09.07.2015 Views

RNA interference: traveling in the cell and gaining functions?

RNA interference: traveling in the cell and gaining functions?

RNA interference: traveling in the cell and gaining functions?

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

40Review TRENDS <strong>in</strong> Genetics Vol.19 No.1 January 2003ss<strong>RNA</strong> anneal<strong>in</strong>gto antisense <strong>RNA</strong>?DNAMethylationInvertedrepeattransgeneSensetransgene?Transposableelement'aberrant'ss<strong>RNA</strong>?Primer<strong>in</strong>dependentRdRP?<strong>RNA</strong> syn<strong>the</strong>sis??Repressivechromat<strong>in</strong>structureShortor longds<strong>RNA</strong>?PPPPds<strong>RNA</strong> CAF? si<strong>RNA</strong> RISC-like?ActivatedRISC-like??NucleusCytoplasm?P<strong>RNA</strong> degradationExogenousds<strong>RNA</strong>Viralds<strong>RNA</strong>DicerPPPPds<strong>RNA</strong> si<strong>RNA</strong> RISCActivatedPrimerRISCdependentRdRP?An A nPP<strong>RNA</strong> syn<strong>the</strong>sis<strong>RNA</strong> degradationTRENDS <strong>in</strong> GeneticsFig. 1. Models of molecular pathways <strong>in</strong>volved <strong>in</strong> double-str<strong>and</strong>ed <strong>RNA</strong> (ds<strong>RNA</strong>)-mediated silenc<strong>in</strong>g. The basic mechanism, which is probably present <strong>in</strong> most eukaryotesundergo<strong>in</strong>g ds<strong>RNA</strong>-mediated silenc<strong>in</strong>g, is <strong>in</strong>dicated by <strong>the</strong> gray <strong>and</strong> blue boxes. The rema<strong>in</strong><strong>in</strong>g steps seem to occur <strong>in</strong> at least some organisms, but <strong>the</strong>ir generality is currentlyunknown <strong>and</strong> <strong>the</strong>ir sub<strong>cell</strong>ular location is ma<strong>in</strong>ly hypo<strong>the</strong>tical. The ‘triggers’ of silenc<strong>in</strong>g, ei<strong>the</strong>r direct sources of ds<strong>RNA</strong> or transcription units produc<strong>in</strong>g s<strong>in</strong>glestr<strong>and</strong>ed<strong>RNA</strong>s that can be presumably converted to ds<strong>RNA</strong>, are colored red. Green <strong>RNA</strong>, endogenously transcribed s<strong>in</strong>gle-str<strong>and</strong>ed <strong>RNA</strong>; purple <strong>RNA</strong>, <strong>RNA</strong> syn<strong>the</strong>sized bya putative <strong>RNA</strong>-directed <strong>RNA</strong> polymerase; blue <strong>and</strong> red <strong>RNA</strong>, double-str<strong>and</strong>ed <strong>RNA</strong> <strong>in</strong>troduced exogenously or result<strong>in</strong>g from viral replication, anneal<strong>in</strong>g of complementaryss<strong>RNA</strong>s <strong>and</strong>/or hairp<strong>in</strong> <strong>RNA</strong>. Prote<strong>in</strong>s or prote<strong>in</strong> complexes are <strong>in</strong>dicated by yellow boxes: CAF, an Arabidopsis homolog of Dicer; Dicer, an RNase-III-like ds<strong>RNA</strong>-specificribonuclease; RdRP, an <strong>RNA</strong>-directed <strong>RNA</strong> polymerase; <strong>and</strong> RISC, <strong>RNA</strong>-<strong>in</strong>duced silenc<strong>in</strong>g complex. Although ds<strong>RNA</strong> is depicted <strong>in</strong> s<strong>in</strong>gle nuclear <strong>and</strong> cytoplasmic pools,depend<strong>in</strong>g on <strong>the</strong> source <strong>the</strong>se molecules might be delivered differently to <strong>the</strong> process<strong>in</strong>g Dicer enzymes. Similarly, <strong>the</strong> RISC <strong>and</strong> RISC-like