09.06.2015 Views

effects of joule heating on mhd natural convection in non ...

effects of joule heating on mhd natural convection in non ...

effects of joule heating on mhd natural convection in non ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Isı Bilimi ve Tekniği Dergisi, 32, 1, 81-90, 2012<br />

J. <str<strong>on</strong>g>of</str<strong>on</strong>g> Thermal Science and Technology<br />

©2012 TIBTD Pr<strong>in</strong>ted <strong>in</strong> Turkey<br />

ISSN 1300-3615<br />

EFFECTS OF JOULE HEATING ON MHD NATURAL CONVECTION IN<br />

NON-ISOTHERMALLY HEATED ENCLOSURE<br />

Hakan F. ÖZTOP * and Khaled AL-SALEM **<br />

* Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Mechanical Eng<strong>in</strong>eer<strong>in</strong>g, Technology Faculty,<br />

Fırat University, Elazig, Turkey, hfoztop1@gmail.com<br />

** Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Mechanical Eng<strong>in</strong>eer<strong>in</strong>g, K<strong>in</strong>g Saud University<br />

Riyadh, Saudi Arabia, kalsalem@ksu.edu.sa<br />

(Geliş Tarihi: 22. 09. 2010, Kabul Tarihi: 16. 12. 2010)<br />

Abstract: In this numerical work, <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>joule</str<strong>on</strong>g> <str<strong>on</strong>g>heat<strong>in</strong>g</str<strong>on</strong>g> <strong>on</strong> <strong>natural</strong> c<strong>on</strong>vecti<strong>on</strong> <strong>in</strong> n<strong>on</strong>-l<strong>in</strong>early heated square<br />

enclosure from right vertical wall were <strong>in</strong>vestigated for different Rayleigh numbers and Hartmann numbers. The<br />

cavity was c<strong>on</strong>sidered with adiabatic horiz<strong>on</strong>tal walls and cooled left wall. F<strong>in</strong>ite volume method was used to solve<br />

govern<strong>in</strong>g equati<strong>on</strong>s. The calculati<strong>on</strong>s have been performed for different Rayleigh numbers (Ra = 10 4 , 5x10 4 and 10 5 ),<br />

Joule parameter (J = 0.0, 3.0 and 5.0) and Hartmann number (Ha = 0, 10, 20 and 50). Obta<strong>in</strong>ed results are illustrated<br />

with streaml<strong>in</strong>es, isotherms, temperature and velocity pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles and mean Nusselt number. It is found that the flow<br />

become weaker near the right corner <str<strong>on</strong>g>of</str<strong>on</strong>g> the cavity due to n<strong>on</strong>-isothermal boundary c<strong>on</strong>diti<strong>on</strong>. Both Hartmann number<br />

and Joule parameter have important effect <strong>on</strong> heat transfer and fluid flow.<br />

Keywords: N<strong>on</strong>-isothermal heater, Natural c<strong>on</strong>vecti<strong>on</strong>, Joule effect, MHD.<br />

DEĞİŞKEN SICAKLIK ETKİSİNDE BULUNAN BİR OYUKTA MHD DOĞAL<br />

TAŞINIMINA JOULE ISITMASININ ETKİSİ<br />

Özet: Bu sayısal çalışmada, farklı Rayleigh ve Hartmann sayıları iç<strong>in</strong> sağ cidarı değişken sıcaklığa sahip kare oyukta<br />

doğal taşınım ısı transfer<strong>in</strong>e <str<strong>on</strong>g>joule</str<strong>on</strong>g> etkisi <strong>in</strong>celendi. Oyuğun yatay cidarları yalıtımlı olarak düşünüldü sol taraf ise daha<br />

soğuk kabul edilmiştir. Denklemler<strong>in</strong> çözümü iç<strong>in</strong> s<strong>on</strong>lu hacim metodu kullanıldı. Hesaplamalar, farklı Rayleigh<br />

sayıları (Ra = 10 4 , 5x10 4 ve 10 5 ), <str<strong>on</strong>g>joule</str<strong>on</strong>g> parametresi (J = 0.0, 3.0 ve 5.0) ve Hartmann sayısı (Ha = 0, 10, 20 ve 50) iç<strong>in</strong><br />

yapıldı. Elde edilen s<strong>on</strong>uçlar, akım çizgileri, eş sıcaklık eğrileri sıcaklık ve hız pr<str<strong>on</strong>g>of</str<strong>on</strong>g>illeri ve ortalama Nusselt sayıları<br />

ile verildi. Akış yoğunluğu doğrusal olmayan doğrusal olmayan sınır şartından dolayı oyuğun sağ köşes<strong>in</strong>de daha<br />

düşüktür. Hem Hartmann sayısı hem de Joule parametresi ısı transferi ve akış üzer<strong>in</strong>de etkilidir.<br />

Anahtar Kelimeler: Değişken ısıtıcı, Doğal taşınım, Juole etkisi, MHD.<br />

Nomenclature<br />

B magnetic field<br />

Cp specific heat capacity, kj/kgK<br />

g accelerati<strong>on</strong> due to gravity, m/s 2<br />

H height <str<strong>on</strong>g>of</str<strong>on</strong>g> enclosure, m<br />

Ha hartmann number, Ha LB <br />

J <str<strong>on</strong>g>joule</str<strong>on</strong>g> Parameter, J B<br />

Lu C<br />

T<br />

k heat c<strong>on</strong>ducti<strong>on</strong> coefficient, W/mK<br />

L length <str<strong>on</strong>g>of</str<strong>on</strong>g> enclosure, m<br />

