14.06.2015 Views

Linear Differential Game With Two Pursuers and One Evader

Linear Differential Game With Two Pursuers and One Evader

Linear Differential Game With Two Pursuers and One Evader

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Linear</strong> <strong>Differential</strong> <strong>Game</strong> <strong>With</strong> <strong>Two</strong> <strong>Pursuers</strong> <strong>and</strong> <strong>One</strong> <strong>Evader</strong><br />

Stéphane Le Ménec<br />

stephane.le-menec@mbda-systems.com<br />

EADS / MBDA France<br />

Abstract<br />

We study the situation involving two pursuers <strong>and</strong> one evader in the framework of DGL/1 (<strong>Linear</strong><br />

<strong>Differential</strong> <strong>Game</strong> with bounded controls <strong>and</strong> first order dynamics for both players). A new optimal<br />

evasion strategy is then derived to compromise the terminal miss distance respect to each pursuer. This<br />

trade off strategy <strong>and</strong> the resulting 2x1 No Escape Zone have been computed when the pursuers have<br />

same time-to-go as well as with different time-to-go.<br />

1. Introduction<br />

We consider head on scenarios with two pursuers (P1 <strong>and</strong> P2) <strong>and</strong> one evader (E). The purpose of this<br />

paper is to compute two on one differential game No Escape Zones (NEZ) [8]. The main objective<br />

(over the scope of this paper) consists in designing suboptimal strategies in many on many<br />

engagements. 1x1 NEZ <strong>and</strong> 2x1 NEZ are components involved in suboptimal approaches we are<br />

interested in (i.e. “Moving Horizon Hierarchical Decomposition Algorithm” [6]). Several specific two<br />

pursuers one evader differential games have been already studied ([1], [4], [7]). Nevertheless, we<br />

propose to compute 2x1 NEZ from 1x1 DGL/1 NEZ because DGL models are games with well<br />

defined analytical solutions [12].<br />

2. <strong>One</strong> on one DGL/1 game<br />

For reminder, we briefly summarize some results about one on one pursuit evasion game using DGL/1<br />

models. DGL/1 differential games are co planar interceptions with constant velocities, bounded<br />

controls assuming small motion variations around the collision course triangle. Under this assumption<br />

the kinematics is linear. Each player is represented as a first order system (time lag constant). The<br />

criterion is the terminal miss distance (terminal cost only, absolute value of the terminal miss<br />

perpendicular to the initial Line Of Sight, LOS). DGL/1 are fixed time duration differential games,<br />

with final time defined by the closing velocity (assumed constant) <strong>and</strong> the pursuer evader range. The<br />

terminal projection procedure [3] allows to reduce the initial four dimension state vector representation<br />

to a scalar representation <strong>and</strong> to represent the optimal trajectories in the ZEM (Zero Effort Miss), Tgo<br />

(Time to Go) coordinate frame. According to notations <strong>and</strong> normalizations defined in [12] the DGL/1<br />

kinematics is as follow:<br />

d z<br />

⎛θ<br />

⎞<br />

= μ h( θ ) u − ε h⎜<br />

⎟ v<br />

d θ<br />

⎝ ε ⎠<br />

( ) = − α<br />

h α e + α −1<br />

aP<br />

max<br />

τ<br />

E<br />

μ = , ε =<br />

a τ<br />

In this framework,<br />

a<br />

a<br />

Pc<br />

u = <strong>and</strong><br />

P max<br />

a<br />

a<br />

E max<br />

E max<br />

P<br />

Ec<br />

v = are respectively the pursuer <strong>and</strong> evader controls<br />

( u ≤ 1, v ≤ 1). aP<br />

max<br />

<strong>and</strong> aE<br />

max<br />

are the maximum accelerations. a Pc<br />

<strong>and</strong> a Ec<br />

are the lateral<br />

accelerations dem<strong>and</strong>s. τ P<br />

<strong>and</strong> τ E<br />

are the pursuer <strong>and</strong> evader time lag constants. The independent<br />

variable is the normalized time to go:<br />

τ<br />

θ = , τ = t f<br />

− t<br />

τ<br />

P<br />

Where t<br />

f<br />

is the final time. The non-dimensional state variable is the normalized Zero Effort Miss :<br />

