDC)<br />

14 : Output set volume flow Uw2 (0 to 10 VDC)<br />

Slave<br />

8 : Input set value<br />

(Room pressure) w 3, 0 to 10 VDC<br />

9 N : Ground, neutral<br />

10 : Input set value (Master) w 2,<br />

0 to 10 VDC<br />

Wiring<br />

Actuator and volume flow controller are factory wired.<br />

The 24 VAC voltage supply must be wired up by the<br />

customer. Safety transformers must be used (EN 60742).<br />

If several volume flow controllers are connected to one<br />

24 V network, it is important to ensure that a common<br />

neutral or ground wire is used and that this is not connected<br />

to other wires.


Room Temperature Control<br />

Override Control<br />

24 VAC<br />

24 VAC<br />

RT Controller<br />

RLE 150, Master<br />

Operating Mode E, M<br />

RLE 150, Parallel Controller, (Master)<br />

RT Controller<br />

Operating Mode E, M<br />

S2<br />

S1<br />

RLE 150, Master<br />

Operating Mode E, M<br />

10<br />

Room Temperature Control<br />

Sauter RLE 150<br />

A suitable room temperature controller or a DDC substation<br />

with 0 - 10 VDC output is connected at least twinwired<br />

according to wiring diagram (terminal 1 and 10).<br />

At common voltage supply with 24 VAC it has to be considered<br />

that terminal 1 at RLE 150 is also ground for the<br />

command signal.<br />

Parallel Control<br />

Several volume flow controllers (supply or extract air) can<br />

be operated in parallel by one room temperature controller.<br />

If the terminal units are the same size and the V .<br />

min<br />

and V .<br />

max adjustment knobs are set at the same values,<br />

all the units control the same volume flow. If the settings<br />

differ, the units control an equal percentage.<br />

Override Control<br />

The variable volume flow control can be overridden using<br />

zero-potential switch contacts supplied by the customer.<br />

This override control can be used with any controller,<br />

either separately or centrally, for individual rooms or parts<br />

of the system. Several volume flow controllers can also<br />

be actuated using one switch, if a joint ground wire is<br />

available and the control signal is connected in parallel.<br />

S1<br />

Switch<br />

S2<br />

Function<br />

Open<br />

Closed<br />

Open<br />

Open<br />

Control Mode<br />

V .<br />

max<br />

Open Closed Closed<br />

Closed Closed Closed


Sauter RLE 150<br />

Slave Control<br />

24 VAC<br />

U xi<br />

RT Controller<br />

Switching V · min , V· max , Closed<br />

RLE 150, Master<br />

Operating Mode M<br />

U w2<br />

RLE 150, Slave<br />

Operating Mode S<br />

S2<br />

S1<br />

RLE 150, Master<br />

Operating Mode E, M<br />

11<br />

Supply/Extract Air Slave Control (Master/Slave)<br />

With parallel control of the units, an undesirable difference<br />

between supply and extract air can occur if the<br />

pressure in one duct is to low. It is therefore preferable to<br />

use the volume flow actual value, usually of the supply<br />

air, as the command signal for the slave volume flow<br />

controller (master terminal L1 on slave terminal 10).<br />

Supply/Extract Air Slave Control (Using Uw2) Alternatively to supply/extract air slave control the limited<br />

set value signal Uw2 (master controller terminal 14 on<br />

slave controller terminal 10) can command the slave controller.<br />

The slave controller then controls to the set value<br />

of the master controller independent of whether this<br />

value is actually reached at the master controller.<br />

Any override controls (window switch) must be connected<br />

to both controllers.<br />

Switching V · min, V · max, Closed<br />

By means of simple switches as shown in the wiring<br />

diagram, it is possible to change over to set values for<br />

the volume flow. A command signal is not required.<br />

S1<br />

Switch<br />

S2<br />

Function<br />

Open<br />

Closed<br />

Open<br />

Open<br />

Control Mode<br />

V .<br />

max<br />

Open Closed Closed<br />

Closed Closed Closed


Supply/Extract Air Slave Control<br />

with Dual Duct Unit TVM<br />

24 VAC<br />

RT Controller<br />

Cold Controller RLE 150, (Master)<br />

Warm Controller RLE 150, (Master)<br />

Operating Mode E, M, F<br />

Extract Air Controller RLE 150, (Slave)<br />

Operating Mode S<br />

12<br />

Volume Flow Control of TVM Units<br />

Sauter RLE 150<br />

The two controllers fitted to the dual duct unit TVM (cold,<br />

warm) must be wired by the customer as shown in the<br />

circuit diagram opposite (including the 24 VAC crossconnection).<br />

The room temperature controller provides the cold duct<br />

controller with its set point signal.<br />

In most cases, the proportion of warm air is increased<br />

from 0 to the required V · warm warm as a maximum set<br />

point. The warm duct controller (V · total is measured) is<br />

therefore set as a constant value controller and does not<br />

require a command signal.<br />

For a more detailed functional description, refer to the<br />

TVM literature.<br />

Supply/Extract Air Slave Control<br />

for Dual Duct Unit TVM<br />

The actual value output signal Uxi of the warm duct controller<br />

is proportional to the total volume flow V · total. It can<br />

therefore be used as the command signal for a slave<br />

controller.


Sauter RLE 150<br />

Function Test<br />

Fault Finding Check<br />

Check wiring<br />

Connect supply voltage<br />

Connect air supply systems<br />

Measure the set- and actual value (x i, w 2)<br />

Wiring correct?<br />

Record actual value signal x i<br />

for override control V · min<br />

Record actual value signal x i<br />

for override control V · max<br />

yes<br />

Supply voltage within<br />

the Sauter specifications?<br />

yes<br />

Actual value signal U xi<br />

consistent?<br />

yes<br />

Actuator opens and closes?<br />

yes<br />

Volume flow V · min ?<br />

yes<br />

Volume flow V · max ?<br />

yes<br />

Set volume flow signal?<br />

yes<br />

Override controls?<br />

no<br />

no<br />

no<br />

no<br />

no<br />

no<br />

no<br />

no<br />

Order Example Spare Controller<br />

Correct wiring error<br />

Check Transformer<br />

etc.<br />

Controller faulty<br />

Actuator rotation correct?<br />

Damper obstructed?<br />

Duct pressure<br />

sufficient?<br />

Measuring tubing to<br />

the transmitter<br />

demaged?<br />

Check room<br />

temperature controller<br />

Check window<br />

switch, relays, etc.<br />

Sauter RLE 150 F003<br />

preset for TVR / 125 / M - 140 - 300 m 3 /h<br />

13<br />

Commissioning<br />

A function test for commissioning can be carried out by<br />

measuring the signals U xi and U w2. If U xi and U w2 are<br />

identical, the required volume flow is reached. If the voltages<br />

deviate, the control procedure has not yet been<br />

finished.<br />

If the commissioning procedure is to include verification<br />

of the set volume flows V · min and V · max, these must be set<br />

as described below. The actual value signal U xi is measured<br />

in each operating situation and the volume flow is<br />

then calculated using the formulae given on page 4.<br />

In many cases, incorrect wiring can be the cause of the<br />

faults. Therefore a careful check should be carried out to<br />

ensure that all connections are correct. All wires except<br />

terminals 1 and 2 should be disconnected before the following<br />

checks are made.<br />

If the actuator drive is disengaged and the damper<br />

openedmanually, the voltage U xi must increase.<br />

Connect the actuator (terminal 3, 4 and 5), link terminals<br />

6 and 7: The actuator must close.<br />

Change link terminal 6 to terminal 8 and 9: The actuator<br />

must open again.<br />

Without link: The RLE 150 controls V · min. If U w2 = U xi, calculate<br />

the volume flow and compare it with label.<br />

Link terminals 8 and 9: Repeat measurement for V · max, as<br />

described above.<br />

Remove link and apply the command signal w 1. Calculate<br />

the set volume flow and compare it with the actual<br />

volume flow.<br />

Apply override controls and test the desired functions in<br />

sequence.<br />

Replacement Controller<br />

When replacing faulty controllers, calibrated controllers<br />

set for the terminal unit and size must be used. Uncalibrated<br />

controllers can only be used as a temporary solution.<br />

The following must be specified when ordering a replacement<br />

controller:<br />

• Terminal unit type and size and in the case of TVM<br />

units, warm duct or cold duct controller<br />

• Operating mode<br />

• V · min and V · max


Sauter RLE, Room Pressure Control<br />

1<br />

Contents<br />

Subject Page<br />

Area of Application 2<br />

Description of Function 3<br />

Room Pressure Control 4<br />

Volume Flow Adjustment on Site 5<br />

Single-Duct Units 6<br />

Terminal Connections 7<br />

Room Temperature Control 8<br />

Function Test, Commissioning 9<br />

Design changes reserved · All rights reserved · ® Gebrüder Trox GmbH (12/2001) · Leaflet No. E016MM3


RLE 150 F100, Room Pressure Controller<br />

3 4<br />

2<br />

RLE 150 (Auxiliary Controller)<br />

1 Tube connections for transducer<br />

2 Span �p adjustment knob<br />

3 Xs adjustment knob<br />

4 Xp adjustment knob<br />

5 Connection terminals<br />

6 �V · adjustment knob<br />

Type Range<br />

6<br />

2<br />

VVS Unit<br />

TVZ, TVA, TVR<br />

TVJ<br />

1<br />

1<br />

Auxiliary<br />

Controller<br />

RLE 150 F013<br />

RLE 150 F012<br />

5<br />

5<br />

RLE 150 F100<br />

Sauter RLE, Room Pressure Control<br />

Room Pressure<br />

Controller<br />

2<br />

Area of Application<br />

The pneumatic Sauter RLE 150 room pressure controller<br />

has been designed for the high or low pressure control of<br />

dense rooms. The room pressure is controlled using the<br />

master-and-slave system (cascade-controlled) by a<br />

Sauter RLE 150 F012/F013 flow volume controller, which<br />

controls the flow volume control unit in supply air or<br />

extract air. In total the control for 1 room comprises<br />

3 controllers.<br />

Room Pressure Controller<br />

The control of extremely dense rooms is not satisfactorily<br />

solved with the supply/extract air slave control, as measuring<br />

and control tolerances as well as the unknown<br />

density degree of the room may lead to undesirably high<br />

room pressures or to room pressures with wrong signs.<br />

With the room pressure controller the differential pressure<br />

as to a reference room is measured and controlled. The<br />

set volume flow of the slave controller is within a limited<br />

range in addition to the master controller influenced by<br />

the room pressure controller.<br />

Master Controller<br />

For the variable volume flow control with V · min and V · max<br />

limitation serves the master controller in connection with<br />

a suitable room temperature controller.<br />

Slave Controller<br />

The slave controller controls a volume flow as cascade<br />

control loop of another volume flow (master). As a<br />

second command variable the output signal of the room<br />

pressure controller is switched on (activated).<br />

Master and slave controller are explained in detail in a<br />

separate Trox product information (EØ16MB7).<br />

The actual values of room pressure and volume flows are<br />

available as linear electric standard signals and can be<br />

used for indication. The voltage range for actual and set<br />

value is 0 to 10 VDC.<br />

Static Measuring Principle<br />

The volume flow is measured using a membrane pressure<br />

transducer. Therefore the RLE ... is suitable for the<br />

control of extract air with contaminants and/or which is<br />

dust-loden. Terminal units with painted finish or made of<br />

plastic should be considered in such situations.<br />

IMPORTANT<br />

In critical cases, a material test should be carried out<br />

on the terminal unit and membrane pressure transducer,<br />

to prove suitability for chemicals and concentrations<br />

concerned.


Sauter RLE, Room Pressure Control<br />

Characteristic of the Actual Value Signal<br />

Room Pressure Controller<br />

Room pressure<br />

difference<br />

0<br />

0 5<br />

Actual value signal U xi<br />

Characteristic of the Actual Value Signal<br />

Auxiliary Controller<br />

‡ nom<br />

Volume flow<br />

Auxiliary Controller<br />

‡ min unit<br />

0 0 Actual value signal Uxi<br />

Characteristic of Set Point Adjustment<br />

Auxiliary Controller<br />

‡ nomS<br />

Volume flow<br />

Auxiliary Controller<br />

+20<br />

(+50)<br />

-20<br />

(-50)<br />

0<br />

‡ actual = ‡ nom . U xi<br />

10<br />

‡M Uw2-5<br />

‡nomM 50<br />

‡ S =( + ) .‡ nomS<br />

�‡<br />

0 Volume Flow Master<br />

10 VDC<br />

Adjustment<br />

range<br />

10 VDC<br />

‡ nomM<br />

3<br />

Description of Function<br />

Room Pressure Controller<br />

The room pressure1) is measured on the static differential<br />

pressure principle. One measuring point each for static<br />

pressure is provided in the room to be controlled and in<br />

the reference room. If several rooms are switched one<br />

behind the other in pressure cascade, a neutral reference<br />

pressure is recommended, i.e. corridor, which must be<br />

free from wind influence and other pressure fluctuations.<br />

These pressures (room pressure differentials) are measured<br />

by a membrane pressure transducer. The actual<br />

room pressure value is available as voltage signal Uxi The<br />

set room pressure is adjusted or predetermined by the<br />

command variable as 0 to 10 VDC signal. The controller<br />

compares the required room pressure with the actual<br />

value. Corresponding to the control deviation the influence<br />

onto the slave controller is changed. The room<br />

pressure control shows PI behaviour.<br />

Volume Flow Controller<br />

The volume flow is measured on the static differential<br />

pressure principle. For further explanations please refer<br />

to the separate Trox product information EØ16MB7,<br />

page 3.<br />

Usually the actual value signal of the supply air is is given<br />

onto the controller as command variable and the set<br />

volume flow is determined under consideration of the differential<br />

control. The second command variable input<br />

(room pressure controller) results in a further adjustment<br />

of the set value. The controller determines the required<br />

volume flow according to the characteristics as shown<br />

and compares this with the actual value. The damper<br />

actuator is controlled according to the control deviation.<br />

The optimum control parameters are adjusted and sealed<br />

in the factory. To the RLE controllers belong 3-point actuators.<br />

Gravity Dependent<br />

Because of the weight of the membrane the positioning<br />

of the RLE affects the measured signal. The RLE is normally<br />

calibrated for a vertical position of the membrane,<br />

i.e. pressure tube connections above or below horizontal<br />

plane. Other installation positions must be specified on<br />

order.<br />

1) For simplification the room pressure differential is referred to as<br />

room pressure in this leaflet.


