11.07.2015 Views

A Probability Distribution and Its Uses in Fitting Data

A Probability Distribution and Its Uses in Fitting Data

A Probability Distribution and Its Uses in Fitting Data

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

American Society for QualityA <strong>Probability</strong> <strong>Distribution</strong> <strong>and</strong> <strong>Its</strong> <strong>Uses</strong> <strong>in</strong> Fitt<strong>in</strong>g <strong>Data</strong>Author(s): John S. Ramberg, P<strong>and</strong>u R. Tadikamalla, Edward J. Dudewicz, Edward F. MykytkaReviewed work(s):Source: Technometrics, Vol. 21, No. 2 (May, 1979), pp. 201-214Published by: American Statistical Association <strong>and</strong> American Society for QualityStable URL: http://www.jstor.org/stable/1268517 .Accessed: 31/01/2012 17:12Your use of the JSTOR archive <strong>in</strong>dicates your acceptance of the Terms & Conditions of Use, available at .http://www.jstor.org/page/<strong>in</strong>fo/about/policies/terms.jspJSTOR is a not-for-profit service that helps scholars, researchers, <strong>and</strong> students discover, use, <strong>and</strong> build upon a wide range ofcontent <strong>in</strong> a trusted digital archive. We use <strong>in</strong>formation technology <strong>and</strong> tools to <strong>in</strong>crease productivity <strong>and</strong> facilitate new formsof scholarship. For more <strong>in</strong>formation about JSTOR, please contact support@jstor.org.American Statistical Association <strong>and</strong> American Society for Quality are collaborat<strong>in</strong>g with JSTOR to digitize,preserve <strong>and</strong> extend access to Technometrics.http://www.jstor.org


TECHNOMETRICS ?, VOL. 21, NO. 2, MAY 1979A <strong>Probability</strong> <strong>Distribution</strong> <strong>and</strong> <strong>Its</strong> <strong>Uses</strong> <strong>in</strong> Fitt<strong>in</strong>g<strong>Data</strong>John S. RambergSystems <strong>and</strong> Industrial Eng<strong>in</strong>eer<strong>in</strong>gThe University of ArizonaTucson, AZ 85721P<strong>and</strong>u R. TadikamallaGraduate School of Bus<strong>in</strong>essThe University of PittsburghPittsburgh, PA 15260Edward J. DudewiczDepartment of StatisticsThe Ohio State UniversityColumbus, OH 43210Edward F. MykytkaSystems <strong>and</strong> Industrial Eng<strong>in</strong>eer<strong>in</strong>gThe University of ArizonaTucson, AZ 85721A four-parameter probability distribution, which <strong>in</strong>cludes a wide variety of curve shapes, ispresented. Because of the flexibility, generality, <strong>and</strong> simplicity of the distribution, it is useful <strong>in</strong>the representation of data when the underly<strong>in</strong>g model is unknown. A table based on the firstfour moments, which simplifies parameter estimation, is given. Further important applicationsof the distribution <strong>in</strong>clude the model<strong>in</strong>g <strong>and</strong> subsequent generation of r<strong>and</strong>om variates forsimulation studies <strong>and</strong> Monte Carlo sampl<strong>in</strong>g studies of the robustness of statistical procedures.KEY WORDS<strong>Data</strong> fitt<strong>in</strong>g<strong>Probability</strong> distributionSystems of probability distributionsMomentsR<strong>and</strong>om variate generationMonte CarloSimulation1. INTRODUCTIONReasons for fitt<strong>in</strong>g a distribution to a set of datahave been summarized by Hahn <strong>and</strong> Shapiro [6] (p.195) as: the desire for objectivity, the need for automat<strong>in</strong>gthe data analysis, <strong>and</strong> <strong>in</strong>terest <strong>in</strong> the values ofthe distribution parameters. Although various empiricaldistributions already exist, e.g., the Pearson system<strong>and</strong> the Johnson system (see Chapter 7 of Hahn<strong>and</strong> Shapiro [6]) <strong>and</strong> the Burr distribution [1], we arepresent<strong>in</strong>g another distribution because of its simplicity,flexibility, <strong>and</strong> generality.The new distribution is a generalization of Tukey's[16] lambda distribution. It was developed by Ramberg<strong>and</strong> Schmeiser [9, 10] for the purpose of gener-at<strong>in</strong>g r<strong>and</strong>om variates for Monte Carlo simulationstudies because of the simple form of the result<strong>in</strong>galgorithm. (See (2).) A wide variety of curve shapesare possible with this distribution. Hence it is usefulfor the representation of data when the underly<strong>in</strong>gmodel is unknown. Silver [14], for example, showshow the distribution can be used to approximate thesafety factor <strong>in</strong> an <strong>in</strong>ventory control model. It is alsouseful <strong>in</strong> Monte Carlo studies of the robustness ofstatistical procedures <strong>and</strong> for sensitivity analyses <strong>in</strong>simulation studies.To illustrate the distribution, consider the histogramfor 250 sample measurements of the coefficientof friction of a metal [6] (p. 219) given <strong>in</strong> Figure 1.The superimposed distribution was fitted by themethods described <strong>in</strong> this paper. This example isdiscussed further <strong>in</strong> Section 5.In Section 2 some of the properties of the distributionare described. Section 3 conta<strong>in</strong>s a discussion ofthe use of the method of moments for fitt<strong>in</strong>g thedistribution to data <strong>and</strong> a table to facilitate this procedure.Table construction <strong>and</strong> accuracy is described<strong>in</strong> Section 4.Received August 1976; revised May 1978W<strong>in</strong>ner of 1977 Shewell Award at ASQC Chemical DivisionTechnical Conference2012. THE PROPOSED DISTRIBUTION AND ITS PROPERTIESA cont<strong>in</strong>uous probability distribution is usuallydef<strong>in</strong>ed by its distribution function or by its densityfunction. Alternatively it can be def<strong>in</strong>ed by its per-


202RAMBERG, TADIKAMALLA, DUDEWICZ AND MYKYTKA2724021I.-> 18COal 150L 120Z 9LdILi3- Z Pi 1 1I I I I I I0.0 0.01 0.02 0.03 0.04 0.05COEFFICIENT OF FRICTION0.06 0.07FIGURE 1. Coefficient of friction relative frequency histogram <strong>and</strong> the fitted distribution.centile (or quantile) function, if the percentile functionexists. The percentile function is simply the <strong>in</strong>verseof the distribution function. This concept isparticularly useful <strong>in</strong> Monte Carlo simulation studiesbecause of the follow<strong>in</strong>g result: If X is a cont<strong>in</strong>uousr<strong>and</strong>om variable with percentile function R, <strong>and</strong> U isa uniform r<strong>and</strong>om variable on the <strong>in</strong>terval zero toone, then the transformation X = R(U) yields a r<strong>and</strong>omvariable with the percentile function R.A specific example is Tukey's [16] lambda functionR(p) = [p - (l - p)X]/ (O?< p ?l1), (1)which is def<strong>in</strong>ed for all nonzero lambda values. (As X-- 0, the logistic distribution results.) Van Dyke [17]compared a normalized version of this function withStudent's t distribution. Filliben [5] used this distributionto approximate symmetric distributions with awide range of tail weights for study<strong>in</strong>g location estimationproblems of symmetric distributions. He alsogave a very complete discussion of the properties ofthe percentile function. Jo<strong>in</strong>er <strong>and</strong> Rosenblatt [7]studied the lambda distribution further <strong>and</strong> gave resultson the sample range. Ramberg <strong>and</strong> Schmeiser[9] showed how this distribution could be used toapproximate many of the well-known symmetric distributions<strong>and</strong> explored its application to MonteCarlo simulation studies.Ramberg <strong>and</strong> Schmeiser [10] generalized (1) to afour-parameter distribution def<strong>in</strong>ed by the percentilefunctionR(p) = A + [pa - (1 - p4]/A2 (0 < p < 1), (2)where X, is a location parameter, ,A is a scale parameter<strong>and</strong> A3 <strong>and</strong> A4 are shape parameters. This distribution,which <strong>in</strong>cludes the orig<strong>in</strong>al lambda distribution,also permits skewed curves to be represented. Althoughthe distribution function does not exist <strong>in</strong>"simple closed form," this should not be of concernto practitioners s<strong>in</strong>ce the same is true of the normaldistribution (whose percentiles are not nearly so easilycomputed). Another asymmetric generalization of(1) was considered by Ramberg [11].The density function correspond<strong>in</strong>g to (2) is givenby:f(x) = f[R(p)]- X2[X3pX3-1 + X4(1 -p)4-1]-i(0O


A PROBABILITY DISTRIBUTION AND ITS USES IN FITTING DATA2030.53 =0; Ca4=3,5,90.4> 0.3zLIJ0.20.1 -0.0 I I I I-4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0XFIGURE 2a. Density plots for specified a, <strong>and</strong> a, values (a, = 0; a4 = 3, 5, 9).4.0ponential distribution. The non-truncated densitywas obta<strong>in</strong>ed us<strong>in</strong>g the parameter values given <strong>in</strong>Table 4; the other density demonstrates that positivelyskewed, J-shaped curves result when XA = 0.The latter curve provides a good approximation tothe exponential density. Indeed, Schmeiser [13] hasshown that the limit<strong>in</strong>g distribution of this distributionis exponential with parameter 0 as X4 -- 0 when X,= XA = 0 <strong>and</strong> A2 = 4/0.The distribution can also provide good approximationsto other well-known densities. For example, thedistribution with X, = 0, X2 = 0.1975, <strong>and</strong> XA = A4 =0.1349 results <strong>in</strong> an approximation to the normaldistribution for which max, I ?(x) - R-(x)l .001,where I(x) is the normal distribution function.Although distributions are not necessarily deter-m<strong>in</strong>ed by their moments, the moments often do provideuseful <strong>in</strong>formation. In Figure 3 some distributionsare characterized by their skewness <strong>and</strong>kurtosis. The normal, the rectangular, <strong>and</strong> the exponentialdistribution are each represented by as<strong>in</strong>gle po<strong>in</strong>t. The Student's t, the lognormal, thegamma, <strong>and</strong> the Weibull distributions are each representedby a l<strong>in</strong>e. The beta distribution is representedby a region of values. The proposed distribution coversthe screened area; refer to Table 4 for some of thevalues <strong>in</strong>cluded.The Pearson <strong>and</strong> Johnson systems also cover largeregions of this diagram (see, for example, Hahn <strong>and</strong>Shapiro [6]). Both of these systems <strong>in</strong>corporate anumber of functional forms whereas the proposeddistribution uses only one function <strong>and</strong> is computa-0.5 -0.4 -CQ3=1; O4=4,6,90.3 -zw0 r -U.c0.1-4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0XFIGURE 2b. Density plots for specified as <strong>and</strong> a4 values (a(, = 1: (4y = 4, 6. 9).TECHNOMETRICS ?, VOL. 21, NO. 2, MAY 1979


