18.11.2012 Views

Transgenic Cassava: The Products and Future Directions

Transgenic Cassava: The Products and Future Directions

Transgenic Cassava: The Products and Future Directions

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Transgenic</strong> <strong>Cassava</strong>: <strong>The</strong> <strong>Products</strong> <strong>and</strong><br />

<strong>Future</strong> <strong>Directions</strong><br />

Richard Sayre, Dept. Plant Cellular <strong>and</strong> Molecular Biology, Ohio State Univ. Columbus, OH,<br />

• Disease <strong>and</strong> Insect<br />

Resistance<br />

• Starch Production <strong>and</strong><br />

Modification<br />

• Enhancing Root Storage<br />

Proteins<br />

• Engineering Cyanogenesis<br />

• Engineering Protein<br />

Expression in Roots


Disease <strong>and</strong> Insect Resistant<br />

<strong>Cassava</strong><br />

• <strong>Transgenic</strong> cassava expressing an ACMV gene (in<br />

sense) provides cross-protection to a variety of related<br />

cassava mosaic viruses. Evidence that siRNAs are the<br />

mechanism of resistance. Entering field trials in Kenya.<br />

Nigel Taylor <strong>and</strong> Claude Fauquet<br />

• <strong>Transgenic</strong> cassava expressing RNAi constructs<br />

targeted to silencing ACMV effective in greenhouse<br />

trials. Zhang <strong>and</strong> Gruissem<br />

• <strong>Transgenic</strong> cassava expressing BT (control of cassava<br />

hornworm) goes into field trials in April at CIAT. Joe<br />

Tohme <strong>and</strong> colleagues.


Engineering Starches in <strong>Cassava</strong><br />

• A transgenic waxy starch (high<br />

amylopectin) cassava was reported at<br />

CBN V (2001) by Krit Raemakers <strong>and</strong><br />

Richard Visser is field trial in US Virgin Is.<br />

• Higher yielding transgenic cassava has<br />

been achieved by specifically expressing a<br />

bacterial AGPase in roots.


<strong>Cassava</strong> has tremendous untapped<br />

potential for increased starch<br />

production<br />

• Very high photosynthetic rate, approaching<br />

C4 plants.<br />

• Highest rate of sucrose synthesis measured<br />

to date.<br />

• In the greenhouse excess sucrose is lost<br />

through gutation; represents a lost source of<br />

carbohydrate.<br />

• Large starch storage organs.


Hypothesis<br />

Root-specific expression of a<br />

modified (K296E/G336D)<br />

bacterial glgC gene encoding a<br />

more active ADP-glucose<br />

pyrophosphorylase (AGPase<br />

catalyzes the rate-limiting step in<br />

starch synthesis) will result in,<br />

1) increased carbohydrate sink<br />

strength in roots,<br />

2) reduced feedback inhibition<br />

on photosynthetic carbon<br />

fixation<br />

3) increased starch production.<br />

<strong>Transgenic</strong>


Plasmid WT 3D-1 3D-2 3D-3 3D-4 3D-5 Marker<br />

<strong>The</strong> glgC gene is expressed in roots of<br />

transgenic cassava. RT-PCR analysis<br />

demonstrates expression of glgC gene.<br />

350 bp


RT-PCR analysis of glgC <strong>and</strong> CYP79 (D1)<br />

expression demonstrates that the patatin-glgC<br />

construct is not expressed in leaves.<br />

350 bp<br />

650 bp<br />

P WT 3D-1 3D-2 3D-3 M<br />

glgC<br />

CYP79<br />

(D1)


PPi + ADP-Glucose Glucose-1-P +ATP<br />

6-phosphogluconolactone Glucose-6-P<br />

ug NADPH /mg protein/hr<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

NADPH NADP +<br />

Control 3D-1 3D-2 3D-3<br />

AGPase activity is elevated two-fold in transformed<br />

plants expressing the glgC gene.