Control Behaviour after Alteration of Disturbance<br />

Pressure Independent Control Characteristic<br />

Pressure<br />

differential<br />

Room pressure<br />

difference<br />

0<br />

1000<br />

Pa<br />

800<br />

600<br />

400<br />

200<br />

Door open<br />

‡ min<br />

Time<br />

20 40 60 80 100<br />

% of ‡ nom<br />

Volume flow<br />

Formula for Room Pressure Control<br />

�p set value =<br />

Door closed<br />

�‡ �‡<br />

�p<br />

�p nom<br />

‡ max<br />

. 100 %<br />

Sauter RLE, Room Pressure Control<br />

4<br />

Room Pressure Control<br />

As the room pressure controller works with PI characteristic<br />

(proportional-integral) the required room pressure is<br />

theoretically always obtained. Deviations are only given<br />

by the measuring tolerance of the room pressure transducer<br />

(component in RLE). It is, however, a prerequisite<br />

that the room has the density required, in order to<br />

achieve the required room pressure from the volume flow<br />

differential between between supply air and extract air.<br />

The room pressure height, which results from alterations<br />

of disturbances (door closed) as well as the setting<br />

(stabilization) time required depends i. a. on the duct<br />

pressures in the supply and extract air system, room<br />

density and air change (rate) (volume flow/contents).<br />

Volume Flow Control<br />

The volume flow controller works independently of the<br />

duct pressure, i.e. pressure fluctuations cause no<br />

changes to volume flow.<br />

To prevent the volume flow control becoming unstable, a<br />

dead zone is allowed within which the damper does not<br />

move. This dead zone and the accuracy of site measurements<br />

lead to volume flow deviation �V · shown opposite.<br />

If the conditions given in the sales brochure (static minimum<br />

pressure differential, inlet flow conditions etc.) are<br />

not observed, greater deviations must be expected.<br />

Room Pressure Adjustment<br />

The required room pressure is adjusted at the Xs adjustment<br />

knob. The adjustment range reaches from –20 to<br />

+20 Pa and/or –50 to +50 Pa. If the room pressure is<br />

variable, e.g. changeover high/low pressure, the adjustment<br />

knob must be set to left-hand stop (–20 Pa / –50<br />

Pa). If necessary, the lower pressure value can be limited.<br />

Adjustment of Volume Flow Differential<br />

The �V · adjustment knob of the slave controller must be<br />

set to –10 % in order to obtain an unobjectionable functioning<br />

of room pressure control. When ordering, the<br />

appertaining master unit must be indicated as well. The<br />

master unit must be of equal size. Please, consult Trox in<br />

case of deviations.


Sauter RLE, Room Pressure Control<br />

Adjustment Knobs 150 F100<br />

(Room Pressure Controller)<br />

IMPORTANT<br />

� �<br />

�<br />

Adjustment Knobs RLE 150 (Auxiliary Controller)<br />

1 Span �p Adjustment Knob<br />

2 X s Adjustment Knob<br />

3 X p Adjustment Knob<br />

4 T n Potentiometer (reset time)<br />

5 Zero Potentiometer (Zero point)<br />

6 �V · Adjustment Knob<br />

7 NZ Potentiometer (hysteresis)<br />

�<br />

�<br />

6<br />

7<br />

1 5<br />

The Span Adjustment Knob must not be adjusted<br />

on both controllers.<br />

5<br />

Volume Flow Adjustment on Site<br />

A subsequent adjustment of the room pressure set value<br />

can be made at the Xs-adjustment knob of the RLE 150.<br />

Calculation is made according to formula on page 4.<br />

Zero Point Adjustment<br />

If necessary, the transducer can be adjusted to another<br />

installation situation by customer using the zero-point<br />

potentiometer. For measurement the supply voltage at<br />

the RLE must be alive at least for 15 minutes. The readjustment<br />

of the zero point is necessary in any case, if<br />

the Uxi signal is measured at removed measuring tubes<br />

>1 VDC (outside 4.9 to 5.1 VDC at room pressure controller)<br />

using the following procedure:<br />

• Remove measuring tubes<br />

• Adjust zero point potentiometer until the actual value<br />

output signal Uxi is between 0.1 and 0.3 V at the slave<br />

controller and/or 4.9 and 5.1 V at the room pressure<br />

controller.<br />

• Reconnect tubing


Volume Flow Ranges TVZ, TVA, TVR<br />

Size<br />

V<br />

100 95 342<br />

125 150 540<br />

160 250 900<br />

200 405 1458<br />

250 615 2214<br />

315 1025 3690<br />

400 1680 6048<br />

· nom<br />

l/s m3 /h<br />

1)<br />

Volume Flow Ranges TVJ/TVT<br />

B x H<br />

mm<br />

V · nom<br />

l/s m 3 /h<br />

200 x 100 215 774<br />

300 x 100 425 1530<br />

400 x 100 650 2340<br />

500 x 100 825 2970<br />

600 x 100 1250 4500<br />

200 x 200 1650 5940<br />

300 x 200 1850 6660<br />

400 x 200 2450 8820<br />

500 x 200 3100 11160<br />

600 x 200 2450 8820<br />

700 x 200 3250 11700<br />

800 x 200 4100 14760<br />

300 x 300 320 1152<br />

400 x 300 535 1926<br />

500 x 300 415 1494<br />

600 x 300 620 2232<br />

700 x 300 1035 3726<br />

800 x 300 1450 5220<br />

900 x 300 920 3312<br />

1000 x 300 1230 4428<br />

400 x 400 1535 5526<br />

500 x 400 2150 7740<br />

600 x 400 2770 9972<br />

700 x 400 1630 5868<br />

800 x 400 2040 7344<br />

900 x 400 2850 10260<br />

1000 x 400 3670 13212<br />

500 x 500 2540 9144<br />

600 x 500 3050 10980<br />

700 x 500 3550 12780<br />

800 x 500 4050 14580<br />

900 x 500 4570 16452<br />

1000 x 500 5100 18360<br />

600 x 600 3650 13140<br />

700 x 600 4250 15300<br />

800 x 600 4850 17460<br />

900 x 600 5500 19800<br />

1000 x 600 6100 21960<br />

700 x 700 4950 17820<br />

800 x 700 5700 20520<br />

900 x 700 6400 23040<br />

1000 x 700 7100 25560<br />

800 x 800 6500 23400<br />

900 x 800 7300 26280<br />

1000 x 800 8100 29160<br />

900 x 900 8200 29520<br />

1000 x 900 9100 32760<br />

1000 x 1000 10100 36360<br />

1) Only TVR<br />

Sauter RLE, Room Pressure Control<br />

6<br />

Single Duct Units<br />

Order Code / Examples<br />

The available options are given in the current price list.<br />

TVA-R / 160 / 00 / CJ1 / A - - 15 Pa<br />

TVR / 16 / 00 / CJ1 / Z - + 15 Pa<br />

TVJ / 400 x 107 / 00 / CL1 / A - + 15 Pa<br />

Volume Flow Control Tolerances TVM 2)<br />

Volume flow<br />

in % of V · nom<br />

100 5 5<br />

80 5 5<br />

60 7 7<br />

40 7 8<br />

20 9 14<br />

15 20 >14<br />

20 >14<br />

2) Percentages figures based on ‡ actual<br />

Installation place<br />

Z Supply Air<br />

A Extract Air<br />

When ordering, the appertaining master unit must be<br />

indicated as well. The master unit must be of equal size.<br />

Please, consult Trox in case of deviations.<br />

Room Pressure Parameters<br />

Factory Setting<br />

Room pressure adjustment knob<br />

set at required room pressure<br />

Volume Flow Parameters<br />

Factory Setting<br />

�V · Adjustment knob set at –10 %<br />

∆V · in ± %<br />

TVZ, TVA, TVR TVJ


Sauter RLE, Room Pressure Control<br />

Terminal Connections<br />

RLE 150 Room pressure controller<br />

Actuator S2<br />

(Shut off)<br />

RLE 150 Auxiliary controller<br />

IMPORTANT<br />

The examples illustrated show the most common<br />

arrangements for volume flow control. The Sauter<br />

specifications must be observed in the overall control<br />

system design, selection of the other control components<br />

and wire sizing. Details of other circuits are<br />

available from Sauter.<br />

Room Pressure Control<br />

Reference<br />

room<br />

Room<br />

7<br />

Nomenclature<br />

Room Pressure Controller<br />

1, 4, 6, 8, 10 N : Ground, neutral<br />

2 L1 : Supply voltage 24 VAC<br />

3 : Output actual volume Uxi (0 to 10 VDC)<br />

5 : Output set volume Uw3 (0 to 10 VDC)<br />

7 : Input set room pressure Uxs (0 to 10 VDC)<br />

9 : Output set volume Uw Inv<br />

(0 to 10 VDC)<br />

Auxiliary Controller<br />

1, 7, 9, 11, 13 N : Ground, neutral<br />

2 L1 : Supply voltage 24 VAC<br />

3, 4, 5 : Connection actuator (24 VAC)<br />

6 : Input override control CLOSED<br />

8 : Input set value 2 Uw3 (0 to 10 VDC)<br />

10 : Input set value 1 Uw2 (0 to 10 VDC)<br />

12 : Output actual volume flow Uxi (0 to 10 VDC)<br />

Wiring<br />

Actuator and volume flow controller are factory wired.<br />

The 24 VAC voltage supply must be wired up by the<br />

customer. Safety transformers must be used (EN 60742).<br />

If several volume flow controllers are connected to one<br />

24 V network, it is important to ensure that a common<br />

neutral or ground wire is used and that this is not connected<br />

to other wires.<br />

Tube Connections<br />

Tube dimensions : di = 6 mm<br />

max. lengths : 10 m (plus and minus<br />

in total) 1)<br />

Material : Polyurethane1) Room Pressure Control<br />

The RLP 150 is tube-connected according to the sketch<br />

shown. The measuring points in the room and reference<br />

room must be free from any turbulences (no influence<br />

due to room flow, no dynamic share pd). The room pressure is always connected to the plus input,<br />

also at low pressure control.<br />

Note:<br />

If room groups with different pressure stages are<br />

arranged one behind the other, all transducers shall<br />

operate with a common reference pressure, e.g.<br />

atmospheric pressure.<br />

1) Recommendation


Room Temperature Control<br />

24 VAC<br />

RLE 150, Master<br />

RLE 150, Slave<br />

RT Controller<br />

Operating Mode M<br />

RLE 150, Room pressure controller<br />

Operating Mode A<br />

1) For room pressure control with slave for supply air (mode Z)<br />

link terminals 9 and 8.<br />

1)<br />

Sauter RLE, Room Pressure Control<br />

8<br />

Room Temperature Control<br />

The slave controller will have two command variables.<br />

The first determines the actual value – in most cases of<br />

the supply air. The second command variable comes<br />

from the room pressure controller.<br />

Single-wiring is possible, if already by the supply voltage<br />

a common ground is given. Twin-wiring is to be preferred<br />

because of the electromagnetic compatibility.<br />

Room Pressure Control<br />

The room pressure controller should be assembled close<br />

to the room and/or reference room in order to keep the<br />

tube lengths of the measurement lines short.<br />

Override Control<br />

Override Controls are possible. For further information<br />

please refer to the product information for Sauter<br />

RLE 150 (leaflet No. EØ16MB7).


Sauter RLE, Room Pressure Control<br />

Function Test<br />

Fault Finding Check<br />

Check wiring<br />

Connect supply voltage<br />

Connect air supply systems<br />

Check Master and Slave Controller<br />

Check Room Pressure Controller<br />

Wiring correct?<br />

yes<br />

Supply voltage within<br />

the Sauter specifications?<br />

yes<br />

Actual value signal U xi<br />

consistent?<br />

yes<br />

Actuator open or closed?<br />

no<br />

no<br />

no<br />

no<br />

Order Example Spare Controller<br />

Correct wiring error<br />

Check Transformer<br />

etc.<br />

Connect room<br />

pressure at plus<br />

Room pressure set value<br />

to high? Room leaky?<br />

Room pressure controller Sauter RLE 150 F 100<br />

preset at +15 Pa<br />

Auxiliary controller Sauter RLE 150 F 013<br />

preset at TVA 160<br />

9<br />

Commissioning<br />

For commissioning it is best to first disconnect (remove)<br />

the command variable of the room pressure controller<br />

(slave controller: terminal 8). With the doors open, master<br />

and slave controller are set in operation according to<br />

Trox product information (RLE 150, EØ16MB7). Then<br />

reconnect command variable, shut the doors and check<br />

room pressure (smoke checks).<br />

If the blade of the extract air unit is closed manually<br />

(disengagement of actuator and adjustment of blade<br />

using a tong to avoid injuries), the room pressure and<br />

correspondingly U xi must increase.<br />

The set value of the room pressure is reached, when the<br />

room pressure determined from the U xi measured is in<br />

conformity with the set value. If this is not the case, the<br />

room leakage is too high. The set value has to be reduced.<br />

If the room proves to be non-air-tight, the room<br />

pressure control cannot function. The room is then to be<br />

taken into operation with the supply air/extract air slave<br />

control.<br />

Replacement Controller<br />

When replacing faulty controllers, calibrated controllers<br />

set for the terminal box type and size must be used.<br />

Uncalibrated controllers can only be used as a temporary<br />

solution.<br />

The following must be specified when ordering a replacement<br />

controller: Room pressure, V · min and V · max.


