13.06.2015 Views

Quantum Field Theory and Gravity: Conceptual and Mathematical ...

Quantum Field Theory and Gravity: Conceptual and Mathematical ...

Quantum Field Theory and Gravity: Conceptual and Mathematical ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Hawking Effect for Rotating Black Holes 133<br />

where U(0,t) is the propagator defined in Proposition 4.6. The quantum spin<br />

field is defined by:<br />

Ψ col :Φ∈ ( C0 ∞ (M col ) ) 4<br />

↦→ Ψ col (Φ) := Ψ 0 (S col Φ) ∈L(F(H 0 )).<br />

Here F(H 0 ) is the Dirac-Fermi-Fock space associated to H 0 . For an arbitrary<br />

set O ⊂ M col , we introduce U col (O), the C ∗ -algebra generated by<br />

ψcol ∗ (Φ 1)Ψ col (Φ 2 ), supp Φ j ⊂O, j =1, 2. Eventually, we have:<br />

U col (M col )=<br />

⋃<br />

U col (O).<br />

O⊂M col<br />

Then we define the fundamental state on U col (M col ) as follows:<br />

(<br />

ω col Ψ<br />

∗<br />

col (Φ 1 )Ψ col (Φ 2 ) ) (<br />

:= ω vac Ψ<br />

∗<br />

0 (S col Φ 1 )Ψ 0 (S col Φ 2 ) )<br />

= 〈 〉<br />

1 [0,∞) (H 0 )S col Φ 1 ,S col Φ 2 .<br />

Let us now consider the future black hole. The algebra U BH (M BH )<strong>and</strong>the<br />

vacuum state ω vac are constructed as before working now with the group e itH<br />

rather than the evolution system U(t, s). We also define the thermal Hawking<br />

state (S is analogous to S col , Ψ BH to Ψ col , <strong>and</strong> Ψ to Ψ 0 ):<br />

(<br />

Ψ<br />

∗<br />

BH (Φ 1 )Ψ BH (Φ 2 ) ) = 〈 μe σH (1 + μe σH ) −1 〉<br />

SΦ 1 ,SΦ 2<br />

ω η,σ<br />

Haw<br />

=: ω η,σ (<br />

KMS Ψ ∗ (SΦ 1 )Ψ(SΦ 2 ) )<br />

with<br />

T Haw = σ −1 , μ = e ση , σ > 0,<br />

where T Haw is the Hawking temperature <strong>and</strong> μ is the chemical potential.<br />

5.2. The Hawking effect<br />

In this subsection we formulate the main result of this work.<br />

Let Φ ∈ (C0 ∞ (M col )) 4 . We put<br />

Φ T (t, ˆr, ω) =Φ(t − T, ˆr, ω). (5.2)<br />

Theorem 5.1 (Hawking effect). Let<br />

Φ j ∈ (C0 ∞ (M col )) 4 , j =1, 2.<br />

Then we have<br />

lim ω (<br />

col Ψ<br />

∗<br />

col (Φ T 1 )Ψ col (Φ T 2 ) ) = ω η,σ (<br />

Haw Ψ<br />

∗<br />

BH (1 R +(P − )Φ 1 )Ψ BH (1 R +(P − )Φ 2 ) )<br />

T →∞<br />

(<br />

+ ω vac Ψ<br />

∗<br />

BH (1 R −(P − )Φ 1 )Ψ BH (1 R −(P − )Φ 2 ) ) ,<br />

(5.3)<br />

T Haw =1/σ = κ + /2π, μ = e ση , η = qQr +<br />

r+ 2 + + aD ϕ<br />

a2 r+ 2 + .<br />

a2<br />

In the above theorem P ± is the asymptotic velocity introduced in Section<br />

4. The projections 1 R ±(P ± ) separate outgoing <strong>and</strong> incoming solutions.<br />

Remark 5.2. The result is independent of the choices of coordinate system,<br />

tetrad <strong>and</strong> chiral angle in the boundary condition.<br />

H

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!