10.07.2015 Views

Dynamic Effects of Monetary Policy Shocks in Malawi* - African ...

Dynamic Effects of Monetary Policy Shocks in Malawi* - African ...

Dynamic Effects of Monetary Policy Shocks in Malawi* - African ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

University <strong>of</strong> Cape TownSchool <strong>of</strong> economics<strong>Dynamic</strong> <strong>Effects</strong> <strong>of</strong> <strong>Monetary</strong> <strong>Policy</strong> <strong>Shocks</strong> <strong>in</strong> Malawi Harold P.E. Ngalawa*AbstractThis paper sets out to <strong>in</strong>vestigate the process through which monetary policy affects economic activity <strong>in</strong> Malawi.Us<strong>in</strong>g <strong>in</strong>novation account<strong>in</strong>g <strong>in</strong> a structural vector autoregressive model, it is established that monetaryauthorities <strong>in</strong> Malawi employ hybrid operat<strong>in</strong>g procedures and pursue both price stability and high growth andemployment objectives. Two operat<strong>in</strong>g targets <strong>of</strong> monetary policy are identified, viz., bank rate and reservemoney, and it is demonstrated that the former is a more effective measure <strong>of</strong> monetary policy than the latter.The study also illustrates that bank lend<strong>in</strong>g, exchange rates and aggregate money supply conta<strong>in</strong> importantadditional <strong>in</strong>formation <strong>in</strong> the transmission process <strong>of</strong> monetary policy shocks <strong>in</strong> Malawi. In addition, it is shownthat the floatation <strong>of</strong> the Malawi Kwacha <strong>in</strong> February 1994 had considerable effects on the country’s monetarytransmission process. In the post-1994 period, the role <strong>of</strong> exchange rates became more conspicuous than beforealthough its impact was weakened; and the importance <strong>of</strong> aggregate money supply and bank lend<strong>in</strong>g <strong>in</strong>transmitt<strong>in</strong>g monetary policy impulses was enhanced. Overall, the monetary transmission process evolved from aweak, blurred process to a somewhat strong, less ambiguous mechanism.Paper Presented at the 14 th Annual Conference <strong>of</strong> the <strong>African</strong> Econometric Society,8-10 July 2009, Abuja, Nigeria This paper is part <strong>of</strong> a PhD Thesis <strong>in</strong> progress. I thank Pr<strong>of</strong>essor Nicola Viegi, my supervisor, for his usefulcomments. Any errors are my responsibility, though.*University <strong>of</strong> Cape Town, School <strong>of</strong> Economics, Private Bag, Rondebosch 7701, South Africa. Email:hngalawa@yahoo.co.uk / Harold.Ngalawa@uct.ac.za


1.0. INTRODUCTIONWhile it is generally agreed that monetary policy can significantly affect both real economicactivity and prices <strong>in</strong> the short run and only prices <strong>in</strong> the long run, considerable debate rema<strong>in</strong>sabout how monetary policy shocks are transmitted. Views differ <strong>in</strong> the emphasis placed onmoney, credit, <strong>in</strong>terest rates, exchange rates, asset prices and the role <strong>of</strong> commercial banks andother f<strong>in</strong>ancial <strong>in</strong>stitutions (Taylor, 1995). The differences are prevalent even <strong>in</strong> <strong>in</strong>dividual<strong>in</strong>dustrialized countries where the topic has been a subject <strong>of</strong> research for many years. Indevelop<strong>in</strong>g countries, the process is even more uncerta<strong>in</strong> (Kam<strong>in</strong>, Turner, & Van't dack, 1998).In spite <strong>of</strong> the prom<strong>in</strong>ence given to monetary policy, the transmission process <strong>in</strong> a typicaldevelop<strong>in</strong>g country is not well understood (Montiel, 1991). One <strong>of</strong> the typical develop<strong>in</strong>gcountries, Malawi, is no exception.<strong>Monetary</strong> policy plays a very important role <strong>in</strong> the management <strong>of</strong> the Malawi economy. Asoutl<strong>in</strong>ed <strong>in</strong> the Reserve Bank <strong>of</strong> Malawi (RBM) Act <strong>of</strong> 1989, one <strong>of</strong> the pr<strong>in</strong>cipal objectives <strong>of</strong>the central bank is to <strong>in</strong>fluence money supply, credit availability, <strong>in</strong>terest rates and exchangerates <strong>in</strong> order to ultimately promote economic growth, employment and price stability (MalawiGovernment, 1989). Achiev<strong>in</strong>g this objective clearly requires an understand<strong>in</strong>g <strong>of</strong> the processthrough which monetary policy affects economic activity. There is, however, no study that weare aware <strong>of</strong> that has quantitatively measured the transmission process <strong>of</strong> monetary policy <strong>in</strong>Malawi. This study, therefore, contributes to the literature by fill<strong>in</strong>g this gap. The study isolatesmonetary policy autonomous disturbances from other shocks, quantifies their dynamic behaviourand measures the consequent macroeconomic implications us<strong>in</strong>g a structural vectorautoregressive model (SVAR) with short run restrictions. With<strong>in</strong> the same framework, the studyalso assesses how the country‟s monetary policy transmission process was altered by RBM‟smigration from direct to <strong>in</strong>direct tools <strong>of</strong> monetary control <strong>in</strong> the late 1980s and 1990s.S<strong>in</strong>ce Sims‟ (1980) pioneer<strong>in</strong>g work, vector autoregression models (VARs) are consideredbenchmarks <strong>in</strong> econometric modell<strong>in</strong>g <strong>of</strong> monetary policy transmission (Borys & Horvath,2007). While natural experiments would be ideal, the real world does not provide for this optionand SVARs are the only other place where experiments can be performed (Christiano,Eichenbaum, & Evans, 1998). SVAR experiments aimed at measur<strong>in</strong>g the effect <strong>of</strong> monetarypolicy on economic activity have traditionally <strong>in</strong>volved sett<strong>in</strong>g apart monetary policy shocks andtrack<strong>in</strong>g the response <strong>of</strong> macroeconomic variables to the monetary policy impulses.Most studies that have applied SVARs to study the dynamic behaviour <strong>of</strong> monetary policyshocks have used developed market economies as case studies (Karame & Olmedo, 2002;Bernanke & Mihov, 1998; Sims & Zha, 1998; Bernanke & Mihov, 1996; Piffanelli, 2001). Inrecent years, there has been grow<strong>in</strong>g attention on emerg<strong>in</strong>g market economies <strong>of</strong> Lat<strong>in</strong> America,Asia and Easten Europe (Borys & Horvath, 2007; Vonnak, 2005; Disyatat & Vongs<strong>in</strong>sirikul,2003; Dabla-Norris & Floerkemeier, 2006) and on Australia (Berkelmans, 2005; Brischetto &Voss, 1999). In contrast, quasi-emerg<strong>in</strong>g market economies (QEMEs), particularly <strong>in</strong> subsaharanAfrica, have attracted very little attention.2 | P a g e


Among the few studies undertaken on QEMEs, Mutoti (2006) employed a co<strong>in</strong>tegrated structuralVAR identified with short run and long run restrictions to model the monetary transmissionprocess <strong>of</strong> post-liberalisation Zambia. Us<strong>in</strong>g monthly data for the period 1992-2003, he foundout that much <strong>of</strong> the output volatility <strong>in</strong> the country is attributable to aggregate supply shocks,with IS shocks turn<strong>in</strong>g to be the most important demand factors for the bus<strong>in</strong>ess cycle. He alsonoted that money demand shocks modestly boost short run output. He further established that <strong>in</strong>the short run, changes <strong>in</strong> consumer prices are accounted for by aggregate supply, money demandand exchange rate shocks whilst at longer horizons, they are ma<strong>in</strong>ly underl<strong>in</strong>ed by aggregatesupply shocks and modestly by foreign price shocks. The study concluded that a very smallproportion <strong>of</strong> output variance is due to monetary policy shocks.In a study <strong>of</strong> Kenya, Maturu (2007) used a structural VAR to argue that <strong>in</strong>terest rate andexchange rate channels are unambigously important channels <strong>of</strong> monetary policy transmission <strong>in</strong>the country besides the traditional money channel. On this basis, he po<strong>in</strong>ted out that there ispotential for signall<strong>in</strong>g monetary policy us<strong>in</strong>g the REPO <strong>in</strong>terest rate. In another study <strong>of</strong> Kenya,Cheng (2006) also used a structural VAR to exam<strong>in</strong>e the impact <strong>of</strong> monetary policy shocks onoutput, prices and the nom<strong>in</strong>al effective exchange rate for the country dur<strong>in</strong>g the period 1977-2005. Cheng found out that an exogenous <strong>in</strong>crease <strong>in</strong> the short term <strong>in</strong>terest rate is followed by adecl<strong>in</strong>e <strong>in</strong> prices and an appreciation <strong>of</strong> the nom<strong>in</strong>al exchange rate, but has <strong>in</strong>significant impacton output. He further showed that variations <strong>in</strong> short term <strong>in</strong>terest rates account for significantfluctuations <strong>in</strong> the nom<strong>in</strong>al exchange rate and prices, while account<strong>in</strong>g little for outputfluctuations.In the case <strong>of</strong> Malawi, there are two theoretical studies, one by Bolnick (1991) and another byPhiri (2002), and no empirical analysis on the country‟s monetary transmission process. TheBolnick study was carried out at the time RBM was convert<strong>in</strong>g from direct to <strong>in</strong>direct tools <strong>of</strong>monetary management. The study <strong>in</strong>vestigated how the chang<strong>in</strong>g conditions would weaken oralter l<strong>in</strong>ks <strong>in</strong> the country‟s monetary transmission process. Unfortunately, Bolnick was unable topredict the emergence <strong>of</strong> a reasonably competitive f<strong>in</strong>ancial sector with<strong>in</strong> the foreseeable futureand consequently concluded erroneously that after RBM‟s implementation <strong>of</strong> <strong>in</strong>direct monetarycontrols, the transmission <strong>of</strong> monetary policy shocks <strong>in</strong> Malawi would be stage-managed by thecentral bank through <strong>in</strong>formal consultations with commercial bank managers. Phiri‟s study, onthe other hand, is not very useful as it falls short <strong>of</strong> go<strong>in</strong>g beyond a theoretical exposition <strong>of</strong>textbook transmission channels <strong>of</strong> monetary policy. For <strong>in</strong>stance, he presents the other assetprice effects channel operat<strong>in</strong>g through an efficient stock market as one <strong>of</strong> Malawi‟s monetarytransmission channels. However, with only eight listed companies at the time <strong>of</strong> the study, it iscommon knowledge that the Malawi Stock Exchange (MSE) was still is <strong>in</strong> its <strong>in</strong>fancy to act as aconduit <strong>of</strong> monetary transmission. As at the end <strong>of</strong> June 2009, the MSE had 15 listed companiesand was still classified as „<strong>in</strong>fant.‟The rest <strong>of</strong> the paper is organised as follows. Section 2 is an overview <strong>of</strong> monetary policy <strong>in</strong>Malawi s<strong>in</strong>ce <strong>in</strong>dependence <strong>in</strong> 1964. A methodological framework characteris<strong>in</strong>g structuralVARs, identification <strong>of</strong> the structural shocks, data sources, variable def<strong>in</strong>itions and measurement3 | P a g e


<strong>of</strong> variables is presented <strong>in</strong> Section 3. Estimation results and <strong>in</strong>ferences are discussed <strong>in</strong> Section4. Section 5 presents a summary, conclusion and policy recommendations.2.0. OVERVIEW OF MONETARY POLICY IN MALAWI SINCE 1964The conduct <strong>of</strong> monetary policy <strong>in</strong> Malawi s<strong>in</strong>ce <strong>in</strong>dependence can be outl<strong>in</strong>ed <strong>in</strong> three broadlydist<strong>in</strong>ct monetary policy regimes viz., period <strong>of</strong> f<strong>in</strong>ancial repression (1964-86), period <strong>of</strong>f<strong>in</strong>ancial reforms (1987-1994) and period <strong>of</strong> f<strong>in</strong>ancial liberalisation (post-1994). At<strong>in</strong>dependence <strong>in</strong> 1964, the formal bank<strong>in</strong>g system which the country adopted from the colonialgovernment was perceived to be primarily <strong>in</strong>terested <strong>in</strong> serv<strong>in</strong>g the needs <strong>of</strong> an expatriatecommunity, to have little <strong>in</strong>terest <strong>in</strong> direct lend<strong>in</strong>g to local entrepreneurs, and to imposeunreasonably high charges on rout<strong>in</strong>e bank<strong>in</strong>g services (Gondwe, 2001). To get rid <strong>of</strong> thesedistortions, direct controls on credit and <strong>in</strong>terest rates were imposed. The agricultural sector, <strong>in</strong>particular, was accorded preferential lend<strong>in</strong>g rates and quota credit allocations <strong>in</strong> l<strong>in</strong>e withgovernment policy to promote agricultural production. Besides these controls, government alsoadopted a fixed exchange rate system and imposed price ceil<strong>in</strong>gs on selected commodities.In the late 1970s, a hostile external environment forced the economy <strong>in</strong>to a deep recession,which persisted through the 1980s. Intensifications <strong>of</strong> civil war <strong>in</strong> neighbour<strong>in</strong>g Mozambique, aconsequent flood<strong>in</strong>g <strong>of</strong> refugees <strong>in</strong>to the country and disruption <strong>of</strong> a cost effective route to thesea ports <strong>of</strong> Beira and Nacala; the 1979 oil crisis; and drought <strong>in</strong> 1980 were some <strong>of</strong> the factorsthat triggered the recession. The failure <strong>of</strong> the economy to adjust to these shocks revealedstructural weaknesses <strong>in</strong> the design <strong>of</strong> the country‟s macroeconomic framework. Governmentwas forced, therefore, to implement a policy change from the mid 1980s to the 1990s, mov<strong>in</strong>gaway from direct to <strong>in</strong>direct tools <strong>of</strong> monetary control, among others. A phased f<strong>in</strong>ancialliberalisation program targeted at enhanc<strong>in</strong>g competition and efficiency <strong>in</strong> the f<strong>in</strong>ancial sectorwas adopted.The reforms commenced with partial deregulation <strong>of</strong> lend<strong>in</strong>g rates <strong>in</strong> July 1987 and deposit rates<strong>in</strong> April 1988. The partial deregulation allowed commercial banks to determ<strong>in</strong>e their ownlend<strong>in</strong>g and deposit rates but not to effect any adjustment without prior consultation with thecentral bank. Credit ceil<strong>in</strong>gs were abolished <strong>in</strong> 1988. In January 1990, the authorities announcedthe abolition <strong>of</strong> preferential lend<strong>in</strong>g rates to the agricultural sector. Complete deregulation <strong>of</strong> the<strong>in</strong>terest rates occurred <strong>in</strong> May 1990.The reform program also overhauled the legal and regulatory framework <strong>of</strong> the bank<strong>in</strong>g system,which <strong>in</strong>volved revision <strong>of</strong> the RBM Act <strong>of</strong> 1964 and Bank<strong>in</strong>g Act <strong>of</strong> 1965 <strong>in</strong> May 1989 andDecember 1989, respectively. While the central bank was previously supervis<strong>in</strong>g commercialbanks only, the revised Bank<strong>in</strong>g Act extended its coverage to <strong>in</strong>clude non-bank f<strong>in</strong>ancial<strong>in</strong>stitutions (NBFIs), a function that was previously <strong>in</strong> the hands <strong>of</strong> the Treasury. In addition,<strong>in</strong>spection <strong>of</strong> the f<strong>in</strong>ancial <strong>in</strong>stitutions was broadened to <strong>in</strong>clude adherence to prudentialrequirements besides compliance to exchange control regulations.4 | P a g e


Interest Rate (Percent)In l<strong>in</strong>e with the revised RBM Act, the central bank <strong>in</strong>troduced two new <strong>in</strong>struments <strong>of</strong> monetarypolicy, namely liquidity reserve requirement (LRR) and discount w<strong>in</strong>dow facility. The discountw<strong>in</strong>dow facility led to the <strong>in</strong>troduction <strong>of</strong> the bank rate, which has s<strong>in</strong>ce become a very powerful<strong>in</strong>dicator <strong>of</strong> monetary policy. A change <strong>in</strong> the bank rate is usually followed by near <strong>in</strong>stantaneouscorrespond<strong>in</strong>g changes <strong>in</strong> both lend<strong>in</strong>g and deposit rates. Average yields on governmentsecurities also follow the same direction (see Figure 2.1).FIGURE 2.1: Interest Rates <strong>in</strong> Malawi (2002-2007)60Bank RateBase Rate50Sav<strong>in</strong>gs Rate91 day TB Rate407-day Call30201002002:6 2003:2 2003:10 2004:6 2005:2 2005:10 2006:6 2007:2 2007:10Source: Reserve Bank <strong>of</strong> MalawiThe country‟s f<strong>in</strong>ancial reforms reached near-completion with the floatation <strong>of</strong> the MalawiKwacha on February 7, 1994. Subsequently, the monetary authorities removed exchange controlregulations, allowed for the establishment <strong>of</strong> foreign exchange bureaux, <strong>in</strong>troduced foreigncurrency denom<strong>in</strong>ated accounts, established a forward foreign exchange market and started thetrad<strong>in</strong>g <strong>of</strong> foreign exchange options and currency swaps. Eight new commercial banks (one <strong>of</strong>which has s<strong>in</strong>ce been liquidated) entered the commercial bank<strong>in</strong>g sector s<strong>in</strong>ce 1994, chang<strong>in</strong>g thestructure <strong>of</strong> the market from a duopoly to a fairly competitive sector. The country‟s first discounthouse entered the f<strong>in</strong>ancial sector <strong>in</strong> 1998 followed by a second one <strong>in</strong> 2002.The <strong>of</strong>ficial position <strong>of</strong> RBM is that monetary policy <strong>in</strong> the country utilises a quantitativeoperat<strong>in</strong>g target known as reserve money, def<strong>in</strong>ed as the sum <strong>of</strong> currency <strong>in</strong> circulation, vaultcash and bank deposits with the central bank (Banda, 2004). On the sources side, reserve moneyis def<strong>in</strong>ed as net domestic assets (NDA) plus net foreign assets (NFA). In this framework, theforeign exchange market operates on the supply side <strong>of</strong> reserve money through the effect <strong>of</strong>foreign exchange transactions on NFA. Banda argues that the rationale for reserve moneytarget<strong>in</strong>g by the central bank is to balance supply and demand conditions <strong>of</strong> the monetaryaggregate <strong>in</strong> the money market so as to achieve price stability.As an <strong>in</strong>strument target <strong>of</strong> monetary policy, reserve money is used to reflect open marketoperations (OMO) and foreign exchange transactions. In Malawi‟s OMO, the central bankundertakes weekly trad<strong>in</strong>g <strong>of</strong> RBM Bills and Malawi Government Treasury Bills (TBs) <strong>in</strong> acompetitive bidd<strong>in</strong>g system. The former are short-term f<strong>in</strong>ancial <strong>in</strong>struments issued by the5 | P a g e


central bank for monetary policy purposes while the latter are short-term f<strong>in</strong>ancial <strong>in</strong>strumentsissued by the Government through RBM to borrow funds from the general public for thef<strong>in</strong>anc<strong>in</strong>g <strong>of</strong> current fiscal deficits and matur<strong>in</strong>g government debt. In addition to the regulartrad<strong>in</strong>g, RBM also sales extra securities on an ad hoc basis to discount houses and commercialbanks, referred to as „tap sales‟.While the monetary policy framework <strong>in</strong> Malawi is <strong>of</strong>ficially designated as reserve moneytarget<strong>in</strong>g with OMO play<strong>in</strong>g an important role, the system operates as if the central bank alsotargets short term <strong>in</strong>terest rates through adjustments <strong>in</strong> the bank rate. To avoid prejudice, thisstudy assumes the central bank targets both the bank rate and reserve money and goes on toempirically determ<strong>in</strong>e which <strong>of</strong> the two is a more effective measure <strong>of</strong> monetary policy.3.0. METHODOLOGY3.1. Structural VAR FrameworkTo draw the SVAR ma<strong>in</strong>frame, suppose Malawi‟s monetary transmission process is described bya dynamic system whose structural form equation is given by:where is an <strong>in</strong>vertible matrix describ<strong>in</strong>g contemporaneous relations among thevariables; is an vector <strong>of</strong> endogenous variables such that ; isa vector <strong>of</strong> constants; is an matrix <strong>of</strong> coefficients <strong>of</strong> lagged endogenous variables; is an matrix whose non-zero <strong>of</strong>f–diagonal elements allow fordirect effects <strong>of</strong> some shocks on more than one endogenous variable <strong>in</strong> the system; and areuncorrelated or orthogonal white-noise structural disturbances i.e. the covariance matrix <strong>of</strong> isan identity matrix =1. Equation (3.1) can be rewritten <strong>in</strong> compact form as:where is an f<strong>in</strong>ite order matrix polynomial <strong>in</strong> the lag operator L.At the centre <strong>of</strong> analysis <strong>in</strong> similar vector autoregression models are monetary policy shocks andtheir dynamic behaviour <strong>in</strong> the system. Follow<strong>in</strong>g Vonnak (2005), we def<strong>in</strong>e monetary policyshocks as unexpected deviations from the systematic behaviour <strong>of</strong> monetary policy. Vonnakexpla<strong>in</strong>s changes <strong>in</strong> monetary policy operat<strong>in</strong>g targets as mostly endogenous reactions <strong>of</strong>monetary policy to other types <strong>of</strong> shocks from the economy given the monetary policy feedbackrule. Track<strong>in</strong>g down developments <strong>in</strong> monetary policy goals follow<strong>in</strong>g a change <strong>in</strong> an operat<strong>in</strong>gtarget only provides a reflection <strong>of</strong> the consequences <strong>of</strong> the shock, which among others, triggeredthe change <strong>in</strong> the operat<strong>in</strong>g target. Evidently, it is important to isolate autonomous disturbancesemanat<strong>in</strong>g from monetary policy shocks from other types <strong>of</strong> shocks, which is carried out <strong>in</strong>SVARs.6 | P a g e(3.1)(3.2)


