28.06.2015 Views

Problem Set: Asset Pricing and Portfolio Allocation - ForEcoStudies

Problem Set: Asset Pricing and Portfolio Allocation - ForEcoStudies

Problem Set: Asset Pricing and Portfolio Allocation - ForEcoStudies

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>ForEcoStudies</strong> Library<br />

http://forecostudies.altervista.org/<br />

<strong>Problem</strong> <strong>Set</strong>: <strong>Asset</strong> <strong>Pricing</strong> <strong>and</strong><br />

<strong>Portfolio</strong> <strong>Allocation</strong><br />

Author: Michael Donadelli<br />

E-Mail: michael.donadelli@gmail.com<br />

Date of Creation: 15/12/2011<br />

Date of Update: 02/03/2012<br />

Field: Finance<br />

Keywords: CCAPM, Mean-Variance Ecient<br />

Frontier<br />

Additional Info: MoSec: <strong>Problem</strong> <strong>Set</strong> (Financial<br />

Economics Courses)


<strong>Problem</strong> <strong>Set</strong> III<br />

Exercise 2.3<br />

Consider a two period economy with I agents <strong>and</strong> J risky assets, <strong>and</strong> one risk-free asset. Agent’s<br />

wealth is defined as follows:<br />

⎛ ⎞<br />

Ỹ i =<br />

⎝Y i<br />

0 − ∑ j<br />

x i j<br />

⎠ (1 + r f ) + ∑ j<br />

x i j (1 + ˜r j )<br />

Y0 i = agent i’ initial wealth<br />

r f = riskfree interest rate<br />

˜r j = r<strong>and</strong>om rate of return on the risky asset j<br />

x i j = amount invested in asset j by agent i<br />

.<br />

The individual’s choice problem is,<br />

max x i<br />

j<br />

E[U i (Ỹi)]<br />

Let’s now substitute Ỹi in the utility function. We obtain:<br />

⎡ ⎛⎛<br />

⎞<br />

max x i<br />

j<br />

E ⎣U i<br />

⎝⎝Y 0 i − ∑ x i ⎠<br />

j (1 + r f ) + ∑<br />

j<br />

j<br />

⎞⎤<br />

x i j (1 + ˜r j ) ⎠⎦<br />

or<br />

⎡ ⎛<br />

max x i<br />

j<br />

E ⎣U i<br />

⎝Y 0 i + Y0 i r f − ∑ j<br />

x i j − ∑ j<br />

x i jr f + ∑ j<br />

x i j + ∑ j<br />

⎞⎤<br />

x i j ˜r j<br />

⎠⎦<br />

First Order Condition:<br />

∂E[U i (Ỹi)]<br />

∂x i j<br />

= 0<br />

⇒ E[U ′ (Ỹi)(−1 − r f + 1 + ˜r j )] = 0<br />

⇒ E[U ′ (Ỹi)(˜r j − r f )] = 0<br />

.<br />

Re-arranging <strong>and</strong> using the properties of the covariance (E (XY ) = E (X) E (Y ) + cov (X, Y ))<br />

we get:<br />

E[U ′ (Ỹi)(˜r j − r f )] = E[U ′ (Ỹi)]E[(˜r j − r f )] + cov(U ′ (Ỹi), ˜r j )<br />

⇒ E[U ′ (Ỹi)]E[(˜r j − r f )] + cov(U ′ (Ỹi), ˜r j ) = 0<br />

⇒ E[U ′ (Ỹi)]E[(˜r j − r f )] = −cov(U ′ (Ỹi), ˜r j )<br />

1


Applying Stein’s theorem cov[g(x), y] = E[g ′ (x), y)]cov[x, y] we can re-write the latter as follows:<br />

cov(U ′ (Ỹi), ˜r j ) = E[U ′′ (Ỹi)] cov(Ỹi, ˜r j )<br />

or<br />

Let’s define RA i = −<br />

⇒ E[U ′ (Ỹi)]E[(˜r j − r f )] = −E[U ′′ (Ỹi)] cov(Ỹi, ˜r j )<br />

′′<br />

E[U (Ỹi)]<br />

E[U<br />

E[(˜r j − r f )] = − E[U ′′ (Ỹi)]<br />

E[U ′ (Ỹi)] cov(Ỹi, ˜r j )<br />

′ (Ỹi)]<br />

, then equation above can be written in the following way:<br />

E[U ′ (Ỹi)]E[(˜r j − r f )] = RA i cov(Ỹi, ˜r j )<br />

∀ i<br />

.<br />

Aggregating across the individuals we can show that E[U ′ (Ỹi)]E[(˜r j − r f )] = RA i cov(Ỹi, ˜r j )<br />

