10.07.2015 Views

University of Paderborn Department of Mathematics Diploma Thesis ...

University of Paderborn Department of Mathematics Diploma Thesis ...

University of Paderborn Department of Mathematics Diploma Thesis ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

3.3. STABLE IDEALS WITH THE SAME DOUBLE SATURATION 67monomials are minimal generators <strong>of</strong> J and that J cannot contain any other minimalmonomial generators.We already know that m is a minimal generator <strong>of</strong> J. Since J is stable, we know byTheorem 2.7 thatm· x n−2 = x arn−r−1 · x a r−1n−r · x a r−2n−r+1 · . . . · x a 1+1n−2 · x a 0−1n−1x n−1is also contained in J. Since m is the only minimal generator <strong>of</strong> J containing the variablex n−1 , it even follows thatis contained in J. Because <strong>of</strong>x arn−r−1 · x a r−1n−r · x a r−2n−r+1 · . . . · x a 2n−3 · x a 1+1n−2x arn−r−1 · x a r−1n−r · x a r−2n−r+1 · . . . · x a 2+1n−3 · x a 1n−1 > x arn−r−1 · x a r−1n−r · x a r−2n−r+1 · . . . · x a 2n−3 · x a 1+1n−2 ∈ Jwith respect to the lexicographic order and since J is lexicographic, we concludex arn−r−1 · x a r−1n−r · x a r−2n−r+1 · . . . · x a 2+1n−3 · x a 1n−1 ∈ J.Since m is the only minimal generator <strong>of</strong> J containing last variable x n−1 , it even followsx arn−r−1 · x a r−1n−r · x a r−2n−r+1 · . . . · x a 2+1n−3 ∈ J.By the same arguments, it follows that all monomials in{x ar+1n−r−1,x arn−r−1 · x a r−1+1n−r ,x arn−r−1 · x a r−1n−r · x a r−2+1n−r+1 , . . . ,x arn−r−1 · x a r−1n−r · x a r−2n−r+1 · . . . · x a 2n−3 · x a 1+1n−2 ,x arn−r−1 · x a r−1n−r · x a r−2n−r+1 · . . . · x a 1n−2 · x a 0n−1 = m},are contained in J. It remains to show that x 0 , x 1 , . . . , x n−r−2 ∈ J. Because <strong>of</strong> x ar+1n−r−1 ∈ Jand x 0 · x arn−1 > xn−r−1, ar+1 the monomial x 0 · x arn−1 must also be contained in J. Hence, thereis a monomial generator <strong>of</strong> J, such that x 0 · x arn−1 is divisible by this generator. Since m isthe only monomial generator in J containing the last variable x n−1 , it follows x 0 ∈ J. Bythe same arguments we obtain x 1 , . . . , x n−r−2 ∈ J.Next, we want to show that all monomials in{x 0 , x 1 , . . . , x n−r−2 ,x ar+1n−r−1,x arn−r−1 · x a r−1+1n−r ,x arn−r−1 · x a r−1n−r · x a r−2+1n−r+1 , . . . ,x arn−r−1 · x a r−1n−r · x a r−2n−r+1 · . . . · x a 2n−3 · x a 1+1n−2 ,x arn−r−1 · x a r−1n−r · x a r−2n−r+1 · . . . · x a 1n−2 · x a 0n−1 = m},

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!