24.11.2012 Views

AAAMSA: Selection guide for glazed architectural ... - Specifile on-line

AAAMSA: Selection guide for glazed architectural ... - Specifile on-line

AAAMSA: Selection guide for glazed architectural ... - Specifile on-line

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

- -<br />

<str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> Fenestrati<strong>on</strong><br />

<str<strong>on</strong>g>Selecti<strong>on</strong></str<strong>on</strong>g> Guide <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

Glazed Architectural Products<br />

introducing<br />

Energy Efficiency in Fenestrati<strong>on</strong><br />

June 2008<br />

Versi<strong>on</strong> 1.0<br />

Administered by<br />

<str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g><br />

Group<br />

P 0 Box 7861, Halfway House, 1685


ASSOCIATION OF ARCHITECTURAL ALUMINIUM MANUFACTURERS OF SOUTH AFRICA<br />

Trading as the <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> Group<br />

Registrati<strong>on</strong> #: 1974/00006/08<br />

Associati<strong>on</strong> Incorporated under Secti<strong>on</strong> 21<br />

P O Box 7861<br />

HALFWAY HOUSE<br />

1685<br />

� (011) 805-5002<br />

Fax: (011) 805-5033<br />

e-mail: aaamsa@iafrica.com<br />

additi<strong>on</strong>al e-mail: sagga@aaamsa.co.za<br />

web-site: www.aaamsa.co.za<br />

ACKNOWLEDGEMENTS<br />

Aluminium Verlag – Düsseldorf: Fensterbau mit Aluminium – Walter Schmidt<br />

American Architectural Manufacturers Associati<strong>on</strong>: Metal Curtain Walls/Windows and Sliding Glass<br />

Doors/Aluminium Store Fr<strong>on</strong>t and Entrances/Skylights and Space Enclosures<br />

ASTM Internati<strong>on</strong>al E1300-02 02<br />

K<strong>on</strong>inklijk Technicum PBNA: Staalc<strong>on</strong>tructies 43A.VR<br />

South African Bureau of Standards: SANS 10160, SANS 10137, SANS 10400 and SANS 204<br />

Southern African Institute of Steel C<strong>on</strong>structi<strong>on</strong>: Southern African Steel C<strong>on</strong>structi<strong>on</strong> Handbook<br />

Verlag Stahleisen M.B.H. Düsseldorf: Stahl im Hochbau<br />

Building Code Australia: : BCA 2007 Volume 1 & 2<br />

W.W. Nort<strong>on</strong> & Company: Window Systems <str<strong>on</strong>g>for</str<strong>on</strong>g> High Per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance Buildings<br />

Lawrence Berkeley Nati<strong>on</strong>al Laboratory: Therm/Windows/Resfen/Optics<br />

Nati<strong>on</strong>al Fenestrati<strong>on</strong> Rating Council: Procedure Manuals<br />

Note: This <str<strong>on</strong>g>Selecti<strong>on</strong></str<strong>on</strong>g> electi<strong>on</strong> Guide replaces the following <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> Publicati<strong>on</strong>s which are hereby withdrawn in their entirety:<br />

<str<strong>on</strong>g>Selecti<strong>on</strong></str<strong>on</strong>g> Guide <str<strong>on</strong>g>for</str<strong>on</strong>g> Glazed Architectural Aluminium Products: June 2004<br />

<str<strong>on</strong>g>Selecti<strong>on</strong></str<strong>on</strong>g> Guide <str<strong>on</strong>g>for</str<strong>on</strong>g> Door C<strong>on</strong>trols<br />

<str<strong>on</strong>g>Selecti<strong>on</strong></str<strong>on</strong>g> Guide <str<strong>on</strong>g>for</str<strong>on</strong>g> Accuracy of Installed Architectural Aluminium Products<br />

Quality Guide <str<strong>on</strong>g>for</str<strong>on</strong>g> Installed Architectural Aluminium Products<br />

1 ST Floor, Block 4<br />

C<strong>on</strong>structi<strong>on</strong> Park<br />

234 Alexandra Avenue<br />

Midrand<br />

1685<br />

Any in<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> c<strong>on</strong>tained in <str<strong>on</strong>g>Selecti<strong>on</strong></str<strong>on</strong>g> Guides of earlier dates, which c<strong>on</strong>tradicts with data c<strong>on</strong>tained in this manual, is<br />

in<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> superseded by this publicati publicati<strong>on</strong><br />

DISCLAIMER<br />

All in<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>, recommendati<strong>on</strong> or advice c<strong>on</strong>tained in this <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> Publicati<strong>on</strong> is given in good faith to the best of <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g>’s<br />

knowledge and based <strong>on</strong> current procedures in effect.<br />

Because actual use of <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> Publicati Publicati<strong>on</strong>s <strong>on</strong>s by the user is bey<strong>on</strong>d the c<strong>on</strong>trol of <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> such use is within the exclusive<br />

resp<strong>on</strong>sibility of the user. <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> cannot be held resp<strong>on</strong>sible <str<strong>on</strong>g>for</str<strong>on</strong>g> any loss incurred through incorrect or faulty use of its Pu Publicati<strong>on</strong>s.<br />

Great care has been taken to ensure t hat the in<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> provided is correct. No resp<strong>on</strong>sibility will be accepted by<br />

<str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g> any errors and/or omissi<strong>on</strong>s, which may have inadvertently occurred.<br />

This Guide may be reproduced in whole or in part in any <str<strong>on</strong>g>for</str<strong>on</strong>g>m or by any means provided the reprod reproducti<strong>on</strong> or transmissi<strong>on</strong><br />

acknowledges the origin and copyright date.<br />

Copyright © <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> 2008<br />

<str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> – June 2008


CONTENTS<br />

Chapter I General Specificati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> Glazed Architectural Products<br />

1. General Specificati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> Glazed Architectural Products<br />

1.1 Materials<br />

1.2 Finishes<br />

1.3 C<strong>on</strong>structi<strong>on</strong><br />

1.4 Manufacture<br />

1.5 Fittings<br />

1.6 Installati<strong>on</strong><br />

1.7 Inspecti<strong>on</strong><br />

1.8 Quality Assurance<br />

Chapter II Testing Procedures <str<strong>on</strong>g>for</str<strong>on</strong>g> Glazed Architectural Products<br />

2. <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> Test Rigs<br />

2.1 Mechanical Per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance Testing<br />

2.2 <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> Per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance Test Criteria<br />

2.3 <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> Per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance Test Certificates<br />

2.4 Testing Procedure and Sequence<br />

2.5 Energy Efficiency Per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance Testing<br />

2.6 Energy Efficiency Per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance - Computer Simulati<strong>on</strong> Programs<br />

Chapter III Design<br />

3. Design<br />

3.1 Introducti<strong>on</strong><br />

3.2 Design – Deemed Deemed-to-Satisfy Rules<br />

3.3 <str<strong>on</strong>g>Selecti<strong>on</strong></str<strong>on</strong>g> of Aluminium Alloy Extrusi<strong>on</strong>s<br />

3.4 Determinati<strong>on</strong> of Glass Thickness - Rati<strong>on</strong>al Design<br />

3.5 Plastics – Rati<strong>on</strong>al Design<br />

Chapter IV <str<strong>on</strong>g>Selecti<strong>on</strong></str<strong>on</strong>g> of Glazing Materials<br />

4. <str<strong>on</strong>g>Selecti<strong>on</strong></str<strong>on</strong>g> of Types of Glazing Materials<br />

4.1 Introducti<strong>on</strong><br />

4.2 Per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance of Glass Products<br />

4.3 Sound Insulati<strong>on</strong><br />

4.4 Energy Related Properties of Windows<br />

4.5 Determining Energy Related Properties of Windows<br />

4.6 Exposure to Fire and Per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance of Glazing<br />

Chapter V Glazing<br />

5. <str<strong>on</strong>g>Selecti<strong>on</strong></str<strong>on</strong>g> of Glazing Methods<br />

5.1 Setting and LLocati<strong>on</strong><br />

Blocks<br />

5.2 Pre<str<strong>on</strong>g>for</str<strong>on</strong>g>med Compressi<strong>on</strong> Gaskets<br />

5.3 Structural Glazing (a.k.a. flush glazing)<br />

5.4 UV B<strong>on</strong>ding<br />

5.5 Preventi<strong>on</strong> of Thermal Cracks of Glass<br />

Page 1<br />

Page<br />

7<br />

8<br />

8<br />

8<br />

9<br />

10<br />

10<br />

10<br />

10<br />

11<br />

13<br />

14<br />

14<br />

14<br />

15<br />

15<br />

20<br />

21<br />

23<br />

24<br />

24<br />

25<br />

28<br />

34<br />

51<br />

57<br />

58<br />

58<br />

58<br />

59<br />

59<br />

62<br />

66<br />

67<br />

68<br />

68<br />

68<br />

69<br />

71<br />

71


CONTENTS<br />

Chapter VI Hardware and Door C<strong>on</strong>trols<br />

6. Hardware and Fixings<br />

6.1 Sash Limitati<strong>on</strong>s<br />

6.2 Fricti<strong>on</strong> Stay Limitati<strong>on</strong>s<br />

6.3 Aluminium Fricti<strong>on</strong> Hinge Limitati<strong>on</strong>s<br />

6.4 Door C<strong>on</strong>trols<br />

6.5 Special Doors<br />

6.6 Generic Fenestrati<strong>on</strong> Hardware<br />

Chapter VII Surface Finishes<br />

7. <str<strong>on</strong>g>Selecti<strong>on</strong></str<strong>on</strong>g> of Finishes<br />

7.1 Anodising<br />

7.2 Powder Coating<br />

7.3 Internati<strong>on</strong>al Quality Standards<br />

7.4 Coil Coating<br />

7.5 Maintenance of Surface Finishes<br />

7.6 Cleaning of Anodic Coatings <strong>on</strong> Architectural Aluminium<br />

7.7 Cleaning of Powder Coatings <strong>on</strong> Architectural Aluminium<br />

Chapter VIII Skylights<br />

109<br />

8. General Specificati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> Skylights<br />

110<br />

8.1 Materials<br />

110<br />

8.2 Finishes<br />

111<br />

8.3 C<strong>on</strong>structi<strong>on</strong><br />

111<br />

8.4 Manufacture<br />

112<br />

8.5 Fittings<br />

112<br />

8.6 Installati<strong>on</strong><br />

112<br />

8.7 Quality Assurance<br />

113<br />

8.8 Design Guide<strong>line</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> Aluminium Framed ramed Skylights and Sloped Glazing 113<br />

8.9 Properties <str<strong>on</strong>g>for</str<strong>on</strong>g> Specialized Plastic Glazing Materials<br />

118<br />

Chapter IX Balustrades<br />

9. Balustrades<br />

9.1 Design criteria <str<strong>on</strong>g>for</str<strong>on</strong>g> Balustrades<br />

9.2 Residential applicati<strong>on</strong> other than Roofs<br />

9.3 Places of Public Assembly other than Grandstands and to roofs to which the<br />

Public has access<br />

9.4 Grandstands<br />

9.5 Industrial Buildings<br />

9.6 Prescribed Height<br />

9.7 Allowable Deflecti<strong>on</strong><br />

9.8 Balustrade with Vertical Members<br />

9.9 Balustrade with Safety Glazing Materials<br />

Page 2<br />

Page<br />

75<br />

76<br />

76<br />

76<br />

77<br />

77<br />

82<br />

94<br />

101<br />

102<br />

102<br />

102<br />

103<br />

103<br />

104<br />

104<br />

106<br />

121<br />

122<br />

122<br />

122<br />

122<br />

122<br />

122<br />

123<br />

123<br />

123<br />

123


CONTENTS<br />

Chapter X Quality Assurance: Inspecti<strong>on</strong> Guide<strong>line</strong>s and Certificati<strong>on</strong><br />

10. Guide <str<strong>on</strong>g>for</str<strong>on</strong>g> Accuracy of Installed Architectural Aluminium Products<br />

10.1 Inherent Dimensi<strong>on</strong>al Inaccuracies<br />

10.2 Induced Dimensi<strong>on</strong>al Inaccuracies<br />

10.3 General<br />

10.4 Quality Guide <str<strong>on</strong>g>for</str<strong>on</strong>g> Installed Architectural Aluminium Products<br />

10.5 Quality Assurance<br />

Chapter XI Energy Efficient Fenestrati<strong>on</strong>: Deemed Deemed-to-Satisfy Rules<br />

11.1 Introducti<strong>on</strong><br />

11.2 Deemed-to-Satisfy Satisfy Rules <str<strong>on</strong>g>for</str<strong>on</strong>g> Energy Efficient Fenestrati<strong>on</strong><br />

11.3 Climatic Z<strong>on</strong>es of South Africa<br />

11.4 External Vertical Glazing<br />

11.4.1 Method 1: For Natural Ventilated Buildings<br />

11.4.2 Method 2: For Mechanical Ventilated Buildings<br />

11.5 Shading<br />

7 11.6 Permissible Air Leakage<br />

11.7 Rooflights<br />

Chapter XII SAFIERA Testing Protocol<br />

12. SAFIERA Testing Protocol<br />

12.1 Introducti<strong>on</strong><br />

12.2 References<br />

12.3 Aim<br />

12.4 Purpose<br />

12.5 Scope<br />

12.6 Products and Effect Effects not covered<br />

12.7 Model Size and C<strong>on</strong>figurati<strong>on</strong>s<br />

12.8 Applicati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> Testing<br />

12.9 Rating<br />

ANNEX A Envir<strong>on</strong>mental Comparis<strong>on</strong> of Window Materials (Carb<strong>on</strong> Footprint)<br />

A.1 Introducti<strong>on</strong><br />

A.2 Window Materials<br />

A.3 Energy of Use<br />

A.4 C<strong>on</strong>clusi<strong>on</strong>s<br />

A.5 References<br />

Page 3<br />

Page<br />

125<br />

126<br />

126<br />

126<br />

128<br />

129<br />

132<br />

139<br />

140<br />

140<br />

140<br />

141<br />

141<br />

145<br />

149<br />

151<br />

151<br />

153<br />

154<br />

154<br />

154<br />

156<br />

156<br />

156<br />

157<br />

157<br />

157<br />

158<br />

159<br />

160<br />

160<br />

162<br />

163<br />

163


The Associati<strong>on</strong> of Architectural Aluminium Manufacturers of South Africa (<str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g>) was founded by eight<br />

companies in July 1974 to foster trade and commerce in relati<strong>on</strong> to those pers<strong>on</strong>s associated in the manufacture and<br />

installati<strong>on</strong> of <str<strong>on</strong>g>architectural</str<strong>on</strong>g> aluminium structures. Its main objective is to promote commercial and group interest.<br />

Currently the <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> Group administers, beside the <str<strong>on</strong>g>architectural</str<strong>on</strong>g> aluminium industry, the glass, ceiling and<br />

partiti<strong>on</strong>ing and insulati<strong>on</strong> industries rep represented by the following Associati<strong>on</strong>s.<br />

Aluminium<br />

Industry<br />

SAFIERA SAGI<br />

South African Fenestrati<strong>on</strong><br />

South African<br />

Insulati<strong>on</strong> Energy Rating Associati<strong>on</strong><br />

Glass Institute<br />

Glass<br />

Industry<br />

<str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> Fenestrati<strong>on</strong> SAGGA TIASA<br />

Associati<strong>on</strong> of Architectural South African Glass<br />

Thermal Insulati<strong>on</strong> Associati<strong>on</strong> of<br />

Aluminium Manufacturers<br />

of South Africa<br />

& Glazing Associati<strong>on</strong><br />

Southern Africa<br />

ASDA SASEMA EPSASA<br />

Aluminium Stockists & South African Shower Enclosure Expanded Polystyrene Associati<strong>on</strong><br />

Distributors Associati<strong>on</strong> Manufacturers Associati<strong>on</strong><br />

of Southern Africa<br />

SASA<br />

Skylight Associati<strong>on</strong><br />

of Southern Africa<br />

THE <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> GROUP<br />

The <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> Group has established in house testing facilities to test certain material properties <str<strong>on</strong>g>for</str<strong>on</strong>g> Expanded<br />

Polystyrene and has external testing facilities in Cape Town, Durban, Port Elizabeth and Johannesburg to test<br />

<str<strong>on</strong>g>architectural</str<strong>on</strong>g> aluminium products in respect of their structural strength, water penetrati<strong>on</strong> and air leakage. Results of<br />

testing by members is bi-m<strong>on</strong>thly m<strong>on</strong>thly updated and published in the abovementi<strong>on</strong>ed Architect & Specificator magazine to<br />

assist specifiers to select appropriate materials and pro products <str<strong>on</strong>g>for</str<strong>on</strong>g> projects.<br />

The South African Fenestrati<strong>on</strong> and Insulati<strong>on</strong> Energy Rating Associati<strong>on</strong> (SAFIERA)<br />

Testing, c<strong>on</strong>ducted at the Associati<strong>on</strong>’s Rotatable Guarded Hot Box facility, situated at Unit 28, CSIR, Lynnwood,<br />

Pretoria. The testing is c<strong>on</strong>ducted by the Thermal Test Laboratory (TTL) under the auspices of SAFIERA, in strict<br />

accordance with the methods 1 The South African Fenestrati<strong>on</strong> and Insulati<strong>on</strong> Energy Rating Associati<strong>on</strong> (SAFIERA) facilitate Energy Per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance<br />

Testing, c<strong>on</strong>ducted at the Associati<strong>on</strong>’s Rotatable Guarded Hot Box facility, situated at Unit 28, CSIR, Lynnwood,<br />

The testing is c<strong>on</strong>ducted by the Thermal Test Laboratory (TTL) under the auspices of SAFIERA, in strict<br />

prescribed by the Nati<strong>on</strong>al Fenestrati<strong>on</strong> Rating Council (NFRC) of America. SAFIERA is<br />

the South African License holder of the NFRC Rating System and the test results obtained by RGHB testing are<br />

internati<strong>on</strong>ally recognized.<br />

1 Since U-values values (thermal transmittance values) vary <str<strong>on</strong>g>for</str<strong>on</strong>g> glass, edge edge-of-glass glass z<strong>on</strong>e, and frame regi<strong>on</strong>s, it can be misleading to compare<br />

the U-factors factors of windows from different manufacturers if they are not carefully and c<strong>on</strong>sistently described. The calculati<strong>on</strong> and testing<br />

methods developed by the NFRC address this c<strong>on</strong>cern.<br />

Page 4<br />

Insulati<strong>on</strong><br />

Industry<br />

TPMA<br />

Thermal Panel<br />

Manufacturers Associati<strong>on</strong><br />

Ceiling & Partiti<strong>on</strong>ing<br />

Industry<br />

SABISA<br />

South African Building<br />

Interior Systems Associati<strong>on</strong>


PREFACE<br />

This <str<strong>on</strong>g>Selecti<strong>on</strong></str<strong>on</strong>g> Guide refers to the design, manufacture, finishes, glass, glazing, installati<strong>on</strong>, testing and quality<br />

c<strong>on</strong>trol of Glazed Architectural Products.<br />

This <str<strong>on</strong>g>Selecti<strong>on</strong></str<strong>on</strong>g> Guide has been prepared to assist the Specifier in the first instance to select products that are<br />

sufficiently str<strong>on</strong>g and resistant to water and air infiltrati<strong>on</strong> to meet the requirements <str<strong>on</strong>g>for</str<strong>on</strong>g> the specific job and<br />

related ted c<strong>on</strong>diti<strong>on</strong>s at hand. It also introduces recommendati<strong>on</strong>s of the correct usage of glazing materials in<br />

furniture.<br />

This <str<strong>on</strong>g>Selecti<strong>on</strong></str<strong>on</strong>g> Guide offers Energy Efficiency soluti<strong>on</strong>s <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>glazed</str<strong>on</strong>g> Architectural Products. It will assist the<br />

Specifier, in particular the Architect, to determine suitable glazing soluti<strong>on</strong>s to maximize the Energy Efficiency<br />

per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance of the building.<br />

Most importantly this <str<strong>on</strong>g>Selecti<strong>on</strong></str<strong>on</strong>g> Guide offers steps which, when implemented by the Specifier/Client, ensure that<br />

quality end products are installed alled thus creating c<strong>on</strong>fidence that any funding spent <strong>on</strong> Glazed Architectural Products<br />

is spent resp<strong>on</strong>sibly.<br />

This <str<strong>on</strong>g>Selecti<strong>on</strong></str<strong>on</strong>g> Guide will <str<strong>on</strong>g>guide</str<strong>on</strong>g> the manufacturer through the relevant SANS standards pertaining to design,<br />

finishes, glass and glazing by means of recommended general practices to ensure reliability of the end products<br />

and compliance with the requirements laid down by the Nati<strong>on</strong>al Building Regulati<strong>on</strong>s.<br />

In additi<strong>on</strong> the introducti<strong>on</strong> of the <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> Surface Finishing and Glass & Glazing Certificates wil will go a l<strong>on</strong>g<br />

way in assisting Specifiers to track and record material and services sources l<strong>on</strong>g after final handover. The<br />

Certificates may prove invaluable when compiling the relevant maintenance manuals.<br />

The following steps by the Specifier will ensure tthat<br />

hat quality end products are installed.<br />

i) Prior rior to the commencement of any site work obtain a copy of relevant <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> Per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance Test<br />

Certificate (Refer Chapter II and X) from the Manufacturer/C<strong>on</strong>tractor supplying the Architectural<br />

Aluminium Product. (Note! Only Certificates validated after 15 January 2003 are current).<br />

ii) Obtain the <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> Surface Finishing Certificate c<strong>on</strong>firming that all anodising and/or powder coating has<br />

been processed in strict accordance with SANS 999 and SANS 1796 respectively.<br />

iii) Obtain a powder guarantee of no less than 15 years issued by the powder manufacturer. The specific<br />

c<strong>on</strong>diti<strong>on</strong>s c<strong>on</strong>tained in this guarantee shall from part of the powder coating process and may <strong>on</strong>ly be applied<br />

by an approved powder applicator.<br />

iv) Obtain the <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> AAMSA Glass & Glazing Certificate c<strong>on</strong>firming that glazing has been installed in accordance<br />

with SANS 10137 ensuring that Safety Glazing Materials have been installed in the mandatory areas and that<br />

each individual pane of Safety Glazing Materials has been permanently marked.<br />

v) Obtain a Warranty from the Manufacturer of the laminated safety glass and/or hermetically sealed glazing<br />

units (SIGU) warranting the products against delaminati<strong>on</strong> and colour degradati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> a period of not less than<br />

5 years.<br />

vi) In terms of the C<strong>on</strong>structi<strong>on</strong> Regulati<strong>on</strong>s 2003, obtain the following <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> Certificates which facilitate<br />

documenting materials used in the manufacture and installati<strong>on</strong> of Architectural Aluminium Products.<br />

Page 5


Page 6


CHAPTER I<br />

GENERAL SPECIFICATION<br />

FOR<br />

GLAZED ARCHITECTURAL PRODUCTS<br />

Page 7


1. GENERAL SPECIFICATION FOR GLAZED ARCHITECTURAL PRODUCTS<br />

1.1. MATERIALS<br />

1.1.1 EXTRUSIONS<br />

Extruded aluminium secti<strong>on</strong>s shall be fabricated from alloy 6063 or 6061 in temper T5 or T6 all in accordance with the<br />

latest editi<strong>on</strong> of BS EN 755 - "Aluminium and its alloys – extruded rod/bar, tube and profiles."<br />

The extruded secti<strong>on</strong> shall be of such quality and strength that the secti<strong>on</strong> properties of the load bearing profiles meet the<br />

requirements as laid down in Secti<strong>on</strong> 1.3.<br />

1.1.2 SHEET<br />

Ancillary members such as sills, flashings, infill panels and the like which may be <str<strong>on</strong>g>for</str<strong>on</strong>g>med from flat sheet material shall<br />

be fabricated from aluminium uminium alloy 1200 or 3004 or 5251 of appropriate temper, all in accordance with the latest editi<strong>on</strong><br />

of BS EN 573 - "Aluminium and Aluminium Alloys."<br />

1.1.3 GLASS & GLAZING<br />

Glass/specialized plastic glazing materials shall be ........ (Architect to specify).<br />

Glazing shall be executed strictly in c<strong>on</strong><str<strong>on</strong>g>for</str<strong>on</strong>g>mance with glass manufacturer's recommendati<strong>on</strong>s and all in accordance with<br />

the Nati<strong>on</strong>al Building Regulati<strong>on</strong>s Part N, SANS 10137, SANS 10400 and SANS 1263.<br />

All safety glazing materials terials (individual panes) shall be permanently marked in such a way that such marking will be<br />

visible after installati<strong>on</strong> of glazing.<br />

The successful Tenderer shall submit the <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> Glass & Glazing Certificate c<strong>on</strong>firming that glazing has been<br />

installed in accordance with SANS 10137 and SANS 10400 and ensuring that Safety Glazing Materials have been<br />

installed and individually marked in the mandatory safety glazing areas.<br />

A warranty is to be provided that the manufacturer of the laminated safety glass and/or the hermetically sealed glazing<br />

units warrants the product against delaminati<strong>on</strong> and colour degradati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> a period of not less than 5 (five) years.<br />

In case of structural glazing written proof is to be provided that all stages of fabricati<strong>on</strong> and in installati<strong>on</strong> have been<br />

executed with discip<strong>line</strong>d quality assurance in accordance with the relevant part of SABS ISO 9000.<br />

Written c<strong>on</strong>firmati<strong>on</strong> of compatibility of structural sealant with extrusi<strong>on</strong> surface, glazing tape and glass is to be supplied<br />

by the structural tructural sealant manufacturer together with the regular relevant test reports regarding the adhesi<strong>on</strong> of the sealant<br />

to the aluminium frame in accordance with ASTM/C 794 794-80 (Standard Test <str<strong>on</strong>g>for</str<strong>on</strong>g> Adhesi<strong>on</strong>--in-Peel<br />

of Elastomeric Joint<br />

Sealants).<br />

1.2. FINISHES<br />

The successful tenderer shall submit the <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> Surface Finishing Certificate c<strong>on</strong>firming that all anodising and/or<br />

powder coating and/or coil coating has been processed in accordance with relevant local and/or internati<strong>on</strong>al standards.<br />

1.2.1 ANODISING<br />

All <str<strong>on</strong>g>architectural</str<strong>on</strong>g> anodising shall be in strict accordance with SANS 999. Specificati<strong>on</strong>s shall include colour, anodic film<br />

thickness (µ) ) and geographical locati<strong>on</strong>.<br />

The specific purchasing c<strong>on</strong>diti<strong>on</strong>s c<strong>on</strong>tained in SANS 999 shall be deemed to be incorporate incorporated in this specificati<strong>on</strong>.<br />

A Certificate of c<strong>on</strong><str<strong>on</strong>g>for</str<strong>on</strong>g>mance is to be <str<strong>on</strong>g>for</str<strong>on</strong>g>warded, c<strong>on</strong>firming that all anodising has been processed as a<str<strong>on</strong>g>for</str<strong>on</strong>g>ementi<strong>on</strong>ed.<br />

1.2.2 POWDER COATING<br />

All <str<strong>on</strong>g>architectural</str<strong>on</strong>g> powder coating shall be in strict accordance with SANS 1796. Furthermo Furthermore re the powder applied shall be<br />

in strict accordance with SANS 1578. Specificati<strong>on</strong>s shall include colour, colour code, and if required, choice of powder<br />

manufacturer.<br />

Page 8


The specific purchasing c<strong>on</strong>diti<strong>on</strong>s c<strong>on</strong>tained in SANS 1796 shall be deemed to be incorporated in this specificati<strong>on</strong>.<br />

The powder manufacturer shall issue a powder guarantee of a minimum of 15 years. The specific c<strong>on</strong>diti<strong>on</strong>s c<strong>on</strong>tained in<br />

this guarantee, shall <str<strong>on</strong>g>for</str<strong>on</strong>g>m part of the powder coating “process” and may <strong>on</strong>ly be applied by an approv approved powder<br />

applicator.<br />

All aluminium shall be pre-treated treated in accordance with SANS 1796 so as to ensure excellent adherence properties.<br />

1.2.3 COIL COATING (Painted Aluminium Sheet)<br />

All coil coating of <str<strong>on</strong>g>architectural</str<strong>on</strong>g> aluminium flat sheet products shall be in stri strict ct accordance with:<br />

ASTM D2247 in respect of Humidity Resistance<br />

ASTM G53 and ASTM D3361 in respect of Accelerated Weathering<br />

ASTM B117 in respect of Acid Salt Spray<br />

ASTM D4145 in respect of Formability<br />

ASTM D3363 in respect of Pencil Hardness<br />

ASTM D523 in respect of Specular Gloss<br />

ASTM D2794 in respect of Reverse Impact<br />

All coil coated <str<strong>on</strong>g>architectural</str<strong>on</strong>g> aluminium flat products are to be provided with a manufacturer’s extended guarantee in<br />

respect of substrate and painted surface (20 (20-years subject to manufacturers turers per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance guarantee c<strong>on</strong>diti<strong>on</strong>s).<br />

1.3. CONSTRUCTION<br />

1.3.1 DESIGN<br />

1.3.1.1 The Design Wind pressure is .... (Architect and/or Structural Engineer to provide). Alternatively the Specifier<br />

may select the relevant <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> Per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance Class Designati<strong>on</strong> according Table 1.1.<br />

TABLE 1.1: <str<strong>on</strong>g>Selecti<strong>on</strong></str<strong>on</strong>g> table <str<strong>on</strong>g>for</str<strong>on</strong>g> Wind Load and <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> Per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance Class Designati<strong>on</strong><br />

Terrain Category as per SANS 10160<br />

Height from ground to top of products in Metres<br />

5 10 15 20<br />

Category 1 – Open Sea, lake shores and flat treeless plains<br />

A2<br />

1500Pa<br />

A3<br />

2000Pa<br />

A3<br />

2000Pa<br />

A3<br />

2000Pa<br />

Category 2 – Airfields, open parklands or farmlands and A2 A2 A3 A3<br />

undeveloped outskirts of towns and suburbs<br />

1500Pa 1500Pa 2000Pa 2000Pa<br />

Category 3 – Built-up areas<br />

A0<br />

600Pa<br />

A1<br />

1000Pa<br />

A1<br />

1000Pa<br />

A2<br />

1500Pa<br />

Category 4 – City Centres<br />

A0<br />

600Pa<br />

A1<br />

1000Pa<br />

A1<br />

1000Pa<br />

A2<br />

1500Pa<br />

A0, A1, A2 and A3 are <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> Per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance Class Designati<strong>on</strong>s – Minimum design criteria <str<strong>on</strong>g>for</str<strong>on</strong>g> internal work is 600Pa (A0).<br />

1.3.1.2 The plastic, shrinkage and creep deflecti<strong>on</strong>s of floor slabs are .... (Structural Engineer to provide this<br />

in<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> if relevant in case of curtain walling /window walling).<br />

1.3.1.3 Tenderers should allow <str<strong>on</strong>g>for</str<strong>on</strong>g> thermal movement due to an atmospheric tem temperature perature range of -10°C to 35°C.<br />

(Architect to c<strong>on</strong>firm).<br />

1.3.1.4 Opening vents are to be tested in accordance with <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> Per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance Test Criteria <str<strong>on</strong>g>for</str<strong>on</strong>g> per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance category<br />

.... (A0, A1, A2, A3 or A4 must be specified by Architect).<br />

Tenderers are to submit ubmit relevant <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> Per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance Test Certificate testifying that their products meet the<br />

requirements of the specified Per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance Class Designati<strong>on</strong> with their tenders, alternatively, prior to<br />

commencing work <strong>on</strong> site in case of n<strong>on</strong> n<strong>on</strong>-standard product c<strong>on</strong>figurati<strong>on</strong>s.<br />

Page 9


TABLE 1.2:<br />

Test<br />

Deflecti<strong>on</strong> (positive and<br />

negative) under uni<str<strong>on</strong>g>for</str<strong>on</strong>g>m loading<br />

Pa (the design wind load)<br />

Structural proof loading 1.5 x<br />

Uni<str<strong>on</strong>g>for</str<strong>on</strong>g>m loading<br />

Water resistance under a pressure<br />

of x Pa<br />

x=120Pa<br />

Air leakage through specimen<br />

under a pressure difference of<br />

75Pa<br />

(1) For fixed glazing y = 0,306 l/s per m 2 TABLE 1.2: <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> Test Per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance Criteria<br />

A0 A1<br />

Class Designati<strong>on</strong><br />

A2 A3 A4<br />

600Pa 1,000Pa 1,500Pa 2,000Pa 2,500Pa<br />

900Pa 1,500Pa 2,250Pa 3,000Pa 3,750Pa<br />

x=120Pa x=200Pa x=300Pa x=400Pa x=500Pa<br />

y = 2 y = 2 y = 2 y = 2 y = 2<br />

. For swing doors and revolving doors 5l/s/m<br />

(2) For spans greater than 4115mm, but less than 12,2m deflecti<strong>on</strong> shall be limited to 1/240<br />

2 (SANS 204:2)<br />

For spans greater than 4115mm, but less than 12,2m deflecti<strong>on</strong> shall be limited to 1/240 th A4<br />

Requirement<br />

Maximum<br />

2,500Pa deflecti<strong>on</strong> 1/175 of<br />

span<br />

of span plus 6mm.<br />

(2)<br />

3,750Pa No failure allowed<br />

x=500Pa<br />

No leakage when<br />

subjected to a flow<br />

of 0.05 l/s/m 2<br />

Not more than y =<br />

y = 2 l/s/m 2 <str<strong>on</strong>g>for</str<strong>on</strong>g> all<br />

categories (1)<br />

(SANS 204:2)<br />

of span plus 6mm.<br />

1.4 MANUFACTURE<br />

1.4.1 Joints in frames and sashes shall be made by mechanical means and are to be sealed to prevent water penetrati<strong>on</strong>.<br />

1.4.2 Final products shall be free from all sharp edges, burring and the like.<br />

1.4.3 Hardware and fittings shall be removable without removing the aluminium frames from the structure and must be<br />

compatible with the aluminium fr framing.<br />

1.4.4 Sliding members shall be c<strong>on</strong>structed so that no metal metal-to-metal sliding c<strong>on</strong>tact occurs.<br />