can be rewritten as follows: 1<br />

E[(˜r j − r f )] = ∑ i<br />

RA i cov(Ỹi, ˜r j )<br />

⇒ E[(˜r j − r f )] = ∑ i<br />

cov(Ỹi, ˜r j RA i )<br />

⇒ E[(˜r j − r f )] = cov( ∑ i<br />

∑<br />

Ỹ i , ˜r j RA i )<br />

i<br />

where Y MO (1 + ˜r M ), hence<br />

∑<br />

⇒ E[(˜r j − r f )] = cov(Y MO (1 + ˜r M ), ˜r j RA i )<br />

∑<br />

⇒ E[(˜r j − r f )] = Y MO cov((˜r M , ˜r j RA i )<br />

∑<br />

⇒ E[(˜r j − r f )] = Y MO RA i cov(˜r M , ˜r j )<br />

i<br />

i<br />

i<br />

1 Remark: cov(aX, bY ) = ab cov(X, Y ).<br />

⇒ E[(˜r j − r f )] =<br />

⇒ E[(˜r j − r f )] =<br />

Y MO<br />

∑ 1<br />

i RAi cov(˜r M , ˜r j )<br />

∑<br />

i Ỹ i<br />

(1+˜r M )<br />

∑ 1<br />

i RAi<br />

2


Suppose ˜r M = ˜r j :<br />

⇒ E[(˜r j − r f )] =<br />

Y MO<br />

∑ 1 cov(˜r M , ˜r M )<br />

i RAi<br />

⇒ E[(˜r M − r f )] =<br />

Derive the Capital <strong>Asset</strong> <strong>Pricing</strong> Model: 2<br />

• E[(˜r j − r f )] =<br />

• E[(˜r M − r f )] =<br />

Y MO<br />

∑ 1<br />

i RA i<br />

Y MO<br />

∑ 1<br />

i RA i<br />

cov(˜r M , ˜r j )<br />

var(˜r M )<br />

Y MO<br />

∑ 1<br />

i RAi var(˜r M )<br />

<strong>and</strong> dividing the first equation over the second we end up with the following result:<br />

E[(˜r j − r f )] =<br />

E[(˜r M − r f )] =<br />

Y MO<br />

∑ 1<br />

i RA i<br />

Y MO<br />

∑ 1<br />

i RA i<br />

cov(˜r M , ˜r j )<br />

var(˜r M )<br />

⇒<br />

⇒ E[(˜r j − r f )]<br />

E[(˜r M − r f )] = 1 · cov(˜r M , ˜r j )<br />

var(˜r M )<br />

.<br />

E[(˜r j − r f )] = cov(˜r M , ˜r j )<br />

var(˜r M ) E[(˜r M − r f )]<br />

Exercise 2.4<br />

E[mR i ] = 1 where R i is the gross return on asset i <strong>and</strong> m the stochastic discount factor.<br />

• m t+1 ≡ δ U ′ (c t+1)<br />

U ′ (c t)<br />

→ stochastic discount factor.<br />

• (1 + R i,t+1 ) → gross return on asset i.<br />

Note that this fundamental equation holds also for the gross return on the risk-free asset <strong>and</strong><br />

on the market portfolio R M .<br />

[<br />

E[mR i ] ⇒ 1 = E t δ U ′ ]<br />

(c t+1 )<br />

U ′ (c t ) (1 + R i,t+1)<br />

but this should also holds for R M ,<br />

[<br />

E[mR M ] ⇒ 1 = E t δ U ′ ]<br />

(c t+1 )<br />

U ′ (c t ) (1 + R M,t+1)<br />

.<br />

2 CAPM: E[(˜r j − r f )] = β E[(˜r M − r f )] where β = cov(˜r M ,˜r j )<br />

var(˜r M ) .<br />

3


.<br />

.<br />

Then, using the property of the covariance E(XY ) = E(X)E(Y ) + cov(X, Y ) we have: 3<br />