- 1 -


ZEM<br />

z ( θ ) =<br />

2<br />

τ<br />

P<br />

a E max<br />

The Zero Effort Miss distance is given below for DGL/1:<br />

2<br />

2 ⎛θ<br />

⎞<br />

ZEM ( t)<br />

= y + y&<br />

t − && y τ h( θ ) + & y<br />

go P P<br />

E<br />

τ<br />

E<br />

h⎜<br />

⎟<br />

⎝ ε ⎠<br />

Where y is the relative perpendicular miss, y& the relative perpendicular velocity, & y& P<br />

the<br />

(instantaneous) perpendicular pursuer acceleration <strong>and</strong> & y&<br />

E<br />

the perpendicular evader acceleration. The<br />

non-dimensional cost function is the normalized terminal miss distance subject to minimization by the<br />

pursuer <strong>and</strong> maximization by the evader.<br />

= z = z θ = 0<br />

J<br />

f<br />

( t)<br />

( )<br />

The (ZEM, Tgo) frame is divided into two regions, the regular area <strong>and</strong> the singular one. For some<br />

appropriated differential game parameters (pursuer to evader maximum acceleration ratio μ <strong>and</strong> evader<br />

to pursuer time lag ratio ε), the singular area plays the role of capture zone so called also NEZ (leading<br />

to zero terminal miss), whilst the regular area corresponds to the non capture zone. The NEZ can be<br />

bounded (closed) or unbounded (open). The natural optimal strategies are bang-bang controls<br />

corresponding to the sign of ZEM (some refinements exist when defining optimal controls inside the<br />

NEZ). We start the 2x1 DGL/1 analysis with unbounded 1x1 NEZ as pictured in Figure 1 (NEZ<br />

delimited by the two plain red lines, non capture zone corresponding to the state space filled with<br />

optimal trajectories in dot blue lines). Moreover, we first assume same Tgo in each DGL/1 game<br />

(same initial range, same velocity for each pursuer).<br />

300<br />

DGL/1, μ = 3.6, ε = 0.8, με = 2.88<br />

200<br />

100<br />

z * + (τ)<br />

normalized z<br />

0<br />

-100<br />

z * - (τ)<br />

-200<br />

-300<br />

0 5 10 15<br />

normalized tgo<br />

Figure 1 : Unbounded NEZ (ZEM, Tgo frame)<br />

3. <strong>Two</strong> pursuers one evader DGL/1 game<br />

3.1. Criterion<br />

The outcome we consider in the 2x1 game is the minimum of the two terminal miss distances.<br />

<strong>With</strong> J the terminal miss,<br />

i<br />

( u u , v) min { J ( u , v) , J ( u v)<br />

}<br />

J x<br />

,<br />

2 1 1, 2<br />

=<br />

1<br />

2<br />

u the control of Pi , = { 1, 2}<br />

( u v)<br />

( u v)<br />

( u u v)<br />

i <strong>and</strong> v the evader control.<br />

J<br />

1<br />

, : P1 E DGL/1 terminal miss<br />

J<br />

2<br />

, : P2 E DGL/1 terminal miss<br />

J<br />

2 x 1 1,<br />

2,<br />

: 2x1 DGL/1 outcome<br />

- 2 -


The 2x1 game only makes a change in the evader optimal comm<strong>and</strong>. The presence of a second pursuer<br />

doesn’t change the pursuers behaviour. Indeed, the optimal controls for each pursuer in the 2x1 game<br />

are the same as the ones in their respective 1x1 game.<br />

When considering two pursuers <strong>and</strong> one evader (in the framework of DGL representations), some<br />

cases are easy to solve. If E is “above” (or symmetrically “below”) the two pursuers (in ZEM, Tgo<br />

frame), the optimal evasion respect to each pursuer (considered alone) <strong>and</strong> according to both pursuers<br />

together is to turn right (to turn left when below) with maximum acceleration. In these cases (E<br />

“above” or “below”), there are no changes in evasion trajectory (optimal strategies) by adding a<br />

pursuer.<br />

ZEM<br />

P1<br />

E<br />

P1E Reference<br />

P2<br />

P2E Reference<br />

Figure 2 : 2x1 game with <strong>Evader</strong> between the two <strong>Pursuers</strong> (ZEM, Tgo frame)<br />