204RAMBERG, TADIKAMALLA, DUDEWICZ AND MYKYTKA0.51a3=0, .5,1; 0a4=40.4I-(I)zw0.30.20.10.0 I I I-4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0XFIGURE 2c. Density plots for specified a3 <strong>and</strong> a4 values (a3 = 0,.5,1; a4 = 4).4.0tionally simpler. The Burr [1] distribution also coversa wide range of parameter values, but does not <strong>in</strong>cludesymmetric distributions.As orig<strong>in</strong>ally <strong>in</strong>dicated by Schmeiser [12], there arefour regions of parameter values where the distributionis a legitimate one, i.e., the density function isnonnegative for all x <strong>and</strong> <strong>in</strong>tegrates to one. Theseregions, which are numbered arbitrarily 1, 2, 3 <strong>and</strong> 4for reference purposes, are <strong>in</strong>dicated <strong>in</strong> Figure 4. Our<strong>in</strong>terest will center on Regions 3 <strong>and</strong> 4 s<strong>in</strong>ce positivemoments do not exist for the distributions <strong>in</strong> Regions1 <strong>and</strong> 2. The values of X range from R(0) to R(1).These bounds, which depend on all of the lambdavalues, are given <strong>in</strong> Table 2. If A_ 2 1, f[R(0)] > 0 <strong>and</strong>the distribution is truncated on the left. Similarly if A> 1, the distribution is truncated on the right.Ramberg <strong>and</strong> Schmeiser [10] showed that the kthmoment (XA = 0), of the proposed distribution, whenit exists, is given byE(Xk) =\2 -Z ()i (-1 ) (X3(k-i) + 1, X4i + 1),where d denotes the beta function, as def<strong>in</strong>ed, forexample, <strong>in</strong> [2]. (The kth moment does not exist whenany of the arguments of the beta function are negative.Thus, the kth moment exists if <strong>and</strong> only if - l/k< m<strong>in</strong>(X3, A4).)They also derived the follow<strong>in</strong>g expressions for themean, the variance, <strong>and</strong> the third (u3 = E(X - A)3)<strong>and</strong> fourth (z4 = E(X - )4) moments about themean for this distribution:A = XA + A/A2,a2 = (B-A2)/X2,0.6 - I: a3 = 0.0; a4= 1.75II: aQ3 0.2 a4 = 1.80III: 3 = 0.3; a4 = 1.850.5 ->-z*LJC)0.4 -Ii0.3 -III0.2-1.8 II I I I I L I I-1.2 -0.6 0.0 0.6 1.2 1.8 2.4XFIGURE 2d. Density plots for specified a, <strong>and</strong> a4 values result<strong>in</strong>g <strong>in</strong> U-shaped densities.TECHNOMETRICS ?, VOL. 21, NO. 2, MAY 1979


A PROBABILITY DISTRIBUTION AND ITS USES IN FITTING DATA2051.00.75III: approximation us<strong>in</strong>g tabledparameter valuesII: approximation with X3 = 0Cnz0.50.25-1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0XFIGURE 2e. Two densities with approximately the same first four moments as the exponentialdistribution.whereA = 1/(1 + A)-,/3 = (C- 3AB + 2A3)/A23,4, = (D - 4AC + 6A2B -1/(1 + X4),B = 1/(1 + 2X3)+ 1/(1 + 2A4)- 2j(1 + A3, 1 + A4),C = 1/(1 + 3A3)- 3/(1 + 23X, 1 + A4)3A')/24,+ 3/(1 + A3, 1 + 2A) - 1/(1 + 3X4),D = 1/(1 + 4X3)-4/(1+ 6/(1 + 2A3, I + 2X4)+ 3A3, 1 + X,)- 4f(1 + A3, 1 + 3A4) + 1/(1 + 4X4).The skewness <strong>and</strong> kurtosis, as given by<strong>and</strong>a3 =a4 =a3/a3A4/0'4,are functions of A3 <strong>and</strong> A4, but do not depend upon XA<strong>and</strong> X2.3. PARAMETER ESTIMATION ANDDISTRIBUTION FITTING(4)(5)In this section we show how to determ<strong>in</strong>e the parametersof the distribution us<strong>in</strong>g the first four moments<strong>and</strong> how to fit the result<strong>in</strong>g distribution. <strong>Its</strong>hould be recognized that sample moments are sensitiveto extreme observations <strong>and</strong> that the sampl<strong>in</strong>gvariability of the third <strong>and</strong> fourth moments can belarge. (See, for example, Dudewicz, Johnson <strong>and</strong>Ramberg [4].) However, we elected to use momentsbecause of their widespread use <strong>in</strong> practice; for someproperties of moments, see pp. 174ff of [2].The values of XA, A2, ,A <strong>and</strong> 34 are given <strong>in</strong> Table 4for selected values of a3 <strong>and</strong> a4 with Au = 0 <strong>and</strong> a = 1.(The construction <strong>and</strong> accuracy of this table is discussed<strong>in</strong> Section 4.) If the values of u, a, as <strong>and</strong> a4are known, the lambda values are determ<strong>in</strong>ed fromTable 4 us<strong>in</strong>g as entry po<strong>in</strong>ts the a3 <strong>and</strong> a4 values.One simply picks the values of A3 <strong>and</strong> A4 <strong>in</strong> Table 4 forwhich the a3 <strong>and</strong> a4 are closest to the desired values.If a3 is negative, one uses its absolute value, <strong>and</strong> afterf<strong>in</strong>d<strong>in</strong>g the values of 3, <strong>and</strong> A4, <strong>in</strong>terchanges theirvalues <strong>and</strong> changes the sign of A1. (The density with askewness of -a3 is the mirror image of the densitywith a skewness of a3.)S<strong>in</strong>ce the XA <strong>and</strong> A2 values given <strong>in</strong> Table 4 are for avariate with a mean of zero <strong>and</strong> a variance of one,multiply<strong>in</strong>g the result<strong>in</strong>g variate by a <strong>and</strong> add<strong>in</strong>g ,u toit achieves the desired result. This reduces to comput<strong>in</strong>gTABLE I-Lambda values for Figure 2 densities (see Table 4 fordef<strong>in</strong>ition of + <strong>and</strong> $ symbols).a3 Ia40 1.750 90.2 1.800.3 1.850.5 4X1 X2 3.5943 1.4501 1.4501.1974 .1349.0262 .01480 -.0870 - .04430 -.3203 -.1359.1349.0148-.0443-.1359.166 .5901 1.7680 1.1773.246 .5852 1.934-.290 .0604 .0259-.886 .1333 .01931.062.0447.1588-.379 -.0562 -.0187 -.0388-.215 -.2356 -.0844 -.1249.007 -.1081+ -.0407$ -.1076+-.0580+ 0 -.0580+TECHNOMETRICS ?, VOL. 21, NO. 2, MAY 1979


206RAMBERG, TADIKAMALLA, DUDEWICZ AND MYKYTKAQ 230 123 4EXPONENTIAL/FIGURE 3. Characterization of distributions by their third <strong>and</strong> fourth moments (the proposeddistribution covers the screened region).REGION 1(X31)No positivemoments existREGION 3 (X3>0, X4>0)All positive moments existpositiveskewness1 21/3I/positiveskewnessthird third moment moment exists existsREGION 4 (X30O, X4l, X4< -1)No positivemoments existFIGURE 4. Some properties of the distribution which are dependent on the values of X,<strong>and</strong> ,4.TECHNOMETRICS ?, VOL. 21, NO. 2, MAY 1979


A PROBABILITY DISTRIBUTION AND ITS USES IN FITTING DATA207TABLE 2-Lower <strong>and</strong> upper bounds of the distribution.RegionValue ofA2 _3 X4LowerBoundUpperBound2 > 3 >0 A4 > 03 X2 >0 O 30 X > 02 > 0 3 4> 04 = 0x1-1/X2A-1/X2xl+l/X2A1+1/X2A1<strong>and</strong>2