1.5 FITTINGS<br />

15.1 Weather seals shall be of materials that are compatible with aluminium and shall be such that any degradati<strong>on</strong>,<br />

shrinking, warping or adherence to sliding or closing surfaces does not impair the per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance of the installati<strong>on</strong>.<br />

1.5.2 Glazing beads, gaskets and glazing compounds shall be of materials that are compatible with the aluminium<br />

finishes, the glass and other glazing materials. Putty glazing is not to be used in c<strong>on</strong>juncti<strong>on</strong> with aluminium<br />

framing.<br />

1.5.3 Hardware, bearing devices and fittings in general must be made of materials resistant to atmospheric corrosi<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

all inland installati<strong>on</strong>s, but when installed in highly corros corrosive ive envir<strong>on</strong>ments, such as coastal or close proximity to<br />

the sea, all said fittings must be made from n<strong>on</strong> n<strong>on</strong>-corrosive corrosive materials and shall be of a design so as to be accessible<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g> adjustment, repair and replacement after the windows etc. have been installed.<br />

1.5.4 Fastenings shall be of material, which is compatible with aluminium, and aluminium finishes.<br />

1.6 INSTALLATION<br />

1.6.1 The aluminium frames and windows shall be installed such that they are securely anchored, sealed and undamaged<br />

and meet in all respects ects with the per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance criteria as set out in Secti<strong>on</strong> 1.3.<br />

1.6.2 The glass shall be installed strictly in accordance with the glass manufacturer's specificati<strong>on</strong>s.<br />

1.6.3 The frames and glass are to be installed in accordance with the main c<strong>on</strong>tractor's building programme and the<br />

exposed aluminium is to be protected by means of low tack adhesive tape against mortar droppings and other n<strong>on</strong>-<br />

mechanical damage.<br />

1.7 INSPECTION<br />

Inspecti<strong>on</strong> of installed frames and glass shall, am<strong>on</strong>gst others, be carried out according to the following criteria:<br />

1.7.1 SCRATCHES AND BLEMISHES<br />

This inspecti<strong>on</strong> will be viewed at a distance of three metres under normal lighting c<strong>on</strong>diti<strong>on</strong>s, i.e. reas<strong>on</strong>able lighting<br />

c<strong>on</strong>diti<strong>on</strong>s under which the project is normally viewed.<br />

Page 10


1.7.2 ALUMINIUM WORK<br />

Scratches in aluminium are defined as being a mark <strong>on</strong> the aluminium surface, which penetrates the powder, coated or<br />

anodised surface, thereby exposing the base metal.<br />

If visible when viewed from a distance of three metres under normal lighting c<strong>on</strong>diti<strong>on</strong>s, the product may be rejected.<br />

Flaws/Stains, paint runs or other indicati<strong>on</strong> that mars the aesthetic appearance of aluminium, which is visible when<br />

viewed from a distance of three metres under normal lighting c<strong>on</strong>diti<strong>on</strong>s, may cause the pr product oduct to be rejected.<br />

1.7.3 GLASS AND PLASTICS<br />

In laminated glass interlayer bubbles larger than 1.5mm diameter will not be allowed. Larger clusters or close spacing of<br />

smaller bubbles will also be disallowed.<br />

If visible when viewed from a distance of three metres under normal lighting c<strong>on</strong>diti<strong>on</strong>s scratches in glass and plastics<br />

will not be acceptable.<br />

1.8 QUALITY ASSURANCE<br />

1.8.1 PRIOR COMMENCEMENT OOF<br />

ANY SITE WORK:<br />

1.8.1.1 Obtain a copy of the appropriate <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> Per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance Test Certificate from the Manufacturer/Specialist<br />

C<strong>on</strong>tractor supplying/installing the Architectural Aluminium Products.<br />

1.8.1.2 Obtain a full set of detailed manufacturing drawings/manuals relevant to the installed products.<br />

1.8.2 UPON COMPLETION OF ALL LL SITE WORK (AT HAN HANDOVER)<br />

1.8.2.1 OBTAIN THE FOLLOWING CERTIFICATES:<br />

a) <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> Per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance Test Certificate<br />

b) <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> or SAGGA Glass & Glazing Certificate<br />

c) <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> Surface Finishing Certificate<br />

d) <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> or SASA Skylight System Certificate (when applicable)<br />

e) <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> Architectural Produ Product ct Certificate (in the event drawings are not provided)<br />

1.8.3 WARRANTIES<br />

1.8.3.1 POWDER COATED SURFAC SURFACE FINISH<br />

Obtain a warranty, from an approved powder coater, that the powder manufacturer guarantees his product <str<strong>on</strong>g>for</str<strong>on</strong>g> a minimum<br />

of 15 (fifteen) years.<br />

1.8.3.2 GLASS<br />

Obtain a warranty, from the manufacturer of the laminated safety glass and/or the hermetically sealed glazing units,<br />

against delaminati<strong>on</strong> and colour degradati<strong>on</strong> of the products <str<strong>on</strong>g>for</str<strong>on</strong>g> a period of not less than 5 (five) years.<br />

Page 11


Page 12


CHAPTER II<br />

TESTING PROCEDURES<br />

FOR<br />

GLAZED ARCHITECTURAL PRODUCTS<br />

Page 13


2. <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> TEST RIGS<br />

2.1 MECHANICAL PERFORMANCE TESTING<br />

Products submitted to the <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> Testing Laboratories <str<strong>on</strong>g>for</str<strong>on</strong>g> the purpose to obtain a relevant <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> Per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance<br />

Test Certificate shall be tested in accordance with the methods and sequence stated below:<br />

The <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> Test equipment is located at:<br />

TTL, Unit 28, CSIR Campus, Lynnwood, Pretoria<br />

Wispeco, 20 Eb<strong>on</strong>y Avenue, Durban<br />

PG Test Services, Unit 2, Bros Park, 29 Scheckter Street, Killarney Gardens, Cape Town<br />

NMMU, , North Campus, Summerstrand, Po Port Elizabeth<br />

Products tested by other independent nati<strong>on</strong>al (i.e. AGI Aluminium – Johannesburg) nnesburg) and internati<strong>on</strong>al testing authorities<br />

will qualify <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> accreditati<strong>on</strong> provided the products are manufactured by <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> members and meet the<br />

relevant <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> Test Per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance Requirements in every respect.<br />

2.2. <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> PERFORMANCE TEST CRITERIA<br />

2.2.1 The requirements laid down in Table 2.1 shall be the <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> Test Per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance Requirements to test and<br />

classify the products presented <str<strong>on</strong>g>for</str<strong>on</strong>g> testing:<br />

Page 14


Test<br />

Deflecti<strong>on</strong> (positive and<br />

negative) under uni<str<strong>on</strong>g>for</str<strong>on</strong>g>m<br />

loading Pa (the design<br />

wind load)<br />

Structural proof loading<br />

1.5 x Uni<str<strong>on</strong>g>for</str<strong>on</strong>g>m loading<br />

Water resistance under a<br />

pressure of x Pa<br />

600Pa 1,000Pa 1,500Pa 2,000Pa 2,500Pa<br />

900Pa 1,500Pa 2,250Pa 3,000Pa 3,750Pa<br />

x = 120Pa x = 200Pa x = 300Pa x = 400Pa x = 500Pa<br />

Air leakage through<br />

specimen under a pressure<br />

difference of 75 Pa<br />

y = 2 y = 2 y = 2 y = 2<br />

(1) For fixed glazing y = 0,306 l/s per m<br />

(2) For spans greater than 4115mm, but less than 12,2m deflecti<strong>on</strong> shall be limited to 1/240<br />

2 . For swing doors and revolving doors 5l/s/m 2 (SANS 204:2)<br />

For spans greater than 4115mm, but less than 12,2m deflecti<strong>on</strong> shall be limited to 1/240 th y = 2<br />

(SANS 204:2)<br />

of span plus 6mm.<br />

2.2.2 Products such as curtain walling, window walling and shopfr<strong>on</strong>ts shall include expansi<strong>on</strong> joints and/or crucifix<br />

c<strong>on</strong>necti<strong>on</strong>s and shall have an average air flow rate not exceeding 0.306 l/s/m 2 Products such as curtain walling, window walling and shopfr<strong>on</strong>ts shall include expansi<strong>on</strong> joints and/or crucifix<br />

at 75Pa.<br />

2.2.3 Double acti<strong>on</strong> swing doors and revolving doors shall have an average air flow rate not exceeding 55l/s/m<br />

204:2)<br />

2 (SANS<br />

2.3 <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> PERFORMANCE TEST CERTIFICATES<br />

The test results recorded are applicable and restricted <strong>on</strong>ly to the sample and the testing thereof under the standard<br />

laboratory testing c<strong>on</strong>diti<strong>on</strong>s and procedures.<br />

The certificate <strong>on</strong>ly applies to products of identical c<strong>on</strong>figurati<strong>on</strong> of equal or lesser dimensi<strong>on</strong>s and no other product or<br />

unit apart from the sample itself or the said testing c<strong>on</strong>diti<strong>on</strong>s or procedures are to be applied.<br />

The applicant (manufacturer) cturer) indemnifies the testing authority and <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> and holds them harmless against any<br />

claims as herein c<strong>on</strong>templated by any third party.<br />

The manufacturer (applicant) is resp<strong>on</strong>sible <str<strong>on</strong>g>for</str<strong>on</strong>g> the proper installati<strong>on</strong> of the product in the test apparatus. The p pproduct<br />

is<br />

installed such that the outside of the product faces the spray nozzles of the testing apparatus. This positi<strong>on</strong> may <strong>on</strong>ly be<br />

reversed in case of the test <str<strong>on</strong>g>for</str<strong>on</strong>g> negative deflecti<strong>on</strong> <strong>on</strong> testing apparatus not having reversible airflow.<br />

2.4 TESTING PROCEDURE RE AND SEQUENCE<br />

TABLE 2.1: <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> Test Per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance Criteria<br />

Class Designati<strong>on</strong><br />

A0 A1 A2 A3 A4<br />

Manufacturer (the applicant) to submit fully detailed shop drawings in triplicate to <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> Testing Officers at least<br />

two weeks prior the proposed testing date.<br />

The Testing Officer must review the shop drawings to ensure there is sufficie sufficient nt detail c<strong>on</strong>tained therein such as (but not<br />

limited to):<br />

2.4.1 STEP 1 - DRAWINGS AND COMMENCEMENT OF TESTING<br />

Drawing number and Product Name.<br />

Elevati<strong>on</strong> of product fully dimensi<strong>on</strong>ed.<br />

Cross secti<strong>on</strong> details of frame, sashes, transom, mulli<strong>on</strong>s and combinati<strong>on</strong>s thereof.<br />

Positi<strong>on</strong> and type of hardware including reference #.<br />

Gaskets, wet seals, fixings and cleats fully detailed and referenced.<br />

Glass type and thickness.<br />

Instructi<strong>on</strong> (note) to which per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance category the product is to be tested.<br />

Any special test requirements uirements when appropriate.<br />

Curtain wall products or unitised assemblies of widows, screens etc. must incorporate movement joints/coupling<br />

profiles and fully detailed and referenced <strong>on</strong> the drawings.<br />

Testing Officer to c<strong>on</strong>firm testing date up<strong>on</strong> acceptance of the shop drawings.<br />

Page 15<br />

Requirement<br />

Maximum<br />

deflecti<strong>on</strong> 1/175<br />

of span (2)<br />

No failure<br />

allowed<br />

No leakage<br />

when subjected<br />

to a flow of<br />

0.05 l/s/m 2<br />

Not more than y<br />

2 (1)<br />

= l/s per m


Should the shop drawings not meet the above criteria the drawings are to be returned to the manufacturer <str<strong>on</strong>g>for</str<strong>on</strong>g> revisi<strong>on</strong>. No<br />

testing date should be c<strong>on</strong>firmed until such time that the drawings satisfy the above criteria.<br />

The opening vents of the installed product shall be opened and closed five (5) times to ascertain proper operati<strong>on</strong>.<br />

The product with all opening vents securely fastened shall be subjected to an initial pressure of 100 Pa <str<strong>on</strong>g>for</str<strong>on</strong>g> the durati<strong>on</strong> of<br />

five (5) minutes to "settle" e" all joints and fixings.<br />

2.4.2 STEP 2 - AIR INFILTRATION TEST<br />

Seal all joints (The total length of the mating surfaces of opening lights and the fixed frames) and weep holes in the<br />

product airtight, by taping.<br />

2.4.2.1 Apply the pressure differential of 75 Pa between the external and internal faces of the product and maintain same<br />

± <strong>on</strong>e (1) percent during the measurement of the air leakage through the sealed product. The result of this<br />

measurement represents the leakage through the test apparatus.<br />

2.4.2.2 Drop pressure and remove sealing tape from joints and weep holes. Thereafter apply a pressure differential of<br />

75Pa as in 2.4.2.1. The result of this measurement represents the leakage through the product and test apparatus.<br />

2.4.2.3 Calculate the difference between measurement 2.4.2.1 and 2.4.2.2 and record the difference as the leakage<br />

through the product.<br />

2.4.3 STEP 3 - DEFLECTION UNDER UNIFORM POSITIVE STATIC PRESSURE<br />

Install deflecti<strong>on</strong> gauges as follows:<br />

2.4.3.1 Two each <strong>on</strong> frame at juncti<strong>on</strong> <strong>on</strong> with mulli<strong>on</strong>/transom (each end of mulli<strong>on</strong>/transom) and <strong>on</strong>e <strong>on</strong>ly in centre of<br />

mulli<strong>on</strong>/transom<br />

2.4.3.2 Take and record readings of deflecti<strong>on</strong> gauges.<br />

2.4.3.3 Apply a pressure differential equal to the relevant category uni<str<strong>on</strong>g>for</str<strong>on</strong>g>m load against the exterior face of the prod product<br />

and maintain <str<strong>on</strong>g>for</str<strong>on</strong>g> five (5) minutes. Remove pressure and record the readings of the gauges.<br />

2.4.3.4 Inspect product <str<strong>on</strong>g>for</str<strong>on</strong>g> any visible structural or functi<strong>on</strong>al damage.<br />

2.4.3.5 Using the <str<strong>on</strong>g>for</str<strong>on</strong>g>mula stated below calculate from the recorded deflecti<strong>on</strong> gauge readings the actual deflecti<strong>on</strong> and<br />

ascertain compliance with the relevant Per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance Test Requirements.<br />

Deflecti<strong>on</strong> = d3 - (d + d )/2<br />

1 2<br />

d1 = deflecti<strong>on</strong> at <strong>on</strong>e end of transom/mulli<strong>on</strong>.<br />

d2 = deflecti<strong>on</strong> at other end of transom transom/mulli<strong>on</strong>.<br />

d3 = deflecti<strong>on</strong> at centre of transom/mulli<strong>on</strong>.<br />

2.4.4 STEP 4 - DEFLECTION UNDER UNIFORM NEGATIVE STATIC PRESSURE<br />

2.4.4.1 Refer 2.4.3.1<br />

2.4.4.2 Refer 2.4.3.2<br />

2.4.4.3 As 2.4.3.3 but apply pressure differential against interior face of the product.<br />

2.4.4.4 Refer 2.4.3.4<br />

2.4.4.5 Refer 2.4.3.5<br />

2.4.5 STEP 5 - WATER PENETRATION TEST<br />

2.4.5.1 Operate the water spray at a rate of at least 0.05 l/s /s per m² in a manner that the exterior face of the product is<br />

completely and c<strong>on</strong>tinuously covered by water. Simultaneously maintain, <strong>on</strong> the exterior face of the product, the<br />

appropriate air pressure to the product's per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance category (i.e. A0, A1, A2, A3, and A4).<br />

2.4.5.2 Durati<strong>on</strong> of this test is minimum fifteen (15) minutes.<br />

Page 16


2.4.5.3 Inspect the product <str<strong>on</strong>g>for</str<strong>on</strong>g> unc<strong>on</strong>trolled leakage of water bey<strong>on</strong>d the plane of the innermost face of the product or<br />

through the window frame.<br />

Note: C<strong>on</strong>trolled leakage is defined as water which is permitted to enter channels in the frame which are designed to<br />

c<strong>on</strong>tain and disperse it in n a c<strong>on</strong>trolled manner without damage to fabric or furnishings of the building.<br />

2.4.6 STEP 6 - STRUCTURAL PROOF LOADING<br />

2.4.6.1 Apply a pressure differential equal to the relevant category structural load requirement against the exterior face<br />

of the product duct and maintain <str<strong>on</strong>g>for</str<strong>on</strong>g> <strong>on</strong>e (1) minute.<br />

2.4.6.2 Inspect the product <str<strong>on</strong>g>for</str<strong>on</strong>g> any visible structural or functi<strong>on</strong>al damage.<br />

2.4.7 STEP 7 - TEST FOR OPERATION PERFORMANCE<br />

2.4.7.1 Establish the starting <str<strong>on</strong>g>for</str<strong>on</strong>g>ce <str<strong>on</strong>g>for</str<strong>on</strong>g> opening the vents. (Refer Table 2.2)<br />

2.4.7.2 Establish the operating <str<strong>on</strong>g>for</str<strong>on</strong>g>ce <str<strong>on</strong>g>for</str<strong>on</strong>g> operating the vents. (Refer Table 2.2)<br />

Vertical Sliders<br />

Horiz<strong>on</strong>tal Sliders<br />

Top & Side Hung<br />

Pivot & Turn & Tilt<br />

Sliding Doors<br />

2.4.8 STEP 8 - CONTROLLED DISMANTLE<br />

2.4.8.1 The Testing Officer must witness the C<strong>on</strong>trolled Dismantle.<br />

2.4.8.2 The sample must be broken down to a level which will allow the Testing Officer to inspect to their discreti<strong>on</strong>.<br />

2.4.8.3 The Testing Officer shall record any findings <strong>on</strong> the drawings supplied by the manufacturer (applicant).<br />

2.4.9 STEP 9 - CERTIFICATION<br />

TABLE 2.2: Operating Forces<br />

Starting Force Operating Force<br />

> 180 N or<br />

> 180 N/m 2 > 120 N<br />

of sash > 120 N/m 2 of sash<br />

>120 N or<br />

> 130 N/m 2 >80 N or<br />

of sash > 80 N/m 2 Operating Force<br />

of sash<br />

of sash<br />

> 80 N > 80 N<br />

> 80 N > 80 N<br />

> 120 N > 80 N<br />

2.4.9.1. Up<strong>on</strong> completi<strong>on</strong> of testing the Testing Officers signs the detailed drawings c<strong>on</strong>firming that the test sample was<br />

c<strong>on</strong>structed as detailed.<br />

2.4.9.2 Testing results are <str<strong>on</strong>g>for</str<strong>on</strong>g>warded to the <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> Secretariat by the Testing Officer.<br />

2.4.9.3 The <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> Executive Director will validate the detailed drawings and test results and issue the <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g><br />

Per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance Test Certificate to the manufacturer.<br />

Page 17


Page 18


1. The Per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance Test Certificate applies equally to products of the same nature and functi<strong>on</strong> as that tested and<br />

which products shall be identical in c<strong>on</strong>structi<strong>on</strong> and c<strong>on</strong>figurati<strong>on</strong> to the test sample, save <strong>on</strong>ly that the overall<br />

size recorded in Secti<strong>on</strong> B of the Certificate and the size of any ventilator, or subunit may be reduced.<br />

2. Extended c<strong>on</strong>figurati<strong>on</strong> applicability examples:<br />

EXTENDED APPLICABILITY<br />

Page 19


2.5 ENERGY EFFICIENCY PERFORMANCE TESTING<br />

In 2006 the <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> Group established the South African<br />

Fenestrati<strong>on</strong> and Insulati<strong>on</strong> Energy Rating Associati<strong>on</strong><br />

(SAFIERA) to support its drive ive to promote energy efficiency<br />

in the building industry. SAFIERA’s primary goal is to<br />

provide a fair, accurate, and reliable energy per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance<br />

rating system.<br />

The SAFIERA system is derived from a similar rating<br />

system developed by the internati<strong>on</strong>ally re recognised Nati<strong>on</strong>al<br />

Fenestrati<strong>on</strong> Rating Council of America (NFRC) and<br />

complies with the South African Energy Efficiency Standard<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g> buildings. SAFIERA is the South African License holder<br />

of the NFRC Rating System.<br />

The energy per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance rating process is b<br />

complementary use of computer simulati<strong>on</strong> and physical<br />

system testing to establish energy per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance ratings <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

fenestrati<strong>on</strong> 2 The energy per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance rating process is based <strong>on</strong> the<br />

complementary use of computer simulati<strong>on</strong> and physical<br />

system testing to establish energy per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance ratings <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

and thermal insulated building envelope<br />

systems.<br />

The <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> of the associati<strong>on</strong> has led to an investment by the AA <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> AMSA Group <str<strong>on</strong>g>for</str<strong>on</strong>g> the c<strong>on</strong>structi<strong>on</strong> and<br />

commissi<strong>on</strong>ing of its flagship RGHB test facility. The RGHB, located at the Thermal Test Laboratory (TLL) <strong>on</strong> the CSIR<br />

campus, can be used to determine the heat transmissi<strong>on</strong> values (U (U-values) values) of most building envelope syst systems in<br />

accordance with ASTM C 1363-05 05 and ASTM 1199.<br />

Test specimens are mounted in a test frame between two climatic chambers, exposing the <strong>on</strong>e side of the test specimen to<br />

typical room c<strong>on</strong>diti<strong>on</strong>s and the other side to typical cold external c<strong>on</strong>diti<strong>on</strong>s res respectively. pectively. Room c<strong>on</strong>diti<strong>on</strong>s are typically<br />

21 °C C and airflow c<strong>on</strong>diti<strong>on</strong>s representing natural c<strong>on</strong>vecti<strong>on</strong>, whilst the cold external c<strong>on</strong>diti<strong>on</strong>s are typically -18°C and<br />

airflow velocities of up to 20 km/hr. By carefully calibrating and characterizing the RGHB, iit<br />

t is possible to determine the<br />

comparative and absolute U-values values of various specimens in a c<strong>on</strong>trolled envir<strong>on</strong>ment.<br />

Although the RGHB is currently c<strong>on</strong>figured to test fenestrati<strong>on</strong> elements, it can easily be re re-c<strong>on</strong>figured c<strong>on</strong>figured to test practically<br />

any other insulated building envelope system. Tests are normally per<str<strong>on</strong>g>for</str<strong>on</strong>g>med <str<strong>on</strong>g>for</str<strong>on</strong>g> building envelope systems in a vertical<br />

orientati<strong>on</strong>, but by rotating the RGHB, measurements can also be per<str<strong>on</strong>g>for</str<strong>on</strong>g>med <str<strong>on</strong>g>for</str<strong>on</strong>g> the test specimen at any inclinati<strong>on</strong> in<br />

between vertical and horiz<strong>on</strong>tal. To allow comparis<strong>on</strong> of the results of the fenestrati<strong>on</strong> testing, the standard dimensi<strong>on</strong>s<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g> fenestrati<strong>on</strong> specimens are 1195mm wide x 1495mm high, , with a tolerance of 2mm. Manufacturers should ensure that<br />

the specimens presented <str<strong>on</strong>g>for</str<strong>on</strong>g> testing have been successfully tested <str<strong>on</strong>g>for</str<strong>on</strong>g> air leakage.<br />

The maximum specimen dimensi<strong>on</strong> that can be tested in the RGHB is 4100mm wide x 3600mm high. For n<strong>on</strong>-standard<br />

test specimens and tests, it is important <str<strong>on</strong>g>for</str<strong>on</strong>g> manufacturers to c<strong>on</strong>sult with TTL prior to the manufacturing of specimens.<br />

RGHB testing is c<strong>on</strong>ducted under the auspices of SAFIERA in strict accordance with the methods prescribed by th the<br />

NFRC. The NFRC Rating System is based <strong>on</strong> the following internati<strong>on</strong>al standards and procedures:<br />

NFRC 100 - Procedure <str<strong>on</strong>g>for</str<strong>on</strong>g> Determining Fenestrati<strong>on</strong> Products UU-factors<br />

NFRC 101 - Procedure <str<strong>on</strong>g>for</str<strong>on</strong>g> Determining Thermo Thermo-Physical Physical Properties of Materials <str<strong>on</strong>g>for</str<strong>on</strong>g> Use in NFRC-approved<br />

Software Programmes<br />

NFRC 102 - Test Procedure <str<strong>on</strong>g>for</str<strong>on</strong>g> Measuring the Steady Steady-State State Thermal Transmittance of Fenestrati<strong>on</strong> Systems<br />

NFRC 200 - Procedure <str<strong>on</strong>g>for</str<strong>on</strong>g> Determining Fenestrati<strong>on</strong> Products Solar Heat Gain Coefficients and Visible<br />

Transmittance at NNormal<br />

Incidence<br />

NFRC 201 - Procedure <str<strong>on</strong>g>for</str<strong>on</strong>g> Interim Standard Test Method <str<strong>on</strong>g>for</str<strong>on</strong>g> Measuring the Solar Heat Gain Coefficient of<br />

Fenestrati<strong>on</strong> Systems Using Colorimeter Hot Box Methods<br />

NFRC 300 - Test method <str<strong>on</strong>g>for</str<strong>on</strong>g> Determining the Solar Optical Properties of Glazing MMaterials<br />

aterials and Systems<br />

NFRC 301 - Standard Test Method <str<strong>on</strong>g>for</str<strong>on</strong>g> Emittance of Specular Surfaces Using Spectrometric Measurements<br />

NFRC 400 - Procedure <str<strong>on</strong>g>for</str<strong>on</strong>g> Determining Fenestrati<strong>on</strong> Product Air Leakage<br />

NFRC 500 - Procedure <str<strong>on</strong>g>for</str<strong>on</strong>g> Determining Fenestrati<strong>on</strong> Product C<strong>on</strong>den C<strong>on</strong>densati<strong>on</strong> sati<strong>on</strong> Resistance Values<br />

2<br />

Fenestrati<strong>on</strong> refers to windows (frames and glazing), <str<strong>on</strong>g>glazed</str<strong>on</strong>g> doors and skylights.<br />

Page 20


2.6 ENERGY EFFICIENCY PERFORMANCE – COMPUTER SIMULATION PROGRAMMES<br />

Be<str<strong>on</strong>g>for</str<strong>on</strong>g>e the availability of computer programs <str<strong>on</strong>g>for</str<strong>on</strong>g> simulating heat transfer, physical testing was the primary means of<br />

determining energy efficiency per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance. Detailed thermal simulati<strong>on</strong>s are now widely used in support of the thermal<br />

design of building envelope systems, while physical testing, including the testing of complete systems are used to validate<br />

the computer-modelling modelling <str<strong>on</strong>g>for</str<strong>on</strong>g> reality checking. Computer sim simulati<strong>on</strong> ulati<strong>on</strong> is also useful to address the many permutati<strong>on</strong>s of size<br />

and c<strong>on</strong>figurati<strong>on</strong> that exist within any range of products. The suite of fully fully-integrated integrated computer simulati<strong>on</strong> programmes<br />

used to simulate fenestrati<strong>on</strong> products are Window 5.0, Therm and Optic 55.<br />

WINDOW 5.0 is a publicly available computer program <str<strong>on</strong>g>for</str<strong>on</strong>g> calculating total window thermal per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance indices (i.e.<br />

U-values, values, solar heat gain coefficients, shading coefficients, and visible transmittances). WINDOW 5.0 provides a<br />

versatile heat transfer analysis metho method d c<strong>on</strong>sistent with the updated rating procedure developed by the Nati<strong>on</strong>al<br />

Fenestrati<strong>on</strong> Rating Council (NFRC) that is c<strong>on</strong>sistent with the ISO 15099 standard. The programme can be used to<br />

design and develop new products, to assist educators in teaching heat transfer through windows, and to help public<br />

officials in developing building energy codes.<br />

THERM is a state-of-the-art, art, Microsoft Windows<br />

Nati<strong>on</strong>al Laboratory (LBNL) <str<strong>on</strong>g>for</str<strong>on</strong>g> use by building comp<strong>on</strong>ents<br />

and others interested in heat transfer. Using THERM, <strong>on</strong>e can model two<br />

comp<strong>on</strong>ents such as windows, walls, foundati<strong>on</strong>s, roofs, and doors; appliances; a<br />

are of c<strong>on</strong>cern. In additi<strong>on</strong> to c<strong>on</strong>ducti<strong>on</strong> heat transfer, the program also handles detailed radiati<strong>on</strong> heat transfer, based <strong>on</strong><br />

view factors and incorporates c<strong>on</strong>vecti<strong>on</strong> heat transfer modelling in glazing cavities. THE<br />

also allows <strong>on</strong>e to evaluate a product’s energy efficiency and local temperature patterns, which may relate directly to<br />

problems with c<strong>on</strong>densati<strong>on</strong>, moisture damage, and structural integrity.<br />

TM based computer programme developed at Lawrence Berkeley<br />

Nati<strong>on</strong>al Laboratory (LBNL) <str<strong>on</strong>g>for</str<strong>on</strong>g> use by building comp<strong>on</strong>ents manufacturers, engineers, educators, students, architects,<br />

and others interested in heat transfer. Using THERM, <strong>on</strong>e can model two-dimensi<strong>on</strong>al dimensi<strong>on</strong>al heat heat-transfer effects in building<br />

comp<strong>on</strong>ents such as windows, walls, foundati<strong>on</strong>s, roofs, and doors; appliances; and nd other products where thermal bridges<br />

are of c<strong>on</strong>cern. In additi<strong>on</strong> to c<strong>on</strong>ducti<strong>on</strong> heat transfer, the program also handles detailed radiati<strong>on</strong> heat transfer, based <strong>on</strong><br />

view factors and incorporates c<strong>on</strong>vecti<strong>on</strong> heat transfer modelling in glazing cavities. THE THERM’s heat-transfer analysis<br />

also allows <strong>on</strong>e to evaluate a product’s energy efficiency and local temperature patterns, which may relate directly to<br />

problems with c<strong>on</strong>densati<strong>on</strong>, moisture damage, and structural integrity.<br />

OPTICS 5 allows the user to view and modify glazing data in many new and powerful ways. Optical and radioactive<br />

properties of glazing materials are primary inputs <str<strong>on</strong>g>for</str<strong>on</strong>g> determinati<strong>on</strong> of energy per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance in buildings. Properties of<br />

composite systems such as flexible films applied to rigid glaz glazing ing and laminated glazing can be predicted from<br />

measurements <strong>on</strong> isolated comp<strong>on</strong>ents in air or other gas. Properties of a series of structures can be generated from those<br />

of a base structure. For example, the measured properties of a coated or uncoated sub substrate strate can be extended to a range of<br />

available substrate thickness without the need to measure each thickness. Similarly, a coating type could be transferred by<br />

calculati<strong>on</strong> to any other substrate.<br />

WINDOW 5.0, THERM, and OPTICS 5 have been developed by LBNL L and are available over the web at:<br />

http://eetd.lbl.gov/btp/software.html<br />

The tools above are accepted by NFRC <str<strong>on</strong>g>for</str<strong>on</strong>g> rating window systems. In some cases, these tools can also be applied by<br />

NFRC-certified ed simulators, test labs and inspecti<strong>on</strong> agencies to determine ratings <str<strong>on</strong>g>for</str<strong>on</strong>g> n<strong>on</strong> n<strong>on</strong>-standard standard products.<br />

Page 21


Page 22


CHAPTER III<br />

DESIGN<br />

Page 23


3. DESIGN<br />

3.1 INTRODUCTION<br />

The Nati<strong>on</strong>al Building Regulati<strong>on</strong>s and Building Standards Amendment Act 103 of 1977 (as amended) provides <str<strong>on</strong>g>for</str<strong>on</strong>g> the<br />

promoti<strong>on</strong> of uni<str<strong>on</strong>g>for</str<strong>on</strong>g>mity in the law relating to the erecti<strong>on</strong> of buildings in the areas of jurisdicti<strong>on</strong> of Local Authorities;<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g> the prescribing of building standards; and <str<strong>on</strong>g>for</str<strong>on</strong>g> matters c<strong>on</strong>nected therewith. The Regulati<strong>on</strong>s under the Nati<strong>on</strong>al<br />

Building Regulati<strong>on</strong>s and Building Standards Act, 1977 c<strong>on</strong>tain inter alia the following secti<strong>on</strong>s which influence to the<br />

structural ral design and glazing of Architectural Aluminium Products.<br />

3.1.1 PART B – STRUCTURAL DESIGN<br />

B1. DESIGN REQUIREMENT<br />

(1) Any building and any structural element or comp<strong>on</strong>ent thereof shall be designed to provide strength, stability,<br />

serviceability and durability lity in accordance, with accepted principals of structural design, and so that it will not<br />

impair the integrity of any other building or property.<br />

(2) Any such building shall be so designed that in the event of accidental overloading the structural system will not<br />

suffer disastrous or progressive collapse which is disproporti<strong>on</strong>ate to the original cause.<br />

(3) The requirements of sub regulati<strong>on</strong>s (1) and (2) shall be deemed to be satisfied where such building is designed in<br />

accordance with Part B of secti<strong>on</strong> 3 of SABS 00400.<br />

400. (Currently known as SANS 10400).<br />

3.1.2 PART N – GLAZING<br />

N1. TYPE AND FIXING OF GLAZING<br />

(1) Any material used in the glazing of any building shall be of a secure and durable type and shall be fixed in a<br />

manner and positi<strong>on</strong> that will ensure that it will-<br />

(a) safely sustain any wind loads to which it is likely to be subjected;<br />

(b) not allow penetrati<strong>on</strong> of water to the interior of the building; and<br />

(c) be apparent, in the case of clear glazing, to any pers<strong>on</strong> approaching such glazing.<br />

(2) Glass, plastics and organic coated glass shall be selected in order to provide, in the case of human impact, a degree<br />

of safety appropriate in relati<strong>on</strong> to to-<br />

(a) the positi<strong>on</strong> of the <str<strong>on</strong>g>glazed</str<strong>on</strong>g> area; and<br />

(b) the number and likely behaviour pattern of pers<strong>on</strong>s expected to be in close proximity to such <str<strong>on</strong>g>glazed</str<strong>on</strong>g> area.<br />

(3) The requirements of sub regulati<strong>on</strong>s (1) and (2) shall be deemed to be satisfied where the glazing material is<br />

selected, fixed and marked in accordance with Part N of secti<strong>on</strong> 3 of SA SABS 0400. (Currently known as SANS<br />