3.2. Identification <strong>of</strong> Structural <strong>Shocks</strong>The SVAR presented <strong>in</strong> the primitive system <strong>of</strong> equations (3.1) and (3.2) cannot be estimateddirectly due to the feedback <strong>in</strong>herent <strong>in</strong> a VAR process (Enders, 2004). Nonetheless, the<strong>in</strong>formation <strong>in</strong> the system can be recovered by estimat<strong>in</strong>g a reduced form VAR implicit <strong>in</strong> (3.1)and (3.2). Pre-multiply<strong>in</strong>g equation (3.1) by yields a reduced form VAR <strong>of</strong> order p, which <strong>in</strong>standard matrix form is written as:where ; ; and is an vector <strong>of</strong> error terms assumedto have zero means, constant variances and to be serially uncorrelated with all the right hand sidevariables as well as their own lagged values though they may be contemporaneously correlatedacross equations. The variance-covariance matrix <strong>of</strong> the regression residuals <strong>in</strong> equation (3.3) isdef<strong>in</strong>ed as. Given the estimates <strong>of</strong> the reduced form VAR <strong>in</strong> equation (3.3), thestructural economic shocks are separated from the estimated reduced form residuals by impos<strong>in</strong>grestrictions on the parameters <strong>of</strong> matrices and <strong>in</strong> equation (3.4):which derives from equation (3.3). The orthogonality assumption <strong>of</strong> the structural <strong>in</strong>novationsi.e. =1, and the constant variance-covariance matrix <strong>of</strong> the reduced-form equationresiduals i.e. impose identify<strong>in</strong>g restrictions on and as presented <strong>in</strong> equation(3.5):S<strong>in</strong>ce matrices and are both , a total <strong>of</strong> unknown elements can be identifiedupon which restrictions are imposed by equation (3.5). To identify A and B,therefore, at least or additional restrictions are required. Theserestrictions can be imposed <strong>in</strong> a number <strong>of</strong> ways. One approach is to use Sims‟ (1980) recursivefactorisation based on a Cholesky decomposition <strong>of</strong> matrix . The approach assumes thatelements <strong>of</strong> matrix are recursively related and are, therefore, lower triangular. The implication<strong>of</strong> this relationship is that identification <strong>of</strong> the structural shocks is dependent on the order<strong>in</strong>g <strong>of</strong>variables, with the most endogenous variable ordered last (Favero, 2001). Thus, with a givenorder<strong>in</strong>g, the first variable has no contemporaneous relationships with all other variables <strong>in</strong> themodel, <strong>in</strong>dicat<strong>in</strong>g that its reduced form shock is identical to its structural shock; the secondvariable has contemporaneous <strong>in</strong>teractions only with its own and the first structural shock; thethird variable is contemporaneously affected by its own and the first two structural shocks; andso on. In this framework, the system is just (exactly) identified.While there are many models that are consistent with the recursiveness assumption, the approachis nonetheless controversial (Christiano, Eichenbaum, & Evans, 1998). The assumptionsrationalis<strong>in</strong>g the order<strong>in</strong>g <strong>of</strong> variables are <strong>of</strong>ten different <strong>in</strong> different studies us<strong>in</strong>g the same(3.3)(3.4)(3.5)7 | P a g e


variables; and s<strong>in</strong>ce estimation-results <strong>in</strong> a VAR identified by Cholesky factorisation differ withorder<strong>in</strong>g <strong>of</strong> variables, these studies tend to be <strong>in</strong>comparable. Chang<strong>in</strong>g the order changes theVAR equations, coefficients and residuals, and there are n! recursive VARs, represent<strong>in</strong>g allpossible order<strong>in</strong>gs (Stock & Watson, 2001). The validity <strong>of</strong> Cholesky factorisation is alsoquestioned <strong>in</strong> cases where a simultaneity problem among monetary or macroeconomic variablesexists. Follow<strong>in</strong>g the apparent shortfalls <strong>in</strong> the approach, many authors have adopted alternativeapproaches to the identification <strong>of</strong> structural shock (Sims & Zha, 1998; Bernanke & Mihov,1995; Leeper, Sims, & Zha, 1996; Sims, 1986; Bernanke, 1986).More recent literature has used structural factorisation, an approach which uses relevanteconomic theory to impose restrictions on the elements <strong>of</strong> matrices and (Sims & Zha, 1998;Bernanke & Mihov, 1995; Sims, 1986; Bernanke, 1986). This study adopts a similar approach.The underly<strong>in</strong>g structural model is identified by assum<strong>in</strong>g orthogonality <strong>of</strong> the structuraldisturbances, ; impos<strong>in</strong>g that macroeconomic variables do not simultaneously react tomonetary variables, while the simultaneous feedback <strong>in</strong> the reverse direction is allowed for; andimpos<strong>in</strong>g restrictions on the monetary block <strong>of</strong> the model reflect<strong>in</strong>g the operational proceduresimplemented by the monetary policy-maker (Favero, 2001, p. 166).Seven variables are <strong>in</strong>cluded <strong>in</strong> the SVAR namely, output , consumer price level ,commercial bank loans , exchange rates , aggregate money supply , bank rateand reserve money . Output and consumer prices enter the SVAR as policy goals;bank rate and reserve money as operat<strong>in</strong>g targets; and commercial bank loans, exchange ratesand monetary aggregates as <strong>in</strong>termediate targets. The structural shocks <strong>in</strong> equation (3.4) areidentified accord<strong>in</strong>g to the follow<strong>in</strong>g scheme:(3.6)8 | P a g e


The non-zero coefficients and <strong>in</strong> matrices and , respectively, show that any residual j<strong>in</strong> matrices and , <strong>in</strong> that order, has an <strong>in</strong>stantaneous impact on variable i. The first twoequations suggest that output and consumer prices are sluggish <strong>in</strong> respond<strong>in</strong>g to shocks tomonetary variables <strong>in</strong> the economy. This scheme is based on the observation that most types <strong>of</strong>real economic activity may respond only with a lag to monetary variables because <strong>of</strong> <strong>in</strong>herent<strong>in</strong>ertia and plann<strong>in</strong>g delays (Karame & Olmedo, 2002). Proposed by Bernanke and Mihov(1995), the validity <strong>of</strong> this argument has been supported by a number studies (Cheng, 2006;Berkelmans, 2005; Vonnak, 2005; Karame & Olmedo, 2002).Commercial bank loans are postulated to be contemporaneously affected by all variables <strong>in</strong> thesystem. Blundell-Wignall and Gizycki (1992) argue that expectations <strong>of</strong> future activity form animportant determ<strong>in</strong>ant <strong>of</strong> credit demand. Assum<strong>in</strong>g current output, price level, exchange rates,<strong>in</strong>terest rates, and money supply give some <strong>in</strong>dication <strong>of</strong> what is expected <strong>in</strong> the future(Berkelmans, 2005) and that economic agents are <strong>in</strong>deed forward look<strong>in</strong>g, bank lend<strong>in</strong>g mayrespond contemporaneously to all variables <strong>in</strong> the system.Modell<strong>in</strong>g contemporaneous responses <strong>of</strong> exchange rates to other variables <strong>in</strong> an SVAR isrelatively standard across studies. Becklemans (2005) uses a real trade-weighted exchange rate<strong>in</strong>dex <strong>in</strong> a study <strong>of</strong> Australia and assumes that the <strong>in</strong>dex responds <strong>in</strong>stantaneously to all variables<strong>in</strong> the system. In a study <strong>of</strong> Kenya, Cheng (2006) employs a nom<strong>in</strong>al effective exchange rate andma<strong>in</strong>ta<strong>in</strong>s that the exchange rate responds contemporaneously to all variables <strong>in</strong> the SVAR.Similarly, Borys and Horvath (2007) <strong>in</strong> a study <strong>of</strong> the Czech Republic and Piffanelli (2001) <strong>in</strong> astudy <strong>of</strong> Germany assume all variables <strong>in</strong> the system affect exchange rates <strong>in</strong>stantaneously. None<strong>of</strong> these studies, however, attempts to explicitly rationalise the assumption. While the exchangerate may respond contemporaneously to changes <strong>in</strong> the level <strong>of</strong> output and consumer prices <strong>in</strong>the case <strong>of</strong> Malawi, there is no reason to believe that it will also respond contemporaneously tomonetary variables given the lack <strong>of</strong> depth <strong>in</strong> the f<strong>in</strong>ancial sector. This study, therefore, takes adeparture from these studies by postulat<strong>in</strong>g that the exchange rate responds with a lag to <strong>in</strong>terestrates, bank loans and monetary aggregates.Some studies <strong>in</strong>clude variables that specifically capture external price shocks, most common <strong>of</strong>which are price shocks. Oil price disturbances are usually s<strong>in</strong>gled out among the oil price shocks.Other studies also <strong>in</strong>corporate <strong>in</strong>ternational f<strong>in</strong>ancial market <strong>in</strong>terest rate shocks and the FederalReserve Bank Funds Rate has been widely used as a proxy for these shocks. This study,however, does not explicitly model the external shocks for three reasons. First, Malawi was notexposed to any major external shocks dur<strong>in</strong>g the study period. Second, it is expected that anydisturbances <strong>in</strong> the external sector will be ably captured by the exchange rate variable. Third andf<strong>in</strong>ally, the complete SVAR analysed <strong>in</strong> this study has seven variables, which is already large bySVAR standards. Increas<strong>in</strong>g the number <strong>of</strong> variables without proper justification, therefore, islikely to decrease the power <strong>of</strong> the model without mak<strong>in</strong>g mean<strong>in</strong>gful additions.The fifth equation is a standard money demand function. The equation postulates that moneydemand behaviour <strong>in</strong> the country makes aggregate money supply respond contemporaneously tochanges <strong>in</strong> consumer prices, output and <strong>in</strong>terest rates but not to other variables <strong>in</strong> the system,9 | P a g e


ak<strong>in</strong> to Sims and Zha (1998). The last two equations constitute the monetary policy feedbackrule. While Malawi‟s <strong>of</strong>ficial position is that it targets reserve money, there is reason to believethat the monetary authorities also target short term <strong>in</strong>terest rates. The study, therefore, assumesthat the country employs hybrid operat<strong>in</strong>g procedures, with the bank rate and reserve money asoperat<strong>in</strong>g targets. In this framework, both <strong>in</strong>terest rates and reserves are expected to conta<strong>in</strong><strong>in</strong>formation about monetary policy (Bernanke, 1996). The country‟s effective operat<strong>in</strong>g target,accord<strong>in</strong>gly, is determ<strong>in</strong>ed empirically.The monetary policy feedback rule is drawn on the assumption that <strong>in</strong>formation delays impedepolicymakers to react with<strong>in</strong> the present to economic activity and price level developments(Karame & Olmedo, 2002). Both the bank rate and reserve money, therefore, do not respondcontemporaneously to output and consumer prices. The bank rate, specifically, respondscontemporaneously to exchange rates only. While exchange rate data is available real-time, dataon other variables <strong>in</strong>clud<strong>in</strong>g bank loans and monetary aggregates is usually available to themonetary authorities with a lag. Reserve money, on the other hand, is assumed to respondcontemporaneously to all monetary variables because by its def<strong>in</strong>ition, this <strong>in</strong>formation is<strong>in</strong>herent <strong>in</strong> the monetary aggregate.3.3. AnalysisAnalysis <strong>of</strong> the SVAR is carried out <strong>in</strong> three modular experiments. First, a generic modelcompris<strong>in</strong>g the country‟s monetary policy goals and operat<strong>in</strong>g targets is estimated. Output andprice level enter the model as policy goals while bank rate and reserve money go <strong>in</strong> as operat<strong>in</strong>gtargets. The rationale for estimat<strong>in</strong>g the generic model is to establish how the two monetarypolicy goals respond to each <strong>of</strong> the operat<strong>in</strong>g targets and to f<strong>in</strong>d out if monetary authorities reactto changes <strong>in</strong> the policy goals. In addition, the estimated generic model is used to determ<strong>in</strong>ewhich <strong>of</strong> the two monetary policy operat<strong>in</strong>g-targets has a greater impact on the policy goals. Atthe second level <strong>of</strong> analysis, bank lend<strong>in</strong>g, exchange rates and M2, represent<strong>in</strong>g three differenttransmission processes, are separately appended to the generic model and estimated. Follow<strong>in</strong>gDisyatat and Vongs<strong>in</strong>sirikul (2003) and Mors<strong>in</strong>k and Bayoumi (2001), two sets <strong>of</strong> impulseresponses are calculated <strong>in</strong> each case: one with the variable <strong>of</strong> <strong>in</strong>terest endogenised and the otherwith the variable exogenised. The latter procedure generates a VAR identical to the former,except that it blocks <strong>of</strong>f any responses with<strong>in</strong> the VAR that passes through the variable <strong>of</strong><strong>in</strong>terest (Disyatat and Vongs<strong>in</strong>sirikul, Ibid). The two sets <strong>of</strong> impulse responses are latercompared. The size <strong>of</strong> the difference <strong>in</strong> the impulse responses is an <strong>in</strong>dicator <strong>of</strong> the level <strong>of</strong><strong>in</strong>formation conta<strong>in</strong>ed <strong>in</strong> the variable <strong>of</strong> <strong>in</strong>terest associated with a particular transmissionchannel. Large differences denote more <strong>in</strong>formation <strong>in</strong> the variable <strong>of</strong> <strong>in</strong>terest and suggestgreater importance <strong>of</strong> the related transmission channel. At the third and f<strong>in</strong>al level <strong>of</strong> analysis, allvariables found to hold important <strong>in</strong>formation <strong>in</strong> the country‟s monetary transmission process arepooled and a composite SVAR is estimated. A general identification scheme based on short runrestrictions developed <strong>in</strong> system <strong>of</strong> equations (3.6) is used for identify<strong>in</strong>g structural shocks <strong>in</strong>each <strong>of</strong> the models. Analysis <strong>in</strong> the study is carried out only for the short run to conform with thesubject matter under <strong>in</strong>vestigation. S<strong>in</strong>ce economists generally agree that monetary policy affects10 | P a g e


only the price level <strong>in</strong> the long run, there is little value <strong>in</strong> extend<strong>in</strong>g <strong>in</strong>vestigation <strong>of</strong> the monetarytransmission process to cover the long run.3.4. Data, Data Sources and Measurement <strong>of</strong> VariablesThe study employs monthly time series data for the period 1988:1 to 2005:12. The start<strong>in</strong>g datehas been chosen <strong>in</strong> conformity with the period when monetary authorities <strong>in</strong> Malawi migratedfrom us<strong>in</strong>g direct measures <strong>of</strong> monetary control to <strong>in</strong>direct measures. The cut-<strong>of</strong>f date, on theother hand, corresponds to the date when the latest data on all variables <strong>of</strong> <strong>in</strong>terest was available.Major sources <strong>of</strong> data <strong>in</strong>clude RBM, National Statistical Office (NSO) (Malawi), MeteorologicalDepartment (Malawi) and the University <strong>of</strong> Malawi.Bank rate is def<strong>in</strong>ed as the rate at which the central bank provides short term loans tocommercial banks and discount houses <strong>in</strong> its function as a lender <strong>of</strong> last resort. The variableenters the SVAR as an <strong>in</strong>strument target <strong>of</strong> monetary policy. Reserve money is alsoemployed as an <strong>in</strong>strument target <strong>of</strong> monetary policy <strong>in</strong> the SVAR. Components <strong>of</strong> areidentified as total cash reserves held by the central bank, vault cash <strong>in</strong> commercial banks andcurrency held by the non-bank public. The variable captures commercial bank loans andadvances and it enters the SVAR as an <strong>in</strong>termediate target <strong>of</strong> monetary policy. Similarly,exchange rate ( ) enters the SVAR as an <strong>in</strong>termediate target <strong>of</strong> monetary policy. Middlenom<strong>in</strong>al exchange rates <strong>of</strong> the Malawi Kwacha vis-à-vis the United States Dollar (USD) are usedas a proxy for . Aggregate money supply is measured by the sum <strong>of</strong> currency <strong>in</strong> circulation,demand deposits and time deposits (M2). The variable also enters the SVAR as an <strong>in</strong>termediatetarget <strong>of</strong> monetary policy.Consumer prices ( ) are measured by the all items national composite consumer price <strong>in</strong>dexwith base year 2000. The variable enters the SVAR as a monetary policy goal. A measure <strong>of</strong>output ( ) enters the SVAR as a monetary policy goal as well. GDP data (used as a proxy for) for Malawi, however, is only available <strong>in</strong> annual frequency. This presents a case for<strong>in</strong>terpolation. Several studies have used <strong>in</strong>terpolated monthly GDP series <strong>in</strong> SVARs. Amongthem, Cheng (2006) used monthly production data <strong>of</strong> key sectors <strong>in</strong> Kenya to <strong>in</strong>terpolate thecountry‟s annual GDP to monthly frequency; and Borys and Horvath (2007) used the quadraticmatchaverage procedure to <strong>in</strong>terpolate GDP from quarterly to monthly frequency <strong>in</strong> CzechRepublic. This study employs the Friedman method <strong>of</strong> <strong>in</strong>terpolat<strong>in</strong>g time series by related seriesto obta<strong>in</strong> the required monthly GDP series from annual data (see appendix A for a detailedoutl<strong>in</strong>e <strong>of</strong> the GDP <strong>in</strong>terpolation).All variables, with the exception <strong>of</strong> <strong>in</strong>terest rates, are expressed <strong>in</strong> logarithms. They are alsoseasonally adjusted us<strong>in</strong>g TRAMO (Time Series Regression with Autoregressive Mov<strong>in</strong>gAverage (ARIMA) Noise, Miss<strong>in</strong>g Observations, and Outliers) and SEATS (Signal Extraction <strong>in</strong>ARIMA Time Series) with a forecast horizon <strong>of</strong> 12 months. While the former performsestimation, forecast<strong>in</strong>g, and <strong>in</strong>terpolation <strong>of</strong> regression models with miss<strong>in</strong>g observations andARIMA errors, <strong>in</strong> the presence <strong>of</strong> possibly several types <strong>of</strong> outliers, the latter performs anARIMA-based decomposition <strong>of</strong> an observed time series <strong>in</strong>to unobserved components11 | P a g e