For the other initial conditions (see Figure 2) we have to refine the optimal evasion behaviour. If E is<br />

between P1 <strong>and</strong> P2 (as described in Figure 2) then the optimal 2x1 evasion is a trade off between the<br />

incompatible P1 E <strong>and</strong> P2 E optimal escapes. Notice that in Figure 2 the initial LOS (in each DGL/1<br />

game) have been chosen parallel.<br />

3.2. Trade off evader control<br />

* * *<br />

We compute the 2x1 DGL/1 game solution ( ( u u v<br />

)<br />

J<br />

2 x1<br />

1<br />

,<br />

2<br />

,<br />

2x1<br />

considering that the optimal evasion<br />

control is a constant value during the entire game <strong>and</strong> considering that the terminal miss distances<br />

respect to P1 <strong>and</strong> P2 have to be the same (for initial conditions outside the NEZ <strong>and</strong> when no control<br />

*<br />

*<br />

*<br />

saturation occurs). In the case of Figure 2, v = 1 (left turn), v 1 (right turn) <strong>and</strong> −1<br />

≤ v 1.<br />

J<br />

J<br />

J<br />

2x1<br />

* *<br />

( u1<br />

, v2<br />

)<br />

* *<br />

( u2<br />

, v1<br />

)<br />

* *<br />

( u , u , v)<br />

1<br />

2<br />

≤ J<br />

2x1<br />

1<br />

−<br />

2<br />

=<br />

* * *<br />

* *<br />

* *<br />

( u , u , v ) = J ( u , v ) = J ( u , v )<br />

1<br />

2<br />

2x1<br />

1<br />

2x1<br />

2<br />

2x1<br />

J<br />

≤<br />

J<br />

* *<br />

( u1<br />

, v1<br />

)<br />

* *<br />

( u , v )<br />

2<br />

2<br />

2x1<br />

≤<br />

According to notations <strong>and</strong> normalizations detailed in the previous section, we write the final distances<br />

equality condition in the following manner (where Z are the ZEM in each PE game) :<br />

( t ) = Z ( t )<br />

Z1 f<br />

−<br />

2<br />

Note that the minus sign is due to the y-axes orientation like in Figure 2. In normalized variable, we<br />

get (with τ<br />

Pi<br />

the Pursuer time lag constants) :<br />

2<br />

2<br />

z τ = −z<br />

τ , z = z τ 0<br />

i<br />

f<br />

( ( ))<br />

1 f P1<br />

2 f P2<br />

if i<br />

=<br />

Looking at Figure 3, the normalized zero-effort-miss at final time can be written (where<br />

distance diminutions due to application of sub optimal evader controls):<br />

Δz<br />

are miss<br />

- 3 -


( τ ) + z1max<br />

( τ ) + Δz1( 0)<br />

( τ ) − z ( τ ) + Δz<br />

( 0)<br />

z1 f<br />

= z1<br />

τ =<br />

z2 f<br />

= z2<br />

2 max<br />

2<br />

τ =<br />

In Figure 3, for simplicity reasons we plot the 2x1 game in the ZEM Tgo frame on one unique figure.<br />

It is done by superimposition of the two plots of each couple pursuer-evader with the game initial<br />

condition as point of coincidence (P2 located at origin <strong>and</strong> P1 located at x = 0 <strong>and</strong> y = 11000 ), even<br />