208RAMBERG, TADIKAMALLA, DUDEWICZ AND MYKYTKAalso be calculated. For a specified frequency histogramthis requires the solution of (2) for p at each ofthe <strong>in</strong>terval endpo<strong>in</strong>ts. This is straightforward numerically,s<strong>in</strong>ce R(p) is a well-behaved <strong>in</strong>creas<strong>in</strong>gfunction of p. Alternatively, <strong>in</strong>tervals can be determ<strong>in</strong>edus<strong>in</strong>g the estimated percentile function withspecified (perhaps equal) probabilities. Then one simplycounts the number of observations fall<strong>in</strong>g <strong>in</strong> each<strong>in</strong>terval <strong>and</strong> computes the approximate X2 statistic <strong>in</strong>the usual manner. (See, for example, p. 302 of [6].)One might wish to use some criterion other thanmoments for estimat<strong>in</strong>g the parameters. For example,nonl<strong>in</strong>ear least squares can be used to obta<strong>in</strong>the values of the parameters which m<strong>in</strong>imize thesquared distance between the percentile function (2)<strong>and</strong> the empirical percentile function.4. TABLE CONSTRUCTION AND ACCURACYTable 4 gives the values of X,, XA, X3 <strong>and</strong> A4 correspond<strong>in</strong>gto values of a3 <strong>and</strong> a4 with zero mean <strong>and</strong>unit variance. (A shorter prelim<strong>in</strong>ary version of Table4 appeared <strong>in</strong> [3].) The lambda values are given for a3rang<strong>in</strong>g from 0.0 <strong>and</strong> 0.90 <strong>in</strong> steps of 0.05 <strong>and</strong> from0.90 to 2.0 <strong>in</strong> steps of 0.1. For each a3, lambda valuesare given for 39 values of a4 <strong>in</strong> steps of 0.2, exceptwhere SA <strong>and</strong> X4 are near zero <strong>and</strong> are given <strong>in</strong> steps of0.1, start<strong>in</strong>g from the lower limit <strong>in</strong>dicated <strong>in</strong> Figure3. The grid of a3 <strong>and</strong> a4 values is sufficiently f<strong>in</strong>e sothat <strong>in</strong>terpolation is generally unnecessary. (The densityplots of adjacent entries <strong>in</strong> the table will differonly slightly, even though the lambda values maydiffer substantially.)The values of Table 4 have been rounded to fourdecimal digits, except where <strong>in</strong>dicated by a plus sign(+) or a dollar sign ($). The plus sign (+) <strong>in</strong>dicatesthat the parameter value has two lead<strong>in</strong>g zeroes <strong>and</strong>consequently has been rounded to six decimal digits<strong>and</strong> multiplied by 100. Similarly, those values <strong>in</strong>dexedby a dollar sign ($) have four lead<strong>in</strong>g zeroes<strong>and</strong> have been rounded to eight digits <strong>and</strong> multipliedby 10,000. This was done to provide as many significantdigits as possible <strong>in</strong> order to enhance the accuracyof the tabled value. Tabled values marked by aplus sign (+) should thus be multiplied by 10-2 <strong>and</strong>those marked by a dollar sign ($) should be multipliedby 10-4.The vast majority of the tabled values yield differencesbetween the calculated <strong>and</strong> specified values ofa3 <strong>and</strong> a4 of less than 0.01, i.e. |la(X3, A4) - ajl 1.0. The values of XA<strong>and</strong> X2 were checked <strong>in</strong> a similar fashion <strong>and</strong> yielded amean with<strong>in</strong> 0.01 of zero <strong>and</strong> a variance with<strong>in</strong> 0.01of one. These values result from closed form calculations<strong>and</strong> can be calculated by the user exactly.TECHNOMETRICS ?, VOL. 21, NO. 2, MAY 1979For specified values of a3 <strong>and</strong> a4, the 3, <strong>and</strong> A4values were orig<strong>in</strong>ally computed by Tadikamalla [15]by solv<strong>in</strong>g the nonl<strong>in</strong>ear equationsa3(A3, A4) = a3a4(X3, A4) = a4,us<strong>in</strong>g the subrout<strong>in</strong>e ZSYSTM <strong>in</strong> the IMSL system(available from International Mathematical & StatisticalLibraries, GNB Bldg., 7500 Bellaire, Houston,TX 77036). The expressions for a3(X3, X4) <strong>and</strong> a4(X3,A4) were obta<strong>in</strong>ed from equations (4) <strong>and</strong> (5).The table given here is an extended <strong>and</strong> correctedversion of Tadikamalla's. New values were obta<strong>in</strong>edus<strong>in</strong>g the Nelder-Mead simplex procedure for functionm<strong>in</strong>imization where the objective functionf(A3, X4) = (a3(A3, A4) - a3)2 + (a4(X3, X4) - a4)2was m<strong>in</strong>imized over A3 <strong>and</strong> X4, subject to the constra<strong>in</strong>tthat X3X4 > 0, which <strong>in</strong>sures that X3 <strong>and</strong> X4 areof the same sign. (See Olsson <strong>and</strong> Nelson [8] for adiscussion <strong>and</strong> applications of the Nelder-Mead simplexprocedure.)Solutions other than those given <strong>in</strong> the table mayexist for certa<strong>in</strong> values of a3 <strong>and</strong> a4, usually with X3 >1 <strong>and</strong> X4 > 1, for which the correspond<strong>in</strong>g densityfunctions are truncated.Either of the two procedures just described can beused to obta<strong>in</strong> the lambda parameters correspond<strong>in</strong>gto a3 <strong>and</strong> a4 values not <strong>in</strong> the table.5. NUMERICAL EXAMPLEWe illustrate our method with the follow<strong>in</strong>g datataken from Hahn <strong>and</strong> Shapiro [6]. Measurements ofthe coefficient of friction for a metal were obta<strong>in</strong>ed on250 samples. The result<strong>in</strong>g values are summarized <strong>in</strong>the first two columns of Table 3. Hahn <strong>and</strong> Shapiro[6] give the follow<strong>in</strong>g values for the moments whichwere calculated from the orig<strong>in</strong>al data: x = 0.0345,/m2 = 0.0098, &8 = 0.87 <strong>and</strong> a4 = 4.92. Round<strong>in</strong>g a3<strong>and</strong> a4 to the nearest tabular values (0.85 <strong>and</strong> 4.9respectively), the lambda values from Table 4 are X,= -.413, A2 = .0134, X3 = .004581, X4 = .0102. Thevalues for A, <strong>and</strong> A2 are calculated as<strong>and</strong>i = -.413 (.0098) + .0345 = .0305A2 = .0134/.0098 = 1.3673.Figure 1 shows the relative frequency histogramfor this data <strong>and</strong> the probability density curve correspond<strong>in</strong>gto the above lambda values. The observed<strong>and</strong> expected frequencies are given <strong>in</strong> Table 3. Acomparison of the computed value of x2 (2.04) withthe tabulated x2 values (see Table 3) <strong>in</strong>dicates that the


A PROBABILITY DISTRIBUTION AND ITS USES IN FITTING DATA209model fits the data quite well. However, s<strong>in</strong>ce theparameters of the model are estimated by the methodof moments rather than by the maximum likelihoodmethod, the use of the x2 distribution is only approximate.6. SUMMARYA four-parameter distribution <strong>and</strong> a table facilitat<strong>in</strong>gparameter estimation us<strong>in</strong>g the first four samplemoments have been presented. A wide variety ofcurve shapes are possible with this distribution as<strong>in</strong>dicated by the figures <strong>in</strong> Section 2. Because of thisflexibility <strong>and</strong> the <strong>in</strong>herent simplicity of this distributionit is useful <strong>in</strong> fitt<strong>in</strong>g data when, as is often thecase, the underly<strong>in</strong>g distribution is unknown. Thedef<strong>in</strong>ition of the distribution leads to a simple algorithmfor generat<strong>in</strong>g r<strong>and</strong>om variates as is discussed<strong>in</strong> Section 2.7. ACKNOWLEDGMENTSThe comments of the referees were helpful <strong>in</strong> improv<strong>in</strong>gthe presentation <strong>and</strong> are acknowledged withthanks. Support for John S. Ramberg's research wasprovided by National Institutes of Health Grant No.GM22271-02. Support for Edward F. Mykytka's researchwas provided by the Graduate College of theUniversity of Iowa.REFERENCES[1] BURR, I. W. (1973). Parameters for a general system ofdistributions to match a grid of a3 <strong>and</strong> a4. Comm. Statist., 2,1-21.[2] DUDEWICZ, E. J. (1976). Introduction to Statistics <strong>and</strong><strong>Probability</strong>. New York: Holt, R<strong>in</strong>ehart <strong>and</strong> W<strong>in</strong>ston.[3] DUDEWICZ, E. J., RAMBERG, J. S., <strong>and</strong> TADIKA-MALLA, P. R. (1974). A distribution for data fitt<strong>in</strong>g <strong>and</strong>simulation. Annual Technical Conference Transactions of theAmerican Society for Quality Control, 28, 407-418.[4] DUDEWICZ, E. J., JOHNSON, M. E. <strong>and</strong> RAMBERG,J. S. (1976). Fitt<strong>in</strong>g distributions to data with moments:sampl<strong>in</strong>g variability effects. Annual Technical ConferenceTransactions of the American Society for Quality Control, 30,337-344.[5] FILLIBEN, J. J. (1969). Simple <strong>and</strong> robust l<strong>in</strong>ear estimationof the location parameters of a symmetric distribution. Ph.Dthesis, Pr<strong>in</strong>ceton University.[6] HAHN, G. J. <strong>and</strong> SHAPIRO, S. S. (1967). Statistical Models<strong>in</strong> Eng<strong>in</strong>eer<strong>in</strong>g. New York: John Wiley & Sons, Inc.[7] JOINER, B. L. <strong>and</strong> ROSENBLATT, J. R. (1971). Someproperties of the range <strong>in</strong> samples from Tukey's symmetriclambda distribution. J. Amer. Statist. Assoc., 66, 394-399.[8] OLSSON, D. M. <strong>and</strong> NELSON, L. S. (1975). The Nelder-Mead simplex procedure for function m<strong>in</strong>imization. Technometrics,17, 45-51.[9] RAMBERG, J. S. <strong>and</strong> SCHMEISER, B. W. (1972). Anapproximate method for generat<strong>in</strong>g symmetric r<strong>and</strong>om variables.Comm. ACM, 15, 987-990.[10] RAMBERG, J. S. <strong>and</strong> SCHMEISER, B. W. (1974). Anapproximate method for generat<strong>in</strong>g asymmetric r<strong>and</strong>om variables.Comm. ACM, 17, 78-82.[11] RAMBERG, J. S. (1975). A probability distribution withapplications to Monte Carlo simulation studies. Statistical<strong>Distribution</strong>s <strong>in</strong> Scientific Work: Vol. 2-Model Build<strong>in</strong>g <strong>and</strong>Model Selection. Edited by G. P. Patil, S. Kotz <strong>and</strong> J. K.Ord. Boston: D. Reidel Publish<strong>in</strong>g Co.[12] SCHMEISER, B. W. (1971). A general algorithm for generat<strong>in</strong>gr<strong>and</strong>om variables. Master's thesis, The University ofIowa.[13] SCHMEISER, B. W. (1977). Methods for modell<strong>in</strong>g <strong>and</strong>generat<strong>in</strong>g probabilisticomponents <strong>in</strong> digital computer simulationwhen the st<strong>and</strong>ard distributions are not adequate: asurvey. Proceed<strong>in</strong>gs of the W<strong>in</strong>ter Simulation Conference, 51-57.[14] SILVER, E. A. (1977). A safety factor approximation basedupon Tukey's lambda distribution. Operational ResearchQuarterly, 28, 743-46.[15] TADIKAMALLA, P. R. (1975). Model<strong>in</strong>g <strong>and</strong> generat<strong>in</strong>gstochastic <strong>in</strong>puts for simulation studies. Ph.D. thesis, TheUniversity of Iowa.[16] TUKEY, J. W. (1960). The Practical Relationship Between theCommon Transformations of Percentages of Counts <strong>and</strong> ofAmounts. Technical Report 36, Statistical Techniques ResearchGroup, Pr<strong>in</strong>ceton University.[17] VAN DYKE, J. (1961). Numerical Investigation of the R<strong>and</strong>omVariable y = C (uX- (I - ut). Unpublished work<strong>in</strong>gpaper, National Bureau of St<strong>and</strong>ards Statistical Eng<strong>in</strong>eer<strong>in</strong>gLaboratory.TECHNOMETRICS ?, VOL. 21, NO. 2, MAY 1979