Sauter RLP 10<br />

1<br />

Contents<br />

Subject Page<br />

Area of Application 2<br />

Description of Function 3<br />

Volume Flow Control 4<br />

Volume Flow Adjustment on Site 5<br />

Volume Flow Ranges Single-Duct Units 6<br />

Order Code, Examples Single-Duct Units<br />

7<br />

Dual-Duct Unit TVM 8<br />

Tube Connections 9<br />

Room Temperatur Control 10<br />

Supply Air/Extract Air Slave Control 11<br />

Supply Air/Extract Air Slave Control<br />

with Dual Duct Unit TVM 12<br />

Function Test, Commissioning 13<br />

Design changes reserved · All rights reserved · ® Gebrüder Trox GmbH (12/2001) · Leaflet No. E016MH0


RLP 10<br />

�<br />

�<br />

�<br />

� RLP 10 controller<br />

� Tube connections<br />

� V · min adjustment knob<br />

� V · max adjustment knob<br />

Type Range<br />

Actuator<br />

to Trox-differential<br />

pressure sensor<br />

Controller<br />

Normally OPEN (NO) RLP 10 F905<br />

Normally CLOSED (NZ)<br />

�<br />

RLP 10 F001<br />

2<br />

Area of Application<br />

Sauter RLP 10<br />

The RLP 10 pneumatic volume flow controller from<br />

Sauter is designed for VAV terminal units. The controller<br />

comprises a membrane pressure transducer.<br />

For variable volume flow control a suitable pneumatic<br />

room temperature controller must be used.<br />

The output signal from this controller serves as command<br />

variable for the RLP 10.<br />

Pneumatic switches are used for override control. The<br />

actual value of the volume flow is monitored as a standard<br />

linear, pneumatic signal. This signal can be used for<br />

example to control a slave unit for extract air.<br />

The RLP 10 has adjustment knobs for setting V · min and<br />

V · max. All controller adjustments are set by Trox and the<br />

unit is supplied with settings sealed. No adjustment is<br />

necessary by the customer. As soon as the operating<br />

pressure and theroom temperature controller have been<br />

connected, the terminal unit is ready for use. Any volume<br />

flow changes which may be necessary to the RLP 10 can<br />

easily be carried out by the customer.<br />

For parallel operation, several RLP 10 controllers can be<br />

connected up to one room thermostat, if the air handling<br />

capacity of the room temperature controller is not exceeded.<br />

Supply/extract air slave control is possible.<br />

Static Measuring Principle<br />

The volume flow is measured using a membrane pressure<br />

transducer. Therefore the RLP 10 is suitable for the<br />

control of extract air with contaminants and/or which is<br />

dust-loden. Terminal units with painted finish or made of<br />

plastic should be considered in such situations. For the<br />

control of extract air contaminated with chemicals, only a<br />

special design should be used which blows through the<br />

high and low pressure measurement tubes.<br />

IMPORTANT<br />

In critical cases, a material test should be carried out<br />

on the terminal unit and membrane pressure transducer,<br />

to prove suitability for chemicals and concentrations<br />

concerned.


Sauter RLP 10<br />

Characteristic of the Actual Value Signal<br />

Volume flow<br />

(100 %)<br />

V · (20%)<br />

V · I = p 3 . V · nom<br />

Characteristic of Volume Flow Variable<br />

V · nom<br />

V · max<br />

V · min<br />

V · (20%)<br />

Volume flow V · nom<br />

1) Limited by V · min and V · max<br />

0.2 Actual value<br />

signal p3 1.0 bar<br />

V · 1)<br />

S = p .<br />

6 V<br />

·<br />

nom<br />

0.2 Control signal p 1.0 bar<br />

6<br />

3<br />

Description of Function<br />

The volume flow is measured by the static differential<br />

pressure principle. The differential pressure sensor in the<br />

terminal unit measures the effective pressure �p e. This<br />

causes a membrane in the pressure transducer to<br />

deflect. The movement is detected and converted into a<br />

linear pneumatic signal 0 to 1.0 bar for actual volume<br />

flow.<br />

The measurement range is set during factory calibration<br />

to suit the unit size, so that 1.0 bar always corresponds<br />

to the unit nominal volume flow rate (V · nom, except slaves<br />

and TVM warm duct controllers).<br />

The actual volume flow can be shown by a gauge with<br />

very low air capacity or using a split signal relay be used<br />

to command extract air.<br />

The required volume flow is set by the room temperature<br />

controller with the command signal within the limits of<br />

V · min and V · max . The RLP 10 determines the required volume<br />

flow in accordance with the characteristic shown and<br />

compares this with the actual value. The damper actuator<br />

is controlled according to the deviation. The volume<br />

flow control is integral action. The controller RLP 10 is<br />

used with a specific Trox actuator. The controller is<br />

adjusted to the correct action of the damper (normally<br />

open/close) during factory calibration.<br />

Gravity Dependency<br />

Because of the weight of the membrane the position of<br />

the RLP 10 affects the measurement signal. The RLP 10<br />

is normally calibrated for a vertical position of the membrane,<br />

i.e. pressure tube connections above or below<br />

horizontal plane. Other installation positions must be<br />

specified on order.


Pressure Independent Control Characteristic<br />

Pressure differential<br />

‡ max set value<br />

p 6 upper limit<br />

‡ min set value<br />

p 6 lower limit<br />

‡ maxM<br />

‡ minM<br />

Volume flow<br />

=<br />

=<br />

=<br />

=<br />

=<br />

‡ max<br />

‡ nom<br />

‡ max<br />

‡ nom<br />

‡ min<br />

‡ nom<br />

‡ min<br />

‡ nom<br />

‡ maxS<br />

‡ minS<br />

.<br />

.<br />

100 %<br />

100 %<br />

% of ‡ nom<br />

4<br />

Volume Flow Control<br />

The volume flow controller works independently of duct<br />

pressure, which means that pressure fluctuations do not<br />

cause permanent volume flow changes.<br />

The hysteresis of the controller, coupled with measuring<br />

tolerances, produces a volume flow deviation shown<br />

opposite.<br />

If the conditions mentioned in the leaflet are not met,<br />

(e.g. lowest differential pressure, supply air conditions)<br />

larger deviations can be expected.<br />

Volume Flow Command Signal<br />

The control characteristic of the thermostat signal is limited<br />

by V · min at the bottom end and V · max at the top end.<br />

Thus control signals below the pressure corresponding to<br />

V · min (p6 lower limit) and above the V · max(p6 upper limit) do not<br />

lead to any volume flow changes.<br />

V · max Setting<br />

The V · max value corresponds to the volume flow which is<br />

set with a command signal greater p 6 upper limit (max.<br />

1 bar) or V · max override control. The setting range is from<br />

0 to 100 %. The percentage based on V · nom.<br />

V · min Setting<br />

Sauter RLP 10<br />

The V · min value corresponds to the volume flow which is<br />

set with a command signal lower p 6 lower limit or V · min override<br />

control. The setting range is from 20 to 100 %. The<br />

percentage based on V · nom. V · min can be set to 0. To do<br />

this, the adjustment knob must be turned anti-clockwise<br />

beyond the 20 % stop by approximately one quarter turn<br />

until an audible click is heard.<br />

Slave Control<br />

The RLP 10 only provides for ratio control, i.e. the<br />

supply and extract air must be in the same ratio<br />

under all operating conditions.<br />

The volume flow ratio is set during factory calibration<br />

controller internally.


Sauter RLP 10<br />

Adjustment Knobs<br />

Formula for V · min<br />

Formula for V · max<br />

�p w-‡min<br />

�p w-‡max<br />

=<br />

=<br />

(<br />

(<br />

‡ min<br />

C<br />

‡ max<br />

C<br />

(<br />

(<br />

2<br />

2<br />

5<br />

Volume Flow Adjustment on Site<br />

Volume Flow Adjustment<br />

The set volume flow limit values can be adjusted on site<br />

using the V · min and V · max adjustment knobs on the<br />

RLP 10. Calculations are based on the formulae shown<br />

on page 4.<br />

Adjustment Rules<br />

• The adjustment knobs for V · min and V · max can be set<br />

within the given limits independently. V · min values lower<br />

20 % should not be set as the volume flow deviations<br />

increase.<br />

• A constant volume flow is set at the V · min adjustment<br />

knob. The V · max adjustment knob has to be at 100 %.<br />

• If the V · min adjustment knob is set higher than V · max, the<br />

maximum volume flow is constantly controlled.<br />

Calculating the Volume Flow<br />

Using the Effective Pressure<br />

The accuracy of the setting can be increased if the effective<br />

pressure signal Dp e is also measured with the<br />

system switched on.<br />

• Remove the tube from connection 6 (command signal)<br />

so that the controller runs at V · min. Do not seal the connecting<br />

nipple.<br />

• Calculate the effective pressure for V · min.<br />

• Tune V · min adjustment knob until the effective pressure<br />

corresponds to the calculated value (after adjustment,<br />

wait until the controller has settled and the actuator<br />

stopped).<br />

• Close connection 6 with a cap or sealed tube. The<br />

controller runs at V · max.<br />

• Calculate the effective pressure for V · max.<br />

• Proceed with the V · max setting as for V · min.<br />

• Replace original tube connections.<br />

The C values for the above calculations are given in the<br />

VARYCONTROL Product Information under the heading<br />

“Commissioning”.