Plants expressing the glgC gene have more than<br />

twice the root biomass (dry weight) of wild-type<br />

plants.<br />

Cultivar→<br />

(relative AGPase<br />

activity)<br />

Leaves (g)<br />

(% WT)<br />

Stems (g)<br />

(% WT)<br />

Stem-Root<br />

Junction (g)<br />

(% WT)<br />

Roots (g)<br />

(% WT)<br />

Wild Type<br />

(100)<br />

55.1+/-8.3 a<br />

(100)<br />

89.7+/-5.0 c<br />

(100)<br />

16.7+/-1.5 b<br />

(100)<br />

18.9+/-4.3 c<br />

(100)<br />

3D-1<br />

(200)<br />

68.6+/-4.0 a<br />

(123)<br />

148+/-8.8 a<br />

(165)<br />

25.4+/-2.5 a<br />

(156)<br />

48.2+/-9.3 a<br />

(266)<br />

3D-2<br />

(100)<br />

60.4+/-0.84 a<br />

(109)<br />

114+/-25.3 bc<br />

(128)<br />

25.2+/-2.7 a<br />

(156)<br />

24.9+/-7.8 bc<br />

(133)<br />

3D-3<br />

(160)<br />

62.5+/-9.4 a<br />

(112)<br />

134+/-14 ab<br />

(150)<br />

23.1+/-3.6 ab<br />

(143)<br />

28.5+/-8.7 b<br />

(155)<br />

6 month greenhouse study. Values with different letters are significantly different from each other.


Summary<br />

• <strong>Transgenic</strong> cassava having two-fold higher<br />

AGPase activity have been successfully<br />

engineered.<br />

• <strong>Transgenic</strong> plants having higher AGPase<br />

levels produce more than twice the root<br />

biomass of control plants.<br />

• Total biomass of transgenic plants also<br />

increased possibly reflecting a release of<br />

feed-back inhibition on photosynthesis.


Expression of an Artificial Storage Protein 1<br />

(ASP1) in cassava leaves <strong>and</strong> roots.<br />

Amino Acid<br />

Composition<br />

Arg 3.2%<br />

Glu 16.8%<br />

Gly 6.3%<br />

Ile 9.5%<br />

Leu 8.4%<br />

Lys 17.9%<br />

Met 12.6%<br />

Phe 4.2%<br />

Pro 3.2%<br />

Thr 9.5%<br />

Trp 3.2%<br />

Val 5.3%<br />

Zhang Peng <strong>and</strong> Willi Gruissem, ETH, Zurich, Switzerl<strong>and</strong><br />

ASP1 is enriched in essential amino acids that<br />

are limiting in cassava <strong>and</strong> was designed to<br />

mimic stable storage albumin proteins.<br />

ASP1 traits:<br />

• Four, 20 amino acid, amphipathic helical<br />

repeats connected together by three β-turns.<br />

• Tertiary structure is stabilized by Glu-Lys salt<br />

bridges.<br />

• Predicted size = 7.5 kD; pI = 9.35.<br />

Zhang et al. (2003) Transgen. Res. 12: 243-250


Western blot analysis of ASP1<br />

expression (35S) in leaves <strong>and</strong> roots.<br />

Leaves<br />

HIGH<br />

Roots<br />

LOW<br />

Zhang et al. (2003) Transgen. Res. 12: 243-250


Changes in leaf protein amino acid content of<br />

plants expressing ASP1.<br />

• Amino acids having elevated levels in leaves of ASP1<br />

transgenic plants included:<br />

– Arg (5-30%)<br />

– Ile (2-5%)<br />

– Pro (5-10%)<br />

– Ser (10%)<br />

– Thr (2-8%).<br />

• Amino acids having reduced levels in leaves of ASP1 trangenic<br />

plants included:<br />

– Tyr (5%)<br />

– Met (2-8%)<br />

– Ala (6-12%)<br />

– Glu (5%)<br />

– Asn (20-22%)<br />

• Expected results: Higher Arg, Glu, Ile, Leu, Met, Lys, Phe, Thr,<br />

Pro, Trp, Val, Gly<br />

• Results from roots presented on poster by Zhang et al..