Nu average Nusselt number, (Def<strong>in</strong>ed <strong>in</strong> Eq. 7)<br />

Q rate <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>ternal heat generati<strong>on</strong> per unit volume,<br />

W/m 3<br />

p pressure, N/m 2<br />

Pr Prandtl number, Pr = /<br />

Ra<br />

3<br />

Rayleigh number, Ra gT H <br />

T temperature, o C<br />

Tc temperature at the cold wall, o C<br />

Th temperature at the hot wall, o C<br />

2<br />

p<br />

u, v velocity, m/s<br />

U,V dimensi<strong>on</strong>less velocities<br />

x, y coord<strong>in</strong>ates (-)<br />

X,Y dimensi<strong>on</strong>less coord<strong>in</strong>ates<br />

Greek Letters<br />

α thermal diffusivity, m 2 /s<br />

fluid electrical c<strong>on</strong>ductivity, 1/m<br />

density, kg/m 3<br />

coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> thermal expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fluid, 1/K<br />

dimensi<strong>on</strong>less temperature, ( T T<br />

) / T<br />

ν k<strong>in</strong>ematic viscosity, m 2 /s<br />

φ general variable, (-)<br />

Supercript<br />

‘ dimensi<strong>on</strong>al parameter<br />

INTRODUCTION<br />

Heat transfer due to buoyancy forces is an important<br />

problem <strong>in</strong> eng<strong>in</strong>eer<strong>in</strong>g applicati<strong>on</strong>s such as floor<br />

<str<strong>on</strong>g>heat<strong>in</strong>g</str<strong>on</strong>g>, double pane w<strong>in</strong>dows, furnaces and build<strong>in</strong>g<br />

81


applicati<strong>on</strong>s. These applicati<strong>on</strong>s are reviewed <strong>in</strong> earlier<br />

literature (De Vahl Davis, 1983, Ostrach, 1972, Catt<strong>on</strong>,<br />

1978). N<strong>on</strong>-isothermal boundary c<strong>on</strong>diti<strong>on</strong>s can be<br />

encountered <strong>in</strong> electrical arc furnaces and rotary burners<br />

as given by Gogus et al. (2002). Another applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

n<strong>on</strong>-isothermal boundary c<strong>on</strong>diti<strong>on</strong> is occurred <strong>in</strong> case<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cyl<strong>in</strong>drical heater, as given by Saeid (2005).<br />

Zahmatkesh (2008) showed the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> thermal<br />

boundary c<strong>on</strong>diti<strong>on</strong>s <strong>in</strong> heat transfer and entropy<br />

generati<strong>on</strong> for <strong>natural</strong> c<strong>on</strong>vecti<strong>on</strong>. He applied uniform<br />

and n<strong>on</strong>-uniform <str<strong>on</strong>g>heat<strong>in</strong>g</str<strong>on</strong>g> and cool<strong>in</strong>g thermal c<strong>on</strong>diti<strong>on</strong>s<br />

and found that these c<strong>on</strong>diti<strong>on</strong>s are <str<strong>on</strong>g>of</str<strong>on</strong>g> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ound<br />

<strong>in</strong>fluences <strong>on</strong> the <strong>in</strong>duced flow as well as heat transfer<br />

characteristics. Bilgen and Yedder (2007) studied the<br />

<strong>natural</strong> c<strong>on</strong>vecti<strong>on</strong> problem <strong>in</strong> enclosure with <str<strong>on</strong>g>heat<strong>in</strong>g</str<strong>on</strong>g><br />

and cool<strong>in</strong>g by s<strong>in</strong>usoidal temperature pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles <strong>on</strong> <strong>on</strong>e<br />

side. In their case, the equally divided active sidewall is<br />

heated and cooled with s<strong>in</strong>usoidal temperature pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles.<br />

It is found that the penetrati<strong>on</strong> approaches to 100% at<br />

high Rayleigh numbers when the lower part is heated<br />

while the higher part is cooled. Basak et al. (2006)<br />

performed <strong>natural</strong> c<strong>on</strong>vecti<strong>on</strong> <strong>in</strong> a porous media filled<br />

enclosure with uniformly and n<strong>on</strong>-uniformly heated<br />

bottom wall. They <strong>in</strong>dicated that n<strong>on</strong>-uniform <str<strong>on</strong>g>heat<strong>in</strong>g</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the bottom wall provides higher heat transfer rates at the<br />

central regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the bottom wall whereas mean Nusselt<br />

number is lower for n<strong>on</strong>-uniform <str<strong>on</strong>g>heat<strong>in</strong>g</str<strong>on</strong>g>. As an<br />

<strong>in</strong>terest<strong>in</strong>g applicati<strong>on</strong> for n<strong>on</strong>-isothermal boundary<br />

c<strong>on</strong>diti<strong>on</strong> effect, a study was performed by Varol et al.<br />

(2008). In their work, heatl<strong>in</strong>e technique was applied to<br />

see the heat transport way and found that it is affected<br />

from n<strong>on</strong>-isothermal formulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> boundary c<strong>on</strong>diti<strong>on</strong>.<br />

Oztop et al. (2009) studied buoyancy <strong>in</strong>duced flow <strong>in</strong><br />

magnetohydrodynamic fluid filled enclosure with<br />

s<strong>in</strong>usoidally vary<strong>in</strong>g temperature boundary c<strong>on</strong>diti<strong>on</strong>s.<br />

