21.06.2015 Views

Intercomparison of European Fog Forecast Models - Cosmo

Intercomparison of European Fog Forecast Models - Cosmo

Intercomparison of European Fog Forecast Models - Cosmo

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

COSMO User’s Seminar<br />

Langen, March 2008<br />

<strong>Intercomparison</strong> <strong>of</strong> <strong>European</strong><br />

<strong>Fog</strong> <strong>Forecast</strong> <strong>Models</strong><br />

M.Masbou 1,2 , A. Bott 1 , M. D. Müller 3 , N. W.Nielsen 4 , C. Petersen 4 ,<br />

H. Seidl 5 , A. Kann 5 , J. Cermak 6 , H. Petithomme 7 & W. K. Adam 8<br />

1 Meteorological Institute, University <strong>of</strong> Bonn, Germany, mmasbou@uni-bonn.de<br />

2 Laboratoire de Météorologie physique, University Blaise Pascal, Clermont-Ferrand, France<br />

3<br />

Institute <strong>of</strong> Meteorology, Climatology & Remote Sensing, University <strong>of</strong> Basel, Switzerland<br />

4<br />

Danish Meteorlogical Institute, Copenhagen, Denmark<br />

5<br />

Central Institute for Meteorology and Geodynamics, Vienna, Austria<br />

6<br />

Laboratory for Climatology & Remote Sensing, University <strong>of</strong> Marburg, Germany<br />

7<br />

Meteo France, Toulouse, France<br />

8<br />

Meteorological Observatory Lindenberg, DWD, Germany<br />

COST-722


<strong>Fog</strong> Formation<br />

•Cooling<br />

•Moistening<br />

•Turbulent Mixing<br />

1D<br />

3D<br />

Reach saturation<br />

Radiation fog<br />

Advection fog<br />

(1D)<br />

3D<br />

3D<br />

Precipitation fog<br />

Upslope fog<br />

Valley fog


<strong>Fog</strong>: A visibility reduction<br />

1.4km<br />

1km<br />

0.5 km<br />

100 m<br />

50 m


COST 722 Project<br />

Development <strong>of</strong> advanced methods for short-range<br />

forecasts <strong>of</strong> fog, visibility and low clouds<br />

Working Group I: Initial Data<br />

• Improved calibration and analysis <strong>of</strong> satellite data<br />

• Recommendation <strong>of</strong> measurement equipments<br />

• Exchange <strong>of</strong> knowledge and methods<br />

Working Group II: Numerical <strong>Models</strong><br />

• Developement <strong>of</strong> numerical for fog and low clouds<br />

• Improved understanding <strong>of</strong> physical processes during fog events<br />