Engineering cyanogenesis in<br />

transgenic cassava<br />

Dimuth Siritunga <strong>and</strong> Richard Sayre, Dept. of Plant Cellular <strong>and</strong><br />

Molecular Biology, Ohio State Univ., Columbus, OH 43210 USA<br />

• Inhibition of cyanogenic glycoside<br />

synthesis may be lethal to cassava.<br />

• Acceleration of cyanogen turnover.<br />

Siritunga D <strong>and</strong> Sayre RT (2003) Planta 217: 367-373.<br />

Siritunga et al. (2004) Plant Biotechnology Journal 2: 37-43


Target enzymes for regulating cyanogen synthesis<br />

<strong>and</strong> turnover in transgenic cassava<br />

Valine<br />

N-hydroxyvaline<br />

2-Methyl proponol oxime<br />

Acetone cyanohydrin + UDPG<br />

Linamarin<br />

Glucose + Acetone cyanohydrin<br />

Acetone + HCN<br />

CYP79D1<br />

CYP79D2<br />

CYP71E<br />

UDPG-glucosyl<br />

transferase<br />

Linamarase<br />

Hydroxynitrile lyase<br />

(or spontaneously)


Agrobacterium-mediated Agrobacterium mediated transformation<br />

Antisense inhibition of<br />

CYP79D1/D2 expression<br />

using leaf-specific Cab1<br />

promoter<br />

Antisense inhibtion of<br />

CYP79D1/D2 expression<br />

using tuber-specific<br />

Patatin promoter<br />

Siritunga <strong>and</strong> Sayre (2003) Planta 217: 367-373


LEAF linamarin levels were reduced between 60%<br />

<strong>and</strong> 94% in Cab1-CYP79D1/D2 Cab1<br />

transformants<br />

% Linamarin<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

11.3<br />

29.4<br />

23.5<br />

40.5<br />

6.2<br />

WT Cab1-1 Cab1-2 Cab1-3 Cab1-4 Cab1-5<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Linamarin (umoles/gdw)


Surprise, root linamarin levels in Cab1-CYP79D1/D2<br />

transformants were < 1% of wild-type levels!<br />

% Linamarin<br />

100<br />

99<br />

98<br />

97<br />

96<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

0.98<br />

0.29<br />

0.26<br />

0.33<br />

0.73<br />

WT Cab1-1 Cab1-2 Cab1-3 Cab1-4 Cab1-5<br />

3.40<br />

3.36<br />

3.32<br />

3.28<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

0.00<br />

Linamarin (umoles/gdw)


How can ROOT linamarin levels be reduced<br />

in Cab1-CYPD1/D2 antisense plants?<br />

Two options……….<br />

1. Cab1 promoter, although leaf-specific, might be<br />

‘on’ on’ in cassava.<br />

Or<br />

2. Root linamarin is synthesized in leaves <strong>and</strong><br />

transported to the roots.


• No suppression of CYP79 expression in roots driven by<br />

cab1 promoter (not shown).<br />

• No reduction in leaf or root linamarin levels in patatin-<br />

CYP79D1/D2 antisense plants. Linamarin is transported!<br />

% Linamarin<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Pat1 Pat2 Pat3 WT<br />

Leaves<br />

Roots


Summary<br />

• Inhibition (> 60%) of linamarin synthesis in leaves<br />

results in no linamarin accumulation in roots.<br />

• Inhibition of CYP79D1/D2 expression in roots has<br />

no effect on root linamarin levels.<br />

• Root linamarin is made in leaves <strong>and</strong> transported to<br />

roots.<br />

• <strong>The</strong> function of root CYP79D1/D2 activity is<br />

unclear.