210RAMBERG, TADIKAMALLA, DUDEWICZ AND MYKYTKATABLE 4-Lambda parameters for given values of skewness (a,) <strong>and</strong> kurtosis (a.) when ji = 0 <strong>and</strong> a = I.a3 - 0=0a4 LAN 1 LAN2 LAN 3 LAN 4aL3 = 0.05O4 LAM 1 LA5 2 LAM 3 LIN 4a3 = 0.10a4 LAN 1 LAN 2 Lill 3 LAN 41.8 .02.0 .02.2 .02.4 .02.6 .02.8 .03.0 .03.2 .03.4 .03.6 .0.5774 1.0000 1.0000.4952 .5843 .5843.4197 .4092 .4092.3533 .3032 .3032.2949 .2303 .2303.2433 .1765 .1765.1974 .1349 .1349.1563 .1016 .1016.1191 .0742 .0742.0852 .0512 .05121.8 -1.703 .2861 .0000 .9502*2.0 -1.229 .3122 .0505 .76032.2 -.802 .3314 .1128 .58022.4 -.375 .3328 .1876 .39412.6 -.143 .2924 .1973 .26052.8 -.083 .2429 .1625 .19033.0 -.059 .1975 .1276 .14253.2 -0 4 6 .1 56 5 .0974 .10613.4 -.038 .1194 .0718 .07703.6 -.033 .0856 .0499 .05301.8 -1.678 .2835 .0000* .9071*2.0 -1.271 .3028 .0412 .73732.2 -.872 .3177 .0941 .57002.4 -.515 .3164 .1477 .41162.6 -.269 .2863 .1678 .28312.8 -.164 .2417 .1486 .20333.0 -.117 .1977 .1205 .15033.2 -.092 .1572 .0936 .11113.4 -.076 .1203 .0698 .08033.6 -.065 .0866 .0490 .05523.8 .04.0 .04.1 .0U.2 .04.3 .04.4 .04.6 .04.8 .05.0 .05. 2 .0.0545 .0317 .0317.0262 .0148 .0148.0128 .7140+ .7140*-.0659. -.0363. -.0363*-.0123 -.6706* -.6706.-.0241 -.0130 -.0130-.0466 -.0246 -.0246-.0676 -.0350 -.0350-.0870 -.0443 -.0443-.1053 -.0528 -.05283.8 -.027 .0548 .0311 .03274.0 -.026 .0264 .0146 .01534.1 -.024 .0132 .7184+ .7504.4.2 -.024 .0704. .0380. .0397*4.3 -.022 -.0120 -.6386+ -.6643.4.4 -.022 -.0238 -.0126 -.01314.6 -.018 -.0462 -.0240 -.02484.8 -.019 -.0671 -.0342 -.03545.0 -.016 -.0867 -.0435 -.04485.2 -.016 -.1050 -.0519 -.05343.8 -.057 .0558 .0308 .03424.0 -.049 .0276 .0149 .01634.1 -.048 .0142 .7606+ .8302.4.2 -.046 .1440+ .0762* .0828*4,3 -.044 -.0109 -.5703+ -.6174.4.4 -.041 -.0227 -.0118 -.01274.6 -.037 -.0452 -.0231 -.02474.8 -.036 -.0661 -.0332 -.03545.0 -.033 -.0857 -.0424 -.04505.2 -.032 -.1040 -.0507 -.05375.4 .05.6 .05.8 .06.0 .0?.2 .06.4 .06.6 .06.8 .07.0 .07.2 .0-.1227 -.0606 -.0606-.1389 -.0677 -.0677-.1541 -.0742 -.0742-.1686 -.0802 -.0802-.1823 -.0858 -.0858-.1954 -.0910 -.0910-.2077 -.0958 -.0958-.2194 -.1003 -.1003-.2306 -.1045 -.1045-.2414 -.1085 -.10855.4 -.015 -.1222 -.0596 -.06125.6 -.014 -.1386 -.0667 -.06845.8 -.014 -.1538 -.0731 -.07506.0 -.013 -.1682 -.0791 -.08106.2 -.012 -.1820 -.0847 -.08666.4 -.012 -.1950 -.0899 -.09186.6 -.012 -.2074 -.0947 -.09676.8 -.011 -.2192 -.0992 -.10127.0 -.011 -.2303 -.1034 -.10547.2 -.010 -.2411 -.1074 -.10945.4 -.030 -.1213 -.0584 -.06165.6 -.028 -.1375 -.0654 -.06885.8 -.027 -.1530 -.0719 -.07556.0 -.027 -.1674 -.0778 -.08166.2 -.025 -.1811 -.0834 -.08726.4 -.024 -.1943 -.0886 -.09256.6 -.023 -.2066 -.0934 -.09736.8 -.023 -.2184 -.0979 -.10197.0 -.022 -.2297 -.1021 -.10627.2 -.021 -.2405 -.1061 -.11027.4 .07.6 .07.8 .08.0 .08.2 .08.0 .08.6 .08.8 .09.0 .0-.2518 -.1123 -.1123-.2615 -.1158 -.1158-.2709 -.1191 -.1191-.2800 -.1223 -.1223-.2887 -.1253 -.1253-.2969 -.1281 -.1281-.3050 -.1308 -.1308-.3128 -.1334 -.1334-.3203 -.1359 -.13597.4 -.010 -.2515 -.1112 -.11327.6 -.979. -.2613 -.1147 -.11677.8 -.999, -.2707 -.1180 -.12018.0 -.928+ -.2797 -.1212 -.12328.2 -.906+ -.2884 -.1242 -.12628.4 -.931+ -.2968 -.1270 -.12918.6 -.912. -.3048 -.1297 -.13188.8 -.852. -.3125 -.1323 -.13439.0 -.837. -.3201 -.1348 -.13687.4 -.020 -.2507 -.1099 -.11397.6 -.020 -.2606 -.1134 -.11757.8 -.020 -.2699 -.1167 -.12088.0 -.019 -.2791 -.1199 -.12408.2 -.019 -.2878 -.1229 -.12708.4 -.018 -.2961 -.1258 -.12988.6 -.017 -.3041 -.1285 -.13258.8 -.017 -.3119 -.1311 -.13519.0 -.017 -.3193 -.1335 -.1376a73 - 0.15a'3 = 0.20a3 = 0.25Ca4 LAI 1 LAn 2 LAN 3 LAM 4a4 LAMI 1 LAM2 LAM 3 LAM 4a4 LAM 1 LAN 2 LAM 3 LAN 41.8 -1.655 .2811 .0000* .8700*2.0 -1.323 .2934 .0314 .72042.2 -.940 .3056 .0782 .56232.4 -.617 .3031 .1215 .41942.6 -.376 .2791 .1435 .29942.8 -.244 .2397 .1350 .21563.0 -.177 .1980 .1135 .15863.2 -.138 .1584 .0901 .11673.4 -.114 .1219 .0682 .08433.6 -.098 .0884 .0485 .05812.0 -1.387 .2841 .0212 .70902.2 -1.011 .2947 .0638 .55712.4 -.706 .2919 .1013 .42462.6 -.471 .2718 .1233 .31202.8 -.322 .2374 .1221 .22733.0 -.237 .1983 .1065 .16723.2 -.187 .1599 .0866 .12303.4 -.154 .1240 .0667 .08893.6 -.132 .0908 .0482 .06153.8 -.116 .0601 .0314 .03892.0 -1.465 .2748 .0105 .70342.2 -1.084 .2847 .0506 .55482.4 -.790 .2820 .0843 .42942.6 -.558 .2650 .1062 .32262.8 -.398 .2349 .1099 .23853.0 -.298 .1987 .0996 .17633.2 -.237 .1619 .0831 .13003.4 -.196 .1266 .0653 .09423.6 -.167 .0937 .0481 .06563.8 -.147 .0632 .0321 .04213.8 -.086 .0577 .0310 .03634.0 -.076 .0294 .0155 .01784.1 -.073 .0160 .8378+ .9564.4.2 -.069 .3217. .1667+ .1890.4.3 -.066 -.9113. -.4680* -.5278.4.4 -.063 -.0210 -.0107 -.01204.6 -.056 -.0435 -.0218 -.02424.8 -.055 -.0644 -.0318 -.03515.0 -.051 -.0842 -.0410 -.04495.2 -.048 -.1025 -.0493 -.05375.4 -.045 -.1198 -.0569 -.06175.6 -.043 -.1361 -.0639 -.06905.8 -.042 -.1514 -.0703 -.07576.0 -.040 -.1660 -.0763 -.08196.2 -.038 -.1798 -.0819 -.08766.4 -.037 -.1928 -.0870 -.09296.6 -.035 -.2053 -.0919 -.09786.8 -.034 -.2172 -.0964 -.10247.0 -.033 -.2284 -.1006 -.10677.2 -.032 -.2392 -.1046 -.11077.4 -.031 -.2496 -.1084 -.11457.6 -.030 - .2 593 -.1119 -.11807.8 -.029 -.2688 -.1153 -.12148.0 -.028 -.2780 -.1185 -.12468.2 -.028 -.2866 -.1215 -.12768.4 -.027 -.2948 -.1243 -.13048.6 -.027 -.3031 -.1271 -.13328.8 -.026 -.3108 -.1297 -.13579.0 -.025 -.3183 -.1322 -.13824.0 -.103 .0318 .0164 .01984.1 -.097 .0185 .9467+ .01134.2 -.093 .5707. .2894* .3429*4.3 -.089 -.6641. -.3342. -.3929*4.4 -.085 -.0185 -.9261* -.01084.6 -.079 -.0410 -.0202 -.02334.8 -.074 -.0622 -.0302 -.03455.0 -.069 -.0818 -.0392 -.04445.2 -.065 -.1003 -.0475 -.05345.4 -.061 -.1176 -.0551 -.06155.6 -.o5e -.1339 -.0621 -.06895.8 -.055 -.1494 -.0686 -.07576.0 -.053 -.1639 -.0745 -.08196.2 -.051 -.1778 -.0801 -.08776.4 -.049 -.1909 -.0853 -.09306.6 -.047 -.2034 -.0901 -.09806.8 -.045 -.2153 -.0947 -.10267.0 -.044 -.2265 -.0989 -.10697.2 -.043 -.2374 -.1029 -.11107.4 -.041 -.2477 -.1067 -.11487.6 -.040 -.2577 -.1103 -.11847.8 -.039 -.2671 -.1136 -.12188.0 -.038 -.2762 -.1168 -.12508.2 -.037 -.2850 -.1199 -.12808.4 -.036 -.2935 -.1228 -.13098.6 -.035 -.3014 -.1255 -.13368.8 -.035 -.3092 -.1281 -.13629.0 -.034 -.3168 -.1306 -.13879.2 -.034 -.3241 -.1330 -.14114.0 -.131 .0351 .0176 .02244.1 -.126 .0217 .0108 .01364.2 -.118 .8889. .4408* .5467.4.3 -.113 -.3476. -.1713* -.2103*4.4 -.108 -.0154 -.7540. -.9175.4.6 -.099 -.0380 -.0184 -.02204.8 -.094 -.0591 -.0282 -.03345.0 -.087 -.0790 -.0373 -.04365.2 -.082 -.0974 -.0455 -.05275.4 -.077 -.1149 -.0531 -.06105.6 -.073 -.1312 -.0601 -.06855.8 -.070 -.1467 -.0665 -.07546.0 -.067 -.1613 -.0725 -.08176.2 -.064 -.1753 -.0781 -.08766.4 -.062 - .1 885 -.0833 -.09306.6 -.059 -.2010 -.0882 -.09806.8 -.058 -.2129 -.0927 -.10277.0 -.055 -.2242 -.0970 -.10707.2 -.054 -.2350 -.1010 -.11117.4 -.052 -.2455 -.1048 -.11507.6 -.051 -.2554 -.1084 -.11867.8 -.049 -.2649 -.1118 -.12208.0 -.048 -.2742 -.1151 -.12528.2 -.047 -.2829 -.1181 -.12838.4 -.046 -.2914 -.1210 -.13128.6 -.044 -.2995 -.1238 -.13398.8 -.044 -.3072 -.1264 -.13659.0 -.043 -.3147 -.1289 -.13909.2 -.042 -.3220 -.1313 -.1414The parameter values given <strong>in</strong> this table are for a variate with zero mean <strong>and</strong> unit variance. The procedure for adjust<strong>in</strong>g the parameters toreflect a different mean or variance is given <strong>in</strong> Section 3. A plus sign (+) next to a tabled value <strong>in</strong>dicates that the value has two lead<strong>in</strong>g zeroes<strong>and</strong> should be multiplied by 10-2. Similarly, a dollar sign ($) next to a tabled value <strong>in</strong>dicates that the value should be multiplied by 10-4. Anasterisk (*) next to a tabled value of Xj <strong>in</strong>dicates that the difference between the calculated <strong>and</strong> specified values of aj, i.e. I ai(Xq,X4) - ai I, issomewhat greater than 0.01. See Section 4 for a discussion of the construction <strong>and</strong> accuracy of this table.TECHNOMETRICS ?, VOL. 21, NO. 2, MAY 1979