[<br />

1 = E t δ U ′ ] [<br />

(c t+1 )<br />

U ′ E t [(1 + R M,t+1 )] + cov t δ U ′ ]<br />

(c t+1 )<br />

(c t )<br />

U ′ (c t ) , R M,t+1<br />

Remark: from discount bond price (p f,t )<br />

[<br />

1<br />

(1 + R f,t+1 ) = p f,t = E t δ U ′ ]<br />

(c t+1 )<br />

U ′ · 1<br />

(c t )<br />

[<br />

Then substituting 1 = E t<br />

[<br />

]<br />

p f,t = E t δ U ′ (c t+1)<br />

U ′ (c t)<br />

· 1<br />

E t<br />

[<br />

δ U ′ (c t+1)<br />

U ′ (c t)<br />

δ U ′ (c t+1)<br />

U ′ (c t)<br />

]<br />

E t [(1 + R M,t+1 )] + cov t<br />

[<br />

we obtain the following result:<br />

]<br />

E t [(1 + R M,t+1 )] + cov t<br />

[<br />

(1 + R f,t+1 )<br />

δ U ′ (c t+1)<br />

U ′ (c t)<br />

, R M,t+1<br />

Now, some algebra manipulations are required:<br />

[<br />

E t δ U ′ ] [<br />

(c t+1 )<br />

U ′ E t [(1 + R M,t+1 )] + cov t δ U ′ (c t+1 )<br />

(c t )<br />

U ′ (c t ) , R M,t+1<br />

[ ]<br />

<strong>and</strong> dividing both sides by E t δ U ′ (c t+1)<br />

Remark: E t<br />

[<br />

U ′ (c t)<br />

[<br />

cov t<br />

E t [(1 + R M,t+1 )] + [<br />

E t<br />

δ U ′ (c t+1)<br />

U ′ (c t)<br />

δ U ′ (c t+1)<br />

U ′ (c t)<br />

δ U ′ (c t+1)<br />

U ′ (c t)<br />

]<br />

]<br />

= E t<br />

[<br />

, R M,t+1<br />

]<br />

[<br />

= E t δ U ′ ]<br />

(c t+1 )<br />

U ′ · 1<br />

(c t )<br />

δ U ′ (c t+1 )<br />

U ′ (c t )<br />

]<br />

, R M,t+1<br />

] = (1 + R f,t+1 )<br />

[<br />

cov t<br />

⇒ E t [(1 + R M,t+1 )] − (1 + R f,t+1 ) = − [<br />

E t<br />

δ U ′ (c t+1)<br />

U ′ (c t)<br />

]<br />

=<br />

1<br />

(1+R f,t+1 )<br />

[<br />

cov t<br />

⇒ E t [(1 + R M,t+1 )] − (1 + R f,t+1 ) = −<br />

δ U ′ (c t+1)<br />

U ′ (c t)<br />

δ U ′ (c t+1)<br />

U ′ (c t)<br />

δ U ′ (c t+1)<br />

U ′ (c t)<br />

1<br />

(1+R f,t+1 )<br />

, R M,t+1<br />

]<br />

, R M,t+1<br />

[<br />

⇒ E t [(R M,t+1 )] − R f,t+1 = −(1 + R f,t+1 )cov t δ U ′ ]<br />

(c t+1 )<br />

U ′ (c t ) , R M,t+1<br />

]<br />

]<br />

in<br />

1<br />

(1+R f,t+1 ) =<br />

]<br />

(1 + R f,t+1 )<br />

Exercise 2.5<br />

To compute the weights, expected returns <strong>and</strong> st<strong>and</strong>ard deviation of the tangency portfolio we<br />

use a dataset composed by 16 risky assets <strong>and</strong> 1 riskless security (1 month interbank interest rate).<br />

Risky expected returns, riskfree returns, 4 risky indicators (Variance <strong>and</strong> St<strong>and</strong>ard Deviation) <strong>and</strong><br />

a performance index for each asset are defined in table 1:<br />

[ ]<br />

3 In our example: E(X) ≡ E δ U ′ (c t+1 )<br />

<strong>and</strong> E(Y ) ≡ E[(1 + R M,t+1 )].<br />

U ′ (c t )<br />

4 ITALY INTERBANK 1 MONTH - OFFERED RATE. Since the time series provides data on annual basis we<br />

computed the equivalent monthly rate by applying the following formula: r 12 = (1 + r) 1 12 − 1. The Expected Return<br />