They found that heat transfer was decreased with<br />

<strong>in</strong>creas<strong>in</strong>g Hartmann number and decreas<strong>in</strong>g value <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

amplitude <str<strong>on</strong>g>of</str<strong>on</strong>g> s<strong>in</strong>usoidal thermal functi<strong>on</strong>. Rahman et al.<br />

(2010) performed a numerical work <strong>on</strong> the c<strong>on</strong>jugate<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>joule</str<strong>on</strong>g> <str<strong>on</strong>g>heat<strong>in</strong>g</str<strong>on</strong>g> and magnato-hydrodynamics<br />

mixed c<strong>on</strong>vecti<strong>on</strong> <strong>in</strong> an obstructed lid-driven square<br />

cavity. They <strong>in</strong>dicated that both Hartmann number and<br />

Joule <str<strong>on</strong>g>heat<strong>in</strong>g</str<strong>on</strong>g> parameters have notable effect <strong>on</strong> heat and<br />

fluid flow. Beg et al. (2009) carried out a theoretical<br />

study <str<strong>on</strong>g>of</str<strong>on</strong>g> unsteady magnetohydrodynamic viscous<br />

Hartmann–Couette lam<strong>in</strong>ar flow and heat transfer <strong>in</strong> a<br />

Darcian porous medium <strong>in</strong>tercalated between parallel<br />

plates, under a c<strong>on</strong>stant pressure gradient. Viscous<br />

dissipati<strong>on</strong>, Joule <str<strong>on</strong>g>heat<strong>in</strong>g</str<strong>on</strong>g>, Hall current and n<strong>on</strong>slip<br />

current <str<strong>on</strong>g>effects</str<strong>on</strong>g> are <strong>in</strong>cluded as is lateral mass flux at both<br />

plates. An analysis is presented by Alim et al. (2008) to<br />

<strong>in</strong>vestigate the <strong>in</strong>fluences <str<strong>on</strong>g>of</str<strong>on</strong>g> viscous dissipati<strong>on</strong> and<br />

Joule <str<strong>on</strong>g>heat<strong>in</strong>g</str<strong>on</strong>g> <strong>in</strong> the entire thermo-fluid dynamic field<br />

result<strong>in</strong>g from the coupl<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> buoyancy forced flow<br />

with c<strong>on</strong>ducti<strong>on</strong> al<strong>on</strong>g <strong>on</strong>e side <str<strong>on</strong>g>of</str<strong>on</strong>g> a heated flat plate <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

thickness ‘b’. It is found that the values <str<strong>on</strong>g>of</str<strong>on</strong>g> sk<strong>in</strong> fricti<strong>on</strong><br />

coefficient decrease at different positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> x for Prandtl<br />

number Pr = 0.05, 0.7, 1.0 and 4.24.<br />

The ma<strong>in</strong> aim <strong>in</strong> this numerical work is to study the<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>joule</str<strong>on</strong>g> <str<strong>on</strong>g>heat<strong>in</strong>g</str<strong>on</strong>g> <strong>on</strong> <strong>natural</strong> c<strong>on</strong>vecti<strong>on</strong> heat<br />

transfer and fluid flow <strong>in</strong> a square enclosure with n<strong>on</strong>isothermal<br />

<str<strong>on</strong>g>heat<strong>in</strong>g</str<strong>on</strong>g>. Based <strong>on</strong> authors’ knowledge and<br />

the above literature survey clearly <strong>in</strong>dicate that <str<strong>on</strong>g>joule</str<strong>on</strong>g><br />

<str<strong>on</strong>g>heat<strong>in</strong>g</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> are not studied <strong>in</strong> earlier. C<strong>on</strong>sidered<br />

physical model is presented <strong>in</strong> Figure 1 with coord<strong>in</strong>ates<br />

and boundary c<strong>on</strong>diti<strong>on</strong>s. As seen from the figure,<br />

c<strong>on</strong>sidered model is a square cavity. The right vertical<br />

wall <str<strong>on</strong>g>of</str<strong>on</strong>g> the enclosure is heated n<strong>on</strong>-l<strong>in</strong>early. Horiz<strong>on</strong>tal<br />

walls are adiabatic and the temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> left vertical<br />

wall is c<strong>on</strong>stant and lower than that <str<strong>on</strong>g>of</str<strong>on</strong>g> heated wall.<br />

Gravity acts <strong>in</strong> vertical way. Prandtl number is fixed at<br />

0.71 for whole study.<br />

Figure 1. Schematical model with coord<strong>in</strong>ate and<br />

boundary c<strong>on</strong>diti<strong>on</strong>s.<br />

THEORY<br />

To write govern<strong>in</strong>g equati<strong>on</strong>s some assumpti<strong>on</strong>s are<br />

made such as, Fluid is assumed to be Newt<strong>on</strong>ian and<br />

<strong>in</strong>compressible. It is also assumed that flow is lam<strong>in</strong>ar<br />

and steady and fluid properties are c<strong>on</strong>stant and there is<br />

no viscous dissipati<strong>on</strong>, Bouss<strong>in</strong>esq approximati<strong>on</strong> are<br />

assumed to be valid and radiati<strong>on</strong> heat transfer am<strong>on</strong>g<br />

sides is negligible. With these assumpti<strong>on</strong>s govern<strong>in</strong>g<br />

equati<strong>on</strong>s <strong>in</strong> dimensi<strong>on</strong>al form become,<br />