A PROBABILITY DISTRIBUTION AND ITS USES IN FITTING DATA211TABLE 4-Cont<strong>in</strong>ued (see explanatory note, p. 210).a3 = 0.3003 = 0.35aL3 0. 40C04 LAP! 1 LA P!2 LAM83 LAM84a4 LAP! 1 LAN82 LAN83 LAN84a4 LAP! 1 LAN 2 LAN 3 LA B142. 0 -1. 550 .2660 .0000 .70202.2 -1.164 .2755 .0380 .55562.44 -.871 .2733 .0695 .4434482.6 -.642 .2586 .0911 .332142.8 -.4474 .2323 .0983 .24953.0 -.362 .1991 .0925 .18593.2 -.288 .1641 .0796 .13773.44 -.239 .1298 .06440 .10033.6 -.204 .0973 .0481 .07043.8 -.179 .0671 .0330 .0446044.0 -.160 .0389 .0190 .025544.2 -.144 .0127 .6175+ .8035'44.3 -.138 .0789+ .0380' .04489+44.4 -.131 -.0116 -.5554' -.7057+44.5 -.129 -.0231 -.0110 -.013944.6 -.121 -.0343 -.0163 -.02034.8 -.113 -.0554 -.0260 -.03195.0 -.105 -.0752 -.0350 -.04235.2 -.100 -.0939 -.04432 -.05175.4 -.0944 -.11144 -.0508 -.06015.6 -.089 -.1279 -.0578 -.06785.8 -.085 -.14435 -.0643 -.07486.0 -.081 -.1582 -.0703 -.08126.2 -.078 -.1722 -.0759 -.08726.44 -.075 -.1854 -.0811 -.09276.6 -.072 -.1979 -.0860 -.09776.8 -.069 -.2100 -.0906 -.10257.0 -.067 -.2214 -.09449 -.10697.2 -.065- -.2325 -.0990 -.11117.44 -.063 -.2427 -.1028 -.11497.6 -.061 -.2528 -.1064 -.11867.8 -.060 -.2623 -.1098 -.12208.0 -.058 -.2716 -.1131 -.12538.2 -.056 -.2805 -.1162 -.12848.44 -.055 -.2889 -.1191 -.13138.6 -.054 -.2971 -.1219 -.13418.8 -.053 -.3050 -.1246 -.13679.0 -.052 -.3125 -.1271 -.13929.2 -.051 -.3197 -.1295 -.14162.0 -1. 539 .2639 .0000+ . 6836+2. 2 -1. 252 .2668 .0256 .55992.4 -.955 .2653 .0559 .444152.6 -.724 .2528 .0775 .34232.8 -.550 .2298 .0873 .26063.0 -.4427 .1 996 .08544 .19613.2 -.343 .1665 .0758 .14623.4 -.285 .1333 .0625 .10723.6 -.243 .1014 .0482 .07603.8 -.213 .0714 .03440 .05054.0 -.191 .0434 .0206 .02934.2 -.172 .0173 .8158+ .01124.3 -.163 .44870+ .2293+ .3090+4.4 -.156 -.7105+ -.3332+ -.44431+4.5 -.151 -.0187 -.8723+ -.01154.6 -.142 -.0298 -.0139 -.01804.8 -.132 -.0511 -.0236 -.03005.0 -.1244 -.0710 -.0325 -.04075.2 -.117 -.0898 -.0407 -.05035.4 -.110 -.1074 -.0483 -.05895.6 -.105 -.12440 -.0553 -.06685.8 -.100 -.1396 -.0618 -.07396.0 -.098 -.1545 -.0678 -.08056.2 -.091 -.1685 -.0735 -.08656.4 -.088 -.1818 -.0787 -.09216.6 -.085 -.1945 -.0836 -.09736.8 -.082 -.2067 -.0883 -.10217.0 -.079 -.2181 -.0926 -.10667.2 -.077 -.2291 -.0967 -.11087.4 -.074 -.2396 -.1006 -.11477.6 -.072 -.24496 -.10442 -.11847.8 -.070 -.2593 -.1077 -.12198.0 -.068 -.2685 -.1109 -.12528.2 -.066 -.2775 -.1141 -.12838.4 -.065 -.2860 -.1170 -.13138.6 -.064 -.2942 -.1198 -.134418.8 -.062 -.3020 -.1225 -.13679.0 -.060 -.3098 -.1251 -.13929.2 -.059 -.3172 -.1276 -.14172. 2 -1. 354 .2582 .0129 .56832.4 -1. 043 .2580 .0430 .45002.6 -.808 .24473 .06448 .35272.8 -.627 .2273 .0767 .27203.0 -.494 .2000 .0782 .20693.2 -.4400 .1690 .0718 .15553.44 -.333 .1371 .0609 .11493.6 -.284 .1060 .04482 .082443.8 -.248 .0764 .0351 .055844.0 -.222 .04485 .0223 .03374.2 -.200 .02244 .0103 .01494.3 -.190 .0100 .4597. .6521+4.4 -.182 -.0397+ -.0182+ -.02544+'44.5 -.1744 -.0136 -.6204+ -.8533'4.6 -.166 -.02448 -.0113 -.015344.8 -.155 -.0462 -.0209 -.02-775.0 -.146 -.0662 -.0297 -.03875.2 -.136 -.0850 -.0379 -.044855.4 -.129 -.1027 -.0455 -.057445.6 -.122 -.1194 -.0525 -.06545.8 -.115 -.1352 -.0591 -.07276.0 -.111 -.1501 -.0651 -.079446.2 -.106 -.16443 -.0708 -.08566.44 -.102 -.1778 -.0761 -.09136.6 -.098 -.1 906 -.0811 -.09666.8 -.094 -.2026 -.0857 -.10147.0 -.091 -.21442 -.0901 -.10607.2 -.089 -.2253 -.09442 -.11037.4 -.086 -.2359 -.0981 -.114437.6 -.083 -.2459 -.1018 -.11807.8 -.081 -.2558 -.1053 -.12168.0 -.079 -.2650 -.1086 -.li4498.2 -.077 -.2741 -.1118 -.12818.44 -.075 -.2827 -.1148 -.13118.6 -.073 -.2908 -.1176 -.13398.8 -.072 -.2988 -.1203 -.13669.0 -.070 -.3064 -.1229 -.13919.2 -.069 -.3139 -.12544 -.144169.4 -.067 - .3210 -.1278 -.1439Ca3 = 0. 45a44 LAP! I LAM 2 LAN83 LAN 4at3 -0. 50a4 LAM! 1 LAN82 LAN 3 LAN 4Ct3 = 0.55Ca4 LAP! 1 LAN 2 LAN 3 LAN842.2 -1.4471 .2500 .0000 .58122.4 -1.13e .2511 .0305 .46082.6 -.894 .24244 .0528 .36412.8 -.707 .22448 .0663 .284.03.0 -.565 .2003 .0707 .21843.2 -.460 .1716 .0674 .16573.44 -.3844 .1412 .0590 .12363.6 -.329 .1110 .0480 .08973.8 -.287 .0818 .0361 .061944.0 -.255 .0542 .0241 .038844.2 -.230 .0282 .0126 .01934.3 -.221 .0158 .7045+ .010644.44 -.208 .44102+ .1833+ .2691+4.5 -.200 -.7861+ -.3505' -.5065+44.6 -.192 -.0191 -.8511+ -.01214.8 -.178 -.0406 -.0180 -.02495.0 -.165 -.0607 -.0268 -.03625.2 -.157 v=.0796 -.03449 -.0446445.44 -.147 -.0975 -.0425 -.05555.6 -.140 -.1142 -.0495 -.06375.8 -.132 -.1302 -.0561 -.07126.0 -.127 -.1453 -.0622 -.07816.2 -.121 -.1595 -.0679 -.08446.44 -.116 -.1731 -.0733 -.09026.6 -.112 -.1860 -.0783 -.09566.8 -.108 -.1983 -.0830 -.10067.0 -.104 -.2098 -.08744 -.10527.2 -.101 - .2211 -.0916 -.10967.44 -.097 -.2316 -.0955 -.11367.6 -.095 -.2419 -.0992 -.11757.8 -.092 -.2518 -.1028 -.12118.0 -.090 -.2611 -.1061 -.12458.2 -.088 -.2702 -.1093 -.12778.4 -.085 -.2789 -.11244 -.13078.6 -.084 -.2871 -.1152 -.13368.8 -.081 -.2952 -.1180 -.13639.0 -.080 - .3029 -.1206 -.13899.2 -.078 -.3102 -.1231 -.14139.4 -.076 -.3176 -.1256 -.144372.4 -1.2445 .2445 .0178 .47482.6 -.987 .2376 .0410 .37702.8 -.790 .2225 .0561 .29693.0 -.639 .2006 .0630 .23073.2 -.525 .1742 .0625 .17683.4 -.440 .1454 .0566 .13323.6 -.376 .1163 .04476 .09793.8 -.329 .0877 .0369 .06894.0 -.290 .06044 .0259 .044474.2 -.262 .0345 .0149 .02434.3 -.248 .0221 .9582+ .01524.4 -.238 .0101 .44383+ .6815+44.5 -.228 -.1612+ -.0700+ -.1066+4.6 -.219 -.0128 -.5570' -.8334+4.8 -.202 -.0344 -.0149 -.02165.0 -.188 -.0546 -.0236 -.03335.2 -.177 -.0737 -.0317 -.04385.4 -.167 -.0917 -.0393 -.05325.6 -. 157 -.1 087 -.0464 -.06175.8 -.150 -.1246 -.0529 -.06946.0 -.1442 -.1398 -.0591 -.07646.2 -.137 -.1542 -.0648 -.08296.4 -.131 -.1679 -.0702 -.08896.6 -.126 -.1809 -.0753 -.09446.8 -.122 -.1 933 -.0800 -.09957.0 -.117 -.2050 -.0845 -.10427.2 -.114 -.2163 -.0887 -.10877.4 -.110 -.2270 -.0927 -.11287.6 -.107 -.2374 -.0965 -.11677.8 -.104 -.2473 -.1001 -.12048.0 -.101 -.2567 -.1035 -.12388.2 -.098 -.2659 -.1067 -.12718.4 -.095 -.2745 -.1098 -.13018.6 -.094 -.2830 -.1127 -.13318.8 -.091 -.2910 -.1155 -.13589.0 -.089 -.2986 -.1181 -.13849.2 -.088 -.3064 -.1207 -.14109.4 -.086 -.3134 -.1231 -.144339.6 -.084 -.3206 -.1255 -.14562.44 -1.370 .2379 .44463+ .49312.6 -1.087 .2331 .0292 .39202.8 -.878 .2202 .04459 .31093.0 -.716 .2009 .0551 .24403.2 -.593 .1767 .0572 .18893.4 -.4499 .1497 .0538 .14383.6 -.4428 .1217 .0467 .10703.8 -.372 .0940 .0376 .076744.0 -.330 .0670 .0275 .0514444.2 -.298 .0413 .0172 .030144.4 -.269 .0170 .71449+ .011844.5 -.257 .5355+ .2258+ .36444+44.6 -.247 -.5954+ -.2515. -.3975+44.7 -.237 -.0169 -.7160+ -.011144.8 -.227 -.0276 -.0117 -.01785.0 -.213 -.0480 -.0203 -.03005.2 -.200 -.0671 -.0283 -.044085.44 -.187 -.0852 -.0359 -.05055.6 -.177 -.1024 -.04430 -.05935.8 -.16S -.1184 -.04495 -.06726.0 -.161 -.1338 -.0557 -.074456.2 -.153 -.14483 -.0615 -.08116.4 -.147 -.1620 -.0669 -.08726.6 -.1441 -.1753 -.0721 -.09296.8 -.136 -.1878 -.0769 -.09817.0 -.131 -.1 997 -.08144 -.10307.2 -.127 -.2111 -.0857 -.10757.4 -.123 -.2218 -.0897 -.11177.6 -.119 -.2322 -.0935 -.11577.8 -.115 -.2422 -.0972 -.119448.0 -.113 -.2519 -.1006 -.12308.2 -.110 -.2610 -.1039 -.12638.4 -.107 -.2698 -.1070 -.129448.6 -.1044 -.27844 -.1100 -.13248.8 -.102 -.28644 -.1128 -.13529.0 -.100 -.29443 -.1155 -.13799.2 -.097 -.3019 -.1181 -.1440449.4 -.095 -.3092 -.1206 -.144289.6 -.0944 -.31644 -.1230 -.1452TECHNOMETRICS ?, VOL. 21, NO. 2, MAY 1979