Volume Flow Ranges TVZ, TVA, TVR, TVRK<br />

Size<br />

100 2) 20 95 72 342<br />

125 30 150 108 540<br />

160 50 250 180 900<br />

200 80 405 288 1458<br />

250 125 615 450 2214<br />

315 205 1025 738 3690<br />

400 3) 340 1680 1224 6048<br />

Volume Flow Ranges TVJ/TVT<br />

B x H<br />

mm<br />

V · min-unit<br />

l/s m 3 /h<br />

V · to V min-unit<br />

· 1) 1)<br />

nom<br />

V · min-unit 1)<br />

to V · nom<br />

l/s m 3 /h<br />

V · nom<br />

200 x 100 45 215 162 774<br />

300 x 100 65 320 234 1152<br />

400 x 100 85 425 306 1530<br />

500 x 100 105 535 378 1926<br />

600 x 100 130 650 468 2340<br />

200 x 200 85 415 306 1494<br />

300 x 200 125 620 450 2232<br />

400 x 200 165 825 594 2970<br />

500 x 200 205 1035 738 3726<br />

600 x 200 250 1250 900 4500<br />

700 x 200 290 1450 1044 5220<br />

800 x 200 330 1650 1188 5940<br />

300 x 300 185 920 666 3312<br />

400 x 300 245 1230 882 4428<br />

500 x 300 305 1535 1098 5526<br />

600 x 300 370 1850 1332 6660<br />

700 x 300 430 2150 1548 7740<br />

800 x 300 490 2450 1764 8820<br />

900 x 300 555 2770 1998 9972<br />

1000 x 300 620 3100 2232 11160<br />

400 x 400 325 1630 1170 5868<br />

500 x 400 410 2040 1476 7344<br />

600 x 400 490 2450 1764 8820<br />

700 x 400 570 2850 2052 10260<br />

800 x 400 650 3250 2340 11700<br />

900 x 400 735 3670 2646 13212<br />

1000 x 400 820 4100 2952 14760<br />

500 x 500 510 2540 1836 9144<br />

600 x 500 610 3050 2196 10980<br />

700 x 500 710 3550 2556 12780<br />

800 x 500 810 4050 2916 14580<br />

900 x 500 915 4570 3294 16452<br />

1000 x 500 1020 5100 3672 18360<br />

600 x 600 730 3650 2628 13140<br />

700 x 600 850 4250 3060 15300<br />

800 x 600 970 4850 3492 17460<br />

900 x 600 1100 5500 3960 19800<br />

1000 x 600 1220 6100 4392 21960<br />

700 x 700 990 4950 3564 17820<br />

800 x 700 1140 5700 4104 20520<br />

900 x 700 1280 6400 4608 23040<br />

1000 x 700 1420 7100 5112 25560<br />

800 x 800 1300 6500 4680 23400<br />

900 x 800 1460 7300 5256 26280<br />

1000 x 800 1620 8100 5832 29160<br />

900 x 900 1640 8200 5904 29520<br />

1000 x 900 1820 9100 6552 32760<br />

1000 x 1000 2020 10100 7272 36360<br />

1) V · min = 0 is also possible 2) Only TVR 3) Not for TVRK<br />

6<br />

V · min-unit 1)<br />

Sauter RLP 10<br />

V · nom


Sauter RLP 10<br />

Volume Flow Control Tolerances 1)<br />

Volume flow<br />

in % of V · nom<br />

100 5 5<br />

80 5 5<br />

60 5 6<br />

40 7 8<br />

20 10 11<br />

10 >11<br />

1) Percentage figures based on V · actual<br />

∆V · in ± %<br />

TVZ, TVA, TVR TVJ/TVT<br />

7<br />

Single Duct Units<br />

Order Code / Examples<br />

The available options are given in the current price list.<br />

Volume Flow Parameter<br />

Operating<br />

Mode<br />

E<br />

M<br />

S<br />

F<br />

Factory Setting<br />

V · min<br />

V · max<br />

TVR / 160 / 00 / PA1 / E - 70 - 240 l/s<br />

TVZ-R / 160 / 00 / PD1 / M - 70 - 240 l/s<br />

TVA-R / 160 / 00 / PA1 / S - 70 - 240 l/s<br />

Operation Mode<br />

E Individual<br />

M Master<br />

S Slave<br />

F Fixed<br />

V · min adjustment knob set at required V · min<br />

V · max adjustment knob set at required V · max<br />

V · min adjustment knob turned anticlockwise<br />

for 0 % setting<br />

V · max adjustment knob set at 100 %<br />

Volume flow ratio to master is adjusted<br />

internally<br />

V · min adjustment knob set at required<br />

constant volume flow<br />

V · max adjustment knob set at 100 %


Volume Flow Ranges TVM<br />

Size ‡ minunit<br />

Volume Flow Tolerances TVM 2)<br />

Volume flow<br />

in % of V · nom<br />

l/s m 3 /h<br />

V · nom<br />

‡ Ref-<br />

Warm<br />

V · 1) 1)<br />

nom<br />

TVM cold<br />

‡ minunit<br />

∆V · in ± %<br />

1) ‡ Ref is only a reference value for calculating ‡ actual.<br />

In the formula ‡ Ref is setted as ‡ nom.<br />

2) Percentage figures based on ‡ actual.<br />

TVM total<br />

100 5 7<br />

80 5 10<br />

60 5 12<br />

40 7 15<br />

30 8 17<br />

20 10 -<br />

10 -<br />

‡ Ref-<br />

Warm<br />

125 45 150 190 162 540 684<br />

160 75 250 325 270 900 1170<br />

200 120 405 490 432 1458 1764<br />

250 185 615 685 666 2214 2466<br />

8<br />

Dual Duct Unit TVM<br />

Order Code / Examples<br />

The available options are given in the current price list.<br />

TVM-R / 160 / P14 / E - 100 - 200 l/s<br />

TVM-R / 160 / P14 / F - 200 l/s<br />

Volume Flow Parameters<br />

Operating<br />

Mode<br />

E<br />

M<br />

F<br />

Operating Mode<br />

E Individual<br />

M Master<br />

F Fixed<br />

Factory Setting<br />

.<br />

Vwarm .<br />

Vcold . .<br />

Vwarm = Vcold Cold Controller Warm Controller<br />

V · min adjustment<br />

knob turned<br />

anti-clockwise for<br />

0 % setting<br />

V · max adjustment<br />

knob set at required<br />

V · cold<br />

Sauter RLP 10<br />

V · min adjustment<br />

knob set at<br />

required V · warm<br />

V · max adjustment<br />

knob set at 100 %


Sauter RLP 10<br />

Tube Connections Nomenclature<br />

IMPORTANT<br />

The examples illustrated show the most common<br />

arrangements for volume flow control. The Sauter<br />

specifications must be observed in the overall control<br />

system design, selection of the other control components<br />

and tube sizing.<br />

PN 21, DW<br />

Volume flow<br />

V · nom<br />

V · max<br />

V · min<br />

V · (20%)<br />

PN 61, DW<br />

Volume flow<br />

V · nom<br />

V · max<br />

V · min<br />

V · (20%)<br />

1 6 3 1) 2<br />

– +<br />

0.2 Control signal p 1.0 bar<br />

6<br />

Control signal RT 2)<br />

0.2 0.6 1.0 bar<br />

1) Operation mode E, F and S: closed<br />

2) The room temperature controller must be connected<br />

on sequenzing relay<br />

9<br />

+ High pressure take off from differential pressure<br />

sensor<br />

- Low pressure take off from differential pressure<br />

sensor<br />

1 Operating pressure input (1.3 bar, ± 0.1 bar)<br />

2 Actuator output (0.2 to 1.0 bar)<br />

3 Actual volume flow output (0.2 to 1.0 bar)<br />

6 Set volume flow input (0.2 to 1.0 bar)<br />

Tube Connections<br />

The differential pressure sensor of the terminal unit and<br />

the actuator are connected by tube to the volume flow<br />

controller in the factory. The operating pressure and the<br />

thermostat must be connected by the customer. Ensure<br />

that the operating compressed air meets the requirements<br />

in the Sauter documentation. It has to be considered<br />

that the operating pressure air must meet the requirements<br />

for conditioned instrument compressed air<br />

(free from oil, dust and water).<br />

Control Sequences<br />

The adjustment signal of the room temperature controller<br />

can be divided into sequences if a water valve is to be<br />

controlled in addition to the volume flow. Adjustment to<br />

the pressure range of the thermostat is made by a<br />

sequence or sequence reversing relay.<br />

PN21, DA (direct action)<br />

Control signal 0.2 to 1.0 bar gives rise in volume flow.<br />

PN61, DA (direct action)<br />

Control Signal 0.6 to 1.0 bar gives rise in volume flow.<br />

Fail Safe Direction of Actuator<br />

If the operating pressure fails or is disconnected, the<br />

actuator moves to a defined end position. This can be<br />

open or closed damper position. Selection of the fail safe<br />

direction allows system-specific safety requirements.<br />

NC (normally closed): Damper closed with no pressure<br />

NO (normally open) : Damper open with no pressure


Room Temperatur Control<br />

(PN 21, DW)<br />

Operating<br />

pressure<br />

supply 1.3 bar<br />

RLP 10<br />

Room temperature<br />

controller,<br />

DW<br />

RLP 10, Parallel controller<br />

Raumtemperature Control with Heating Sequence<br />

(PN 61, DW)<br />

Operating<br />

pressure<br />

supply 1.3 bar<br />

RLP 10<br />

Operating mode E, M<br />

Operating mode E, M<br />

Room temperature<br />

controller,<br />

DW<br />

1) Sequence relay contained in Trox scope of supply<br />

2) Restrictor by customer<br />

2)<br />

1)<br />

Operating mode E, M<br />

Heating valve<br />

0.2 to 0.6 bar, NO<br />

10<br />

Room Thermostat<br />

Sauter RLP 10<br />

The RLP 10 volume flow controller should be connected<br />

to room thermostats according to the connection diagramsshown.<br />

The volume flow controllers release compressed air via<br />

the input connection. Thus the room thermostat can be<br />

connected with one line only. The room thermostat must<br />

have sufficient air handling capacity for the volume flow<br />

controller. If several volume flow controllers are connected<br />

to one room thermostat, the sum of the air capacities<br />

of all volume flow controllers must be taken into account.<br />

If this exceeds the maximum air handling capacity of the<br />

room thermostat, split signal relays must be used. If the<br />

line from the thermostat to the volume flow controller<br />

contains a split signal relay, a non venting thermostat can<br />

be used.<br />

Parallel Control<br />

Several volume flow controllers (supply or extract air) can<br />

be operated in parallel by one room temperature controller.<br />

If the terminal units are the same size and the V · min<br />

and V · max adjustment knobs are set at the same values,<br />

all the units control the same volume flow. If the settings<br />

differ, the units control an equal percentage.<br />

If several controllers are connected to one room temperature<br />

controller, the sum of the air capacities of all<br />

volume flow controllers has to be considered.<br />

If this amount exceeds the maximum air capacity of the<br />

room temperature controller, split signal relays have to be<br />

used.<br />

External Operating Pressure Connections<br />

The volume flow controllers RLP 10 can be connected<br />

directly to the operating pressure supply as they have an<br />

internal restrictor. If the signal from the room thermostat<br />

is divided into several sequences and a sequencing relay<br />

connected, a supply pressure must be supplied to the<br />

thermostat. The correct sizing of the restrictor must take<br />

into account the heating valve actuator. Noise from the<br />

room thermostat will occur if the restrictor is too small.


Sauter RLP 10<br />

Room Temperature Control with Shut Off Mode<br />

(PN 21, DW, NZ)<br />

Operating<br />

pressure<br />

supply 1.3 bar<br />

RLP 10<br />

Supply Air/Extract Air Slave Control<br />

S1<br />

S1 System shut off switch<br />

S2 Window switch<br />

Operating<br />

pressure<br />

supply 1.3 bar<br />

Room temperature<br />

controller,<br />

DW<br />

Operating mode E, M<br />

297690<br />

Room temperature<br />

controller,<br />

DW<br />

RLP 10, Supply Air<br />

Actuator<br />

1) Split relay on request contained in Trox scope of supply<br />

1)<br />

Operating mode M<br />

RLP 10, Extract Air<br />

Operating mode S<br />

S2<br />

11<br />

Shut Off Control<br />

The variable volume flow control can be overridden using<br />

the customer’s pneumatic switches.<br />

The override control for full shut off can take place on all<br />

or separate terminat units. A break in the pressure line to<br />

the controlter or actuator leads to closure of the damper<br />

when fail safe direction of action is normally closed. With<br />

this override control, and unit type TVZ/TVA/TVR/TVM,<br />

full shut off leakage air volume flows to DIN 1946 part 4<br />

are achieved. With TVM units, note that the override control<br />

must be switched to both controllers.<br />

S1, S2 closed: Room temperature control mode<br />

S1 or S2 open: Override control<br />

Safety Function “Damper Open”<br />

If, for safety reasons, ventilation must be guaranteed for<br />

certain building sections, actuators with fail safe direction<br />

normally open (open under no pressure) must be used. In<br />

the event of failure of the compressed air supply, the<br />

damper always opens.<br />

Supply Air/Extract Air Slave Control<br />

Supply air/extract air slave control is possible using the<br />

actual value of the supply air as a control signal for the<br />

control of extract air, if RLP 10 is used for supply air and<br />

a second volume flow controller for the extract air. Only<br />

ratio control can be achieved, i.e. supply and extract air<br />

must remain in the same ratio.<br />

The separating relay in the control line is factory-fitted a<br />

short distance from the supply air controller. It must not<br />

be moved.


Supply Air/Extract Air Slave Control<br />

with Dual Duct Unit TVM<br />

Operating<br />

pressure<br />

supply 1.3 bar<br />

1 6<br />

RLP 10, Cold<br />

1 6<br />

297690<br />

1<br />

RLP 10, Warm<br />

1 6<br />

RLP 10, Slave<br />

Room temperature<br />

controller,<br />

DW<br />

1)<br />

Operating mode M<br />

Operating mode S<br />

1) Split relay on request contained in Trox scope of supply<br />

2<br />

3<br />

3<br />

TVM<br />

12<br />

Volume Flow Control of TVM Units<br />

Sauter RLP 10<br />

The two controllers fitted to the dual duct unit TVM (cold,<br />

warm) must be tubed by the customer as shown in the<br />

circuit diagram opposite (including the operating pressure<br />

supply cross-connection).<br />

The room temperature controller provides the cold duct<br />

controller with its set point signal.<br />

In most cases, the proportion of warm air is increased<br />

from 0 to the required V · warm as a maximum set point. The<br />

warm duct controller (V · total is measured) is therefore set<br />

as a constant value controller and does not require a<br />

command signal.<br />

For a more detailed functional description, refer to the<br />

TVM literature.<br />

Supply/Extract Air Slave Control<br />

with Dual Duct TVM<br />

The actual value output signal p3 of the warm duct controller<br />

is proportional to the total volume flow V · total. It can<br />

therefore be used as the command signal for a slave<br />

controller.


Sauter RLP 10<br />

Function Test<br />

Fault Finding Check<br />

Test tubing Connect<br />

supply compressed air<br />

Connect air conditioning system<br />

Check operating pressure<br />

Override control V · min<br />

Record actual value signal ∆p w<br />

Override control V · max<br />

Record actual value signal ∆p w<br />

Operating pressure due<br />

to Sauter requirements?<br />

yes<br />

Actuator opening<br />

and closing?<br />

yes<br />

Volume flow V · min ?<br />

yes<br />

Volume flow V · max ?<br />

yes<br />

Room temperature<br />

control?<br />

yes<br />

Override controls?<br />

no<br />

no<br />

no<br />

no<br />

no<br />

no<br />

Order Example Spare Controller<br />

Check pressure<br />

Damper blocked?<br />

Fail safe direction<br />

OK? Controller faulty<br />

Duct pressure<br />

sufficient?<br />

Measurement<br />

tubing to Sensor<br />

damaged?<br />

Check room<br />

thermostat<br />

Check window<br />

switch, relay etc.<br />

Sauter RLP 10<br />

preset for TVZ 125, 80 ... 140 l/s, PN21, DW, NZ<br />

13<br />

Commissioning<br />

A rapid function test for commissioning can be carried<br />

out with the system running and the operating pressure<br />

present. Remove the tube from the connection to the<br />

operating pressure supply. If compressed air escapes<br />

from the line, this shows that the controller is supplied<br />

with compressed air. After replacing the tube, the actuator<br />

must return to approximately the same position it held<br />

before the test. If commissioning involves proving the<br />

limit volume flows V · min and V · max these must be set as<br />

described below.<br />

For each operating situation, the effective pressure (∆p w )<br />

is measured at the Trox differential pressure sensor and<br />

the volume flow calculated:<br />

V · actual = C . �p w<br />

In many cases, incorrect tube connections or insufficient<br />

operating pressure are the cause of the faults.<br />

Therefore for a detailed test on each volume flow controller,<br />

first remove the signal from the room thermostat and<br />

then measure the operating pressure.<br />

Remove the high pressure and low pressure lines on the<br />

volume flow controller and connect a manometer. The<br />

actuator must open and the effective pressure (∆p e ) must<br />

rise.<br />

Reconnect the high pressure line, the actuator must now<br />

close and the effective pressure must fall.<br />

Connect the low pressure line. The controller must control<br />

to V · min. Measure effective pressure, calculate volume<br />

flow and compare with designed value.<br />

Close off connection 6 for room thermostat. The controller<br />

must control to V · max. Repeat measurement for V · max<br />

as described above.<br />

Measure control signal p 6 and connect. Calculate set<br />

volume flow and compare with actual volume flow.<br />

Activate override controls and check operation.<br />

Replacement Controller<br />

To replace faulty controllers, only controllers set for the<br />

terminal unit type and size must be used. Unadjusted<br />

controllers are only acceptable as a temporary solution.<br />

When ordering spare controllers, state V · min and V · max.