C<strong>on</strong>t<strong>in</strong>uity equati<strong>on</strong><br />

u<br />

v<br />

0<br />

x<br />

y<br />

x-Momentum equati<strong>on</strong><br />

u<br />

u<br />

1 p<br />

2<br />

u<br />

2<br />

u<br />

<br />

u v<br />

ν<br />

<br />

<br />

<br />

x<br />

y<br />

ρ x<br />

<br />

x<br />

2<br />

y<br />

2 <br />

<br />

(1)<br />

(2)<br />

82


y-Momentum equati<strong>on</strong><br />

v<br />

v<br />

1 p<br />

2<br />

v<br />

2<br />

v<br />

<br />

u v<br />

ν<br />

<br />

<br />

<br />

x<br />

y<br />

ρ y<br />

<br />

x<br />

2<br />

y<br />

2 <br />

<br />

σ<br />

gβT - T νvL<br />

2<br />

B<br />

2<br />

c<br />

<br />

μ<br />

(3)<br />

Energy equati<strong>on</strong><br />

2 2<br />

2<br />

T<br />

T<br />

T T <br />

2<br />

u v <br />

<br />

<br />

B<br />

Lu<br />

v<br />

x<br />

y<br />

2 2<br />

x y<br />

C<br />

p (4)<br />

T<br />

The above dimensi<strong>on</strong>al equati<strong>on</strong>s are n<strong>on</strong>dimensi<strong>on</strong>alized<br />

by us<strong>in</strong>g follow<strong>in</strong>g dimensi<strong>on</strong>less<br />

parameters as<br />

( X,Y) (x, y) / H<br />

( T T<br />

) / T<br />

T T<br />

T<br />

h<br />

<br />

where is the thermal diffusivity. Dimensi<strong>on</strong>less<br />

numbers for the system can be written as follows<br />

<br />

Pr= ,<br />

<br />

Ha LB ,<br />

<br />

g T<br />

Ra <br />

<br />

3<br />

H<br />

B<br />

2 Lu<br />

J (6)<br />

C T<br />

p <br />

The above dimensi<strong>on</strong>less numbers are Prandtl number,<br />

Rayleigh number, Hartmann number and Joule<br />

parameter, respectively.<br />

C<strong>on</strong>t<strong>in</strong>uity<br />

U<br />

V<br />

0<br />

X<br />

Y<br />

X-momentum<br />

2 2<br />

U<br />

U<br />

P<br />

U U <br />

U V<br />

Pr<br />

<br />

<br />

<br />

X Y<br />

<br />

X<br />

2 2<br />

X<br />

Y<br />

<br />

Y-momentum<br />

2 2<br />

V<br />

V<br />

P<br />

V V <br />

U V<br />

Pr<br />

<br />

<br />

X<br />

Y<br />

Y<br />

2 2<br />

X Y<br />

<br />

2<br />

Ha PrV<br />

Ra PrT<br />

Energy<br />

2 2<br />

<br />

<br />

<br />

U V <br />

<br />

<br />

JV<br />

X Y<br />

<br />

<br />

2 2<br />

X Y<br />

<br />

2<br />

(5)<br />

(<br />

(7)<br />

(8)<br />

(9)<br />

(10)<br />

Local Nusselt number and the average Nusselt number<br />

is calculated by <strong>in</strong>tegrat<strong>in</strong>g the local Nusselt number<br />

al<strong>on</strong>g the wall as given respectively,<br />

<br />

<br />

<br />

Nu y <br />

<br />

X<br />

<br />

<br />

Y 0<br />

BOUNDARY CONDITIONS<br />

, Nu NuYdX<br />

(11)<br />

0<br />

H<br />

On the solid walls no-slip boundary c<strong>on</strong>diti<strong>on</strong>s were<br />

applied. The relevant boundary c<strong>on</strong>diti<strong>on</strong>s are given as<br />

follows:<br />

On the left wall<br />

X = 0, 0


-0.02<br />

0.08<br />

-0.02<br />

-0.0245274<br />

a)<br />

0.95<br />

0.85<br />

0.15<br />

0.05<br />

b)<br />

-0.01<br />

-0.065<br />

-0.025<br />

c)<br />

0.05<br />

0.15<br />

0.9<br />

0.95<br />

d)<br />

Figure 2. Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> results with literature (Rahman vd., 2010) for the case (Ha = 10 and J = 0) <str<strong>on</strong>g>of</str<strong>on</strong>g> lid-driven wall and l<strong>in</strong>ear<br />

<str<strong>on</strong>g>heat<strong>in</strong>g</str<strong>on</strong>g>, streaml<strong>in</strong>es (<strong>on</strong> the left) and isotherms (<strong>on</strong> the right).<br />

84


RESULTS AND DISCUSSION<br />

A numerical study has been performed <strong>in</strong> this work to<br />

see the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>joule</str<strong>on</strong>g> <str<strong>on</strong>g>heat<strong>in</strong>g</str<strong>on</strong>g> and magnetic field <strong>on</strong><br />

n<strong>on</strong>-isothermally heated square enclosure. Study is<br />

performed for different Rayleigh numbers, Hartmann<br />

numbers and Joule parameter. It is noticed that the<br />

similar values are chosen with literature. Range <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Rayleigh number supplies the lam<strong>in</strong>ar flow regime.<br />

Results will be present by streaml<strong>in</strong>es, isotherms,<br />

Nusselt numbers, temperature and velocity pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles.<br />