if during the game, the Δ P1 P2 range decreases.<br />

12000<br />

10000<br />

-z 1max<br />

8000<br />

Δ z<br />

v* 2x1<br />

Distance (m)<br />

6000<br />

4000<br />

v* 1x1<br />

= -1<br />

2000<br />

0<br />

0 1 2 3 4 5 6 7 8 9 10<br />

τ go<br />

(s)<br />

Figure 3 : Calculation of<br />

*<br />

v<br />

2x1<br />

The 1x1 DGL/1 no-escape-zone expressions are well known [12] :<br />

Where:<br />

<strong>and</strong><br />

H<br />

2<br />

H<br />

z<br />

H<br />

1<br />

z<br />

= μ<br />

− ε<br />

1max<br />

1H11<br />

1H<br />

21<br />

2 max<br />

= μ<br />

2<br />

H12<br />

− ε<br />

2H<br />

22<br />

( θ , ε ),<br />

1, 2<br />

1 , i<br />

= H1<br />

i<br />

i =<br />

θ<br />

2<br />

θ<br />

= ∫<br />

2<br />

( θ ) h( ξ ) dξ<br />

= − h( θ )<br />

H<br />

0<br />

( θ , ε ),<br />

1, 2<br />

2 , i<br />

= H<br />

2 i<br />

i =<br />

θ<br />

2<br />

ξ θ θ<br />

= ∫ ⎜ ⎟<br />

⎜<br />

⎝ ε ⎠ 2 ε ⎝ ε<br />

⎛ ⎞<br />

⎛ ⎞<br />

( θ ) h dξ<br />

= − ε h ⎟<br />

⎠<br />

0<br />

The third terms<br />

Δ zi<br />

that corresponds to the changes in z<br />

if<br />

due to<br />

Δ<br />

Δz<br />

Substituting these expressions lead to:<br />

ε<br />

*<br />

v<br />

2x1<br />

are:<br />

* *<br />

*<br />

( v2x<br />

1<br />

− v1x<br />

1<br />

) = ε1H<br />

21( v2x<br />

1<br />

1)<br />

* *<br />

*<br />

( v − v ) = ε H ( v 1)<br />

z1 =<br />

1H<br />

21<br />

+<br />

2<br />

= ε<br />

2H<br />

22 2x1<br />

1x1<br />

2 22 2x1<br />

−<br />

- 4 -


*<br />

( μ<br />

1H<br />

11<br />

− ε<br />

1H<br />

21<br />

) + ε<br />

1H<br />

21( v2<br />

1<br />

1)<br />

*<br />

( μ H − ε H ) + ε H ( v 1)<br />

z1 f<br />

= z1<br />

+<br />

x<br />

+<br />

2 f<br />

= z<br />

2<br />

−<br />

2 12 2 22 2 22 2x1<br />

−<br />

z<br />

From which, using the initial equality, we can isolated<br />

the evader bounds) :<br />

v<br />

*<br />

2×<br />

1<br />

( z)<br />

=<br />

*<br />

v<br />

2x1<br />

(subject to saturation if<br />

2<br />

( − μ H − z ) τ + ( μ H − z )<br />

1<br />

ε<br />

11<br />

2<br />

H<br />

1<br />

22<br />

τ<br />

P1<br />

2<br />

P2<br />

+ ε<br />

2 12 2<br />

2<br />

1<br />

H<br />

21<br />

τ<br />

P1<br />

τ<br />

2<br />

P2<br />

*<br />

v<br />

2x1<br />

is higher than<br />

*<br />

v<br />

2x1<br />

is relevant outside the 2x1 NEZ <strong>and</strong> is a “reasonable” solution inside the capture zone too. Figure<br />

4 illustrates the optimal trajectories we obtain when the time to go are the same for each pursuer<br />

( μ1<br />

= 2, ε1<br />

= 2, μ2<br />

= 3, ε<br />

2<br />

= 0.85714).<br />

4000<br />

2000<br />

P1<br />

P2<br />

E<br />

0<br />

Distance Y [m]<br />

-2000<br />

-4000<br />

-6000<br />

-8000<br />

0 0.5 1 1.5 2 2.5 3 3.5<br />

Distance X [m]<br />

x 10 4<br />

Figure 4 : Example with evader playing<br />

*<br />

v<br />

2x1<br />

3.3. <strong>Two</strong> on <strong>One</strong> No Escape Zone<br />

The overall 2x1 NEZ is the collection of P1 E NEZ plus P2 E NEZ plus an extra state space area. If<br />

the evader plays in the worst way (from the evader point of view) vi = -sign( z<br />

i<br />

) then a new limit is<br />

under consideration. In addition to z<br />

i max<br />

we define z<br />

i min<br />

:<br />

z1min<br />

= μ<br />

1H11<br />

+ ε<br />

1H<br />

21<br />

z = μ H + ε<br />

2 min 2 12 2H<br />

22<br />

The new 2x1 frontier is then the line between the two intersections that are solution of the equations:<br />

z θ = −z<br />

θ + ΔP<br />

z<br />

( )<br />

1min<br />

( )<br />

1 2<br />

( θ ) = −z1max<br />

( θ ) + ΔP1<br />

2<br />

2 max<br />

P<br />

2 min<br />

P<br />

These two equations give an unique solution τ<br />

2x1<br />

which characterizes the new barrier in the 2x1 game.<br />

Figure 5 shows the boundary of the 2x1 game ( τ<br />

2x1<br />

≈ 7.2 sec. ) with same parameters as in previous<br />

section. The state space area outside the two 1x1 NEZ (blue plain lines) but with τ ≥ τ 2x 1<br />

