10.07.2015 Views

Rigid Rotor and Angular Momentum - Cobalt

Rigid Rotor and Angular Momentum - Cobalt

Rigid Rotor and Angular Momentum - Cobalt

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

6. Prove that2 k2 kLˆ ( Lˆ ψ ) = j( j 1)h ( Lˆ ψ −− j , j+for any nonnegative integer k such that ( j − k ) h ⎣ S( Lˆz) . Also, let s be a nonnegativeinteger such that ( j−s) h ∈S(ˆ L z ) but ( j− ( s+ 1)) h ∈S( L ˆ z ). Then show thatˆ 2 ( ˆ s, ) ( )( ) 2L L j s j s (ˆ s−ψjj= − − −1h L−ψjj, ),Now, using Eq. (1) <strong>and</strong> (2), show that the only values for j are 0, 1/2, 1, 3/2, 2, … .2(ANS. To do this Question, we need the results from the previous Question. Since Lˆ commutes Lˆ −, it commutes with any power of Lˆ −. Therefore, we can writeˆ 2 ( ˆ k) ˆ k( ˆ 2L L−ψjj, = L−L ψjj, ),ˆ k= L−( L ˆ − L ˆ + ψjj , + L ˆ z + h) ψjj, ),2 k= jj ( + 1) h (ˆ L−ψjj , ).2For the second equality, we choose the other expression for Lˆ . In addition, we shall needS + 1sss ssthe results (from class) that Lˆ −ψj , j= 0 , <strong>and</strong> [ Lˆz,Lˆ−] = − shLˆ−or LˆzLˆ−= Lˆ−Lˆz− khLˆ,−where s is a nonnegative interger. Therefore we can write2 sS + 1sLˆ ( L ψ ) = Lˆ Lˆ ψ + Lˆ ( Lˆ − h )( Lˆ ψ )−j , j= Lˆ= Lˆzz+−( Lˆ( Lˆs−Lˆs= ( j − s ) hLˆ( Lˆ ψ= ( j − s ) h(Lˆzzj , j( Lˆ ψs−− shLˆs−Lˆ)) − hLˆ) ψ− shLˆ= ( j − s )( j − s −1)hzj , jzzs−j , jzj , j= ( j − s ) h(j − s ) h(Lˆ ψ−− h(Lˆ) ψj , jLˆ) −(j − s ) hs−z).),s( Lˆ ( Lˆ ψs−j , j( Lˆ ψ2s−zj , j),− shLˆ−(j − s ) h) −(j − s ) hj , j−s−−j , jzj , j( Lˆ ψIn the first equality, set k = s, <strong>and</strong> then we have2 k2 sj(j + 1)h ( Lˆ ψ ) = ( j − s )( j − s −1)h ( Lˆ ψ −−j , j2s−s−j , j) ψ),s−j , js−( Lˆ ψ2,( Lˆ ψwhich means thatj(j + 1)= ( j − s )( j − s −1).This equation yields the quadratic equation in s2s −(2 j −1)s− 2 j = 0,which has two solutions s = 2j <strong>and</strong> s = -1. Since s must be a nonnegative integer, the secondroot is extraneous. Since s must be a nonnegative integer, then 2j must be a nonnegativeinteger. Therefore, j = 0, 1/2, 1, 3/2, 2, …)7. (Optional) Prove thatψ1⎡ 1 ( j+m)!⎤21jm , = ⎢( j)!( j−m)!⎥ j−m⎣ 2 ⎦ h− −jj ,(ANS. We start from the result given in classLˆψj mLˆ ψ .2= [( j + m )( j − m )] hψ− j ,m+1j ,m−11.2j , j),j , jj , j),),

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!