Figure 3 illustrates the streaml<strong>in</strong>es (<strong>on</strong> the left) and<br />

isotherms (<strong>on</strong> the right) to show <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Rayleigh<br />

number for Ha = 0.0 and J = 1.0. As <strong>in</strong>dicated above<br />

that the right vertical wall <str<strong>on</strong>g>of</str<strong>on</strong>g> enclosure is heated n<strong>on</strong>l<strong>in</strong>early.<br />

The temperature <strong>in</strong>creases al<strong>on</strong>g the wall <strong>in</strong> the<br />

positive y directi<strong>on</strong>. Thus, the cavity is mostly heated<br />

with the <str<strong>on</strong>g>joule</str<strong>on</strong>g> effect. For Ra = 104, two circulati<strong>on</strong> cells<br />

were formed. The ma<strong>in</strong> cell rotates <strong>in</strong> counter clockwise<br />

and other <strong>on</strong>e sits at the right top corner and it turns <strong>in</strong><br />

clockwise. The heated part is effective <strong>on</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the big ma<strong>in</strong> cell (Figure 3 (a)). As shown from the<br />

isotherm for the same case, temperature rises from<br />

heated part <str<strong>on</strong>g>of</str<strong>on</strong>g> the n<strong>on</strong>-l<strong>in</strong>early heated wall through the<br />

left top corner. Two areas (hot<br />

0.3<br />

-0.05<br />

0.55<br />

0.35<br />

0.5<br />

0.15<br />

0.75<br />

a)<br />

5.5<br />

1.2<br />

-1<br />

2.5<br />

1.5<br />

1<br />

b)<br />

6.5<br />

1<br />

0.4<br />

-1<br />

5.5<br />

4<br />

0.6<br />

3<br />

2<br />

c)<br />

Figure 3. Streaml<strong>in</strong>es (<strong>on</strong> the left) and isotherms (<strong>on</strong> the right) for Ha = 0 and J = 1.0 for different Rayleigh numbers a) Ra = 10 4 ,<br />

b) Ra = 5x10 4 , c) Ra = 10 5 .<br />

85


0.15<br />

0.25<br />

0.35<br />

0.25<br />

and old) are formed <strong>on</strong> right wall. With <strong>in</strong>creas<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Rayleigh number, the left cell becomes bigger and it<br />

locates al<strong>on</strong>g the right vertical wall (Figure 3 (b)). For<br />

Ra = 4x105, m<strong>in</strong>imum value <str<strong>on</strong>g>of</str<strong>on</strong>g> stream functi<strong>on</strong> is<br />

obta<strong>in</strong>ed as -1. Joule <str<strong>on</strong>g>heat<strong>in</strong>g</str<strong>on</strong>g> becomes more effective<br />

even <str<strong>on</strong>g>joule</str<strong>on</strong>g> parameter is c<strong>on</strong>stant. Thus, isotherms try to<br />

show parallel variati<strong>on</strong> to the top and bottom walls. This<br />

case is clearer for Ra = 105 (Figure 3 (c)).<br />

Figure 4 (a) to (c) presents temperature and flow field<br />

for different Hartmann number for Ra = 105 and J = 0.0.<br />

As seen from the figure, two cells (ma<strong>in</strong> cell and a small<br />

cell at right top corner) are formed <strong>in</strong>side a cavity for all<br />

values <str<strong>on</strong>g>of</str<strong>on</strong>g> Hartmann numbers. The maximum values <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

stream functi<strong>on</strong> decreases with <strong>in</strong>creas<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> Hartmann<br />

number. It means that <strong>in</strong>creas<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> magnetic field<br />

reduces the flow velocity. Meanwhile, there is no big<br />

change <strong>on</strong> small circulati<strong>on</strong> cell at right top corner.<br />

Thermal boundary layer at the right bottom corner<br />

becomes larger with <strong>in</strong>creas<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> Hartmann number.<br />

Plume-like temperature distributi<strong>on</strong> is shown <strong>on</strong> 75% <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

heated wall. Figure 5 (a) to (c) <strong>in</strong>dicates that <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>joule</str<strong>on</strong>g> <str<strong>on</strong>g>heat<strong>in</strong>g</str<strong>on</strong>g>. As <strong>in</strong>dicated above that four values <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>joule</str<strong>on</strong>g> parameters are studied as J = 0.0, 1.0, 3.0 and 5.0.<br />

The <str<strong>on</strong>g>joule</str<strong>on</strong>g> parameter is the most important<br />

-0.00923664<br />

0.15<br />

0.25<br />

0.3<br />

0.3<br />

1.1<br />

0.05<br />

0.2<br />

0.5<br />

0.65<br />

a)<br />

0.15<br />

-0.0289993<br />

0.45<br />

0.8<br />

0.05<br />

b)<br />

-0.00324454<br />

0.2<br />

0.1<br />

0.2<br />

0.3<br />

0.4<br />

0.5<br />

0.28<br />

0.6<br />

Figure 4. Streaml<strong>in</strong>es (<strong>on</strong> the left) and isotherms (<strong>on</strong> the right) for Ra = 10 5 and J = 0.0 for different Hartmann numbers, a) Ha =<br />

10, b) Ha = 20, c) Ha = 5.<br />

c)<br />

86


0.1<br />

0.2<br />

parameter for this study. When J = 1 (Fig 5 (a)), flow<br />

and thermal field are similar to earlier case. But<br />

<strong>in</strong>creas<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>joule</str<strong>on</strong>g> parameter enhances the flow<br />

strength. It is an <strong>in</strong>terest<strong>in</strong>g result that m<strong>in</strong>imum and<br />

maximum values <str<strong>on</strong>g>of</str<strong>on</strong>g> stream functi<strong>on</strong> are the same for J =<br />