Sauter RLP 100<br />

1<br />

Contents<br />

Subject Page<br />

Areas of Application 2<br />

Description of Function 3<br />

Volume Flow Control 4<br />

Volume Flow Adjustment on Site 5<br />

Volume Flow Ranges Single-Duct Units 6<br />

Order Code, Examples Single-Duct Units<br />

7<br />

Tube Connections 8<br />

Room Temperature Control 9<br />

Supply Air/Extract Air Slave Control 10<br />

Function Test, Commissioning 11<br />

Design changes reserved · All rights reserved · ® Gebrüder Trox GmbH (12/2001) · Leaflet No. E016MH1


RLP 100<br />

�<br />

�<br />

�<br />

� RLP 100 controller<br />

� Tube connections<br />

� V · min adjustment knob<br />

� E adjustment knob<br />

� V · max adjustment knob<br />

Type Range<br />

Actuator<br />

Normally CLOSED (NZ)<br />

to Trox-differential<br />

pressure sensor<br />

�<br />

�<br />

Controller<br />

Normally OPEN (NO) RLP 100 F002<br />

RLP 100 F001<br />

2<br />

Areas of Application<br />

Sauter RLP 100<br />

The RLP 100 pneumatic volume flow controller from<br />

Sauter is designed for VAV terminal units. The controller<br />

comprises a membrane pressure transducer.<br />

For variable volume flow control a suitable pneumatic<br />

room temperature controller must be used. The output<br />

signal from this controller serves as command variable<br />

for the RLP 100.<br />

Pneumatic switches are used for override control. The<br />

actual value of the volume flow is monitored as a standard<br />

linear, pneumatic signal. This signal can be used for<br />

example to control a slave unit for extract air.<br />

The RLP 100 has adjustment knobs for setting V · min and<br />

V · max. All controller adjustments are set by Trox and the<br />

unit is supplied with settings sealed. No adjustment is<br />

necessary by the customer. As soon as the operating<br />

pressure and the room temperature controller have been<br />

connected, the terminal unit is ready for use. Any volume<br />

flow changes which may be necessary to the RLP 100<br />

can easily be carried out by the customer.<br />

For parallel operation, several RLP 100 controllers can be<br />

connected up to one room thermostat, if the air handling<br />

capacity of the room temperature controller is not exceeded.<br />

Supply/extract air slave control is possible.<br />

Static Measuring Principle<br />

The volume flow is measured using a membrane pressure<br />

transducer. Therefore the RLP 100 is suitable for the<br />

control of extract air with contaminants and/or which is<br />

dust-loden. Terminal units with painted finish or made of<br />

plastic should be considered in such situations. For the<br />

control of extract air contaminated with chemicals, only a<br />

special design should be used which blows through the<br />

high and low pressure measurement tubes.<br />

IMPORTANT<br />

In critical cases, a material test should be carried out<br />

on the terminal unit and membrane pressure transducer,<br />

to prove suitability for chemicals and concentrations<br />

concerned.


Sauter RLP 100<br />

Characteristic of the Actual Value Signal<br />

Volume flow<br />

V · I = p M . V · nom<br />

Characteristic of Volume Flow Variable<br />

Volume flow<br />

V · nom<br />

(100 %)<br />

V · (20 %)<br />

V · nom<br />

V · max<br />

V · min<br />

V · (20 %)<br />

1) Limited by V · min and V · max<br />

0.2 Actual value<br />

signal pM 1.0 bar<br />

V · 1)<br />

S = p .<br />

6 V<br />

·<br />

nom<br />

0.2<br />

Control signal p<br />

1.0 bar<br />

6<br />

3<br />

Description of Function<br />

The volume flow is measured by the static differential<br />

pressure principle. The differential pressure sensor in the<br />

terminal unit measures the effective pressure ∆p e . This<br />

causes a membrane in the pressure transducer to<br />

deflect. The movement is detected and converted into a<br />

linear pneumatic signal 0 to 1.0 bar for actual volume<br />

flow.<br />

The measurement range is set during factory calibration<br />

to suit the unit size, so that 1.0 bar always corresponds<br />

to the unit nominal volume flow rate (V · nom, except slaves<br />

and TVM warm duct controllers).<br />

The actual volume flow can beshown by a gauge with<br />

very low air capacity or using a split signal relay be used<br />

to command extract air.<br />

The required volume flow is set by the room temperature<br />

controller with the command signal within the limits of<br />

V · min and V · max. The RLP 100 determines the required<br />

volume flow in accordance with the characteristic shown<br />

and compares this with the actual value. The damper<br />

actuator is controlled according to the deviation. The<br />

volume flow control is integral action. The controller<br />

RLP 100 is used with a specific Trox actuator. The controller<br />

is adjusted to the correct action of the damper<br />

(normally open/close) during factory calibration.<br />

Gravity Dependency<br />

Because of the weight of the membrane the position<br />

of the RLP 100 affects the measurement signal. The<br />

RLP 100 is normally calibrated for a vertical position of<br />

the membrane, i.e. pressure tube connections above or<br />

below horizontal plane. Other installation positions must<br />

be specified on order.


Pressure Independent Control Characteristic<br />

Pressure differential<br />

‡ max set value<br />

p 6 upper limit<br />

‡ min set value<br />

p 6 lower limit<br />

‡ maxM<br />

‡ minM<br />

Volume flow<br />

=<br />

=<br />

=<br />

=<br />

=<br />

‡ max<br />

‡ nom<br />

‡ max<br />

‡ nom<br />

‡ min<br />

‡ nom<br />

‡ min<br />

‡ nom<br />

‡ maxS<br />

‡ minS<br />

.<br />

.<br />

100 %<br />

100 %<br />

% of ‡ nom<br />

4<br />

Volume Flow Control<br />

The volume flow controller works independently of duct<br />

pressure, which means that pressure fluctuations do not<br />

cause permanent volume flow changes.<br />

The hysteresis of the controller, coupled with measuring<br />

tolerances, produces a volume flow deviation shown<br />

opposite.<br />

If the conditions mentioned in the leaflet are not met,<br />

(e.g. lowest differential pressure, supply air conditions)<br />

larger deviations can be expected.<br />

Volume Flow Command Signal<br />

The control characteristic of the thermostat signal is limited<br />

by V · min at the bottom end and V · max at the top end.<br />

Thus control signals below the pressure corresponding to<br />

V · min (p6 lower limit) and above the V · max (p6 upper limit) do not<br />

lead to any volume flow changes.<br />

V · max Setting<br />

The V · max value corresponds to the volume flow which<br />

is set with a command signal greater p 6-upper limit (max.<br />

1 bar) or V · max override control. The setting range is from<br />

0 to 100 %. The percentage based on V · nom.<br />

V · min Setting<br />

Sauter RLP 100<br />

The V · min value corresponds to the volume flow which is<br />

set with a command signal lower p 6 lower limit or V · min override<br />

control.<br />

The setting range is from 20 to 100 %. The percentage<br />

based on V · nom. V · min can be set to 0. To do this, the<br />

adjustment knob must be turned anti-clockwise beyond<br />

the 20 % stop by approximately one quarter turn until an<br />

audible click is heard.<br />

Slave Control<br />

The RLP 100 only provides for ratio control, i.e. the<br />

supply and extract air must be in the same ratio<br />

under all operating conditions.<br />

The volume flow ratio is set during factory calibration<br />

controller internally.


Sauter RLP 100<br />

Adjustment Knobs<br />

Formula for V · min<br />

Formula for V · max<br />

V · min<br />

�p w-‡min<br />

�p w-‡max<br />

=<br />

=<br />

E<br />

V · max<br />

(<br />

(<br />

‡ min<br />

C<br />

‡ max<br />

C<br />

(<br />

(<br />

2<br />

2<br />

5<br />

Volume Flow Adjustment on Site<br />

Volume Flow Adjustment<br />

The set volume flow limit values can be adjusted on site<br />

using the V · min and V · max adjustment knobs on the<br />

RLP 100. Calculations are based on the formulae shown<br />

on page 4.<br />

Adjustment Rules<br />

• The adjustment knobs for V · min and V · max can be set<br />

within the given limits independently. V · min values lower<br />

20 % should not be set as the volume flow deviations<br />

increase.<br />

• A constant volume flow is set at the V · min adjustment<br />

knob. The V · max adjustment knob has to be at 100%.<br />

• If the V · min adjustment knob is set higher than V · max ,<br />

the maximum volume flow is constantly controlled.<br />

Calculating the Volume Flow<br />

Using the Effective Pressure<br />

The accuracy of the setting can be increased if the effective<br />

pressure signal Dp e is also measured with the<br />

system switched on.<br />

• Remove the tube from connection 6 (command signal)<br />

so that the controller runs at V · min. Do not seal the connecting<br />

nipple.<br />

• Calculate the effective pressure for V · min.<br />

• Tune V · min adjustment knob until the effective pressure<br />

corresponds to the calculated value (after adjustment,<br />

wait until the controller has settled and the actuator<br />

stopped).<br />

• Close connection 6 with a cap or sealed tube. The<br />

controller runs at V · max.<br />

• Calculate the effective pressure for V · max.<br />

• Proceed with the V · max setting as for V · min.<br />

• Replace original tube connections.<br />

The C values for the above calculations are given in the<br />

VARYCONTROL Product Information under the heading<br />

“Commissioning”.