(Quantitative Micro S<strong>of</strong>tware, LLC, 2005). Seasonal adjustment removes cyclical seasonalmovements that are common <strong>in</strong> time series observed at quarterly and monthly frequency. Theunderly<strong>in</strong>g trend component <strong>of</strong> the series, however, is reta<strong>in</strong>ed after the data has been seasonallyadjusted.The variables are further subjected to a test for stationarity, which reveals that they are all I(1)(See Table B1 <strong>in</strong> Appendix B). The study, however, proceeds with estimation <strong>of</strong> the SVAR <strong>in</strong>levels consistent with standard practice anchored on the canonical paper <strong>of</strong> Sims, Stock andWatson (1990). The Sims, Stock and Watson paper demonstrates <strong>in</strong> part that the commonpractice <strong>of</strong> attempt<strong>in</strong>g to transform models to stationary form by difference or co<strong>in</strong>tegrationoperators whenever it appears likely that the data are <strong>in</strong>tegrated is unnecessary because statistics<strong>of</strong> <strong>in</strong>terest <strong>of</strong>ten have distributions that are unaffected by nonstationarity, which suggests thathypotheses can be tested without first transform<strong>in</strong>g to stationary regressors. The issue, accord<strong>in</strong>gto the study, is not whether the data are <strong>in</strong>tegrated, but rather whether the estimated coefficientsor test statistics <strong>of</strong> <strong>in</strong>terest have a distribution which is nonstandard if <strong>in</strong> fact the regressors are<strong>in</strong>tegrated.The Sims, Stock and Watson (1990) f<strong>in</strong>d<strong>in</strong>gs have been generally accepted and widely adopted<strong>in</strong> the structural VAR literature. In a study <strong>of</strong> the German Bundesbank, Bernanke and Mihov(1997, p. 1037) ma<strong>in</strong>ta<strong>in</strong> that „we <strong>in</strong>clude the output, price, and reserves measures <strong>in</strong> levelsdespite their nonstationarity, as has become standard practice <strong>in</strong> VAR studies.‟ They furtherpo<strong>in</strong>t out that the levels specification yields consistent estimates whether co<strong>in</strong>tegration exists ornot, whereas a differences specification is <strong>in</strong>consistent if some variables are co<strong>in</strong>tegrated. Thepreference <strong>of</strong> VARs <strong>in</strong> levels, accord<strong>in</strong>g to Kim and Roub<strong>in</strong>i (2000) and Becklelmans (2005),can be expla<strong>in</strong>ed, at least <strong>in</strong> part, by a reluctance to impose possibly <strong>in</strong>correct restrictions on themodel. Kim and Roub<strong>in</strong>i stress that if false restrictions are imposed, the result<strong>in</strong>g <strong>in</strong>ferenceswould be <strong>in</strong>correct as well. Other studies that have followed this approach <strong>of</strong> estimat<strong>in</strong>gstructural VARs <strong>in</strong> levels even when the variables are I(1) <strong>in</strong>clude Piffanelli (2001), Dungey andPagan (2000), Kim (1999), Brischetto and Voss (1999), Bernanke and Mihov (1998),Ramaswamy and Sloek (1998), and Sims (1992), among many others.Some studies, however, have opted to transform non-stationary data prior to estimat<strong>in</strong>g structuralVARs. A common element <strong>in</strong> a large number <strong>of</strong> these studies is the focus on prevalentrelationships <strong>in</strong> the variables <strong>of</strong> <strong>in</strong>terest beyond the short run. A standard approach <strong>in</strong> this case isto explicitly model I(1) variables and co-<strong>in</strong>tegrat<strong>in</strong>g relationships present <strong>in</strong> the data by impos<strong>in</strong>gco<strong>in</strong>tegrat<strong>in</strong>g restrictions on a VAR <strong>in</strong> levels. Rationalis<strong>in</strong>g the approach, Haug et al (2005)argue that for the long run, a vector error correction model (VECM) estimation produces moreprecise and efficient parameter estimates than a VAR <strong>in</strong> levels. Haug et al nonetheless concedethat for the short run, the VAR parameters are estimated consistently by least-squares if the VARis estimated <strong>in</strong> levels without impos<strong>in</strong>g co-<strong>in</strong>tegrat<strong>in</strong>g restrictions present <strong>in</strong> the data. Davidson(1998) and Johansen (1988) further add that when supplemented with co<strong>in</strong>tegration analysis, theVAR technique allows for a rigorous modell<strong>in</strong>g <strong>of</strong> the long-run relationship <strong>of</strong> non-stationaryvariables. Among many others, some studies that have used co<strong>in</strong>tegration analysis to identify12 | P a g e


long-run relationships <strong>in</strong> a l<strong>in</strong>ear co<strong>in</strong>tegrat<strong>in</strong>g model with I(1) variables <strong>in</strong>clude Garratt et al(2003), Ehrmann (1998), Lutkepohl and Wolters (1998) and K<strong>in</strong>g et al (1991).While the debate on whether to transform models to stationary form by difference orco<strong>in</strong>tegration operators when deal<strong>in</strong>g with I(1) variables appears to lean towards the Sims, Stockand Watson (1990) conclusion, there are other authors that appeal to the traditional approach <strong>of</strong>transform<strong>in</strong>g the data to stationary regressors prior to estimation regardless <strong>of</strong> whether the po<strong>in</strong>t<strong>of</strong> focus is long run or short run relationships (see, for example, Enders (2004)). To illustrate thatresults obta<strong>in</strong>ed from the two methodologies are not diametrically opposite to each other, we alsoestimate the composite model us<strong>in</strong>g a co<strong>in</strong>tegrated SVAR (see Appendix B for details).Appendix B demonstrates that while there may be some differences, as expected, estimationresults from the co<strong>in</strong>tegrated SVAR are on the whole similar to what we obta<strong>in</strong> from estimation<strong>in</strong> levels.Malawi had credit ceil<strong>in</strong>gs until 1988, <strong>in</strong>terest rate controls until 1990 and a fixed exchange ratepeg until 1994. Accord<strong>in</strong>gly, free movement <strong>of</strong> monetary variables was not allowed for until <strong>in</strong>the mid 1990s (See Figures 3.1-3.6). While the monetary authorities have targeted reserve moneyas a way <strong>of</strong> <strong>in</strong>fluenc<strong>in</strong>g M2, the two variables do not appear to move together (see Figure 3.1).There is some close correlation, though, between M2 on the one hand and commercial banklend<strong>in</strong>g (see Figure 3.2) and GDP (see Figure 3.3), on the other. There appears to be no obviousrelationship between movements <strong>in</strong> the exchange rate and the bank rate (see Figure 3.4). Theexchange rate and CPI show very high correlation (see Figure 3.5) while the bank rate andcommercial bank lend<strong>in</strong>g display an <strong>in</strong>verse relationship (see Figure 3.6).4.0. ESTIMATES AND INFERENCES4.1. Generic ModelInvestigation <strong>of</strong> the monetary transmission process commences with a simple four variablegeneric model. The vector <strong>of</strong> endogenous variables <strong>in</strong>cluded <strong>in</strong> the model is presented <strong>in</strong>equation (4.1):Follow<strong>in</strong>g the identification scheme <strong>in</strong> system <strong>of</strong> equations (3.6), the equation separat<strong>in</strong>gstructural economic shocks from the estimated reduced form residuals for the generic model ispresented as:(4.1)(4.2)13 | P a g e


Selection <strong>of</strong> the optimal lag length is guided by established criteria 1 . Akaike and Hannan-Qu<strong>in</strong>nInformation Criteria (AIC and HIC, respectively) suggest a lag length <strong>of</strong> order 42 whileSchwartz Information Criterion (SIC) suggests a lag length <strong>of</strong> order two. The problem with theformer is that it uses up all degrees <strong>of</strong> freedom and renders the estimated VAR unstable with 83<strong>in</strong>verse roots <strong>of</strong> the characteristic autoregressive (AR) polynomial ly<strong>in</strong>g outside the unit circle.The latter, on the other hand, performs well <strong>in</strong> a robustness check and it is adopted. At thechosen lag length (<strong>of</strong> order two), all the eight <strong>in</strong>verse roots <strong>of</strong> the characteristic AR polynomialhave modulus less than one and lie <strong>in</strong>side the unit circle, <strong>in</strong>dicat<strong>in</strong>g that the estimated VAR isstationary or stable (see Table C1 <strong>in</strong> Appendix C). A VAR lag exclusion Wald test also revealsthat all endogenous variables <strong>in</strong> the model are jo<strong>in</strong>tly significant at each lag length for allequations collectively. Separately, all equations are significant at lag length <strong>of</strong> order one while atlag length <strong>of</strong> order two, only consumer price and output equations are <strong>in</strong>significant (see Table C2<strong>in</strong> Appendix C). S<strong>in</strong>ce the SIC imposes a harsher penalty for add<strong>in</strong>g more regressors than AIC,the criterion is deemed more appropriate for determ<strong>in</strong><strong>in</strong>g lag length <strong>in</strong> a VAR.Departures from established criteria for the determ<strong>in</strong>ation <strong>of</strong> optimal lag length are notuncommon <strong>in</strong> the literature. Piffanelli (2001) argued that 12 lags are appropriate with monthlydata to avoid seasonality problems. She, however, <strong>in</strong>cluded six lags <strong>in</strong> a study <strong>of</strong> Germanywithout rationalisation. Becklelmans (2005) used a lag length <strong>of</strong> order three <strong>in</strong> a study <strong>of</strong>Australia „because it provides reasonable dynamics without shorten<strong>in</strong>g the estimation sample toomuch.‟ Vonnak (2005) used three lags <strong>in</strong> a study <strong>of</strong> Hungary „because they were enough toproduce uncorrelated residuals, based on the evidence <strong>of</strong> the multivariate-LM test.‟ Us<strong>in</strong>gquarterly data <strong>in</strong> a study <strong>of</strong> Thailand, Disyatat and Vongs<strong>in</strong>sirikul (2003) settled for two lagswhile the optimal lag length under various criteria appeared to be one because they felt onequarter is too short a period to capture the dynamics <strong>of</strong> a system. This study, however, f<strong>in</strong>ds tojustification to depart from the established criteria.Before mak<strong>in</strong>g <strong>in</strong>ferences on the structural shocks <strong>in</strong> the model, we analyse correlations betweenmovements <strong>in</strong> the bank rate and reserve money and their correspond<strong>in</strong>g recovered structuralshocks to ascerta<strong>in</strong> if the monetary policy shocks are reasonable. Figures 4.1 and 4.2 presentplots <strong>of</strong> recovered bank rate and reserve money structural <strong>in</strong>novations aga<strong>in</strong>st month-on-monthgrowth rates <strong>of</strong> the bank rate and the logarithm <strong>of</strong> reserve money, respectively, with therecovered structural shocks plotted on the primary vertical axis and the monetary policyoperat<strong>in</strong>g targets on the secondary vertical axis. Positive structural <strong>in</strong>novations <strong>of</strong> the bank rateand negative structural <strong>in</strong>novations <strong>of</strong> reserve money are associated with monetary policytighten<strong>in</strong>g while negative structural <strong>in</strong>novations <strong>of</strong> the bank rate and positive structural<strong>in</strong>novations <strong>of</strong> reserve money are associated with monetary policy loosen<strong>in</strong>g.The charts reveal that there is some correlation <strong>in</strong> the movements <strong>of</strong> the monetary policyoperat<strong>in</strong>g targets and their respective recovered <strong>in</strong>novations. The correlations are, however, morepronounced between the bank rate and its recovered structural shocks compared to reservemoney and its recovered structural shocks. Reliability <strong>of</strong> the structural shocks is also ascerta<strong>in</strong>edby assess<strong>in</strong>g the efficiency <strong>of</strong> the structural coefficients estimated <strong>in</strong> the SVAR. Table C3 <strong>in</strong>1 This approach is applied <strong>in</strong> all subsequent models.15 | P a g e


Percent(RM-Innovations)Percent (BR-Innovations)Appendix C shows that all structural estimates <strong>of</strong> the coefficients <strong>in</strong> matrices A and B <strong>of</strong> thegeneric model have standard errors that are less than one, imply<strong>in</strong>g that the coefficients areefficient. Accord<strong>in</strong>gly, the measured structural shocks can be relied upon as be<strong>in</strong>g a truereflection <strong>of</strong> reality.Figure 4.1: Bank Rate Movements and Related Recovered Structural Innovations15.010.05.00.0-5.0-10.0-15.0BR-Innovations1988:3 1989:12 1991:9 1993:6 1995:3 1996:12 1998:9 2000:6 2002:3 2003:12 2005:920.010.00.0-10.0Log(BR)Figure 4.2: Reserve Money Movements and Related Recovered Structural Innovations10.50.19.58.5-0.17.5RM-Innovations6.5Log(RM)-0.35.51988:6 1990:12 1993:6 1995:12 1998:6 2000:12 2003:6 2005:12PercentageLog(RM)Next we analyse the response <strong>of</strong> the central bank to shocks <strong>in</strong> the policy goals. Figure 4.3presents impulse responses <strong>of</strong> the bank rate and reserve money to structural one standarddeviation <strong>in</strong>novations <strong>in</strong> output and consumer prices over a five-year horizon. Impulse responses<strong>of</strong> output and consumer prices to own shocks are also presented <strong>in</strong> the same figure. The timescale measured on the primary horizontal axis is <strong>in</strong> months and the dashed l<strong>in</strong>es are analyticconfidence <strong>in</strong>tervals obta<strong>in</strong>ed from variance-covariance matrices after the f<strong>in</strong>al iteration. Anoutput shock correspond<strong>in</strong>g to an unanticipated 11 percent <strong>in</strong>crease <strong>in</strong> output and a supply shockequivalent to an unexpected 2.2 percent rise <strong>in</strong> consumer prices trigger significant responses bythe central bank, illustrat<strong>in</strong>g that monetary authorities <strong>in</strong> Malawi are concerned with both<strong>in</strong>flation and economic growth <strong>in</strong> l<strong>in</strong>e with the RBM Act <strong>of</strong> 1989. The bank responds to theoutput shock by loosen<strong>in</strong>g monetary policy through a decrease <strong>in</strong> the bank rate to further buoythe output growth. In response to the supply shock, monetary policy is tightened by rais<strong>in</strong>g thebank rate to arrest the <strong>in</strong>crease <strong>in</strong> the consumer prices. The central bank‟s response with regardto reserve money, however, is surpris<strong>in</strong>g. Follow<strong>in</strong>g the sudden <strong>in</strong>crease <strong>in</strong> output, reservemoney decl<strong>in</strong>es while the unexpected rise <strong>in</strong> consumer prices triggers an <strong>in</strong>crease <strong>in</strong> reservemoney.16 | P a g e


FIGURE 4.3: Impulse Responses <strong>of</strong> Bank Rate and Reserve Money: The Generic ModelResponse <strong>of</strong> BR to GYResponse <strong>of</strong> BR to CPResponse <strong>of</strong> GY to GY33.1222.0811.0400.00-1-1-.04-210 20 30 40 50 60-210 20 30 40 50 60-.0810 20 30 40 50 60Response <strong>of</strong> RM to GYResponse <strong>of</strong> RM to CPResponse <strong>of</strong> CP to CP.12.12.06.08.08.04.04.04.02.00.00.00-.02-.04-.04-.04-.0810 20 30 40 50 60-.0810 20 30 40 50 60-.0610 20 30 40 50 60To analyse how monetary policy goals are affected by shocks to the operat<strong>in</strong>g targets, we plotimpulse responses <strong>of</strong> output and consumer prices to structural one standard deviation shocks <strong>in</strong>the bank rate and reserve money. Figure 4.4 reveals that a monetary policy shock correspond<strong>in</strong>gto an unanticipated <strong>in</strong>crease <strong>in</strong> the bank rate <strong>of</strong> about 2.2 percent leads to a decl<strong>in</strong>e <strong>in</strong> output,which bottoms after 5 months at 1.4 percent below basel<strong>in</strong>e. The price level, however, respondsto the monetary tighten<strong>in</strong>g with an <strong>in</strong>crease, <strong>in</strong>significant though, which is ma<strong>in</strong>ta<strong>in</strong>ed even afterfive years. This f<strong>in</strong>d<strong>in</strong>g, referred to as the „price puzzle,‟ is common <strong>in</strong> the literature. Some <strong>of</strong> thestudies that have reported the puzzle <strong>in</strong>clude Weitong (2007), Kugler et. al. (2004), Disyatat andVongs<strong>in</strong>sirikul (2003), Piffanelli (2001), Mihira and Sugihara (2000), Clarida and Gertler(1996), Bernanke and Mihov (1996) and Sims (1992).Several explanations to the price puzzle have been suggested. Disyatat and Vongs<strong>in</strong>sirikul(2003) argue that the failure to <strong>in</strong>clude a rich enough specification <strong>of</strong> the <strong>in</strong>formation available topolicy makers is what causes the puzzle to show up. They ma<strong>in</strong>ta<strong>in</strong> that if policy makers are ableto observe variables that conta<strong>in</strong> useful <strong>in</strong>formation about future prices, but those variables areleft out <strong>of</strong> the model, a monetary tighten<strong>in</strong>g may be associated with higher prices because theypartly reflect systematic policy responses to <strong>in</strong>formation <strong>in</strong>dicat<strong>in</strong>g that <strong>in</strong>flation is on the way.Empirical evidence, however, does not support the Disyatat-Vongs<strong>in</strong>sirikul hypothesis. In astudy <strong>of</strong> Germany, Sims (1992) added a number <strong>of</strong> variables, <strong>in</strong>clud<strong>in</strong>g commodity prices andexchange rates <strong>in</strong> his system <strong>of</strong> equations to control for unanticipated future <strong>in</strong>flation after he hadencountered the price puzzle. However, the perverse price response persisted. Piffanelli (2001)argues that the price puzzle may occur if an <strong>in</strong>correct operat<strong>in</strong>g target is used <strong>in</strong> the analysis. Inher study <strong>of</strong> Germany, the price puzzle appears when the call rate is used and it disappears whenthe Lombard rate is used. A similar f<strong>in</strong>d<strong>in</strong>g is reported by Bernanke and Mihov (1996).17 | P a g e


Figure 4.4 also shows that an expansionary monetary shock equivalent to a 7.6 percent sudden<strong>in</strong>crease <strong>in</strong> reserve money causes an <strong>in</strong>crease <strong>in</strong> output, peak<strong>in</strong>g at 1.4 percent above basel<strong>in</strong>eafter 15 months. The price puzzle, however, disappears with reserve money as an operat<strong>in</strong>gtarget. Consumer prices respond to the unexpected <strong>in</strong>crease <strong>in</strong> reserve money with an <strong>in</strong>creasewhich peaks at 0.4 percent above basel<strong>in</strong>e after 10 months. Overall, shocks to either <strong>of</strong> themonetary policy operat<strong>in</strong>g targets attract significant output responses and <strong>in</strong>significant consumerprice responses, suggest<strong>in</strong>g that monetary factors may not be primary determ<strong>in</strong>ants <strong>of</strong> <strong>in</strong>flation <strong>in</strong>Malawi. This f<strong>in</strong>d<strong>in</strong>g is supported by the preponderant weight <strong>of</strong> food costs (58.1 percent) <strong>in</strong> therepresentative basket <strong>of</strong> commodities used for measur<strong>in</strong>g national consumer price <strong>in</strong>dices, which<strong>in</strong>dicates that structural rigidities <strong>in</strong> food production may be more a important cause <strong>of</strong> <strong>in</strong>flationthan monetary variables.FIGURE 4.4: Impulse Responses <strong>of</strong> Output and Consumer Prices: The Generic ModelResponse <strong>of</strong> GY to BRResponse <strong>of</strong> GY to RMResponse <strong>of</strong> BR to BR.12.123.08.082.04.041.00.000-.04-.04-1-.0810 20 30 40 50 60-.0810 20 30 40 50 60-210 20 30 40 50 60Response <strong>of</strong> CP to BRResponse <strong>of</strong> CP to RMResponse <strong>of</strong> RM to RM.06.06.12.04.04.08.02.00.02.00.04-.02-.02.00-.04-.04-.04-.0610 20 30 40 50 60-.0610 20 30 40 50 60-.0810 20 30 40 50 60To determ<strong>in</strong>e the relative importance <strong>of</strong> each structural <strong>in</strong>novation <strong>in</strong> expla<strong>in</strong><strong>in</strong>g fluctuations <strong>of</strong>the variables <strong>in</strong> the generic model, Table 4.1 presents variance decompositions for each variable<strong>in</strong> the model over a five-year forecast horizon. Given the two policy goals, fluctuations <strong>in</strong> boththe bank rate and reserve money are dom<strong>in</strong>ated by consumer prices, connot<strong>in</strong>g that the pr<strong>in</strong>cipalobjective <strong>of</strong> monetary policy <strong>in</strong> the country is price stability. While shocks to consumer pricesaccount for 13.1 percent <strong>of</strong> the bank rate fluctuations after 6 months, 18.6 percent after a yearand 21.9 percent after 2 years, output shocks account for 8.2 percent <strong>of</strong> the bank rate fluctuationsafter 6 months, 14.7 percent after a year and 17.4 percent after 2 years. <strong>Shocks</strong> to consumerprices also account for 3.4 percent <strong>of</strong> the reserve money fluctuations after 6 months, 10.7 percentafter a year and 25.5 percent after 2 years while shocks to output account for 4.8 percent <strong>of</strong> thereserve money fluctuations after 6 month, 9.8 percent after a year and 16.3 percent after twoyears.18 | P a g e