3.0 and 5.0 <strong>in</strong> Figure 5 (b) and (c), respectively. Internal<br />

<str<strong>on</strong>g>heat<strong>in</strong>g</str<strong>on</strong>g> or <str<strong>on</strong>g>joule</str<strong>on</strong>g> <str<strong>on</strong>g>heat<strong>in</strong>g</str<strong>on</strong>g> becomes dom<strong>in</strong>ant for J = 5.0<br />

and isotherms are almost parallel to top and bottom side.<br />

It means that Joule parameter can be a c<strong>on</strong>trol element<br />

for heat and fluid flow.<br />

These figures are plotted to see the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Joule<br />

parameters <strong>on</strong> variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> velocity and temperature. As<br />

seen from Figure 6 (a), temperatures at the middle <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

enclosures are identical for J = 0 and 1. But they are<br />

<strong>in</strong>creased with <strong>in</strong>creas<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> Joule parameter. Similary,<br />

velocities are str<strong>on</strong>gly affected from the Joule parameter<br />

as given <strong>in</strong> Figure 6 (b). There are negative and positive<br />

values <strong>on</strong> velocities from J = 0 to J = 3 at the middle <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the cavity. Hovewer, the ma<strong>in</strong> cell, which rotates <strong>in</strong><br />

counterclockwise (<strong>in</strong> Figure 5), becomes dom<strong>in</strong>ant.<br />

Figure 6 (a) and (b) illustrates the temperature and<br />

velocity pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles at Ra = 104 and Ha = 10, respectively.<br />

-0.00114632<br />

0.25<br />

0.35<br />

0.4<br />

0.5<br />

0.3<br />

0.3<br />

0.6<br />

0.7<br />

a)<br />

0.4<br />

-0.4<br />

3.4<br />

2.6<br />

2<br />

1.4<br />

1<br />

b)<br />

14<br />

0.5<br />

-0.5<br />

12<br />

10<br />

8<br />

6<br />

4<br />

c)<br />

Figure 5. Streaml<strong>in</strong>es (<strong>on</strong> the left) and isotherms (<strong>on</strong> the right) for Ra = 10 4 and Ha = 10.0 for different Joule parameter, a) J = 1.0,<br />

b) J = 3.0, c) J = 5.0.<br />

87


y<br />

y<br />

y<br />

y<br />

y<br />

1<br />

0,9<br />

0,8<br />

0,7<br />

0,6<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

J=0<br />

J=1<br />

J=3<br />

J=5<br />

0<br />

0 5 10 15<br />

J=0<br />

J=1<br />

J=3<br />

J=5<br />

1<br />

0,9<br />

0,8<br />

0,7<br />

0,6<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

a)<br />

0<br />

-3 -2 -1 0 1 2 3<br />

v<br />

b)<br />

Figure 6. a) Temperature, b) Velocity pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles at the iddle <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

enclosure for different Joule parameter for Ra = 10 4 and Ha = 10.<br />

1<br />

0,9<br />

0,8<br />

0,7<br />

0,6<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

J=0<br />

J=3<br />

J=5<br />

0<br />

0,1 0,15 0,2 0,25 0,3<br />

J=0<br />

J=3<br />

J=5<br />

a)<br />

0<br />

-0,03 -0,02 -0,01 0 0,01 0,02<br />

b)<br />

Figure 7. a) Temperature, b) Velocity pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles at the middle<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the enclosure for different Joule parameter for Ra = 10 4 and<br />

Ha = 50.<br />

T<br />

v<br />

1<br />

0,9<br />

0,8<br />

0,7<br />

0,6<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

With <strong>in</strong>creas<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> Hartmann number, Joule number<br />

becomes <strong>in</strong>significant <strong>on</strong> both velocity and temperature<br />

distributi<strong>on</strong> as given <strong>in</strong> Figure 7 (a) and (b).<br />

Thetemperatures become high at the top and lower at the<br />

bottom even the enclosure is heated from the bottom<br />

wall <str<strong>on</strong>g>of</str<strong>on</strong>g> the right vertical wall. Velocity pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles show<br />

that rotat<strong>in</strong>g fluid <strong>in</strong> clockwise become dom<strong>in</strong>ant and<br />

maximum velocity value is -0.02. It means tha<strong>in</strong>creas<strong>in</strong>g<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Hartmann number decreases the fluid velocity.<br />

Ra=10E3<br />

Ra=10E4<br />

Ra=10E5<br />

1<br />

0,9<br />

0,8<br />

0,7<br />

0,6<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0<br />

-1 -0,5 0 0,5 1<br />

1<br />

0,9<br />

0,8<br />

0,7<br />

0,6<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

v<br />

a)<br />

0<br />

0 1 2 3 4 5<br />

T<br />

Ra=10E3<br />

Ra=10E4<br />

Ra=10E5<br />

b)<br />

Figure 8. a) Temperature, b) Velocity pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles at the middle<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the enclosure for different Rayleigh number<br />

J = 0 and Ha = 0.<br />

Figure 8 is plotted to see the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Rayleigh number<br />

<strong>on</strong> temperature and velocities for c<strong>on</strong>stant Hartmann<br />

number and Joule parameter. Figure 8 (a) illustrates the<br />

velocity pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles. For Ra = 103, velocity pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile is<br />

almost due to dom<strong>in</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>ducti<strong>on</strong> mode <str<strong>on</strong>g>of</str<strong>on</strong>g> heat<br />

transfer. With <strong>in</strong>creas<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> Rayleigh number to Ra =<br />