(vertical red<br />

line) is also now belonging to the 2x1 NEZ.<br />

- 5 -


11000<br />

10000<br />

9000<br />

8000<br />

7000<br />

Distance [m]<br />

6000<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

0 2 4 6 8 10 12<br />

τ go<br />

[s]<br />

Figure 5 : NEZ extension in 2x1 game<br />

Figure 6 characterizes the saturations that apply in the evader optimal controls. Outside the 2x1<br />

capture zone (always still considering E between the two pursuers) three different end games can<br />

happen:<br />

If z<br />

1 f<br />

= 0 <strong>and</strong> z<br />

2 f<br />

= 0 then the initial conditions belong to the 2x1 no-escape-zone.<br />

If z<br />

if<br />

≠ 0 <strong>and</strong> z1 f<br />

= z2<br />

f<br />

then the initial conditions belong to the 2x1 non-saturate zone (area in red in<br />

Figure 6).<br />

If z<br />

if<br />

≠ 0 <strong>and</strong> z1 f<br />

≠ z2<br />

f<br />

then the initial conditions belong to the 2x1 saturate zone (case<br />

corresponding to the “trade off” evader controls overcoming the control bounds).<br />

12000<br />

10000<br />

8000<br />

ZEM [m]<br />

6000<br />

4000<br />

2000<br />

0<br />

0 1 2 3 4 5 6 7 8 9 10<br />

τ go<br />

[s]<br />

Figure 6 : <strong>Evader</strong> control saturation<br />

*<br />

This new limit, as well as the zone of v<br />

2x1<br />

saturation, have been investigated in linear <strong>and</strong> non-linear<br />

simulations in order to confirm the computation of τ<br />

2x1. Up to now, the 2x1 game trajectories (Figure<br />

3, Figure 5, Figure 6) have been plotted on a single ( ZEM , τ<br />

go<br />

) representation. Figure 7 represents<br />

ZEM , τ go<br />

, ΔP1P2<br />

. On the left side delimited by the<br />

the barrier of the 2x1 game in the state space ( )<br />

red surface P2 intercepts E. On the right part (delimited by the blue surface) E is captured by P1. The<br />

capture zone extension due to the presence of two pursuers is depicted by green <strong>and</strong> purple lines.<br />

- 6 -


Moreover, in Figure 7 we draw an optimal trajectory (black line) starting (<strong>and</strong> remaining) on the new<br />

2x1 boundary.<br />

2x1 DGL/1 NEZ + optimal trajectory on the barrier<br />

12000<br />

10000<br />

delta P1P2 [m]<br />

8000<br />

6000<br />

4000<br />

10<br />

2000<br />

0<br />

-2000 0<br />

2000 4000<br />

6000 8000 10000 0<br />

ZEM [m]<br />

12000<br />

5<br />

Time to Go [sec]<br />

Figure 7 : 2x1 NEZ<br />

3.4. Case of different time to go<br />

In this configuration, the two pursuers are launched at different times <strong>and</strong> so different time-to-go. The<br />

*<br />

previous expression of v<br />

2x1<br />

is no longer available <strong>and</strong> thus need to be generalized to take into account<br />

the difference in time-to-go. Note that in this new case, the evader is assumed to switch its comm<strong>and</strong><br />

*<br />

to v<br />

1x1<br />

(<strong>and</strong> faces only one pursuer like in a 1x1 game) when it goes beyond the first opponent. The<br />