TABLE 4.1: Variance Decomposition for the Generic ModelVariance Decomposition <strong>of</strong> GYMonth GY CP BR RM1 100 0 0 06 92.3109 2.26977 4.85201 0.5672812 76.8961 11.7495 7.83193 3.5224824 55.1723 30.9392 5.84306 8.0454536 45.2397 42.9679 4.38645 7.4059848 40.2602 49.4123 4.79446 5.5330560 37.3931 52.581 5.96782 4.0581Variance Decomposition <strong>of</strong> CPMonth GY CP BR RM1 0.00429 99.9957 0 06 8.83843 89.5588 0.70214 0.9006512 17.2802 79.9114 1.4836 1.3247224 23.9426 71.2309 3.73211 1.0944536 26.3566 67.0872 5.87991 0.6763348 27.408 64.4648 7.65085 0.4763560 27.9006 62.5823 9.06388 0.45322Variance Decomposition <strong>of</strong> BRMonth GY CP BR RM1 0 0 100 06 8.22009 13.0522 76.6691 2.0586212 14.6781 18.6407 60.9944 5.686724 17.4205 21.865 50.6677 10.046836 17.7836 22.7513 47.3985 12.066648 17.8461 23.0723 46.0195 13.062260 17.8509 23.1937 45.3665 13.5889Variance Decomposition <strong>of</strong> RMMonth GY CP BR RM1 0 0 0.62107 99.37896 4.82833 3.42472 0.25099 91.49612 9.83185 10.6703 0.17049 79.327324 16.3189 25.4689 0.50491 57.707436 20.3133 36.1984 1.78088 41.707448 22.8209 42.7248 3.50981 30.944560 24.3806 46.4778 5.22628 23.915419 | P a g e


Table 4.1 also reveals that the difference <strong>in</strong> the proportion <strong>of</strong> fluctuations <strong>in</strong> output attributedseparately to the bank rate and reserve money is not pronounced. The bank rate, however,accounts for a notably larger proportion <strong>of</strong> the fluctuations <strong>in</strong> consumer prices than reservemoney. On the whole, the prelim<strong>in</strong>ary <strong>in</strong>dication is that the bank rate is a more effective tool <strong>of</strong>monetary policy than reserve money. While bank rate shocks account for 4.8 percent <strong>of</strong> thefluctuations <strong>in</strong> output after 6 months, 7.8 percent after a year, 5.8 percent after 2 years and 6percent after five years, reserve money shocks account for 0.6 percent <strong>of</strong> the output fluctuationsafter 6 months, 3.5 percent after a year, 8 percent after 2 years and 4.1 percent after five years.This shows that <strong>in</strong>terest rate shocks account for a larger proportion <strong>of</strong> the fluctuations <strong>in</strong> outputup to a year and, thereafter, reserve money shocks are attributed for most <strong>of</strong> the variations <strong>in</strong>output. Reserve money shocks account for only 0.9 percent <strong>of</strong> the fluctuations <strong>in</strong> consumerprices after 6 months, 1.1 percent after two years and 0.5 percent after 4 years while bank rateshocks account for 0.7 percent <strong>of</strong> the fluctuations <strong>in</strong> consumer prices after 6 months, 3.7 percentafter 2 years and 7.7 percent after 4 years, illustrat<strong>in</strong>g that the bank rate accounts for most <strong>of</strong> theconsumer price variations given the two operat<strong>in</strong>g targets.4.2. Channels <strong>of</strong> <strong>Monetary</strong> TransmissionIn order to unfold the monetary transmission process, analysis moves away from the genericmodel to exam<strong>in</strong>ation <strong>of</strong> more specific transmission channels. Three channels are considered,viz., bank lend<strong>in</strong>g, exchange rates and money effect, with particular attention to measur<strong>in</strong>g theimportance <strong>of</strong> each channel <strong>in</strong> the transmission process.4.2.1. Bank Lend<strong>in</strong>g ModelThe bank lend<strong>in</strong>g model is a component <strong>of</strong> the credit channel <strong>of</strong> monetary transmission. Theunderly<strong>in</strong>g argument <strong>in</strong> the credit channel is that asymmetric <strong>in</strong>formation and costly enforcement<strong>of</strong> contracts create agency problems <strong>in</strong> f<strong>in</strong>ancial markets (Bernanke & Gertler, 1995). Twomechanisms expla<strong>in</strong> this process: balance sheet and bank lend<strong>in</strong>g. The balance sheet modeloperates through the net worth <strong>of</strong> bus<strong>in</strong>ess firms (Mishk<strong>in</strong>, 1995) and transmission occurs eitherthrough equity prices or <strong>in</strong>terest rates and firms‟ cash-flows. These affect the severity <strong>of</strong> adverseselection and moral hazard problems, which <strong>in</strong> turn impact on lend<strong>in</strong>g, <strong>in</strong>vestment and output.Ow<strong>in</strong>g to data constra<strong>in</strong>ts, the balance sheet channel is not pursued further <strong>in</strong> this study.The bank lend<strong>in</strong>g model, on the other hand, operates through quantity rather than price <strong>of</strong> credit.A monetary policy shock is assumed to be transmitted through changes <strong>in</strong> bank reserves, the totalamount <strong>of</strong> available bank credit, and bank lend<strong>in</strong>g. The channel presumes that firms fac<strong>in</strong>g<strong>in</strong>formational frictions <strong>in</strong> f<strong>in</strong>ancial markets rely on bank loans for external f<strong>in</strong>ance because it isprohibitively expensive for them to issue securities <strong>in</strong> the open market (Disyatat &Vongs<strong>in</strong>sirikul, 2003). A decl<strong>in</strong>e <strong>in</strong> available bank credit, therefore, adversely affects<strong>in</strong>vestments and output. Append<strong>in</strong>g commercial bank loans to equation (4.1) transforms thegeneric model to a bank lend<strong>in</strong>g model and the correspond<strong>in</strong>g vector <strong>of</strong> endogenous variablesbecomes:20 | P a g e(4.3)


The SVAR under <strong>in</strong>vestigation <strong>in</strong> equation (4.3) comprises five variables, which <strong>in</strong>clude output,consumer prices, bank loans, bank rate and reserve money. In l<strong>in</strong>e with the identification scheme<strong>in</strong> system <strong>of</strong> equations (3.6), the bank lend<strong>in</strong>g model is identified accord<strong>in</strong>g to the follow<strong>in</strong>gscheme:(4.4)Figure 4.5 presents impulse responses <strong>of</strong> output, consumer prices and bank loans to <strong>in</strong>novations<strong>in</strong> the bank rate, reserve money and bank lend<strong>in</strong>g. The figure shows that a bank rate shockequivalent to an unanticipated <strong>in</strong>crease <strong>in</strong> the bank rate <strong>of</strong> about 2.2 percent causes bank lend<strong>in</strong>gto decl<strong>in</strong>e, bottom<strong>in</strong>g at 2 percent below basel<strong>in</strong>e after 18 months. This response is significantbetween 6 and 24 months. A reserve money shock, on the other hand, correspond<strong>in</strong>g to a 7.2percent sudden <strong>in</strong>crease <strong>in</strong> reserve money leads to an <strong>in</strong>crease <strong>in</strong> bank loans, peak<strong>in</strong>g at 1.5percent above basel<strong>in</strong>e after 3 years. This response, however, is not significant. An unexpected5.5 percent rise <strong>in</strong> bank loans, on the other hand, leads to an <strong>in</strong>crease <strong>in</strong> both output andconsumer prices.FIGURE 4.5: Impulse Responses for the Bank Lend<strong>in</strong>g ModelResponse <strong>of</strong> BL to BLResponse <strong>of</strong> BL to BRResponse <strong>of</strong> BL to RM.08.08.08.04.04.04.00.00.00-.04-.04-.04-.0810 20 30 40 50 60-.0810 20 30 40 50 60-.0810 20 30 40 50 60Response <strong>of</strong> GY to BLResponse <strong>of</strong> CP to BLResponse <strong>of</strong> BL to CP.06.08.12.04.04.08.04.02.00.00.00-.02-.04-.0410 20 30 40 50 60-.0410 20 30 40 50 60-.0810 20 30 40 50 6021 | P a g e


To determ<strong>in</strong>e the importance <strong>of</strong> the bank lend<strong>in</strong>g channel, impulse responses <strong>of</strong> consumer pricesand output to bank rate and reserve money shocks are plotted <strong>in</strong> each case with two scenarios:endogenous and exogenous bank lend<strong>in</strong>g. The case <strong>of</strong> exogenous bank lend<strong>in</strong>g blocks <strong>of</strong>fresponses that pass through bank loans while the case <strong>of</strong> endogenous bank loans allows banklend<strong>in</strong>g to transmit the monetary policy shocks. Figures 4.6 shows that <strong>in</strong> all the four <strong>in</strong>stances,there is a considerable difference <strong>in</strong> the size <strong>of</strong> impulse responses when bank lend<strong>in</strong>g isexogenous and when it is endogenous. This provides prelim<strong>in</strong>ary evidence that bank lend<strong>in</strong>gconta<strong>in</strong>s important additional <strong>in</strong>formation <strong>in</strong> the country‟s monetary transmission process. In l<strong>in</strong>ewith theoretical expectations, output decreases follow<strong>in</strong>g a sudden <strong>in</strong>crease <strong>in</strong> the bank rate and<strong>in</strong>creases follow<strong>in</strong>g an unexpected <strong>in</strong>crease <strong>in</strong> reserve money while consumer prices go up <strong>in</strong>response to an unanticipated <strong>in</strong>crease <strong>in</strong> reserve money. The response <strong>of</strong> consumer prices to anunexpected rise <strong>in</strong> the bank rate cont<strong>in</strong>ues to show the price puzzle, dissipat<strong>in</strong>g faster thoughwhen bank lend<strong>in</strong>g is endogenous.FIGURE 4.6: Response <strong>of</strong> Output and Consumer prices to Bank Rate and Reserve Money<strong>Shocks</strong> with Endogenous and Exogenous Bank Lend<strong>in</strong>g0.030.020.010.00-0.01-0.02-0.03Response <strong>of</strong> GY to BR-Shock1 7 13 19 25 31 37 43 49 550.020.020.010.010.00-0.01-0.01Response <strong>of</strong> GY to RM-Shock1 6 11 16 21 26 31 36 41 46 51 56BL-EndogenousBL-ExogenousBL-EndogenousBL-Exogenous0.030.030.020.020.010.010.00Response <strong>of</strong> CP to BR-Shock1 7 13 19 25 31 37 43 49 55BL-EndogenousBL-Exogenous0.0080.0060.0040.0020.000-0.002-0.004-0.006-0.008-0.010Response <strong>of</strong> CP to RM-Shock1 6 11 16 21 26 31 36 41 46 51 56BL-EndogenousBL-Exogenous22 | P a g e


4.2.2. Exchange Rate ModelTaylor (1995), Obstefield and Gertler (1995) and others have drawn attention to monetary policyoperat<strong>in</strong>g through exchange rates and net exports. <strong>Monetary</strong> policy can <strong>in</strong>fluence the exchangerate through <strong>in</strong>terest rates, direct <strong>in</strong>tervention <strong>in</strong> the foreign exchange market or <strong>in</strong>flationaryexpectations. The changes <strong>in</strong> the exchange rate, <strong>in</strong> turn, affect aggregate demand through the cost<strong>of</strong> imported goods, the cost <strong>of</strong> production and <strong>in</strong>vestment, <strong>in</strong>ternational competitiveness andfirms‟ balance sheets <strong>in</strong> the case <strong>of</strong> high-liability dollarisation (Dabla-Norris and Floerkemeier,2005). We <strong>in</strong>vestigate the channel by append<strong>in</strong>g the exchange rate variable , to the genericmodel. The vector <strong>of</strong> endogenous variables <strong>in</strong> the exchange rate model is, accord<strong>in</strong>gly, presentedas follows:The five variables <strong>in</strong> the model are output, consumer prices, exchange rates, bank rate andreserve money. In l<strong>in</strong>e with system <strong>of</strong> equations (3.6), the model is identified accord<strong>in</strong>g to thefollow<strong>in</strong>g scheme:(4.5)(4.6)Figure 4.7 presents impulse responses <strong>of</strong> exchange rates to own, bank rate and reserve moneyshocks and responses <strong>of</strong> output and consumer prices to <strong>in</strong>novations <strong>in</strong> exchange rates. Amonetary tighten<strong>in</strong>g correspond<strong>in</strong>g to an unexpected 2.2 percent <strong>in</strong>crease <strong>in</strong> the bank rate causesthe domestic currency to appreciate, mov<strong>in</strong>g 1.5 percent below basel<strong>in</strong>e after 3 years. Theresponse, however, is <strong>in</strong>significant. Contrary to theoretical expectations, the exchange rateresponds to a reserve money shock equivalent to a 7.6 percent sudden <strong>in</strong>crease <strong>in</strong> reserve moneywith an appreciation, mov<strong>in</strong>g 1 percent below basel<strong>in</strong>e after a year. This response is also<strong>in</strong>significant. An exchange rate shock equivalent to a depreciation <strong>of</strong> the domestic currency by5.5 percent, however, attracts significant responses <strong>in</strong> both consumer prices and output.Consumer prices rise, peak<strong>in</strong>g at 4 percent above basel<strong>in</strong>e after 3 years while output decl<strong>in</strong>es <strong>in</strong>the first 4 months and rises thereafter, peak<strong>in</strong>g at 4.3 percent above basel<strong>in</strong>e after 4 years.In spite <strong>of</strong> the weak responses <strong>of</strong> exchange rates to <strong>in</strong>novations <strong>in</strong> monetary policy operat<strong>in</strong>gtargets, Figure 4.8 demonstrates that impulse responses <strong>of</strong> output and consumer prices to bankrate and reserve money shocks are reasonably different when exchange rates are exogenous towhen they are endogenous, <strong>in</strong>dicat<strong>in</strong>g that <strong>in</strong>clusion <strong>of</strong> the exchange rate provides importantadditional <strong>in</strong>formation to the monetary transmission process.23 | P a g e


FIGURE 4.7: Impulse Responses for the Exchange Rate ModelResponse <strong>of</strong> XR to XRResponse <strong>of</strong> XR to BRResponse <strong>of</strong> XR to RM.08.08.08.04.04.04.00.00.00-.04-.04-.04-.0810 20 30 40 50 60-.0810 20 30 40 50 60-.0810 20 30 40 50 60Response <strong>of</strong> GY to XR.08Response <strong>of</strong> CP to XR.08Response <strong>of</strong> XR to CP.12.06.04.08.04.04.02.00.00.00-.02-.04-.0410 20 30 40 50 60-.0410 20 30 40 50 60-.0810 20 30 40 50 60FIGURE 4.8: Responses <strong>of</strong> Output and Consumer prices to Bank Rate and Reserve Money<strong>Shocks</strong> with Endogenous and Exogenous Exchange Rates0.010.00-0.01-0.02-0.03Response <strong>of</strong> GY to BR-Shock1 7 13 19 25 31 37 43 49 55XR-EndogenousXR-Exogenous0.020.020.010.010.00-0.01-0.01Response <strong>of</strong> GY to RM-Shock1 6 11 16 21 26 31 36 41 46 51 56XR-EndogenousXR-Exogenous0.010.010.00-0.01-0.01-0.02Response <strong>of</strong> CP to BR-Shock1 7 13 19 25 31 37 43 49 55XR-EndogenousXR-Exogenous0.0040.0020.000-0.002-0.004-0.006-0.008-0.010Response <strong>of</strong> CP to RM-Shock1 6 11 16 21 26 31 36 41 46 51 56XR-EndogenousXR-Exogenous24 | P a g e


4.2.3. The Money Effect ModelAn alternative channel <strong>of</strong> monetary transmission is the monetarist view. The channel downplaysthe role <strong>of</strong> <strong>in</strong>terest rates and liquid asset adjustment <strong>in</strong> the transmission mechanism, reduc<strong>in</strong>g theprocess to a direct l<strong>in</strong>k between changes <strong>in</strong> aggregate money supply and absorption (Bolnick,1991). Accord<strong>in</strong>g to this view, prices and output respond to monetary impulses becausehouseholds and bus<strong>in</strong>esses fail to anticipate or perceive correctly all <strong>of</strong> the future implications <strong>of</strong>past and current actions (Meltzer, 1995). These misperceptions occur primarily because <strong>of</strong> theexistence <strong>of</strong> a time lag between observ<strong>in</strong>g the impulses and be<strong>in</strong>g able to dist<strong>in</strong>guish betweenpermanent and transitory impulses and real and nom<strong>in</strong>al shocks. A monetary shock, therefore,br<strong>in</strong>gs a wedge between money supply and money demand, which triggers adjustments <strong>in</strong>portfolio hold<strong>in</strong>gs that <strong>in</strong> turn alter spend<strong>in</strong>g decisions. We use aggregate money supply (M2) asan <strong>in</strong>dicator <strong>of</strong> the money effect. Append<strong>in</strong>g to the generic model, the vector <strong>of</strong> endogenousvariables <strong>in</strong> the money effect model is presented as:where the five variables <strong>in</strong> the model are output, consumer prices, M2, bank rate and reservemoney. Follow<strong>in</strong>g the identification scheme <strong>in</strong> system <strong>of</strong> equations (3.6), the model is identifiedas:(4.7)(4.8)Figure 4.9 presents impulse responses <strong>of</strong> M2 to own, bank rate and reserve money shocks andresponses <strong>of</strong> output and consumer prices to M2 shocks. A monetary tighten<strong>in</strong>g equivalent to a2.2 percent unexpected <strong>in</strong>crease <strong>in</strong> the bank rate leads to a significant <strong>in</strong>crease <strong>in</strong> M2. A reservemoney shock correspond<strong>in</strong>g to a sudden 7.2 percent <strong>in</strong>crease <strong>in</strong> reserve money, however, triggersno response <strong>in</strong> M2. A possible explanation for this occurrence is the dom<strong>in</strong>ance <strong>of</strong> commercialbanks <strong>in</strong> the trad<strong>in</strong>g <strong>of</strong> government securities. A sudden change <strong>in</strong> reserve money aris<strong>in</strong>g fromOMO transactions changes bank reserves proportionately without significantly affect<strong>in</strong>gcurrency and, term and demand deposits, except for the <strong>in</strong>terest component <strong>in</strong> matur<strong>in</strong>gsecurities. Accord<strong>in</strong>gly, aggregate money supply is <strong>in</strong>significantly affected by the reserve moneyshock.Both output and consumer prices respond significantly to unexpected changes <strong>in</strong> M2. Anunanticipated 6.1 percent <strong>in</strong>crease <strong>in</strong> M2 is followed by a rise <strong>in</strong> output, which peaks at 2.4percent above basel<strong>in</strong>e after 10 months and is significant up to 2 years. Consumer prices respondto the monetary expansion with an <strong>in</strong>itial price <strong>in</strong>crease, peak<strong>in</strong>g at 0.6 percent above basel<strong>in</strong>eafter 8 months. The response is significant up to five months.25 | P a g e