Accelerating cyanogen turnover in processed<br />

cassava maintains the benefits of cyanogens<br />

<strong>The</strong> major cyanogen present in poorly processed cassava roots is<br />

acetone cyanohydrin, not linamarin.<br />

<strong>Cassava</strong> roots have virtually no HNL activity (0 - 6% of leaf<br />

levels) possibly accounting for high acetone cyanohdrin levels<br />

Elevated expression of HNL in roots is predicted to accelerate<br />

the conversion of acetone cyanohydrin to cyanide <strong>and</strong> the<br />

detoxification (cyanide volatilization) of cassava root starch.<br />

LB<br />

2X35S Rbcs Ter Nos Ter Kan r Nos Prom<br />

RB<br />

Siritunga et al. (2004) Plant Biotechnology Journal 2: 37-43


Accelerating cyanogenesis in cassava<br />

Valine<br />

N-hydroxyvaline<br />

2-Methyl proponol oxime<br />

Acetone cyanohydrin + UDPG<br />

Linamarin<br />

Glucose + Acetone cyanohydrin<br />

Acetone + HCN<br />

CYP79D1<br />

CYP79D2<br />

Putative<br />

CYP71E<br />

UDPG-glucosyl<br />

transferase<br />

Linamarase<br />

Hydroxynitrile lyase<br />

(or spontaneously)


Root hydroxynitrile lyase (HNL) activity in wildtype<br />

<strong>and</strong> transformed plants<br />

Specific Activity (umoles CN/mg protein/hr)<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

WT HNL-1 HNL-2 HNL-3


Reduction in root acetone cyanohydrin levels in<br />

processed roots of plants expressing elevated HNL<br />

activity.<br />

ACN (umoles/gfw)<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

Wild type<br />

HNL-1<br />

HNL-2<br />

HNL-3<br />

0 20 40 60 80 100 120<br />

Time (minutes)<br />

100 %<br />

59 %<br />

49 %<br />

35 %


Summary<br />

• <strong>The</strong> absolute increase in HNL activity was 10-fold<br />

greater in leaves than in roots of transgenic plants.<br />

• A 13-fold increase in root HNL activity was<br />

achieved, however, the absolute increase in enzyme<br />

activity was small.<br />

• Over-expression of HNL in roots accelerates<br />

cyanogenesis by more than 3-fold <strong>and</strong> facilitates<br />

cyanogen removal <strong>and</strong> food detoxification.


Why is it difficult to express proteins in<br />

roots of cassava?<br />

• Transcriptional control: Strong root promoters<br />

(1-2X 35S <strong>and</strong> patatin) do not deliver<br />

expression levels comparable to leaves.<br />

• Post-translational: No evidence for<br />

accelerated protein turnover from westerns.<br />

• Translational: Limiting free amino acid pool<br />

sizes for protein synthesis.


It is easier to over-express proteins in<br />

leaves than roots when using strong<br />

Enzyme Activity<br />

(mMol CN/mg protein/hr)<br />

Hydroxynitrile lyase<br />

(HNL)<br />

HNL-transgenic<br />

2X35S promoter)<br />

promoters (2X35S).<br />

Root<br />

Activity<br />

0.025<br />

0.325<br />

Leaf<br />

Activity<br />

1.7<br />

4.0<br />

Leaf<br />

minus<br />

Root<br />

Activity<br />

1.68<br />

3.68<br />

Root/Leaf<br />

Ratio<br />

0.02<br />

0.08


Free amino acid pool sizes in cassava roots<br />

are low <strong>and</strong> may limit protein production<br />

• <strong>The</strong> root/leaf free amino acid pool size<br />

ratio in cassava is 1:6. <strong>Cassava</strong> roots <strong>and</strong><br />

leaves typically have 1% <strong>and</strong> 6-10%<br />

protein, respectively.<br />

• <strong>The</strong> root/leaf ratio of free amino acids in<br />

wild cassava relatives having high (8%)<br />

root protein content is 1:4.2<br />

(Martin Fregene, personal communication).