104, a parabolic shaped velocity pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles were formed<br />

due to <strong>in</strong>creas<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> dom<strong>in</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>vecti<strong>on</strong> heat<br />

transfer. Due to form<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> double circulati<strong>on</strong> cell, both<br />

negative and positive pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles occur <strong>in</strong>side the cavity.<br />

Velocity value is very high near the ceil<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the cavity.<br />

Similarly, temperature distributi<strong>on</strong> <strong>in</strong>dicates that<br />

c<strong>on</strong>ducti<strong>on</strong> heat transfer is dom<strong>in</strong>ant for Ra = 103 as<br />

seen Figure 8 (b). Temperature values at the middle <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the enclosure <strong>in</strong>creases with <strong>in</strong>creas<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> Rayleigh<br />

number.<br />

88


Mean Nusselt numbers are listed <strong>in</strong> Table 1 for all<br />

studied parameters. The table shows that Hartmann<br />

number decreases the heat transfer as given <strong>in</strong> literature<br />

(Rahman vd., 2010). For higher values <str<strong>on</strong>g>of</str<strong>on</strong>g> Hartmann<br />

number, heat transfer becomes almost c<strong>on</strong>stant.<br />

Negative value <str<strong>on</strong>g>of</str<strong>on</strong>g> mean Nu <strong>in</strong>dicates the dom<strong>in</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>joule</str<strong>on</strong>g> <str<strong>on</strong>g>heat<strong>in</strong>g</str<strong>on</strong>g> <strong>in</strong>side the cavity. But heat transfer<br />

<strong>in</strong>creases with <strong>in</strong>creas<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> Joule parameter. Ra number<br />

also <strong>in</strong>creases the heat transfer which is directly related<br />

with temperature difference for a square enclosure.<br />

Table 1. Variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mean Nusselt numbers for different<br />

parameters.<br />

Ra Ha J Nu<br />

104 10 0 1.33<br />

104 0 0 1.39<br />

104 10 1 0.81<br />

104 10 3 -4.93<br />

104 10 5 -46.36<br />

104 20 0 1.29<br />

104 50 0 1.29<br />

104 10 1 1.28<br />

104 50 3 1.27<br />

104 50 5 1.27<br />

105 10 0 1.61<br />

105 10 3 -196<br />

105 10 5 -290<br />

CONCLUSIONS<br />

In this study, temperature and flow field are<br />

<strong>in</strong>vestigated for a cavity with heated n<strong>on</strong>-isothermally<br />

from <strong>on</strong>e vertical wall. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>joule</str<strong>on</strong>g> <str<strong>on</strong>g>heat<strong>in</strong>g</str<strong>on</strong>g> are<br />

<strong>in</strong>vestigated with magneto-hydrodynamic fluid. Thus,<br />

these Hartmann number and Joule parameters are<br />

<strong>in</strong>cluded <strong>in</strong>to govern<strong>in</strong>g equati<strong>on</strong>s. Graphical results for<br />

studied parameters were presented comparatively and<br />

discussed <strong>in</strong> detail <strong>in</strong> earlier secti<strong>on</strong>s. The ma<strong>in</strong> f<strong>in</strong>d<strong>in</strong>gs<br />

can be listed as below<br />

Both magnetic field and Joule parameter have<br />

str<strong>on</strong>g effect <strong>on</strong> heat and fluid flow.<br />

N<strong>on</strong>-uniform boundary c<strong>on</strong>diti<strong>on</strong> has str<strong>on</strong>g effect<br />

near the heated vertical wall.<br />

Double cells were formed for all values <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Rayleigh number at J 1. Increas<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> Rayleigh<br />

number enhances the values <str<strong>on</strong>g>of</str<strong>on</strong>g> stream functi<strong>on</strong>.<br />

Positive stream functi<strong>on</strong>s are decreased with<br />

<strong>in</strong>creas<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> Hartmann number and thermal<br />

boundary layer becomes larger.<br />

For the highest value <str<strong>on</strong>g>of</str<strong>on</strong>g> Hartmann number, Joule<br />

parameter becomes <strong>in</strong>significant.<br />

ACKNOWLEDGEMENT<br />

The authors wish to express their very s<strong>in</strong>cerely thanks<br />

to the reviewers for the valuable comments and<br />

suggesti<strong>on</strong>s.<br />

REFERENCES<br />

Abo-Eldahab, E.M., El Aziz, M. A., Viscous dissipati<strong>on</strong><br />

and Joule <str<strong>on</strong>g>heat<strong>in</strong>g</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> MHD-free c<strong>on</strong>vecti<strong>on</strong> from<br />

a vertical plate with power-law variati<strong>on</strong> <strong>in</strong> surface<br />

temperature <strong>in</strong> the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> Hall and i<strong>on</strong>-slip<br />

currents, Applied Mathematical Modell<strong>in</strong>g, 29, 579–<br />

595, 2005.<br />

Alim, M.A., Alam, Md. M., Mamun, A.A., Hossa<strong>in</strong>, B,<br />

Comb<strong>in</strong>ed effect <str<strong>on</strong>g>of</str<strong>on</strong>g> viscous dissipati<strong>on</strong> and <str<strong>on</strong>g>joule</str<strong>on</strong>g> <str<strong>on</strong>g>heat<strong>in</strong>g</str<strong>on</strong>g><br />