Figure 4.9:Responses to Structural One Standard Deviation Innovations: The MoneyEffect ModelResponse <strong>of</strong> M2 to M2Response <strong>of</strong> M2 to BRResponse <strong>of</strong> M2 to RM.08.08.08.06.06.06.04.04.04.02.02.02.00.00.00-.02-.02-.02-.0410 20 30 40 50 60-.0410 20 30 40 50 60-.0410 20 30 40 50 60Response <strong>of</strong> GY to M2Response <strong>of</strong> CP to M2Response <strong>of</strong> M2 to CP.06.08.12.04.06.08.02.04.04.00.00-.02.02.00-.02-.0410 20 30 40 50 60-.0410 20 30 40 50 60-.0410 20 30 40 50 60To determ<strong>in</strong>e the importance <strong>of</strong> the money effect model, Figure 4.10 presents impulse responses<strong>of</strong> consumer prices and output to bank rate and reserve money shocks with two scenarios:endogenous and exogenous M2. The figure confirms that M2 conta<strong>in</strong>s important additional<strong>in</strong>formation <strong>in</strong> the monetary transmission process, which is more pronounced <strong>in</strong> the responses <strong>of</strong>output to bank rate shocks and consumer prices to reserve money shocks.FIGURE 4.10:Response <strong>of</strong> Output and Consumer prices to Bank Rate and ReserveMoney <strong>Shocks</strong> with Endogenous and Exogenous M20.030.020.010.00-0.01-0.02-0.03Response <strong>of</strong> GY to BR-Shock1 7 13 19 25 31 37 43 49 55M2-EndogenousM2-Exogenous0.010.000.000.000.000.000.000.00Response <strong>of</strong> GY to RM-Shock1 6 11 16 21 26 31 36 41 46 51 56M2-EndogenousM2-Exogenous0.030.030.020.020.010.010.00Response <strong>of</strong> CP to BR-Shock1 7 13 19 25 31 37 43 49 55M2-EndogenousM2-Exogenous0.0030.0020.0010.000-0.001-0.002Response <strong>of</strong> CP to RM-Shock1 6 11 16 21 26 31 36 41 46 51 56M2-EndogenousM2-Exogenous26 | P a g e


4.3. The Composite ModelPrelim<strong>in</strong>ary <strong>in</strong>dications from the preced<strong>in</strong>g section suggest that bank lend<strong>in</strong>g, exchange rate andmoney effect channels conta<strong>in</strong> important additional <strong>in</strong>formation for the country‟s monetarytransmission process. Putt<strong>in</strong>g everyth<strong>in</strong>g together, a composite model <strong>of</strong> monetary transmission<strong>in</strong> Malawi can be drawn with the follow<strong>in</strong>g vector <strong>of</strong> endogenous variables:which is identified accord<strong>in</strong>g to system <strong>of</strong> equations (3.6). Impulse responses for theconsolidated model over a five year period are presented <strong>in</strong> Figure D1 <strong>in</strong> Appendix D. The figureillustrates that bank lend<strong>in</strong>g and money effect are important channels <strong>of</strong> monetary transmission<strong>in</strong> Malawi but the transmission process is somewhat weak. Among the three <strong>in</strong>termediate policytargets, none responds significantly to reserve money shocks while only bank lend<strong>in</strong>g and M2respond significantly to bank rate shocks, although the M2 response is only marg<strong>in</strong>allysignificant. Bank lend<strong>in</strong>g responds to a 2.2 percent sudden <strong>in</strong>crease <strong>in</strong> the bank rate with adecl<strong>in</strong>e, bottom<strong>in</strong>g at 1.7 percent below basel<strong>in</strong>e after 2 years. The response is significantbetween 12 and 30 months. M2 responds to the shock with an <strong>in</strong>stantaneous decl<strong>in</strong>e <strong>of</strong> 0.8percent, before ris<strong>in</strong>g <strong>in</strong> the next 6 months and decl<strong>in</strong><strong>in</strong>g thereafter. The response is marg<strong>in</strong>allysignificant between 16 and 24 months.Output responds significantly to unexpected changes <strong>in</strong> both bank lend<strong>in</strong>g and M2. Anunanticipated 5.7 percent <strong>in</strong>crease <strong>in</strong> bank lend<strong>in</strong>g causes output to rise, peak<strong>in</strong>g at 1.3 percentabove basel<strong>in</strong>e after 15 months. A sudden 5.8 percent <strong>in</strong>crease <strong>in</strong> M2 also causes output to rise,peak<strong>in</strong>g at 1.6 percent above basel<strong>in</strong>e after 5 months. Consumer prices, however, respond<strong>in</strong>significantly to shocks emanat<strong>in</strong>g from both bank lend<strong>in</strong>g and M2, consistent with earlierf<strong>in</strong>d<strong>in</strong>gs.The money effect channel is strengthened by significant responses <strong>of</strong> M2 to bank lend<strong>in</strong>g andexchange rate shocks. In contrast, the exchange rate channel is not well established. Exchangerates respond <strong>in</strong>significantly to all monetary variables <strong>in</strong> the model but they prompt significantresponses <strong>in</strong> both output and consumer prices. Thus, while there is no evidence that they aredriven by monetary policy shocks, exchange rates are an important determ<strong>in</strong>ant <strong>of</strong> output andconsumer prices. On this basis, it is probable that exchange rates are exogenously determ<strong>in</strong>ed <strong>in</strong>the model. To ascerta<strong>in</strong> this claim, the composite model is re-estimated with the exchange ratetreated as an exogenous variable and similar results are obta<strong>in</strong>ed (see Figure D2 <strong>in</strong> Appendix D).Historical events suggest that f<strong>in</strong>ancial sector operations dur<strong>in</strong>g the pre-1994 period wereconsiderably different <strong>in</strong> comparison to the post-1994 period. The country had credit ceil<strong>in</strong>gsuntil 1988, direct <strong>in</strong>terest rate controls until May 1990 and a fixed exchange rate peg untilFebruary 1994. In the post-1994 period, numerous f<strong>in</strong>ancial <strong>in</strong>novations emerged, the number <strong>of</strong>commercial banks <strong>in</strong>creased considerably and the f<strong>in</strong>ancial sector become reasonablycompetitive. Cognisant that the impact <strong>of</strong> f<strong>in</strong>ancial sector operations on economic activity mayhave also changed <strong>in</strong> the post-1994 period, the composite model (with endogenous exchange27 | P a g e(4.9)


ates) is re-estimated with the sample period truncated, start<strong>in</strong>g <strong>in</strong>stead from 1994:03. Thetruncation date is chosen to separate the periods <strong>of</strong> fixed exchange rate peg (pre-1994:03) andfloat<strong>in</strong>g exchange rates (post-1994:02). Impulse responses for the model with a truncated sampleare presented <strong>in</strong> Figure 4.11. While the patterns are broadly similar to the full sample patterns,there are notable differences as well.FIGURE 4.11: Impulse Responses – Composite Model with Truncated SampleResponse <strong>of</strong> GY to GYResponse <strong>of</strong> GY to CPResponse <strong>of</strong> GY to BLResponse <strong>of</strong> GY to XRResponse <strong>of</strong> GY to M2Response <strong>of</strong> GY to BRResponse <strong>of</strong> GY to RM.15.15.15.15.15.15.15.10.10.10.10.10.10.10.05.05.05.05.05.05.05.00.00.00.00.00.00.00-.05-.05-.05-.05-.05-.05-.0510 20 30 40 50 6010 20 30 40 50 6010 20 30 40 50 6010 20 30 40 50 6010 20 30 40 50 6010 20 30 40 50 6010 20 30 40 50 60Response <strong>of</strong> CP to GYResponse <strong>of</strong> CP to CPResponse <strong>of</strong> CP to BLResponse <strong>of</strong> CP to XRResponse <strong>of</strong> CP to M2Response <strong>of</strong> CP to BRResponse <strong>of</strong> CP to RM.04.04.04.04.04.04.04.02.02.02.02.02.02.02.00.00.00.00.00.00.00-.02-.02-.02-.02-.02-.02-.02-.04-.04-.04-.04-.04-.04-.0410 20 30 40 50 6010 20 30 40 50 6010 20 30 40 50 6010 20 30 40 50 6010 20 30 40 50 6010 20 30 40 50 6010 20 30 40 50 60Response <strong>of</strong> BL to GYResponse <strong>of</strong> BL to CPResponse <strong>of</strong> BL to BLResponse <strong>of</strong> BL to XRResponse <strong>of</strong> BL to M2Response <strong>of</strong> BL to BRResponse <strong>of</strong> BL to RM.08.08.08.08.08.08.08.04.04.04.04.04.04.04.00.00.00.00.00.00.00-.04-.04-.04-.04-.04-.04-.04-.08-.08-.08-.08-.08-.08-.0810 20 30 40 50 6010 20 30 40 50 6010 20 30 40 50 6010 20 30 40 50 6010 20 30 40 50 6010 20 30 40 50 6010 20 30 40 50 60Response <strong>of</strong> XR to GYResponse <strong>of</strong> XR to CPResponse <strong>of</strong> XR to BLResponse <strong>of</strong> XR to XRResponse <strong>of</strong> XR to M2Response <strong>of</strong> XR to BRResponse <strong>of</strong> XR to RM.08.08.08.08.08.08.08.04.04.04.04.04.04.04.00.00.00.00.00.00.00-.04-.04-.04-.04-.04-.04-.04-.08-.08-.08-.08-.08-.08-.0810 20 30 40 50 6010 20 30 40 50 6010 20 30 40 50 6010 20 30 40 50 6010 20 30 40 50 6010 20 30 40 50 6010 20 30 40 50 60Response <strong>of</strong> M2 to GYResponse <strong>of</strong> M2 to CPResponse <strong>of</strong> M2 to BLResponse <strong>of</strong> M2 to XRResponse <strong>of</strong> M2 to M2Response <strong>of</strong> M2 to BRResponse <strong>of</strong> M2 to RM.08.08.08.08.08.08.08.04.04.04.04.04.04.04.00.00.00.00.00.00.00-.04-.04-.04-.04-.04-.04-.0410 20 30 40 50 6010 20 30 40 50 6010 20 30 40 50 6010 20 30 40 50 6010 20 30 40 50 6010 20 30 40 50 6010 20 30 40 50 60Response <strong>of</strong> BR to GYResponse <strong>of</strong> BR to CPResponse <strong>of</strong> BR to BLResponse <strong>of</strong> BR to XRResponse <strong>of</strong> BR to M2Response <strong>of</strong> BR to BRResponse <strong>of</strong> BR to RM444444422222220000000-2-2-2-2-2-2-2-4-4-4-4-4-4-410 20 30 40 50 6010 20 30 40 50 6010 20 30 40 50 6010 20 30 40 50 6010 20 30 40 50 6010 20 30 40 50 6010 20 30 40 50 60Response <strong>of</strong> RM to GYResponse <strong>of</strong> RM to CPResponse <strong>of</strong> RM to BLResponse <strong>of</strong> RM to XRResponse <strong>of</strong> RM to M2Response <strong>of</strong> RM to BRResponse <strong>of</strong> RM to RM.1.1.1.1.1.1.1.0.0.0.0.0.0.0-.1-.1-.1-.1-.1-.1-.110 20 30 40 50 6010 20 30 40 50 6010 20 30 40 50 6010 20 30 40 50 6010 20 30 40 50 6010 20 30 40 50 6010 20 30 40 50 60First, the response <strong>of</strong> exchange rates to unexpected changes <strong>in</strong> the bank rate is significant <strong>in</strong> thetruncated sample. This is not surpris<strong>in</strong>g s<strong>in</strong>ce the exchange rate was flexible dur<strong>in</strong>g the entire28 | P a g e


post-1994 period, which allowed the Malawi Kwacha to respond freely to monetary variables.The response <strong>of</strong> output to exchange rate shocks, while still significant, is now less pronouncedcompared to the full sample. Thus, the impact <strong>of</strong> exchange rate shocks on policy goals is weaker<strong>in</strong> the truncated model although the exchange rate as a monetary policy transmission channel isnow apparent. Second, the significant response <strong>of</strong> M2 to bank rate shocks is more pronounced <strong>in</strong>the truncated sample. This underl<strong>in</strong>es the importance <strong>of</strong> monetary policy <strong>in</strong> the flexible exchangerate regime. Third, the significant output response to unexpected changes <strong>in</strong> bank lend<strong>in</strong>g is morepronounced <strong>in</strong> the truncated model, highlight<strong>in</strong>g the importance <strong>of</strong> bank lend<strong>in</strong>g as a standalonechannel <strong>of</strong> monetary transmission.To determ<strong>in</strong>e the proportion <strong>of</strong> fluctuations <strong>in</strong> a given variable that is caused by different shocks,variance decompositions <strong>of</strong> each variable <strong>in</strong> the composite model with a truncated sample arecomputed at forecast horizons <strong>of</strong> 1 to 5 years (see Table 4.2). The table shows that besides ownshocks, output fluctuations are largely attributed to M2 up to about a year, exchange rates atabout 2 years and bank lend<strong>in</strong>g from about 3 years and beyond. Collectively, bank lend<strong>in</strong>g,exchange rates and M2 account for 8.12 percent <strong>of</strong> the fluctuations <strong>in</strong> output after a year, 19.4percent after 2 years, 28 percent after three years and 36.9 percent after 5 years. Exclud<strong>in</strong>g ownshocks, variations <strong>in</strong> consumer prices are mostly accounted for by exchange rates up to about 3years and by bank lend<strong>in</strong>g thereafter. M2 accounts for less than 1 percent <strong>of</strong> the fluctuations <strong>in</strong>consumer prices across the forecast horizon, imply<strong>in</strong>g that shocks <strong>in</strong> aggregate money supply arenot responsible for <strong>in</strong>flation <strong>in</strong> Malawi. Consistent with earlier f<strong>in</strong>d<strong>in</strong>gs, consumer prices accountfor a larger proportion <strong>of</strong> the fluctuations <strong>in</strong> both bank rate and reserve money fluctuations, giventhe two policy goals, reconfirm<strong>in</strong>g that the primary goal <strong>of</strong> monetary policy <strong>in</strong> Malawi is pricestability, though the output goal is also pursued.4.4. Robustness CheckWhile all models are subjected to robustness checks, we report here results <strong>of</strong> the estimatedcomposite model from the truncated sample only. Structural estimates <strong>of</strong> the coefficients <strong>in</strong>matrices A and B <strong>of</strong> the model are presented <strong>in</strong> Table C4 <strong>of</strong> Appendix C. The table shows thatnearly all coefficients <strong>in</strong> the model have standard errors with values <strong>of</strong> less than one, imply<strong>in</strong>gthat they are efficient and hence form a solid basis for measur<strong>in</strong>g monetary policy shocks. Inaddition, 12 <strong>of</strong> the 17 structural coefficients have correct signs. Inverse roots <strong>of</strong> the characteristicAR polynomial for the determ<strong>in</strong>ation <strong>of</strong> stability (stationarity) <strong>of</strong> the model are reported <strong>in</strong> TableC5 <strong>of</strong> Appendix C. The table shows that all <strong>in</strong>verse roots <strong>of</strong> the characteristic AR polynomialhave modulus less than one and they lie <strong>in</strong>side the unit circle, <strong>in</strong>dicat<strong>in</strong>g that at the chosen laglength (<strong>of</strong> order three), the estimated model is stationary or stable. F<strong>in</strong>ally, serial correlation testresults reported <strong>in</strong> Table C6 <strong>of</strong> Appendix C show no evidence <strong>of</strong> serious serial correlation <strong>in</strong> themodel. Thus, the composite model with a truncated sample is robust and its <strong>in</strong>ferences can berelied upon.29 | P a g e


TABLE 4.2: Variance Decomposition – Composite Model with Truncated SampleResponse <strong>of</strong> GYMonth GY CP BL XR M2 BR RM1 100 0 0 0 0 0 06 88.9972 0.40382 0.01772 2.39005 4.9986 0.40715 2.7854912 78.4499 3.68215 0.05778 2.5118 5.55366 1.20002 8.5447224 59.7092 7.7282 4.33016 9.01098 6.05287 5.96018 7.2084736 47.5531 7.56146 12.5306 10.5965 5.46594 10.5178 5.7746548 40.6831 6.76495 18.4448 9.79906 5.58786 13.3136 5.4066760 35.8408 5.97162 21.9176 8.78839 6.14028 15.0565 6.28477Response <strong>of</strong> CPMonth GY CP BL XR M2 BR RM1 0.4792 99.5208 0 0 0 0 06 0.12692 78.5446 3.14765 15.6286 0.50971 1.46601 0.5765512 1.4681 51.49 7.17394 29.3745 0.17985 4.62699 5.686624 3.96805 29.8407 16.7095 28.74 0.10506 8.76834 11.868436 3.71715 24.468 23.9787 25.109 0.10531 11.3679 11.253948 3.26477 21.9025 28.5072 22.8361 0.37441 13.2559 9.8591660 2.97764 19.9325 31.0985 20.9767 0.97151 14.6828 9.36032Response <strong>of</strong> BLMonth GY CP BL XR M2 BR RM1 2.25829 0.19857 90.2722 0.01399 0.03068 0.09299 7.13336 5.52293 2.53294 80.576 1.51271 1.13583 0.84956 7.8700612 4.10393 1.78157 78.8282 2.4896 2.00075 5.57694 5.2190424 3.19664 1.44509 72.3613 1.79589 3.34287 10.8788 6.9794536 3.62075 1.64873 61.5861 1.62123 5.65369 12.488 13.381648 3.91385 1.78059 53.247 1.45903 7.60075 13.209 18.789860 4.03579 1.85327 47.5869 1.31464 8.99576 13.7526 22.4611Response <strong>of</strong> XRMonth GY CP BL XR M2 BR RM1 0.41431 14.0718 0 85.5139 0 0 06 4.96644 15.4216 6.55759 66.815 0.13971 0.89385 5.2057412 6.5994 12.2794 13.7981 51.0453 0.27603 3.86841 12.133324 6.18497 10.1437 22.9385 39.6472 0.31664 7.09144 13.677636 5.62408 9.50432 26.9406 36.2663 0.45737 8.68215 12.525248 5.29833 8.92229 28.815 33.9814 0.92018 9.88385 12.17960 5.07369 8.37084 29.7261 31.9085 1.56142 10.8526 12.506930 | P a g e