is obtained as the mean of the equivalent monthly rates<br />

4


Ep Var Sd Sharpe Ratio<br />

RISKFREE 0.4% 0.0% 0.0%<br />

ALLEANZA 0.5% 0.5% 6.9% 0.02<br />

ANTONVENETA 1.0% 0.4% 6.6% 0.08<br />

AUTOSTRADE 2.4% 0.4% 6.7% 0.30<br />

ENI 1.3% 0.2% 4.3% 0.20<br />

GENERALI 0.5% 0.3% 5.7% 0.01<br />

INTESA 1.7% 1.2% 11.1% 0.12<br />

MEDIASET 1.4% 0.9% 9.2% 0.11<br />

MEDIOBANCA 1.0% 0.8% 8.8% 0.07<br />

MEDIOLANUM 1.8% 1.4% 11.6% 0.12<br />

POPNOVAR 0.3% 0.3% 5.6% -0.01<br />

RAS 1.0% 0.5% 6.7% 0.09<br />

SAIPEM 1.8% 0.5% 7.1% 0.19<br />

SANPAOLO 1.0% 0.6% 7.7% 0.08<br />

SNAM 1.0% 0.1% 2.6% 0.25<br />

TELECOM 0.9% 1.6% 12.5% 0.04<br />

UNICREDITO 1.6% 0.6% 7.6% 0.16<br />

Table 1: Risky <strong>Asset</strong>s <strong>and</strong> Riskfree Rate<br />

Figure 1: Efficient Frontier (16 Risky assets)<br />

Global Min-Var <strong>Portfolio</strong><br />

Expected Return 0.92%<br />

St<strong>and</strong>ard Deviation 1.58%<br />

Table 2: Global Minumun Variance<br />

5


First we compute the Efficient Frontier solving the usual contrained optimization problem under<br />

the hypothesis to live in an economy composed by only risky assets. Figure 1 depicts the result<br />

(efficient frontier) of such optimization problem.<br />

Remark: minw w’Vw subject to w’1 = 1 <strong>and</strong> w’e = Ep.<br />

Note also that Figure 1 shows the position of the global minimun variance portfolio (portfolio with<br />

the smallest variance among all the portfolios on the efficient frontier).<br />

Global Minimun Variance <strong>Portfolio</strong> Features:<br />

Global Min-Var <strong>Portfolio</strong><br />

Stock<br />

Weights<br />

ALLEANZA -18%<br />

ANTONVENETA 7%<br />

AUTOSTRADE -8%<br />

ENI 17%<br />

GENERALI 35%<br />

INTESA -6%<br />

MEDIASET 1%<br />

MEDIOBANCA -26%<br />

MEDIOLANUM -7%<br />

POPNOVAR 7%<br />

RAS 6%<br />

SAIPEM -5%<br />

SANPAOLO -9%<br />

SNAM 70%<br />

TELECOM -2%<br />

UNICREDITO 39%<br />

Table 3: Global Minumun Variance <strong>Portfolio</strong> Weights<br />

Note that our optimization problem (N risky assets economy) suggests to buy 70% of SNAM,<br />

which is in line to what is illustrated in table 1 where SNAM (on historical basis) is the asset with<br />

the smallest st<strong>and</strong>ard deviation (2.6%).<br />

We next develop the same general optimization problem introducing one riskless asset.<br />

Formally the problem: minw w’Vw subject to w’e + (1 − w’1)r f = Ep. Such a problem provides<br />

us a new efficient frontier (straight line ≡ Capital Market Line) with intercept in Ep = r f<br />

5 <strong>and</strong> tangent to the efficient frontier obtained by solving the problem for an economy composed<br />

by only risky assets. The tangency point correspond to a portfolio composed by only risky assets<br />

(riskfree = 0%), which belongs also to the efficient section of the frontier of the risky portfolios.<br />

An important property of the Tangency <strong>Portfolio</strong> is that its Sharpe Ratio, (E T −r f )<br />

σ T<br />

, correspond to<br />

the slope of the Capital Market Line.<br />

Efficient Frontier in Figure 2 <strong>and</strong> results in Table 4 <strong>and</strong> Table 5 are obtained by solving the following<br />

equations:<br />

16 Risky <strong>Asset</strong>s + 1 Riskless Security <strong>Portfolio</strong><br />

W p = V −1 (e − 1r f ) (E p − r f )<br />

H<br />

σ 2 p = 1 H (E p − r f ) 2<br />

5 Basically in this point we are assuming to hold a portfolio with no risk.<br />

6


E p = r f ± √ Hσ p<br />

Tangency <strong>Portfolio</strong><br />

E[ r˜<br />

T ] = r f +<br />

H<br />

1 ′ V −1 (e − 1r f )<br />

√<br />

H<br />

σ T =<br />

1 ′ V −1 (e − 1r f )<br />

where H = (e − 1r f ) ′ V −1 (e − 1r f ).<br />

W T = V−1 (e − 1r f )<br />

1 ′ V −1 (e − 1r f )<br />

Figure 2: Efficient Frontier (16 Risky <strong>Asset</strong>s + 1 Riskless Security)<br />