Volume Flow Ranges TVZ, TVA, TVR, TVRK<br />

V · min V<br />

unit<br />

· min<br />

unit<br />

V · min V<br />

unit<br />

· to<br />

V<br />

min<br />

unit<br />

· to<br />

V nom<br />

· nom<br />

to<br />

V · to<br />

V nom<br />

· l/s m<br />

nom<br />

3 V<br />

/h<br />

· V H<br />

· N<br />

V · V H<br />

· 1)<br />

N<br />

1)<br />

1002) 10 50 15 75 36 180 54 270<br />

125 15 75 22 110 54 270 79 396<br />

160 25 125 40 190 90 450 144 684<br />

200 40 200 60 305 144 720 216 1098<br />

250 60 300 95 480 216 1080 342 1728<br />

315 105 525 155 780 378 1890 558 2808<br />

4003) 170 850 260 1300 612 3060 936 4680<br />

Size<br />

Volume Flow Ranges TVJ/TVT<br />

B x H<br />

mm<br />

V · min-unit 1)<br />

l/s m 3 /h<br />

V · nom<br />

200 x 100 45 215 162 774<br />

300 x 100 65 320 234 1152<br />

400 x 100 85 425 306 1530<br />

500 x 100 105 535 378 1926<br />

600 x 100 130 650 468 2340<br />

200 x 200 85 415 306 1494<br />

300 x 200 125 620 450 2232<br />

400 x 200 165 825 594 2970<br />

500 x 200 205 1035 738 3726<br />

600 x 200 250 1250 900 4500<br />

700 x 200 290 1450 1044 5220<br />

800 x 200 330 1650 1188 5940<br />

300 x 300 185 920 666 3312<br />

400 x 300 245 1230 882 4428<br />

500 x 300 305 1535 1098 5526<br />

600 x 300 370 1850 1332 6660<br />

700 x 300 430 2150 1548 7740<br />

800 x 300 490 2450 1764 8820<br />

900 x 300 555 2770 1998 9972<br />

1000 x 300 620 3100 2232 11160<br />

400 x 400 325 1630 1170 5868<br />

500 x 400 410 2040 1476 7344<br />

600 x 400 490 2450 1764 8820<br />

700 x 400 570 2850 2052 10260<br />

800 x 400 650 3250 2340 11700<br />

900 x 400 735 3670 2646 13212<br />

1000 x 400 820 4100 2952 14760<br />

500 x 500 510 2540 1836 9144<br />

600 x 500 610 3050 2196 10980<br />

700 x 500 710 3550 2556 12780<br />

800 x 500 810 4050 2916 14580<br />

900 x 500 915 4570 3294 16452<br />

1000 x 500 1020 5100 3672 18360<br />

600 x 600 730 3650 2628 13140<br />

700 x 600 850 4250 3060 15300<br />

800 x 600 970 4850 3492 17460<br />

900 x 600 1100 5500 3960 19800<br />

1000 x 600 1220 6100 4392 21960<br />

700 x 700 990 4950 3564 17820<br />

800 x 700 1140 5700 4104 20520<br />

900 x 700 1280 6400 4608 23040<br />

1000 x 700 1420 7100 5112 25560<br />

800 x 800 1300 6500 4680 23400<br />

900 x 800 1460 7300 5256 26280<br />

1000 x 800 1620 8100 5832 29160<br />

900 x 900 1640 8200 5904 29520<br />

1000 x 900 1820 9100 6552 32760<br />

1000 x 1000 2020 10100 7272 36360<br />

1) V · min = 0 is also possible 2) Only TVR 3) Not for TVRK<br />

6<br />

V · min-unit 1)<br />

Sauter RLP 100<br />

V · nom


Sauter RLP 100<br />

Volume Flow Control Tolerances 3)<br />

Volume flow<br />

in % of V · nom<br />

100 5 5<br />

80 5 5<br />

60 5 6<br />

40 7 8<br />

20 10 11<br />

10 >11<br />

1) Only TVR<br />

2) Not for TVRK<br />

3) Percentage figures based on V · actual<br />

∆V · in ± %<br />

TVZ, TVA, TVR TVJ/TVT<br />

7<br />

Single Duct Units<br />

Order Code / Examples<br />

The available options are given in the current price list.<br />

Volume Flow Parameter<br />

Operating<br />

Mode<br />

E<br />

M<br />

S<br />

F<br />

Factory Setting<br />

V · min<br />

V · max<br />

TVR / 160 / 00 / PN1 / EN - 50 - 110 l/s<br />

TVZ-R / 160 / 00 / PR1 / MN - 50 - 110 l/s<br />

TVA-R / 160 / 00 / PN1 / SN - 50 - 110 l/s<br />

Operating Mode<br />

E Individual<br />

M Master<br />

S Slave<br />

F Fixed<br />

Volume Flow<br />

Range<br />

N Low<br />

(standard)<br />

H High<br />

V · min adjustment knob set at required V · min<br />

V · max adjustment knob set at required V · max<br />

V · min adjustment knob turned anticlockwise<br />

for 0 % setting<br />

V · max adjustment knob set at 100 %<br />

Volume flow ratio to master is adjusted<br />

internally<br />

V · min adjustment knob set at required<br />

constant volume flow<br />

V · max adjustment knob at 100 %


Tube Connections<br />

IMPORTANT<br />

8 7 2 1 6<br />

The examples illustrated show the most common<br />

arrangements for volume flow control. The Sauter<br />

specifications must be observed in the overall control<br />

system design, selection of the other control components<br />

and tube sizing.<br />

PN 21, DW<br />

Volume flow<br />

PN 61, DW<br />

Volume flow<br />

V · nom<br />

V · max<br />

V · min<br />

V · (20%)<br />

V · nom<br />

V · max<br />

V · min<br />

V · (20%)<br />

0.2 Control signal p 1.0 bar<br />

6<br />

Control signal RT 2)<br />

0.2 0.6 1.0 bar<br />

1) Operation mode E, F and S: closed<br />

2) The room temperature controller must be connected<br />

on sequenzing relay<br />

8<br />

Nomenclature<br />

Sauter RLP 100<br />

+ High pressure take off from differential pressure<br />

sensor<br />

- Low pressure take off from differential pressure<br />

sensor<br />

1 Operating pressure (1.3 bar, ± 0.1 bar)<br />

2 Output for actuator (0.2 to 1.0 bar)<br />

6 Input pressure for set volume flow (0.2 to 1.0 bar)<br />

M Output pressure for actual volume flow<br />

(0.2 to 1.0 bar)<br />

Tube Connections<br />

The differential pressure sensor of the terminal unit and<br />

the actuator are connected by tube to the volume flow<br />

controller in the factory. The operating pressure and the<br />

thermostat must be connected by the customer. Ensure<br />

that the operating compressed air meets the requirements<br />

in the Sauter documentation. It has to be considered<br />

that the operating pressure air must meet the requirements<br />

for conditioned instrument compressed air<br />

(free from oil, dust and water).<br />

Control Sequences<br />

The adjustment signal of the room temperature controller<br />

can be divided into sequences if a water valve is to be<br />

controlled in addition to the volume flow. Adjustment to<br />

the pressure range of the thermostat is made by a<br />

sequencing relay.<br />

PN21, DW (direct action)<br />

Command signal 0.2 to 1.0 bar gives rise in volume flow.<br />

PN61, DW (direct action)<br />

Command signal 0.6 to 1.0 bar gives rise in volume flow.<br />

Fail Safe Direction of Actuator<br />

If the operating pressure fails or is disconnected, the<br />

actuator moves to a defined end position. This can be<br />

open or shut-off damper position. Selection of the fail<br />

safe direction allows system-specific safety requirements.<br />

NZ (normally closed): Damper closed with no pressure<br />

NO (normal open) : Damper open with no pressure


Sauter RLP 100<br />

Room Temperature Control<br />

(PN 21, DW)<br />

Operating<br />

pressure<br />

supply 1.3 bar<br />

RLP 100<br />

Room temperature<br />

controller,<br />

DW<br />

RLP 100, Parallel Controller<br />

Room Temperature Control with Heating Sequence<br />

(PN 61, DW)<br />

Operating<br />

pressure<br />

supply 1.3 bar<br />

RLP 100<br />

Operating mode E, M<br />

Operating mode E, M<br />

Room temperature<br />

controller,<br />

DW<br />

1) Sequence relay contained in Trox scope of supply<br />

2) Restrictor by customer<br />

2)<br />

297510<br />

1)<br />

Operating mode E, M<br />

Heating valve<br />

0.2 bis 0.6 bar, NO<br />

9<br />

Room Thermostat<br />

The RLP 100 volume flow controller should be connected<br />

to room thermostats according to the connection diagrams<br />

shown. The volume flow controllers release compressed<br />

air via the input connection. Thus the room thermostat<br />

can be connected with one line only. The room<br />

thermostat must have sufficient handling air capacity for<br />

the volume flow controller. If several volume flow controllers<br />

are connected to one room thermostat, the sum of<br />

the air capacities of all volume flow controllers must be<br />

taken into account. If this exceeds the maximum handling<br />

air capacity of the room thermostat, split signal<br />

relays must be used. If the line from the thermostat to the<br />

volume flow controller contains a split signal relay, a non<br />

venting thermostat can be used.<br />

Parallel Control<br />

Several volume flow controllers (supply or extract air) can<br />

be operated in parallel by one room temperature controller.<br />

If the terminal units are the same size and the V · min<br />

and V · max adjustment knobs are set at the same values,<br />

all the units control the same volume flow. If the settings<br />

differ, the units control an equal percentage.<br />

If several controllers are connected to aone room temperature<br />

controller, the sum of the air capacities of all volume<br />

flow controllers has to be considered. If this amount<br />

exceeds the maximum air capacity handling of the room<br />

temperature controller, split signal relays have to be<br />

used.<br />

External Operating Pressure Connections<br />

The volume flow controllers RLP 100 can be connected<br />

directly to the operating pressure supply as they have an<br />

internal restrictor. If the signal from the room thermostat<br />

is divided into several sequences and a sequencing relay<br />

connected, a supply pressure must be supplied to the<br />

thermostat. The correct sizing of the restrictor must take<br />

into account the heating valve actuator. Noise from the<br />

room thermostat will occur if the restrictor is too small.


Room Temperature Control with Shut Off Mode<br />

(PN 21, DW, NZ)<br />

Operating<br />

pressure<br />

supply 1.3 bar<br />

Supply Air/Extract Air Slave Control<br />

S1<br />

RLP 100<br />

S1 System shut off switch<br />

S2 Window switch<br />

Operating<br />

pressure<br />

supply 1.3 bar<br />

Room temperature<br />

controller,<br />

DW<br />

Operating mode E, M<br />

297690<br />

Room temperature<br />

controller,<br />

DW<br />

RLP 100, Supply Air<br />

Actuator<br />

1) Split relay on request contained in Trox scope of supply<br />

1)<br />

Operating mode M<br />

RLP 100 , Extract Air<br />

Operating mode S<br />

S2<br />

10<br />

Shut Off Control<br />

Sauter RLP 100<br />

The variable volume flow control can be overridden using<br />

the customer's pneumatic switches. The override control<br />

for full shut off can take place on all or separate terminat<br />

units. A break in the pressure line to the controlter or<br />

actuator leads to closure of the damper when fail safe<br />

direction of action is normally closed. With this override<br />

control, and unit type TVZ/ TVA/TVR full shut off leakage<br />

air volume flows to DIN 1946 part 4 are achieved. With<br />

TVM units, note that the override control must be<br />

switched to both controllers.<br />

S1, S2 closed: Room temperature control mode<br />

S1 or S2 open: Override control<br />

Safety Function “Damper Open”<br />

If, for safety reasons, ventilation must be guaranteed for<br />

certain building sections, actuators with fail safe direction<br />

normally open (open under no pressure) must be used. In<br />

the event of failure of the compressed air supply, the<br />

damper always opens.<br />

Supply Air/Extract Air Slave Control<br />

Supply air/extract air slave control is possible using the<br />

actual value of the supply air as a control signal for the<br />

control of extract air, if RLP 100 is used for supply air and<br />

a second volume flow controller for the extract air. Only<br />

ratio control can be achieved, i.e. supply and extract air<br />

must remain in the same ratio.<br />

The separating relay in the control line is factory-fitted a<br />

short distance from the supply air controller. It must not<br />

be moved. If the extract air volume flow is reduced to 0,<br />

an RLP100 must be used. The volume flow ratio may be<br />

less than or greater than 100 % and is factory-set using<br />

an adjustment screw in the controller. The V · max adjustment<br />

knob is set to 100 %, the V · min adjustment knob<br />

to 0 %.


Sauter RLP 100<br />

Function Test<br />

Fault Finding Check<br />

Test tubing Connect<br />

supply compressed air<br />

Connect air conditioning system<br />

Check operating pressure<br />

Override control V · min<br />

Record actual value signal ∆p w<br />

Override control V · max<br />

Record actual value signal ∆p w<br />

Operating pressure due<br />

to Sauter requirements?<br />

yes<br />

Actuator opening<br />

and closing?<br />

yes<br />

Volume flow V · min ?<br />

yes<br />

Volume flow V · max ?<br />

yes<br />

Room temperature<br />

control?<br />

yes<br />

Override controls?<br />

no<br />

no<br />

no<br />

no<br />

no<br />

no<br />

Order Example Spare Controller<br />

Check pressure<br />

Damper blocked? Fail<br />

safe direction OK?<br />

Controller faulty<br />

Duct pressure<br />

sufficient?<br />

Measurement<br />

tubing to Sensor<br />

damaged?<br />

Check room<br />

thermostat<br />

Check window<br />

switch, relay etc.<br />

Sauter RLP 100<br />

preset for TVZ 125, 30 ... 60 l/s, V H -Range,<br />

PN21, DW, NZ<br />

11<br />

Commissioning<br />

A rapid function test for commissioning can be carried<br />

out with the system running and the operating pressure<br />

present. Remove the tube from the connection to the<br />

operating pressure supply. If compressed air escapes<br />

from the line, this shows that the controller is supplied<br />

with compressed air. After replacing the tube, the actuator<br />

must return to approximately the same position it held<br />

before the test. If commissioning involves proving the<br />

limit volume flows V · min and V · max hese must be set as<br />

described below.<br />

For each operating situation, the effective pressure (∆p w)<br />

is measured at the Trox differential pressure sensor and<br />

the volume flow calculated:<br />

V · actual = C . �p w<br />

In many cases, incorrect tube connections or insufficient<br />

operating pressure are the cause of the faults. Therefore<br />

for a detailed test on each volume flow controller, first<br />

remove the signal from the room thermostat and then<br />

measure the operating pressure.<br />

Remove the high pressure and low pressure lines on the<br />

volume flow controller and connect a manometer. The<br />

actuator must open and the effective pressure (∆p e) must<br />

rise.<br />

Reconnect the high pressure line, the actuator must now<br />

close and the effective pressure must fall.<br />

Connect the low pressure line. The controller must control<br />

to V · min. Measure effective pressure, calculate volume<br />

flow and compare with designed value.<br />

Close off connection 6 for room thermostat. The controller<br />

must control to V · max. Repeat measurement for V · max<br />

as described above.<br />

Measure control signal p 6 and connect.<br />

Calculate set volume flow and compare with actual<br />

volume flow.<br />

Activate override controls and check operation.<br />

Replacement Controller<br />

To replace faulty controllers, only controllers set for the<br />

terminal unit type and size must be used. Unadjusted<br />

controllers are only acceptable as a temporary solution.<br />

When ordering spare controllers, state V · min and V · max.