TABLE 4.2 (Cont.): Variance Decomposition – Composite Model with Truncated SampleResponse <strong>of</strong> M2Month GY CP BL XR M2 BR RM1 1.92636 0.28743 0 0.00352 95.4028 2.3799 06 0.6548 1.81596 7.52457 1.21604 81.1561 1.71303 5.9194812 1.19103 7.08723 14.4188 3.06702 60.4949 3.13342 10.607624 0.85575 6.11429 25.9479 6.9906 42.1039 10.7904 7.1971636 0.73459 4.81951 32.2545 6.07727 34.0857 15.022 7.0064748 0.93304 3.92695 34.1127 5.01824 29.888 16.9727 9.1483960 1.21924 3.33834 34.0998 4.20601 27.2372 17.9386 11.9608Response <strong>of</strong> BRMonth GY CP BL XR M2 BR RM1 0.00072 0.02431 0 0.14773 0 99.8273 06 0.16952 25.4735 0.62922 15.7219 7.20235 47.9679 2.8356512 1.80112 24.6725 2.04384 23.2621 6.99854 22.3638 18.858124 5.09523 17.5419 4.5163 20.9502 7.25953 11.4689 33.16836 5.39437 16.3351 4.95889 19.036 7.83212 9.84913 36.594448 5.42576 16.0741 4.86045 18.4364 8.1086 9.40063 37.69460 5.45687 15.9262 4.75147 18.1548 8.26378 9.21899 38.2279Response <strong>of</strong> RMMonth GY CP BL XR M2 BR RM1 1.19511 1.22385 20.7566 3.12052 11.4659 0.84125 61.39686 1.09737 1.12111 17.1994 1.78105 18.0151 0.76545 60.020512 1.06856 1.80043 14.4123 3.72633 18.6833 2.18612 58.12324 0.97493 2.30316 14.8494 7.21981 18.143 7.90619 48.603636 0.84538 2.10466 19.0743 6.91603 16.9618 11.9046 42.193248 0.89279 1.81678 22.1946 6.09373 16.2624 14.1667 38.57360 1.05659 1.59219 24.002 5.32603 15.8866 15.5339 36.60285.0. SUMMARY, CONCLUSION AND POLICY IMPLICATIONSThis study set out to <strong>in</strong>vestigate the process through which monetary policy affects consumerprices and output <strong>in</strong> Malawi. Us<strong>in</strong>g <strong>in</strong>novation account<strong>in</strong>g <strong>in</strong> a structural vector autoregressivemodel, it is established that contrary to the <strong>of</strong>ficial position that monetary policy <strong>in</strong> the countrytargets reserve money only, monetary authorities <strong>in</strong> Malawi also target short term <strong>in</strong>terest rates.Effectively, the country employs hybrid operat<strong>in</strong>g procedures and it is demonstrated that thebank rate is a more effective measure <strong>of</strong> monetary policy compared to reserve money. In l<strong>in</strong>ewith Part III, Section 4(d) <strong>of</strong> the RBM Act <strong>of</strong> 1989, it is also established that the monetary31 | P a g e


authorities pursue both price stability and high growth and employment objectives. It is furthershown that price stability is the pr<strong>in</strong>cipal objective <strong>of</strong> monetary policy <strong>in</strong> the country. With theexception <strong>of</strong> exchange rate shocks, however, consumer prices respond weakly to monetaryimpulses suggest<strong>in</strong>g that <strong>in</strong>flation <strong>in</strong> Malawi may not be predom<strong>in</strong>ated by monetary factors. Thefact that food costs have a preponderant weight (58.1 percent) <strong>in</strong> the all items national compositeconsumer price <strong>in</strong>dex reveals that structural rigidities <strong>in</strong> food production may be more importantdeterm<strong>in</strong>ants <strong>of</strong> <strong>in</strong>flation than monetary considerations.The study also illustrates that bank lend<strong>in</strong>g, exchange rates and aggregate money supply conta<strong>in</strong>important additional <strong>in</strong>formation <strong>in</strong> the transmission process <strong>of</strong> monetary policy shocks <strong>in</strong>Malawi. Besides own shocks, output fluctuations are largely attributed to M2 up to about a year,exchange rates at about 2 years and bank lend<strong>in</strong>g from about 3 years and beyond. Exclud<strong>in</strong>g ownshocks, variations <strong>in</strong> consumer prices are mostly accounted for by exchange rates up to about 3years and bank lend<strong>in</strong>g thereafter. M2 accounts for less than 1 percent <strong>of</strong> the consumer pricefluctuations across the five-year forecast horizon.Truncat<strong>in</strong>g the study period to <strong>in</strong>clude only the flexible exchange rate period (post-1994) revealsa number <strong>of</strong> <strong>in</strong>terest<strong>in</strong>g issues. First, the role <strong>of</strong> the exchange rate becomes more conspicuousalthough its impact on economic activity is weakened. Second, the importance <strong>of</strong> aggregatemoney supply and bank lend<strong>in</strong>g <strong>in</strong> transmitt<strong>in</strong>g monetary policy impulses is enhanced. It isconcluded, therefore, that with the floatation <strong>of</strong> the Malawi Kwacha <strong>in</strong> 1994, the monetarytransmission process evolved from a weak, blurred process to a somewhat strong, lessambiguous mechanism, consistent with theoretical expectations.Several policy issues emerge from the f<strong>in</strong>d<strong>in</strong>gs <strong>of</strong> this study. First, monetary authorities <strong>in</strong>Malawi need to consider mov<strong>in</strong>g away from us<strong>in</strong>g hybrid operat<strong>in</strong>g procedures to a scalar<strong>in</strong>dicator <strong>of</strong> policy. The recommendation is to abandon the use <strong>of</strong> reserve money as a measure <strong>of</strong>monetary policy <strong>in</strong> favour <strong>of</strong> the more effective bank rate. RBM may, nonetheless, reta<strong>in</strong> OMOas a vehicle for government borrow<strong>in</strong>g on the domestic market through TBs and sterilis<strong>in</strong>g theimpact <strong>of</strong> this undertak<strong>in</strong>g through RBM Bills.Second, the evidence that RBM also targets economic growth and employment objectivesbesides price stability suggests that the bank may be overloaded and hence unable to achieve itstargeted objectives due to <strong>in</strong>efficiencies aris<strong>in</strong>g from the multiple objectives. We suggest that thebank should narrow down its focus to concentrate on price stability and this should be reflected<strong>in</strong> the RBM Act which governs its operations. In the literature, there is near consensus that toachieve the maximum atta<strong>in</strong>able level <strong>of</strong> susta<strong>in</strong>able economic growth, the ma<strong>in</strong> objective <strong>of</strong>monetary policy should be price stability. Accord<strong>in</strong>gly, we do not expect the governmentobjective <strong>of</strong> promot<strong>in</strong>g economic growth and employment to be compromised with the centralbank‟s a focus on a s<strong>in</strong>gle objective, namely price stability.32 | P a g e


REFERENCESBanda, W. (2004). Exchange Rate Management Under <strong>Monetary</strong> Target<strong>in</strong>g. Dealers Association<strong>of</strong> Malawi lakeshore Conference (pp. 1-21). Mangochi: DEAMA.Becklelmans, L. (2005). Credit and <strong>Monetary</strong> <strong>Policy</strong>: An Australian SVAR. Reserve Bank <strong>of</strong>Australia Research Discussion Paper 2005-06 , 2005 (September), 1-29.Bernanke, B. (1986). Alternative Explanations <strong>of</strong> the Money-Income Correlation. NBERWork<strong>in</strong>g Paper Series (NBER Work<strong>in</strong>g Paper Number 1842), 1-62.Bernanke, B. (1996). What Does the Bundesbank Target? NBER Work<strong>in</strong>g Paper Series (WP5764), 1-42.Bernanke, B., & Gertler, M. (1995). Inside the Black Box: The Credit Channel <strong>of</strong> <strong>Monetary</strong><strong>Policy</strong> Transmission. Journal <strong>of</strong> Economic Perspectives , 9 (4), 27-48.Bernanke, B., & Mihov, I. (1995, May). Measur<strong>in</strong>g <strong>Monetary</strong> <strong>Policy</strong>. National Bureau <strong>of</strong>Economic Research Work<strong>in</strong>g Paper WP-97-7 .Bernanke, B., & Mihov, I. (1998). Measur<strong>in</strong>g <strong>Monetary</strong> <strong>Policy</strong>. The Quaterly Journal <strong>of</strong>Economics , 113 (3), 869-902.Bernanke, B., & Mihov, I. (1996). What Does the Bundesbank Target? NBER Work<strong>in</strong>g PaperSeries (Work<strong>in</strong>g Paper No. 5764), 1-42.Blundell-Wignall, A., & Gizycki, M. (1992). Credit Supply and DEmand and the AustralianEconomy. Reserve Bank <strong>of</strong> Australia Discussion Papers (Discussion paper No. 9208).Bolnick, B. (1991). Weak L<strong>in</strong>ks <strong>in</strong> the <strong>Monetary</strong> Transmission Mechanism: The Case <strong>of</strong> Malawi.ODI/HIID Conference on Improv<strong>in</strong>g <strong>Monetary</strong> policy <strong>in</strong> Africa and Asia (pp. 1-27). Harvard:ODI/HIID.Borys, M. M., & Horvath, R. (2007). The <strong>Effects</strong> <strong>of</strong> <strong>Monetary</strong> <strong>Policy</strong> <strong>in</strong> the Czech republic: AnEmpirical Study. CERGE-EI Work<strong>in</strong>g Paper Series (339), 1-26.Brischetto, A., & Voss, G. (1999). A Structural Vector Autoregression Model <strong>of</strong> <strong>Monetary</strong><strong>Policy</strong> <strong>in</strong> Australia. Reserve Bank <strong>of</strong> Australia Research Discussion Paper Series (Discussionpaper No. 1999-11).Cheng, K. C. (2006). A VAR Analysis <strong>of</strong> Kenya's <strong>Monetary</strong> <strong>Policy</strong> Transmission Mechanism:How Does the Central Bank's REPO Rate Affect the Economy? IMF Work<strong>in</strong>g Paper(WP/06/300), 1-26.Chipeta, C., & Mkandawire, M. (1991). The Informal F<strong>in</strong>ancial Sector and MacroeconomicAdjustment <strong>in</strong> Malawi. AERC Research paper Series (Research Paper 4), 1-58.Christiano, L., Eichenbaum, M., & Evans, C. (1998). <strong>Monetary</strong> <strong>Policy</strong> <strong>Shocks</strong>: What have weLearned and to What End? NBER Work<strong>in</strong>g Paper Series (Work<strong>in</strong>g Paper Number 6400), 1-77.Clarida, R., & Gertler, M. (1996). How the Bundesbank Conducts <strong>Monetary</strong> <strong>Policy</strong>. NBERWork<strong>in</strong>g Paper Series (Work<strong>in</strong>g Paper No. 5581), 1-50.33 | P a g e


Dabla-Norris, E., & Floerkemeier, H. (2006). Transmission Mechanisms <strong>of</strong> <strong>Monetary</strong> <strong>Policy</strong> <strong>in</strong>Armenia: Evidence from VAR Analysis. IMF Work<strong>in</strong>g Paper WP/06/248 , 1-26.Disyatat, P., & Vongs<strong>in</strong>sirikul, P. (2003). <strong>Monetary</strong> <strong>Policy</strong> and the Transmission Mechanism <strong>in</strong>Thailand. Journal <strong>of</strong> Asian Economies , 2003 (14), 389-418.Dungey, M., & Pagan, A. (2000). A Sructural VAR Model <strong>of</strong> the Australian Economy.Economic Record , 76 (235), 321-342.Enders, W. (2004). Applied Econometric Time Series. Hoboken: John Wiley & Sons, Inc.Favero, C. A. (2001). Applied Macroeconometrics. New York: Oxford University Press Inc.Gondwe, S. (2001). The Impact <strong>of</strong> Liberalisation Policies on Commercial Bank Behaviour andF<strong>in</strong>ancial Sav<strong>in</strong>gs <strong>in</strong> Malawi. Zomba: Unpublished MA Thesis.Kam<strong>in</strong>, S., Turner, P., & Van't dack, J. (1998). The Transmission <strong>of</strong> <strong>Monetary</strong> <strong>Policy</strong>. BIS <strong>Policy</strong>Papers , January 1998 (3).Karame, F., & Olmedo, A. (2002, February). The Assymetric <strong>Effects</strong> <strong>of</strong> <strong>Monetary</strong> <strong>Policy</strong> shocks:A Non-L<strong>in</strong>ear Structural VAR Approach. Unpublished Manuscript , 1-28.Kim, S., & Roub<strong>in</strong>i, N. (2000). Exchange Rate Anomalies <strong>in</strong> the Industrial Countries: A Solutionwith a Structural VAR Approach. A Journal <strong>of</strong> <strong>Monetary</strong> Economics , 45 (3), 561-586.Kugler, P., Jordan, T., Lenz, C., & Savios, M. (2004). The Analysis <strong>of</strong> Forward Look<strong>in</strong>g<strong>Monetary</strong> <strong>Policy</strong> <strong>in</strong> a SVAR Framework. (Unpublished Manuscript), 1-8.Leeper, E. M., Sims, C. A., & Zha, T. (1996). What Doed <strong>Monetary</strong> policy Do. Brook<strong>in</strong>gsPapers on Economic Activity , 1996 (2), 1-78.Malawi Government. (1989). Reserve Bank <strong>of</strong> Malawi Act. Laws <strong>of</strong> Malawi , 44 (02), 1-19.Maturu, B. (2007). Channels <strong>of</strong> <strong>Monetary</strong> <strong>Policy</strong> Transmission <strong>in</strong> Kenya. UnpublishedManuscript , 1-25.Meltzer, A. (1995). Money, Credit and (Other) Transmission Processes: A MonetaristPerspective. The Journal <strong>of</strong> Economic Perspectives , 19 (4), 49-72.Mihira, T., & Sugihara, S. (2000). A Structural VAR Analysis <strong>of</strong> the <strong>Monetary</strong> <strong>Policy</strong> <strong>in</strong> Japan.Economic Research Institute Discussion Paper Series (Discussion Paper No. 94), 1-28.Mishk<strong>in</strong>, F. (1995). Symposium on the <strong>Monetary</strong> Transmission Mechanism. Journal <strong>of</strong>Economic Perspectives , 9 (4), 3-10.Montiel, P. (1991). The Transmission Mechanism for <strong>Monetary</strong> <strong>Policy</strong> <strong>in</strong> Develop<strong>in</strong>g Countries.IMF Staff Papers , 38 (1), 83-108.Mors<strong>in</strong>k, J., & Bayoumi, T. (2001). A Peek Inside the Black Box: The <strong>Monetary</strong> TransmissionMechanism <strong>in</strong> Japan. IMF Staff Papers , 48 (1), 22-57.Mutoti, N. (2006). <strong>Monetary</strong> <strong>Policy</strong> Transmission <strong>in</strong> Zambia. Bank <strong>of</strong> Zambia Work<strong>in</strong>g PaperSeries (WP/06/2006), 1-22.34 | P a g e


Obstefield, M., & Gertler, M. (1995). The Mirage <strong>of</strong> Fixed Exhange Rates. Journal <strong>of</strong> EconomicPerspectives , 9 (4), 73-96.Phiri, G. (2002). The <strong>Monetary</strong> Transmission Mechanism <strong>in</strong> Malawi. Reserve Bank <strong>of</strong> MalawiWork<strong>in</strong>g Paper Series (2002).Piffanelli, S. (2001). The Instrument <strong>of</strong> <strong>Monetary</strong> <strong>Policy</strong> <strong>in</strong> Germany. A Structural VARApproach. United Nationa Department <strong>of</strong> Economic and Social Affairs (DESA) Work<strong>in</strong>g paperSeries (DESA Discussion Paper No. 19), 1-6.Setlhare, L. (2004). Bank <strong>of</strong> Botswana's Reaction Function: Modell<strong>in</strong>g Botswana's <strong>Monetary</strong><strong>Policy</strong> Strategy. The South <strong>African</strong> Journal <strong>of</strong> economics , 72 (2), 384-406.Sims. (1986). Are Forecast<strong>in</strong>g Models Usable for <strong>Policy</strong> Analysis? Federal Reserve Bank <strong>of</strong>M<strong>in</strong>neapolis Quarterly Review , 10 (1), 2-16.Sims, C. A., & Zha, T. A. (1998). Does <strong>Monetary</strong> <strong>Policy</strong> Generate Recessions? Federal ReserveBank <strong>of</strong> Atlanta Work<strong>in</strong>g Paper Series , Federal Reserve Bank <strong>of</strong> Atlanta Work<strong>in</strong>g Paper 98-12(July 1998), 1-61.Sims, C. (1992). Interpret<strong>in</strong>g the Macroeconomic Time Series Facts: The <strong>Effects</strong> <strong>of</strong> <strong>Monetary</strong><strong>Policy</strong> Time. European Economic Review , 36 (1992), 975-1011.Sims, C. (1980). Macroeconomics and Reality. Econometrica , 48 (January 1980), 1-49.Sims, C., & Zha, T. (1998). Does <strong>Monetary</strong> <strong>Policy</strong> Generate Recessions? Federal Reserve Bank<strong>of</strong> Atlanta Work<strong>in</strong>g Paper Series (Work<strong>in</strong>g Paper 98-12), 1-38.Sims, C., Stock, J., & Watson, M. (1990). Inference <strong>in</strong> L<strong>in</strong>ear Time series Models with SomeUnit Roots. Econometrica , 58 (1), 113-144.Stock, J., & Watson, M. (2001, July). Vector Autoregressions. Unpublished Manuscript , 1-28.Taylor, J. (1995). The <strong>Monetary</strong> Transmission Mechanism: An Empirical Framework. Journal <strong>of</strong>Economic Perspectives , 9 (4), 11-26.Taylor, J. (1995). The <strong>Monetary</strong> Transmission Mechanism: An Empirical Framework. Journal <strong>of</strong>Economic Perspectives , 9 (4), 11-26.Vonnak, B. (2005). Estimat<strong>in</strong>g the <strong>Effects</strong> <strong>of</strong> Hangarian <strong>Monetary</strong> <strong>Policy</strong> With<strong>in</strong> a StructuralVAR Framework. Magyar Nemzeti Bank Work<strong>in</strong>g Paper 2005/1 , 1-37.Weitong, R. (2007). Economic Fluctuations and Japanese <strong>Monetary</strong> <strong>Policy</strong>: Two EmpiricalStudies with SVAR Approach. Unpublished Manuscript , 1-64.35 | P a g e


APPENDIX AInterpolation <strong>of</strong> GDP us<strong>in</strong>g Related Series 2While this study sets out to use monthly GDP time series, among other variables, the series is notavailable <strong>in</strong> monthly frequency. For this reason, we employ the Friedman method <strong>of</strong><strong>in</strong>terpolat<strong>in</strong>g time series by related series to obta<strong>in</strong> the required monthly GDP series from annualdata. The method employs log-l<strong>in</strong>ear <strong>in</strong>terpolations <strong>of</strong> a vector <strong>of</strong> variables X t , which areavailable <strong>in</strong> both annual and monthly frequency, that expla<strong>in</strong> the variable <strong>of</strong> <strong>in</strong>terest , tocompute actual errors <strong>in</strong> the trend <strong>in</strong>terpolation for the elements <strong>of</strong> X t . These errors are then usedto adjust the l<strong>in</strong>ear trend <strong>in</strong>terpolation for by the weighted <strong>in</strong>dividual error <strong>in</strong> trend<strong>in</strong>terpolation for each regressor, where the weights are given by the respective coefficients on theX jt variable <strong>in</strong> the annual regression <strong>of</strong> X t on .To illustrate the mechanics <strong>of</strong> the approach, suppose variable is available at annual but notmonthly frequency and a vector <strong>of</strong> related variables is available at both annual and monthlyfrequency. The criteria for the selection <strong>of</strong> variables is that the <strong>in</strong>tra-yearly movements <strong>of</strong>are highly correlated with the <strong>in</strong>tra-yearly movements <strong>of</strong> . This may be based on nonquantitativeconsiderations; on observed high correlation but for a different time period otherthan that earmarked for the <strong>in</strong>terpolation; on co-movements between and for different timeunits for the same period; or on co-movements between series other than and butanalogous to them for the same time units and for the same period. We further assume that thevector does not conta<strong>in</strong> any variables that will be <strong>in</strong>cluded <strong>in</strong> the analysis <strong>of</strong> the study. The<strong>in</strong>terpolation process is carried out <strong>in</strong> the follow<strong>in</strong>g four steps:(1) Us<strong>in</strong>g annual observations only, compute the mean monthly growth for and . Use this toderive log-l<strong>in</strong>ear <strong>in</strong>terpolations for both and . The l<strong>in</strong>ear <strong>in</strong>terpolations are given by:, where and (A1)2 This methodology is adopted from Friedman, M. (1962). “The Interpolation <strong>of</strong> Time Series by Related Series”.Journal <strong>of</strong> the American Statistical Association, Vol. 57, No. 300 (Dec. 1962), pp. 729-757.i | P a g e


, where and (A2)(2) Us<strong>in</strong>g the annual observations only, run the regression:(A3)(3) From the actual monthly values <strong>of</strong> the variables and their <strong>in</strong>terpolated values ,compute the actual error <strong>in</strong> the trend <strong>in</strong>terpolation for the elements <strong>of</strong>, expressed as:(A4)(4) This error term is then used to adjust the simple l<strong>in</strong>ear trend <strong>in</strong>terpolation for by theweighted <strong>in</strong>dividual error <strong>in</strong> trend <strong>in</strong>terpolation for each regressor where the weights aregiven by the coefficient on the variable <strong>in</strong> the annual regression estimated <strong>in</strong> (A3). Thef<strong>in</strong>al <strong>in</strong>terpolation <strong>of</strong> is:(A5)Clearly, this method results <strong>in</strong> every twelfth observation be<strong>in</strong>g exactly correct (s<strong>in</strong>ce the error <strong>in</strong>the <strong>in</strong>terpolation <strong>of</strong> the variables is identically equal to zero for each variable), so that the<strong>in</strong>terpolated series always returns to the known annual observations for the series. In addition, itprovides a robust and transparent way <strong>of</strong> weight<strong>in</strong>g the error term.In the <strong>in</strong>terpolation <strong>of</strong> GDP for Malawi, we used actual errors <strong>in</strong> the trend <strong>in</strong>terpolation <strong>of</strong>tobacco exports to adjust the l<strong>in</strong>ear trend <strong>in</strong>terpolation for GDP. The choice <strong>of</strong> tobacco exports isbased on the fact that agriculture is the ma<strong>in</strong>stay <strong>of</strong> the Malawi economy, account<strong>in</strong>g for about36 percent (2007 estimate) <strong>of</strong> the country‟s GDP and nearly 80 percent (2006 estimate) <strong>of</strong> thecountry‟s exports; employ<strong>in</strong>g an estimated 84.5% <strong>of</strong> the labour force; and responsible for about82.5% <strong>of</strong> foreign exchange earn<strong>in</strong>gs (Malawi, 2004). In addition, the economy is monoculture,with tobacco account<strong>in</strong>g for 60% <strong>of</strong> total export earn<strong>in</strong>gs followed by tea and sugar, contribut<strong>in</strong>gii | P a g e