The tangency portfolio is the portfolio that maximises the Sharpe Ratio, (E T −r f )<br />

σ T<br />

our problem:<br />

= √ H. In<br />

or<br />

4.31% − 0.4%<br />

4.38%<br />

= 0.89<br />

√<br />

H =<br />

√<br />

0.7984 = 0.89<br />

.<br />

The optimizer suggests to invest 96% in AUTOSTRADE <strong>and</strong> to underweighted ALLEANZA (-<br />

144%) <strong>and</strong> POPNOVARA (-63%). Note that AUTOSTRADE is the asset with the highest Sharpe<br />

Ratio (i.e. 0.3) <strong>and</strong> ALLEANZA, POPNOVARA are those assets with the lowest one (respectively<br />

0.02 <strong>and</strong> -0.01). Basicallly the optimizer prefers those asset with the highest sharpe ratio, more<br />

7


Figure 3: <strong>Portfolio</strong> <strong>Asset</strong>s<br />

Tangency <strong>Portfolio</strong><br />

Expected Return 4.31%<br />

St<strong>and</strong>ard Deviation 4.38%<br />

Table 4: Tangency <strong>Portfolio</strong><br />

TANGENCY PORTFOLIO<br />

STOCK<br />

WEIGHTS<br />

ALLEANZA -144%<br />

ANTONVENETA 29%<br />

AUTOSTRADE 96%<br />

ENI 36%<br />

GENERALI 26%<br />

INTESA 26%<br />

MEDIASET -14%<br />

MEDIOBANCA -3%<br />

MEDIOLANUM 41%<br />

POPNOVAR -63%<br />

RAS 70%<br />

SAIPEM 21%<br />

SANPAOLO -54%<br />

SNAM -20%<br />

TELECOM -1%<br />

UNICREDITO 52%<br />

RISKFREE 0%<br />

Table 5: Tangency <strong>Portfolio</strong> Weights<br />

8


Figure 4: Tangency <strong>Portfolio</strong> Weights (16 Risky <strong>Asset</strong>s)<br />

precisly those assets having sufficiently high returns <strong>and</strong> sufficiently low st<strong>and</strong>ard deviation (see<br />

Figure 3). Note also that if we multiply our tangency portfolio weights by their expected return<br />

we obtaint the expected return of the tangency portfolio. Formally: W ′ T · e = E[˜r T ].<br />

Suppose one does not want to run optimization <strong>and</strong> decides to invest in an equally weighted<br />

portfolio composed as follows: then, what is going to happen to our portfolio return ?<br />

Stock<br />

Weights<br />

ALLEANZA 5.9%<br />

ANTONVENETA 5.9%<br />

AUTOSTRADE 5.9%<br />

ENI 5.9%<br />

GENERALI 5.9%<br />

INTESA 5.9%<br />

MEDIASET 5.9%<br />

MEDIOBANCA 5.9%<br />

MEDIOLANUM 5.9%<br />

POPNOVAR 5.9%<br />

RAS 5.9%<br />

SAIPEM 5.9%<br />

SANPAOLO 5.9%<br />

SNAM 5.9%<br />

TELECOM 5.9%<br />

UNICREDITO 5.9%<br />

RISKFREE 5.9%<br />

100.0%<br />

Table 6: Equally Weighted <strong>Portfolio</strong><br />

The return of the equally weighted portfolio is going to be equal to 1.16% [W ′ ewp · e = E(˜r ewp )],<br />

far below the one obtained by the tangency portfolio. We would like to stress the fact that these<br />

9


esults are obtained by the “past”. Then, in the future, assuming no re-allocation 6 it could be that<br />

the second portfolio 7 may perform better than the one obtained through the optimization 8<br />

6 Investors will not change the composition of the portfolio.<br />

7 In our example the equally weighted portfolio.<br />

8 In our example the tangency portfolio.<br />

10

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!