07.06.2015 Views

The Hydrological Cycle - Monitoring Locations and ... - Apc.co.nz

The Hydrological Cycle - Monitoring Locations and ... - Apc.co.nz

The Hydrological Cycle - Monitoring Locations and ... - Apc.co.nz

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>The</strong> <strong>Hydrological</strong> <strong>Cycle</strong> - <strong>Monitoring</strong> <strong>Locations</strong> <strong>and</strong> Equipment<br />

Hydrolab<br />

Multiprobe<br />

Ott Level Senso<br />

Ott<br />

Datalogger<br />

Portable Data Collection<br />

(Vota & PDA)<br />

Ott Rain Gauge<br />

Ott Flow Sensor<br />

Hydromet Softw<br />

Ott<br />

Communication<br />

Ott Ground Station<br />

Buyout Items<br />

Rain<br />

Rivers<br />

Sampling<br />

Lakes<br />

Estuaries <strong>and</strong><br />

Shallow<br />

Ocean<br />

Ground<br />

Water<br />

Hydrolab <strong>and</strong> Ott Jointly Provide Full <strong>Hydrological</strong><br />

<strong>Monitoring</strong> Solution<br />

Presented By D J Catt


Key Innovations<br />

• 1965 - First in-situ water quality multiprobe<br />

• 1966 - First submersible pH sensor<br />

• 1967 - First 4-electrode <strong>co</strong>nductivity sensor<br />

• 1982 - First submersible multiprobe logger<br />

• 1992 - First 2 year instrument warranty<br />

• 1992 - First 1.75 inch (4.4 cm) multiprobe for<br />

groundwater monitoring (H20-G)<br />

• 1993 - First in-situ turbidity sensor<br />

• 1996 - First to integrate GPS <strong>and</strong> barometric<br />

pressure sensors (Surveyor 4a)<br />

• 1997 - First in-situ chlorophyll <strong>and</strong> ambient<br />

light sensors mounted on multiprobe<br />

• 1999 - First 3 year instrument warranty<br />

• 2001 - First 4-beam ratiometric, in-situ turbidity<br />

sensor<br />

• 2003 - First 0-3000 NTU Self-Cleaning Turbidity<br />

Sensor<br />

• 2004 - First multiprobe with blue-green algae<br />

fluorometer option.<br />

• 2005 – Series 5 Multiprobes installed with Hach<br />

LDO


Product Applications<br />

‣ Regulatory<br />

‣ Hydro Power<br />

‣ Fisheries Management<br />

‣ Groundwater<br />

‣ Non Point Source<br />

‣ Research/Educational<br />

‣ Near Coastal<br />

‣ Drinking Water Reservoir<br />

‣ Waste Water<br />

‣ Aquaculture<br />

‣ On-Line Real Time<br />

<strong>Monitoring</strong>


Hach LDO TM Available only on Series 5<br />

sondes<br />

• Reduced Maintenance<br />

– No membrane to replace<br />

• No more stretching of<br />

Teflon membrane with<br />

worries about air<br />

bubbles, wrinkles or<br />

membrane thickness<br />

– No electrolyte to foul or<br />

poison<br />

•No H 2<br />

S poisoning of the<br />

electrolyte<br />

• No more punctured<br />

membranes<br />

• No anode or cathode to<br />

refurbish<br />

– No circulator needed<br />

– 2-year sensor warranty<br />

– 1-year cap warranty<br />

LDO is the biggest breakthrough for multi-parameter sondes<br />

in 5 years!