10400).<br />

The South African Nati<strong>on</strong>al Standards SANS 10400 - The applicati<strong>on</strong> of the Nati<strong>on</strong>al Building Regulati<strong>on</strong>s refers in its<br />

Part B: Structural Design and its Part N: Glazing, inter alia, to the following South African Nati<strong>on</strong>al Standards:<br />

SANS 10160 - General procedures rocedures and loading to be adopted in the design of building and<br />

SANS 10137 – Installati<strong>on</strong> of glazing lazing materials in building.<br />

The <str<strong>on</strong>g>Selecti<strong>on</strong></str<strong>on</strong>g> Guide follows the principles c<strong>on</strong>tained in the a<str<strong>on</strong>g>for</str<strong>on</strong>g>ementi<strong>on</strong>ed standards.<br />

It should be noted that a professi<strong>on</strong>al Engineer may execute a rati<strong>on</strong>al design <str<strong>on</strong>g>for</str<strong>on</strong>g> Glazed Architectural Products which is<br />

bey<strong>on</strong>d the scope of this <str<strong>on</strong>g>Selecti<strong>on</strong></str<strong>on</strong>g> Guide. However, this is not often the case, as DSS SANS 10400 Part B states that any<br />

rati<strong>on</strong>al design of a structural system shall not preclude the use of DSS SANS 10400 Part N (glazing).<br />

Should the professi<strong>on</strong>al Engineer venture into a rati<strong>on</strong>al design <str<strong>on</strong>g>for</str<strong>on</strong>g> glazing his liability <str<strong>on</strong>g>for</str<strong>on</strong>g> the specificati<strong>on</strong>, design and<br />

installati<strong>on</strong>s of Glazed Architectural Products extend bey<strong>on</strong>d that of the c<strong>on</strong>tract to subsequent owners.<br />

(Tsimatakopoulos Tsimatakopoulos v Hemingway, Isaacs & Coetzee cc and another 1993(4) SA 428 (CPD).<br />

There<str<strong>on</strong>g>for</str<strong>on</strong>g>e, in the normal run of events, the C<strong>on</strong>tractor (Sub C<strong>on</strong>tractor, Glazier, and Installer Installer) is resp<strong>on</strong>sible that the<br />

installed Glazed Architectural Products mmeet<br />

eet the requirements of the Nati<strong>on</strong>al Building Regulati<strong>on</strong>s. Only strict<br />

adherence to a<str<strong>on</strong>g>for</str<strong>on</strong>g>ementi<strong>on</strong>ed South African Nati<strong>on</strong>al Standards during the design, manufacture and installati<strong>on</strong> of Glazed<br />

Architectural Products will ensure that the requirements c<strong>on</strong>taine c<strong>on</strong>tained d in the Nati<strong>on</strong>al Building Regulati<strong>on</strong>s are deemed to be<br />

satisfied.<br />

Page 24


3.2 DESIGN – DEEMED-TO-SATISFY SATISFY RULES<br />

In the event that a Structural Engineer registered with the Engineering Council of South Africa did not design and<br />

supervise the installati<strong>on</strong> of the fenestrati<strong>on</strong> trati<strong>on</strong> system, the installer of the fenestrati<strong>on</strong> system shall be deemed deemed-to-satisfy the<br />

requirements of the Nati<strong>on</strong>al Building Regulati<strong>on</strong>s and Building Standards Amendments Act 103 of 1977 when adhering<br />

to the following:<br />

3.2.1 DESIGN – WINDLOAD<br />

The design wind load <strong>on</strong> elements of the building façade is to be determined in accordance with table 3.1 to ensure<br />

compliance.<br />

TABLE 3.1: : <str<strong>on</strong>g>Selecti<strong>on</strong></str<strong>on</strong>g> of <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> Per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance Class Designati<strong>on</strong>s<br />

Terrain Category as per SANS 10160<br />

Height from ground to head of products in Metres<br />

5 10 15 20<br />

Category 1 – Open Sea, lake shores and flat treeless plains<br />

A2<br />

1500Pa<br />

A3<br />

2000Pa<br />

A3<br />

2000Pa<br />

A3<br />

2000Pa<br />

Category 2 – Airfields, open parklands or farmlands and undeveloped A2 A2 A3 A3<br />

outskirts of towns and suburbs<br />

1500Pa 1500Pa 2000Pa 2000Pa<br />

Category 3 – Built-up areas<br />

A0<br />

600Pa<br />

A1<br />

1000Pa<br />

A1<br />

1000Pa<br />

A2<br />

1500Pa<br />

Category 4 – City Centres<br />

A0<br />

600Pa<br />

A1<br />

1000Pa<br />

A1<br />

1000Pa<br />

A2<br />

1500Pa<br />

A0, A1, A2 and A3 are <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> Per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance Class Designati<strong>on</strong>s – Minimum design criteria <str<strong>on</strong>g>for</str<strong>on</strong>g> internal work is 600 Pa (A0).<br />

Cauti<strong>on</strong> must be taken when using A0 and A1 products in commercial envir<strong>on</strong>ments as the <str<strong>on</strong>g>for</str<strong>on</strong>g>mer are less robust than the<br />

latter. Also opening sizes <str<strong>on</strong>g>for</str<strong>on</strong>g> vents are usually larger <str<strong>on</strong>g>for</str<strong>on</strong>g> commercial applicati<strong>on</strong>s than is the case in residential windows<br />

and there<str<strong>on</strong>g>for</str<strong>on</strong>g>e require A2, A3 or A4 products.<br />

Note! Internal <str<strong>on</strong>g>glazed</str<strong>on</strong>g> screens (shopfr<strong>on</strong>ts, partiti<strong>on</strong>ing) are to be designed to withstand a design load of 600Pa. This<br />

design load represents all the impact <str<strong>on</strong>g>for</str<strong>on</strong>g>ces which may occur in terms of SANS 10160. The framing of such<br />

screens must have a maximum deflecti<strong>on</strong> of 1/175 th Note! Internal <str<strong>on</strong>g>glazed</str<strong>on</strong>g> screens (shopfr<strong>on</strong>ts, partiti<strong>on</strong>ing) are to be designed to withstand a design load of 600Pa. This<br />

of SANS 10160. The framing of such<br />

of the span.<br />

3.2.2 DESIGN – GLASS SELECTION<br />

Glass selecti<strong>on</strong> must be in accordance with the following tables to ensure compliance.<br />

External glazing in structures exceeding 10m in height (3 storeys) do require the approval in writing of a Structural<br />

Engineer or Competent Pers<strong>on</strong> (Glazing) registered with the South African Glass Institute (SAGI).<br />

Similarly any glazing not detailed below, such as, but not limited to, overhead aand<br />

nd sloped glazing, glass flooring, three<br />

and <strong>on</strong>e edge supported glass, toughened glass assemblies and entrances, glass <str<strong>on</strong>g>for</str<strong>on</strong>g> balustrading supported by clamps and<br />

the like must be signed of in writing by a Structural Engineer or Competent Pers<strong>on</strong> (Glazing).<br />

3.2.2.1 EXTERNAL GLAZING – Structures not exceeding 10m in height (3 storeys)<br />

TABLE 3.2: Vertical Glazing supported all round<br />

Maximum Pane sizes in sq. m<br />

Nominal Glass Thickness (mm) 3 4 5 6 8 10 12<br />

M<strong>on</strong>olithic Annealed Glass<br />

0.75 1.5 2.1 3.2 4.6 6.0 6.0<br />

Patterned Annealed & Wired Glass - 0.75 1.2 1.9 2.6 3.4 -<br />

Laminated Annealed Safety Glass - - - 2.9 4.3 5.7 5.7<br />

Toughened Safety Glass<br />

- 1.9 3.0 4.5 8.0 8.0 8.0<br />

TABLE 3.3: Vertical Glazing – Two opposite sides supported<br />

Maximum Span between support in m<br />

Nominal Glass Thickness (mm) 3 4 5 6 8 10 12<br />

M<strong>on</strong>olithic Annealed Glass<br />

- 0.4 0.5 0.6 0.85 1.0 1.3<br />

Patterned Annealed & Wired Glass - 0.25 0.3 0.35 0.5 0.6 -<br />

Laminated Annealed Safety Glass - - - 0.55 0.8 0.95 1.2<br />

Toughened Safety Glass<br />

- 0.55 0.7 0.85 1.15 1.3 1.8<br />

Page 25


3.2.2.2 INTERNAL GLAZING<br />

TABLE 3.4: Vertical Glazing all round supported<br />

Maximum Pane sizes in sq. m<br />

Nominal Glass Thickness (mm) 3 4 5 6 8 10 12<br />

M<strong>on</strong>olithic Annealed Glass<br />

0.75 1.5 2.1 3.2 4.6 6.0 6.0<br />

Patterned Annealed & Wired Glass - 0.75 1.2 1.9 2.6 3.4 -<br />

Laminated Annealed Safety Glass - - - 4.1 6.0 7.2 7.2<br />

Toughened Safety Glass<br />

- 3.0 4.2 6.4 9.2 9.2 9.2<br />

TABLE 3.5: Vertical Glazing – Two opposite sides supported<br />

Maximum Span between support in m<br />

Nominal Glass Thickness (mm) 3 4 5 6 8 10 12<br />

M<strong>on</strong>olithic Annealed Glass<br />

- 0.65 0.8 0.95 1.3 1.55 2.0<br />

Patterned Annealed & Wired Glass - 0.4 0.48 0.57 0.78 0.9 -<br />

Laminated Annealed Safety Glass - - - 0.9 1.25 1.5 1.95<br />

Toughened Safety Glass<br />

- 0.9 1.1 1.3 1.75 2.0 2.7<br />

3.2.2.3 GLASS FINS<br />

TABLE 3.6: Minimum Glass Fin Dimensi<strong>on</strong>s<br />

Fin Height in m Internal External Note:<br />

1.5<br />

2<br />

2.5<br />

3<br />

3.5<br />

150 x 12<br />

150 x 12<br />

150 x 12<br />

175 x 15<br />

225 x 15<br />

150 x 15<br />

150 x 19<br />

175 x 19<br />

200 x 25<br />

275 x 25<br />

A butt joint is assumed to have no structural strength.<br />

Accordingly panels, which incorporate a butt joint, are not<br />

c<strong>on</strong>sidered to be supported <strong>on</strong> four sides. A glass fin is<br />

necessary to provide the support at the joint so that the pane can<br />

be c<strong>on</strong>sidered to be supported al<strong>on</strong>g four sides. Should no fin<br />

be in place selecti<strong>on</strong> of glass must be in accordance with Tables<br />

4 275 x 15 300 x 25 <str<strong>on</strong>g>for</str<strong>on</strong>g> Vertical glazing – Two opposite osite sides supported.<br />

3.2.3 SAFETY GLAZING<br />

3.2.3.1 The panes of all safety glazing material shall be permanently marked by the installer in such a manner that the<br />

markings are visible in individual panes after installati<strong>on</strong>.<br />

3.2.3.2 Safety fety glazing material complying with the requirements of SA SANS S 1263:1 shall be used where where; (Refer Figures<br />

3.1, 3.2 and 3.3)<br />

a) the occupancy or building classificati<strong>on</strong> is A3 (places of instructi<strong>on</strong>), E1 (place of detenti<strong>on</strong>), E2 (hospital) and E3<br />

(other instituti<strong>on</strong>al (residential buildings). (Refer to table 1 of annex A of –SANS SANS 10400 - A: 2008);<br />

b) doors and sidelights <str<strong>on</strong>g>for</str<strong>on</strong>g>m part of aany<br />

ny entrance up to 2100mm from finished floor level;<br />

c) a window has a sill height of less than 500mm from the floor floor;<br />

d) a window has a sill height of less than 800mm from the floor without any permanent barrier that prevents people<br />

from coming into c<strong>on</strong>tact with the glass panel, and is so placed that pers<strong>on</strong>s are likely, <strong>on</strong> normal traffic routes, to<br />

move directly towards such window.<br />

NOTE: A barrier could be any feature, i.e. a heavy bar across a window or a flower box placed in fr<strong>on</strong>t<br />

e) a bath enclosure or shower cubicle is <str<strong>on</strong>g>glazed</str<strong>on</strong>g> or where glazing occurs immediately above a bath;<br />

f) glazing is used in any shop fr<strong>on</strong>t or display window within 2100mm from the finished floor level;<br />

g) glazing is used in any wall or balustrade to a stairway, ramp, landing or balc<strong>on</strong>y;<br />

h) glazing is used within 1800mm of the pitch of a stairway or the surface of a ramp, landing or balc<strong>on</strong>y;<br />

i) glazing applicati<strong>on</strong>s are sloped or are horiz<strong>on</strong>tal;<br />

j) a mirror is installed as a facing to a cupboard door less than 800mm above floor level and there is no solid<br />

backing;<br />

Page 26


k) glazing is used around areas such as swimming pools and ice rinks; and<br />

l) glazing is used in internal partiti<strong>on</strong>s, within 2100mm of floor level, <str<strong>on</strong>g>for</str<strong>on</strong>g>ming escape routes in buildings.<br />

3.2.3.3 Glass in balustrades shall be toughened safety glass unless rigidly supported all round. Specialized plastic<br />

glazing materials i.e. polycarb<strong>on</strong>ate may be used <str<strong>on</strong>g>for</str<strong>on</strong>g> glazing in balustrades.<br />

3.2.3.4 Glass lass in horiz<strong>on</strong>tal or sloping applicati<strong>on</strong>s sh shall all be laminated safety glass or toughened safety glass. Toughened<br />

safety glass shall <strong>on</strong>ly be used where individual panes are framed all round. Specialized plastic glazing materials<br />

such as polycarb<strong>on</strong>ate and acrylic may be used in sloped glazing applicati applicati<strong>on</strong>s.<br />

3.2.3.5 Wired glass having two-edge edge support may be used in vertical glazing in saw tooth roofs.<br />

3.2.3.6 Frameless bath and shower enclosures shall be <str<strong>on</strong>g>glazed</str<strong>on</strong>g> in toughened safety glass of no less than 6mm thickness.<br />

3.2.3.7 All repair and renovati<strong>on</strong> glazing must comply wit with h the provisi<strong>on</strong>s of Part N irrespective of the type of glazing<br />

used originally.<br />

Note: Figures 3.1 to 3.3 illustrate the c<strong>on</strong>diti<strong>on</strong>s where safety safety-glazing glazing materials are required in terms of 3.2.3.2 above.<br />

Figure 3.1 — Examples of safety glazing requirements in doors and windows<br />

Figure 3.2 — Examples of safety glazing requirements in shop fr<strong>on</strong>ts and display windows<br />

Figure 3.3 — Examples of safety glazing requirements around staircases and landings<br />

Page 27


3.2.4 DESIGN – Polycarb<strong>on</strong>ate Panel <str<strong>on</strong>g>Selecti<strong>on</strong></str<strong>on</strong>g><br />

TABLE: : 3.7: Vertical External Glazing <str<strong>on</strong>g>for</str<strong>on</strong>g> Structures not exceeding 10m in height<br />

All round supported<br />

1<br />

2 3<br />

Thickness<br />

mm<br />

Aspect ratio (short dimensi<strong>on</strong>: l<strong>on</strong>g dimensi<strong>on</strong>)<br />

1:1 ≤ 1,5:1 > 1,5:1 ≤ 2,5:1<br />

Maximum pane area m<br />

2<br />

2,5<br />

3<br />

4<br />

5<br />

15mm edge cover shall be provided.<br />

2<br />

: 3.7: Vertical External Glazing <str<strong>on</strong>g>for</str<strong>on</strong>g> Structures not exceeding 10m in height<br />

4<br />

Aspect ratio (short dimensi<strong>on</strong>: l<strong>on</strong>g dimensi<strong>on</strong>)<br />

> 2,5:1 ≤ 3,5:1<br />

0,2 0,24<br />

0,32<br />

0,275 0,52<br />

0,44<br />

0,425 0,52<br />

0,70<br />

0,625 0,78<br />

1,05<br />

15mm edge cover shall be provided.<br />

0,85 1,05<br />

1,45<br />

1<br />

Thickness<br />

mm<br />

2<br />

2,5<br />

3<br />

4<br />

5<br />

15mm edge cover shall be provided.<br />

3.2.5 Design – Lift Glazing<br />

TABLE 3.9: Flat glass panels to be used in walls of lifts<br />

Diameter of inscribed circle<br />

Type of glass<br />

1m max. 2m max.<br />

Minimum thickness<br />

mm<br />

Laminated, toughened<br />

8<br />

(4 + 4 + 0,76)<br />

10<br />

(5 + 5 + 0,76)<br />

Laminated<br />

10<br />

(5+ 5 + 0,76)<br />

12<br />

(6 + 6 + 0,76)<br />

TABLE 3.10: Flat glass panels to be used in horiz<strong>on</strong>tally sliding doors in lifts<br />

Type of glass Minimum thickness Width Free door height Fixing of the glass<br />

mm<br />

mm<br />

m<br />

panels<br />

Laminated, toughened<br />

16<br />

(8 + 8 + 0,76)<br />

360 to 720 2,1 max.<br />

Two fixings upper<br />

and lower<br />

16<br />

(8 + 8 + 0,76)<br />

300 to 720 2,1 max.<br />

Three fixings upper/<br />

Lower and <strong>on</strong>e side<br />

Laminated<br />

10<br />

(6 + 4 + 0,76)<br />

(5 + 5 + 0,76)<br />

300 to 870 2,1 max. All sides<br />

3.3 SELECTION OF ALUMINIUM ALLOY EXTRUSIONS<br />

TABLE: 3.8: Vertical Internal Glazing<br />

All round supported<br />

2 3<br />

Aspect ratio (short dimensi<strong>on</strong>: l<strong>on</strong>g dimensi<strong>on</strong>)<br />

1:1 ≤ 1,5:1 > 1,5:1 ≤ 2,5:1<br />

Maximum pane area m 2<br />

0,35 0,4<br />

0,45 0,55<br />

0,725 0,84<br />

1,05 1,3<br />

1,4 1,75<br />

The aluminium framing holding the glazing material are not intended to withstand loads imposed by the building<br />

structure, nor, unless otherwise specified, any loads other than those due to wind and mass of glass.<br />

The maximum permissible deflecti<strong>on</strong> in the perpendicular to the<br />

negative wind load shall be 1/175 th The maximum permissible deflecti<strong>on</strong> in the perpendicular to the span of the aluminium alloy frame, due to positive and<br />

of the span <str<strong>on</strong>g>for</str<strong>on</strong>g> framing members up to 4115mm. For spans greater than 4115mm, but<br />

less than 12.2m deflecti<strong>on</strong>s shall be limited to 1/240 th span of the aluminium alloy frame, due to positive and<br />

of the span <str<strong>on</strong>g>for</str<strong>on</strong>g> framing members up to 4115mm. For spans greater than 4115mm, but<br />

of the span plus 6mm.<br />

Page 28<br />

4<br />

> 2,5:1 ≤ 3,5:1<br />

0,525<br />

0,725<br />

1,2<br />

1,75<br />

2,75


Other factors exists which could require a deflecti<strong>on</strong> limit less than those indicated above. The following is a list of those<br />

factors:<br />

a. The anticipated movement of the framing mem members ers must not exceed the movement capabilities of adjoining<br />

sealants.<br />

b. The anticipated icipated movement of the framing members may need to be further limited to accommodate the properties<br />

and locati<strong>on</strong> of interior finishes (e.g. plaster, drywall, etc.)<br />

c. The movement of the framing members must not cause disengagement of applied snap covers or trim.<br />

d. The design of the framing members must accommodate differential movement in adjacent framing members such<br />

as might occur at jambs, parapets, unusual geometries and other similar c<strong>on</strong>diti<strong>on</strong>s.<br />

e. The stiffness of framing members must be adequate to suppor support t “brittle” infill material being c<strong>on</strong>tinuously<br />

supported (e.g. st<strong>on</strong>e panels).<br />

f. The framing members must be able to resist any sec<strong>on</strong>d in bending movements resulting from axial loads acting<br />

through eccentricities caused by large deflecti<strong>on</strong>s (i.e. Delta effect effects).<br />

g. In order to prevent engagement of the infill material design of systems incorporati<strong>on</strong> large infill must also address<br />

the centre deflecti<strong>on</strong> of the infill in c<strong>on</strong>juncti<strong>on</strong> with the framing deflecti<strong>on</strong>.<br />

The maximum deflecti<strong>on</strong> in the vertical plane, due to tthe<br />

he dead load of the glazing materials, is 1/1000 of the span with a<br />

maximum of 2mm.<br />

3.3.1 GLAZING REBATE DIMENSION<br />

Positive & Negative<br />

Figure 3.4: Typical loading in vertical glazing<br />

All frame secti<strong>on</strong>s shall have a minimum glazing rebate depth to accommodate a minimum glass bite of 10mm in the<br />

event of single glazing and a minimum glass bite of 15mm in case of sealed insulated glass units (SIGU).<br />

All frame secti<strong>on</strong>s shall have appropriate glazing rebate widths to suite the thickness of the gla glazing material allowing <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

all glazing methods recommended by the manufacturers of the glass and specialized plastic glazing materials.<br />

For glazing rebates accommodating specialized plastic glazing materials refer Table 3.11 below.<br />

TABLE 3.11: Edge Clearance Bite Bite, , (sheet edge engagement) and Rebate Depth <str<strong>on</strong>g>for</str<strong>on</strong>g> Specialized Plastic<br />

Glazing Materials in mm<br />

Dimensi<strong>on</strong>s in mm Edge engagement<br />

Edge<br />

Rebate depth<br />

Width or height<br />

“bite” Clearance in mm Minimum<br />

300<br />

6 1<br />

7<br />

300 – 600<br />

9 2<br />

11<br />

600 – 900<br />

12 3<br />

15<br />

900 – 1200<br />

15 4<br />

19<br />

1200 – 1500<br />

18 5<br />

23<br />

1500 – 1800<br />

20 6<br />

26<br />

1800 – 2100<br />

20 7<br />

27<br />

2100 – 2400<br />

20 8<br />

28<br />

2400 – 2700<br />

20 9<br />

29<br />

2700 – 3000<br />

20 10<br />

30<br />

Page 29


The wall thickness of the aluminium extrusi<strong>on</strong>s must be suitable to meet the required secti<strong>on</strong> properties, i.e. the required<br />

inertia in both the X and Y axis (Ix & IIy)<br />

) and must be suitable <str<strong>on</strong>g>for</str<strong>on</strong>g> proper mechanical assembly and fixing of all frame,<br />

mulli<strong>on</strong>, transom members and hardware.<br />

It is permissible to re-en<str<strong>on</strong>g>for</str<strong>on</strong>g>ce en<str<strong>on</strong>g>for</str<strong>on</strong>g>ce the aluminium alloy extrusi<strong>on</strong>s by inserting steel secti secti<strong>on</strong>s <strong>on</strong>s (channels or tubes) which are<br />

suitably treated to prevent corrosi<strong>on</strong> and reacti<strong>on</strong> with the aluminium alloy extrusi<strong>on</strong>s. These rein<str<strong>on</strong>g>for</str<strong>on</strong>g>cing must be<br />

properly fixed to the aluminium secti<strong>on</strong>. It is recommended that the inertia of the aluminium secti<strong>on</strong> is ig ignored when<br />

determining the inertia of the steel secti<strong>on</strong>, i.e. the inertia of the steel insert should represent the total required inerti inertia.<br />

The practice to use timber as re-en<str<strong>on</strong>g>for</str<strong>on</strong>g>cing en<str<strong>on</strong>g>for</str<strong>on</strong>g>cing is not acceptable.<br />

3.3.2 DETERMINATION OF SECTION PROPERTIES<br />

3.3.2.1 The simplest and most c<strong>on</strong>servative method of calculating the required secti<strong>on</strong> properties, using the <str<strong>on</strong>g>for</str<strong>on</strong>g>mula <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

equal distributi<strong>on</strong> load, is as follows:<br />

Step 1: Using the design wind load provided by the specifier (say 600Pa) calculate the required inertia as follows:<br />

Ix =<br />

Where in:<br />

Ix =<br />

Q =<br />

l =<br />

E =<br />

f =<br />

5 x Q x l<br />

384 x E x f<br />

3<br />

5 x (0,9 x 1,8 x 600) 180 3<br />

=<br />

384 x E x f 384 x 7 x 10 6 x (180/175)<br />

Required Inertia in cm 4<br />

Total wind load in N<br />

Span in cm<br />

Young’s Modulus in N/cm 2<br />

E aluminium = 7 x 10 6 N/cm 2<br />

E steel = 2,1 x 10 7 N/cm 2<br />

E glass = 7,17 x 10 6 N/cm 2<br />

E timber ± 1,2 x 10 6 N/cm 2<br />

E pvcu ± 4 x 10 5 N/cm 2<br />

Deflecti<strong>on</strong> in cm (1/175 th of span)<br />

Any secti<strong>on</strong> having inertia ≥ 10,84cm 4 will be suitable.<br />

Step 2: Mulli<strong>on</strong> (and transom) designs are generally of tubular c<strong>on</strong>figurati<strong>on</strong>. Using the following <str<strong>on</strong>g>for</str<strong>on</strong>g>mulas, together<br />

with the overall dimensi<strong>on</strong>s with relevant wall thickness of the secti<strong>on</strong>, the re required quired inertia can be calculated.<br />

Page 30<br />

= 10,84cm 4


Area cm<br />

F1 = 3,0 x 0,2<br />

F2 = 0,2 x 4,6<br />

F3 = 0,2 x 4,6<br />

F4 = 2,0 x 0,2<br />

F5 = 2,0 x 0,2<br />

F6 = 2,0 x 0,2<br />

2 Distance from base <strong>line</strong> in cm<br />

3,0 x 0,2 = 0,6 x 4,9 =<br />

0,2 x 4,6 = 0,92 x 2,5 =<br />

0,2 x 4,6 = 0,92 x 2,5 =<br />

2,0 x 0,2 = 0,4 x 0,6 =<br />

2,0 x 0,2 = 0,4 x 0,1 =<br />

2,0 x 0,2 = 0,4 x 0,1 =<br />

3,64 cm 2<br />

Distance from base <strong>line</strong> in cm<br />

2,94<br />

2,30<br />

2,30<br />

0,24<br />

0,04<br />

0,04<br />

7,86 cm 3<br />

XX axis distance from base <strong>line</strong> 7,86<br />

3,64<br />

= 2,16 cm<br />

I1 =<br />

I2 =<br />

I3 = I2<br />

I4 =<br />

I5 =<br />

I6 = I5<br />

B x H 3<br />

12<br />

B x H 3<br />

12<br />

B x H 3<br />

12<br />

B x H 3<br />

12<br />

Thus this secti<strong>on</strong> is suitable <str<strong>on</strong>g>for</str<strong>on</strong>g> the applicati<strong>on</strong>. The maximum mulli<strong>on</strong> deflecti<strong>on</strong> will be:<br />

1800<br />

175<br />

x<br />

Step 3: C<strong>on</strong>firm that the maximum allowable stress ( (τ) of 10400 N/cm<br />

follows:<br />

2 <str<strong>on</strong>g>for</str<strong>on</strong>g> aluminium alloy 6063T6 is not exceeded as<br />

τ =<br />

M<br />

Zx<br />

Where in:<br />

M = maximum moment in N cm according to<br />

M =<br />

QL<br />

8<br />

Zx = Secti<strong>on</strong> Modulus in cm 3<br />

=<br />

+ F1 x a1 2 =<br />

+ F2 x a2 2 =<br />

+ F4 x a4 2 =<br />

+ F5 x a5 2 =<br />

10,84<br />

12,34<br />

Undimensi<strong>on</strong>ed thickness 2mm<br />

3 x 0,2 3<br />

12<br />

0,2 x 4,6 3<br />

12<br />

2 x 0,2 3<br />

12<br />

2 x 0,2 3<br />

12<br />

= 9,03mm<br />

21870<br />

= 5716 N/cm 2<br />

3,826<br />

Moment of Inertia<br />

=<br />

11,48<br />

= 3,826 cm<br />

distance of extreme fibre 3<br />

3<br />

Page 31<br />

+ 0,6 x 2,74 2<br />

+ 0,4 x 1,56 2<br />

+ 0,4 x 2,06 2<br />

+ 0,92 x 0,34 2<br />

Total Inertia Ix<br />

=<br />

(0,9 x 1,8 x 600) 180<br />

= 21870 Ncm<br />

8<br />

= 4,51 cm 4<br />

= 1,73 cm 4<br />

= 1,73 cm 4<br />

= 0,97 cm 4<br />

= 1,70 cm 4<br />

= 1,70 cm 4<br />

= 12,34 cm 4


To assist manufacturers and/or c<strong>on</strong>tractors with the calculati<strong>on</strong>s referred to in Step 1 we provide in Table 3.11.1 a<br />

diagram indicating required inertias. This diagram has been based <strong>on</strong> a trapezoidal wind load of 1000Pa. The inertias<br />

shown can be changed in direct relati<strong>on</strong> with the 1000Pa should the actual design wind load differ, i.e. <str<strong>on</strong>g>for</str<strong>on</strong>g> 600Pa multiply<br />

inertias by 0,6; <str<strong>on</strong>g>for</str<strong>on</strong>g> 1200Pa multiply inertias by 1,2 etc.<br />

Manufacturers and c<strong>on</strong>tractors must insist <strong>on</strong> and receive the secti<strong>on</strong> properties <str<strong>on</strong>g>for</str<strong>on</strong>g> the aluminium extrusi<strong>on</strong>s used in the<br />

numerous Architectural Aluminium Systems available from the distributors and/or extrude extruders of the systems. This<br />

satisfies Step 2 and will circumvent the elaborate calculati<strong>on</strong>s required to determine secti<strong>on</strong> properties <str<strong>on</strong>g>for</str<strong>on</strong>g> complex<br />

extrusi<strong>on</strong>s. Note that secti<strong>on</strong>s of similar and identical overall dimensi<strong>on</strong>s may not have the same secti<strong>on</strong> properti properties. In<br />

Step 2 above the overall dimensi<strong>on</strong>s are 30 x 50mm but having a wall thickness of 1,5mm has inertia of 7,76cm<br />

there<str<strong>on</strong>g>for</str<strong>on</strong>g>e not suitable. Insist <strong>on</strong> in<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> regarding secti<strong>on</strong> properties prior to selecti<strong>on</strong> of <str<strong>on</strong>g>architectural</str<strong>on</strong>g> system to be<br />

used.<br />

4 and is<br />

there<str<strong>on</strong>g>for</str<strong>on</strong>g>e not suitable. Insist <strong>on</strong> in<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> regarding secti<strong>on</strong> properties prior to selecti<strong>on</strong> of <str<strong>on</strong>g>architectural</str<strong>on</strong>g> system to be<br />

There is no short cut <str<strong>on</strong>g>for</str<strong>on</strong>g> Step 3, however, because of the deflecti<strong>on</strong> limitati<strong>on</strong> it is extremely rare that the maximum<br />

allowable stress will be exceeded.<br />

3.3.2.2 Glass to metal c<strong>on</strong>tact must at all times be avoided. The vertical deflecti<strong>on</strong> of transoms is limited to 1/1000<br />

the length of the transom or maximum 2mm which ever is less. To calculate the required inertia in vertical<br />

directi<strong>on</strong> (Iy) ) of a transom the following <str<strong>on</strong>g>for</str<strong>on</strong>g>mula is used:<br />

th of<br />

. To calculate the required inertia in vertical<br />

Iy=<br />

P c<br />

24 Ef<br />

(3l 2 – 4c 2 )<br />

To calculate maximum allowable stress refers to Step 3 above using the follo following wing <str<strong>on</strong>g>for</str<strong>on</strong>g>mula <str<strong>on</strong>g>for</str<strong>on</strong>g> M (maximum moment).<br />

Mmax = P c (in Ncm)<br />

P = 0,5 x weight of glass in N<br />

c = positi<strong>on</strong> of setting blocks in cm (maximum 15cm)<br />

E = Young’s Modules 7 x 10 6 N/cm 2<br />

f = deflecti<strong>on</strong> in cm, 1/1000 x l, , maximum 0,2cm<br />

l = length of transom<br />

3.3.2.3 Other <str<strong>on</strong>g>for</str<strong>on</strong>g>mulas <str<strong>on</strong>g>for</str<strong>on</strong>g> calculating required inertias and maximum moments are: (all units as described above).<br />

Page 32


Table 3.11.1<br />

Page 33


3.4 DETERMINATION OF GLASS THICKNESS – RATIONAL DESIGN<br />

To enable specialist c<strong>on</strong>tractors to be competitive at time of tender when the design wind load has been specified in the<br />

tender documents, or has been c<strong>on</strong>firmed in writing to the specialist c<strong>on</strong>tractor by a Competent Perso Pers<strong>on</strong> (Structures), we<br />

provide the following in<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> to determine appropriate glass thicknesses in those events.<br />

In the event that the specialist c<strong>on</strong>tractor is awarded the c<strong>on</strong>tract, written c<strong>on</strong>firmati<strong>on</strong> must be obtained from a<br />

Competent Pers<strong>on</strong> (Glazing) to o c<strong>on</strong>firm, in writing, the selected glass thicknesses <str<strong>on</strong>g>for</str<strong>on</strong>g> the c<strong>on</strong>tract.<br />

This written c<strong>on</strong>firmati<strong>on</strong> must be provided/passed <strong>on</strong> to the Principle Agent/Main C<strong>on</strong>tractor or Building C<strong>on</strong>trol<br />

Officer and should be included with the c<strong>on</strong>tract’s glazing certificate.<br />

All wind load graphs are based <strong>on</strong>:<br />

Maximum frame deflecti<strong>on</strong> of 1/175<br />

A probability of breakage equal to 8 lites per 1000<br />

Vertical glazing <strong>on</strong>ly<br />

An aspect ratio of <strong>on</strong>e <strong>on</strong> <strong>on</strong>e (all round support <strong>on</strong>ly)<br />

th<br />

A probability of breakage equal to 8 lites per 1000<br />

An aspect ratio of <strong>on</strong>e <strong>on</strong> <strong>on</strong>e (all round support <strong>on</strong>ly)<br />

3.4.1 GLASS SUPPORTED ALL ROUND<br />

Using the wind load graphs <str<strong>on</strong>g>for</str<strong>on</strong>g> the appropriate glass type, the procedure should be as follows:<br />

a) Calculate the area A = a x b, and the aspect rati<strong>on</strong>, r = a/b, where a is the l<strong>on</strong>ger dimensi<strong>on</strong> and b is the shorter.<br />