Working Group III: Statistical Methods<br />

• Powerful and highly sophisticated statisitcal methods<br />

• Improved expertise on statistical methods<br />

• Basis for the preparation <strong>of</strong> training material


Comparison Campaign on the Lindenberg Area<br />

September – December 2005<br />

Phase 1: Statistics<br />

Each Participant produce 4 month fog forecast and quantify statistically<br />

his fog forecast quality (FAR, HR, ETS)<br />

Phase 2: Fine Comparison for chosen fog/no fog events<br />

Episode 1: fog formation with mid cloud cover<br />

September, 27th 2005: 01-05 UTC<br />

Episode 2: fog formation with without cloud cover<br />

October, 6th 2005: 07-09 UTC<br />

October, 7th 2005: 06-08 UTC<br />

Episode 3: fog formation with 8/8 cloud cover<br />

December, 6th 2005: 18-00 UTC<br />

December, 7th 2005: 00-23 UTC


Lindenberg Area<br />

Observatory <strong>of</strong> DWD supplies:<br />

• Visibility 2m<br />

• Cloud cover<br />

• Radiative fluxes<br />

(SW, LW, Latent and Sensible)<br />

• 10m-Mast: T, RH, Wind<br />

• 100m-Mast: T, RH, Wind<br />

• Radiosounding<br />

(00, 06, 12 and 18 UTC)<br />

• Soil temperature<br />

• Soil moisture


Participants<br />

Statistical Model: MOS-ARPEGE<br />

France: H. Petithomme<br />

MOS statistics using linear discriminant analysis<br />

Uses model output <strong>of</strong> the hydrostatic global model ARPEGE<br />

Predictand:<br />

Predictor:<br />

visibility with different thresholds<br />

pressure at the ground, cloud cover, 10m wind<br />

speed, RH2m, T2m


Model name:<br />

Resolution:<br />

Model domain:<br />

Boundary values:<br />

Dynamics:<br />

Turbulence:<br />

Visibility:<br />

Operational models<br />

Austria: H. Seidl and A. Kann<br />

Model name:<br />

Resolution:<br />

Model domain:<br />

Boundary values:<br />

Dynamics:<br />

Turbulence:<br />

Visibility:<br />

ALADIN-AUSTRIA<br />

9.6 km horizontal, 45 vertical layers<br />

Europe<br />

global model ARPEGE<br />

Hydrostatic<br />

Louis scheme<br />

Post-processing in case <strong>of</strong> T-inversion<br />

gradient RH and T<br />

Denmark: C. Petersen and N.W. Nielsen<br />

DMI-HIRLAM<br />

16 km horizontal, 40 vertical layers<br />

Europe<br />

ECMWF analyses and forecasts<br />

Hydrostatic<br />

prognostic TKE<br />

MOS approach depending on ground<br />

measurements and model forecasts


Turbulence:<br />

Visibility:<br />

Non-operational models<br />

Germany: M. Masbou and A. Bott<br />

Model name:<br />

LM-PAFOG (COSMO-FOG)<br />

Resolution: 2.8 km horizontal, 40 vertical layers, Δz min =4m<br />

Model domain: 280 x 280 km limited area<br />

Boundary values: COSMO-EU<br />

Dynamics:<br />

Turbulence:<br />

Visibility:<br />

Switzerland: M.D. Müller<br />

Model name:<br />

Resolution:<br />

Model domain:<br />

Boundary values:<br />

Dynamics:<br />

Nonhydrostatic, fully compressible<br />

Louis scheme<br />

diagnostic variable depending on CCN, LWC,<br />

aerosol concentration at 2m<br />

NMM-PAFOG<br />

1 km horizontal, 45 vertical layers<br />

160 x 160 km limited area<br />

NMM 13 km<br />

Nonhydrostatic, fully compressible<br />

prognostic TKE<br />

complex relation <strong>of</strong> moist forecasted<br />

parameter at 2m


Statistical Study<br />

METHOD<br />

Comparison 1 pixel <strong>of</strong> Model area with visibility 2m<br />

5 Categories: < 350m, < 600m, < 1000m, < 1500m, < 3000m<br />

Basing on contingence table analyses<br />

PERIOD<br />

4 months forecast (September-December 2005)<br />

MODELS<br />

Initialization:<br />

each day at 00 UTC<br />

FOG CLIMATOLOGY<br />

35 <strong>Fog</strong> events<br />

<strong>Fog</strong> episode very rare, 4 % <strong>of</strong> studied time period


Ensemble <strong>Forecast</strong><br />

To analyse the basic quality <strong>of</strong> the <strong>European</strong> models<br />

Ensemble forecast extracted from the 4 models<br />

n<br />

1<br />

P = ∑ P<br />

ens<br />

n<br />

i<br />

i=<br />

1<br />

P ens<br />

P i<br />

<strong>Fog</strong> event probability <strong>of</strong> the<br />

ensemble<br />

<strong>Fog</strong> event probability <strong>of</strong><br />

the i-th model<br />

n<br />

Quantity <strong>of</strong> available<br />

forecasts<br />

Average out disagreements<br />

between ensemble member


Hit Rate<br />

What fraction <strong>of</strong> the observed “fog" events were correctly forecast?<br />

BLACK:LM-PAFOG RED:ENSEMBLE GREEN:HIRLAM<br />

MAGENTA:MOS-ARPEGE<br />

BLUE:ALADIN


False Alarm Rate<br />

What fraction <strong>of</strong> the observed "no-fog" events were incorrectly forecast as “fog"?<br />

BLACK:LM-PAFOG RED:ENSEMBLE GREEN:HIRLAM<br />

MAGENTA:MOS-ARPEGE<br />

BLUE:ALADIN


False Alarm Ratio<br />

What fraction <strong>of</strong> the predicted “fog" events actually did not occur<br />

(i.e., were false alarms)?<br />

BLACK:LM-PAFOG RED:ENSEMBLE GREEN:HIRLAM<br />

MAGENTA:MOS-ARPEGE<br />

BLUE:ALADIN


Equitable Threat Score<br />

How well did the forecast “fog" events correspond to the observed “fog" events?<br />

