18.11.2012 Views

RFID Radio Circuit Design in CMOS

RFID Radio Circuit Design in CMOS

RFID Radio Circuit Design in CMOS

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>RFID</strong> <strong>Radio</strong> <strong>Circuit</strong> <strong>Design</strong> <strong>in</strong> <strong>CMOS</strong><br />

M<strong>in</strong>hong Mi, Ansoft Corp.<br />

1


Outl<strong>in</strong>e<br />

• Overview of <strong>RFID</strong> <strong>Radio</strong>s at System Level<br />

• Power Generation/Management <strong>Circuit</strong><br />

• Recitifier, Charge-pump, Low-Drop Out (LDO) Voltage Regulator, Reset <strong>Circuit</strong><br />

• Demodulator <strong>Circuit</strong><br />

• Envelope Detector, R<strong>in</strong>g Oscillator, Comparator<br />

• Modulator <strong>Circuit</strong><br />

• Bias Generator, Phase Modulator<br />

• Overall <strong>Radio</strong> Simulation and Verification<br />

• Input Impedance Simulation (under large signal condition)<br />

• System/Nexxim Co-sim (with deep-modulated ASK <strong>in</strong>put)<br />

• Antenna <strong>Design</strong><br />

2


Overview of<br />

<strong>RFID</strong> <strong>Radio</strong> <strong>Circuit</strong>s<br />

at System Level<br />

3


Overview for <strong>RFID</strong> <strong>Radio</strong><br />

⎛ 4πfd<br />

⎞<br />

Loss[ dB]<br />

= 20 log⎜<br />

⎟ −10<br />

log Gt −10<br />

log<br />

⎝ c ⎠<br />

Antenna ga<strong>in</strong> Gt=3dB Antenna ga<strong>in</strong> Gr=1.64 dB<br />