212 RAMBERG, TADIKAMALLA, DUDEWICZ AND MYKYTKATABLE 4-Cont<strong>in</strong>ued (see explanatory note, p. 210).03 = 0.60C03=0.650 3 -0.70a4 LAN 1 LAM 2 LAN 3 LAN 14014 LAMK 1 LANM2 LAM 3 LAN 4014 LkAM 1 LAM 2 LAM 3 LAM 142.14 -1.1411 .23147 .0000* .4951*2.6 -1.198 .2286 .0171 .140982.8 -.972 .2180 .0355 .32653.0 -.800 .2009 .01467 .25833.2 -.665 .1791 .05114 .20203.14 -.562 .1539 .05014 .155143.6 -.1482 .1273 .014514 .11713.8 -.1420 .1005 .0379 .0851414.0 -.372 .07140 .0289 .05894.2 -.335 .0486 .01914 .036614.14 -.302 .02144 .9911. .017514.5 -.289 .0128 .5215. .8965*14.6 -.277 .1492* .0611. .10 25.14.7 -.266 -.9531* -.3916* -.61425*14.8 -.256 -.0202 -.8326* -.013145.0 -.238 -.01407 -.0168 -.02615.2 -.222 -.0600 -.0248 -.03735.4 -.209 -.0782 -.0323 -.0147145.6 -.197 -.0956 -.03914 -.05655.8 -.187 -.1118 -.01460 -.06476.0 -.179 -.1273 -.0522 -.07226.2 -.171 -.11419 -.0580 -.07906.4 -.163 - .1559 -.0635 -.08536.6 -.157 -.1691 -.0686 -.09116.8 -.151 -.1818 -.0735 -.09657.0 -.1146 -.1938 -.0781 -.10157.2 -.1141 -.2052 -.0824 -..10617.14 -.137 -.2163 -.0865 -.11057.6 -.132 -.2267 -.09014 -.111457.8 -.128 -.2368 -.09141 -.11838.0 -.1214 -.21465 -.0976 -.12198.2 -.121 -.2557 -.1009 -.12538.14 -.118 -.26147 -.10141 -.12858.6 -.115 -.2732 -.1071 -.13158.8 -.113 -.2815 -.1100 -.134149.0 -.110 -.28914 -.1127 -.13719.2 -.108 -.2970 -.1153 -.13979.4 -.105 -.30145 -.1179 -.114229.6 -.103 -.3116 -.1203 -.1141452.6 -1.329 .22140 .3908. .143182.8 -1.076 .2157 .02146 .314433.0 -.889 .2010 .0380 .271423.2 -.7144 .1812 .014149 .21623.14 -.630 .1582 .014614 .16823.6 -.5142 .1330 .01435 .12833.8 -.1472 .1072 .0377 .095214.0 -.141e .0813 .0300 .0671414.2 -.3714 .05614 .0215 .01414014.14 -.338 .0323 .0126 .023914.5 -.3214 .0207 .8137* .015014.6 -.310 .9399, .3719. .6660*14.7 -.297 -.1593* -.06314. -.1106*14.8 -.285 -.0123 -.14921. -.8391.5.0 -.265 -.0328 -.0132 -.02165.2 -.2148 -.05214 -.0211 -.033145.14 -.231 -.0707 -.0286 -.014385.6 -.219 -.0880 -.0356 -.05325.8 -.209 -.10146 -.01422 -.06186.0 -.198 -.1201 -.014814 -.06956.2 -.189 -.1350 -.05143 -.07666.14 -.181 -.11491 -.0598 -.08316.6 -.1714 -.1625 -.0650 -.08916.8 -.167 - .1753 -.0700 -.091467.0 -.161 -.1 8714 -.07146 -.09977.2 -.155 -.1 991 -.0790 -.101457.14 -.150 -.2100 -.0831 -.10897.6 -.1145 -.2208 -.0871 -.11317.8 -.1141 -.2309 -.0908 -.11708.0 -.137 -.21407 -.091414 -.12.078.2 -.1314 -.2501 -.0977 -.12428.14 -.130 -.2591 -.1010 -.127148.6 -.127 -.2677 -.10140 -.13058.8 -.1214 -.2761 -.1069 -.13359.0 -.121 -.28140 -.1097 -.13629.2 -.119 -.2919 -.11214 -.13899.14 -.116 -.2 9914 -.1150 -.1141149.6 -.1114 -.3065 -.11714 -.114389.8 -.112 -.3136 -.1198 -.114612. 6 -1. 36 8 .2217 .0000* .14353*2.8 -1.1914 .2132 .0130 .36513.0 -.987 .2008 .0286 .29183.2 -.828 .1833 .0378 .23193.14 -.7014 .1621 .01416 .18213.6 -.606 .1385 .01409 .114063.8 -.529 .1139 .0369 .106014.0 -.1467 .0889 .0307 .076814.2 -.1419 .06143 .0232 .052214.14 -.379 .0406 .0151 .031214.6 -.3144 .0178 .6767* .013014.7 -.331 .6799. .2607. .14872*14.8 -.317 -.3 917. -.1512. -.2750.14.9 -.305 -.011414 -.55714. -.9893*5.0 -.2914 -.02145 -.9565. -.01665.2 -.276 -.014141 -.0173 -.02895.14 -.257 -.0626 -.02147 -.03985.6 -.2143 -.0802 -.0317 -.014965.8 -.229 -.0 967 -.0383 -.058146.0 -.219 -.1125 -.014145 -.06656.2 -.209 -.1275 -.05014 -.07386.14 -.199 -.11417 -.0560 -.08056.6 -.191 -.15514 -.0613 -.08676.8 -.1814 -.1682 -.0662 -.092147.0 -.177 -.1805 -.0709 -.09777.2 -.170 -.1923 -.07514 -.10267.14 -.165 -.2036 -.0796 -.10727.6 -.160 -.21144 -.0836 -.11157.8 -.155 -.22146 -.08714 -.11558.0 -.151 -.23146 -.0910 -.11938.2 -.1147 -.21439 -.091414 -.12288.14 -.1143 -.2532 -.0977 -.12628.6 -.139 -.2618 -.1008 -.12938.8 -.136 -.2703 -.1038 -.13239.0 -.133 -.27814 -.1066 -.13529.2 -.13C -.2862 -.1093 -.13799.14 -.127 -.2937 -.1119 -.1140149.6 -.125 -.3011 -.11414 -.114299.8 -.122 -.3081 -.1168 -.11452C03 = 0.75C04 LAM 1 LAN 2 LkM 3 LAM 1403 - 0.80C04 LANMi LANM2 LANM3 LAN 403 0.8504 LAMi1 LANM2 LANM3 LAN 42 . 8-1.3 314 .21014 .0000 .39033.0 -1. 097 .2 003 .0183 . 31193. 2 -. 92 1 .1 850 . 0299 .214923.14 -.785 .1658 .0360 .19743.6 -.677 .114140 .0375 .15423.8 -.590 .1206 .0355 .117914.0 -.521 .0966 .0309 .087314.2 -.1466 .0726 .02146 .0611414.14 -.1419 .01492 .01714 .039214.6 -.3814 .0266 .9663. .020214.7 -.367 .0156 .57149. .011614.8 -.352 .149140. .1833. .3583*14.9 -.339 -.5509* -.2061. -.3916*5.0 -.3214 -.0157 -.5915* -.01095.2 -.306 -0353 -.01314 -.02385.14 -.2814 -.0539 -.0207 -.03525.6 -.268 -.0716 -.0276 -.0145145.8 -.2514 -.08814 -.03142 -.051476.0 -.2140 -.101414 -.01405 -.06306.2 -.229 -.1195 -.0464 -.07066.14 -.219 -.1339 -.0520 -.07766.6 -.209 -.11476 -.0573 -.081406.8 -.201 -.1607 -.0623 -.08997.0 -.1914 -. 1731 -.0670 -.095147.2 -.188 -.1851 -.0715 -.10057.14 -.181 -.19614 -.0758 -.10527.6 -.175 -.20714 -.0799 -.10967.8 -.170 -.2177 -.0837 -.11378.0 -.165 -.2278 -.08714 -.11768.2 -.160 -.2375 -.0909 -.12138.14 -.156 -.21466 -.09142 -.121478.6 -.152 -.25514 -.0974 -.12798.8 -.1148 -.26140 -.10014 -. 13109.0 -.1145 -.2722 -.1033 -.13399.2 -.1142 -.2802 -.1061 -.13679.14 -.13e -.2879 -.1088 -.13939.6 -.135 -2952 -.1113 -.114189.8 -.133 -.3023 -.1137 -.11414210.0 -.130 -.3093 -.1161 -.114653. 0 -1. 22 5 .1 996 .6847* . 33563. 2 -1. 02 5 .1 8614 .021 1 .26873.14 -8714 .1692 .0295 .211433. 6 -7514 .11492 .0333 .16913. 8 -65 7 .1272 .033 3 . 131014.0 -582 .10142 .0303 .098914.2 -.519 .0810 .0254 .071614.14 -.468 .0580 .0192 .048214.6 -.1425 .0357 .0123 .028114.8 -.392 .01142 .5035. .010714.9 -.375 .3770* .1352. .2770*5.0 -.361 -.6291* -.2278* -.14531.5.1 -.3149 -.01614 -.5981. -.01165.2 -.335 -.0261 -.9598. -.01815.14 -.313 -.014149 -.0167- -.03015.6 -.295 -.0626 -.0235 -.04085.8 -.279 -.0795 -.0300 -.050146.0 -.2614 -.0958 -.0363 -.05926.2 -.251 -.1110 -.01422 -.06716.14 -.2140 -.1255 -.01478 -.071436.6 -.230 -.13914 -.0531 -.08106.8 -.220 -.1527 -.0582 -.08717.0 -.212 -.1653 -.0630 -.09287.2 -.2014 -.17714 -.0676 -.09807.14 -.197 -.1889 -.0719 -.10297.6 -.191 -.2000 -.0760 -.10757.8 -.185 -.21014 -.0799 -.11178.0 -.180 -.2205 -.0836 -.11578.2 -.1714 -.23014 -.0872 -.11958.4 -.169 -.2397 -.0906 -.1230le. 6 -.166 -.21488 -.0938 -.12614~8.8 -.161 -.25714 -.0969 -.12959.0 -.157 -.2658 -.0999 -.13259.2 -.1514 -.2737 -.1027 -.13539.14 -.150 -.2815 -. 1054 -.13809.6 -.1147 -.2890 -.1080 -.114069.8 -.1144 -.2962 -.1105 -.1143010.0 -.1141 -.3033 -.1129 -.1451410.2 -.139 -.3100 -.1152 -.114763.0 -1. 30 3 .1 985 .0000* .34883. 2 -1.114 5 .1875 .0110 .29123.14 -97 3 .1723 .0220 .23323. 6 -8386 .15141 .0281 .18553.8 -73 2 .1336 .0301 .1145514.0 -64 5 .1 119 .0291 .111714.2 -.577 .0895 .0256 .082914.14 -.519 .0671 .0206 .058214.6 -.1472 .01451 .0146 .037014.8 -.1430 .0238 .8001* .01854.9 -.413 .01314 .14581* .01025.0 -.398 .3503. .1211* .2612*5.1 -.383 -.6701* -.23145. -.4896*5.2 -.37C -.0165 -.5808. -.01185.14 -.3144 -.0353 -.0127 -.0214145.6 -.324 -.0531 -.0193 -.03565.8 -.305 -.0703 -.0258 -.04576.0 -.290 -.08614 -.0319 -.051486.2 -.275 -.1019 -.0378 -.06316.4 -.262 -.1168 -.01435 -.07076.6 -.251 -.1307 -.01488 -.07766.8 -.2141 -.114142 -.0539 -.081407.0 -.231 -.1 570 -.0588 -.08997.2 -.223 -.1692 -.06314 -.09537.4 -.215 -.1809 -.0678 -.100147.6 -.207 -.1921 -.0720 -.10517.8 -.201 -.2028 -.0759 -.10958.0 -.195 -.2130 -.0797 -.11368.2 -.190 -.2229 -.0833 -.11758.14 -.1814 -.23214 -.0868 -.12118.64 -.179 -.21416 -.0901 -.121468.8 -.175 -.2503 -.0932 -.12789.0 -.171 -.2587 -.0962 -.13099.2 -.167 -.2669 -.0991 -.13389.14 -.163 -.2748 -.1019 -.13669.6 -.159 -.2823 -.10145 -.13929.8 -.156 -.2897 -.1071 -.1141710.0 -.153 -.2967 -.1095 -.144110.2 -.150 -.3037 -.1119 -.14614TECHNOMETRICS ?, VOL. 21, NO. 2, MAY 1979