complexes might have differentcomponents <strong>and</strong> associated effector prote<strong>in</strong>s depend<strong>in</strong>g on <strong>the</strong>ir <strong>functions</strong>. Although a role for ds<strong>RNA</strong> <strong>in</strong> direct<strong>in</strong>g methylation of homologous DNA sequences has beendemonstrated <strong>in</strong> plants, <strong>the</strong> molecular mach<strong>in</strong>ery <strong>in</strong>volved <strong>in</strong> this process <strong>and</strong> <strong>the</strong> actual nature of <strong>the</strong> ‘guide’ <strong>RNA</strong> have not been resolved. Recent evidence suggests that<strong>the</strong> RISC complex is equivalent to <strong>the</strong> miRNP complex (Fig. 2) <strong>in</strong> human <strong>cell</strong>s [17].Argonaute family members, AGO1 <strong>and</strong> Auberg<strong>in</strong>e (Aub),have been implicated <strong>in</strong> <strong>RNA</strong>i [26–28] (Table 1). In human<strong>cell</strong>s, <strong>RNA</strong>i seems to occur predom<strong>in</strong>antly <strong>in</strong> <strong>the</strong> cytosol[10,17], because a nucleoplasm conf<strong>in</strong>ed transcript iscompletely resistant to degradation <strong>in</strong>duced by a homologoussi<strong>RNA</strong> [29]. In addition, <strong>the</strong> only known human homolog ofDicer is located <strong>in</strong> <strong>the</strong> cytoplasm of HeLa <strong>cell</strong>s [30] (Table 1).Notably, <strong>the</strong> rat homolog of eIF2C2 (GERp95), an Argonauteprote<strong>in</strong> <strong>and</strong> a component of human RISC [10,17],isaperipheral membrane prote<strong>in</strong> that is associated primarilywith <strong>the</strong> Golgi complex or <strong>the</strong> endoplasmic reticulum [31].Exogenous (<strong>in</strong>jected or fed) ds<strong>RNA</strong> <strong>and</strong> viral ds<strong>RNA</strong>probably enter <strong>the</strong> cytoplasmic <strong>RNA</strong>i pathway directly(Fig. 1). In several organisms, however, <strong>RNA</strong>i can also be<strong>in</strong>duced by <strong>in</strong>verted repeat transgenes that are transcribed<strong>in</strong>to hairp<strong>in</strong> ds<strong>RNA</strong> <strong>in</strong> <strong>the</strong> nucleus [1,2,16]. Thisds<strong>RNA</strong>probably needs to be exported to <strong>the</strong> cytosol to targethomologous m<strong>RNA</strong>s effectively (Fig. 1). In both plants [32]<strong>and</strong> Drosophila [33], for example, <strong>in</strong>verted repeat transgenessilence more efficiently when <strong>the</strong> hairp<strong>in</strong> ds<strong>RNA</strong>conta<strong>in</strong>s an <strong>in</strong>tron <strong>and</strong> polyadenylation signals thatpresumably facilitate entry of <strong>the</strong> ds<strong>RNA</strong> <strong>in</strong>to <strong>the</strong> m<strong>RNA</strong>export pathway [34]. By contrast, a transgene designed toproduce non-polyadenylated, <strong>in</strong>tronless hairp<strong>in</strong> ds<strong>RNA</strong> –which is presumably reta<strong>in</strong>ed <strong>in</strong> nuclei – targets <strong>the</strong>degradation of a homologous m<strong>RNA</strong> very poorly [1,35].Potential amplification processes <strong>in</strong> <strong>RNA</strong>i <strong>and</strong> PTGSGenetic analyses suggest that an amplification step mightbe required for efficient <strong>RNA</strong>-mediated silenc<strong>in</strong>g <strong>in</strong> severalhttp://tigs.trends.com

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!