How Does HachLDO Work?<br />

• A sensor cap is <strong>co</strong>ated<br />

with a luminescent<br />

material<br />

Probe<br />

• Blue light from an LED<br />

strikes the luminescent<br />

chemical on the sensor<br />

cap<br />

LED<br />

Photo Diode<br />

LED<br />

Sensor<br />

Cap<br />

• <strong>The</strong> luminescent chemical<br />

instantly be<strong>co</strong>mes excited


How Does HachLDO Work?<br />

• As the excited<br />

chemical relaxes, it<br />

releases red light<br />

• <strong>The</strong> red light is<br />

detected by a photo<br />

diode<br />

• <strong>The</strong> time it takes for<br />

the chemical to<br />

return to a relaxed<br />

state is measured<br />

LED<br />

Photo Diode<br />

LED<br />

Probe<br />

Sensor<br />

Cap


DS5x MULTIPROBE<br />

HACH LDO SENSOR<br />

SELF CLEANING<br />

TURBIDITY<br />

CONDUCTIVITY<br />

TEMPERATURE<br />

TOTAL<br />

DISSOLVED<br />

GAS


‣ A “nephlometer” emits a light from<br />

an LED at 880nm <strong>and</strong> a photodiode<br />

<strong>co</strong>llects the backscatter (right<br />

angle) from particles in the water;<br />

no particles, no backscatter<br />

‣ St<strong>and</strong>ard sensor is early generation<br />

nephlometer<br />

‣ <strong>The</strong> Self-Cleaning sensor has a pad<br />

which cleans the lenses on each<br />

measurement. Sensor is sunlight<br />

resistant <strong>and</strong> has an averaging<br />

feature.<br />

‣ 4-Beam is new revolutionary<br />

sensor that uses st<strong>and</strong>ard<br />

backscatter, yet has multiple<br />

beams/references checking <strong>and</strong><br />

rechecking its accuracy.<br />

‣ Ranges: Up to 3000 NTU’s on<br />

Self Cleaning sensor. 1000 NTU<br />

Turbidity<br />

4-Beam / Self-Cleaning / St<strong>and</strong>ard<br />

4-beam Self-Cleaning St<strong>and</strong>ard


Chlorophyll a / Blue-Green Algae / Rhodamine WT<br />

‣Based on Turner Designs<br />

Cyclops –7 Fluorometer<br />

‣Specifically redesigned to<br />

fit in Hydrolab multiprobes<br />

‣<strong>The</strong> three different<br />

parameters use the same<br />

basic fluorometer, but the<br />

light source <strong>and</strong> filters are<br />

specific to each.<br />

‣Customer can use a Solid<br />

St<strong>and</strong>ard, which checks to<br />

determine if the fluorometer<br />

is still within calibration.


Principle of Fluorescence<br />

Digital Readout<br />

Light Detector<br />

Wavelengths specific to <strong>co</strong>mpound<br />

Wavelengths created by<br />

<strong>co</strong>mpound, plus stray light<br />

Emission Filter<br />

Lamp<br />

Cuvette or<br />

Sample Cell<br />

Excitation Filter<br />

Many wavelengths of light<br />

Specific wavelengths of light


Advantages of Fluorescence<br />

Specific<br />

– No two molecules excite <strong>and</strong> emit at the same<br />

wavelength<br />

Simple<br />

– No treatment required for many applications<br />

Sensitive<br />

− Detect 0.02ug/L chlorophyll a<br />

Fast<br />

– Readings taken on-site


In vivo chlorophyll applications<br />

HABs<br />

Limnology<br />

Education<br />

Remote<br />

Sensing<br />

in vivo chlorophyll<br />

Water<br />

Treatment<br />

Fisheries<br />

Aquaculture<br />

Marine<br />

Research<br />

Extracted chlorophyll<br />

(a, b, c, pheo a)


Photosythetically Active Radiation Sensor<br />

(PAR)<br />

‣Measurement of light intensity at<br />

certain points in the water <strong>co</strong>lumn<br />

‣PAR intensity influences biota that<br />

rely on photosynthesis for nutrition<br />

‣Can be ordered as a single sensor or<br />

a Dual-PAR sensor for use to measure<br />

light both at the surface <strong>and</strong> down in<br />

the water <strong>co</strong>lumn.<br />

‣Two types of sensors – Spherical<br />

(Shown) <strong>and</strong> a flat-faced version for<br />

measurements directly above the<br />

multiprobe, where sunlight extinction<br />

is important.