*<br />

optimal evader control, always called v<br />

2x1<br />

, should still lead to the equality of the final distances (in<br />

absence of evader control saturations):<br />

Z τ = = −Z<br />

τ 0<br />

12000<br />

(<br />

1<br />

0) 2( 2<br />

)<br />

2<br />

2<br />

( ) τ = −z<br />

( ) τ<br />

1<br />

=<br />

z1 0<br />

P1<br />

2<br />

0<br />

P2<br />

10000<br />

-z 1max<br />

z 2max<br />

8000<br />

Δ z 1<br />

v* 2x1<br />

6000<br />

4000<br />

2000<br />

Δτ<br />

Δ z 2<br />

v* 1x1<br />

= -1<br />

0<br />

0 1 2 3 4 5 6 7 8 9 10<br />

Figure 8 : Calculation of<br />

v with different time-to-go (<br />

2<br />

τ<br />

1<br />

*<br />

2x1<br />

- 7 -<br />

τ < )


Looking at Figure 8, case where τ<br />

2<br />

< τ<br />

1<br />

, the normalized zero-effort-miss at final time can be now<br />

written:<br />

z<br />

1( 0) = z1( τ<br />

1<br />

) + z1max<br />

( τ<br />

1<br />

) + Δz1( Δτ<br />

)<br />

z = z τ − z τ + Δ 0<br />

Since ( ) = Δ ( Δτ )<br />

( ) ( ) ( ) ( )<br />

2<br />

0<br />

2 2 2 max 2<br />

z<br />

2<br />

Δ 0 z<br />

*<br />

z<br />

1 1<br />

because evader plays only against P1 ( v<br />

1x1<br />

= −1) during Δ τ (see Figure 8).<br />

Notice that in Figure 8 the x axis corresponds to τ 1<br />

values ( τ<br />

2<br />

+ Δτ ) . The third terms that<br />

*<br />

corresponds to the new change in due to v<br />

2x1<br />

is:<br />

Δz<br />

z 1 f<br />

And, thanks to the properties of integrals,<br />

H<br />

21<br />

* *<br />

( Δτ<br />

) = ε H ( Δτ<br />

→ τ ) ( v − v )<br />

1 1 21<br />

1 2x1<br />

1x1<br />

θ<br />

⎛ ξ ⎞<br />

⎜ ⎟<br />

⎝ ε ⎠<br />

1<br />

( Δτ<br />

→ τ ) = h dξ<br />

= H ( τ ) − H ( Δτ<br />

)<br />

1<br />

∫<br />

Δτ<br />

21<br />

1<br />

21<br />

Expression becomes:<br />

Δz<br />

*<br />

[ ]( v 1)<br />

( Δτ<br />

) = ε H ( τ ) − ε H ( Δτ<br />

)<br />

1 1 21 1 1 21<br />

2x1<br />

+<br />

Substituting these expressions leads to:<br />

z<br />

*<br />

( ) = z ( τ ) + μ H ( τ ) − ε H ( Δτ<br />

) + [ ε H ( τ ) − ε H ( Δτ<br />

)] v<br />

1<br />

0<br />

1 1 1 11 1 1 21<br />

1 21 1 1 21<br />

2x1<br />

Moreover, the expression of<br />

z<br />

z 2 f<br />

remain the same as before when time to go coincided:<br />

*<br />

[ ] + ε H ( τ ) ( v 1)<br />

( 0) z ( τ ) − μ H ( τ ) − ε H ( τ )<br />

2<br />

=<br />

2 2 2 12 2 2 22 2 2 22 2 2x1<br />

−<br />

From which, using the initial equality, we can isolated<br />

v , in the case where τ<br />

2<br />

< τ<br />

1<br />

:<br />

*<br />

2x1<br />

v<br />

*<br />

2×<br />

1<br />

( z)<br />

=<br />

2<br />

[ − μ1<br />

H<br />

11( τ<br />

1<br />

) − z1( τ<br />

1<br />

) + ε<br />

1H<br />

21( Δτ<br />

)] τ<br />

P1<br />

+ [ μ<br />

2<br />

H<br />

12<br />

( τ<br />

2<br />

) − z<br />

2<br />

( τ<br />

2<br />

)]<br />

2<br />

2<br />

ε H ( τ ) τ + [ ε H ( τ ) − ε H ( Δτ<br />

)] τ<br />

2<br />

22<br />

2<br />

P2<br />

1<br />

21<br />

1<br />

1<br />

21<br />

P1<br />

τ<br />

2<br />

P2<br />

Due to the problem symmetry, the same calculus can be done switching the role of pursuers 1 <strong>and</strong> 2.<br />