GDPMalawi Kwacha (millions)about 10% each. It is, therefore, expected that tobacco exports and GDP will be highly correlatedas shown <strong>in</strong> Figure A1.The annual time series for the regression <strong>of</strong> tobacco exports on GDP covered the period 1968-2006 and the regression results are presented <strong>in</strong> Table A1. Both variables were I(1) and,accord<strong>in</strong>gly, an error correction model was estimated. ERROR is the error correction term. Thecoefficient <strong>of</strong> tobacco exports, 20.83184, was used as a weight to compute weighted <strong>in</strong>dividualerrors <strong>in</strong> the trend <strong>in</strong>terpolation <strong>of</strong> tobacco exports, which <strong>in</strong> turn are used for adjust<strong>in</strong>g the l<strong>in</strong>eartrend <strong>in</strong>terpolation <strong>of</strong> GDP.Figure A2 shows actual and <strong>in</strong>terpolated tobacco exports, the difference <strong>of</strong> which is weightedaga<strong>in</strong>st the calculated coefficient <strong>of</strong> tobacco exports (20.83184) to adjust the l<strong>in</strong>ear trend<strong>in</strong>terpolation <strong>of</strong> GDP. The <strong>in</strong>terpolated monthly GDP series is expected to be highly correlatedwith the actual monthly tobacco exports series as shown <strong>in</strong> Figure A3.Figure A1: GDP and Tobacco Exports for Malawi (1968-2006)500,000450,000400,000350,000300,000250,000200,000150,000100,00050,000GDPTobacco Exports60,00050,00040,00030,00020,00010,000Tobacco ExportsMalawi Kwacha (millions)-1969 1972 1975 1978 1981 1984 1987 1990 1993 1996 1999 2002 2005-Source: NSO (Malawi)iii | P a g e


TABLE A1: Regression Results <strong>of</strong> GDP on Tobacco ExportsDependent Variable: GDPCoefficient Std. Error t-Statistic Prob.TOBACCO(-6) 20.83184 1.649441 12.86171 0.0000ERROR(-4) -0.820164 0.283190 2.896157 0.0077R-squared 0.674937Adjusted R-squared 0.635929S.E. <strong>of</strong> regression 14849.58Durb<strong>in</strong>-Watson stat 1.413473Figure A2: Tobacco Export (Actual) and GDP (Interpolated)8,0007,0006,0005,0004,0003,0002,0001,0000Tobacco Exports (Actual)Tobacco Exports (Interpolated)1988:1 1990:3 1992:5 1994:7 1996:9 1998:11 2001:1 2003:3 2005:5Source: NSO (Malawi)Figure A3: Tobacco Exports (Actual) and GDP Interpolated (1988:1-2005:12)80007000600050004000Tobacco Exports (Actual)GDP (Interpolated)30002000100001988:1 1990:3 1992:5 1994:7 1996:9 1998:11 2001:1 2003:3 2005:5400000350000300000250000200000150000100000500000Source: NSO (Malawi)iv | P a g e


APPENDIX BB-1.0. Data PropertiesCo<strong>in</strong>tegrated Structural VAR ApproachAnalysis <strong>of</strong> the co<strong>in</strong>tegrated SVAR is carried out on the truncated sample only (1994:03-2005:12) cover<strong>in</strong>g the period when Malawi adopted <strong>in</strong>direct tools <strong>of</strong> monetary control. Us<strong>in</strong>g theAugmented Dickey-Fuller Test, it is established that all variables are <strong>in</strong>tegrated <strong>of</strong> order 1 at 1percent except for reserve money, which is <strong>in</strong>tegrated <strong>of</strong> order 1 at 5% (see table B1). Thisprovides a basis to test for co<strong>in</strong>tegrat<strong>in</strong>g relations, def<strong>in</strong>ed as deviations from steady staterelations. In l<strong>in</strong>e with the exploratory data analysis carried out <strong>in</strong> Section 3.4 (Data, Data Sourcesand Measurement <strong>of</strong> Variables), we allow for each endogenous variable a l<strong>in</strong>ear determ<strong>in</strong>istictrend with <strong>in</strong>tercept and trend <strong>in</strong> the co<strong>in</strong>tegrat<strong>in</strong>g equation and no trend <strong>in</strong> the VAR. A laglength <strong>of</strong> 3 is chosen <strong>in</strong> conformity with the standard <strong>in</strong>formation criteria (AIC, SIC and HIC)while ensur<strong>in</strong>g stability <strong>of</strong> the system. At this lag length, the system is stationary or stable withall 21 <strong>in</strong>verse roots <strong>of</strong> the characteristic autoregressive polynomial show<strong>in</strong>g modulus less thanone and ly<strong>in</strong>g <strong>in</strong>side the unit circle (see Table B2). Results <strong>of</strong> the Johansen Co<strong>in</strong>tegration Testreveal that the system has a reduced rank 3 . While a trace suggests that there are threeco<strong>in</strong>tegrat<strong>in</strong>g relations, a maximum eigenvalue test <strong>in</strong>dicates that there is only one co<strong>in</strong>tegrat<strong>in</strong>grelation (see Table B3). The study adopts results <strong>of</strong> the trace test s<strong>in</strong>ce it is known that the test ismore robust to both skewness and excess kurtosis <strong>in</strong> the residuals than the maximal eigenvaluetest (see Harris & Sollis (2003); Cheung & Lai (1993)).3 Apply<strong>in</strong>g the Johansen approach to co<strong>in</strong>tegration <strong>of</strong> multivariate systems, three possible cases are expected <strong>in</strong> therelationship between the rank <strong>of</strong> matrix and its characteristic roots. First is a case <strong>of</strong> full rank i.e. rank(number <strong>of</strong> variables). All rows (columns) are l<strong>in</strong>early <strong>in</strong>dependent (i.e. all variables are I(0)) and all characteristicroots are <strong>in</strong>side the unit circle with modulus less than 1. The system is effectively stationary and the levels <strong>of</strong> thevariables have stationary means. The appropriate modell<strong>in</strong>g strategy, therefore, is to estimate the standard VAR <strong>in</strong>levels. Second is a case <strong>of</strong> zero rank i.e. rank . In this event, , all rows are l<strong>in</strong>early dependent,there are no co<strong>in</strong>tegrat<strong>in</strong>g variables and the system is non-stationary. In this case, is an matrix <strong>of</strong> zerosand the appropriate model is a VAR <strong>in</strong> first differences <strong>in</strong>volv<strong>in</strong>g no long run elements as given by:The third case is one <strong>of</strong> reduced rank i.e. rank. The system is nonstationary but there are rco<strong>in</strong>tegrat<strong>in</strong>g relations among the variables. The co<strong>in</strong>tegrat<strong>in</strong>g relation is determ<strong>in</strong>ed by and .v | P a g e


B-2.0. Co<strong>in</strong>tegrated SVAR AnalysisEstimation results from the co<strong>in</strong>tegrated structural VAR are generally similar to those from thelevels estimation carried <strong>in</strong> l<strong>in</strong>e with Sims, Stock and Watson (1990). Understandably, a number<strong>of</strong> differences also show up. Among the differences, impulse responses from the co<strong>in</strong>tegratedSVAR die <strong>of</strong>f very quickly compared to those from the estimation <strong>in</strong> levels. In order to reta<strong>in</strong>clear visual images, the forecast horizon is reduced from 60 months <strong>in</strong> the levels estimation to12-month <strong>in</strong> the co<strong>in</strong>tegrated SVAR.The co<strong>in</strong>tegrated SVAR confirms the f<strong>in</strong>d<strong>in</strong>g <strong>in</strong> the levels estimation that monetary policy <strong>in</strong>Malawi employs hybrid operat<strong>in</strong>g procedures, with the bank rate and reserve money as operat<strong>in</strong>gtools. Both the bank rate and reserve money respond significantly to shocks <strong>in</strong> the three<strong>in</strong>termediate targets <strong>of</strong> monetary policy namely exchange rates, aggregate money supply andbank lend<strong>in</strong>g (see Figure B1), reveal<strong>in</strong>g that the central bank is concerned with movements <strong>in</strong> thethree targets and to achieve desired levels <strong>in</strong> these targets, the two policy tools are used.Consistent with the levels estimation, the co<strong>in</strong>tegrated SVAR also shows that the exchange rateand money effect are important channels <strong>of</strong> monetary transmission <strong>in</strong> the country, though theimpact is not as pronounced as <strong>in</strong> the levels estimation. The effect <strong>of</strong> bank lend<strong>in</strong>g <strong>in</strong> themonetary transmission process, however, is <strong>in</strong>significant <strong>in</strong> the co<strong>in</strong>tegrated SVAR, whichcontradicts the f<strong>in</strong>d<strong>in</strong>g <strong>in</strong> the levels estimation.The observed differences from the two estimation approaches are not unexpected. An importantsource <strong>of</strong> these differences is the imposition <strong>of</strong> what may be possibly <strong>in</strong>correct co<strong>in</strong>tegrat<strong>in</strong>grestrictions <strong>in</strong> the process <strong>of</strong> estimat<strong>in</strong>g the co<strong>in</strong>tegrated VAR. Kim and Roub<strong>in</strong>i (2000) andBecklelmans (2005) argue that this is usually the case <strong>in</strong> co<strong>in</strong>tegrated VARs with the implicationthat the result<strong>in</strong>g <strong>in</strong>ferences are <strong>of</strong>ten <strong>in</strong>correct as well. In an attempt to circumvent the problem,some studies opt for a simple differences specification (see, for example, Weitong (2007);Boiv<strong>in</strong> & Giannoni (2002); Kasa & Popper (1997); Kugler et al (2004); Karame & Olmedo(2002); Mihira & Sugihara (2000)). The approach, however, is not persuasive as it yields<strong>in</strong>consistent estimates if some variables are co<strong>in</strong>tegrated (Bernanke & Mihov, 1997).vi | P a g e


Table B1: Stationarity ResultsVariable ADF p-value(t-statistic)BR 0.0000(-14.65723)XR 0.0000(-8.460660)CP 0.0000(-10.48257)GY 0.0000(-11.31887)M2 0.0000(-5.590931)RM 0.0000(-4.023323)BL 0.0000(-18.11330)Test Critical Values1% level: -3.4608845% level: -2.87486810% level: -2.5739511% level: -4.0015165% level: -3.43096310% level: -3.1391141% level: -4.0032265% level: -3.43178910% level: -3.1396011% level: -4.0036755% level: -3.43200510% level: -3.1397281% level: -4.0036755% level: -3.43200510% level: -3.1397281% level: -4.0041325% level: -3.43222610% level: -3.1398581% level: -4.0015165% level: -3.43096310% level: -3.139114Order <strong>of</strong>IntegrationLevel <strong>of</strong>SignificanceI(1) 1%I(1) 1%I(1) 1%I(1) 1%I(1) 1%I(1) 5%I(1) 1%vii | P a g e


Table B2: Roots <strong>of</strong> Characteristic PolynomialEndogenous variables: GY, CP, BL, XR, M2, BR, RMExogenous variables: CLag specification: 1 3RootModulus0.998043 0.9980430.919903 - 0.059154i 0.9218030.919903 + 0.059154i 0.9218030.791814 - 0.440799i 0.9062410.791814 + 0.440799i 0.9062410.879170 - 0.038116i 0.8799960.879170 + 0.038116i 0.8799960.664155 - 0.163656i 0.6840220.664155 + 0.163656i 0.684022-0.329850 + 0.519439i 0.615320-0.329850 - 0.519439i 0.6153200.114515 + 0.532327i 0.5445050.114515 - 0.532327i 0.544505-0.484589 0.484589-0.156873 - 0.418284i 0.446734-0.156873 + 0.418284i 0.446734-0.435546 0.4355460.035243 - 0.367722i 0.3694070.035243 + 0.367722i 0.3694070.028758 - 0.121287i 0.1246490.028758 + 0.121287i 0.124649No root lies outside the unit circle.VAR satisfies the stability condition.viii | P a g e


Table B3: Johansen Co<strong>in</strong>tegration Test ResultsSeries: GY, CP, BL, XR, M2, BR, RMLags <strong>in</strong>terval (<strong>in</strong> first differences): 1 to 2Unrestricted Co<strong>in</strong>tegration Rank Test (Trace)Hypothesized Trace 0.05No. <strong>of</strong> CE(s) Eigenvalue Statistic Critical Value Prob.**None * 0.427296 203.5590 150.5585 0.0000At most 1 * 0.221686 126.0823 117.7082 0.0132At most 2 * 0.189775 91.24529 88.80380 0.0329At most 3 0.165744 61.99359 63.87610 0.0713At most 4 0.130145 36.80464 42.91525 0.1784At most 5 0.093521 17.42402 25.87211 0.3839At most 6 0.026799 3.775896 12.51798 0.7743* denotes rejection <strong>of</strong> the hypothesis at the 0.05 level**MacK<strong>in</strong>non-Haug-Michelis (1999) p-valuesUnrestricted Co<strong>in</strong>tegration Rank Test (Maximum Eigenvalue)Hypothesized Max-Eigen 0.05No. <strong>of</strong> CE(s) Eigenvalue Statistic Critical Value Prob.**None * 0.427296 77.47678 50.59985 0.0000At most 1 0.221686 34.83697 44.49720 0.3745At most 2 0.189775 29.25170 38.33101 0.3723At most 3 0.165744 25.18895 32.11832 0.2755At most 4 0.130145 19.38062 25.82321 0.2804At most 5 0.093521 13.64812 19.38704 0.2786At most 6 0.026799 3.775896 12.51798 0.7743* denotes rejection <strong>of</strong> the hypothesis at the 0.05 level**MacK<strong>in</strong>non-Haug-Michelis (1999) p-valuesix | P a g e


FIGURE B1: Impulse Responses <strong>of</strong> the Composite Model (1994:03 – 2005:12)Response <strong>of</strong> D(GY) to D(GY)Response <strong>of</strong> D(GY) to D(CP)Response <strong>of</strong> D(GY) to D(BL)Response <strong>of</strong> D(GY) to D(XR)Response <strong>of</strong> D(GY) to D(M2)Response <strong>of</strong> D(GY)) to D(BR)Response <strong>of</strong> D(GY) to D(RM).08.08.08.08.08.08.08.06.06.06.06.06.06.06.04.04.04.04.04.04.04.02.02.02.02.02.02.02.00.00.00.00.00.00.00-.02-.02-.02-.02-.02-.02-.02-.04-.04-.04-.04-.04-.04-.04-.061 2 3 4 5 6 7 8 9 10 11 12-.061 2 3 4 5 6 7 8 9 10 11 12-.061 2 3 4 5 6 7 8 9 10 11 12-.061 2 3 4 5 6 7 8 9 10 11 12-.061 2 3 4 5 6 7 8 9 10 11 12-.061 2 3 4 5 6 7 8 9 10 11 12-.061 2 3 4 5 6 7 8 9 10 11 12Response <strong>of</strong> D(CP) to D(GY)Response <strong>of</strong> D(CP) to D(CP)Response <strong>of</strong> D(CP) to D(BL)Response <strong>of</strong> D(CP) to D(XR)Response <strong>of</strong> D(CP) to D(M2)Response <strong>of</strong> D(CP) to D(BR)Response <strong>of</strong> D(CP) to D(RM).03.03.03.03.03.03.03.02.02.02.02.02.02.02.01.01.01.01.01.01.01.00.00.00.00.00.00.00-.01-.01-.01-.01-.01-.01-.01-.02-.02-.02-.02-.02-.02-.02-.03-.03-.03-.03-.03-.03-.03-.041 2 3 4 5 6 7 8 9 10 11 12-.041 2 3 4 5 6 7 8 9 10 11 12-.041 2 3 4 5 6 7 8 9 10 11 12-.041 2 3 4 5 6 7 8 9 10 11 12-.041 2 3 4 5 6 7 8 9 10 11 12-.041 2 3 4 5 6 7 8 9 10 11 12-.041 2 3 4 5 6 7 8 9 10 11 12Response <strong>of</strong> D(BL) to D(GY)Response <strong>of</strong> D(BL) to D(CP)Response <strong>of</strong> D(BL) to D(BL)Response <strong>of</strong> D(BL) to D(XR)Response <strong>of</strong> D(BL) to D(M2)Response <strong>of</strong> D(BL) to D(BR)Response <strong>of</strong> D(BL) to D(RM).08.08.08.08.08.08.08.06.06.06.06.06.06.06.04.04.04.04.04.04.04.02.02.02.02.02.02.02.00.00.00.00.00.00.00-.02-.02-.02-.02-.02-.02-.02-.041 2 3 4 5 6 7 8 9 10 11 12-.041 2 3 4 5 6 7 8 9 10 11 12-.041 2 3 4 5 6 7 8 9 10 11 12-.041 2 3 4 5 6 7 8 9 10 11 12-.041 2 3 4 5 6 7 8 9 10 11 12-.041 2 3 4 5 6 7 8 9 10 11 12-.041 2 3 4 5 6 7 8 9 10 11 12Response <strong>of</strong> D(XR) to D(GY)Response <strong>of</strong> D(XR) to D(CP)Response <strong>of</strong> D(XR) to D(BL)Response <strong>of</strong> D(XR) to D(XR)Response <strong>of</strong> D(XR) to D(M2)Response <strong>of</strong> D(XR) to D(BR)Response <strong>of</strong> D(XR) to D(RM).05.05.05.05.05.05.05.04.04.04.04.04.04.04.03.03.03.03.03.03.03.02.02.02.02.02.02.02.01.01.01.01.01.01.01.00.00.00.00.00.00.00-.01-.01-.01-.01-.01-.01-.01-.02-.02-.02-.02-.02-.02-.02-.031 2 3 4 5 6 7 8 9 10 11 12-.031 2 3 4 5 6 7 8 9 10 11 12-.031 2 3 4 5 6 7 8 9 10 11 12-.031 2 3 4 5 6 7 8 9 10 11 12-.031 2 3 4 5 6 7 8 9 10 11 12-.031 2 3 4 5 6 7 8 9 10 11 12-.031 2 3 4 5 6 7 8 9 10 11 12Response <strong>of</strong> D(M2) to D(GY)Response <strong>of</strong> D(M2) to D(CP)Response <strong>of</strong> D(M2) to D(BL)Response <strong>of</strong> D(M2) to D(XR)Response <strong>of</strong> D(M2) to D(M2)Response <strong>of</strong> D(M2) to D(BR)Response <strong>of</strong> D(M2) to D(RM).08.08.08.08.08.08.08.06.06.06.06.06.06.06.04.04.04.04.04.04.04.02.02.02.02.02.02.02.00.00.00.00.00.00.00-.02-.02-.02-.02-.02-.02-.02-.041 2 3 4 5 6 7 8 9 10 11 12-.041 2 3 4 5 6 7 8 9 10 11 12-.041 2 3 4 5 6 7 8 9 10 11 12-.041 2 3 4 5 6 7 8 9 10 11 12-.041 2 3 4 5 6 7 8 9 10 11 12-.041 2 3 4 5 6 7 8 9 10 11 12-.041 2 3 4 5 6 7 8 9 10 11 12Response <strong>of</strong> D(BR) to D(GY)Response <strong>of</strong> D(BR) to D(CP)Response <strong>of</strong> D(BR) to D(BL)Response <strong>of</strong> D(BR) to D(XR)Response <strong>of</strong> D(BR) to D(M2)Response <strong>of</strong> D(BR) to D(BR)Response <strong>of</strong> D(BR) to D(RM)3333333222222211111110000000-1-1-1-1-1-1-1-21 2 3 4 5 6 7 8 9 10 11 12-21 2 3 4 5 6 7 8 9 10 11 12-21 2 3 4 5 6 7 8 9 10 11 12-21 2 3 4 5 6 7 8 9 10 11 12-21 2 3 4 5 6 7 8 9 10 11 12-21 2 3 4 5 6 7 8 9 10 11 12-21 2 3 4 5 6 7 8 9 10 11 12Response <strong>of</strong> D(RM) to D(GY)Response <strong>of</strong> D(RM) to D(CP)Response <strong>of</strong> D(RM) to D(BL)Response <strong>of</strong> D(RM) to D(XR)Response <strong>of</strong> D(RM) to D(M2)Response <strong>of</strong> D(RM) to D(BR)Response <strong>of</strong> D(RM) to D(RM).08.08.08.08.08.08.08.06.06.06.06.06.06.06.04.04.04.04.04.04.04.02.02.02.02.02.02.02.00.00.00.00.00.00.00-.02-.02-.02-.02-.02-.02-.02-.04-.04-.04-.04-.04-.04-.04-.06-.06-.06-.06-.06-.06-.06-.081 2 3 4 5 6 7 8 9 10 11 12-.081 2 3 4 5 6 7 8 9 10 11 12-.081 2 3 4 5 6 7 8 9 10 11 12-.081 2 3 4 5 6 7 8 9 10 11 12-.081 2 3 4 5 6 7 8 9 10 11 12-.081 2 3 4 5 6 7 8 9 10 11 12-.081 2 3 4 5 6 7 8 9 10 11 12x | P a g e