Note: If r is greater than 3, figures 3.5 to 3.10 do not apply; refer figure 3.11 to 3.16.<br />

b) Calculate the shape factor <str<strong>on</strong>g>for</str<strong>on</strong>g> effective area F = 4r/(r+1) 2 Calculate the area A = a x b, and the aspect rati<strong>on</strong>, r = a/b, where a is the l<strong>on</strong>ger dimensi<strong>on</strong> and b is the shorter.<br />

. Some values are given in table 3.12.<br />

TABLE 3.12: : Shape Factors<br />

r<br />

1.0<br />

1.25<br />

1.5<br />

1.75<br />

2.0<br />

2.5<br />

3.0<br />

c) Calculate the effective are of the glass AAe<br />

= F x A.<br />

d) On the appropriate graph from figures 3.5 to 3.10, , determine the point where the vertical <strong>line</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> the required wind<br />

loading intersects the horiz<strong>on</strong>tal <strong>line</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> the effective area.<br />

e) If the point of intersecti<strong>on</strong> is above the <strong>line</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> the glass type being c<strong>on</strong>sidered, then a str<strong>on</strong>ger glass is required.<br />

f) If the point of intersecti<strong>on</strong> is <strong>on</strong> or below the <strong>line</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> the glass type being c<strong>on</strong>sidered, then the glass is adequate to<br />

resist the wind load.<br />

In the event nt of double glazing a factor of 1,5 may be applied to figure 3.5 in respect of the weakest pane in the<br />

combinati<strong>on</strong> to obtain the appropriate selecti<strong>on</strong>.<br />

3.4.2 GLASS DEFLECTION<br />

F<br />

1.000<br />

0.988<br />

0.960<br />

0.926<br />

0.889<br />

0.816<br />

0.750<br />

Excessive deflecti<strong>on</strong> in the glass panes can cause air or water leaks. It also may cause metal to glass c<strong>on</strong>tact including<br />

glass fracture. Also it will detract aesthetically from the structure.<br />

The use of large safety glass panes may create an uncom<str<strong>on</strong>g>for</str<strong>on</strong>g>table feeling to pers<strong>on</strong>s in the immediate proximity of such<br />

panes when these panes s are subjected to wind load.<br />

As a matter of “com<str<strong>on</strong>g>for</str<strong>on</strong>g>t” is a matter of individual interpretati<strong>on</strong> the decisi<strong>on</strong> to use thicker glasses to reduce the deflectio deflecti<strong>on</strong><br />

lies by the client/specifier. Sub-c<strong>on</strong>tractors/glaziers c<strong>on</strong>tractors/glaziers should declare the maximum centre of glass movement timely to<br />

prevent disputes after installati<strong>on</strong>.<br />

Page 34


The ASTM Standard Practice <str<strong>on</strong>g>for</str<strong>on</strong>g> determining load resistance of glass in buildings (ASTM E 1300 1300-02) offers in its Annex<br />

X2 the following procedure <str<strong>on</strong>g>for</str<strong>on</strong>g> calculating the approximate centre of glass deflecti<strong>on</strong> (all round support).<br />

w = t x exp (r (r0 + r1 x x + r2 x x2)<br />

Wherein:<br />

w = centre of glass deflecti<strong>on</strong> (mm) or (in.), and<br />

t = Minimum glass thickness in mm (refer table 3.13)<br />

r0 = 0,553 – 3,83 (a/b) + 1,11 (a/b)<br />

r1<br />

2 – 0,0969 (a/b) 3<br />

= 2,29 – 5,83 (a/b) + 2,17 (a/b) 2 – 0,2067 (a/b) 3<br />

= 1,485 – 1,908 (a/b) + 0,815(a/b) 2 – 0,0822 (a/b) 3<br />

Wherein:<br />

r2<br />

x =<br />

q = uni<str<strong>on</strong>g>for</str<strong>on</strong>g>m lateral load in kPa (wind load)<br />

a = l<strong>on</strong>g dimensi<strong>on</strong> in mm<br />

b = short dimensi<strong>on</strong> in mm<br />

E = modulus of elasticity of glass = 71,7 x 10<br />

TABLE 3.13 – Minimum Glass Thicknesses<br />

Nominal<br />

Minimum<br />

Thickness in mm Thickness in mm<br />

3,0 2,8<br />

4,0 3,8<br />

5,0 4,8<br />

6,0 5,8<br />

8,0 7,5<br />

10,0 9,5<br />

12,0 11,5<br />

To illustrate the effect of the combined deflecti<strong>on</strong> of framing and centre of glass pane <strong>on</strong> the<br />

pers<strong>on</strong> in close proximity of glass panes subjected to wind load we quote the following<br />

examples:<br />

Example 1 – Refer window quoted in paragraph 3.3.2.1 above<br />

i) Maximum Deflecti<strong>on</strong> Mulli<strong>on</strong><br />

ii)<br />

Maximum Glass Deflecti<strong>on</strong><br />

5mm glass thickness<br />

Total centre of pane movement by 600Pa wind load = 32mm<br />

Example 2 – Standard Patio Door 3021 wind load 1000Pa (A1)<br />

i) Maximum Deflecti<strong>on</strong> Interlock<br />

ii)<br />

= In⎨In[q(ab) 2 / Et 4 ]⎬<br />

modulus of elasticity of glass = 71,7 x 10 6 kPa<br />

Maximum Glass Deflecti<strong>on</strong><br />

5mm Toughened<br />

Total centre of pane movement by 1000Pa wind load = 62mm<br />

Page 35<br />

1800<br />

175<br />

= + and -<br />

= + and -<br />

Total + and -<br />

2100<br />

= + and - 12mm<br />

175<br />

= + and – 19mm<br />

Total + and - 31m<br />

10mm<br />

6mm<br />

16mm


Material selecti<strong>on</strong>s made using this graph must be c<strong>on</strong>firmed, in writing, by a Competent Pers<strong>on</strong> (Glazing)<br />

Page 36


Material selecti<strong>on</strong>s made using this graph must be c<strong>on</strong>firmed, in writing, by a Competent Pers<strong>on</strong> (Glazing)<br />

Page 37


Material selecti<strong>on</strong>s made using this graph must be c<strong>on</strong>firmed, in writing, by a Competent Pers<strong>on</strong> (Glazing)<br />

Page 38


Material selecti<strong>on</strong>s made using this graph must be c<strong>on</strong>firmed, in writing, by a Competent Pers<strong>on</strong> (Glazing)<br />

Page 39


Material selecti<strong>on</strong>s made using this graph must be c<strong>on</strong>firmed, in writing, by a Competent Pers<strong>on</strong> (Glazing)<br />

Page 40


Material selecti<strong>on</strong>s made using this graph must be c<strong>on</strong>firmed, in writing, by a Competent Pers<strong>on</strong> (Glazing)<br />

Page 41


3.4.2 GLASS SUPPORTED ON THREE SIDES<br />

One edge of the glass may be left unsupported in some glazing systems, creating a three-side side support glazing c<strong>on</strong>diti<strong>on</strong>.<br />

Such a c<strong>on</strong>diti<strong>on</strong> is shown in Example “D” where <strong>on</strong>e of the 2m vertical edges is unsupported. The strength factor <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

this c<strong>on</strong>diti<strong>on</strong> is 0.24.<br />

If the distance between the supported vertical edge and the unsupported vertical edge increases the strength of the threeside<br />

supported glass would be no greater than a piece of glass the same size with two unsupported edges.<br />

Example “E” shows another three-side side support c<strong>on</strong>diti<strong>on</strong> with the 1m dimensi<strong>on</strong> left uunsupported.<br />

nsupported. The strength factor <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

this c<strong>on</strong>diti<strong>on</strong> is 0.40. This glass is str<strong>on</strong>ger than the glass shown in Example “D” because the unsupported span is<br />

reduced. In three-side side support systems, the glass strength is dependent <strong>on</strong> the glass thickness, the gl glass height, the glass<br />

width, and which edge is unsupported.<br />

3.4.3 GLASS SUPPORTED ON TWO OPPOSITE SIDES<br />

The following figures are applicable to glass supported <strong>on</strong> two opposite sides:<br />

Note: Hermetically sealed glass units a.k.a. Sealed Insulated Glass Units (SIGU) must always be installed with all round<br />

support.<br />

Note: Frameless glass sliding doors are to be manufactured of toughened safety glass of thicknesses based <strong>on</strong> figure<br />

3.13<br />

Any deviati<strong>on</strong> from figure 3.13 requires written approva approval of a Competent Pers<strong>on</strong> (Glazing).<br />

Page 42


Material selecti<strong>on</strong>s made using this graph must be c<strong>on</strong>firmed, in writing, by a Competent Pers<strong>on</strong> (Glazing)<br />

Page 43


Material selecti<strong>on</strong>s made using this graph must be c<strong>on</strong>firmed, in writing, by a Competent Pers<strong>on</strong> (Glazing)<br />

Page 44


Material selecti<strong>on</strong>s made using this graph must be c<strong>on</strong>firmed, in writing, by a Competent Pers<strong>on</strong> (Glazing)<br />

Page 45


Material selecti<strong>on</strong>s made using this graph must be c<strong>on</strong>firmed, in writing, by a Competent Pers<strong>on</strong> (Glazing)<br />

Page 46


Material selecti<strong>on</strong>s made using this graph must be c<strong>on</strong>firmed, in writing, by a Competent Pers<strong>on</strong> (Glazing)<br />

Page 47


Material selecti<strong>on</strong>s made using this graph must be c<strong>on</strong>firmed, in writing, by a Competent Pers<strong>on</strong> (Glazing)<br />

Page 48


3.4.4 BUTT JOINTED EDGES<br />

Where glass panes in the same plane are butt butt-jointed jointed without fins, they will not have the same wind resistance<br />

characteristics as a single pane of the same overall size and thickness. The thickness of such glass should be calculated <strong>on</strong><br />

the assumpti<strong>on</strong> that the butt joint does not have any structural effect, i.e. the surround will be the <strong>on</strong>ly support.<br />

If rein<str<strong>on</strong>g>for</str<strong>on</strong>g>cing is unavoidable due to the span and wind loading, it might be necessary to install fins attached to the<br />

structure at the butt joints as indicated in figure 3.17. A suitable adhesive sealant with sufficient b<strong>on</strong>ding strength to<br />

allow movement due to wind loading shall be used.<br />

Silic<strong>on</strong>e sealants that have a tensile strength of at least 1 MPa are regarded as suitable <str<strong>on</strong>g>for</str<strong>on</strong>g> this purpose.<br />

Fins would normally be installed <strong>on</strong> the inside of the building where there is likely to be less pedestrian traffic. Fin<br />

selecti<strong>on</strong> is covered in figures 3.19 and 3. 3.20.<br />

Figure 3.17 — Detail of fin assembly<br />

Figure 3.18 – Fin Detail<br />

Page 49


Figure 3.19 – Wind load <strong>on</strong> glass fin assemblies:<br />

Sizes of adhesive joint<br />

Material selecti<strong>on</strong>s made using this graph must be c<strong>on</strong>firmed, in writing, by a Competent Pers<strong>on</strong> (Glazing)<br />

Page 50


Figure 3.20 – Wind load <strong>on</strong> glass fin assemblies: Glass fin width (3 s means wind load)<br />

Material selecti<strong>on</strong>s made using this graph must be c<strong>on</strong>firmed, in writing, by a Competent Pers<strong>on</strong> (Glazing)<br />

3.5 PLASTICS – Rati<strong>on</strong>al Design<br />

Design c<strong>on</strong>siderati<strong>on</strong>s as regards wind load <strong>on</strong> plastics materials have to be based <strong>on</strong> the fact that, under load (positive or<br />

negative), a pane is more likely to be displaced from its frame than to be fractured. When it is necessary to design <str<strong>on</strong>g>for</str<strong>on</strong>g> an<br />

anticipated wind load, obtain from the su supplier the relevant material in<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> mati<strong>on</strong> about the relati<strong>on</strong>ship between the<br />

thickness of the material, the area of the glazing, the aspect ratio, the edge cover and the method of fixing <str<strong>on</strong>g>for</str<strong>on</strong>g> normal use,<br />

provided maximum deflecti<strong>on</strong> does not exceed 50mm. Pol Polycarb<strong>on</strong>ate ycarb<strong>on</strong>ate is the plastics glazing material mostly used and<br />

figures 3.21 to 3.23 give the pane size and thickness against short dimensi<strong>on</strong> and wind load.<br />

The graphs are:<br />

Figure 3.2.1 – Plastics glazing panes: 15mm edge cover aspect ratio 1:0 < 1,5 (3 s mean ean wind load)<br />

Figure 3.2.2 – Plastics glazing panes: 15mm edge cover aspect ratio > 1,5 < 2,5 (3 s mean wind load)<br />

Figure 3.2.3 – Plastics glazing panes: 15mm edge cover aspect ratio > 2,5 < 3,5 (3 s mean wind load)<br />

The recommendati<strong>on</strong>s given in 3.5 .5 are <str<strong>on</strong>g>for</str<strong>on</strong>g> flat, plane, solid plastics glazing sheet materials of uni<str<strong>on</strong>g>for</str<strong>on</strong>g>m thickness, in<br />

rectangular shapes <str<strong>on</strong>g>glazed</str<strong>on</strong>g> with all four edges fully supported. Design recommendati<strong>on</strong>s <str<strong>on</strong>g>for</str<strong>on</strong>g> other <str<strong>on</strong>g>for</str<strong>on</strong>g>ms, including<br />

pattered and hollow secti<strong>on</strong>, should be obtained from the manu manufacturers.<br />

Page 51


3.1.1 DESIGN CONSIDERATION<br />

Failure of a pane of plastics glazing sheet material under load is most likely to be by displacement of the pane rather than<br />

by breakage. The recommendati<strong>on</strong>s <strong>on</strong> thickness <str<strong>on</strong>g>for</str<strong>on</strong>g> plastics glazing sheet material is related to minimum size of edge<br />

cover to prevent a pane of specified thickness from springing out under loading in normal glazing c<strong>on</strong>diti<strong>on</strong>s. The design<br />

c<strong>on</strong>siderati<strong>on</strong>s are based <strong>on</strong> this. The procedure in 33.5.2<br />

is <str<strong>on</strong>g>for</str<strong>on</strong>g> vertical four-edge edge fully supported glazing.<br />

The he design wind loadings <str<strong>on</strong>g>for</str<strong>on</strong>g> pressure and sucti<strong>on</strong> should be determined from either table 3.1 or SANS 10160. The<br />

values given in the sets of wind loading graphs, figures 3.21 to 3.23, , have been derived from trade practice proven to be<br />

satisfactory over many years experience and experimental knowledge.<br />

The aspect ratio of a pane has an effect <strong>on</strong> the thickness required to limit deflecti<strong>on</strong> under uni<str<strong>on</strong>g>for</str<strong>on</strong>g>m load. The higher the<br />

aspect ratio the greater the resistance to deflecti<strong>on</strong>. For panes having an aspect rati ratio o greater than 33,5:1<br />

or when they are<br />

n<strong>on</strong>-rectangular, rectangular, the Competent Pers<strong>on</strong> (Glazing) should be c<strong>on</strong>sulted. In order to limit the deflecti<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> larger panes,<br />

the Competent Pers<strong>on</strong> (Glazing) should be c<strong>on</strong>sulted where areas of individual panes exceed 2m<br />

bowing under large increases in ambient temperature is an important aesthetic c<strong>on</strong>siderati<strong>on</strong>, then the thermal expansi<strong>on</strong><br />

of plastics glazing sheet materials should be allowed <str<strong>on</strong>g>for</str<strong>on</strong>g> in the rebate size.<br />

2 . If the absence of<br />

bowing under large increases in ambient temperature is an important aesthetic c<strong>on</strong>siderati<strong>on</strong>, then the thermal expansi<strong>on</strong><br />

For plastics glazing sheet materials, a minimum edge cover of 15mm is normally recommended (see also table 3.7). To<br />

accommodate a smaller edge cover arising from small existing rebate depths, the designer should c<strong>on</strong>sider the possible<br />

following opti<strong>on</strong>s:<br />

a) use of increased thickness of glazing <str<strong>on</strong>g>for</str<strong>on</strong>g> edge covers other than 15mm edge cover the Competent Pers<strong>on</strong> (Glazing)<br />

should be c<strong>on</strong>sulted;<br />

b) use of tight glazing by sacrificing edge clearance and accepting the possibility of bowing at elevated temperatures;<br />

c) use of higher quality sealants to increase edge restraint;<br />

d) use of mechanical fixing.<br />

These opti<strong>on</strong>s frequently arise in reglazing situati<strong>on</strong>s where plastics glazing sheet materials are used with existing rebates<br />

designed <str<strong>on</strong>g>for</str<strong>on</strong>g> glass, which are often inadequate <str<strong>on</strong>g>for</str<strong>on</strong>g> ideal glazing with these materials.<br />

For glazing systems designed specifically <str<strong>on</strong>g>for</str<strong>on</strong>g> plastics glazing sheet materials, the use of an edge cover greater than 15mm<br />

may allow the use of materials thinner than those derived from figures 3.21 to 3.23, , but the Competent Pers<strong>on</strong> (Glazing)<br />

should be c<strong>on</strong>sulted.<br />

3.1.2 USE OF WIND LOADING GRAPHS TO DETERMINE THICKNESS OF SOLID PPLASTICS<br />

GLAZING<br />

SHEET MATERIALS.<br />

The following procedure should be used to determine the thickness of the plastics glazing sheet materials, in c<strong>on</strong>juncti<strong>on</strong><br />

with the wind loading graphs, figures 3.21 to 3.23.<br />

Note: Figures 3.21 to 3.23 are used <str<strong>on</strong>g>for</str<strong>on</strong>g> the normally recommended edge cover of 15mm.<br />

a) Calculate the area of the pane, A = a x b and the aspect ratio, r = a/b, where a is the l<strong>on</strong>ger dimensi<strong>on</strong> and b is the<br />

shorter.<br />

b) On the appropriate graph <str<strong>on</strong>g>for</str<strong>on</strong>g> the aspect ratio and edge cover from figures 3.21 to 3.23 3.23, determine the point where<br />

the vertical <strong>line</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> the required wind loading intersects the horiz<strong>on</strong>tal <strong>line</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> the required area.<br />

c) If the point of intersecti<strong>on</strong> does not ccoincide<br />

oincide with a thickness <strong>line</strong>, the recommended thickness <str<strong>on</strong>g>for</str<strong>on</strong>g> use with the<br />

corresp<strong>on</strong>ding size of edge cover is indicated by the <strong>line</strong> above.<br />

If the pane is situated where it may be subject to accidental breakage or is intended to be of a thickness to withst withstand<br />

vandal attack, the thickness may need to be increased or the method of glazing modified to allow <str<strong>on</strong>g>for</str<strong>on</strong>g> this additi<strong>on</strong>al<br />

loading.<br />

3.1.3 DESIGN OF HOLLOW SECTION TION PLASTICS GLAZIN GLAZING G SHEET MATERIALS<br />

The stiffness of a hollow plastic glazing sheet material is determ determined ined by the material from which it is made, the overall<br />

thickness and the geometry of the sheet. The deflecti<strong>on</strong> characteristics of a particular hollow secti<strong>on</strong> plastic glazing sheet<br />

material very according to which directi<strong>on</strong> the webs runs in relati<strong>on</strong> to th the e l<strong>on</strong>g edges of the pane.<br />

It is not practical, there<str<strong>on</strong>g>for</str<strong>on</strong>g>e to produce a set of graphs relating wind loading to hollow secti<strong>on</strong>s sheets because of the<br />

variety of profiles and thicknesses. Advice should be obtained from the Competent Pers<strong>on</strong> (Glazing).<br />

Page 52


Material selecti<strong>on</strong>s made using this graph must be c<strong>on</strong>firmed, in writing, by a Competent Pers<strong>on</strong> (Glazing)<br />

Page 53


Material selecti<strong>on</strong>s made using this graph must be c<strong>on</strong>firmed, in writing, by a Competent Pers<strong>on</strong> (Glazing)<br />

Page 54


Material selecti<strong>on</strong>s made using this graph must be c<strong>on</strong>firmed, in writing, by a Competent Pers<strong>on</strong> (Glazing)<br />

Page 55


Page 56


CHAPTER IV<br />

SELECTION<br />

OF<br />

GLAZING MATERIALS<br />

Page 57


4. SELECTION OF TYPES OF GLAZING MATERIALS<br />

4.1 INTRODUCTION<br />

Glass and plastic glazing are usually selected <strong>on</strong> merits of ec<strong>on</strong>omics, aesthetics and per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance but all glazing is to be<br />

executed in strict accordance of the latest editi<strong>on</strong>s of the following South African Standards:<br />

Nati<strong>on</strong>al Building Regulati<strong>on</strong>s Part N<br />

SANS 10137 - Code of Practice <str<strong>on</strong>g>for</str<strong>on</strong>g> the Installati<strong>on</strong> of Glazing Materials in Buildings<br />

SANS 10400: Part N - The Applicati<strong>on</strong> of the Nati<strong>on</strong>al Building Regulati<strong>on</strong>s Glazing<br />

SANS 1263 - Safety and security glazing materials <str<strong>on</strong>g>for</str<strong>on</strong>g> buildings<br />

Part I Safety per<str<strong>on</strong>g>for</str<strong>on</strong>g>manc per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance of glazing materials under human impact<br />

Part II Burglar--resistance<br />

and vandal resistant glazing materials<br />

Part III Bullet-resistant resistant glazing materials<br />

Float, toughened, laminated, wired and patterned glass is currently used in the building industry. Laminated safety glass<br />

is currently locally produced using the following manufacturing process.<br />

Laminated safety glass using poly poly-vinyl vinyl butyral (PVB) interlayer is supplied in three strengths namely Normal<br />

Strength th (N.S.), High Penetrati<strong>on</strong> Resistance (H.P.R.) and High Impact (H.I.).<br />

Specifiers and manufacturers must ensure that the manufacturer of any laminated glass provides a warranty of not less<br />

than 5 (five) years against delaminati<strong>on</strong> and colour degradati<strong>on</strong>, c<strong>on</strong>firming that the product c<strong>on</strong>firms to that secti<strong>on</strong> of<br />

SANS 1263 which pertains to the particular applicati<strong>on</strong> of safety glass i.e., <str<strong>on</strong>g>for</str<strong>on</strong>g> resistance to human impact (Part I) or to<br />

burglary and vandalism (Part II), or to firearms (Part III).<br />

Note! In terms of SANS 1263 Part 1 glass with applied film (organic coating) is not regarded as a safety glazing<br />

material unless it meets all requirements of SANS 1263 Part I (including the boil and artificial ageing tests). In<br />

additi<strong>on</strong> the applied film must cover the eentire<br />

ntire surface of the glazing material i.e. the film must be retained in the<br />

glazing rebate.<br />

C<strong>on</strong>diti<strong>on</strong><br />

General applicati<strong>on</strong>s of glass types<br />

Glass and Plastics<br />

Human safety (SANS 1263 - Part 1)<br />

Laminated glass or toughened glass or polycarb<strong>on</strong>ate<br />

Security (smash and grabs, , riots, bombs, fire Laminated or multi-laminated laminated or Bullet Resisting Glass or<br />

arms, petrol bombs etc.)<br />

polycarb<strong>on</strong>ate (SANS 1263 Parts II and III)<br />

Heavy human traffic (i.e. Balustrades) Toughened Glass or polycarb<strong>on</strong>ate (SANS 1263 Part I)<br />

Fire<br />

Wired glass or laminated wired glass or laminated glass with<br />

intumescent interlayers or Borosilicate and calcium silicate glass<br />

Unframed applicati<strong>on</strong>s (suspended assemblies,<br />

unframed doors, etc)<br />

Toughened Glass or polycarb<strong>on</strong>ate (SANS 10137)<br />

Laminated or Wired glass (wired in the case where penetrati<strong>on</strong> of<br />

Overhead glazing<br />

glass or water ingress is not a problem) or toughened glass (<strong>on</strong>ly<br />

permitted when supported all round (SANS 10137) or acrylic or<br />

polycarb<strong>on</strong>ate<br />

Sound C<strong>on</strong>trol<br />

Laminated glass or Sealed Insulated glass units or acrylic or<br />

polycarb<strong>on</strong>ate<br />

Solar C<strong>on</strong>trol<br />

Tinted, reflective and or low-e e glass or Sealed Insulated glass<br />

units incorporating these or acrylic or polycarb<strong>on</strong>ate<br />

C<strong>on</strong>densati<strong>on</strong><br />

Sealed insulated glass units or acrylic or polycarb<strong>on</strong>ate<br />

One-way visi<strong>on</strong><br />

Reflective glass or acrylic or polycarb<strong>on</strong>ate<br />

Ultra-Violet Eliminati<strong>on</strong><br />

Laminated glass or acrylic or polycarb<strong>on</strong>ate<br />

Fish tanks Domestic<br />

Annealed float glass (SANS 17) or acrylic or polycarb<strong>on</strong>ate<br />

Underwater Observati<strong>on</strong> panels<br />

Multi-laminated glass or acrylic or polycarb<strong>on</strong>ate<br />

Floor & Stair treads<br />

Multi-laminated laminated glass or acrylic or polycarb<strong>on</strong>ate<br />

4.2 PERFORMANCE OF GLASS PRODUCTS<br />

An important aspect of glass selecti<strong>on</strong> is the per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance of glass in respect of its sound insulati<strong>on</strong>, heat loss and heat<br />

gain properties. Although the discussi<strong>on</strong> of the merits of these properties falls outside the scope of the <str<strong>on</strong>g>Selecti<strong>on</strong></str<strong>on</strong>g> Guide<br />

some guidance ce is provided to the specifier in the following paragraphs.<br />

Page 58


For relevant in<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> regarding specialized plastic products refer to Chapter VIII - Skylights.<br />

Due to the vast variety of glass and plastic types the specifier is urged to c<strong>on</strong>sult the manufacturer or competent pers<strong>on</strong><br />

(glazing) to obtain the relevant technical glass and plastics specificati<strong>on</strong>s.<br />

4.3 SOUND INSULATION<br />

NOTE: i) Thickness <str<strong>on</strong>g>for</str<strong>on</strong>g> thickness, clear float, toughened, wired, coated and tinted m<strong>on</strong>olithic glass products have<br />

exactly the same acoustic per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance.<br />

ii) Data provided is intended as a <str<strong>on</strong>g>guide</str<strong>on</strong>g> <strong>on</strong>ly. Due to the numerous possible computati<strong>on</strong>s, data is to be<br />

c<strong>on</strong>firmed with the glass and plastics manufacturer or competent pers<strong>on</strong> (glazing).<br />

1. SINGLE GLAZING<br />

M<strong>on</strong>olithic Glass<br />

Glass thickness<br />

Rw Index (ISO 717)<br />

Laminated Glass<br />

Glass thickness<br />

Rw Index (ISO 717)<br />

2. SEALED INSULATED GLASS UNITS (Double glazing)<br />

M<strong>on</strong>olithic glass and m<strong>on</strong>olithic glass<br />

Glass/Space/Glass thickness<br />

Rw Index (ISO 717)<br />

Laminated glass and m<strong>on</strong>olithic glass<br />

Glass/Space/Glass thickness<br />

Rw Index (ISO 717)<br />

3. DOUBLE WINDOWS (Sec<strong>on</strong>dary sash)<br />

Glass/Space/Glass thickness<br />

Rw Index (ISO 717)<br />

4 6 10 12<br />

29 31 33 34<br />

6 8 17<br />

33 37 41<br />

6/12/6 10/12/6<br />

31 36<br />

6/12/6<br />

38<br />

6/150/4 10/200/6<br />

45 47<br />

4.4 ENERGY RELATED PROPERTIES OF WINDOWS<br />

4.4.1 PROPERTIES ROPERTIES OF GLAZING THAT AFFECT ENERGY PERFORMANCE<br />

`<br />

Figure 4.1: 1: Solar radiati<strong>on</strong> through a glazing material is reflected, , transmitted or absorbed<br />

Page 59


Most window and façade assemblies c<strong>on</strong>sist of glazing and frame comp<strong>on</strong>ents. Glazing may be a single pane of glass (or<br />

plastic) or multiple panes with air spaces in between. These multiple layer units, referred to as insulating glazing units<br />

(IGU), include spacers around the edge and sometimes low low-c<strong>on</strong>ductance gases ses in the spaces between glass panes.<br />

Coatings and tins affect the per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance of the glazing. The IGU is placed within a frame of aluminium, steel, wood,<br />

plastic, or some hybrid or composite material. Some curtain wall systems using structural sealant sealants and other special<br />

fittings have no exterior frame.<br />

Heat flows through a window assembly in three ways: c<strong>on</strong>ducti<strong>on</strong>, c<strong>on</strong>vecti<strong>on</strong>, and radiati<strong>on</strong>. C<strong>on</strong>ducti<strong>on</strong> is heat<br />

travelling through a solid, liquid or gas. C<strong>on</strong>vecti<strong>on</strong> is the transfer of heat by the movement of gases or liquids, like<br />

warm air rising from a candle flame. Radiati<strong>on</strong> is the movement of energy through space without relying <strong>on</strong> c<strong>on</strong>ducti<strong>on</strong><br />

through the air or by movement of the air, the way you feel the heat of a fire.<br />

When there is a temperature ature difference across an object (i.e., when a window separates a cold outdoors from a warm<br />

interior or a hot outside from a c<strong>on</strong>diti<strong>on</strong>ed interior space), heat transfer will occur via these three physical mechanisms:<br />

c<strong>on</strong>ducti<strong>on</strong> through glass and solid fram frame e materials, c<strong>on</strong>vecti<strong>on</strong>/c<strong>on</strong>ducti<strong>on</strong> through air spaces, and l<strong>on</strong>g l<strong>on</strong>g-wave radiati<strong>on</strong><br />

between glass surfaces <strong>on</strong> either side of an air gap. This temperature temperature-driven driven heat transfer is quantified by the term U-<br />

factor and is discussed in the secti<strong>on</strong> <strong>on</strong> insulating valu value.<br />

There are two distinct types of radiati<strong>on</strong> or radiati<strong>on</strong> heat transfer:<br />

L<strong>on</strong>g-wave wave radiati<strong>on</strong> heat transfer refers to radiant heat transfer between objects at room or outdoor envir<strong>on</strong>mental<br />

temperatures. These temperatures emit radiati<strong>on</strong> in the rage of 33-50<br />

micr<strong>on</strong>s.<br />

Short-wave wave radiati<strong>on</strong> heat transfer refers to radiati<strong>on</strong> from the sun (which is at a temperature of 6000K) and occurs<br />

in the 0.3-2.5 2.5 micr<strong>on</strong> range. This range includes the ultraviolet, visible, and solar solar-infrared infrared radiati<strong>on</strong> (Figure 4.2)<br />

Figure 4.2: 2: Ideal spectral transmittance <str<strong>on</strong>g>for</str<strong>on</strong>g> glazing in different climates<br />

Even though the physical process is the same, there is no overlap between these two wavelength ranges. Coatings that<br />

c<strong>on</strong>trol the passage of l<strong>on</strong>g wave or solar radiati<strong>on</strong> in these ranges, through transmissi<strong>on</strong> and/or reflecti<strong>on</strong>, can c<strong>on</strong>tribute<br />

significantly to energy savings and have been the subject of significant innovati<strong>on</strong>s in recent years. Glazing types vary in<br />

their transparency to different parts of the visible spectrum. For example, a glass that appears tinted green as you look<br />

through it toward the outdoors transmits more sunlight from the green porti<strong>on</strong> of the visible spectrum and absorbs or<br />

reflects more of the other colours. Similarly, a br<strong>on</strong>ze br<strong>on</strong>ze-tinted tinted glass absorbs or reflects the blues and greens and transmits<br />

the warmer colours. Neutral gray tints nts absorb or reflect most colours equally.<br />

The same principle applies outside the visible spectrum. Most glass is particularly transparent to at least some ultraviolet<br />

radiati<strong>on</strong>, while plastics are comm<strong>on</strong>ly more opaque to ultraviolet. Glass is opaque tto<br />

o l<strong>on</strong>g l<strong>on</strong>g-wave infrared radiati<strong>on</strong> but<br />

generally transparent to solar-infrared infrared radiati<strong>on</strong>. Strategic utilizati<strong>on</strong> of these variati<strong>on</strong>s has made some high high-per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance<br />

glazing products. The four basic properties of glazing that affect radiant energy transfer transfer-transmittance, reflectance,<br />

absorptance, and emittance – are described below.<br />

Page 60<br />

1. Idealized ed transmittance of a glazing with a<br />

low-E E coating designed <str<strong>on</strong>g>for</str<strong>on</strong>g> low solar heat<br />

gain. Visible light is transmitted and solarinfrared<br />

radiati<strong>on</strong> is reflected. L<strong>on</strong>g L<strong>on</strong>g-wave<br />

infrared radiati<strong>on</strong> is reflected back into the<br />

interior. This approach is suitable <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

commercial buildings in almost all<br />

climates.<br />

2. Idealized transmittance of a glazing with a<br />

low-E E coating designed <str<strong>on</strong>g>for</str<strong>on</strong>g> high solar heat<br />

gain. Visible light and solar solar-infrared<br />

radiati<strong>on</strong> are transmitted. L<strong>on</strong>g L<strong>on</strong>g-wave<br />

infrared radiati<strong>on</strong> is reflected back into the<br />

interior. This approach is more comm<strong>on</strong>ly<br />

used <str<strong>on</strong>g>for</str<strong>on</strong>g> residential windows in cold<br />

climates.<br />

Note: As shown by the solar spectrum in the<br />

figure, sunlight is composed of electromagnetic<br />

radiati<strong>on</strong> of many wavelengths, ranging from<br />

short-wave wave invisible ultraviolet to the visible<br />

spectrum to the l<strong>on</strong>ger, invisible solar solar-infrared<br />

waves.