Invariably, enzymes that are expressed in cassava leaves <strong>and</strong><br />

roots have 10-20 fold higher activity levels in leaves than in<br />

roots with the exception of CN-assimilating enzymes.<br />

Enzyme<br />

Hydroxynitrile lyase (HNL)<br />

HNL-transgenic (35S promoter)<br />

Linamarase<br />

β-cyanoalanine synthase<br />

β-cyanoalanine hydrase<br />

Asparaginase<br />

Root/Leaf<br />

Activity Ratio<br />

0.02<br />

0.08<br />

0.05<br />

1.39<br />

2.84<br />

0.70


Linamarin is a transportable form of reduced<br />

nitrogen for amino acid <strong>and</strong> protein synthesis in<br />

cassava roots<br />

• Linamarin accounts for 60% of the total nitrogen in phloem<br />

exudates of wild-type plants.<br />

• Roots of Cab1 - CYP79D1/D2 antisense plants will not grow<br />

if supplied nitrate as the sole source of nitrogen.<br />

• Addition of ammonia to growth media restores root growth to<br />

Cab1 – CYP79D1/D2 antisense plants.<br />

• In contrast, Patatin – CYP79D1/D2 antisense plants grow as<br />

well as WT plants in media containing nitrate as the sole<br />

source of nitrogen.<br />

• Conclusion: <strong>The</strong> absence of root linamarin necessitates<br />

an alternate source of reduced nitrogen for root growth


Biochemical evidence for cyanide as a source<br />

of reduced nitrogen for amino acid synthesis<br />

in cassava<br />

• Nartley observed in 1969 that germinated cassava<br />

seedlings exposed to 14 CN incorporated 49% of the label<br />

into the amide C of asparagine <strong>and</strong> 6% in aspartate.<br />

• Some 14 CN was also incorporated into glutamine <strong>and</strong><br />

glutamate via aspartate deamination <strong>and</strong> cycling of carbon<br />

through the TCA cycle.<br />

• <strong>The</strong> most abundant free amino acids in cassava seedlings<br />

are asparagine <strong>and</strong> glutamine. Cysteine could not be<br />

detected.<br />

• Conclusion: CN is probably assimilated into free<br />

amino acids concomitant with the consumption of<br />

cysteine.<br />

Nartley F. (1969) Physiol. Plantarum 22: 1085-96.


Diversion of linamarin from storage to amino acid synthesis could<br />

increase amino acid pool sizes <strong>and</strong> protein synthesis in roots<br />

Linamarin<br />

Linamarin<br />

Export<br />

Linamarin<br />

Storage<br />

Valine<br />

Linamarin<br />

Storage<br />

Acetone cyanohydrin<br />

Linamarin can be stored in roots<br />

or used for protein synthesis.<br />

CN - + Cysteine<br />

β-cyanoalanine + H 2 O<br />

Asparagine<br />

Aspartate + NH 3<br />

β-cyanoalanine<br />

synthase<br />

β-cyanoalanine<br />

hydrase<br />

Asparaginase


1. RT-PCR RT PCR analysis of ROOT CYP79D1/D2 transcript<br />

levels in Cab1 transformants indicates the Cab1<br />

promoter is not ‘on on’ in roots.<br />

Wild Type<br />

Cab1-1<br />

Cab1-2<br />

Cab1-3<br />

Cab1-4<br />

Cab1-5<br />

- control<br />

+ control<br />

700bp CYP79D1<br />

550bp CYP79D2<br />

SBE II gene


RT-PCR RT PCR demonstrates the reduction or complete loss of<br />

CYP79D1/D2 transcripts in leaves of Cab1- Cab1<br />

CYP79D1/D2 antisense plants.<br />

WT<br />

Cab1-1<br />

Cab1-2<br />

Cab1-3<br />

Cab1-4<br />

Cab1-5<br />

- control<br />

+ control<br />

700bp CYP79D1<br />

550bp CYP79D2<br />

SBE II gene<br />

RT-PCR on 8µg of <strong>Cassava</strong> Cab1 transformant total leaf RNA. CYP79D1/D2<br />

gene specific primers amplify the 3’-end of the respective genes.