Base<br />

station<br />

EIRP = 4W<br />

f=950MHz<br />

Distance<br />

d= 10m<br />

Loss ~ 47 dB<br />

Tx Antenna Ga<strong>in</strong> 3 dB<br />

Rx Antenna Ga<strong>in</strong> 1.64 dB<br />

Frequency 950 MHz<br />

Distance 10 meter<br />

Speed of Light 3.00E+08 m/s<br />

Loss 47.36 dB<br />

Tx Power 46.43 dBm<br />

Rx Power -0.92 dBm<br />

Tag<br />

Gr<br />

Receiv<strong>in</strong>g power<br />

~ -1dBm<br />

4


CW >= 8*RTcal<br />

ASK<br />

<strong>in</strong>put<br />

Overview for <strong>RFID</strong> <strong>Radio</strong> (2)<br />

Envelope<br />

Detector<br />

1⋅Tari<br />

=<br />

⎧ 6.<br />

25µ<br />

s<br />

⎪<br />

⎨12.<br />

5µ<br />

s<br />

⎪<br />

⎩ 25µ<br />

s<br />

pivot =<br />

RTcal<br />

2<br />

RTcal = 0 length + 1 length<br />

Waveform<br />

shaper<br />

(A/D)<br />

Data Rate<br />

Register<br />

Counter<br />

Digital<br />

Comparator<br />

Osc<br />

process, environment variations<br />

To get TRCal to calibrate for l<strong>in</strong>k<br />

frequency (LF) when backscatter<strong>in</strong>g<br />

Tag1: f osc1<br />

LF =<br />

DR<br />

TRcal<br />

DR: Divide Ratio = 64/3 or 8<br />

T pri<br />

=<br />

LF<br />

1<br />

Tag1: f osc2 …<br />

5<br />

Sent from reader !!<br />

TRcal<br />

= = L<strong>in</strong>k Period<br />

DR<br />

Tag1: f osc3


Overall Block Diagram for <strong>RFID</strong> <strong>Radio</strong><br />

To demodulator<br />

Rectifier<br />

Charge_pump<br />

Bandgap ref<br />

Modulator<br />

Env_detector<br />

Bias Gen<br />

LDO<br />

Regulator<br />

Reset<br />

Comparator<br />

R<strong>in</strong>g Oscillator<br />

6


Power<br />

Generation & Management<br />

<strong>Circuit</strong><br />

To demodulator<br />

Bandgap ref<br />

Rectifier Charge_pump<br />

Modulator<br />

Env_detector<br />

Bias Gen<br />

LDO Regulator Reset<br />

Comparator<br />

R<strong>in</strong>g Oscillator<br />

7


Power Generation <strong>Circuit</strong> (Rectifier & Charge_Pump)<br />

Large capacitor implemented with<br />

MosVar to make slow charge-pump<br />

8


Power Management <strong>Circuit</strong> (LDO voltage regulator)<br />

from bandgap<br />

- +<br />

9


Power Management <strong>Circuit</strong> (LDO Test)<br />

10


Power Management <strong>Circuit</strong> (Reset)<br />

1 : m<br />

11


Power Management <strong>Circuit</strong> (Reset test)<br />

12


Demodulator <strong>Circuit</strong><br />

To demodulator<br />

Bandgap ref<br />

Rectifier Charge_pump<br />

Modulator<br />

Env_detector<br />

Bias Gen<br />

LDO Regulator Reset<br />

Comparator<br />

R<strong>in</strong>g Oscillator<br />

13


Demodulator <strong>Circuit</strong> (top level)<br />

14


Demodulator <strong>Circuit</strong> (Envelope detector)<br />

Implemented with a two stage charge pump circuit<br />

15


Demodulator <strong>Circuit</strong> (Comparator)<br />

With hysteresis for better performance<br />

<strong>in</strong> a noisy environment.<br />

16


12.5us<br />

Demodulated Signals<br />

1 Tari<br />

RTCal = 2.75*Tari<br />

Data-0 Data-1<br />

17


Demodulator <strong>Circuit</strong> (R<strong>in</strong>g Oscillator)<br />

Replica Feedback<br />

Differential Delay Block<br />

Comparator<br />

18


R<strong>in</strong>g Oscillator Output<br />

R<strong>in</strong>g Oscillator output<br />

Freq =4.0MHz<br />

19


Demodulator <strong>Circuit</strong> (Bias and Control)<br />

Bipolar Core<br />

BandGap<br />

Ref Voltage<br />

BandGap<br />

Ref Voltage<br />

VT sensor<br />

Constant Current<br />

Source<br />

20


Modulator <strong>Circuit</strong><br />

To demodulator<br />

Bandgap ref<br />

Rectifier Charge_pump<br />

Modulator<br />

Env_detector<br />

Bias Gen<br />

LDO Regulator Reset<br />

Comparator<br />

R<strong>in</strong>g Oscillator<br />

21


Modulator <strong>Circuit</strong> for PSK<br />

22


Tag’s Overall <strong>Radio</strong><br />

Simulation and Verification<br />

23