APPENDIX CTABLE C1: Roots <strong>of</strong> Characteristic Polynomial – Generic ModelEndogenous variables: LOG(GY), LOG(CP), BR, LOG(RM)Exogenous variables: CLag specification: 1 2RootModulus0.995863 0.9958630.977973 0.9779730.880114 0.8801140.734039 0.734039-0.248588 0.248588-0.210701 - 0.052382i 0.217115-0.210701 + 0.052382i 0.2171150.099467 0.099467No root lies outside the unit circle.VAR satisfies the stability condition.xi | P a g e


APPENDIX CTABLE C2: VAR Lag Exclusion Wald Test Results – Generic ModelSample: 1988M01 2005M12Included observations: 214Chi-squared test statistics for lag exclusion:Numbers <strong>in</strong> [ ] are p-valuesLOG(GY) LOG(CP) BR LOG(RM) Jo<strong>in</strong>tLag 1 42.14412 224.7095 205.1882 127.8966 566.2024[ 1.56e-08] [ 0.000000] [ 0.000000] [ 0.000000] [ 0.000000]Lag 2 18.10525 5.583003 12.14915 8.687186 42.42655[ 0.001177] [ 0.232529] [ 0.016276] [ 0.069412] [ 0.000341]df 4 4 4 4 16xii | P a g e


APPENDIX CTABLE C3: Structural VAR Estimates - Generic VAR ModelSample (adjusted): 1988M03 2005M12Included observations: 214 after adjustmentsCoefficient Std. Error z-Statistic Prob.a 21 0.001328 0.013865 0.095757 0.9237a 43 0.002753 0.002381 1.156456 0.2475b 11 0.108091 0.005225 20.68816 0.0000b 22 0.021923 0.001060 20.68816 0.0000b 33 2.163468 0.104575 20.68816 0.0000b 44 0.075347 0.003642 20.68816 0.0000xiii | P a g e


xiv | P a g eAPPENDIX CTABLE C4: Structural VAR Estimates - Composite Model with TruncatedSampleEstimated A matrix:1.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000-0.007633 1.000000 0.000000 0.000000 0.000000 0.000000 0.0000000.087871 -0.208193 1.000000 -0.111557 0.111252 -0.001226 -0.266192-0.013354 -1.187919 0.000000 1.000000 0.000000 0.000000 0.000000-0.061896 0.221568 0.000000 0.000000 1.000000 0.003680 0.0000000.000000 0.000000 0.000000 2.178026 0.000000 1.000000 0.0000000.000000 0.000000 0.614035 0.333893 -0.504922 0.000756 1.000000Estimated B matrix:0.126568 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000000.000000 0.013922 0.000000 0.000000 0.000000 0.000000 0.0000000.000000 0.000000 0.067558 0.000000 0.000000 0.000000 0.0000000.000000 0.000000 0.000000 0.040770 0.000000 0.000000 0.0000000.000000 0.000000 0.000000 0.000000 0.053785 0.000000 0.0000000.000000 0.000000 0.000000 0.000000 0.000000 2.308357 0.0000000.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.071345Coefficient Std. Error z-Statistic Prob. Expected Sign Right Sign?a 21 -0.007633 0.009231 -0.826883 0.4083 - a 31 0.087871 0.052475 1.674542 0.0940 + a 32 -0.013354 0.027097 -0.492834 0.6221 + a 34 -0.061896 0.035747 -1.731512 0.0834 + a 35 -0.208193 0.444451 -0.468427 0.6395 - a 36 -1.187919 0.245746 -4.833932 0.0000 - a 37 0.221568 0.324233 0.683360 0.4944 - a 41 0.614035 0.623890 0.984204 0.3250 - a 42 -0.111557 0.240466 -0.463921 0.6427 - a 51 2.178026 4.393726 0.495713 0.6201 + a 52 0.333893 0.136933 2.438360 0.0148 + a 56 0.111252 0.298593 0.372586 0.7095 - a 64 -0.504922 0.110127 -4.584901 0.0000 + a 73 -0.001226 0.002593 -0.472719 0.6364 - a 74 0.003680 0.001954 1.883492 0.0596 + a 75 0.000756 0.002670 0.283020 0.7772 + a 76 -0.266192 0.567014 -0.469462 0.6387 - b 11 -0.126568 0.007510 -16.85230 0.0000b 22 0.013922 0.000826 16.85230 0.0000b 33 -0.067558 0.020611 -3.277832 0.0010b 44 0.040770 0.002419 16.85230 0.0000b 55 -0.053785 0.003192 -16.85230 0.0000b 66 -2.308357 0.136976 -16.85230 0.0000b 77 0.071345 0.011029 6.468919 0.000011


APPENDIX CTABLE C5: Roots <strong>of</strong> Characteristic Polynomial – Composite Model withTruncated SampleEndogenous variables: LOG(GY) LOG(CP) LOG(BL) LOG(XR) LOG(M2) BR LOG(RM)Exogenous variables: CLag specification: 1 3RootModulus0.999573 0.9995730.962881 0.9628810.925938 0.9259380.876079 - 0.119740i 0.8842240.876079 + 0.119740i 0.8842240.708600 - 0.412825i 0.8200850.708600 + 0.412825i 0.8200850.631851 0.6318510.129862 + 0.527902i 0.5436400.129862 - 0.527902i 0.543640-0.201258 - 0.445031i 0.488423-0.201258 + 0.445031i 0.488423-0.450605 - 0.092084i 0.459918-0.450605 + 0.092084i 0.4599180.143127 - 0.353651i 0.3815160.143127 + 0.353651i 0.3815160.245836 + 0.163825i 0.2954220.245836 - 0.163825i 0.295422-0.283407 0.283407-0.160308 - 0.189921i 0.248534-0.160308 + 0.189921i 0.248534No root lies outside the unit circle.VAR satisfies the stability condition.xv | P a g e


APPENDIX CTABLE C6: VAR Residuals Cross Correlations Ordered by Lags - CompositeModel with Truncated SampleLOG(GY) LOG(CP) LOG(BL) LOG(XR) LOG(M2) BR LOG(RM)LOG(GY) 1.000000 0.069224 -0.144704 0.064367 0.134520 0.024400 0.121499LOG(CP) 0.069224 1.000000 0.056692 0.378680 -0.066714 0.132476 -0.063637LOG(BL) -0.144704 0.056692 1.000000 0.019721 -0.009806 0.031459 -0.245548LOG(XR) 0.064367 0.378680 0.019721 1.000000 0.091350 -0.041563 -0.165204LOG(M2) 0.134520 -0.066714 -0.009806 0.091350 1.000000 -0.158261 0.348787BR 0.024400 0.132476 0.031459 -0.041563 -0.158261 1.000000 -0.086392LOG(RM) 0.121499 -0.063637 -0.245548 -0.165204 0.348787 -0.086392 1.000000LOG(GY(-1)) 0.008743 0.002966 -0.001933 -2.50E-05 -0.004844 0.016853 -0.009941LOG(CP(-1)) -0.023744 -0.017763 -0.008357 0.053354 -0.033778 -0.065503 -0.011302LOG(BL(-1)) 0.005911 0.000295 -0.016009 0.010127 0.010937 0.004852 -0.031909LOG(XR(-1)) -0.045191 0.019798 -0.065500 0.092454 -0.056949 -0.060321 -0.059860LOG(M2(-1)) 0.052810 0.034580 0.007631 -0.033807 0.018313 0.039954 0.020228BR(-1) 0.029365 0.007467 0.013761 -0.010101 0.050410 -0.012668 0.036919LOG(RM(-1)) 0.049911 -0.025703 0.007086 0.002395 0.027717 -0.019197 -0.002836LOG(GY(-2)) -0.007885 0.019435 0.000788 -0.034051 0.039586 0.028968 0.012532LOG(CP(-2)) 0.033423 -0.007264 -0.017436 0.002848 0.013484 -0.046282 0.038073LOG(BL(-2)) 0.008579 0.006912 -0.005305 0.036103 0.025270 0.016077 -0.024647LOG(XR(-2)) 0.019074 -0.004778 0.012461 -0.056126 -9.18E-07 0.030916 0.079219LOG(M2(-2)) 0.026778 0.040005 0.049794 -0.045713 -0.043304 0.033677 0.026769BR(-2) 0.024817 0.009807 0.015989 0.061723 0.048378 -0.019987 0.004665LOG(RM(-2)) 6.47E-05 -0.010625 0.028686 -0.027806 0.038956 0.038571 -0.000262LOG(GY(-3)) -0.091180 0.084452 -0.023172 0.031069 0.049548 0.104300 -0.003561LOG(CP(-3)) -0.106593 -0.004962 -0.023112 -0.037222 -0.082600 0.168213 -0.125354LOG(BL(-3)) 0.192291 -0.030054 0.009405 -0.019671 -0.116271 0.113202 -0.129837LOG(XR(-3)) -0.148414 0.019636 -0.033146 0.079315 -0.213402 -0.020024 -0.109427LOG(M2(-3)) -0.022098 -0.198734 0.010798 -0.135172 -0.047220 -0.023919 -0.075066BR(-3) 0.001780 0.001169 -0.069966 0.069139 -0.006857 0.014891 -0.003920LOG(RM(-3)) 0.014891 -0.073304 0.052525 -0.035020 0.063196 0.004471 -0.018601LOG(GY(-4)) 0.114072 0.048954 0.051874 0.045787 0.044634 0.061699 0.079103LOG(CP(-4)) -0.164509 -0.015610 0.089113 -0.136795 -0.179274 0.072764 -0.048616LOG(BL(-4)) -0.031417 0.013103 0.041416 0.170622 -0.055561 0.038832 -0.010366LOG(XR(-4)) 0.041875 0.022343 -0.119559 -0.040072 -0.088987 -0.048405 0.058287LOG(M2(-4)) -0.018958 0.032305 -0.056632 -0.035057 0.088090 0.092828 -0.007974BR(-4) 0.132110 0.028919 -0.064699 0.065915 -0.027534 -0.028486 -0.044774LOG(RM(-4)) -0.062529 -0.075334 0.026283 -0.143604 -0.112719 0.074884 -0.138152LOG(GY(-5)) 0.092360 -0.125757 0.011022 -0.113104 0.057710 -0.121379 -0.033253LOG(CP(-5)) -0.064873 -0.088590 -0.029373 0.060724 -0.148179 -0.074205 0.006488LOG(BL(-5)) -0.003306 0.172869 -0.073482 0.084305 0.005919 0.175992 0.033072LOG(XR(-5)) -0.019394 -0.142525 -0.042438 0.063656 -0.126065 -0.127581 0.017574LOG(M2(-5)) -0.005944 0.062198 0.140324 0.069899 -0.053679 0.060263 -0.030331BR(-5) -0.099954 -0.023893 0.113303 -0.087117 -0.044847 -0.111560 0.037655LOG(RM(-5)) 0.011224 -0.066209 -0.009160 -0.030644 0.147512 -0.042332 -0.040673xvi | P a g e


APPENDIX DFIGURE D1:Impulse Responses - the Composite Model (Full Sample)with Endogenous Exchange rates.15Response <strong>of</strong> GY to GY.15Response <strong>of</strong> GY to CP.15Response <strong>of</strong> GY to BL.15Response <strong>of</strong> GY to XR.15Response <strong>of</strong> GY to M2.15Response <strong>of</strong> GY to BR.15Response <strong>of</strong> GY to RM.10.10.10.10.10.10.10.05.05.05.05.05.05.05.00.00.00.00.00.00.00-.0510 20 30 40 50 60-.0510 20 30 40 50 60-.0510 20 30 40 50 60-.0510 20 30 40 50 60-.0510 20 30 40 50 60-.0510 20 30 40 50 60-.0510 20 30 40 50 60.08Response <strong>of</strong> CP to GY.08Response <strong>of</strong> CP to CP.08Response <strong>of</strong> CP to BL.08Response <strong>of</strong> CP to XR.08Response <strong>of</strong> CP to M2.08Response <strong>of</strong> CP to BR.08Response <strong>of</strong> CP to RM.04.04.04.04.04.04.04.00.00.00.00.00.00.00-.0410 20 30 40 50 60-.0410 20 30 40 50 60-.0410 20 30 40 50 60-.0410 20 30 40 50 60-.0410 20 30 40 50 60-.0410 20 30 40 50 60-.0410 20 30 40 50 60Response <strong>of</strong> BL to GYResponse <strong>of</strong> BL to CPResponse <strong>of</strong> BL to BLResponse <strong>of</strong> BL to XRResponse <strong>of</strong> BL to M2Response <strong>of</strong> BL to BRResponse <strong>of</strong> BL to RM.10.10.10.10.10.10.10.05.05.05.05.05.05.05.00.00.00.00.00.00.00-.05-.05-.05-.05-.05-.05-.05-.1010 20 30 40 50 60-.1010 20 30 40 50 60-.1010 20 30 40 50 60-.1010 20 30 40 50 60-.1010 20 30 40 50 60-.1010 20 30 40 50 60-.1010 20 30 40 50 60.08Response <strong>of</strong> XR to GY.08Response <strong>of</strong> XR to CP.08Response <strong>of</strong> XR to BL.08Response <strong>of</strong> XR to XR.08Response <strong>of</strong> XR to M2.08Response <strong>of</strong> XR to BR.08Response <strong>of</strong> XR to RM.04.04.04.04.04.04.04.00.00.00.00.00.00.00-.0410 20 30 40 50 60-.0410 20 30 40 50 60-.0410 20 30 40 50 60-.0410 20 30 40 50 60-.0410 20 30 40 50 60-.0410 20 30 40 50 60-.0410 20 30 40 50 60Response <strong>of</strong> M2 to GYResponse <strong>of</strong> M2 to CPResponse <strong>of</strong> M2 to BLResponse <strong>of</strong> M2 to XRResponse <strong>of</strong> M2 to M2Response <strong>of</strong> M2 to BRResponse <strong>of</strong> M2 to RM.08.08.08.08.08.08.08.04.04.04.04.04.04.04.00.00.00.00.00.00.00-.0410 20 30 40 50 60-.0410 20 30 40 50 60-.0410 20 30 40 50 60-.0410 20 30 40 50 60-.0410 20 30 40 50 60-.0410 20 30 40 50 60-.0410 20 30 40 50 60Response <strong>of</strong> BR to GYResponse <strong>of</strong> BR to CPResponse <strong>of</strong> BR to BLResponse <strong>of</strong> BR to XRResponse <strong>of</strong> BR to M2Response <strong>of</strong> BR to BRResponse <strong>of</strong> BR to RM444444422222220000000-210 20 30 40 50 60-210 20 30 40 50 60-210 20 30 40 50 60-210 20 30 40 50 60-210 20 30 40 50 60-210 20 30 40 50 60-210 20 30 40 50 60.1Response <strong>of</strong> RM to GY.1Response <strong>of</strong> RM to CP.1Response <strong>of</strong> RM to BL.1Response <strong>of</strong> RM to XR.1Response <strong>of</strong> RM to M2.1Response <strong>of</strong> RM to BR.1Response <strong>of</strong> RM to RM.0.0.0.0.0.0.0-.1-.1-.1-.1-.1-.1-.1-.210 20 30 40 50 60-.210 20 30 40 50 60-.210 20 30 40 50 60-.210 20 30 40 50 60-.210 20 30 40 50 60-.210 20 30 40 50 60-.210 20 30 40 50 60xvii | P a g e


APPENDIX DFIGURE D2:Impulse Responses - Composite Model (Full Sample) withExogenous Exchange rates.15Response <strong>of</strong> GY to GY.15Response <strong>of</strong> GY to CP.15Response <strong>of</strong> GY to BL.15Response <strong>of</strong> GY to M2.15Response <strong>of</strong> GY to BR.15Response <strong>of</strong> GY to RM.10.10.10.10.10.10.05.05.05.05.05.05.00.00.00.00.00.00-.0510 20 30 40 50 60-.0510 20 30 40 50 60-.0510 20 30 40 50 60-.0510 20 30 40 50 60-.0510 20 30 40 50 60-.0510 20 30 40 50 60Response <strong>of</strong> CP to GYResponse <strong>of</strong> CP to CPResponse <strong>of</strong> CP to BLResponse <strong>of</strong> CP to M2Response <strong>of</strong> CP to BRResponse <strong>of</strong> CP to RM.03.03.03.03.03.03.02.02.02.02.02.02.01.01.01.01.01.01.00.00.00.00.00.00-.0110 20 30 40 50 60-.0110 20 30 40 50 60-.0110 20 30 40 50 60-.0110 20 30 40 50 60-.0110 20 30 40 50 60-.0110 20 30 40 50 60.10Response <strong>of</strong> BL to GY.10Response <strong>of</strong> BL to CP.10Response <strong>of</strong> BL to BL.10Response <strong>of</strong> BL to M2.10Response <strong>of</strong> BL to BR.10Response <strong>of</strong> BL to RM.05.05.05.05.05.05.00.00.00.00.00.00-.05-.05-.05-.05-.05-.05-.1010 20 30 40 50 60-.1010 20 30 40 50 60-.1010 20 30 40 50 60-.1010 20 30 40 50 60-.1010 20 30 40 50 60-.1010 20 30 40 50 60Response <strong>of</strong> M2 to GYResponse <strong>of</strong> M2 to CPResponse <strong>of</strong> M2 to BLResponse <strong>of</strong> M2 to M2Response <strong>of</strong> M2 to BRResponse <strong>of</strong> M2 to RM.08.08.08.08.08.08.04.04.04.04.04.04.00.00.00.00.00.00-.0410 20 30 40 50 60-.0410 20 30 40 50 60-.0410 20 30 40 50 60-.0410 20 30 40 50 60-.0410 20 30 40 50 60-.0410 20 30 40 50 603Response <strong>of</strong> BR to GY3Response <strong>of</strong> BR to CP3Response <strong>of</strong> BR to BL3Response <strong>of</strong> BR to M23Response <strong>of</strong> BR to BR3Response <strong>of</strong> BR to RM222222111111000000-1-1-1-1-1-1-210 20 30 40 50 60-210 20 30 40 50 60-210 20 30 40 50 60-210 20 30 40 50 60-210 20 30 40 50 60-210 20 30 40 50 60Response <strong>of</strong> RM to GYResponse <strong>of</strong> RM to CPResponse <strong>of</strong> RM to BLResponse <strong>of</strong> RM to M2Response <strong>of</strong> RM to BRResponse <strong>of</strong> RM to RM.12.12.12.12.12.12.08.08.08.08.08.08.04.04.04.04.04.04.00.00.00.00.00.00-.04-.04-.04-.04-.04-.04-.08-.08-.08-.08-.08-.08-.1210 20 30 40 50 60-.1210 20 30 40 50 60-.1210 20 30 40 50 60-.1210 20 30 40 50 60-.1210 20 30 40 50 60-.1210 20 30 40 50 60xviii | P a g e

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!