<strong>on</strong> the coupl<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>ducti<strong>on</strong> and free c<strong>on</strong>vecti<strong>on</strong><br />

al<strong>on</strong>g, Internati<strong>on</strong>al Communicati<strong>on</strong>s <strong>in</strong> Heat and Mass<br />

Transfer, 35, 338–346, 2008.<br />

Basak, T., Roy, S., Paul, T., Pop, I., Natural c<strong>on</strong>vecti<strong>on</strong><br />

<strong>in</strong> a square cavity filled with a porous medium: <str<strong>on</strong>g>effects</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> various thermal boundary c<strong>on</strong>diti<strong>on</strong>s, Int. J Heat<br />

Mass Transfer, 49, 1430–1441, 2006.<br />

Bég, O.A., Zueco, J., Takhar, H.S., Unsteady<br />

magnetohydrodynamic Hartmann–Couette flow and heat<br />

transfer <strong>in</strong> a Darcian channel with Hall current, i<strong>on</strong>slip,<br />

viscous and Joule <str<strong>on</strong>g>heat<strong>in</strong>g</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g>: Network numerical<br />

soluti<strong>on</strong>s, Commun. N<strong>on</strong>l<strong>in</strong>ear Sci Numer Simulat, 14,<br />

1082–1097, 2009.<br />

Bilgen, E., Yedder, R.B., Natural c<strong>on</strong>vecti<strong>on</strong> <strong>in</strong><br />

enclosure with <str<strong>on</strong>g>heat<strong>in</strong>g</str<strong>on</strong>g> and cool<strong>in</strong>g by s<strong>in</strong>usoidal<br />

temperature pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles <strong>on</strong> <strong>on</strong>e side, Int. Comm. Heat Mass<br />

Transfer, 50, 139–150, 2007.<br />

Catt<strong>on</strong>, I., Natural c<strong>on</strong>vecti<strong>on</strong> <strong>in</strong> enclosures. In:<br />

Proceed<strong>in</strong>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the sixth heat transfer c<strong>on</strong>ference,<br />

Tor<strong>on</strong>to, Canada; 1978.<br />

De Vahl Davis, G., Natural c<strong>on</strong>vecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> air <strong>in</strong> a square<br />

cavity: a benchmark soluti<strong>on</strong>, Int. J. Numer. Meth.<br />

Fluids 3, 249–264, 1983.<br />

Gogus, Y.A., Camdali, U., Kavsaoglu, M., Exergy<br />

balance <str<strong>on</strong>g>of</str<strong>on</strong>g> a general system with variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s and some applicati<strong>on</strong>s,<br />

Energy, 27, 625–646, 2002.<br />

Nakayama, A., PC-aided numerical heat transfer and<br />

c<strong>on</strong>vective flow, CRC Press, 1995.<br />

Ostrach, S., Natural c<strong>on</strong>vecti<strong>on</strong> <strong>in</strong> enclosure. In: Harnett<br />

JP, Irv<strong>in</strong>e TF, editors. Advances <strong>in</strong> heat transfer, NY:<br />

Academic Press; 8, 161–227, 1972.<br />

89


Oztop, H.F., Oztop, M., Varol, Y., Numerical<br />

simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> magnetohydrodynamic buoyancy-<strong>in</strong>duced<br />

flow <strong>in</strong> a n<strong>on</strong>-isothermally heated square enclosure,<br />

Comm. <strong>in</strong> N<strong>on</strong>l<strong>in</strong>ear Sci. Numerical Simulati<strong>on</strong>, 14,<br />

770-778, 2009.<br />

Patankar, S.V., Numerical Heat Transfer and Fluid<br />

Flow, Hemisphere, McGraw-Hill, Wash<strong>in</strong>gt<strong>on</strong> DC,<br />

1980.<br />

Rahman, M.M., Alim, M.A., Sarker, M.A., Numerical<br />

study <strong>on</strong> the c<strong>on</strong>jugate effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>joule</str<strong>on</strong>g> <str<strong>on</strong>g>heat<strong>in</strong>g</str<strong>on</strong>g> and<br />

magnato-hydrodynamics mixed c<strong>on</strong>vecti<strong>on</strong> <strong>in</strong> an<br />

obstructed lid-driven square cavity, Int. Comm. Heat<br />

Mass Transfer, 37, 524-534, 2010.<br />

Saeid, N.H., Natural c<strong>on</strong>vecti<strong>on</strong> <strong>in</strong> porous cavity with<br />

s<strong>in</strong>usoidal bottom wall temperature variati<strong>on</strong>. Int<br />

Commun Heat Mass Transfer, 32, 454 – 463, 2005.<br />

Varol, Y., Oztop, H.F., Mobedi, M., Pop, I.,<br />

Visualizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>natural</strong> c<strong>on</strong>vecti<strong>on</strong> heat transport us<strong>in</strong>g<br />

heatl<strong>in</strong>e method <strong>in</strong> porous n<strong>on</strong>-isothermally heated<br />

triangular cavity, Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Heat and<br />

Mass Transfer, 51, 5040-5051, 2008.<br />

Zahmatkesh, I., On the importance <str<strong>on</strong>g>of</str<strong>on</strong>g> thermal boundary<br />

c<strong>on</strong>diti<strong>on</strong>s <strong>in</strong> heat transfer and entropy generati<strong>on</strong> for<br />

<strong>natural</strong> c<strong>on</strong>vecti<strong>on</strong> <strong>in</strong>side a porous enclosure, Int. J.<br />

Thermal Sciences, 47, 339-346, 2008.<br />

90

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!