A PROBABILITY DISTRIBUTION AND ITS USES IN FITTING DATA213TABLE 4-Cont<strong>in</strong>ued (see explanatory note, p. 210).Ca3 = 0. 90a4 LAM 1 LAM 2 LkAM3 LAM 4=f 1. 00Ca 4 LAN 1 LkM 2 LAN 3 LkM 4Ct3 = 1.10Ca4 LAM 1 LkM 2 LAM 3 LANM43. 2 -1.2 77 .1 880 .0000 .31 603. 4 -1. 08 5 .1 751 .0133 . 25483. 6 -93 3 .1 586 . 021 8 .20 393. 8 -81 4 .1397 .0260 .16 154. 0 -71 7 .1 19 3 .0269 .12 584. 2 -6 3 .0979 .0251 .09 534. 4 -57 5 .0 762 .0214 .06 934. 6 -5 22 .0 547 .016 4 .04 684. 8 -4786 .0 337 . 0106 .02735. 0 -43 9 .0 132 . 4328+ .01025. 1 -42 2 .333 9+ . 111 1+ .2526+5. 2 -40 7 - .6388+ -2154+ -. 4735.5. 3 -39 4 -.0159 -5428. -.01 165.4 -.375 -.0252 -.8694+ -.01805.6 -.353 -.0432 -.0152 -.0298*5.8 -.334 -.0605 -.0215 -.04056.0 -.317 -.0768 -.0275 -.05006.2 -.301 -.0924 -.0334 -.05876.4 -.287 -.1073 -.0390 -.06666.6 -.273 - .1215 -.0444 -.07386.8 -.262 -.1352 -.0495 -.08057.0 -.252 -.1481 -.0544 -.08667.2 -.242 -.1606 -.0591 -.09237.4 -.233 -.1 72 3 -.0635 -.09757.6 -.225 -.1838 -.0678 -.10247.8 -.21e -.1947 -.0718 -.10708.0 -.212 -.2051 -.0756 -.11138.2 -.205 -.2151 -.0793 -.11538.4 -.199 -.2246 -.0828 -.11908.6 -.194 -.2340 -.0862 -.12268.8 -.189 -.2428 -.0894 -.12599.0 -.185 -.2514 -.0924 -.12919.2 -.180 -.2597 -.0954 -.13219.4 -.176 -.2676 -.0982 -.13499.6 -.172 -.2753 -.1009 -.13769.8 -.168 - .2827 -.1035 -.140210.0 -. 165 -.2900 -.1060 -.142710.2 -.162 - .2969 -.1084 -.145010.4 -.159 -.3035 -.1107 -.14723. 4 -1. 253 .1 772 .0000* .2854*3. 6 -1. 169 .1 664 .4828. .24903. 8 -1. 01 0 .1509 .0141 .19964. 0 -886E .1 333 .0193 . 15 884. 2 -7 87 .1142 .021 2 .12444.4 -.706 .0943 .0206 .09504.6 -.63e .0741 .0182 .06974.8 -.581 .0539 .0144 .04775.0 -.533 .0340 .9695+ .02855.2 -.492 .0146 .4383+ .01175.3 -.474 .5192+ .1584+ .4061+5.4 -.445 -.0317+ -.0101+* -.0242+*5.5 -.442 -.0132 -.4176. -.9946+5.6 -.429 -.0222 -.7097+ -.01645.8 -.403 -.0395 -.0129 -.0282*6.0 -.379 -.0562 -.0187 -.03886.2 -.358 -.0721 -.0244 -.04846.4 -.341 -.0873 -.0299 -.05716.6 -.325 -. 1019 -.0352 -.06516.8 -.309 -.1158 -.0404 -.07237.0 -.297 -.1291 -.0453 -.07907.2 -.285 -.1419 -.0500 -.08527.4 -.275 - .1 540 -.0545 -.09097.6 -.265 -.1658 -.0589 -.09627.8 -.256 - .1769 -.0630 -.10118.0 -.24e -.1878 -.0670 -. 10 588.2 -.241 -.1980 -.0707 -.11018.4 -.233 -.2079 -.0744 -.11418.6 -.227 -.2174 -.0778 -.11798.8 -.220 -.2267 -.0812 -.12159.0 -.215 -.2356 -.0844 -.12499.2 -.210 -.2440 -.0874 -.12819.4 -.204 -.2522 -.0904 -.13119.6 -.200 - .2602 -.0932 -.13409.8 -.195 -.2678 -.0959 -.136710.0 -.191 -.2752 -.0985 -.139310.2 -.187 -.2824 -.1010 -.141810.4 -.184 -.2893 -.1034 -.144210.6 -.180 -.2959 -.1057 -.14643.8 -1.215 .1582 .0000* .2.3794.0 -1.108 .1459 .6035+ .20134.2 -.974 .1294 .0125 .16074.4 -.869 .1117 .0157 .12674.6 -.781 .0932 .0165 .09774.8 -.708 .0743 .0154 .07275.0 -.647 '.0552 .0128 .05085.2 -.596 .0365 .9168. .03185.4 -.552 .0181 .4839+ .01505.5 -.532 .9038+ .2484+ .7342+5.6 -.517 .0997+ .0279+ .0795.5.7 -.497 -.8629+ -.2479+ -.6726+5.8 -.481 -.0173 -.5046+ -.01326.0 -.451 -.0340 -.0103 -.0i5l6.2 -.427 -.0501 -.0155 -.03586.4 -.403 - .0656 -.0208 -.04556.6 -.384 -.0805 -.0259 -.05446.8 -.366 -.0947 -.0309 -.06247.0 -.350 -.1084 -.0358 -.06987.2 -.335 -.1214 -.0405 -.07667.4 -.322 -.1341 -.0451 -.08297.6 -.311 -.1460 -.0494 -.08877.8 -.299 -.1577 -.0537 -.09418.0 -.289 -.1687 -.0577 -.09918.2 -.280 -.1794 -.0616 -.10388.4 -.271 -.1896 -.0653 -.10828.6 -.263 -.1994 -.0689 -.11238.8 -.256 -.2090 -.0724 -.11629.0 -.249 -.2180 -.0757 -.11989.2 -.242 -.2267 -.0788 -. 12329.4 -.236 -.2353 -.0819 -.12659.6 -.231 -.2435 -.0848 -.12969.8 -.226 -.2513 -.0876 -.132510.0 -.221 -.2590 -.0903 -.135310.2 -.216 -.2664 -.0930 -.137910.4 -.211 -.2735 -.0955 -.140410.6 -.207 -.2804 -.0479 -. 142810.8 -.203 -.2870 -.1002 -.145111.0 -.199 -.2936 -.1025 -.1473at3 = 1. 20a4 LANMi LAkM 2 LAM 3 LAMi4a3 = 1. 30a4 LANMi LAN 2 LkAM3 LkAM4C3=1.40a4 LAMi1 LAN 2 LAM 3 LAM44. 2 -1. 1 83 .1 407 .0000* . 19974.4 -1.083 .1278 .5096. .16754.6 -.965 .1113 .9968+ .13294.8 -.870 .0941 .0122 .10365.0 -.792 .0764 .0124 .07845.2 -.723 .0586 .0112 .05655.4 -.668 .0408 .8705+ .03725.6 -.615 .0233 .5411+ .02025.7 -.597 .0146 .3525+ .01245.8 -.577 .6 088+ .1515+ .5050.5.9 -.55e -.2319+ -.0594+ -.1884.6.0 -.562 -.0962+ -.0245+ -.0784+6.2 -.50e -.0268 -.7343+ -.02066.4 -.481 -.0424 -.0120 -.03156.6 -.454 - .0575 -.0168 -.04146.8 -.432 -.0719 -.0215 -.05047.0 -.412 -.0860 -.0262 -.05877.2 -.394 -.0993 -.0308 -.06627.4 -.378 -.1123 -.0353 -.07327.6 -.362 -.1247 -.0397 -.07967.8 -.349 -.1366 -.0439 -.08568.0 -.337 -.1480 -.0480 -.09118.2 -.325 -.1589 -.0519 -.09628.4 -.314 -.1695 -.0558 -.10108.6 -.305 -.1796 -.0594 -.10558.8 -.296 -.1896 -.0630 -.10989.0 -.287 -. 1990 -.0664 -.11379.2 -.280 -.2082 -.0697 -.11759.4 -.273 -.2168 -.0728 -.12109.6 -.265 - .2253 -.0759 -.12439.8 -.259 -.2335 -.0788 -.127510.0 -.254 -.2414 -.0816 -.130510.2 -.248 -.2490 -.0843 -.133310.4 -.242 -.2564 -.0870 -.136010.6 -.237 -.2636 -.0895 -.138610.8 -.233 -.2704 -.0919 -.141011.0 -.228 -.2772 -.0943 -.143411.2 -.224 -.2837 -.0966 -.145611.4 -.220 -.2901 -.0988 -.14784. 6 -1. 15E .1244 .0000* .16794. 8 -1. 08 4 .1129 .3174. .14355.0 -97 5 .0968 .722 5+ . 11305. 2 -886 .0802 . 903 5. .08705. 4 -81 2 .0634 . 914 8+ .06455.6 -.749 .0466 .7959. .04475.8 -.695 .0300 .5783. .02736.0 -.604 .0286. .6619S* .0239.6.1 -.617 .0446+ .0100+ .0375+*6.2 -.616 -.0526+ -.0118. -.0442+6.3 -.585 -.0104 -.2450. -.8504+6.4 -.572 -.0182 -.4399+ -.01466.6 -.535 -.0333 -.8469+ -.02586.8 -.510 -.0480 -.0127 -.03607.0 -.485 -.0622 -.0170 -.04537.2 -.463 -.0758 -.0213 -.05387.4 -.4442 -.0890 -.0256 -.06167.6 -.424 -.1017 -.0298 -.06887.8 -.407 -.1140 -.0340 -.07548.0 -.392 -. 1258 -.0380 -.08168.2 -.378 -.1372 -.0420 -.08738.4 -.365 -.1480 -.0458 -.09268.6 -.353 -. 1584 -.0495 -.09758.8 -.342 -.1687 -.0531 -.10229.0 -.332 -.1784 -.0566 -.10659.2 -.322 -.1878 -.0600 -.11069.4 -.314 -. 1969 -.0632 -.11459.6 -.305 - .2057 -.0664 -.11819.8 -.298 -.2141 -.0694 -.121510.0 -.291 -.2223 -.0723 -.124810.2 -.284 -.2304 -.0752 -.127910.4 -.277 -.2379 -.0779 -.130810.6 -.272 -.2453 -.0805 -.133610.8 -.266 -.2525 -.0831 -.136211.0 -.261 -.2595 -.0855 -.1388*11.2 -.256 -.2662 -.0879 -.141211.4 -.251 -.2728 -.0902 -.143511.6 -.246 -.2792 -.0925 -.145711.8 -.242 -.2852 -.0946 -.14785.0 -1.132 .1092 .0000* .14115.4 -1.001 .0855 .4546+ .09915.6 -.916 .0697 .6296+ .07545.8 -.844 .0538 .6530+ .05476.0 -.782 .0379 .5603+ .03656.2 -.729 .0222 .3785+ .02046.3 -.706 .0145 .2611+ ..01306.4 -.683 .6822+ .1292. .5987+6.5 -.66C -.1226+ -.0244+ -.1052+6.6 -.643 -.8266+ -.1702+ -.6968+6.8 -.607 -.0230 -.5060+ -.01877.0 -.575 -.0373 -.8670+ -.02937.2 -.547 -.0510 -.0124 -.03897.4 -.521 - .0645 -.0163 -.04787.6 -.498 -.0775 -.0202 -.05597.8 -.475 -.0900 -.0242 -.0633*8.0 -.458 -.1020 -.0280 -.07028.2 -. 44C -.1137 -.0319 -.07668.4 -.423 -.1250 -.0357 -.0825*8.6 -.410 -.1358 -.0393 -.0881*8.8 -.395 -.1463 -.0430 -.09329.0 -.383 -.1564 -.0465 -.09809.2 -.372 -.1662 -.0499 -.10269.4 -.361 -.1756 -.0532 -.10689.6 -.351 -.1846 -.0564 -.11089.8 -.342 -.1935 -.0595 -.114610.0 -.333 -.2018 -.0625 -.118110.2 -.325 -.2102 -.0655 -.121510.4 -.317 -.2181 -.0683 -.124710.6 -.310 -.2257 -.0710 -.127710.8 -.303 -.2332 -.0737 -.130611.0 -.297 -.2405 -.0762 -.1334*11.2 -.291 -.2475 -.0787 -.136011.4 -.285 -.2 542 -.0811 -.1385*11.6 -.279 -.2609 -.0835 -.140911.8 -.274 -.2671 -.0857 -.143112.0 -.269 -.2734 -.0879 -.145312.2 -.265 -.2794 -.0900 -.1474TECHNOMETRICS ?, VOL. 21, NO. 2, MAY 1979

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!