BLACK:LM-PAFOG RED:ENSEMBLE GREEN:HIRLAM<br />

MAGENTA:MOS-ARPEGE<br />

BLUE:ALADIN


Case I: Visibility 2m<br />

Date: September, 26-27 th 2005<br />

After a rain episode bringing warm and humid air, residual cloud<br />

parcel<br />

Radiative fog


Visibility 2m: case I<br />

Legend:<br />

Vis 1000 m<br />

Vis<br />


LWC 2m: case I<br />

Legend:<br />

LWC> 0.1g/kg<br />

>0.01 g/kg<br />

LWC<br />


Case I: Vertical pr<strong>of</strong>ile at Lindenberg<br />

BLACK:OBSERVED RED:LM-PAFOG GREEN:ALADIN<br />

BLUE:HIRLAM<br />

CYAN= NMM-PAFOG


Case I: Radiative Fluxes


Case I: Close to the ground


Case II: Visibility 2m<br />

Date: December, 6-7 th 2005<br />

Stable moist layer with a tendency to light rain, full cloud cover<br />

Low stratus and <strong>Fog</strong>


Visibility 2m: case II<br />

Legend:<br />

Vis 1000 m<br />

Vis<br />


LWC 2m: case II<br />

Legend:<br />

LWC> 0.1g/kg<br />

>0.01 g/kg<br />

LWC<br />


Case II: Vertical pr<strong>of</strong>ile at Lindenberg<br />

BLACK:OBSERVED RED:LM-PAFOG GREEN:ALADIN<br />

BLUE:HIRLAM<br />

CYAN= NMM-PAFOG


Case II: Radiative Fluxes


Case II: Close to the ground


CONCLUSION<br />

4 <strong>Models</strong> involved NO BEST MODEL<br />

• MOS-ARPEGE: statistic model<br />

• ALADIN-AUSTRIA, DMI-HIRLAM:<br />

3D mesoscale models, ad hoc cloud water near the surface<br />

• NMM-PAFOG, LM-PAFOG :<br />

3D high-resolution fog forecast model, complex microphysics<br />

Statistical and fine Analysis <strong>of</strong> autumn 2005´s fog events<br />

• 20 % <strong>of</strong> the fog forecast according with measurements<br />

• Initialization and Assimilation <strong>of</strong> the boundary layer<br />

determinant role for a successful fog forecast<br />

• Visibility parameterization: decisive key<br />

• Vertical diffusion usually not designed to work well<br />

near the surface


Outlooks<br />

• Adapted turbulent scheme for high vertical resolution<br />

• Long time verification <strong>of</strong> 3D fog forecast model considering<br />

spatial distribution <strong>of</strong> fog<br />

• Adjusting the visibility parameterization<br />

Thanks<br />

COST 722


Parameters in <strong>Fog</strong> Formation<br />

Important Parameters in <strong>Fog</strong> Formation<br />

Cooling <strong>of</strong> moist air by radiative flux divergence<br />

Vertical mixing <strong>of</strong> heat and moisture<br />

Vegetation<br />

Horizontal and vertical wind<br />

Heat and moisture transport in soil<br />

Advection<br />

Topographic effect<br />

(Duynkerke, P.G.,1991)<br />

Once the fog has formed<br />

Longwave radiative cooling at fog top<br />

Gravitational droplet settling<br />

<strong>Fog</strong> microphysics<br />

Shortwave radiation


What is FOG ?<br />

WMO definition<br />

“Suspension <strong>of</strong> very small, usually microscopic water<br />

droplets in the air, generally reducing the horizontal<br />

visibility at the Earth´s surface to less than 1km”<br />

<strong>Forecast</strong>er definition (Roach, W.T., 1994)<br />

“<strong>Fog</strong> occurs whenever the horizontal visibility falls below<br />

1km. Cloud base descending to ground level is also<br />

experienced as fog.”


Case III: Visibility 2m<br />

Date: October, 6-7 th 2005<br />

Under influence <strong>of</strong> high pressure system, no cloud cover<br />

Radiative fog


Visibility 2m: case III<br />

Legend:<br />

Vis 1000 m<br />

Vis<br />


LWC 2m: case III<br />

Legend:<br />

LWC> 0.1g/kg<br />

>0.01 g/kg<br />

LWC<br />


Case III: Vertical pr<strong>of</strong>ile at Lindenberg<br />

BLACK:OBSERVED RED:LM-PAFOG GREEN:ALADIN<br />

BLUE:HIRLAM<br />

CYAN= NMM-PAFOG


Case III: Radiative Fluxes


Case III: Close to the ground

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!