Typical Installations<br />

USGS Stream<br />

Gauging<br />

Station<br />

• Datalogger<br />

• Tele<strong>co</strong>m<br />

• Sampler<br />

• Flow meter<br />

• Multiprobe<br />

Met Station<br />

• Datalogger<br />

• Tele<strong>co</strong>m<br />

• Rain Gaug<br />

• Radiation<br />

• Flow mete<br />

• Multiprobe


Nagasaki Bay, telemetry site


USGS San Francis<strong>co</strong> Bay


Taiwan Sun Moon Reservoir


Louisville Metro Sewer District “Long<br />

Term <strong>Monitoring</strong> Network”<br />

• 28 sites are long term<br />

monitoring sites<br />

• 20 special project sites<br />

• 2 week interval for data<br />

retrieval <strong>and</strong> general<br />

maintenance<br />

• 15 minute intervals <strong>and</strong> solar<br />

powered<br />

• Partnering with USGS for<br />

discharge only on long term<br />

sites<br />

• Macroinvertabrate <strong>and</strong> algal<br />

surveys are performed on all<br />

long term sites


N.C. State University Site<br />

Madsen River Site


DS4x Post deployment<br />

Madsen River Site


What is Blue-Green Algae?<br />

• Scientific description is<br />

“Cyanobacteria”<br />

• Photosynthetic bacteria<br />

present in most freshwater<br />

<strong>and</strong> marine systems<br />

• Be<strong>co</strong>mes visible when<br />

bacteria <strong>co</strong>ncentrates <strong>and</strong><br />

‘algal blooms’ float to the<br />

surface<br />

• Heavy toxic <strong>co</strong>ncentrations,<br />

or Harmful Algal Blooms<br />

(HAB’s), can cause health<br />

risks to humans <strong>and</strong> animals


Drinking Water Facility Issues<br />

• United States Environmental<br />

Protection Agency placed<br />

Cyanobacteria on its Drinking Water<br />

Contaminant C<strong>and</strong>idate List<br />

• Currently listed as an Unregulated<br />

Contaminant<br />

• HAB’s in drinking water facilities can<br />

cause:<br />

– Public health risks<br />

– Foul taste <strong>and</strong> smell<br />

– Clogged filters<br />

– Unsafe <strong>co</strong>nditions for recreational<br />

use<br />

– Potential death of stock <strong>and</strong> wildlife<br />

– Foul smell <strong>and</strong> unpleasant<br />

appearance<br />

– Fish kills


Blue-Green Algae Sensor by Turner Designs<br />

Available as an option on the Hydrolab DataSonde 4a or<br />

DataSonde 4X<br />

• Note: Detecting Blue-Green Algae requires special optics for<br />

marine water… both marine <strong>and</strong> freshwater option is available<br />

today<br />

Optical Characteristics<br />

• Light Source: Light<br />

Emitting Diode<br />

• Detector: Photodiode<br />

• Excitation Wavelength:<br />

590nm<br />

• Emission Wavelength:<br />

650nm


<strong>Monitoring</strong> should include:<br />

• 1. Field observations for planktonic algae blooms, attached algae biomass,<br />

filter head loss, etc.<br />

• 2. Taste <strong>and</strong> odor monitoring at the treatment plant <strong>and</strong> distribution<br />

system by simple T&O tests, FPA tests (flavor profile analyses), TON tests<br />

(threshold odor number), also using the more expensive GC analyses for<br />

odor <strong>co</strong>mpounds such as geosmin <strong>and</strong> other parameters.<br />

• 3. Routine algae sampling with micros<strong>co</strong>pic analysis for cell <strong>co</strong>unts <strong>and</strong><br />

species identification.


Intense Summer Stratification at a Water Intake


End of Hydrolab/OTT Water<br />

Quality <strong>Monitoring</strong><br />

Presentation<br />

Questions?

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!