4.4.2 TRANSMITTANCE<br />

Transmittance refers to the percentage of radiati<strong>on</strong> that can pass through glazing. Transmittance can be defined <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

different types of light or energy, e.g., visible transmittance, UV transmittance, or total solar energy transmittance.<br />

Transmissi<strong>on</strong> of visible light determines the effectiveness of a type of glass in providing daylight and a clear view<br />

through the window. For example, tinted glass has a lower visible transmittance than clear glass. While the human eye is<br />

sensitive to light ht at wavelengths from about 0.4 to 0.7 micr<strong>on</strong>s, its peak sensitivity is at 0.55, with lower sensitivity at the<br />

red and blue ends of the spectrum. This is referred to as the phot<strong>on</strong>ic sensitivity of the eye.<br />

More than half of the sun’s energy is invisible to the eye. Most reaches us as near-infrared infrared with a few percent in the<br />

ultraviolet (UV) spectrum. Thus, total solar energy transmittance describes how the glazing resp<strong>on</strong>ds to a much broader<br />

part of the spectrum and is more useful in characterizing the qquantity<br />

uantity of total solar energy transmitted by the glazing.<br />

With the recent advances in glazing technology, manufacturers can c<strong>on</strong>trol how glazing materials behave in these<br />

different areas of the spectrum. The basic properties of the substrate material (gla (glass ss or plastic) can be altered, and<br />

coatings can be added to the surfaces of the substrates. For example, a window optimized <str<strong>on</strong>g>for</str<strong>on</strong>g> day lighting and <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

reducing overall solar heat gains should transit an adequate amount of light in the visible porti<strong>on</strong> of the spectrum, while<br />

excluding unnecessary heat gain from the near near-infrared part of the electromagnetic spectrum.<br />

4.4.3 REFLECTANCE<br />

Just as some light reflects off of the surface of water, some<br />

light will always be reflected at every glass surface. A<br />

specular reflecti<strong>on</strong> from a smooth glass surface is a mirror<br />

like reflecti<strong>on</strong> similar to the image of yourself you see<br />

reflected in a store e window. The natural reflectivity of glass<br />

is dependent <strong>on</strong> the type of glazing material, the quality of the<br />

glass surface, the presence of coatings, and the angle of<br />

incidence of the light. Today, virtually all glass manufactured<br />

in the United States is float glass, which reflects 4 percent of<br />

visible light at each glass-air air interface or 8 percent total <str<strong>on</strong>g>for</str<strong>on</strong>g> a<br />

single pane of clear, uncoated glass. The sharper the angle at<br />

which the light strikes, however, the more the light is<br />

reflected rather than transmitted mitted or absorbed (Figure 44.3).<br />

Even clear glass reflects 50% or more of the sunlight striking<br />

it at incident angles greater than about 80°. (The incident<br />

angle is <str<strong>on</strong>g>for</str<strong>on</strong>g>med with respect to a <strong>line</strong> perpendicular to the<br />

glass surface).<br />

The reflectivity of various glass types becomes especially apparent during low light c<strong>on</strong>diti<strong>on</strong>s. The surface <strong>on</strong> the<br />

brighter side acts like a mirror because the amount of light passing through the window from the darker side is less than<br />

the amount of light ht being reflected from the lighter side. This effect can be noticed from the outside during the day and<br />

from the inside during the night. For special applicati<strong>on</strong>s when these surface reflecti<strong>on</strong>s are undesirable (i.e., viewing<br />

merchandise through a store window <strong>on</strong> a bright day), special coatings can virtually eliminate this reflective effect.<br />

Most comm<strong>on</strong> coatings reflect in all regi<strong>on</strong>s of the spectrum. However, in the past 20 20-years, years, researches have learned a<br />

great deal about the design of coatings that can be applied to glass and plastic to preferentially reflect <strong>on</strong>ly selected<br />

wavelengths of radiant energy. Varying the reflectance of far far-infrared and near-infrared infrared energy has <str<strong>on</strong>g>for</str<strong>on</strong>g>med the basis <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

high-per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance low-E coatings.<br />

4.4.4 ABSORPTANCE<br />

Energy y that is not transmitted through the glass or reflected off its surfaces is absorbed. Once glass has absorbed any<br />

radiant energy, the energy is trans<str<strong>on</strong>g>for</str<strong>on</strong>g>med into heat, raising the glass temperature.<br />

Typical 6mm clear glass absorbs <strong>on</strong>ly about 7% of sunlig sunlight ht at a normal angle of incidence (also a 30° angle of incidence,<br />

as shown in Figure 4.3). ). The absorptance of glass is increased by glass additives that absorb solar energy. If they absorb<br />

visible light, the glass appears dark. If they absorb ultraviole ultraviolet radiati<strong>on</strong> or near-infrared, infrared, there will be little or no change<br />

in visual appearance. Clear glass absorbs very little visible light, while dark dark-tinted tinted glass absorbs a c<strong>on</strong>siderable amount<br />

(Figure 4.4).<br />

Page 61<br />

Figure 4.3: Sunlight t transmitted and reflected by 6mm<br />

clear glass as a functi<strong>on</strong> of the incident angle


Figure 4.4: : Solar energy transmissi<strong>on</strong> through three types of glass under standard ASHRAE summer c<strong>on</strong>diti<strong>on</strong>s<br />

The absorbed energy is c<strong>on</strong>verted into heat, warming the glass, thus, when “heat-absorbing” absorbing” glass is in the sun, it feels<br />

much hotter to the touch than clear glass. Tints are generally gray, br<strong>on</strong>ze, or blue blue-green green and were traditi<strong>on</strong>ally used to<br />

lower the solar heat gain coefficient and to c<strong>on</strong>trol glare. Since they block some of the sun’s energy, they reduce the<br />

cooling load placed <strong>on</strong> the building ding and its air air-c<strong>on</strong>diti<strong>on</strong>ing c<strong>on</strong>diti<strong>on</strong>ing equipment. The effectiveness of heat heat-absorbing single<br />

glazing is significantly reduced if cool, c<strong>on</strong>diti<strong>on</strong>ed air flows across the glass. Absorpti<strong>on</strong> is not the most efficient way t tto<br />

reduce cooling loads, as discussed later.<br />

All ll glass and most plastics, however, are generally very absorptive of l<strong>on</strong>g l<strong>on</strong>g-wave wave infrared energy. This property is best<br />

illustrated in the use of clear glass <str<strong>on</strong>g>for</str<strong>on</strong>g> greenhouses, where it allows the transmissi<strong>on</strong> of intense solar energy but blocks th the<br />

retransmissi<strong>on</strong> of the low-temperature temperature heat energy generated inside the greenhouse and radiated back to the glass.<br />

4.4.5 EMMITTANCE<br />

When solar energy is absorbed by glass, it is either c<strong>on</strong>verted away by moving air or reradiated by the glass surface. This<br />

ability of a material to radiate energy is called its emissivity. Window glass, al<strong>on</strong>g with all other objects, typically emits,<br />

or radiates, heat in the <str<strong>on</strong>g>for</str<strong>on</strong>g>m of l<strong>on</strong>g-wave wave far far-infrared infrared energy. The wavelength of the l<strong>on</strong>g l<strong>on</strong>g-wave far-infrared energy<br />

varies with the temperature perature of the surface. This emissi<strong>on</strong> of radiant heat is <strong>on</strong>e of the important heat transfer pathways<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g> a window. Thus, reducing the window’s emissi<strong>on</strong> of heat can greatly improve its insulating properties.<br />

Standard clear glass has an emittance of 0.84 over the l<strong>on</strong>g-wave wave infrared porti<strong>on</strong> of the spectrum, meaning that it emits<br />

84% of the energy possible <str<strong>on</strong>g>for</str<strong>on</strong>g> an object at room temperature. It also means that <str<strong>on</strong>g>for</str<strong>on</strong>g> l<strong>on</strong>g l<strong>on</strong>g-wave radiati<strong>on</strong> striking the<br />

surface of the glass, 84% is absorbed and <strong>on</strong>ly 16% is reflect reflected. By comparis<strong>on</strong>, low-E E glass coatings have an emittance<br />

as low as 0.04. This glazing would emit <strong>on</strong>ly 4% of the energy possible at its temperature and thus reflect 96% of the<br />

incident l<strong>on</strong>g-wave infrared radiati<strong>on</strong>.<br />

4.5 DETERMINING ENERGY-RELATED RELATED PROP PROPERTIES OF WINDOWS<br />

There are four properties of windows that are the basis <str<strong>on</strong>g>for</str<strong>on</strong>g> quantifying energy per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance:<br />

U-factor. When there is a temperature difference between inside and outside, heat is lost or gained through the<br />

window frame and glazing by the combined effects of c<strong>on</strong>ducti<strong>on</strong>, c<strong>on</strong>vecti<strong>on</strong>, and l<strong>on</strong>g l<strong>on</strong>g-wave radiati<strong>on</strong>. The U-<br />

factor of a window assembly represents its ooverall<br />

verall heat transfer rate or insulating value.<br />

Solar Heat Gain Coefficient. Regardless of outside temperature, heat can be gained through windows by direct<br />

or indirect solar radiati<strong>on</strong>. The ability to c<strong>on</strong>trol this heat gain through windows is characteriz characterized in terms of the<br />

solar heat gin coefficient (SHGC) or shading coefficient (SC) of the window.<br />

Visible Transmittance. Visible transmittance (VT), also referred to as visible light transmittance (VLT), is an<br />

optical property that indicates the amount of visible light transmitted through the glass. It affects energy by<br />

providing daylight that creates the opportunity to reduce electric lighting and its associated cooling loads.<br />

Air Leakage. Heat loss and gain also occur by air leakage through cracks around sashes and frames of the<br />

window assembly. This effect is often quantified in terms of the amount of air (cubic meters per minute) passing<br />

through a unit area of window (square metre) under given pressure c<strong>on</strong>diti<strong>on</strong>s.<br />

These four c<strong>on</strong>cepts – as well as s Light Light-to-Solar-Gain ratio, a ratio of VT/SHGC – have been standardized within the<br />

glazing industry, and allow accurate comparis<strong>on</strong> of windows.<br />

Page 62


4.5.1 INSULATING VALUE (U-factor) factor)<br />

For windows, a principle energy c<strong>on</strong>cern is their ability to c<strong>on</strong>trol heat<br />

loss. Heat flows from warmer to cooler bodies, thus from the inside<br />

face of a window to the outside in winter, reversing directi<strong>on</strong> in<br />

summer. Overall heat flow from the warmer to cooler side of a<br />

window unit is a complex interacti<strong>on</strong> of all three basic hheat<br />

transfer<br />

mechanisms – c<strong>on</strong>ducti<strong>on</strong>, c<strong>on</strong>vecti<strong>on</strong>, and l<strong>on</strong>g l<strong>on</strong>g-wave radiati<strong>on</strong><br />

(Figure 4.5). ). A window assembly’s capacity to resist this heat transfer<br />

is referred to as its insulating value.<br />

C<strong>on</strong>ducti<strong>on</strong> occurs directly through glass, and the air cavity within<br />

double-<str<strong>on</strong>g>glazed</str<strong>on</strong>g> SIGUs, , as well as through a window’s spacers and<br />

frames. Some frame materials, like wood, have relatively low<br />

c<strong>on</strong>ducti<strong>on</strong> rates. The higher c<strong>on</strong>ducti<strong>on</strong> rates of other materia materials, like<br />

metals, have to be mitigated with disc<strong>on</strong>tinuities of thermal breaks in Figure 4.5: Comp<strong>on</strong>ents of heat transfer<br />

the frame to avoid energy loss.<br />

through a window that are related to UU-factor<br />

C<strong>on</strong>vecti<strong>on</strong> within a window unit occurs in three places: the interior and exterior glazing surfaces, and within the air<br />

cavity between glazing layers. On the interior, a cold interior glazing surface chills the adjacent air. This denser cold a aair<br />

then falls, starting c<strong>on</strong>vecti<strong>on</strong> current. People often perceive this air flow as a draft caused by leaky windows, instead of<br />

recognizing that the remedy correctly lies with a window that provides a warmer glass surface (Figure 2 22-6).<br />

On the<br />

exterior the air film against gainst the glazing c<strong>on</strong>tributes to the window’s insulating value. As wind blows (c<strong>on</strong>vecti<strong>on</strong>), the<br />

effectiveness of this air film is diminished, c<strong>on</strong>tributing to a higher heat rate loss. Within the air cavity, temperature-<br />

induced c<strong>on</strong>vecti<strong>on</strong> currents facilitate ate heat transfer. By adjusting the cavity width, adding more cavities, or choosing a<br />

gas fill that insulates better than air, windows, can be design to reduce this effect.<br />

All objects emit invisible thermal radiati<strong>on</strong>, with warmer objects emitting more tthan<br />

han colder <strong>on</strong>es. Through radiant<br />

exchange, the objects in the room, and especially the people (who are often the warmest objects), radiate their heat to the<br />

colder window. People often feel the chill from this radiant heat loss, especially <strong>on</strong> the exposed skin of their hands and<br />

faces, but they attribute the chill to cool room air rather than to a cold window surface. Similarly, if the glass temperatu temperature<br />

is higher than skin temperature, which occurs when the sun shines <strong>on</strong> heat heat-absorbing absorbing glass, heat will be radiated from the<br />

glass to the body, potentially producing thermal discom<str<strong>on</strong>g>for</str<strong>on</strong>g>t.<br />

The complex interacti<strong>on</strong> between c<strong>on</strong>ducti<strong>on</strong>, c<strong>on</strong>vecti<strong>on</strong>, and radiati<strong>on</strong> is perhaps best illustrated by the fact that the<br />

thermal per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance of a roof window or skylight changes according to its mounting angle. C<strong>on</strong>vective exchange <strong>on</strong> the<br />

inner and outer glazing surfaces, as well as that within the air cavity is affected by this slope.<br />

Also, skylights and roof windows oriented toward the cold night sky lose more radiant heat at night than windows<br />

viewing warmer objects, such as the ground, adjacent buildings, and vegetati<strong>on</strong>.<br />

4.5.1.1 DETERMINING INSULATING VALUE<br />

The U-factor (also referred to as U-value) value) is the standard way to quantify overall heat flow. For windows, it expresses the<br />

total heat transfer coefficient of the system, and includes c<strong>on</strong>ductivity, c<strong>on</strong>vective, and radiative heat transfer. It<br />

represents the heat flow per hour (in watts) through each square metre of window <str<strong>on</strong>g>for</str<strong>on</strong>g> a 1° Kelvin temperature difference<br />

between ween the indoor and outdoor air temperature. The insulating value of RR-value<br />

value (resistance to heat transfer) is the<br />

reciprocal of the total U-factor (R=1/U). =1/U). The higher the RR-value<br />

value of a material, the higher the insulating value; the smaller<br />

the U-factor, the he lower the rate of heat flow.<br />

Given that the thermal properties and the various materials within a window unit, the UU-factor<br />

factor is comm<strong>on</strong>ly expressed in<br />

two ways:<br />

The U-factor factor of the total window assembly combines the insulating value of the glazing prope proper, the edge effects in<br />

the SIGU, IGU, and the window frame and sash.<br />

The centre-of-glass U-factor factor assumes that heat flows perpendicular to the window plane, without addressing the<br />

impact of the frame edge effects and material.<br />

Page 63


The U-factor of the glazing porti<strong>on</strong> rti<strong>on</strong> of the window unit is affected primarily by the total number of glazing layers, their<br />

dimensi<strong>on</strong>, the type of gas within their cavity, and the characteristic of coatings <strong>on</strong> the various glazing surfaces. As<br />

windows are complex three-dimensi<strong>on</strong>al dimensi<strong>on</strong>al assemb assemblies, lies, in which materials and cross secti<strong>on</strong>s change in a relatively short<br />

distance, it is limiting, however, to simply c<strong>on</strong>sider glazing. For example, metal spacers at the edge of an IGU have a<br />

much higher heat flow than the centre of the insulati<strong>on</strong> glass, which causes increased heat loss al<strong>on</strong>g the outer edge of the<br />

glass.<br />

4.5.1.2 OVERALL U-FACTOR<br />

The relative impact of these “edge effects” becomes more important as the insulating value of the entire assembly<br />

increases, and in small units were the ratio of edge to centre-of-glass glass area is high. Since the UU-factors<br />

vary <str<strong>on</strong>g>for</str<strong>on</strong>g> the glass,<br />

edge-of-glass glass z<strong>on</strong>e, and frame, it can be misleading to compare the UU-factors<br />

factors of windows from different manufacturers if<br />

they are not carefully and c<strong>on</strong>sistently described. Calc Calculati<strong>on</strong> ulati<strong>on</strong> methods developed by the Nati<strong>on</strong>al Fenestrati<strong>on</strong> Rating<br />

Council (NFRC) address this c<strong>on</strong>cern.<br />

A specific set of assumpti<strong>on</strong>s and procedures must be followed to calculate the overall UU-factor<br />

factor of a window unit using<br />

the NFRC method. For instance, the NNFRC<br />

values are <str<strong>on</strong>g>for</str<strong>on</strong>g> a standard window size – the actual UU-factor<br />

of a specific unit<br />

varies with size.<br />

The U-factor factor of a window unit is rated based <strong>on</strong> a vertical positi<strong>on</strong>. A change in mounting angle affects a window’s U-<br />

factor. The same unit installed <strong>on</strong> n a sloped roof at 20° from horiz<strong>on</strong>tal would have a UU-factor<br />

factor 10-20% higher than in the<br />

vertical positi<strong>on</strong> (under winter c<strong>on</strong>diti<strong>on</strong>s).<br />

4.5.2 SOLAR RADIATION CONTROL<br />

The sec<strong>on</strong>d major energy-per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance characteristic of windows is the ability to c<strong>on</strong>trol solar heat gain through the<br />

glazing. Solar heat gain through windows is a significant factor in determining the cooling load of many commercial<br />

buildings. The origin of solar heat gain is the direct and diffuse radiati<strong>on</strong> coming from the sun and the sky (or reflected<br />

from the ground and other surfaces). Some radiati<strong>on</strong> is directly transmitted through the glazing to the building interior,<br />

and some may be absorbed in the glazing and indirectly admitted to the inside. Some radiati<strong>on</strong> absorbed by the frame<br />

will also c<strong>on</strong>tribute to overall window solar heat gain factor. Other thermal ( (n<strong>on</strong>-solar) ) heat transfer effects are included<br />

in the U-factor of the window).<br />

4.5.2.1 DETERMINING MINING SOLAR HEAT GAIN<br />

There are two metrics <str<strong>on</strong>g>for</str<strong>on</strong>g> quantifying the solar radiati<strong>on</strong> passing<br />

through a window: solar heat gain coefficient (SHGC) and shading<br />

coefficient (SC). In both cases, the solar heat gain is the combinati<strong>on</strong> of<br />

directly transmitted radiati<strong>on</strong> ati<strong>on</strong> and the inward inward-flowing porti<strong>on</strong> of<br />

absorbed radiati<strong>on</strong> (Figure 4.6). ). However, SHGC and SC have a<br />

difference basis <str<strong>on</strong>g>for</str<strong>on</strong>g> comparis<strong>on</strong>.<br />

4.5.2.2 SHADING COEFFICIENT<br />

Until the mid-1990s, 1990s, the shading coefficient (SC) was the primary term<br />

used to characterize ze the solar c<strong>on</strong>trol properties of glass. Although<br />

replaced by NFRC and ASHRAE with the solar heat gain coefficient<br />

(SHGC), it is still referenced in books and product literature, and is<br />

expressed as a dimensi<strong>on</strong>less number from 00-1<br />

– high shading<br />

coefficient ent means high solar gain, while a low shading coefficient<br />

means low solar gain.<br />

The SC was originally developed as a single number that could be used<br />

to compare glazing solar c<strong>on</strong>trol under a wide range of c<strong>on</strong>diti<strong>on</strong>s. Its<br />

simplicity, however, is offset by y its inaccuracies.<br />

For instance, the shading coefficient (SC) is <strong>on</strong>ly defined <str<strong>on</strong>g>for</str<strong>on</strong>g> the glazing porti<strong>on</strong> of the window and does not include<br />

frame effects. It represents the ratio of solar heat gain through the system relative to that through 6mm clear glass at<br />

normal incidence. The SC has also been used to characterize per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance ov over er a wide range of sun positi<strong>on</strong>s; however,<br />

there is some potential loss in accuracy when applied to sun positi<strong>on</strong>s at high angles to the glass.<br />

Page 64<br />

Figure 4.6. . Simplified view of the<br />

comp<strong>on</strong>ents of solar heat gain. Heat gain<br />

includes the transmitted solar energy and<br />

the inward flowing ccomp<strong>on</strong>ents<br />

ob<br />

absorbed radiati<strong>on</strong>


The SC value is str<strong>on</strong>gly influenced by the type of glass selected. The shading coefficient can also include the effects of<br />

any integral part of the window system that reduces the flow of solar heat, such as multiple glazing layers, reflective<br />

coatings, or blinds between layers of glass.<br />

4.5.2.3 SOLAR HEAT GAIN COEFFICIENT<br />

Window standards are now moving away ffrom<br />

shading coefficient to solar heat gain coefficient (SHGC), which is<br />

defined as that fracti<strong>on</strong> of incident solar radiati<strong>on</strong> that actually enters a building through the window assembly as heat<br />

gain.<br />

The SHGC is influenced by all the same factors as the SC, but since it can be applied to the entire window assembly, the<br />

SHGC is also affected by shading from the frame as well as the ratio of glazing and frame. The solar heat gain<br />

coefficient is expressed as a dimensi<strong>on</strong>less number from 00-1.<br />

A high coefficient ent signifies high heat gain, while a low<br />

coefficient means low heat gain.<br />

For any glazing, the SHGC is always lower than the SC. To per<str<strong>on</strong>g>for</str<strong>on</strong>g>m an approximate c<strong>on</strong>versi<strong>on</strong> from SC to SHGC,<br />

multiply the SC value by 0.87. Since the frame area has a very low SH SHGC, GC, the overall window SHGC is lower than the<br />

centre-of-glass value.<br />

4.5.3 VISIBLE TRANSMITTANCE<br />

Visible transmittance (VT), also referred to as visible light transmittance (VLT), is the amount of light in the visible<br />

porti<strong>on</strong> of the spectrum that passes through a glazing material. A higher VT means there is more daylight in a space<br />

which, if designed properly, can offset electric lighting and its associated cooling loads. Visible transmittance of glazing<br />

ranges from above 90% <str<strong>on</strong>g>for</str<strong>on</strong>g> uncoated water water-white clear ear glass to less than 10% <str<strong>on</strong>g>for</str<strong>on</strong>g> highly reflective coatings <strong>on</strong> tinted<br />

glass.<br />

Visible transmittance is influenced by the glazing type, the number of panes, and any glass coatings. VT values <str<strong>on</strong>g>for</str<strong>on</strong>g> the<br />

whole window are always less than centre centre-of-glass values since the VT of the frame is zero.<br />

4.5.3.1 LIGHT-TO-SOLAR-GAIN GAIN RATIO<br />

In the past, windows that reduced solar gain (with tints and coatings) also reduced visible transmittance. However, new<br />

high-per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance tinted glass and low low-solar-gain low-E coatings have made it possible to reduce solar heat gain with<br />

little reducti<strong>on</strong> in visible transmittance. Because the c<strong>on</strong>cept of separating solar gain c<strong>on</strong>trol and light c<strong>on</strong>trol is so<br />

important, measures have been developed to reflect this. The term luminous efficacy (ke), ), which is VT/SC, was first<br />

developed. Since SC is being replaced by SHGC, the term light-to-solar-gain ratio (LSG) is now referred to in ASHRAE<br />

publicati<strong>on</strong>s. The LSG ratio is defined as a ratio between visible transmittance (VT) and solar heat ga gain coefficient<br />

(SHGC).<br />

4.5.4 AIR LEAKAGE (INFILTRATION)<br />

Whenever there is a pressure difference between the inside and outside (driven by wind or temperature difference), air<br />

will flow through cracks between window assembly comp<strong>on</strong>ents. The air leakage properties roperties of window systems<br />

c<strong>on</strong>tribute to the overall building air infiltrati<strong>on</strong>. Infiltrati<strong>on</strong> leads to increased heating or cooling loads when the outdo outdoor<br />

air entering the building needs to be heated or cooled. Air leakage also c<strong>on</strong>tributes to summer cool cooling loads by raising<br />

the interior humidity level. Operable windows can be resp<strong>on</strong>sible <str<strong>on</strong>g>for</str<strong>on</strong>g> air leakage between sash and frame elements as<br />

well as at the window/wall joint. Tight sealing and weather-stripping of windows, sashes, and frames is of paramount<br />

importance in c<strong>on</strong>trolling air leakage.<br />

The use of fixed windows helps to reduce air leakage because these windows are easier to seal and keep tight. Operable<br />

windows, which are also more susceptible to air leakage, are not necessary <str<strong>on</strong>g>for</str<strong>on</strong>g> ventilati<strong>on</strong> in mo most commercial buildings<br />

but are desired by occupants <str<strong>on</strong>g>for</str<strong>on</strong>g> c<strong>on</strong>trol. Operable window units with low air air-leakage leakage rates feature mechanical closures<br />

that positively clamp the window shut against the wind. For this reas<strong>on</strong>, compressi<strong>on</strong><br />

compressi<strong>on</strong>-seal seal windows such as awnin awning,<br />

hopper, and casement designs are generally more effectively weather-stripped than are sliding sliding-seal windows. Sliding<br />

windows rely <strong>on</strong> wiper-type weather-stripping stripping, which is more subject to wear over time.<br />

The level of infiltrati<strong>on</strong> depends up<strong>on</strong> local cli climate mate c<strong>on</strong>diti<strong>on</strong>s, particularly wind c<strong>on</strong>diti<strong>on</strong>s and microclimates<br />

surrounding the building. In reality, infiltrati<strong>on</strong> varies widely with wind wind-driven driven and temperature temperature-driven pressure changes.<br />

Cracks and air spaces left in the window assembly can also account <str<strong>on</strong>g>for</str<strong>on</strong>g> c<strong>on</strong>siderable infiltrati<strong>on</strong>. Insulating and sealing<br />

these areas during c<strong>on</strong>structi<strong>on</strong> can be very important in c<strong>on</strong>trolling air leakage. A proper installati<strong>on</strong> ensures that the<br />

main air barrier of the wall c<strong>on</strong>structi<strong>on</strong> is effectively sealed to the window oor<br />

r skylight assembly so that c<strong>on</strong>tinuity of the<br />

air barrier is maintained.<br />

Page 65


4.6 EXPOSURE TO FIRE AND PERFORMANCE OF GLAZING<br />

Window manufacturers/sub c<strong>on</strong>tractors and glaziers are no fire experts and it is there<str<strong>on</strong>g>for</str<strong>on</strong>g>e the <strong>on</strong>us of the client/specifiers<br />

to indicate the glass requirements in respect of locati<strong>on</strong> and degree of resistance to fire in minutes. The<br />

Architect/Engineer must specify the glazing requirements in respect of Part T.<br />

When the 3 rd Editi<strong>on</strong> of -Part Part T is published in the latter part of 2006 a Competent Pers<strong>on</strong> (Fire) will also be able to<br />

specify the fire requirements of glazing in respect of resistance to fire. Aluminium framing will not resist fire when teste tested<br />

in accordance with SANS 10177 in excess of 30 30-minutes.<br />

Framing required <str<strong>on</strong>g>for</str<strong>on</strong>g> fire resistance in excess of 30 30-minutes minutes must be manufactured in steel or hard wood of appropriate<br />

volume.<br />

When tested in accordance with SANS 10177 glazing materials may per<str<strong>on</strong>g>for</str<strong>on</strong>g>m as stated in the following Tables.<br />

Fire Resistance Per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance of Glass<br />

Glass Type<br />

Fire Resistance in minutes<br />

Laminated safety glass having PVB/resin interlayer 3 to 6<br />

Laminate glass having intumescent interlayer Up to 120<br />

Georgian wired glass<br />

Up to 60<br />

Borosilicate and calcium silicate glass Up to 120<br />

Toughened safety glass<br />

3 to 6<br />

SIGU (double glazing) having PVB/resin laminated safety glass 30<br />

Country<br />

Solid Polycarb<strong>on</strong>ate Sheet Fire Classificati<strong>on</strong>*<br />

Norm Classificati<strong>on</strong><br />

United Kingdom BS476 Part 7 Building Regulati<strong>on</strong>s (1991)<br />

17<br />

27<br />

*Dependant <strong>on</strong> thickness and colour. C<strong>on</strong>sult manufacturer/suppliers <str<strong>on</strong>g>for</str<strong>on</strong>g> detailed in<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>.<br />

Glass and Polycarb<strong>on</strong>ate flat sheet in and <strong>on</strong> itself is not fire resistive unless installed in a proper frame. All<br />

elements i.e. glass + framing + sealants/gaskets + anchorage + installati<strong>on</strong> quality equal fire resistance<br />

per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance.<br />

The Architectural Aluminium manufacturer/c<strong>on</strong>tractor and glazier are not fire c<strong>on</strong>sultants and the client/specifier<br />

must specify the fire requirement at time of tender taking full cognance of Part T.<br />

Fire resistance glasses are currently not manufactured locally. The manufacturers may classify their various products as<br />

follows:<br />

Example: E130 = 30 minutes integrity with 30 minutes insulati<strong>on</strong>.<br />

E = INTEGRITY<br />

Provides a physical barrier against flame, hot toxic gases and smoke.<br />

“The ability of the element of c<strong>on</strong>structi<strong>on</strong> with a separating functi<strong>on</strong> to withstand fire exposure <strong>on</strong> <strong>on</strong>e side <strong>on</strong>ly, without<br />

the transmissi<strong>on</strong> of fire to the n<strong>on</strong>-fire fire side as a result of the passage of significant quantities of flames or hot gases fro from<br />

the fire side to the n<strong>on</strong>-fire fire side, thereby causing igniti<strong>on</strong> of the n<strong>on</strong> n<strong>on</strong>-fire fire exposed surface or any materials adjacent to that<br />

surface”<br />

W = RADIATION<br />

Creating safer escape routes <str<strong>on</strong>g>for</str<strong>on</strong>g> people and separati<strong>on</strong> distances <str<strong>on</strong>g>for</str<strong>on</strong>g> combustible materials by c<strong>on</strong>trolli<br />

transmissi<strong>on</strong> of radiant heat below a specified level, e.g. 15 kW/m<br />

“The ability of the element of c<strong>on</strong>structi<strong>on</strong> with a separating functi<strong>on</strong> to withstand fire exposure from <strong>on</strong>e side <strong>on</strong>ly <str<strong>on</strong>g>for</str<strong>on</strong>g> a<br />

period of time, while the measured radiated heat in fro<br />

2 Creating safer escape routes <str<strong>on</strong>g>for</str<strong>on</strong>g> people and separati<strong>on</strong> distances <str<strong>on</strong>g>for</str<strong>on</strong>g> combustible materials by c<strong>on</strong>trolling the<br />

.<br />

“The ability of the element of c<strong>on</strong>structi<strong>on</strong> with a separating functi<strong>on</strong> to withstand fire exposure from <strong>on</strong>e side <strong>on</strong>ly <str<strong>on</strong>g>for</str<strong>on</strong>g> a<br />

period of time, while the measured radiated heat in fr<strong>on</strong>t nt of the glazing is below a specified level.”<br />

I = INSULATION<br />

Highest per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance limitati<strong>on</strong> of surface temperature <strong>on</strong> the unexposed side<br />

“The ability of the element of c<strong>on</strong>structi<strong>on</strong> with a separating functi<strong>on</strong> to withstand fire exposure from <strong>on</strong>e side <strong>on</strong>ly,<br />

without the transmissi<strong>on</strong> of fire to the n<strong>on</strong> n<strong>on</strong>-fire fire side as a result of significant c<strong>on</strong>ducti<strong>on</strong> of heat from the fire side to the<br />

n<strong>on</strong>-fire fire side, thereby causing igniti<strong>on</strong> of the n<strong>on</strong> n<strong>on</strong>-fire fire exposed surface of any material in c<strong>on</strong>tact with that surface and the<br />

ability ity to provide a barrier to heat sufficient to protect people near the element of c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> the relevant<br />

classificati<strong>on</strong> period.<br />

Page 66


CHAPTER V<br />

GLAZING<br />

Page 67


5. SELECTION OF GLAZING METHODS<br />

5.1 SETTING AND LOCATION BLOCKS<br />

Glass-to-metal metal c<strong>on</strong>tact must be avoided at all times by using setting and locati<strong>on</strong> blocks having a hardness of 50º to 90º<br />

shore A durometer. Use <strong>on</strong>ly blocks made of Neoprene, EPDM, Silic<strong>on</strong>e or other elastomeric material.<br />

Setting blocks are e to have a minimum thickness of 3mm and must be at least 27mm in length per square metre of glass<br />

area.<br />

In the event of laminated glass and/or sealed insulated glass units drainage is to be provided to prevent the glass edge to<br />

be submerged. Two or more 7mm diameter holes or 5mm x 9mm slotted holes, or larger, are to be equally spaced in the<br />

sill secti<strong>on</strong> of sash or frame to allow <str<strong>on</strong>g>for</str<strong>on</strong>g> such ventilati<strong>on</strong>/drainage.<br />

The positi<strong>on</strong> of the setting and locati<strong>on</strong> blocks is illustrated in Figure below:<br />

a) Fixed light<br />

d) Top hung<br />

g) Horiz<strong>on</strong>tally pivoted h) Horiz<strong>on</strong>tally sliding; i) Vertically sliding<br />

and reversible<br />

6 blocks to each pane<br />

Figure 5.1: Positi<strong>on</strong> of setting and locati<strong>on</strong> blocks<br />

5.2 PREFORMED COMPRESSION GASKETS<br />

b) Vertically pivoted<br />

(hung off-centre)<br />

Also known as gasket glazing or channel glazing this method <str<strong>on</strong>g>for</str<strong>on</strong>g>ms an integral part of the design of the individual<br />

<str<strong>on</strong>g>architectural</str<strong>on</strong>g> aluminium systems.<br />

It is there<str<strong>on</strong>g>for</str<strong>on</strong>g>e essential that the manufacturer/sub c<strong>on</strong>tractor uses <strong>on</strong>ly those pre<str<strong>on</strong>g>for</str<strong>on</strong>g>med compressi<strong>on</strong> gaskets supplied by<br />

the <str<strong>on</strong>g>architectural</str<strong>on</strong>g> aluminium systems suppliers as part of the system.<br />

Gaskets used from other sources will compromise the air and water tightness of the installed glazing systems i.e. the<br />

installed end product.<br />

Pre<str<strong>on</strong>g>for</str<strong>on</strong>g>med compressi<strong>on</strong> gaskets are manufactured of PVC or synthetic rubber and product testing by our Associati<strong>on</strong> has<br />

c<strong>on</strong>cluded that PVC gaskets are re <strong>on</strong>ly suitable <str<strong>on</strong>g>for</str<strong>on</strong>g> products having A0 and A1 per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance requirements. PVC gaskets,<br />

washers and the like must not be used in c<strong>on</strong>juncti<strong>on</strong> with specialized plastic glazing materials as the plasticiser in the<br />