Input Impedance Simulation for Tag’s <strong>Radio</strong><br />

Under the condition of<br />

large signal <strong>in</strong>put !<br />

Z<br />

total<br />

=<br />

Y<br />

tag<br />

⇒ Y<br />

⇒ Z<br />

1<br />

=<br />

Y<br />

tag<br />

tag<br />

1<br />

+ 0.<br />

01<br />

=<br />

total<br />

1<br />

Z<br />

=<br />

Y<br />

total<br />

=<br />

⎛ 1<br />

⎜<br />

⎝ Z<br />

total<br />

tag<br />

1<br />

+ Y<br />

− 0.<br />

01<br />

src _ imp<br />

1<br />

⎞<br />

− 0.<br />

01 ⎟<br />

⎠<br />

Yellow traces <strong>in</strong><br />

the next slide<br />

red traces <strong>in</strong><br />

the next slide<br />

24


25<br />

Input Impedance Simulation for Tag’s <strong>Radio</strong><br />

---- mod_<strong>in</strong> to AVDD<br />

---- mod_<strong>in</strong> to AGND<br />

~ 1.5V regulated supply generation<br />

@900MHz


Cont<strong>in</strong>uous Wave (CW) Input (Transient)<br />

Only transient solver can solve<br />

this region..<br />

To save time and get more <strong>in</strong>sightful<br />

<strong>in</strong>formation:<br />

• Better use HB Eng<strong>in</strong>e<br />

26


Cont<strong>in</strong>uous Wave (CW) Input (Harmonic Balanced: HB)<br />

The results are from Nexxim’s HB eng<strong>in</strong>e<br />

27


28<br />

System/Nexxim Co-simulation<br />

NSAMP=sample_num<br />

SAMPLE_RATE=sample_rat<br />

PERIOD=20/sample_rat<br />

A=1V<br />

DUTY=0.61<br />

T1=0s<br />

T2=0s<br />

NSAMP=sample_num<br />

SAMPLE_RATE=sample_rat<br />

PERIOD=20/sample_rat<br />

A=1V<br />

DUTY=0.81<br />

T1=0s<br />

T2=0s<br />

VTHRESHOLD=0.5V<br />

SP<br />

PWM_out<br />

PRBS<br />

NB=sample_num/10<br />

BR=sample_rat/20<br />

T=1V<br />

F=0V<br />

V0=0V<br />

TS=1/sample_rat<br />

TR=0s<br />

TF=0s<br />

SEED=0<br />

AMMOD<br />

FC=fc<br />

P=-35dBm<br />

REF=-0.01<br />

SAMPREP<br />

NOR=NOR<br />

SP<br />

AM_out<br />

SP<br />

env_p<br />

SP<br />

env_n<br />

SP<br />

avdd<br />

SP<br />

rst<br />

SP<br />

agnd<br />

antp<br />

env_p<br />

env_n<br />

agnd<br />

rst<br />

avdd<br />

mod_<strong>in</strong><br />

U1<br />

rfid_tag8102008<br />

0<br />

antp<br />

env_p env_n<br />

agnd<br />

rst<br />

avdd<br />

mod_<strong>in</strong><br />

Env_Det<br />

<strong>in</strong>n<br />

<strong>in</strong>p<br />

opn<br />

opp<br />

antn<br />

antp<br />

rect_o<br />

rect_on<br />

rect_so<br />

rect_son<br />

rect_sso<br />

rect_sson<br />

agnd<br />

avdd r_avdd<br />

ref<br />

agnd<br />

avdd rst<br />

agnd<br />

antn<br />

antp<br />

avdd<br />

mod_<strong>in</strong><br />

agnd avdd<br />

mr_bias<br />

vref<br />

E42<br />

agnd<br />

rect_o<br />

agnd


System/Nexxim Co-simulation<br />

Worst case for supplied voltage generation duty cycle = 47.5%<br />

29


System/Nexxim Co-simulation<br />

Worst case for supplied voltage generation duty cycle = 47.5%<br />

--- Generated Supplied Voltage<br />

--- Detected Evlelope<br />

--- Reset Signal<br />

30


System/Nexxim Co-simulation<br />

Worst case for envelope detection: duty cycle = 13.25%<br />

31


System/Nexxim Co-simulation<br />

Worst case for envelope detection: duty cycle = 13.25%<br />

--- Generated Supplied Voltage<br />

--- Detected Evlelope<br />

--- Reset Signal<br />

32


System/Nexxim Co-simulation<br />

Typical case: RTcal = 2.75*Tari, PW = 0.4*Tari � Average duty cycle = 71%<br />

33


System/Nexxim Co-simulation<br />

Typical case: RTcal = 2.75*Tari, PW = 0.4*Tari � Average duty cycle = 71%<br />

--- Generated Supplied Voltage<br />

--- Detected Evlelope<br />

--- Reset Signal<br />

34


UHF <strong>RFID</strong> Antenna<br />

<strong>Design</strong> and Simulation<br />

35


<strong>Design</strong> Method<br />

• The method follows recently<br />

published work on <strong>RFID</strong> tag<br />

design.<br />

Reference: K.V. Rao, P.V. Nikit<strong>in</strong>, and S.F. Lam, “Antenna design for UHF <strong>RFID</strong> tags: a review and a<br />