Expression of v in case where τ<br />

2<br />

> τ<br />

1<br />

is then as follow:<br />

v<br />

*<br />

2×<br />

1<br />

( z)<br />

*<br />

2x1<br />

=<br />

2<br />

[ − μ1<br />

H<br />

11( τ<br />

1<br />

) − z1( τ<br />

1<br />

)] τ<br />

P1<br />

+ [ μ<br />

2<br />

H<br />

12<br />

( τ<br />

2<br />

) − ε<br />

2<br />

H<br />

22<br />

( Δτ<br />

) − z<br />

2<br />

( τ<br />

2<br />

)]<br />

2<br />

2<br />

[ ε H ( τ ) − ε H ( Δτ<br />

)] τ + ε H ( τ ) τ<br />

2<br />

22<br />

2<br />

2<br />

22<br />

*<br />

Note that the particular case where Δτ = 0 leads to the expression of v<br />

2x1<br />

found in section 3.2 (same<br />

time to go). By the way, we compute the 2x1 NEZ extension when time to go differs. Figure 9 <strong>and</strong><br />

Figure 10 show τ<br />

2x1<br />

limit remaining as a straight line (dash red line in Figure 9). The green crosses in<br />

Figure 10 represent an optimal trajectory on the 2x1 NEZ boundary at different time instants.<br />

P2<br />

1<br />

21<br />

1<br />

P1<br />

τ<br />

2<br />

P2<br />

- 8 -


12000<br />

10000<br />

8000<br />

ZEM [m]<br />

6000<br />

4000<br />

2000<br />

0<br />

0 2 4 6 8 10 12<br />

τ go<br />

[s]<br />

−τ<br />

Figure 9 : 2x1 NEZ for 1 sec.<br />

τ<br />

1 2<br />

=<br />

10000<br />

10000<br />

ZEM [m]<br />

5000<br />

5000<br />

4000<br />

0<br />

0 5 10<br />

4000<br />

0<br />

0 5 10<br />

ZEM [m]<br />

3000<br />

2000<br />

1000<br />

1000<br />

0<br />

0 2 4 6<br />

3000<br />

2000<br />

1000<br />

1000<br />

0<br />

0 2 4 6<br />

ZEM [m]<br />

500<br />

500<br />

0<br />

0 1 2 3 4 5<br />

τ go<br />

[s]<br />

0<br />

0 1 2 3 4 5<br />

τ go<br />

[s]<br />

Figure 10 : 2x1 NEZ sections at different time instants.<br />

4. Conclusion<br />

We extend DGL/1 to the three players game involving two pursuers <strong>and</strong> one evader. We solve the<br />

game showing that for some initial conditions located between the pursuers the optimal evasion<br />

strategy is no more a maximum turn control. The optimal evasion consists then in a “trade off”<br />

strategy to drive the evader between the two pursuers. Considering 2x1 games we enlarge the<br />

interception area compared to solutions only involving two independent 1x1 NEZ. This approach<br />

could be applied when DGL/1 NEZ are bounded (closed) <strong>and</strong> when considering DGL/0 dynamics<br />

(linear differential game with first order for the pursuer <strong>and</strong> zero order for the evader).<br />

- 9 -


The next step consists in transposing these results to 3D engagements with several players <strong>and</strong> realistic<br />

models plus to design (suboptimal) assignment strategies based on NEZ. From the interception point<br />

of view, we notice that the design of allocation strategies in NxP engagements require to solve 1x1<br />

NEZ, 2x1 NEZ but also many on one NEZ.<br />

Moreover, it could be interesting to compare this way of doing to other approaches (algorithms) which<br />

address the problem of computing, approaching or over approximating reachable sets with non linear<br />

kinematics (level set methods [10], victory domains from viability theory [5]). In a general manner,<br />

other approaches dedicated to suboptimal multi player strategies are relevant: reflection of forward<br />

reachable sets [9], minimization / maximization of the growth of particular level set functions ([13],<br />

[14]), Multiple Objective Optimization approach [11], LQ approach with evader terminal constrains<br />

<strong>and</strong> specific guidance law (Proportional Navigation) for the pursuers [2].<br />

