24.11.2012 Views

The vanna-volga method for implied volatilities (PDF - Risk.net

The vanna-volga method for implied volatilities (PDF - Risk.net

The vanna-volga method for implied volatilities (PDF - Risk.net

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

cutting edge. option pricing<br />

Maintaining the assumption of flat but stochastic <strong>implied</strong><br />

<strong>volatilities</strong>, the presence of three basic options in the market makes<br />

it possible to build a portfolio that zeroes out partial derivatives up<br />

to the second order. In fact, denoting respectively by D and x the<br />

t i<br />

units of the underlying asset and options with strikes K held at<br />

i<br />

BS BS time t and setting C (t) = C (t; Ki ), under diffusion dynamics <strong>for</strong><br />

i<br />

both S and s = s , we have by Itô’s lemma:<br />

t t<br />

dC BS t; K<br />

40 risk South Africa Autumn 2007<br />

( ) − ∆t dSt − ∑ xidC i<br />

( )<br />

= ∂C BS ⎡ t; K<br />

⎢<br />

⎣⎢<br />

∂t<br />

( )<br />

+ ∂C BS ⎡ t; K<br />

⎢<br />

⎣⎢<br />

∂S<br />

+ 1 ⎡<br />

⎢<br />

2 ⎣⎢<br />

+ 1 ⎡<br />

⎢<br />

2 ⎣⎢<br />

( )<br />

+ ∂C BS ⎡ t; K<br />

⎢<br />

⎣⎢<br />

∂σ<br />

⎡<br />

⎢<br />

⎣⎢<br />

( )<br />

∂S 2<br />

∂ 2 C BS t; K<br />

( )<br />

∂σ 2<br />

∂ 2 C BS t; K<br />

( )<br />

+ ∂2 C BS t; K<br />

∂S∂σ<br />

3<br />

∑<br />

− x i<br />

i=1<br />

3<br />

∑<br />

3<br />

i=1<br />

− ∆ t − x i<br />

3<br />

∑<br />

i=1<br />

− x i<br />

i=1<br />

3<br />

∑<br />

− x i<br />

i=1<br />

3<br />

∑<br />

− x i<br />

i=1<br />

3<br />

∑<br />

− x i<br />

i=1<br />

( )<br />

BS<br />

∂Ci t<br />

∂t<br />

( )<br />

BS t<br />

BS<br />

∂Ci t<br />

∂S<br />

( )<br />

BS<br />

∂Ci t<br />

∂σ<br />

⎤<br />

⎥ dt<br />

⎦⎥<br />

( )<br />

⎤<br />

⎥<br />

⎦⎥<br />

( )<br />

∂ 2 BS<br />

Ci t<br />

∂S 2<br />

( )<br />

∂ 2 BS<br />

Ci t<br />

∂σ 2<br />

( )<br />

∂ 2 BS<br />

Ci t<br />

∂S∂σ<br />

⎤<br />

⎥<br />

⎦⎥<br />

dσ t<br />

⎤<br />

⎥<br />

⎦⎥<br />

⎤<br />

⎥<br />

⎦⎥<br />

dS t<br />

( ) 2<br />

dS t<br />

( ) 2<br />

dσ t<br />

⎤<br />

⎥ dSt dσ t<br />

⎦⎥<br />

Choosing D t and x i so as to zero out the coefficients of dS t , ds t ,<br />

(ds t ) 2 and dS t ds t , 5 the portfolio comprises a long position in the<br />

call with strike K, and short positions in x i calls with strike K i and<br />

short the amount D t of the underlying, and is locally risk-free at<br />

time t, in that no stochastic terms are involved in its differential 6 :<br />

dC BS t; K<br />

= r d C BS ⎡<br />

⎢ t; K<br />

⎣<br />

( ) − ∆t dSt − ∑ xidC i<br />

3<br />

i=1<br />

( ) − ∆t St − ∑ xiC i<br />

3<br />

i=1<br />

( )<br />

BS t<br />

( )<br />

BS t<br />

⎤<br />

⎥<br />

⎦<br />

dt<br />

<strong>The</strong>re<strong>for</strong>e, when volatility is stochastic and options are valued<br />

with the BS <strong>for</strong>mula, we can still have a (locally) perfect hedge,<br />

provided that we hold suitable amounts of three more options to<br />

rule out the model risk. (<strong>The</strong> hedging strategy is irrespective of<br />

the true asset and volatility dynamics, under the assumption of<br />

no jumps.)<br />

n Remark 1. <strong>The</strong> validity of the previous replication argument<br />

may be questioned because no stochastic-volatility model can<br />

produce <strong>implied</strong> <strong>volatilities</strong> that are flat and stochastic at the same<br />

time. <strong>The</strong> simultaneous presence of these features – though<br />

