09.07.2015 Views

A stabilized and coupled meshfree/meshbased method for FSI

A stabilized and coupled meshfree/meshbased method for FSI

A stabilized and coupled meshfree/meshbased method for FSI

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

MotivationUse <strong>meshfree</strong> <strong>method</strong>s (MMs): no mesh needed, butmore time-consuming.Coupling: Use MMs only where mesh makes problems,otherwise employ FEM.Fluid: Coupled MM/FEMStructure: St<strong>and</strong>ard FEMTU Braunschweig Meshfree/Meshbased Method <strong>for</strong> <strong>FSI</strong> Slide: 4


Meshfree MethodMeshfree <strong>method</strong> <strong>for</strong> the fluid part:Approx. incompressible Navier-Stokes equations.Moving least-squares (MLS) functions in a Galerkinsetting.Nodes are not material points: allows Eulerian or ALE<strong>for</strong>mulation.Closely related to the element-free Galerkin (EFG)<strong>method</strong>.For the success of this <strong>method</strong>,Stabilization <strong>and</strong>Coupling with <strong>meshbased</strong> <strong>method</strong>sis needed.TU Braunschweig Meshfree/Meshbased Method <strong>for</strong> <strong>FSI</strong> Slide: 5


StabilizationThe stucture of the stabilization <strong>method</strong> may be applied to<strong>meshbased</strong> <strong>and</strong> <strong>meshfree</strong> <strong>method</strong>s.The stabilization parameter requires special attention: MLS functions are not interpolating ⇒ different character.St<strong>and</strong>ard <strong>for</strong>mulas are only valid <strong>for</strong> small supports.τSUPG/PSPG-stabilization turned out to be slightly lessdiffusive than GLS.TU Braunschweig Meshfree/Meshbased Method <strong>for</strong> <strong>FSI</strong> Slide: 11


CouplingOur aim is a fluid solver <strong>for</strong> geometrically complexsituations.MMs shall be used where a mesh causes problems, in therest of the domain the efficient <strong>meshbased</strong> FEM is used.The coupling is realized on shape function level.Meshbased areaTransition areaΩ FEM Ω *Ω MLSMeshfree areaTU Braunschweig Meshfree/Meshbased Method <strong>for</strong> <strong>FSI</strong> Slide: 12


CouplingCoupling approach of Huerta et al.: Coupling withmodified MLS technique, which considers the FEMinfluence in the transition area.NMLSiTFEM T( x) = [ p ( x) − ∑ Nj ( x) p ( xj ) ]M−1j∈IFEM( x) w( x − x ) p( x )Modifications are required in order to obtain <strong>coupled</strong>shape functions that may be <strong>stabilized</strong> reliably.iiTU Braunschweig Meshfree/Meshbased Method <strong>for</strong> <strong>FSI</strong> Slide: 13


CouplingOriginal approach of Huerta et al.w( x − xi)Ω FEM Ω * Ω MLSFEM *Modification: Add MLS nodes along Ω I Ω <strong>and</strong>superimpose shape functions there.w( x − xi)Ω FEM Ω * Ω MLSρ > 2.0∆xiρ > 1.0∆xiTU Braunschweig Meshfree/Meshbased Method <strong>for</strong> <strong>FSI</strong> Slide: 14


Couplingoriginal:modified:Ω FEMΩ *Ω FEMΩ *Ω MLSΩ MLSSuperimpose FEM <strong>and</strong> MLS nodes alongsmaller supports ⇒ reliable stabilization.Ω FEM \ Ω *The resulting <strong>stabilized</strong> <strong>and</strong> <strong>coupled</strong> flow solver has beenvalidated by a number of test cases.⇒TU Braunschweig Meshfree/Meshbased Method <strong>for</strong> <strong>FSI</strong> Slide: 15


Fluid-Structure InteractionSituation:Ω Fstructure domainfluid domainΩ SΓ CStrongly <strong>coupled</strong>,partitioned strategy:traction alongΓ CFluid: <strong>coupled</strong>MLS/FEMStructure: FEMΩ Ffluid domain+mesh velocityMesh movementdisplacementofΓCTU Braunschweig Meshfree/Meshbased Method <strong>for</strong> <strong>FSI</strong> Slide: 16


Numerical ResultsVortex excited beam (no connectivity change)TU Braunschweig Meshfree/Meshbased Method <strong>for</strong> <strong>FSI</strong> Slide: 17


Numerical ResultsTU Braunschweig Meshfree/Meshbased Method <strong>for</strong> <strong>FSI</strong> Slide: 18


Numerical ResultsRotatingobjectTU Braunschweig Meshfree/Meshbased Method <strong>for</strong> <strong>FSI</strong> Slide: 19


Numerical ResultsConnectivity changes due to large nodal displacements.TU Braunschweig Meshfree/Meshbased Method <strong>for</strong> <strong>FSI</strong> Slide: 20


Numerical ResultsTU Braunschweig Meshfree/Meshbased Method <strong>for</strong> <strong>FSI</strong> Slide: 21


Numerical ResultsTU Braunschweig Meshfree/Meshbased Method <strong>for</strong> <strong>FSI</strong> Slide: 22


Numerical ResultsMoving flapTU Braunschweig Meshfree/Meshbased Method <strong>for</strong> <strong>FSI</strong> Slide: 23


Numerical ResultsThe flap is considered as a discontinuity.“Visibility criterion” is used <strong>for</strong> the construction of the MLSfunctions.TU Braunschweig Meshfree/Meshbased Method <strong>for</strong> <strong>FSI</strong> Slide: 24


Numerical ResultsConnectivity changes due to “visibility criterion”.TU Braunschweig Meshfree/Meshbased Method <strong>for</strong> <strong>FSI</strong> Slide: 25


Numerical ResultsTU Braunschweig Meshfree/Meshbased Method <strong>for</strong> <strong>FSI</strong> Slide: 26


SummaryMeshfree Method: ALE-<strong>for</strong>mulation, MLS functions in aGalerkin setting ⇒ similar to EFG.SUPG/PSPG-Stabilization in extension of <strong>meshbased</strong>approach.Approach of Huerta et al. modified <strong>and</strong> extended bystabilization <strong>for</strong> coupling with FEM-fluid <strong>and</strong> FEM-solid.Method shows good behaviour, avoids remeshing.No conceptual difficulties seen <strong>for</strong> extension into 3-D <strong>and</strong><strong>for</strong> higher order shape functions.TU Braunschweig Meshfree/Meshbased Method <strong>for</strong> <strong>FSI</strong> Slide: 27

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!