Sauter RLP 100, Room Pressure Control<br />

1<br />

Contents<br />

Subject Page<br />

Area of Application 2<br />

Description of Function 3<br />

Room Pressure Control 4<br />

Room Pressure Adjustment on Site 5<br />

Volume Flow Ranges Single-Duct Units 6<br />

Order Code, Examples Single-Duct Units 7<br />

Tube Connections 8<br />

Room Temperature and Room Pressure Control 9<br />

Function Test, Commissioning 10<br />

Design changes reserved · All rights reserved · ® Gebrüder Trox GmbH (12/2001) · Leaflet No. E016MH3


RLP 100 F901/F915<br />

�<br />

�<br />

RLP 100 F003/F004<br />

�<br />

�<br />

� Controller RLP 100...<br />

� x p adjustment knob, %<br />

� ∆ p adjustment knob<br />

� E adjustment knob<br />

Type Range<br />

Sauter RLP 100, Room Pressure Control<br />

�<br />

�<br />

�<br />

� V · min adjustment knob<br />

� �V · adjustment knob<br />

� T n adjustment knob<br />

� Tube connections<br />

Characteristic Controller<br />

Room Pressure Controller<br />

–20 to +20 Pa<br />

–50 to +50 Pa<br />

Volume Flow Controller<br />

Actuator Normally Open (NO)<br />

Actuator Normally Closed (NZ)<br />

�<br />

�<br />

�<br />

RLP 100 F901<br />

RLP 100 F915<br />

RLP 100 F004<br />

RLP 100 F003<br />

2<br />

Area of Application<br />

The pneumatic Sauter RLP 100 room pressure controller<br />

has been designed for the high or low pressure control of<br />

dense rooms. The room pressure is controlled using the<br />

master-and-slave system (cascade-controlled) by a<br />

Sauter RLP 100 F003/F004 flow volume controller, which<br />

controls the flow volume control unit in supply air or<br />

extract air. In total the control for 1 room comprises<br />

3 controllers:<br />

Room Pressure Controller<br />

The control of extremely dense rooms is not satisfactorily<br />

solved with the supply/extract air slave control, as measuring<br />

and control tolerances as well as the unknown<br />

density degree of the room may lead to undesirably high<br />

room pressures or to room pressures with wrong signs.<br />

With the room pressure controller the differential pressure<br />

as to a reference room is measured and controlled. The<br />

set volume flow of the slave controller is within a limited<br />

range in addition to the master controller influenced by<br />

the room pressure controller.<br />

Volume Flow Controller 1<br />

For the variable volume flow control with V · min and V · max<br />

limitation serves the volume flow controller 1 in connection<br />

with a suitable room temperature controller.<br />

Volume Flow Controller 2<br />

Volume flow controller 2 operates in parallel to volume<br />

flow controller 1 and also receives the signal from the<br />

room temperature controller. As a second command variable<br />

the output signal of the room pressure controller is<br />

switched on (activated).<br />

The volume flow controllers RLP100 F001/F002 are<br />

explained in detail in a separate Trox product information<br />

(EØ16NH1).<br />

The actual values of room pressure and volume flows are<br />

available as linear pneumatic standard signals and can<br />

be used for indication.<br />

Static Measuring Principle<br />

The volume flow is measured using a membrane pressure<br />

transducer. Therefore the RLP ... is suitable for the<br />

control of extract air with contaminants and/or which is<br />

dust-loden. Terminal units with painted finish or made of<br />

plastic should be considered in such situations.<br />

IMPORTANT<br />

In critical cases, a material test should be carried out<br />

on the terminal unit and membrane pressure transducer,<br />

to prove suitability for chemicals and concentrations<br />

concerned.


Sauter RLP 100, Room Pressure Control<br />

Characteristic Actual Value<br />

Room Pressure Controller<br />

Room pressure<br />

difference<br />

0<br />

0 0.6<br />

Actual value signal P M<br />

Characteristic Actual Value<br />

Slave Controller<br />

V · nom<br />

Volume flow<br />

V · min unit<br />

0<br />

0 Actual value signal PM Characteristic of Set-Point Adjustment<br />

Volume Flow Controller 2<br />

V · nom<br />

Volume flow<br />

controller 2<br />

+<br />

-<br />

V · actual = P M . V · nom<br />

V · 2 = V · 1 + . V · P8 - 0.6<br />

nom<br />

4<br />

�V ·<br />

0 0 Volume flow controller 1<br />

1.0 bar<br />

1.0 bar<br />

V · nom<br />

3<br />

Description of Function<br />

Room Pressure Controller<br />

The room pressure1) is measured on the static differential<br />

pressure principle. One measuring point each for static<br />

pressure is provided in the room to be controlled and in<br />

the reference room. If several rooms are switched one<br />

behind the other in pressure cascade, a neutral reference<br />

pressure is recommended, i.e. corridor, which must be<br />

free from wind influence and other pressure fluctuations.<br />

These pressures (room pressure differentials) are measured<br />

by a membrane pressure transducer. The actual<br />

room pressure value is available as pneumatic signal PM. The set room pressure is adjusted or predetermined by<br />

an external command variable. The controller compares<br />

the required room pressure with the actual value. Corresponding<br />

to the control deviation the influence onto the<br />

volume flow controller 2 is changed. The room pressure<br />

control shows PI behaviour.<br />

Volume Flow Controller<br />

The volume flow is measured on the static differential<br />

pressure principle. For further explanations please refer<br />

to the separate Trox product information EØ16NH1.<br />

The set volume flow is predetermined by the room temperature<br />

controller and limited to V · min and V · max. The<br />

second command variable (for room pressure controller)<br />

results in a further adjustment of the set value. The controller<br />

determines the required volume flow according to<br />

the characteristics as shown and compares this with the<br />

actual value.<br />

The damper actuator is controlled according to the control<br />

deviation. The volume flow control shows I-behaviour.<br />

The volume flow controllers are used together with a<br />

certain type of Trox actuators. Adaptation to the fail safe<br />

direction of the adjustment blade (NZ/NO) inside the controller<br />

is made in the factory.<br />

Gravity Dependency<br />

Because of the weight of the membrane the positioning<br />

of the VFP affects the measured signal. The VFP is normally<br />

calibrated for a vertical position of the membrane,<br />

i.e. pressure tube connections above or below horizontal<br />

plane. Other installation positions must be specified on<br />

order.<br />

1) For simplification the room pressure differential is referred to as<br />

room pressure in this leaflet.


Control Behaviour after Alteration of Disturbance<br />

Pressure Independent Control Characteristic<br />

Pressure<br />

difference<br />

Room pressure<br />

difference<br />

0<br />

1000<br />

Pa<br />

800<br />

600<br />

400<br />

200<br />

Door open<br />

‡ max set value<br />

‡ min set value<br />

V · min<br />

=<br />

=<br />

Door closed<br />

�V ·<br />

Time<br />

% of V<br />

Volume flow<br />

· 20 40 60 80 100<br />

nom<br />

Formula for Volume Flow Adjustment<br />

‡ max<br />

‡ nom<br />

‡ min<br />

‡ nom<br />

.<br />

.<br />

Sauter RLP 100, Room Pressure Control<br />

�V ·<br />

V · max<br />

100 %<br />

100 %<br />

4<br />

Room Pressure Control<br />

As the room pressure controller works with PI characteristic<br />

(proportional-integral) the required room pressure is<br />

theoretically always obtained. Deviations are only given<br />

by the measuring tolerance of the room pressure transducer<br />

(component in RLP 100...). It is, however, a prerequisite<br />

that the room has the density required, in order to<br />

achieve the required room pressure from the volume flow<br />

differential between between supply air and extract air.<br />

The room pressure height, which results from alterations<br />

of disturbances (door closed) as well as the setting (stabilization)<br />

time required depends i.a. on the duct pressures<br />

in the supply and extract air system, room density<br />

and air change (rate) (volume flow / contents).<br />

Volume Flow Control<br />

The volume flow controller works independently of the<br />

duct pressure, i.e. pressure fluctuations cause no<br />

changes to volume flow.<br />

To prevent the volume flow control becoming unstable, a<br />

dead zone is allowed within which the damper does not<br />

move.<br />

This dead zone and the accuracy of site measurements<br />

lead to volume flow deviation ∆V · shown opposite.<br />

If the conditions given in the sales brochure (static minimum<br />

pressure differential, inlet flow conditions etc.) are<br />

not observed, greater deviations must be expected.<br />

Room Pressure Adjustment<br />

The required room pressure is adjusted at the Dp adjustment<br />

knob. The adjustment range reaches from –20 to<br />

+20 Pa and/or –50 to +50Pa.<br />

If the room pressure is variable, e. g. changeover high/low<br />

pressure, the adjustment knob must be set to –20 Pa<br />

(and/or –50 Pa). If necessary, the lower pressure value<br />

can be limited.<br />

Adjustment Volume Flow Controller 2<br />

The ∆V · -adjustment knob at volume flow controller 2 must<br />

be set to 0 % in order to obtain an unobjectionable functioning<br />

of room pressure control. The adjustments of V · min<br />

and V · max must be in conformity with the values of controller<br />

1.<br />

When ordering, the appertaining master unit must be<br />

indicated as well. The master unit must be of equal size.<br />

Please, consult Trox in case of deviations.


Sauter RLP 100, Room Pressure Control<br />

Adjustment Knobs RLP 100<br />

Room Pressure Controller<br />

�<br />

Adjustment Knobs RLP 100<br />

Volume Flow Controller<br />

�<br />

Formula for V · min<br />

Formula for V · max<br />

x p<br />

� x p adjustment knob, %<br />

� ∆ p adjustment knob<br />

� T n adjustment knob<br />

� E adjustment knob<br />

�p w-‡min<br />

�p w-‡max<br />

T n<br />

� p<br />

=<br />

=<br />

(<br />

(<br />

‡ min<br />

C<br />

‡ max<br />

C<br />

(<br />

(<br />

2<br />

2<br />

�<br />

�<br />

�<br />

�<br />

� V · min adjustment knob<br />

� �V · adjustment knob<br />

5<br />

Room Pressure Adjustment on Site<br />

A subsequent adjustment of the room pressure set value<br />

can be made at the ∆ p adjustment knob of the RLP 100.<br />

Non Air Tight Room<br />

Should at commissioning it turn out that the required<br />

room pressure cannot be achieved, because the room<br />

has not the projected density, a supply air/extract air<br />

slave control has to be adjusted.<br />

For this purpose the room pressure controller is put out<br />

of force leaving connection 8 of the slave controller open.<br />

The ∆V · adjustment knob is set to 10 %. Thus the extract<br />

air follows the supply air in a ratio 1 : 1.<br />

Adjustment Rules<br />

• The adjustment knobs for V · min and V · max can within the<br />

indicated limits be adjusted independently from each<br />

other. An adjustment of less than 20 % cannot be<br />

recommended, because of the reduced control accuracy.<br />

• If the V · min adjustment knob is set higher than V · max,<br />

then the maximum volume flow V · max is constantly controlled.<br />

• A constant volume flow (fixed value) is adjusted using<br />

the V · min adjustment knob; the V · max adjustment knob<br />

must be set at 100 %.<br />

Volume Flow Adjustment on Site<br />

lf subsequent changes to the volume flow limit values are<br />

required, the setting knobs can be reset to the new<br />

values using the rules above. The accuracy can be increased<br />

if the effective pressures of the differential pressure<br />

sensor can be measured and the following procedure<br />

carried out with the system switched on:<br />

• Remove the tube from connection 6 (control signal) so<br />

that the controller runs at V · min. Do not seal the connecting<br />

nipple.<br />

• Calculate the effective pressure for V · min.<br />

• Set V · min adjustment knob until the effective pressure<br />

corresponds to the calculated value (after adjustment,<br />

wait until the controller has settled and the actuator<br />

stopped).<br />

• Close connection 6 with a cap or sealed hose. The<br />

controller runs at V · max.<br />

• Calculate the effective pressure for V · max.<br />

• Reset the V · max adjustment knob as described for V · min.<br />

• Replace original tube connections.<br />

The C values for the above calcolations are given in the<br />

VARYCONTROL Product Information under the heading<br />

“Commissioning”.