2. CYP79D1/D2 expression is inhibited in ROOTS of patatin- patatin<br />

CYP79D1/D2 antisense plants.<br />

Pat-2<br />

Pat-1<br />

Pat-3<br />

Pat-2<br />

Pat-1<br />

Pat-3<br />

WT - +<br />

WT - +<br />

CYP79D1<br />

CYP79D2<br />

SBE II<br />

CYP79D1<br />

CYP79D2<br />

SBE II<br />

Root RT-PCR RT PCR<br />

shows<br />

elimination of<br />

root<br />

transcripts<br />

Leaf RT-PCR<br />

shows little or<br />

no effect on<br />

leaf transcript<br />

levels


PCR amplification of patatin/glgC gene border<br />

in transgenic (3D) cassava<br />

Plasmid WT 3D-1 3D-2 3D-3 3D-4 Marker<br />

.<br />

• the fidelity of the PCR product was confirmed by DNA sequence<br />

analysis.<br />

850 bp


UDP-Glucose +<br />

Fructose-6-P<br />

Rate Limiting Step<br />

ADP-Glucose<br />

sucrose phosphate synthase<br />

AGPase<br />

Sucrose-6-P +<br />

UDP + H +<br />

Sucrose<br />

invertase<br />

Fructose + Glucose<br />

Glucose-1-P


Leaves <strong>and</strong> roots of transgenic plants have<br />

greater mass per unit than wild type.<br />

Plants Ratio of leaf<br />

weight/leaf<br />

number<br />

WT 2.40 10.57<br />

3D-1 2.72 16.58<br />

3D-2 2.6 14.13<br />

3D-3 2.62 11.20<br />

Ratio of root<br />

weight/root<br />

number


T-DNA containing modified glgC gene with an Nterminal<br />

chloroplast transit peptide.<br />

RB<br />

850bp<br />

Patatin TP<br />

glgC nos polyA<br />

1.2kb 1.3kb<br />

<strong>The</strong> red box corresponds to the unique T-DNA region<br />

amplified by PCR for identification of transgenic<br />

plants.<br />

LB


Limiting free amino acid pool sizes<br />

affect protein synthesis in plants<br />

• Due to limiting amino acid pool sizes, expression of a sulfurrich<br />

sunflower seed albumin gene (accounting for 7% of<br />

total seed protein) in transgenic rice resulted in no net<br />

change in the total amount of sulfur-containing amino acids.<br />

(Hagan et al., (2003) Pl. J. 34: 1-11).<br />

• Enhancing the expression of sulfur-rich proteins in peas was<br />

dependent on the pool sizes of free Cys <strong>and</strong> Met. (Tabe et al.<br />

(2002) Cur. Opin. Pl. Biol. 5: 212-217).<br />

• Expression of threonine <strong>and</strong> methionine rich proteins in<br />

transgenic tobacco having 15-fold <strong>and</strong> 3-fold higher<br />

threonine <strong>and</strong> methionine levels, respectively, was limited<br />

by the pool sizes of other amino acids. (Karchi et al. (1993) Pl. J. 3:<br />

721-727).


Cyanogen catabolism <strong>and</strong> amino acid synthesis in<br />

roots<br />

Linamarin<br />

Linamarin<br />

Valine<br />

Linamarin<br />

Acetone cyanohydrin<br />

Linamarin can be stored in roots<br />

or used for protein synthesis.<br />

CN - + Cysteine<br />

β-cyanoalanine + H 2 O<br />

Asparagine<br />

Aspartate + NH 3<br />

β-cyanoalanine<br />

synthase (1.4x)<br />

β-cyanoalanine<br />

Hydrase (3X)<br />

Asparaginase<br />

(0.7X)


GBSS<br />

SSS<br />

ADP-Glucose<br />

sucrose phosphate synthase<br />

UDP-Glucose +<br />

Fructose-6-P<br />

Rate Limiting Step<br />

In Starch Production<br />

AGPase<br />

Sucrose-6-P +<br />

UDP + H +<br />

Sucrose<br />

invertase<br />

Fructose + Glucose<br />

Glucose-1-P<br />

+ ATP


ENGINEERING CASSAVA FOR INCREASED<br />

STARCH PRODUCTION<br />

Uzoma E. Ihemere 1 <strong>and</strong> Richard T. Sayre 2<br />

Dept. of Horticulture & Crop Science 1 <strong>and</strong> Dept. of Plant Cellular <strong>and</strong> Molecular Biology 2<br />

Ohio State University, Columbus, OH 43210 USA<br />

Ihemere et al. (2004) in preparation for Plant Physiology

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!