practical application,” IEEE Trans. on Antennas Propagat. Dec. 2005.<br />

36


<strong>Design</strong> Goals<br />

• Primary goal is to design an antenna that maximizes <strong>RFID</strong><br />

read range<br />

– Range is limited by tag response threshold (tag power<br />

absorption):<br />

range<br />

λ<br />

4π<br />

PtG<br />

tGrτ<br />

P<br />

– where<br />

λ = wavelength<br />

P t = Power of transmitter<br />

G t = Ga<strong>in</strong> of transmit (reader) antenna<br />

G r = Ga<strong>in</strong> of receive (tag) antenna<br />

P th = Tag response threshold power<br />

τ = mismatch factor (0 ≤ τ < 1)<br />

=<br />

th<br />

=<br />

4R<br />

c a τ Mismatch<br />

2<br />

Z<br />

c<br />

Z = R +<br />

Z = R +<br />

Goal: maximize power absorption by design<strong>in</strong>g tag antenna<br />

impedance that resonates with chip impedance<br />

a<br />

c<br />

a<br />

c<br />

+<br />

jX<br />

R<br />

Z<br />

a<br />

jX<br />

a<br />

c<br />

Factor<br />

Chip impedance<br />

37<br />

Antenna impedance


Simulation and Optimization<br />

Dimensions Taken From Reference Paper<br />

Adjust parameters l, w, s, d, a, b to achieve desired antenna<br />

<strong>in</strong>put impedance<br />

Note: This antenna was<br />

designed for<br />

Z a = 16 + j 350 Ω<br />

38


Target Impedance From <strong>Circuit</strong><br />

Simulation<br />

Re(Z <strong>in</strong>_tag )<br />

Capacitive<br />

Im(Z <strong>in</strong>_tag )<br />

Ω<br />

Small signal chip impedance<br />

is Z c = 35 - j 155 Ω<br />

Rectifie<br />

r<br />

Modulator<br />

Envelope Detector<br />

Th<strong>in</strong> traces <strong>in</strong><br />

the next slide<br />

Thick traces <strong>in</strong><br />

the next slide<br />

Voltage Regulator<br />

2V<br />

39


Simulation <strong>in</strong> Ansoft <strong>Design</strong>er<br />

Provides <strong>in</strong>ductive reactance<br />

Load<strong>in</strong>g Bar Reduces Resistance<br />

Optimize to Match Target Impedance<br />

40


Optimized<br />

Result<br />

New<br />

<strong>Design</strong><br />

Removed load<strong>in</strong>g bar<br />

Reduced <strong>in</strong>ductive<br />

meanders<br />

Results<br />

Z a = 12.5 + j 148 Ω<br />

l = 77.7 mm<br />

b = 7 mm<br />

s = 5 mm<br />

Goal<br />

Small signal chip impedance<br />

is Z c = 35 - j 155 Ω<br />

Too low<br />

Z a = 34.3 + j 155 Ω<br />

l = 121 mm<br />

b = 2.85 mm<br />

Meets goal but<br />

larger <strong>in</strong> size<br />

41


Swept Frequency Performance<br />

Imag<strong>in</strong>ary Part of Impedance<br />

Real Part of Input Impedance<br />

Antenna design provides relatively flat response across UHF <strong>RFID</strong> band<br />

42


Far-field Radiation Performance<br />

1.95 dB Ga<strong>in</strong><br />

Broad Omnidirectional Pattern<br />

43


Conclusions<br />

• UHF <strong>RFID</strong> tag RF/analog circuits have<br />

been designed and tested at circuit and<br />

system levels us<strong>in</strong>g Ansoft tools with<strong>in</strong> the<br />

Cadence environment.<br />

• Meandered (<strong>in</strong>ductive) dipole antenna was<br />

designed for this specific tag.<br />

• Ansoft team has comprehensive<br />

understand<strong>in</strong>g of EPC Global Standard<br />

44


Thank you!<br />

45


Appendix: Entry for Nexxim/Cadence Integration<br />

“Netlist & Run”<br />

46

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!