PVC reacts adversely with the specialized plast plastic glazing materials.<br />

Page 68<br />

c) Vertically pivoted<br />

(hung centrally)<br />

e) Bottom hung f) Side hung or door


All tests c<strong>on</strong>ducted <strong>on</strong> products having A2, A3 and A4 per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance requirements use synthetic rubber (i.e. Santroprene<br />

and the like) as material <str<strong>on</strong>g>for</str<strong>on</strong>g> the gaskets.<br />

5.3 STRUCTURAL GLAZING (a.k.a. flush glazing)<br />

The predominate framing raming material used in structural glazing applicati<strong>on</strong>s is extruded aluminium. Adhesi<strong>on</strong> of the sealant<br />

to the substrate is of prime importance and the fact that extruded aluminium is finished with either powder coatings or<br />

anodising which are applied under r strict factory c<strong>on</strong>diti<strong>on</strong>s makes aluminium the preferred structural material <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

Structural Glazing Systems.<br />

Structures using alternative materials having in in-situ situ applied finishes should be discouraged at all times!!<br />

Since the sealant is the ONLY structural link which holds the glass in place, the adhesi<strong>on</strong> and chemical compatibility of<br />

ALL elements must be thoroughly tested, analysed and verified in accordance with ASTM C 1087 1087-87. Only structural<br />

sealant may be used and approved by the sealant man manufacturer. ufacturer. Sealant manufacturers provide adhesi<strong>on</strong> and<br />

compatibility testing as well as design reviews are part of their service to their customers.<br />

5.3.1 SURFACE PREPARATION – STRUCTURAL (FLUSH) GLAZING<br />

As adhesi<strong>on</strong> between sealant and the c<strong>on</strong>tact surf surfaces aces of aluminium and glass is vital to the success of the structural<br />

glazing system a general procedure <str<strong>on</strong>g>for</str<strong>on</strong>g> solvent cleaning and priming follows. For specific procedures, c<strong>on</strong>tact the sealant<br />

manufacturer.<br />

5.3.1.1 SOLVENT CLEANING<br />

(a) Clean dirty glass edges with a solvent such as isopropyl alcohol (IPA). Clean oily metal surfaces with a<br />

degreasing solvent such as methyl ethyl ket<strong>on</strong>e (MEK), toluene, or xylene. Use proper safety and handling<br />

procedures when using cleaning and degreasing solvents. The glass and mmetal<br />

etal finish manufacturers should be<br />

c<strong>on</strong>tacted to make sure that the proposed solvent would not adversely affect their products. MEK, acet<strong>on</strong>e,<br />

toluene, thinners etc. must not be used <strong>on</strong> specialized plastic glazing materials. Only Iso propyl alcohol, ethyl<br />

alcohol (methods) may be used. C<strong>on</strong>tact manufacturers of plastic materials <str<strong>on</strong>g>for</str<strong>on</strong>g> further recommendati<strong>on</strong>s.<br />

(b) Utilize the two-rag rag method when solvent cleaning: One <str<strong>on</strong>g>for</str<strong>on</strong>g> wetting and <strong>on</strong>e <str<strong>on</strong>g>for</str<strong>on</strong>g> drying surfaces. Pour cleaning<br />

solvent into a clean, dry, lint-free free cloth rag. Do not dip the rag into the solvent c<strong>on</strong>tainer, as it may c<strong>on</strong>taminate<br />

the solvent.<br />

(c) Wipe ipe vigorously to remove surface c<strong>on</strong>taminants. Check the rag to see if it has picked up c<strong>on</strong>taminants. Rotate<br />

the rag to clean area and re-wipe wipe until no more dirt or oily material is picked up.<br />

(d) Immediately mmediately wipe the solvent cleaned area with a sec<strong>on</strong>d clean, dry rag. The solvent should be removed with a<br />

dry rag be<str<strong>on</strong>g>for</str<strong>on</strong>g>e it evaporates; otherwise, the cleaning procedure will be ineffective. This method of cleaning should<br />

result in the removal of dust, dirt, oil, frost or moisture from the sealant c<strong>on</strong>tact surfaces.<br />

5.3.1.2 PRIMING<br />

(a) When priming is required, make sure the appropriate primer is selected and is within its stated shelf life and is<br />

applied in accordance e with the sealant manufacturer’s instructi<strong>on</strong>s.<br />

(b) Priming riming is not a substitute <str<strong>on</strong>g>for</str<strong>on</strong>g> solvent cleaning. There<str<strong>on</strong>g>for</str<strong>on</strong>g>e, solvent cleaning must be per<str<strong>on</strong>g>for</str<strong>on</strong>g>med prior to priming.<br />

(c) Pour our a limited amount of primer into a clean c<strong>on</strong>tainer. Replace solvent c<strong>on</strong>tainer cap to p pprevent<br />

deteriorati<strong>on</strong> and<br />

c<strong>on</strong>taminati<strong>on</strong> of the primer.<br />

(d) Dip a clean, lint-free free cloth rag into the primer and gently wipe the primer <strong>on</strong>to the surface. For hard to reach areas,<br />

apply the primer with a natural bristle brush. Some primers are to be applied in thin films, while others require<br />

heavy coats.<br />

(e) Over ver priming can cause loss of sealant adhesi<strong>on</strong>. If too much primer is applied (as evidenced by a residue or<br />

powdery build up <strong>on</strong> the metal surface) wipe off the excess primer with a clean, dry rag.<br />

(f) Allow the e primer to completely dry. Some primers require several minutes to dry, while others may require an<br />

hour or more in open air or in cold weather prior to sealant applicati<strong>on</strong>. Be sure to follow the specific priming<br />

recommendati<strong>on</strong>s.<br />

Page 69


(g) The silic<strong>on</strong>e sealant should be applied as so<strong>on</strong> as possible to prevent build up of dirt, moisture and other<br />

c<strong>on</strong>taminants from affecting the adhesi<strong>on</strong> of the silic<strong>on</strong>e to the substrates. As a general rule, prime <strong>on</strong>ly the joints<br />

that can be sealed during an eight eight-hour workday.<br />

5.3.2 SILICONE JOINT<br />

This critical comp<strong>on</strong>ent of the structural glazing system requires appropriate attenti<strong>on</strong> in respect of type, design and<br />

applicati<strong>on</strong>.<br />

5.3.2.1 SILICONE TYPE<br />

When used in c<strong>on</strong>juncti<strong>on</strong> with glass silic<strong>on</strong>e sealants must be of the neutral curing type. Acetoxy curing sealants, which<br />

release acetic acid during the cure process, are not recommended <str<strong>on</strong>g>for</str<strong>on</strong>g> use with laminated glass. When used in c<strong>on</strong>juncti<strong>on</strong><br />

with plastic glazing materials <strong>on</strong>ly acetocxy curing sealants must be used as the solvents in the other silic<strong>on</strong>es attack the<br />

plastic glazing materials.<br />

5.3.2.2 SILICONE CONTACT WIDTH DESIGN (CW)<br />

Wind loads applied to a rectangular glass area are distributed to the st structural ructural sealant in accordance with the c<strong>on</strong>servative<br />

trapezoidal loading area. The accepted maximum sealant stress has been set by the industry at 0.14 Mpa.<br />

The <str<strong>on</strong>g>for</str<strong>on</strong>g>mula <str<strong>on</strong>g>for</str<strong>on</strong>g> C<strong>on</strong>tact Width based <strong>on</strong> the above is as follows:<br />

CW =<br />

in which CW = C<strong>on</strong>tact Width (in cm)<br />

S = Short Pane Dimensi<strong>on</strong>s (in meters)<br />

D = Design Wind loading (in Pa)<br />

For geometric variati<strong>on</strong>s of pattern (triangular, trapezoidal or other irregular shapes) the above equati<strong>on</strong> may require<br />

modificati<strong>on</strong>. Please e c<strong>on</strong>sult the sealant manufacturer.<br />

5.3.2.3 APPLICATION<br />

S x D<br />

200 x 14<br />

When structural glazing is d<strong>on</strong>e <strong>on</strong> site, temporary retainer clips, evenly placed at 500mm intervals, should be used to<br />

prevent movement and stress in the sealant prior to being fully cured (usual (usually ly 10 to 21 days all in strict accordance with<br />

the sealant manufacturer).<br />

When structural glazing is d<strong>on</strong>e in the workshop, transporting of the <str<strong>on</strong>g>glazed</str<strong>on</strong>g> units should <strong>on</strong>ly take place after the sealant<br />

has cured fully.<br />

a) C<strong>on</strong>tact silic<strong>on</strong>e manufacturer <str<strong>on</strong>g>for</str<strong>on</strong>g> acceptable sealant applicati<strong>on</strong> temperature ranges. Excessively high (54°C and<br />

above) or low (-7°C 7°C and below) surface temperatures can adversely affect the per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance of the silic<strong>on</strong>e sealant.<br />

b) Silic<strong>on</strong>e sealants cannot be completely removed with solvents. Unless appearance is of little c<strong>on</strong>cern, all adjacent<br />

surfaces should be masked prior to sealant applicati<strong>on</strong>.<br />

c) The backer rod should be carefully positi<strong>on</strong>ed as noted <strong>on</strong> the shop drawings. Materials used, i.e. closed cell<br />

neoprene type, are to be approved by the sealant manufacturer.<br />

d) Sealant should be applied in a c<strong>on</strong>tinuous operati<strong>on</strong> from a caulking gun or pump. A positive pressure, adequate<br />

to fill the entire joint cavity should be used. This can be d<strong>on</strong>e by “pushing” the sealant bead ahead of the<br />

applicati<strong>on</strong> nozzle.<br />

e) The structural sealant must fill the entire joint and firmly c<strong>on</strong>tact or “wet” the glass and metal surfaces. If this is<br />

not d<strong>on</strong>e, the sealant may not attain acceptable adhesi<strong>on</strong> to the glass and metal surfaces.<br />

f) Tool the sealant with light pressure ressure within approximately five to ten minutes. This will spread the sealant against<br />

the backer rod and the metal and glass surfaces. Sealant skin over time will vary between silic<strong>on</strong>e sealants.<br />

g) Do not use tooling aids such as water, soaps or alcohol soluti<strong>on</strong>s. They may interfere with the sealant cure or<br />

affect the cured sealants’ per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance.<br />

h) Remove the masking immediately after tooling.<br />

Page 70


i) In case of site glazing, temporary clips should then be installed and not be removed until the structural silico silic<strong>on</strong>e<br />

sealant is fully cured. C<strong>on</strong>tact the structural sealant manufacturer <str<strong>on</strong>g>for</str<strong>on</strong>g> specific sealant cure time requirements<br />

5.4 UV BONDING<br />

UV B<strong>on</strong>ding – an adhesive system to join glass together – is suitable <strong>on</strong>ly <str<strong>on</strong>g>for</str<strong>on</strong>g> glass furniture, artwork and similar<br />

applicati<strong>on</strong>s.<br />

This use of UV B<strong>on</strong>ding is not suitable <str<strong>on</strong>g>for</str<strong>on</strong>g> use in <str<strong>on</strong>g>architectural</str<strong>on</strong>g> aluminium products as referred to in this selecti<strong>on</strong><br />

<str<strong>on</strong>g>guide</str<strong>on</strong>g>.<br />

5.5 PREVENTION OF THERMAL CRACKS OF GLASS<br />

Numerous South African C<strong>on</strong>structi<strong>on</strong> arbitrati<strong>on</strong> cases have ruled that it is the resp<strong>on</strong>sibility of the pers<strong>on</strong>s installing the<br />

glass (i.e. sub c<strong>on</strong>tractor/glazier) that the glass does not crack due to thermal and/or other causes.<br />

This is even upheld in cases where the specifier specified without the apparent opti<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> alternatives, the trade name,<br />

type and thickness of the heat absorbing or heat reflecting glasses. The introducti<strong>on</strong> of structural glazing usually solves<br />

the thermal crack factor, however, many applicati<strong>on</strong>s are still executed in more c<strong>on</strong>venti<strong>on</strong>al methods making a request<br />

by y the sub c<strong>on</strong>tractor/glazier <str<strong>on</strong>g>for</str<strong>on</strong>g> thermal stress evaluati<strong>on</strong> by the glass manufacturer or competent pers<strong>on</strong> (glazing)<br />

essential to protect the interest of all parties c<strong>on</strong>cerned.<br />

Always polish the glass edges of heat absorbing or heat reflecting glasses<br />

and<br />

Always obtain a thermal stress evaluati<strong>on</strong> from the glass manufacturer or competent pers<strong>on</strong> (glazing).<br />

and<br />

Glass to metal c<strong>on</strong>tact must be avoided at all times.<br />

The thermal stress is calculated using the following <str<strong>on</strong>g>for</str<strong>on</strong>g>mula:<br />

σ = k0 x k1 x k2 x k3 x f x ( (tg – ts)<br />

Wherein:<br />

Shadow C<strong>on</strong>diti<strong>on</strong><br />

and shape<br />

σ = thermal stress in N/cm<br />

k0 = basic stress coefficient 50N/cm<br />

k1 = shadow coefficient<br />

Shadow coefficient is determined by how the sunlight strikes the glass. In the sunlight strikes<br />

uni<str<strong>on</strong>g>for</str<strong>on</strong>g>mly throughout the glass surface, then<br />

there is shadow <strong>on</strong> the glass, then the distributi<strong>on</strong> of glass temperature is different and the thermal<br />

stress induced in the glass is greater.<br />

2<br />

basic stress coefficient 50N/cm 2<br />

shadow coefficient<br />

Shadow coefficient is determined by how the sunlight strikes the glass. In the sunlight strikes<br />

uni<str<strong>on</strong>g>for</str<strong>on</strong>g>mly throughout the glass surface, then there is minimal problem of thermal cracks. But if<br />

there is shadow <strong>on</strong> the glass, then the distributi<strong>on</strong> of glass temperature is different and the thermal<br />

stress induced in the glass is greater. If there is no shadow, the shadow coefficient is 1.0<br />

Single<br />

Coefficient 1,3<br />

• Mulli<strong>on</strong> <strong>on</strong>ly<br />

(Vertical Sash)<br />

• Transom <strong>on</strong>ly<br />

(Horiz<strong>on</strong>tal sash)<br />

Cross Parallel<br />

• Both Mulli<strong>on</strong><br />

and Transom<br />

• If the glass is<br />

Recessed<br />

1,6 1,7<br />

Projecti<strong>on</strong> of Mulli<strong>on</strong> and Transom is greater than 100mm<br />

k2 = curtain coefficient (determined by existence of curtain or blind)<br />

If there are curtains or blinds inside the room, this will reflect the sunlight back to the glass. The solar<br />

heat energy reflected will increase the glass temperature in the central z<strong>on</strong>e. This will increase the<br />

thermal stress ss in the glass. If there is no curtain, the curtain coefficient is 1,0<br />

Page 71<br />

• Mulli<strong>on</strong> and<br />

existing shape<br />

from<br />

neighbouring<br />

buildings<br />

•<br />

Others<br />

Sharp<br />

1,7<br />

Trees, signboards,<br />

others which will<br />

cast sharp shadow<br />

<strong>on</strong> the glass


Types of curtain Light drapery (lace) Heavy drapery (thick curtain and blind)<br />

Distance from glass surface < 100mm ≥ 100mm < 100mm<br />

≥ 100mm<br />

Coefficient 1,3 1,1 1,5<br />

1,3<br />

k3 = area coefficient (determined by glass area)<br />

Assuming that the temperature differences in the glass are the same, then with a larger glass surface<br />

area the thermal stress resistance of the shaded area will also increase. 1.0m<br />

reference figure<br />

2 is used as the basic<br />

Glass area m 2 0,5<br />

Coefficient 0,95<br />

f = edge temperature coefficient<br />

Thermal stress increases proporti<strong>on</strong>ately to the temperature differences between the glass central<br />

z<strong>on</strong>e (tg) and the edge z<strong>on</strong>e (te). The glass edge temperature is determined by the type of glazing<br />

methods used.<br />

By substituting the temperature difference (tg (tg-te) with (tg-ts), we obtain the <str<strong>on</strong>g>for</str<strong>on</strong>g>mula tg-te te = f (tg (tg-ts). There<str<strong>on</strong>g>for</str<strong>on</strong>g>e, the edge<br />

temperature coefficient f = (tg-te)/(tg-ts). ts).<br />

Edge temperature coefficient f obtained by laboratory testing<br />

Installati<strong>on</strong> structure of sash and curtain wall<br />

Glazing Method<br />

Place directly in pre-case Metal curtain wall or<br />

c<strong>on</strong>crete or c<strong>on</strong>crete wall movable window<br />

Putty or glazing bead<br />

0,95<br />

Polysulphide or rubber caulking 0,80<br />

Standard glazing with silic<strong>on</strong>e 0,65<br />

Structural gasket<br />

1<br />

Note:<br />

0,55<br />

If the sash colour is dark multiply above figure with 0.8. This is to take into c<strong>on</strong>siderati<strong>on</strong> the<br />

the sash.<br />

1<br />

0,75<br />

0,65<br />

0,50<br />

0,48<br />

If the sash colour is dark multiply above figure with 0.8. This is to take into c<strong>on</strong>siderati<strong>on</strong> the heat absorbed by<br />

tg = glass temperature at the central z<strong>on</strong>e<br />

ts = sash temperature<br />

HOW TO USE THE FORMULA<br />

First calculate the glass temperature (tg) at the central z<strong>on</strong>e. Sec<strong>on</strong>d calculate the frame temperature, (ts). Finally, take<br />

the temperate different (tg-ts) ts) and multiply it with the other coefficient factors to obtain the thermal stress.<br />

ALLOWABLE STRESS OF GLASS σa<br />

1,0 1,5 2,0 2,5 3,0 4,0 5,0 6,0<br />

1,00 1,04 1,06 1,08 1,10 1,13 1,15 1,16<br />

Thermal cracks will usually start at the glass edge. The allowable stress at the edge is shown below in the following<br />

table:<br />

Allowable stress of various types of glass<br />

Glass Type Thickness (mm) Allowable Thermal stress σa (N/cm<br />

Float Glass<br />

3 – 12<br />

15, 19<br />

Wired Glass<br />

6, 8, 10<br />

Double Glazing or Laminated Glass - Determine by the type of raw<br />

Tempered Glass<br />

4 – 12<br />

Heat Strengthened<br />

Note:<br />

6, 8, 10<br />

1. All the glass edges must be clean cut. Any chips or uneven edge will reduce the allowable thermal stress<br />

2. If the glass edge need processing, please use a polishing material of # 120 or above <str<strong>on</strong>g>for</str<strong>on</strong>g> the edge work.<br />

2 )<br />

1800<br />

1500<br />

1000<br />

Determine by the type of raw glass used<br />

5000<br />

3600<br />

All the glass edges must be clean cut. Any chips or uneven edge will reduce the allowable thermal stress σa.<br />

material of # 120 or above <str<strong>on</strong>g>for</str<strong>on</strong>g> the edge work.<br />

The result of the thermal stress σ calculated from the <str<strong>on</strong>g>for</str<strong>on</strong>g>mula above, is to be compared to the allowable stress of glass σa.<br />

σ ≤ σa It is safe and will not have thermal crack<br />

σ > σa Not safe as there is a possibility of thermal cracks. The glazing method and or other<br />

coefficients require improvement.<br />

Page 72


EVALUATION OF THERMAL CRACK<br />

Figure 5.2: Breakage patterns of glass<br />

Page 73


Page 74


CHAPTER VI<br />

HARDWARE<br />

AND<br />

DOOR CONTROLS<br />

Page 75


6. HARDWARE & FIXINGS<br />

The selecti<strong>on</strong> of the appropriate hardware is of paramount importance to ensure quality <str<strong>on</strong>g>architectural</str<strong>on</strong>g> aluminium products.<br />

The golden rule is to use the hardware recommended by the Architectural Aluminium Systems suppliers at all times. To<br />

deviate from this principle is tantamount to providing sub standard end products.<br />

6.1 SASH LIMITATIONS<br />

Distributors of Architectural Aluminium Systems recommend maximum vent (a.k.a. sash) dimensi<strong>on</strong>s <str<strong>on</strong>g>for</str<strong>on</strong>g> the numerous<br />

Architectural Systems. It may be required that multip multiple le locking devices (i.e. handles and the like) are installed in sashes<br />

having maximum recommended dimensi<strong>on</strong>s in both height and width in order to meet certain <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> Per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance<br />

Test Criteria.<br />

Top Hung<br />

Sash Limitati<strong>on</strong>s<br />

Side Hung Top/Side Hung<br />

Systems<br />

Max. vent<br />

width<br />

Max. vent<br />

height<br />

Max. vent<br />

width<br />

Max. vent<br />

height<br />

Maximum<br />

perimeter<br />

in mm in mm in mm in mm<br />

in mm<br />

Caselite 28 900<br />

600 600 1200<br />

3600<br />

Caselite 38 1500 1200 700 1500<br />

4400<br />

HSG 1200 600 600 1500<br />

4200<br />

HSG 900 1200 - -<br />

4200<br />

NuKlip 28 1200 600 600 1200<br />

3600<br />

NuKlip 28 600 1200 - -<br />

3600<br />

System 30 1000 750 600 1200<br />

3500<br />

Universal 38 1500 1200 700 1800<br />

5000<br />

340 Series 1200 900 700 1500<br />

4400<br />

Coastal 42 1370 1370 1500 900<br />

4800<br />

Thermosash 1370 1370 1500 900<br />

4800<br />

6.2 FRICTION STAY LIMITATIONS<br />

Distributors of Architectural Aluminium Systems have a wide range of stainless steel fricti<strong>on</strong> stay models which are used<br />

in c<strong>on</strong>juncti<strong>on</strong> with their window systems. C<strong>on</strong>sult the Aluminium System provider <str<strong>on</strong>g>for</str<strong>on</strong>g> recommendati<strong>on</strong>s <str<strong>on</strong>g>for</str<strong>on</strong>g> the fricti<strong>on</strong><br />

stay limitati<strong>on</strong>s. The following table reflect the capabilities of the standard range of fricti<strong>on</strong> stays:<br />

Top Hung Windows – 4 Bar Stays (Typical Single Glazing)<br />

Max. vent Max. vent Max. vent Angle of<br />

Ref # width height weight Opening<br />

in mm in mm in kg Degrees<br />

203 1100 300 7 70<br />

254 1100 375 8 57<br />

300 1100 450 10 90<br />

406 1100 600 13 90<br />

508 1100 750 16 50<br />

610 1100 900 26 60<br />

570HD 1100 1200 40 90<br />

Top Hung Windows – 4 Bar Stays (Typical Double Glazing)<br />

Max. vent Max. vent Max. vent Angle of<br />

Ref # width height weight Opening<br />

in mm in mm in kg degrees<br />

150 1200 300 10 50<br />

200 1200 350 12 50<br />

250 1200 400 16 80<br />

300 1200 550 20 80<br />

400 1200 750 21 80<br />

500 1200 1000 24 50<br />

500 1200 850 24 50<br />

600 1200 1200 35 34.5<br />

Page 76


Side Hung Windows – 5 Bar Stays (Typical Single Glazing)<br />

Max. vent Max. vent Max. vent Angle of<br />

Ref # width height weight Opening<br />

in mm in mm in kg degrees<br />

300 600 1200 13.5 60<br />

Side Hung Windows – 5 Bar Stays (Typical Double Glazing)<br />

Max. vent Max. vent Max. vent Angle of<br />

Ref # width height weight Opening<br />

in mm in mm in kg degrees<br />

300 600 1300 22 60<br />

300L 600 1300 22 60<br />

400 700 1300 24 60<br />

6.3 ALUMINIUM FRICTION HINGE LIMITATIONS<br />

Top Hung Windows – Aluminium Fricti<strong>on</strong> Hinge<br />

Max. vent Max. vent Angle of<br />

Ref # height in weight in Opening<br />

mm<br />

kg degrees<br />

200N4B 600<br />

6 49<br />

200N4BV 400<br />

6 30<br />

250N4B 750<br />

6 49<br />

300N4B 1000<br />

7 38<br />

500M4B 1300 12 29<br />

750N4B 1800 13 27<br />

Side Hung Windows – Aluminium Fricti<strong>on</strong> Hinge<br />

Max. vent Max. vent Angle of<br />

Ref # height weight in Opening<br />

in mm kg degrees<br />

300N4BC 600<br />

20 54<br />

300N4BC 750<br />

16 54<br />

NOTE: This <str<strong>on</strong>g>guide</str<strong>on</strong>g> is based <strong>on</strong> standard available shopfr<strong>on</strong>t profiles and using standard hardware and fittings. These<br />

systems are designed <str<strong>on</strong>g>for</str<strong>on</strong>g> internal use <strong>on</strong>ly and are not designed to be fully weatherproof.<br />

6.4 DOOR CONTROLS<br />

6.4.1 DEFINITIONS<br />

A door c<strong>on</strong>trol (door closer or floor spring) is used to c<strong>on</strong>trol the closing movement of a hinged door.<br />

There are three basic types of door c<strong>on</strong>trol:<br />

a) Overhead door closer.<br />

b) Floor spring.<br />

c) Transom c<strong>on</strong>cealed door closer.<br />

6.4.2 WHERE DOOR CONTROLS ARE USED<br />

a) On any internal door which is required to be kept closed when unattended (e.g. doors in kitchens, toilets, etc.).<br />

b) On any main entrance door which needs to be kep kept t closed <str<strong>on</strong>g>for</str<strong>on</strong>g> reas<strong>on</strong>s of wind and weather.<br />

c) On any fire door, internal or external, which must be closed in the event of fire (See later descripti<strong>on</strong>s of electr<strong>on</strong>ic<br />

hold open and release devices and synchr<strong>on</strong>ized closing).<br />

Page 77


6.4.3 MAIN TYPES OF DOOR CONTROLS<br />

OVERHEAD AD SURFACE MOUNTED DOOR<br />

CLOSERS<br />

An overhead door closer comprises:<br />

Door closer unit.<br />

Arm (pivot arm or slide arm).<br />

FACTORS TO CONSIDER WHEN SELECTING AN OV OVERHEAD DOOR CLOSER<br />

DOOR CLOSERS MOUNTED ON THE<br />

“PULL-SIDE” OF THE DOOR (REGULAR ARM)<br />

Most comm<strong>on</strong> applicati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> interior doors.<br />

Closer mounted to the door with the arm fixed to<br />

the frame.<br />

Provide: Space behind the door - avoid the closer<br />

hitting the adjacent wall.<br />

Specify: Regular arm door closer.<br />

DOOR CLOSER MOUNTED ON THE<br />

“PUSH-SIDE” OF THE DOOR<br />

For doors opening to the exterior.<br />

There are two methods of fixing.<br />

Parallel arm mounting<br />

Closer mounted to the door and the arm to the<br />

frame via a soffit bracket.<br />

Specify: Parallel arm door closer.<br />

Frame mounted closer (regular arm)<br />

Closer mounted directly to the frame or <strong>on</strong> a drop<br />

plate, with arm fixed to door<br />

Note: The limit of 0-95mm 95mm frame reveals depth,<br />

depending <strong>on</strong> the type of door closer used.<br />

Specify: Regular egular arm door closer (<str<strong>on</strong>g>for</str<strong>on</strong>g> frame<br />

mounting).<br />

Page 78


6.4.4 DOOR WIDTH AND MASS<br />

Door<br />

Closer<br />

Size<br />

Max. recommended<br />

Door leaf<br />

Width<br />

mm<br />

NOTE: 1) Where the actual size and mass of a door to which the door closer is to be fitted exceeds the maximum<br />

width or mass, the next size up should be used.<br />

2) The door widths given are <str<strong>on</strong>g>for</str<strong>on</strong>g> standard installati<strong>on</strong>s. In the case of unusually high or heavy doors, windy or<br />

draughty c<strong>on</strong>diti<strong>on</strong>s, or special applicati<strong>on</strong>s, a larger power size of closer should be used.<br />

HOLD OPEN REQUIREMENT<br />

(MECHANICAL HOLD OPEN ARM)<br />

For door requiring to be held open, such as <str<strong>on</strong>g>for</str<strong>on</strong>g> goods<br />

loading.<br />

Hold open arm is adjustable to hold open from 70 to<br />

130°.<br />

Specify: Regular arm or parallel arm closer with “Hold<br />

Open”<br />

NOTE: Do not fit a hold open closer to a fire door, as<br />

all fire doors must be self-closing. closing.<br />

(Government Gazette 3805 Secti<strong>on</strong> 4, 1 March 1985)<br />

BACK CHECK REQUIREMENT<br />

(CHECK OPENING ACTION)<br />

Max.<br />

Door<br />

Mass<br />

kg<br />

1<br />

750<br />

20<br />

2<br />

850<br />

40<br />

3<br />

950<br />

60<br />

4<br />

1100<br />

80<br />

5<br />

1250<br />

100<br />

*Note: That between 0º - 4º, the operating <str<strong>on</strong>g>for</str<strong>on</strong>g>ce is at its maximum.<br />

To stop the door hitting an adjacent wall or<br />

obstructi<strong>on</strong>.<br />

To c<strong>on</strong>trol a door opening into a windy<br />

envir<strong>on</strong>ment.<br />

Backcheck adjustable from 70°.<br />

(Can be adjustable, but may be pre pre-set).<br />

Specify: Regular arm or parallel arm closer with “back<br />

check”.<br />

DELAYED CLOSING (AUTOMATIC HOLD OPEN<br />

FOR UP TO 2 MINUTES)<br />

For doors used by handicapped people in wheelchairs.<br />

For doors in loading areas which must stay open <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

short periods of time.<br />

Specify: Regular arm or parallel arm closer with delayed<br />

opening.<br />

NOTE: To fit an overhead door closer, always use the<br />

template provided by the manufacturer.<br />

Page 79<br />

Closing Moment<br />

Between *<br />

Between<br />

0º - 4º<br />

88º - 92º<br />

Nm Min. Nm Max. Nm Min.<br />

9<br />

< 13<br />

3<br />

13<br />

< 18<br />

4<br />

18<br />

< 26<br />

6<br />

26<br />

< 37<br />

9<br />

37<br />

< 54<br />

12


FLOOR SPRINGS<br />

A floor spring comprises:<br />

Floor spring unit set into the floor.<br />

Bottom door strap.<br />

Top door strap.<br />

Top centre with retractable pin.<br />

NOTE: A door <strong>on</strong> a floor spring does not require<br />

hinges.<br />

FACTORS TO CONSIDER WHEN SELECTING A FLO FLOOR SPRING<br />

FLOOR DETAIL AND FINISH<br />

Floor spring box depth up to 75mm must be set into the<br />

floor, flush with finished floor level (FFL).<br />

Weatherstrips, steps or ramps may interfere with floor<br />

spring fixing.<br />

Rein<str<strong>on</strong>g>for</str<strong>on</strong>g>cing in the floor, electrical c<strong>on</strong>duits or timber<br />

floors may not allow floor spring to be fitted.<br />

6.4.5 DOOR WIDTH AND MASS<br />

Door<br />

Closer<br />

Size<br />

Max. recommended<br />

door Leaf<br />

Width<br />

mm<br />

NOTE: 1) Where the actual size and mass of a door to which the floor spring is to be fitted exceeds the maximum<br />

width or mass, the next size up should be used.<br />

2) The door widths given are <str<strong>on</strong>g>for</str<strong>on</strong>g> standard installati<strong>on</strong>s. In the case of unusually high or heavy doors, windy<br />

or draughty c<strong>on</strong>diti<strong>on</strong>s, or special applicati<strong>on</strong>s, a larger power size oof<br />

f floor spring should be used.<br />

6.4.6 NARROW DOORS<br />

For doors narrower than those shown in the table, the floor spring may make the door “too heavy” to open. A special light<br />

acti<strong>on</strong> floor spring may be required.<br />

Specify: Lower strength floor spring <str<strong>on</strong>g>for</str<strong>on</strong>g> specified door size and weight.<br />

6.4.7 EXPOSED LOCATIONS<br />

Max.<br />

Door<br />

Mass<br />

kg<br />

2<br />

850<br />

40<br />

3<br />

950<br />

60<br />

4<br />

1100<br />

80<br />

5<br />

1250<br />

100<br />

6<br />

1400<br />

120<br />

7<br />

1600<br />

160<br />

*Note that between 0° - 4° , the operating <str<strong>on</strong>g>for</str<strong>on</strong>g>ce is at its maximum<br />

For doors exposed to abnormally windy c<strong>on</strong>diti<strong>on</strong>s, a str<strong>on</strong>ger floor spring may be required. But c<strong>on</strong>siderati<strong>on</strong> of the type<br />

of building and the people likely to operate the doors should be given be<str<strong>on</strong>g>for</str<strong>on</strong>g>e speci specifying fying a str<strong>on</strong>ger floor spring.<br />

6.4.8 BACK CHECK REQUIREMENT (CHECKING ACTION AT 70°)<br />

To stop the door hitting an adjacent wall or obstacle.<br />

To avoid the abuse of the door in high traffic areas.<br />

Page 80<br />

Closing Moment<br />

Between *<br />

Nm Min.<br />

0º - 4º<br />

Nm Max.<br />

13<br />

< 18<br />

18<br />

< 26<br />

26<br />

< 37<br />

37<br />

< 54<br />

54<br />

< 87<br />

87<br />

< 140<br />

Between<br />

88º - 92º<br />

Nm Min.<br />

4<br />

6<br />

9<br />

12<br />

18<br />

29


DOOR OPENING ACTION<br />

Single acti<strong>on</strong><br />

Door opens <strong>on</strong>e way <strong>on</strong>ly.<br />

Door hangs <strong>on</strong> cranked fittings which close the<br />

door into a rebated frame.<br />

Specify: Single acti<strong>on</strong> floor spring <str<strong>on</strong>g>for</str<strong>on</strong>g> specific door<br />

weight, size, c<strong>on</strong>structi<strong>on</strong> and opening<br />

angle (e.g. 90°, 150°, 130°) ) Specify door<br />

stop or backcheck).<br />

NOTE: For fire exit doors, do o not specify single<br />

acti<strong>on</strong> opening inwards.<br />

Double acti<strong>on</strong><br />

Door is centre pivoted.<br />

Door opens 90° both ways.<br />

Because door swings both ways, the door should<br />

be fully <str<strong>on</strong>g>glazed</str<strong>on</strong>g> or have a <str<strong>on</strong>g>glazed</str<strong>on</strong>g> view panel.<br />