inconsistent from a theoretical point of view – can, however, be<br />

justified on empirical grounds. In fact, the practical advantages of<br />

the BS paradigm are so clear that many <strong>for</strong>eign-exchange option<br />

traders run their books by revaluing and hedging according to a<br />

BS flat-smile model, with the ATM volatility being continuously<br />

updated to the actual market level. 7<br />

<strong>The</strong> first step in the VV procedure is the construction of the<br />

above hedging portfolio, whose weights x i are explicitly calculated<br />

in the following section.<br />

(2)<br />

(3)<br />

Calculating the VV weights<br />

We assume hereafter that the constant BS volatility is the ATM<br />

one, thus setting s = s 2 (= s ATM ). We also assume that t = 0,<br />

dropping accordingly the argument t in the call prices. From (2),<br />

we see that the weights x 1 = x 1 (K), x 2 = x 2 (K) and x 3 = x 3 (K), <strong>for</strong><br />

which the resulting portfolio of European-style calls with<br />

maturity T and strikes K 1 , K 2 and K 3 has the same vega, ∂Vega/<br />

∂Vol and ∂Vega/∂Spot as the call with strike K, 8 can be found by<br />

solving the following system:<br />

∂<br />

( ) = ( )<br />

∂<br />

∂<br />

C<br />

K ∑ x K<br />

∂<br />

C<br />

i<br />

s s<br />

2<br />

∂ C<br />

∂s<br />

2<br />

BS<br />

BS<br />

2<br />

∂ C<br />

∂ ∂<br />

BS<br />

3<br />

i=<br />

1<br />

3<br />

( ) = ∑<br />

i=<br />

1<br />

s S0 i=<br />

1<br />

BS<br />

C<br />

K xi<br />

( K ) ∂<br />

∂s<br />

3<br />

BS<br />

( K )<br />

i<br />

( K )<br />

∂ C<br />

( K ) = ∑ xi ( K )<br />

∂ ∂S<br />

K<br />

s<br />

2<br />

2<br />

2<br />

BS<br />

0<br />

i<br />

( )<br />

Denoting by V(K) the vega of a European-style option with<br />

maturity T and strike K:<br />

BS<br />

∂C<br />

V ( K ) =<br />

∂σ K<br />

( ) = S 0 e− r f T T ϕ d1 K<br />

2<br />

( σ )T<br />

d1 ( K ) = ln S0 K + r d − r f + 1<br />

2<br />

σ T<br />

i<br />

( ( ) )<br />

where j(x) = Φ′(x) is the normal density function, and calculating<br />

the second-order derivatives:<br />

2<br />

BS<br />

( )<br />

∂ C<br />

2<br />

∂<br />

K<br />

( K ) = d1 K d2 K<br />

2<br />

∂ C<br />

( ) = −<br />

∂ ∂S<br />

K<br />

s<br />

V<br />

s<br />

BS V ( K )<br />

d2 ( K )<br />

s S s T<br />

0<br />

( ) = ( ) −<br />

d K d K s T<br />

2 1<br />

we can prove the following.<br />

0<br />

( ) ( )<br />

n Proposition 1. <strong>The</strong> system (4) admits a unique solution, which<br />

is given by:<br />

x K<br />

1<br />

x K<br />

2<br />

( ) =<br />

( ) =<br />

( ) =<br />

x K<br />

3<br />

( )<br />

( )<br />

V K<br />

V K<br />

1<br />

( )<br />

( )<br />

V K<br />

V K<br />

2<br />

( )<br />

( )<br />

V K<br />

V K<br />

3<br />

K2<br />

K<br />

K3<br />

K<br />

K2<br />

K1<br />

K3<br />

K1<br />

ln ln<br />

ln ln<br />

ln ln<br />

K<br />

K1<br />

K2<br />

K1<br />

ln ln<br />

ln ln<br />

K3<br />

K<br />

K3<br />

K2<br />

K<br />

K1<br />

K<br />

K2<br />

K3<br />

K1<br />

K3<br />

K2<br />

ln ln<br />

In particular, if K = K j then x i (K) = 1 <strong>for</strong> i = j and zero<br />

otherwise.<br />

<strong>The</strong> VV option price<br />

We can now proceed to the definition of an option price that is<br />

consistent with the market prices of the basic options.<br />

<strong>The</strong> above replication argument shows that a portfolio<br />

5 <strong>The</strong> coefficient of (dSt ) 2 will be zeroed accordingly, due to the relation linking an option’s gamma and<br />

vega in the BS world.<br />

6 We also use the BS partial differential equation.<br />

7 ‘Continuously’ typically means a daily or slightly more frequent update.<br />

8 This explains the name assigned to the smile-construction procedure, given the meaning of the terms<br />

<strong>vanna</strong> and <strong>volga</strong>.<br />

(4)<br />

(5)<br />

(6)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!