References<br />

[1] T. Basar <strong>and</strong> G.J. Olsder, “Dynamic Non Cooperative <strong>Game</strong> Theory”, Academic Press, 1982.<br />

[2] J. Ben-Asher, E. M. Cliff <strong>and</strong> H. J. Kelly, “Optimal Evasion with a Path-Angle Constraint <strong>and</strong><br />

Against <strong>Two</strong> <strong>Pursuers</strong>”, Journal of Guidance, Control <strong>and</strong> Dynamics, Vol. 11, No. 4, July-August<br />

1988.<br />

[3] A. E. Bryson <strong>and</strong> Y.C. Ho, “Applied Optimal Control”, Hemisphere Publishing Corporation,<br />

1975.<br />

[4] P. Cardaliaguet, “A differential game with two players <strong>and</strong> one target”, SIAM J. Control<br />

Optimization, Vol. 34, No. 4, pp.1441-1460, 1996.<br />

[5] P. Cardaliaguet, M. Quincampoix, <strong>and</strong> P. Saint-Pierre, “Set-valued numerical analysis for<br />

optimal control <strong>and</strong> differential games”, Annals of the International Society of Dynamic <strong>Game</strong>s, M.<br />

Bardi, T.E.S. Raghavan, <strong>and</strong> T. Parthasarathy, Eds., Birkhäuser, 1999, Vol 4, pp. 177-247.<br />

[6] J. Ge, L. Tang, J. Reimann, G. Vachtsevanos, “Suboptimal Approaches to Multiplayer Pursuit-<br />

Evasion <strong>Differential</strong> <strong>Game</strong>s”, AIAA 2006-6786 Guidance, Navigation, <strong>and</strong> Control Conference, 21-24<br />

August 2006, Keystone, Colorado.<br />

[7] P. Hagedorn <strong>and</strong> J.V. Breakwell, “A <strong>Differential</strong> <strong>Game</strong> with <strong>Two</strong> <strong>Pursuers</strong> <strong>and</strong> <strong>One</strong> <strong>Evader</strong>”,<br />

Journal of Optimization Theory <strong>and</strong> Application, Vol. 18, No 2, pp. 15-29, 1976.<br />

[8] R. Isaacs, “<strong>Differential</strong> <strong>Game</strong>s”, New York, Wiley, 1967.<br />

[9] J. S. Jang <strong>and</strong> C. J. Tomlin, “Control Strategies in Multi-Player Pursuit <strong>and</strong> Evasion <strong>Game</strong>”,<br />

AIAA 2005-6239 Guidance, Navigation, <strong>and</strong> Control Conference, 15-18 August 2005, San Francisco,<br />

California.<br />

[10] M. Mitchel, A. Bayen, C.J. Tomlin, “A Time Dependent Hamilton-Jacobi Formulation of<br />

Reachable Sets for Continuous Dynamic <strong>Game</strong>s, IEEE Transactions on Automatic Control, Vol. 50,<br />

No. 7, July 2005<br />

[11] I. Rusnak, “The Lady, The B<strong>and</strong>its, <strong>and</strong> The Bodyguards – A <strong>Two</strong> Team Dynamic <strong>Game</strong>”,<br />

Proceedings of the 16 th World IFAC Congress, 2005.<br />

[12] J. Shinar <strong>and</strong> T. Shima, “Nonorthodox Guidance Law Development Approach for Intercepting<br />

Maneuvering Targets”, Journal of Guidance, Control <strong>and</strong> Dynamics, Vol. 25, No. 4, July-August<br />

2002.<br />

[13] D. M. Stipanovic, A. Melikyan, <strong>and</strong> N. Hovakimyan, “Some Sufficient Conditions for Multi-<br />

Player Pursuit-Evasion <strong>Game</strong>s with Continuous <strong>and</strong> Discrete Observations”, 12 th ISDG Conference,<br />

Sophia-Antipolis, France, July 2006.<br />

[14] D. M. Stipanovic, Sriram <strong>and</strong> C.J. Tomlin, “Strategies for Agents in Multi-Player Pursuit-<br />

Evasion <strong>Game</strong>s”, 11 th ISDG Conference, Tucson, Arizona, December 2004.<br />

- 10 -

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!