Volume Flow Ranges TVZ, TVA, TVR, TVRK<br />

V · min- V<br />

unit<br />

· minunit<br />

V · min- V<br />

unit<br />

· to<br />

V<br />

minunit<br />

· to<br />

V nom<br />

· nom<br />

to<br />

V · to<br />

V nom<br />

· l/s m<br />

nom<br />

3 V<br />

/h<br />

· V H<br />

· N<br />

V · V H<br />

· 1)<br />

N<br />

1)<br />

1002) 10 50 15 75 36 180 54 270<br />

125 15 75 22 110 54 270 79 396<br />

160 25 125 40 190 90 450 144 684<br />

200 40 200 60 305 144 720 216 1098<br />

250 60 300 95 480 216 1080 342 1728<br />

315 105 525 155 780 378 1890 558 2808<br />

4003) 170 850 260 1300 612 3060 936 4680<br />

Size<br />

Volume Flow Ranges TVJ/TVT<br />

B x H<br />

mm<br />

V · min-unit 1)<br />

l/s m 3 /h<br />

V · nom<br />

200 x 100 45 215 162 774<br />

300 x 100 65 320 234 1152<br />

400 x 100 85 425 306 1530<br />

500 x 100 105 535 378 1926<br />

600 x 100 130 650 468 2340<br />

200 x 200 85 415 306 1494<br />

300 x 200 125 620 450 2232<br />

400 x 200 165 825 594 2970<br />

500 x 200 205 1035 738 3726<br />

600 x 200 250 1250 900 4500<br />

700 x 200 290 1450 1044 5220<br />

800 x 200 330 1650 1188 5940<br />

300 x 300 185 920 666 3312<br />

400 x 300 245 1230 882 4428<br />

500 x 300 305 1535 1098 5526<br />

600 x 300 370 1850 1332 6660<br />

700 x 300 430 2150 1548 7740<br />

800 x 300 490 2450 1764 8820<br />

900 x 300 555 2770 1998 9972<br />

1000 x 300 620 3100 2232 11160<br />

400 x 400 325 1630 1170 5868<br />

500 x 400 410 2040 1476 7344<br />

600 x 400 490 2450 1764 8820<br />

700 x 400 570 2850 2052 10260<br />

800 x 400 650 3250 2340 11700<br />

900 x 400 735 3670 2646 13212<br />

1000 x 400 820 4100 2952 14760<br />

500 x 500 510 2540 1836 9144<br />

600 x 500 610 3050 2196 10980<br />

700 x 500 710 3550 2556 12780<br />

800 x 500 810 4050 2916 14580<br />

900 x 500 915 4570 3294 16452<br />

1000 x 500 1020 5100 3672 18360<br />

600 x 600 730 3650 2628 13140<br />

700 x 600 850 4250 3060 15300<br />

800 x 600 970 4850 3492 17460<br />

900 x 600 1100 5500 3960 19800<br />

1000 x 600 1220 6100 4392 21960<br />

700 x 700 990 4950 3564 17820<br />

800 x 700 1140 5700 4104 20520<br />

900 x 700 1280 6400 4608 23040<br />

1000 x 700 1420 7100 5112 25560<br />

800 x 800 1300 6500 4680 23400<br />

900 x 800 1460 7300 5256 26280<br />

1000 x 800 1620 8100 5832 29160<br />

900 x 900 1640 8200 5904 29520<br />

1000 x 900 1820 9100 6552 32760<br />

1000 x 1000 2020 10100 7272 36360<br />

1) V · min = 0 is also possible 2) Only TVR 3) Not TVRK<br />

Sauter RLP 100, Room Pressure Control<br />

6<br />

V · min-unit 1)<br />

V · nom


Sauter RLP 100, Room Pressure Control<br />

Volume Flow Control Tolerances 1)<br />

Volume flow<br />

in % of V · nom<br />

100 5 5<br />

80 5 5<br />

60 5 6<br />

40 7 8<br />

20 10 11<br />

10 >11<br />

1) Percentage figures based on V · actual<br />

∆V · in ± %<br />

TVZ, TVA, TVR TVJ/TVT<br />

7<br />

Single Duct Units<br />

Order Code / Examples<br />

The available options are given in the current price list.<br />

Volume Flow Parameters<br />

Operating<br />

Mode<br />

E<br />

F<br />

V · min<br />

Factory Setting<br />

V · max<br />

TVR / 160 / 00 / PN1 / ZE - 50 - 110 l/s - +10Pa<br />

TVA / 160 / 00 / PX1 / AE - 50 - 110 l/s - -25Pa<br />

TVR / 160 / 00 / PV1 / ZF - 75 l/s - -10Pa<br />

Installation point<br />

A Extract Air<br />

Z Supply Air<br />

Operating Mode<br />

E Individual<br />

F Fixed<br />

When ordering, the appertaining master unit must be<br />

indicated as well. The master unit must be of equal size.<br />

Please, consult Trox in case of deviations.<br />

Room Pressure Parameters<br />

�p set at required room pressure<br />

V · min adjustment knob set at required V · min<br />

V · max adjustment knob set at required V · max<br />

V · min adjustment knob set at required V ·<br />

V · max adjustment knob set at 100 %.<br />

�p


Tube Connections RLP 100 F901/F915<br />

Tube Connections RLP 100 F003/F004<br />

IMPORTANT<br />

The examples illustrated show the most common<br />

arrangements for volume flow control. The Sauter<br />

specifications must be observed in the overall control<br />

system design, selection of the other control components<br />

and wire sizing. Details of other circuits are<br />

available from Sauter.<br />

Room Pressure Control<br />

Reference<br />

Room<br />

6<br />

1<br />

M<br />

2<br />

7<br />

8<br />

6<br />

1<br />

M<br />

2<br />

7<br />

8<br />

Room<br />

Sauter RLP 100, Room Pressure Control<br />

8<br />

Nomenclature<br />

Room Pressure Controller<br />

+ Static pressure input from room<br />

- Static pressure input from reference room<br />

1 Operating pressure input (1.3 bar, ± 0.1 bar)<br />

2 Output set value (0.2 to 1.0 bar)<br />

6 Input room pressure set value (0.2 to1.0 bar)<br />

M Output actual room pressure (0.2 to 1.0 bar)<br />

Volume Flow Controller<br />

+ High pressure take off from differential pressure<br />

sensor<br />

- Low pressure take off from differential pressure<br />

sensor<br />

1 Operating pressure input (1.3 bar, ± 0.1 bar)<br />

2 Actuator output (0.2 to 1,0 bar)<br />

6 Set volume flow input (0.2 to 1.0 bar)<br />

8 Input set value (0.2 to 1.0 bar)<br />

M Output actual value (0.2 to 1.0 bar)<br />

Tube Connections<br />

The differential pressure sensor of the volume flow control<br />

unit and the actuator are tube-connected with the<br />

volume flow controller in the factory. The operating pressure<br />

has to be connected by the customer. It has to be<br />

considered that the operating pressure air must meet the<br />

requirements for conditioned instrument compressed air<br />

(free from oil, dust and water).<br />

Tube Connections Room Pressure Controller<br />

Tube dimensions: di = 6 mm<br />

max. lengths : 10 m (plus and minus in total) 1)<br />

Material : Polyurethane1) Room Pressure Control<br />

For room pressure controls the RLP 100 is tube-connected<br />

according to the sketch shown. The measuring<br />

points in the room and reference room must be free from<br />

any turbulences (no influence due to room flow, no dynamic<br />

share pd). Note:<br />

If room groups with different pressure stages are arranged<br />

one behind the other, all transducers shall operate<br />

with a common reference pressure, e.g. atmospheric<br />

pressure.<br />

1) Recommendation


Sauter RLP 100, Room Pressure Control<br />

Room Temperature and Room Pressure Control<br />

Operating<br />

pressure<br />

Room<br />

temperature<br />

controller, DW<br />

1 6<br />

RLP 100 (F001/002)<br />

Operating Mode E<br />

1 2<br />

RLP 100 Room Pressure<br />

1 8 6<br />

RLP 100 Volume Flow<br />

Room Pressure Control (Constant Value)<br />

Operating<br />

pressure<br />

RLP 100 Room Pressure<br />

RLP 100 Volume Flow<br />

Operating Mode ZE, AE<br />

8<br />

Room<br />

Reference room<br />

Room<br />

Reference room<br />

2<br />

Operating Mode ZF, AF<br />

9<br />

Room Temperature Controller<br />

The RLP 100 volume flow controller should be connected<br />

with discharging room temperature controllers according<br />

to the tubing plans shown. The volume flow controllers<br />

discharge (blow) compressed air through the input for the<br />

command variable. Thus, the controller can be connected<br />

with one connection tube only. The room temperature<br />

controller must be dimensioned for the discharge<br />

volume of the volume flow controller.<br />

Room Pressure Controller<br />

The room pressure controller should be assembled close<br />

to the room and/or reference room in order to keep the<br />

tube lengths of the measurement lines short.<br />

Parallel Control<br />

Several volume flow controllers (supply and extract air)<br />

are parallelly controlled by one room temperature controller.<br />

The volume flow control units are of equal size and<br />

the V · min and V · max adjustment knobs are set to equal<br />

values. For this reason all units have the same volume<br />

flow.<br />

If several controllers are connected to a room temperature<br />

controller, the sum of the discharge amounts of all<br />

volume flow controllers has to be considered. If this<br />

amount exceeds the maximum air take-back volume of<br />

the room temperature controller, cutoff relays have to be<br />

used.<br />

Operating Pressure Connections<br />

The volume flow controllers RLP 100 can directly be connected<br />

to the operating pressure supply as they have an<br />

internal restrictor. If the signal of the room temperature<br />

controller is subdivided to several sequences and a<br />

sequence relay is integrated, an operating pressure supply<br />

must be directed to the room temperature controller.<br />

Here, the correct dimensioning of the restrictor has to be<br />

taken into account, also under consideration of the heating<br />

value actuator. If the restriction is too low, disturbing<br />

discharge noises occur at the room temperature controller.<br />

Constant Volume Flow Control<br />

Rooms with constant volume flow can be room-pressure<br />

controlled. If a constant controller (e.g. Trox RN) is installed<br />

in the supply air, the room pressure volume flow<br />

cascade has to be in the extract air. This controller compensates<br />

room pressure deviations resulting from supply<br />

air tolerances. At constant room extract air the same procedure<br />

is used for the supply air.


Function Test<br />

Fault Finding Check<br />

Test tubing Connect<br />

supply compressed air<br />

Connect air conditioning system<br />

Check Volume Flow Controller<br />

Check Room Pressure Controller<br />

Operating pressure due<br />

to Sauter requirements?<br />

yes<br />

Actuator opening<br />

and closing?<br />

yes<br />

Volume Flow V · min ?<br />

yes<br />

Volume Flow V · max ?<br />

yes<br />

Room temperature<br />

control?<br />

yes<br />

Override controls?<br />

no<br />

no<br />

no<br />

no<br />

no<br />

no<br />

Order Example Spare Controller<br />

Sauter RLP 100, Room Pressure Control<br />

Operating pressure<br />

due to Sauter<br />

requirements?<br />

Damper blocked? Fail<br />

safe direction OK?<br />

Controller faulty<br />

Duct pressure<br />

sufficient?<br />

Measurement<br />

tubing to Sensor<br />

damaged?<br />

Check room<br />

thermostat<br />

Check window<br />

switch, relay etc.<br />

Room Pressure Controller Sauter RLP 100 F 901<br />

preset at +15 Pa<br />

Volume Flow Controller Sauter RLP 100 F 003<br />

preset for TVA 160<br />

10<br />

Commissioning<br />

For commissioning it is best to first disconnect (remove)<br />

the command variable of the room pressure controller<br />

(terminal 8). With the doors open, master and slave controller<br />

are set in operation according to Trox product<br />

information (RLE 150, EØ16MB7). Then reconnect command<br />

variable, shut the doors and check room pressure<br />

(smoke checks).<br />

The set value of the room pressure is reached, when the<br />

room pressure determined from the P M measured is in<br />

conformity with the set value. If this is not the case, the<br />

room leakage is too high. The set value has to be reduced.<br />

If the room proves to be non-air-tight, the room<br />

pressure control cannot function. The room is then to be<br />

taken into operation with the supply air/extract air slave<br />

control.<br />

Replacement Controller<br />

When replacing faulty controllers, calibrated controllers<br />

set for the terminal box type and size must be used.<br />

Uncalibrated controllers can only be used as a temporary<br />

solution. The following must be specified when ordering<br />

a replacement controller: Room presure, V · min and V · max.


Sauter Accessories<br />

1<br />

Contents<br />

Subject Page<br />

Sequencing Relay 2<br />

Split Signal Relay 2<br />

Design changes reserved · All rights reserved · ® Gebrüder Trox GmbH (12/2001) · Leaflet No. E016MH2


Sequencing Relay 297510<br />

�<br />

� Adjustment screw<br />

� Output<br />

� Input<br />

Characteristic Diagram<br />

P output<br />

Split Signal Relay<br />

Characteristic Diagram<br />

P output<br />

�<br />

�<br />

1.0<br />

bar<br />

0.6<br />

0.2<br />

� Free<br />

� Output<br />

� Input<br />

1.0<br />

bar<br />

0.6<br />

0.2<br />

0.2<br />

0.2<br />

0.6<br />

P input<br />

0.6<br />

P input<br />

3<br />

1<br />

2<br />

bar<br />

bar<br />

297510<br />

1.0<br />

297690<br />

1.0<br />

1<br />

3<br />

2<br />

2<br />

3<br />

2<br />

Sequencing Relay<br />

Area of Application<br />

The Sauter 297510 sequencing relay is used in connection<br />

with variable volume flow controllers if a split range<br />

of the output signal from the room thermostat is to be<br />

used to control a heating valve in sequence with the variable<br />

volume. The room thermostat must give a rise in<br />

pressure signal as the temperature rises (direct acting on<br />

cooling).<br />

Function<br />

The full range of pressure sigoal on the room thermostat<br />

of 0.2 to 1.0 bar is set on the input of the sequence relay.<br />

From 0.6 bar input pressure, a double amplified signal is<br />

present at the output according to the diagram shown.<br />

The input is non venting. The room thermostat must be<br />

supplied with operating pressure via an external restrictor.<br />

The output is fed from the volume flow controller.<br />

Split Signal Relay<br />

Sauter Accessories<br />

Area of Application<br />

A split signal relay is used to separate pneumatic signals.<br />

In the control of variable volume flows, the signal is used<br />

for supply/extract air sequential control. The actual volume<br />

flow value output of the RLP 10 can only supply a<br />

limited amount of air. The relay serves as an amplifier:<br />

another application is the parallel switching of several<br />

VAV terminal units on one room temperature controller. If<br />

the capacity of the room temperature controller is exceeded,<br />

the relay is used to create control subgroups.<br />

Function<br />

The control pressure is always transferred from the input<br />

to the output in the ratio of 1:1. There is no air release<br />

from the input. A ball relief nozzle releases excess pressure<br />

on the output side. The maximum air handling capacity<br />

must be taken into account.


Trox Pneumatic Actuator<br />

1<br />

Contents<br />

Subject Page<br />

Application 2<br />

Function 2<br />

Design changes reserved · All rights reserved · ® Gebrüder Trox GmbH (12/2001) · Leaflet No. E016MJ0


Pneumatic Actuator<br />

2<br />

1<br />

� Actuator<br />

� Piston rod<br />

� Air pressure connection<br />

3<br />

2<br />

Application<br />

Trox Pneumatic Actuator<br />

Maintenance-free compressed air damper actuator for<br />

VAV terminal units. Controlled by the signal of a pneumatic<br />

volume flow controller. The actuator is factorymounted<br />

on the terminal unit with pneumatic tubing to<br />

the controller.<br />

Function<br />

The actuator incorporates a neoprene roll membrane and<br />

thus has no steady state air consumption itself. As the<br />

control pressure rises, the piston rod pushes against a<br />

return spring (stroke approximately 85 mm).<br />

At control pressure 0 bar the piston rod is retracted. The<br />

piston rod drives the damper via a lever. The mechanism<br />

is factory set such that the full travel of the aetuator is<br />

used for the open to closed movement of the damper. No<br />

travel limiters are required. The direction of action (open<br />

or closed with no pressure) is established by the actuator<br />

mounting position.<br />

• Manual adjustment is not possible. Manual withdrawal<br />

of the piston rod can lead to damage. The roll membrane<br />

is not under pressure and can stick internally.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!