Specify: Double acti<strong>on</strong> floor spring <str<strong>on</strong>g>for</str<strong>on</strong>g> specific door<br />

weight, size, c<strong>on</strong>structi<strong>on</strong> and maximum<br />

opening angle.<br />

NOTE: Double acti<strong>on</strong> floor spring must not be used<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g> fire c<strong>on</strong>trol doors, but may be used <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

smoke check doors under certain<br />

circumstances, with the approval of the Fire<br />

Preventi<strong>on</strong> Officer. All approved fire doors<br />

must have rebates.<br />

TRANSOM CONCEALED CLOSERS<br />

Used:<br />

Where threshold details prevent the use of the floor<br />

spring. (e.g. modern buildings where floor slabs<br />

and screeds may be thin).<br />

In hygienic envir<strong>on</strong>ments where the mechanism is<br />

best completely c<strong>on</strong>cealed.<br />

Closer comprises:<br />

Transom closer fitted into a standard aluminium<br />

transom.<br />

Top door strap/arm.<br />

Bottom door strap (<str<strong>on</strong>g>for</str<strong>on</strong>g> double acti<strong>on</strong>).<br />

Bottom pivot (<str<strong>on</strong>g>for</str<strong>on</strong>g> double acti<strong>on</strong>).<br />

FACTORS TO CONSIDER WHEN SELECTING A TRA TRANSOM NSOM CONCEALED DOOR<br />

DOOR WIDTH AND MASS<br />

Door<br />

Closer<br />

Size<br />

2<br />

3<br />

4<br />

Max. recommended<br />

door Leaf<br />

Width<br />

mm<br />

850<br />

950<br />

1100<br />

Max.<br />

Door<br />

Mass<br />

kg<br />

40<br />

60<br />

80<br />

* Note that between 0° - 4° , the operating <str<strong>on</strong>g>for</str<strong>on</strong>g>ce is at its maximum<br />

Page 81<br />

Closing Moment<br />

Between *<br />

Nm Min.<br />

0º - 4º<br />

Nm Max.<br />

13<br />

< 18<br />

18<br />

< 26<br />

26<br />

< 37<br />

Between<br />

88º - 92º<br />

Nm Min.<br />

4<br />

6<br />

9


NOTE: 1) Where the actual size and mass of a door to which the door closer is fitted exceeds the maximum width or<br />

mass, the next size up should be used.<br />

2) The door widths given are <str<strong>on</strong>g>for</str<strong>on</strong>g> standard installati<strong>on</strong>s. In the case of unusually high or heavy doors, windy or<br />

draughty c<strong>on</strong>diti<strong>on</strong>s, or special applicati<strong>on</strong>s, a larger power size of closer should be used.<br />

DOOR OPENING ACTION<br />

Single acti<strong>on</strong><br />

Door opens <strong>on</strong>e way <strong>on</strong>ly.<br />

Door closes into rebated frame.<br />

No hinges are needed with this applicati<strong>on</strong>.<br />

Offset arm with slide channel is fitted into the door.<br />

Double acti<strong>on</strong><br />

Door opens both ways.<br />

No hinges are needed.<br />

6.4.9 IN-DOOR DOOR CONCEALED CLOSER<br />

This type of door closer is c<strong>on</strong>cealed inside the top of the door.<br />

Suitable <str<strong>on</strong>g>for</str<strong>on</strong>g> interior doors <strong>on</strong>ly.<br />

Single acti<strong>on</strong> <strong>on</strong>ly.<br />

Closer Comprises:<br />

Closer body which fits into the top of a door - min 45mm thick.<br />

Arm linked to a slide channel in the frame.<br />

Per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance characteristics correlate to those of overhead surface mounted door closers.<br />

Specify: In-door c<strong>on</strong>cealed closer.<br />

6.5 SPECIAL DOORS<br />

6.5.1 OVERSIZE AND HEAVY DOORS<br />

Where doors exceed the sizes and weights shown in the respective closer tables, c<strong>on</strong>sult a closer manufacturer be<str<strong>on</strong>g>for</str<strong>on</strong>g>e<br />

specifying.<br />

6.5.2 FIRE DOORS<br />

Fire doors are covered under the Nati<strong>on</strong>al Building Regulati<strong>on</strong>s and all require to be fitted with closers. Regulati<strong>on</strong>s also<br />

lay down the following criteria <str<strong>on</strong>g>for</str<strong>on</strong>g> specifying closers <str<strong>on</strong>g>for</str<strong>on</strong>g> fire doors:<br />

a) Closers should be firmly fixed and not able to be eas easily removed.<br />

b) The closer should not have a mechanical hold hold-open open facility (if the door requires to be held open, it should be fitted<br />

with an electromagnetic catch which releases in the event of fire and allows the door to close).<br />

c) The closer must have a positive latching acti<strong>on</strong> to overcome to possible resistance of door latches.<br />

d) The closer must close the door effectively from any angle.<br />

Specify: Overhead door closer with electromagnetic hold hold-open device of required.<br />

NOTE: The majority of fire doors rs have overhead door closers.<br />

Page 82


DOUBLE DOORS WITH DOOR SELECTOR<br />

Double doors normally have rebated meeting stiles or<br />

a metal overlapping seal. If they are fitted with door<br />

closers, a door selector must be specified to enable the<br />

doors to close in the correct sequence.<br />

Specify: Overhead door closers or floor springs with<br />

door selector.<br />

Door C<strong>on</strong>trol<br />

Selector Guide<br />

TYPE OF DOOR<br />

(Up to 1400mm wide)<br />

Interior Door - Single ·<br />

Exterior Door - Inward<br />

Opening<br />

Exterior Door - Outward<br />

Opening<br />

Interior Door - Limited<br />

Space<br />

Interior Fire Door -<br />

Single<br />

Interior Fire Door -<br />

Double<br />

Exterior Fire Door -<br />

Double<br />

Int./Ext. Door - High<br />

traffic<br />

Int./Ext. Paraplegic<br />

(Light Acti<strong>on</strong>)<br />

Wide Door (Over<br />

1400mm)<br />

Heavy Door (Over 120<br />

kg)<br />

Door with C<strong>on</strong>cealed<br />

Closer<br />

Clean / Hygienic Areas<br />

Regular arm<br />

(Door Mounted)<br />

·<br />

Regular Arm<br />

(Frame Mounted)<br />

·<br />

·<br />

·<br />

·<br />

·<br />

·<br />

·<br />

·<br />

·<br />

Overhead Surface<br />

Mounted Closers<br />

Parallel Arm<br />

·<br />

·<br />

·<br />

·<br />

Hold Open<br />

·<br />

·<br />

·<br />

·<br />

Back Check<br />

·<br />

·<br />

·<br />

Delayed Acti<strong>on</strong><br />

·<br />

Page 83<br />

Slide Channel<br />

Floor<br />

Springs<br />

Single Acti<strong>on</strong><br />

Double Acti<strong>on</strong><br />

·<br />

·<br />

·<br />

·<br />

·<br />

·<br />

·<br />

·<br />

·<br />

·<br />

·<br />

·<br />

·<br />

·<br />

·<br />

·<br />

·<br />

·<br />

·<br />

·<br />

·<br />

·<br />

·<br />

·<br />

·<br />

·<br />

·<br />

·<br />

·<br />

·<br />

·<br />

·<br />

·<br />

·<br />

·<br />

Transom<br />

C<strong>on</strong>cealed<br />

Closer<br />

Single Acti<strong>on</strong><br />

·<br />

·<br />

Double Acti<strong>on</strong><br />

In-door C<strong>on</strong>cealed Closer<br />

·<br />

·<br />

·<br />

Door Selector<br />

Electro Magnetic Hold<br />

Open Device<br />

·<br />

·<br />

·<br />

·


6.5.3 SLIDING FOLDING DOORS – BOTTOM ROLLING<br />

Bottom rolling doors (Foldaside)<br />

Maximum practical door width: 900mm (up to 2100mm high)<br />

750mm (up to 2700mm high)<br />

Maximum practical door height: 2700mm<br />

Maximum practical number of door hinged together and to frame or end pivot: 5<br />

Maximum mass per door leaf: 70kg<br />

This <str<strong>on</strong>g>guide</str<strong>on</strong>g> is based <strong>on</strong> standard available shopfr<strong>on</strong>t profiles using available hardware and fittings. These systems are<br />

designed <str<strong>on</strong>g>for</str<strong>on</strong>g> internal and external use. Certain frames may be waterproof.<br />

Recommended aluminium profiles <str<strong>on</strong>g>for</str<strong>on</strong>g> sliding/folding doors<br />

Page 84


SLIDING FOLDING DOORS<br />

BOTTOM ROLLING<br />

Typical plan of 3 leaves folding to <strong>on</strong>e side – Pivot to frame<br />

Door leaves all equal widths<br />

Page 85<br />

Typical secti<strong>on</strong><br />

throughout frame and<br />

door<br />

3 leaves sliding and folding to <strong>on</strong>e side pivoted at<br />

frame. All leaves equal widths.


SLIDING FOLD DOORS – BOTTOM ROLLING<br />

WHERE TO FIT THE HARDWARE<br />

3 doors to L or R<br />

5 doors to L or R<br />

Top <str<strong>on</strong>g>guide</str<strong>on</strong>g> frame<br />

Bottom track and cill<br />

**<br />

Page 86<br />

+* Use 1 or 2 locks<br />

depending <strong>on</strong> door<br />

height<br />

3 doors to L or R with 1 hinged<br />

door<br />

HARDWARE REQUIRED:<br />

Bottom Roller<br />

Top <str<strong>on</strong>g>guide</str<strong>on</strong>g><br />

Hinge<br />

Flush handle<br />

Flush bolt<br />

Dead lock


Page 87


6.5.4 SLIDING FOLDING DOORS – TOP HUNG<br />

Top hung doors (Foldaside)<br />

Maximum practical door width: 900mm (up to 2100mm high)<br />

750mm (up to 2700mm high)<br />

Maximum practical door height: 2700mm<br />

Maximum practical number of door hinged together and to frame or end pivot: 5<br />

Maximum mass per door leaf: 50kg<br />

This <str<strong>on</strong>g>guide</str<strong>on</strong>g> is based <strong>on</strong> standard available shopfr<strong>on</strong>t profiles using available hardware and fittings. These systems are<br />

designed <str<strong>on</strong>g>for</str<strong>on</strong>g> internal and external use.<br />

Recommended aluminium profiles <str<strong>on</strong>g>for</str<strong>on</strong>g> sliding/folding doors<br />

Page 88


SLIDING FOLDING DOORS<br />

TOP HUNG<br />

Typical plan of 4 leaves folding to <strong>on</strong>e side – pivot to frame. Door leaves all equal widths<br />

Page 89<br />

Typical secti<strong>on</strong><br />

through top track<br />

door and <str<strong>on</strong>g>guide</str<strong>on</strong>g><br />

channel<br />

4 leaves sliding and folding to <strong>on</strong>e side pivoted at<br />

frame. All leaves equal widths.<br />

Track C/<strong>line</strong>


SLIDING FOLDING DOORS – TOP HUNG<br />

WHERE THE HARDWARE FITS<br />

5 door to L or R<br />

Top track<br />

Guide channel<br />

Page 90<br />

3 doors to L or R<br />

**<br />

** Use 1 or 2 locks<br />

depending <strong>on</strong> the door<br />

height<br />

HARDWARE REQUIRED:<br />

Top Hanger<br />

Bottom Guide<br />

Hinge<br />

Flush handle<br />

Flush bolt<br />

Dead Lock


Page 91


6.5.5 STACKING DOORS<br />

(Stackway) Top Hung doors<br />

Maximum practical door width: 1200mm<br />

Maximum practical door height: 3000mm<br />

Maximum No. of doors in system: UNLIMITED<br />

Maximum mass per door leaf: 150kg<br />

This <str<strong>on</strong>g>guide</str<strong>on</strong>g> is based <strong>on</strong> standard available aluminium shopfr<strong>on</strong>t profiles using available hardware and fittings. These<br />

systems are designed <str<strong>on</strong>g>for</str<strong>on</strong>g> internal use <strong>on</strong>ly and are not designed to be fully weather weather-proof.<br />

Page 92


Page 93


6.6 GENERIC FENESTRATION HARDWARE<br />

Generic Hardware <str<strong>on</strong>g>for</str<strong>on</strong>g> a Top Hung Casement Window<br />

Generic Hardware <str<strong>on</strong>g>for</str<strong>on</strong>g> a Side Hung Casement Window<br />

Page 94


Generic Hardware <str<strong>on</strong>g>for</str<strong>on</strong>g> a Vertical Sliding Window<br />

Generic Hardware <str<strong>on</strong>g>for</str<strong>on</strong>g> a Sliding Window<br />

Page 95


Generic Hardware <str<strong>on</strong>g>for</str<strong>on</strong>g> a Single Hinged Door<br />

Generic Hardware <str<strong>on</strong>g>for</str<strong>on</strong>g> a Double Hinged Door<br />

Page 96


Generic Hardware <str<strong>on</strong>g>for</str<strong>on</strong>g> a Single Floor Spring Swing Door<br />

Generic Hardware <str<strong>on</strong>g>for</str<strong>on</strong>g> a Double Floor Spring Swing Door<br />

Page 97


Generic Hardware <str<strong>on</strong>g>for</str<strong>on</strong>g> a Single C<strong>on</strong>cealed Overhead Door Closer Door<br />

Generic Hardware <str<strong>on</strong>g>for</str<strong>on</strong>g> a Double C<strong>on</strong>cealed Overhead Door Closer Door<br />

Page 98


Generic Hardware <str<strong>on</strong>g>for</str<strong>on</strong>g> a Single Sliding<br />

Generic Hardware <str<strong>on</strong>g>for</str<strong>on</strong>g> a Double Sliding Door<br />

Page 99


Generic Hardware <str<strong>on</strong>g>for</str<strong>on</strong>g> a Tilt & Turn Window<br />

Generic Hardware <str<strong>on</strong>g>for</str<strong>on</strong>g> a Sliding Door<br />

Page 100


CHAPTER VII<br />

SURFACE FINISHES<br />

Page 101


FINISHES<br />

7. SELECTION OF FINISHES<br />

It is str<strong>on</strong>gly advised that <strong>on</strong>ly Surface Finishers in possessi<strong>on</strong> of the relevant SABS mark (mark holders) execute<br />

the surface finishing of Architectural Aluminium Products.<br />

Specifiers are advised to insist <strong>on</strong> the <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> Surface Finishing Certificate to ensure compliance with the relevant<br />

SANS Standards and thus receive c<strong>on</strong>firmati<strong>on</strong> of the quality of the surface finish supplied.<br />

7.1 ANODISING<br />

All anodising shall be executed in strict accordance with SANS 999.<br />

It is imperative that the correct coating thicknesses (Coating Grades) are specified <str<strong>on</strong>g>for</str<strong>on</strong>g> the anodic layer as described in<br />

SANS 999 as follows:<br />

Grade AA15 (Average coating thickness 15 micr<strong>on</strong>) shall be used <str<strong>on</strong>g>for</str<strong>on</strong>g> products subject to mild atmospheric c<strong>on</strong>diti<strong>on</strong>s and<br />

in rural envir<strong>on</strong>ments that are free from industrial polluti<strong>on</strong> and marine influence.<br />

Grade AA25 (Average coating thickness 25 micr<strong>on</strong>) shall be used <str<strong>on</strong>g>for</str<strong>on</strong>g> products us used ed in the following cases:<br />

a. Western Cape (i.e. west of Hermanus) - within 25km of the sea.<br />

b. Southern and Eastern Cape- within 20km of the sea.<br />

c. Natal South Coast (i.e. south of Amanzimtoti) - within 15km of the sea.<br />

d. Durban area and Natal North Coast - within 25km of the sea.<br />

In additi<strong>on</strong> to the above, any site within 5km of a chemical or related process plant (i.e. pulp and paper mills, oil<br />

refineries, petrol-from-coal coal plants, steel mills and metallurgical process plants) meets the criteria <str<strong>on</strong>g>for</str<strong>on</strong>g> use of Grade AA25<br />

(25 micr<strong>on</strong> thickness).<br />

Specifiers should note that wind-borne borne sand might be abrasive, leading to loss of anodised film by abrasi<strong>on</strong>. Such areas<br />

might include the Western Cape Coast and the Karoo around Beau<str<strong>on</strong>g>for</str<strong>on</strong>g>d West. In such areas Grade AA25 (25 mic micr<strong>on</strong><br />

thickness) may have to be specified. Specifiers and manufacturers should insist <strong>on</strong> Certificates of C<strong>on</strong><str<strong>on</strong>g>for</str<strong>on</strong>g>mance that the<br />

anodising has been executed in accordance with SA SANS 999.<br />

7.2 POWDER COATING<br />

All stages of powder coating shall be executed in strict accordance with SANS 1796.<br />

All aluminium alloy extrusi<strong>on</strong>s, sheet or pre<str<strong>on</strong>g>for</str<strong>on</strong>g>med secti<strong>on</strong>s shall be thoroughly cleaned with an alka<strong>line</strong> or acid soluti<strong>on</strong><br />

to produce a surface that is free from oil, grease or any other c<strong>on</strong>taminant that might impair the per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance of the pre-<br />

treatment. A chemical c<strong>on</strong>versi<strong>on</strong> pre pre-treatment treatment shall be applied in accordance with the recommendati<strong>on</strong>s of the<br />

manufacturer of the chemical c<strong>on</strong>versi<strong>on</strong> pre pre-treatment.<br />

The amount of chemical c<strong>on</strong>versi<strong>on</strong> pre pre-treatment to be deposited depends epends <strong>on</strong> the type used and shall be within the limits<br />

specified in SANS 1796.<br />

The pre-treated treated aluminium alloy extrusi<strong>on</strong>s, sheet and pre<str<strong>on</strong>g>for</str<strong>on</strong>g>med secti<strong>on</strong>s shall be handled with clean lint lint-free gloves,<br />

shall be stored in a clean, dry atmosphere and shall be protected from dust and abrasi<strong>on</strong>.<br />

The organic powder shall be applied and cured in accordance with the powder manufacturer's instructi<strong>on</strong>s. The<br />

applicati<strong>on</strong> shall take place as so<strong>on</strong> as possible, and in strict accordance with SANS 1796. Delays may result i iin<br />

inferior<br />

adhesi<strong>on</strong> or inferior weathering properties (or both).<br />

The manufacturers of the <str<strong>on</strong>g>architectural</str<strong>on</strong>g> aluminium products are advised to use <strong>on</strong>ly powder coating applicators in<br />

possessi<strong>on</strong> of powder manufacturer's approved applicators certificates. In cas case e of powder coating/anodising used in<br />

c<strong>on</strong>juncti<strong>on</strong> with structural glazing (flush glazing) the specifier, i.e. Architect, Quantity Surveyor, Developer or owner,<br />

shall insist that quality procedures <str<strong>on</strong>g>for</str<strong>on</strong>g> the finishes <strong>on</strong> all aluminium alloy extrusi<strong>on</strong>s, sheet o oor<br />

pre<str<strong>on</strong>g>for</str<strong>on</strong>g>med secti<strong>on</strong>s, are<br />

executed and recorded in strict accordance with SANS 999 <str<strong>on</strong>g>for</str<strong>on</strong>g> anodising and <str<strong>on</strong>g>for</str<strong>on</strong>g> powder coating in strict accordance with<br />

SANS 1578 (powder) and SANS 1796 (applicati<strong>on</strong> of powder coating).<br />

Page 102


7.3 INTERNATIONAL QUALITY STANDARDS FOR SURFACE FINISHINGS<br />

Qualicoat®/Qualinod® is a quality label organizati<strong>on</strong>, recognized in countries of Europe, Asia, Australia, America and<br />

Africa, committed to maintaining and promoting the quality of surface finishes <strong>on</strong> aluminium and its alloys <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

<str<strong>on</strong>g>architectural</str<strong>on</strong>g> applicati<strong>on</strong>s.<br />

The label defines comprehensive quality requirements and m<strong>on</strong>itors compliance by licensed plants worldwide. The<br />

Qualicoat®/Qualinod® quality requirements surpass certain SANS quality requirements. Manufacturers of Architectural<br />

Aluminium nium Products may be required to meet these standards when operating in the countries which recognise this<br />

quality label.<br />

7.4 COIL COATING<br />

Architectural Aluminium flat products are painted by “fully automatic coil coating process which c<strong>on</strong>sists of:<br />

Multi-stage Chemical Cleaning: This chemical process includes acid and alkali cleaning, smut removal processes and<br />

detergent cleaning.<br />

Chemical Surface C<strong>on</strong>versi<strong>on</strong>: This chemical treatment of the aluminium surface ensures optimum b<strong>on</strong>ding of paint to<br />

the metal surface.<br />

Paint Applicati<strong>on</strong>: The computer c<strong>on</strong>trolled roller applicati<strong>on</strong> of paints and primers ensures a surface of evenness,<br />

smooth, blemish--free<br />

and uni<str<strong>on</strong>g>for</str<strong>on</strong>g>m paint thickness.<br />

Oven Cure: This ensures that the paint achieves their optimum properties s of extended, high per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance life.<br />

Currently the following colours are available:<br />

Group I The Solid Eartht<strong>on</strong>e Colours (Sand, Terracotta, Burgundy, Slate Blue, Azure Blues, Opal Green, Cloud<br />

Grey)<br />

Group II The Bright Whites and Pastels (Pure White, Pe Pearl Cream)<br />

Group III The Metallics (Metallic Silver, -Br<strong>on</strong>ze, -Champagne, -Silver Blue)<br />

Group IV The Corporate, Heavily Pigmented Colours (Turquoise Green, Deep Green)<br />

PAINT CHEMISTRY<br />

Group I, II and III 70/30 PVDF/Acrylic blend Topcoat<br />

Group IV 50/50 PVDF/Acrylic Pigmented Coat plus<br />

70/30 PVDF/Acrylic Clear Topcoat<br />

Property<br />

Coating Thickness<br />

Humidity Resistance<br />

Blistering (ASTM D 2247)<br />

Accelerated Weathering B:<br />

QUV (ASTM G53)<br />

Accelerated Weathering B:<br />

Dew Cycle Weatherometer<br />

(ASTM D3361)<br />

Acid Salt Spray (ASTM B117)<br />

Formability (ASTM D4145)<br />

Pencil Hardness (ASTM D3363)<br />

Specular Gloss (ASTM D2794)<br />

Reverse Impact (ASTM D2794)<br />

Flame Test (ASTM E84)<br />

Per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance of Coil Coating<br />

Per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance<br />

Polyvinlidene difluoride (PVDF) Advance Polymer Systems<br />

Group I 23 micr<strong>on</strong>s ±5 micr<strong>on</strong>s<br />

Group II 32 micr<strong>on</strong>s ±5 micr<strong>on</strong>s 23 micr<strong>on</strong>s ±5 micr<strong>on</strong>s<br />

Group III 23 micr<strong>on</strong>s ±5 micr<strong>on</strong>s<br />

Group IV 40 micr<strong>on</strong>s ±5 micr<strong>on</strong>s<br />

3000 hours<br />

1000 hours<br />

Rating 10, No Blisters<br />

2000 Hours<br />

Colour: 5E Hunter Units Max.<br />

Chalking: Rating 8<br />

1000 Hours<br />

Colour: 5E Hunter Units Max.<br />

Chalking: Rating 8<br />

500 Hours<br />

3000 Hours<br />

Scribe: No Creepage<br />

1000 Hours<br />

0T to 2T<br />

0T to 2T<br />

HB to 2H<br />

HB to 2H<br />

20-35 at 60º<br />

No loss of Adhesi<strong>on</strong><br />

Class A Coating<br />

5J<br />

Page 103


7.5 MAINTENANCE OF SURFACE FINISHES<br />

7.5.1 INTRODUCTION<br />

These recommendati<strong>on</strong>s are intended to assist Architects, C<strong>on</strong>tractors, Owners, Building Managers etc. who are<br />

c<strong>on</strong>cerned with the cure and maintenance of coatings to Architectural Aluminium installati<strong>on</strong>s. The suggested methods<br />

are an aid in establishing tablishing safe, sound cleaning and maintenance procedures. Although certain proprietary products are<br />

menti<strong>on</strong>ed they are included merely as an aid in identifying such materials. No attempt has been made by <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> to<br />

evaluate their effectiveness, nor does listing here c<strong>on</strong>stitute an endorsement.<br />

The Aluminium Surface Finishers Associati<strong>on</strong> operating under the aegis of the Aluminium Federati<strong>on</strong> of South Africa is<br />

the body which provides expert advice in matters related to finishing and maintenance of coatings <str<strong>on</strong>g>for</str<strong>on</strong>g> Architectural<br />

Aluminium.<br />

7.5.2 GENERAL<br />

Anodic and Powder Coatings <strong>on</strong> aluminium do not normally show an appreciable amount of dirt collecti<strong>on</strong>. In<br />

many atmospheres dirt or soil would not indicate a detrimental risk to the coating, but cleaning and surface care<br />

may be desirable <str<strong>on</strong>g>for</str<strong>on</strong>g> the sake of ap appearance. pearance. Cleaning may become desirable in areas where heavy industrial<br />

deposits have dulled the surface, where materials from c<strong>on</strong>structi<strong>on</strong> processes have soiled the surface or where<br />

cleaner run-down down from other surfaces should be removed. Local atmospher atmospheric ic c<strong>on</strong>diti<strong>on</strong>s as well as building<br />

locati<strong>on</strong> within a geographical area quite naturally have an effect <strong>on</strong> clean<strong>line</strong>ss. Very often, rainfall may be<br />

sufficient to keep exterior surfaces appearing clean and bright. These factors coupled with owner attitude<br />

regarding garding surface appearance probably would determine cleaning schedules. Areas that are in direct sight at lower<br />

levels would more likely be cleaned. Less obvious areas would be less frequently cleaned or in some instances,<br />

hardly at all. Cleaning of anodised dised and powder powder-coated coated aluminium may be scheduled with other cleaning. For<br />

example, glass coated aluminium comp<strong>on</strong>ents can be cleaned at the same time.<br />

Cleaning will be more often required in areas of low rainfall or in heavily industrialized areas. Fog Foggy coastal<br />

regi<strong>on</strong>s with frequent cycles of c<strong>on</strong>densati<strong>on</strong> and drying may tend to give a build build-up up of atmospheric salts and dirt.<br />

In any climate, sheltered areas such as overhangs may become soiled because of lack of rain rain-washing. Thorough<br />

rinsing is especially lly important after cleaning of these sheltered areas.<br />

7.6 CLEANING OF ANODIC COATINGS ON ARCHITECTURAL ALUMINIUM<br />

7.6.1 CLEANING RECOMMENDATIONS (Anodic Coatings)<br />

Correctly identify the aluminium finish to be cleaned when selecting an appropriate cleani cleaning method. Check<br />

specificati<strong>on</strong>s and/or as built drawings if in doubt as to finish.<br />

Never use aggressive alka<strong>line</strong> or acid cleaners <strong>on</strong> aluminium finishes. It is important not to use cleaners<br />

c<strong>on</strong>taining trisodium phosphate, phosphoric acid, hydrochloric ac acid, id, hydrofluoric acid, fluorides, or similar<br />

compounds <strong>on</strong> anodised aluminium surfaces. Always follow the recommendati<strong>on</strong>s of the cleaner manufacturer as<br />

to the proper cleaner and c<strong>on</strong>centrati<strong>on</strong>. Test clean a small area first. Different cleaners should not be mixed.<br />

It is preferable to clean the metal when shaded. Do not attempt to clean hot, sun sun-heated heated surfaces since possible<br />

chemical reacti<strong>on</strong>s <strong>on</strong> hot metal surfaces will be highly accelerated and cleaning n<strong>on</strong> n<strong>on</strong>-uni<str<strong>on</strong>g>for</str<strong>on</strong>g>mity can occur.<br />

Surfaces cleaned under these adverse c<strong>on</strong>diti<strong>on</strong>s can become streaked or stained so that they cannot be restored to<br />

their original appearance. Also avoid cleaning the freezing temperatures or when metal temperatures are<br />

sufficiently cold to cause c<strong>on</strong>densati<strong>on</strong>.<br />

Apply the cleaning soluti<strong>on</strong> <strong>on</strong>ly to an area that can be c<strong>on</strong>veniently cleaned without changing positi<strong>on</strong>.<br />

Thoroughly rinse the surface with clean water be<str<strong>on</strong>g>for</str<strong>on</strong>g>e applying cleaner. Minimize cleaner rundown over the lower<br />

porti<strong>on</strong>s of the building and rinse such areas as so<strong>on</strong> and as l<strong>on</strong>g as practical.<br />

Cleaners c<strong>on</strong>taining str<strong>on</strong>g organic solvents will have a deleterious effect <strong>on</strong> organic overlay coatings, but not <strong>on</strong><br />

anodised aluminium. The possibility of solvents extracting stain stain-producing producing chemicals from sealants and affec affecting<br />

the functi<strong>on</strong> of the sealants, however, must be c<strong>on</strong>sidered. Test a small area first.<br />

Str<strong>on</strong>g cleaners should not be used <strong>on</strong> windows and other building accessories where it is possible <str<strong>on</strong>g>for</str<strong>on</strong>g> the cleaner<br />

to come in c<strong>on</strong>tact with the aluminium. Soluti<strong>on</strong>s oof<br />

f water and mild detergents should be used <strong>on</strong> windows. If <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

some particular reas<strong>on</strong>, an aggressive cleaner is required <str<strong>on</strong>g>for</str<strong>on</strong>g> some other comp<strong>on</strong>ent of the building; extreme care<br />

must be taken to prevent the cleaner from c<strong>on</strong>tacting the aluminium finish.<br />

Page 104


7.6.2 REMOVAL VAL OF LIGHT SURFACE SOIL (Anodic Coatings)<br />

Removal of light surface soil may be accomplished by alternative methods as described in (a), (b), (c) and (d). Work<br />

should start at the top of the building by rinsing an area the width of the stage or scaffold scaffolding to the ground level in<br />

c<strong>on</strong>tinuous drop with <str<strong>on</strong>g>for</str<strong>on</strong>g>ceful water spray. This should be d<strong>on</strong>e at the beginning and the end of each drop regardless of<br />

the final cleaning materials employed. Only trial and error testing employing progressively str<strong>on</strong>ger cleaning procedures<br />

can determine which will be most effective.<br />

(b) The simplest procedure is to flush the surface with water using moderate pressure to dislodge the soil.<br />

(c) If f the soil is still present after air air-drying drying the surface, clean the surface with a brush or sp<strong>on</strong>ge and water<br />

(c<strong>on</strong>current spraying with water and sp<strong>on</strong>ging).<br />

(d) If f soil is still adhering, then a mild detergent cleaner should be used with brushing or sp<strong>on</strong>ging. The washing<br />

should be accomplished with uni<str<strong>on</strong>g>for</str<strong>on</strong>g>m pressure, cleaning first with a horiz<strong>on</strong>tal moti<strong>on</strong> and then with a vertical<br />

moti<strong>on</strong>. The surface must be thoroughly rinsed by spraying with clean water and thoroughly dried.<br />

(e) MEK or similar clean-up up solvent wiping is recommended if it is necessary to remove oils, wax, polish and other<br />

materials.<br />

CAUTION: MEK and similar solvents may damage organic sealants, gaskets and finishes used <strong>on</strong> window, curtain wall<br />

and storefr<strong>on</strong>t assemblies. They must be used with great care and not allowed to come in c<strong>on</strong>tact with<br />

organic materials. Their use must be avoid avoided ed <strong>on</strong> anodic finishes protected by clear organic coatings.<br />

Organic solvents should be used <strong>on</strong>ly in accordance with manufacturers safety recommendati<strong>on</strong>s.<br />

7.6.3 REMOVAL OF HEAVY SURFACE SOIL (Anodic coating)<br />

If surface soil still adheres after using procedures under 7.6.2, , cleaning with the assistance of an abrasive pad can be<br />

employed.<br />

CAUTION: These procedures must not be used <strong>on</strong> surface with a factory applied clear organic protective coating<br />

(lacquer) unless the clear coating has deteriorated and should be removed.<br />

Hand scrub the metal surface using a palm palm-size size nyl<strong>on</strong> abrasive cleaning pad such as Nort<strong>on</strong> Bear Bear-Tex No. 668 or<br />

3M Scotch Brite No. 7447, thoroughly wet with fresh water or a mild detergent cleaner. Start at top and work<br />

down, rubbing with uni<str<strong>on</strong>g>for</str<strong>on</strong>g>m rm pressure across the metal surface in the directi<strong>on</strong> of the metal grain. The 3M INSTA INSTA-<br />

LOK hand block No. 952 fitted with the nyl<strong>on</strong> abrasive cleaning pad is c<strong>on</strong>venient <str<strong>on</strong>g>for</str<strong>on</strong>g> hand scrubbing large flat<br />

surface areas.<br />

Scrubbing with a nyl<strong>on</strong>-cleaning cleaning pad wet wwith<br />

surface protecting material is also suggested <str<strong>on</strong>g>for</str<strong>on</strong>g> removing stubborn<br />

soils and stains.<br />

After scrubbing, the metal surface should be rinsed thoroughly with clean water or wiped with solvent to remove<br />

all residues. It may be necessary to sp<strong>on</strong>ge the surface while rinsing, particularly if cleaner is permitted to dry <strong>on</strong><br />

the surface.<br />

The rinsed surface is either permitted to air dry or is wiped dry with a chamois, squeegee or lint lint-free cloth.<br />

Use of power cleaning tools may be necessary <str<strong>on</strong>g>for</str<strong>on</strong>g> removal of usually heaving soils from large areas including<br />

panels and column covers. In such cases, an air air-driven driven reciprocating machine fitted with Nort<strong>on</strong> Bear Bear-Tex No.<br />

668 or 3M Scotch Brite No. 7447 abras abrasive ive pads can be employed. During this operati<strong>on</strong>, the surface being cleaned<br />

must be c<strong>on</strong>tinually wetted with clean water or mild detergent cleaning soluti<strong>on</strong> to provide lubricati<strong>on</strong> and a<br />

medium <str<strong>on</strong>g>for</str<strong>on</strong>g> carrying away the dirt. The cleaning soluti<strong>on</strong> may be applie applied d to the panels by sp<strong>on</strong>ging or brushing.<br />

Water may be applied in the same manner, by spraying from a hose or by utilizing the water c<strong>on</strong>necting with a<br />

sufficient number of overlapped passes to effect maximum cleaning. The directi<strong>on</strong> of travel with the clea cleaning<br />

machine is dependent largely up<strong>on</strong> the geometric c<strong>on</strong>figurati<strong>on</strong> of the surface being cleaned. However, when<br />

possible, the machine strokes should be made first in <strong>on</strong>e directi<strong>on</strong> and then in a directi<strong>on</strong> perpendicular to the<br />

first; (e.g. horiz<strong>on</strong>tal followed d by vertical passes). Areas, which are not accessible with the machine, must be<br />

manually cleaned as in Paragraph 7.6.1.<br />

Page 105


RINSING<br />

After an area has been machine scrubbed, it must be rinsed with clean water and thoroughly scrubbed with a fairly stiff<br />

bristle istle brush. While still wet, a final water rinse without brushing completes this cleaning operati<strong>on</strong>. The rinsed surface<br />

is either permitted to air dry or is wiped dry with a squeegee, chamois, or lint lint-free free cloth. It is important to remove<br />

promptly from un-cleaned cleaned lower porti<strong>on</strong>s of the building any cleaner rundown to avoid staining.<br />

7.7 CLEANING OF POWDER COATINGS ON ARCHITECTURAL ALUMINIUM<br />

7.7.1 CLEANING RECOMMENDATIONS (Powder Coating)<br />

C<strong>on</strong>structi<strong>on</strong> soils, including c<strong>on</strong>crete or mortar, etc., should be removed as so<strong>on</strong> as possible. The exact procedure <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

cleaning will vary depending <strong>on</strong> the nature and degree of soil. Try to restrict cleaning to mild weather. Cleaning should<br />

be d<strong>on</strong>e <strong>on</strong> the shaded side of the building or ideally <strong>on</strong> a mild, cloudy day. Method of cleaning, type of cleaner, etc., of<br />

<strong>on</strong>e comp<strong>on</strong>ent of the building must be used with c<strong>on</strong>siderati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> other comp<strong>on</strong>ents such as glass, sealants, painted<br />

surfaces, etc.<br />

Over cleaning or excessive rubbing can do more harm than good.<br />

Str<strong>on</strong>g solvents or str<strong>on</strong>g cleaner c<strong>on</strong>centrati<strong>on</strong>s can cause damage to painted surfaces.<br />

Avoid abrasive cleaners. Do not use household cleaners that c<strong>on</strong>tain abrasives <strong>on</strong> painted surfaces.<br />

Abrasive materials such as steel wool, abrasive brushes, etc., can wear and harm finis finishes. hes.<br />

Avoid drips and splashes. Remove run downs as quickly as possible.<br />

Avoid temperature extremes. Heat accelerates chemical reacti<strong>on</strong>s and may evaporate water from soluti<strong>on</strong>.<br />

Extremely low temperature may give poor cleaning effects. Cleaning under ad adverse verse c<strong>on</strong>diti<strong>on</strong>s may result in<br />

streaking or staining. Ideally, cleaning should be d<strong>on</strong>e in shade at moderate temperature.<br />

Do not substitute a heavy duty cleaner <str<strong>on</strong>g>for</str<strong>on</strong>g> frequently used mild cleaner.<br />

Do not scour painted surfaces.<br />

Never use paint removers, aggressive ggressive alka<strong>line</strong>, acid or abrasive cleaners. Do not use trisodium phosphate or<br />

highly alka<strong>line</strong> or highly acid cleaners. Always do a test surface.<br />

Follow manufacturers recommendati<strong>on</strong>s <str<strong>on</strong>g>for</str<strong>on</strong>g> mixing and diluting cleaners.<br />

Never mix cleaners.<br />

To prevent marking, make sure cleaning sp<strong>on</strong>ges, cloth etc. are grit free.<br />

7.7.2 REMOVAL OF LIGHT SURFACE SOIL (Powder Coating)<br />

Removal of light surface soil may be accomplished in several ways. Some testing is recommended to determine the<br />

degree of cleaning actually necessary essary to accomplish the task. Ideally, an initial step of <str<strong>on</strong>g>for</str<strong>on</strong>g>ceful water rinse from the top<br />

down is recommended prior to any cleaner applicati<strong>on</strong>. Significant benefit is gained with some type of surface agitati<strong>on</strong>.<br />

Low water volume with moderate pressure is much better than c<strong>on</strong>siderable volume with little pressure. Physical rubbing<br />

of the surface with soft, wet brushes, sp<strong>on</strong>ges or cloth is also helpful.<br />

The simplest procedure would be to apply the water rinse with moderate pressure to dislodge the soil. If this does<br />

not remove the soil, then a c<strong>on</strong>current water spray with brushing or sp<strong>on</strong>ging should be tested. If soil is still<br />

adhering after drying, then a mild detergent will be necessary.<br />

When a mild detergent or mild soap is necessary <str<strong>on</strong>g>for</str<strong>on</strong>g> removal of soil, it should be used with brushing or sp<strong>on</strong>ging.<br />

The washing should be d<strong>on</strong>e with uni<str<strong>on</strong>g>for</str<strong>on</strong>g>m pressure, cleaning first with a horiz<strong>on</strong>tal moti<strong>on</strong> and then with a vertical<br />

moti<strong>on</strong>. Apply cleaners <strong>on</strong>ly to an area that can be c<strong>on</strong>veniently cleaned without changing positi<strong>on</strong>. The surface<br />

must be thoroughly rinsed with clean water. It may be necessary to sp<strong>on</strong>ge the surface while rinsing, particularly<br />

if cleaner is permitted to dry <strong>on</strong> the surface. The rinsed surface is permitted to air dry or is wiped dry with a<br />

chamois, mois, squeegee or lint free cloth.<br />

Page 106


Run down of cleaner (from any operati<strong>on</strong>) to the lower porti<strong>on</strong>s of the building should be minimized and these<br />

areas should be rinsed as so<strong>on</strong> as and as l<strong>on</strong>g as necessary to lessen streaking, etc. from unavoidable run dow down,<br />

lower areas should be kept wet or flooded with water. Do not allow cleaning chemicals to collect <strong>on</strong> surface or to<br />

“puddle” <strong>on</strong> horiz<strong>on</strong>tal surfaces, crevices, etc. These should be flushed with water and dried. Always clean<br />

coated surfaces down from top p to bottom and follow with a thorough rinsing with clean water. (With <strong>on</strong>e story or<br />

low elevati<strong>on</strong> buildings, it is recommended to clean from bottom up and rinse from top down).<br />

7.7.3 MILD DETERGENTS<br />

Mild soaps or detergents ruled safe <str<strong>on</strong>g>for</str<strong>on</strong>g> bare hands should be safe <str<strong>on</strong>g>for</str<strong>on</strong>g> coated aluminium. Str<strong>on</strong>ger detergents such as some<br />

dishwater detergents should be carefully spot tested. Some of the latter would necessitate rubber gloves, l<strong>on</strong>g handled<br />

brushes, etc. With any, the finish should be thoroughly rinsed with clean water and dried. Some mild cleaning soluti<strong>on</strong>s,<br />

which would comprise of selected wetting agents in water soluti<strong>on</strong>, are available <str<strong>on</strong>g>for</str<strong>on</strong>g> automatic building washing<br />

machines. These machines would have built in brush agitati<strong>on</strong>, squeegee, filtrati<strong>on</strong> and recircu recirculati<strong>on</strong>; in some, a fresh<br />

water c<strong>on</strong>necti<strong>on</strong> may be provided<br />

7.7.4 REMOVAL OF HEAVY SURFACE (Powder Coating)<br />

Some type of mild solvent such as mineral spirits may be sued to remove grease, sealant or caulking compounds.<br />

Str<strong>on</strong>ger solvent or solvent c<strong>on</strong>taining cle cleaners aners may have a deleterious or softening effect <strong>on</strong> paints. To prevent<br />

harm to the finish, these types of solvent or emulsi<strong>on</strong> cleaners should be spot tested and preferably the coating<br />

manufacturer should be c<strong>on</strong>sulted. Care should be taken to assure that no marring of the surface is taking place in<br />

this manner since this could give an undesirable appearance at certain viewing angles. Cleaners of this type are<br />

usually applied with a clean cloth and removed with a cloth. Remaining residue should be washed with mild soap<br />

and rinsed with water. Use solvent cleaners sparingly.<br />

It may be possible <str<strong>on</strong>g>for</str<strong>on</strong>g> solvents to extract materials from sealants, which could stain the painted surface or could<br />

prove harmful to sealants; there<str<strong>on</strong>g>for</str<strong>on</strong>g>e, these possible effects must be c<strong>on</strong>sidered. Test a small area first first.<br />

If cleaning of a heavy surface soil has been postp<strong>on</strong>ed or in the cases of an especially tenacious soil, stubborn<br />

stains, etc., a more aggressive cleaner and technique may be required. Cleaner and technique should be matched<br />

to the soil and the painted finish. Some local manual cleaning may be needed at this point. Always follow the<br />

recommendati<strong>on</strong>s of the cleaner manufacturer as to proper cleaner and c<strong>on</strong>centrati<strong>on</strong>. Test clean small area first.<br />

Cleaners should not be used indiscriminately. Do not use excessive, abrasive rubbing as such may alter surface<br />

texture or may impart a “shine” to the surface.<br />

C<strong>on</strong>crete spillage that has dried <strong>on</strong> the painted surface may become quite stubborn to remove. Special cleaners<br />

and/or vigorous rubbing with n<strong>on</strong> n<strong>on</strong>-abrasive abrasive brushes or plastic scrapers may be necessary. Diluting soluti<strong>on</strong>s of<br />

Muriatic Acid. (under 10%) may be effective in removing dried c<strong>on</strong>crete stains, however, a test area should be<br />

tried first and proper handling pre precauti<strong>on</strong>s cauti<strong>on</strong>s must be exercise <str<strong>on</strong>g>for</str<strong>on</strong>g> safety reas<strong>on</strong>s. Also, effective proprietary cleaners<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g> c<strong>on</strong>crete and mortar staining are available. C<strong>on</strong>tact your supplier <str<strong>on</strong>g>for</str<strong>on</strong>g> further enquiries.<br />

Never Mix Cleaners – The mixing of cleaners may not <strong>on</strong>ly be ineffective, but also very dangerous. For example,<br />

mixing of chlorine c<strong>on</strong>taining materials such as bleaches, with other cleaning compounds c<strong>on</strong>taining amm<strong>on</strong>ia,<br />

can result in pois<strong>on</strong> gas emissi<strong>on</strong>.<br />

Always rinse after removal of heavy surface soil.<br />

Page 107


Page 108


CHAPTER VIII<br />

SKYLIGHTS<br />

Page 109


8.0 GENERAL SPECIFICATION FOR SKYLIGHTS<br />

8.1 MATERIALS<br />

8.1.1 ALUMINIUM EXTRUSIONS<br />

Extruded aluminium secti<strong>on</strong>s shall be fabricated from alloy 6063 or 6061 in temper T5 or T6 all in accordance with the<br />

latest editi<strong>on</strong> of BS EN 755 - "Aluminium and its alloys – extruded rod/bar, tube and profiles."<br />

The extruded secti<strong>on</strong> shall be of such quality and strength that the secti<strong>on</strong> pproperties<br />

roperties of the load bearing profiles meet the<br />

requirements as laid down in secti<strong>on</strong> 8.3 8.3.<br />

8.1.2 ALUMINIUM SHEET<br />

Ancillary members such as sills, flashings, infill panels and the like which may be <str<strong>on</strong>g>for</str<strong>on</strong>g>med from flat sheet material shall<br />

be fabricated from aluminium luminium alloy 1200 or 3004 or 5251 of appropriate temper all in accordance with the latest editi<strong>on</strong><br />

of BS EN 573 - "Aluminium and Aluminium Alloys."<br />

8.1.2 TIMBER<br />

Structural timber members where used should be of suitable strength material and comply in all respects with SANS<br />

10163.<br />

8.1.3 STEEL<br />

Structural steel members where used should be of suitable strength material and comply in all respects with SANS 10162.<br />

8.1.4 FLASHINGS<br />

A suitable corrosi<strong>on</strong> resistance, malleable sheet material shall be used <str<strong>on</strong>g>for</str<strong>on</strong>g> the <str<strong>on</strong>g>for</str<strong>on</strong>g>ming of flashings, saddles and drainage<br />

channels at abutments, juncti<strong>on</strong>s and valleys.<br />

8.1.5 GLAZING MATERIALS & GLAZING<br />

8. 1.5.1 PLASTIC GLAZING MATERIALS & GLAZING<br />

Plastic glazing material shall be ……. (Architect to specify)<br />

Minimum depth of rebate shall be 20mm.<br />

Glazing shall be executed strictly in c<strong>on</strong><str<strong>on</strong>g>for</str<strong>on</strong>g>mance with glass manufacturer’s recommendati<strong>on</strong>s and all in accordance with<br />

the Nati<strong>on</strong>al Building Regulati<strong>on</strong>s Part N, SANS 10137, DSS SANS 10400, SANS 1263, and <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> Se <str<strong>on</strong>g>Selecti<strong>on</strong></str<strong>on</strong>g> Guide<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g> Safety Glazing Materials.<br />

8.1.5.2 GLASS & GLAZING<br />

Glass/specialized /specialized plastic glazing materials shall be ........ (Architect to specify).<br />

Glazing shall be executed strictly in c<strong>on</strong><str<strong>on</strong>g>for</str<strong>on</strong>g>mance with glass manufacturer's recommendati<strong>on</strong>s and all in accordance with<br />

the Nati<strong>on</strong>al Building Regulati<strong>on</strong>s Part N, SANS 10137, SANS 10400 and, SANS 1263.<br />

A warranty is to be provided that the manufacturer of the laminated safety glass and/or the hermetically sealed glazing<br />

units warrants the product against delaminati<strong>on</strong> and colour degradati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> a period of not less than 5 (five) years.<br />

In case of structural glazing written proof is to be provided that all stages of fabricati<strong>on</strong> and installati<strong>on</strong> have been<br />

executed with discip<strong>line</strong>d quality assurance iin<br />

n accordance with the relevant part of SANS ISO 9000.<br />

Structure using materials having in-situ situ applied finishes may not be used <str<strong>on</strong>g>for</str<strong>on</strong>g> structural glazing. Written c<strong>on</strong>firmati<strong>on</strong> of<br />

compatibility of structural sealant with extrusi<strong>on</strong> surface, glazing tape and glass is to be supplied by the structural sealant<br />

manufacturer together with the regular relevant test reports regarding the adhesi<strong>on</strong> of the sealant to the aluminium frame<br />

in accordance with ASTM/C 794-80 80 (Standard Test <str<strong>on</strong>g>for</str<strong>on</strong>g> Adhesi<strong>on</strong> Adhesi<strong>on</strong>-in-Peel of Elastomeric Joint Sealants).<br />

Page 110


8.2. FINISHES<br />

8.2.1 ALUMINIUM<br />

8.2.1.1 ANODISING<br />

All anodising shall be executed in strict adherence to SANS 999. (Architect to specify colour and anodic film thickness)<br />

i.e. 15 or 25 micr<strong>on</strong>s. A Certificate of c<strong>on</strong><str<strong>on</strong>g>for</str<strong>on</strong>g>mance is to be supplied with each delivery that the anodised materials meet<br />

with SANS 999 in all aspects.<br />

8.2.1.2 POWDER COATING<br />

All powder coating shall be executed <strong>on</strong>ly by applicators approved by the specified powder manufacturers and shall be<br />

executed strictly in c<strong>on</strong><str<strong>on</strong>g>for</str<strong>on</strong>g>mance with SANS 1769.<br />

(Architect to specify type (Interp<strong>on</strong> D, Vedoc or other) and colour).<br />

A guarantee of no less than 10 years is to be provided against peeling and discolourati<strong>on</strong>.<br />

8.2.2 TIMBER<br />

The finish of the Timber structure shall be …….. (Architect to specify)<br />

8.2.3 STEEL<br />

The finish of the Steel structure shall be ….. (Architect to specify)<br />

8.3. CONSTRUCTION<br />

8.3.1 DESIGN<br />

8.3.1.1 The Design wind pressure is ….. (Architect and/or Structural Engineer to provide)<br />

8.3.1.2 Hail, snow and maintenance loads are ….. (Architect and/or Structural Engineer to provide)<br />

8.3.1.3 The plastic, shrinkage and creep deflecti<strong>on</strong>s of floor slabs is …. (Structural Engineer to provide)<br />

8.3.1.4 Tenderers are to allow <str<strong>on</strong>g>for</str<strong>on</strong>g> thermal movement due to an atmospheric temperature range of -10°C to 35°C.<br />

(Architect to c<strong>on</strong>firm)<br />

8.3.1.5 The combined loadings as specified in 8.3.1.1 and 8.3.1.2 3.1.2 above shall be used in the selecti<strong>on</strong> of appropriate<br />

uni<str<strong>on</strong>g>for</str<strong>on</strong>g>m loading.<br />

Test<br />

Deflecti<strong>on</strong> (positive and<br />

negative) under uni<str<strong>on</strong>g>for</str<strong>on</strong>g>m loading<br />

Pa (the design wind load)<br />

Structural proof loading 1.5 x<br />

Uni<str<strong>on</strong>g>for</str<strong>on</strong>g>m loading<br />

Water resistance under a pressure<br />

of x Pa<br />

Air leakage through specimen<br />

under a pressure difference of<br />

75Pa<br />

(1) For fixed glazing y = 0,306 l/s per m 2 .<br />

TABLE 8.1: <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> Test Per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance Criteria<br />

Class Designati<strong>on</strong><br />

A0 A1 A2 A3 A4<br />

600Pa 1000Pa 1500Pa 2000Pa 2500Pa<br />

900Pa 1500Pa 2250Pa 3000Pa 3750Pa No failure allowed<br />

x=120Pa x=200Pa x=300Pa x=400Pa x=500Pa<br />

y = 2 y = 2 y = 2 y = 2 y = 2<br />

(2) For spans greater than 4115mm, but less than 12,2m deflecti<strong>on</strong> shall be limited to 1/240 th of span plus 6mm.<br />

Page 111<br />

Requirement<br />

Maximum deflecti<strong>on</strong><br />

1/175 of span (2)<br />

No leakage when<br />

subjected to a flow of<br />

0.05 l/s/m 2 )<br />

Not more than y l/s per<br />

m 2


8.4 MANUFACTURE<br />

8.4.1 Materials and workmanship shall be free from any characteristics of defects, which may render the finished<br />

product unsuitable <str<strong>on</strong>g>for</str<strong>on</strong>g> the intended purpose.<br />

8.4.2 Skylights shall be fabricated to neat and weather tight c<strong>on</strong>structi<strong>on</strong> and with secure and well fitted joints.<br />

8.4.3 Hardware and fittings shall be removable without removing the frames from the structure and must be compatible<br />

with the adjoining materials.<br />

8.4.4 Sliding members shall be c<strong>on</strong>structed so that no metal to metal sliding c<strong>on</strong>tact occurs.<br />

8.5 FITTINGS<br />

8.5.1 Weathersealing shall be of materials that are compatible with aluminium and shall be such that any degradati<strong>on</strong>,<br />

shrinking, warping or adherence to sliding or closing surfaces does not impair the per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance of the installati<strong>on</strong>.<br />

8.5.2 Glazing beads, gaskets and glazing compounds shall be of materials that are compatible with the aluminium<br />

finishes, the glass and other glazing materials. Putty glazing is not permitted.<br />

8.5.3 Hardware, bearing devices and fittings in general must be made of materials resistant to atmospheric corrosi<strong>on</strong> and<br />

shall be of a design so as to be accessible <str<strong>on</strong>g>for</str<strong>on</strong>g> adjustment repair and replacement after the windows etc. have been<br />

installed.<br />

8.5.4 Fastenings shall be of material which is compatible with aluminium and aluminium finishes.<br />

8.6 INSTALLATION<br />

8.6.1 The Skylights and Space enclosures shall be installed such that they are securely anchored, sealed and undamaged<br />

and meet in all respects with the per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance criteria as set out in item 3.<br />

8.6.2 The glazing material shall be installed strictly in accordance with the glazing material manufacturer's<br />

specificati<strong>on</strong>s.<br />

8.6.3 The frames and glazing material are to be installed in accordance with the main c<strong>on</strong>tractor's building programme<br />

and the exposed aluminium is to be protected by means of low tack adhesive tape against mortar droppings and<br />

other n<strong>on</strong>-mechanical damage.<br />

8.6.4 Inspecti<strong>on</strong> of installed frames and glazing material shall, am<strong>on</strong>gst others, be carried out according to the following<br />

criteria:<br />

8.6.4.1 SCRATCHES AND BLEMISHES<br />

This inspecti<strong>on</strong> will be viewed at a distance of three metres under normal lightin lighting g c<strong>on</strong>diti<strong>on</strong>s, i.e. reas<strong>on</strong>able lighting<br />

c<strong>on</strong>diti<strong>on</strong>s under which the project is normally viewed.<br />

8.6.4.1.1 FRAMING<br />

Scratches in framing are defined as being a mark <strong>on</strong> the surface which penetrates the powder coated, anodised or painted<br />

surface, thereby exposing the base material.<br />

If visible when viewed from a distance of three metres under normal lighting c<strong>on</strong>diti<strong>on</strong>s, the product may be rejected.<br />

Flaws/Stains, paint runs or other indicati<strong>on</strong> that mars the aesthetic appearance of aluminium which is visib visible when viewed<br />

from a distance of three metres under normal lighting c<strong>on</strong>diti<strong>on</strong>s may cause the product to be rejected.<br />

8.6.4.1.2 GLAZING MATERIAL<br />

Scratches in the glazing material which will be acceptable are those which are under 75mm l<strong>on</strong>g in any area, and those<br />

which are l<strong>on</strong>ger than 75mm which do not encroach more than 75mm from the edge.<br />

In laminated glass interlayer bubbles larger than 1.5mm diameter will not be allowed. Larger clusters or close spacing of<br />

smaller bubbles will also be disallowed.<br />

Page 112


8.7 QUALITY ASSURANCE<br />

8.7.1 Prior commencement of any site work:<br />

8.7.1.1 Obtain a copy of the appropriate <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> Per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance Test Certificate from the Manufacturer/Specialist<br />

C<strong>on</strong>tractor supplying/installing the Architectural Aluminium Products.<br />

8.7.1.2 Obtain a full set of detailed manufacturing drawings/manuals relevant to the installed products.<br />

8.7.2 UPON COMPLETION OF ALL LL SITE WORK (AT HAN HANDOVER)<br />

8.7.2.1 OBTAIN THE FOLLOWING CERTIFICATES:<br />

a) <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> Per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance Test Certificate<br />

b) <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> or SAGGA Glass & Glazing Certificate<br />

c) <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> Surface Finishing Certificate<br />

d) <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> or SASA Skylight System Certificate (when applicable)<br />

e) <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> Architectural Product Certificate (in the event drawings are not provided)<br />

8.7.3 WARRANTIES<br />

8.7.3.1 POWDER COATED SURFAC SURFACE FINISH<br />

Obtain a warranty, from an approved powder coater, that the powder manufacturer guarantees his product <str<strong>on</strong>g>for</str<strong>on</strong>g> a minimum<br />

of 15 (fifteen) years.<br />

8.7.3.2 GLASS<br />

Obtain a warranty, from the manufacturer of the laminated safety glass and/or the hermetically seal sealed glazing units,<br />

against delaminati<strong>on</strong> and colour degradati<strong>on</strong> of the products <str<strong>on</strong>g>for</str<strong>on</strong>g> a period of not less than 5 (five) years.<br />

8.8 DESIGN GUIDELINE FOR ALUMINIUM FRAMED SKYLIGHTS AND SLOPED GLAZING<br />

Sloped glazing includes the fenestrati<strong>on</strong> of skylights and space enclosures which are tilted more than 15º from the<br />

vertical. Sloped glazing systems should be inc<strong>line</strong>d a minimum of 15º from the horiz<strong>on</strong>tal to insure proper c<strong>on</strong>densati<strong>on</strong><br />

and water infiltrati<strong>on</strong> c<strong>on</strong>trol and to minimize accumulati<strong>on</strong> of dirt above horiz horiz<strong>on</strong>tal <strong>on</strong>tal or purlin framing supports. Systems<br />

inc<strong>line</strong>d less than 15º from the horiz<strong>on</strong>tal may require special c<strong>on</strong>siderati<strong>on</strong>.<br />

All glazing materials are breakable. Failure may not be recognizable<br />

recognizable; breakage is usually sudden, sometimes unnoticed,<br />

and frequently <str<strong>on</strong>g>for</str<strong>on</strong>g> no readily apparent cause. Glass breakage from any cause is a probability functi<strong>on</strong> due to the minute<br />

individual characteristics of apparently identical panes. Sloped glazing installati<strong>on</strong>s may be situated above areas where<br />

people pass or work. This raises safety and liability c<strong>on</strong>siderati<strong>on</strong>s <str<strong>on</strong>g>for</str<strong>on</strong>g> the owner, designer, glazing and skylight<br />

manufacturer. Breakage can result from any of the following causes:<br />

1. Excessive loading: wind, live, snow or c<strong>on</strong>centrated<br />

2. Impact loads from falling (i.e. hailst<strong>on</strong>es) or wind borne (i.e. roof gravel) objects<br />

3. Thermal effects generated within the glazing material itself (i.e. heat heat-absorbing absorbing tinted, reflective) due to inc<strong>line</strong>d<br />

positi<strong>on</strong><br />

4. Inadequately designed glazing system which does not provide proper support, clearance an and drainage<br />

5. Edge or surface damage to glazing material during manufacturing, handling, installati<strong>on</strong> or maintenance<br />

6. Vandalism or destructive accidents<br />

7. Effects of l<strong>on</strong>g-term weathering<br />

C<strong>on</strong>densati<strong>on</strong>, while generally not a factor affecting human safety, is an iimportant<br />

mportant c<strong>on</strong>siderati<strong>on</strong> in the design of overhead<br />

glazing systems. Skylights and space enclosures should be mechanically designed (through the use of a guttered weep<br />

system) to c<strong>on</strong>trol both c<strong>on</strong>densati<strong>on</strong> and water infiltrati<strong>on</strong>.<br />

The use of <str<strong>on</strong>g>architectural</str<strong>on</strong>g> systems tems designed <str<strong>on</strong>g>for</str<strong>on</strong>g> vertical applicati<strong>on</strong> must be discouraged as these systems lack the ability to<br />

drain c<strong>on</strong>densati<strong>on</strong>.<br />

Aluminium is the material of choice <str<strong>on</strong>g>for</str<strong>on</strong>g> skylight c<strong>on</strong>structi<strong>on</strong>. Aluminium is lightweight and can be easily extruded into<br />

the complex shapes s necessary <str<strong>on</strong>g>for</str<strong>on</strong>g> skylight design. However the properties of aluminium must be clearly understood by<br />

the architect and engineer, and not based <strong>on</strong> the “steel manual” way of thinking.<br />

Page 113


For example, the stiffness of aluminium is <strong>on</strong>e <strong>on</strong>e-third that of steel; an aluminium luminium secti<strong>on</strong> can deflect three times that of an<br />

identical steel secti<strong>on</strong> under the same c<strong>on</strong>diti<strong>on</strong>s without permanent de<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>. An engineer or architect may thus<br />

questi<strong>on</strong> the allowable deflecti<strong>on</strong>s of some aluminium aluminium-framed framed structures, when no damage wwhatsoever<br />

will result from<br />

these deflecti<strong>on</strong>s.<br />

The coefficient of thermal expansi<strong>on</strong> is twice that of steel. Steel/Aluminium interfaces must be carefully analysed or<br />

serious c<strong>on</strong>necti<strong>on</strong> problems could result. The effect of thermal movement can also impact <strong>on</strong> various support c<strong>on</strong>diti<strong>on</strong>s.<br />

Aluminium is anodic in nature and the potential <str<strong>on</strong>g>for</str<strong>on</strong>g> galvanic corrosi<strong>on</strong> with dissimilar materials exists. Even though an<br />

interior space is c<strong>on</strong>sidered a dry space, at times of high relative humidity there can be c<strong>on</strong>densati<strong>on</strong> <strong>on</strong> c<strong>on</strong>necti<strong>on</strong>s<br />

adjacent to steel or c<strong>on</strong>crete curbs. Using a proven barrier between dissimilar elements can minimize this problem.<br />

Also the heat of welding will change the temper of the aluminium alloy and reduce the allowable stress within 25mm of<br />

the weld area.<br />

Engineers and designers are advised to c<strong>on</strong>sult the Aluminium Federati<strong>on</strong> of Southern Africa <str<strong>on</strong>g>for</str<strong>on</strong>g> detailed in<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> <strong>on</strong><br />

maximum permissible stresses <str<strong>on</strong>g>for</str<strong>on</strong>g> aluminium alloys.<br />

The vast majority of building designers and engineers' expertise is with st steel eel and c<strong>on</strong>crete structures. The basic<br />

engineering approach taken in the design of aluminium skylights is no different to that of steel or c<strong>on</strong>crete, but many of<br />

the rules of thumb, or typical critical engineering c<strong>on</strong>siderati<strong>on</strong>s, are very different. The f ffollowing<br />

secti<strong>on</strong> addresses<br />

these important differences. As each of these complex and often unique engineering problems cannot be solved within<br />

the scope of this document, the goal is to highlight these c<strong>on</strong>siderati<strong>on</strong>s as an aid to the design community.<br />

a) DEFLECTION<br />

Aluminium and most glazing materials have high strength but relatively low stiffness so deflecti<strong>on</strong> criteria are the usual<br />

c<strong>on</strong>trolling parameters in the selecti<strong>on</strong> of appropriate structural comp<strong>on</strong>ents.<br />

Three items must be c<strong>on</strong>sidered when specifyin specifying deflecti<strong>on</strong> criteria:<br />

1. Excessive deflecti<strong>on</strong> can cause air or water leaks. As members shift or rotate, sealant joints may fail, mechanical<br />

joints may open, insulated glass edge seals may be overstressed, or gutter systems may fail to drain properly.<br />

2. Excessive movement may lead to glazing breakage. Differential deflecti<strong>on</strong> may warp <str<strong>on</strong>g>glazed</str<strong>on</strong>g> panels or cause metal<br />

to c<strong>on</strong>tact the glazing material and induce fracture.<br />

3. Excessive deflecti<strong>on</strong> can detract aesthetically from a structure.<br />

The limiting of deflecti<strong>on</strong> <strong>on</strong> as it pertains to skylights/sloped glazing has three basic c<strong>on</strong>siderati<strong>on</strong>s (See figure 9).<br />

i) In-plane deflecti<strong>on</strong><br />

This deflecti<strong>on</strong> in framing members shall not reduce the glass bite to less than 75% of the design dimensi<strong>on</strong> and<br />

shall not reduce the edge clearance arance to less than 25% of design dimensi<strong>on</strong> or 3mm which ever is the greater. The<br />

calculati<strong>on</strong> referred to in 4.1.2 above will meet this requirement. Careful locati<strong>on</strong> of the setting blocks is essential<br />

in order to prevent glass to metal c<strong>on</strong>tact.<br />

ii) Normal to surface deflecti<strong>on</strong><br />

This deflecti<strong>on</strong> shall be 1/175 th of the span of framing members up to 4115mm. For spans greater than 4115mm,<br />

but less than 12.2m deflecti<strong>on</strong>s shall be limited to 1/240 th of the span of framing members up to 4115mm. For spans greater than 4115mm,<br />

of the span plus 6mm.<br />

Due to the flexibility and breakage resi resistance stance of most plastic and composite panel glazing materials relative<br />

deflecti<strong>on</strong>s as high a 1/100 of the span can be c<strong>on</strong>sidered <str<strong>on</strong>g>for</str<strong>on</strong>g> their supporting structure. C<strong>on</strong>sult knowledgeable<br />

material suppliers and manufacturers.<br />

iii) In plane racking<br />

Racking requires careful investigati<strong>on</strong> in order to assure that glazing does not come in c<strong>on</strong>tact with metal and that<br />

edge engagement is not compromised. Racking occurs when a <str<strong>on</strong>g>for</str<strong>on</strong>g>ce causes a rectangular skylight panel to shift<br />

out of square. Differential support settlemen settlement t or deflecti<strong>on</strong> and lateral loads cause racking.<br />

As many skylight geometries lack c<strong>on</strong>venti<strong>on</strong>al diag<strong>on</strong>al bracing the structure may not have the stiffness to resist racking.<br />

There is little doubt that fixing glazing panels do help stiffen a structure and rreduce<br />

educe the effects of racking. However,<br />

quantifying this benefit has proven extremely difficult.<br />

Page 114


Creep and compressi<strong>on</strong> set in gaskets, fabricati<strong>on</strong> and installati<strong>on</strong> tolerances, as well as thermal movement<br />

c<strong>on</strong>siderati<strong>on</strong>s, necessitate cauti<strong>on</strong>. When rackin racking g is a c<strong>on</strong>cern, c<strong>on</strong>sultati<strong>on</strong> with knowledgeable manufacturers is<br />

recommended.<br />

b) SIDEWAY<br />

Sideway, or story drift, as it relates to aluminium skylights is not specifically addressed by any standards, although it<br />

occurs in most freestanding frames. The objec objectives tives of the proper limitati<strong>on</strong> of excessive sideway are identical to that <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

deflecti<strong>on</strong>; to limit glazing breakage, leakage, and visual impact. Again careful c<strong>on</strong>siderati<strong>on</strong> must be given to both in-<br />

plan and out-of-plane plane sideway, as well as differential sw sway ay caused by varying spacing or end c<strong>on</strong>diti<strong>on</strong>s that may cause<br />

racking or warping of glazing.<br />

Differential drift or sideway of aluminium framed skylights due to lateral load between any two points of a c<strong>on</strong>tinuous<br />

<str<strong>on</strong>g>glazed</str<strong>on</strong>g> frame should be limited to the diffe difference rence in height/160 <str<strong>on</strong>g>for</str<strong>on</strong>g> glass or height/100 <str<strong>on</strong>g>for</str<strong>on</strong>g> n<strong>on</strong> n<strong>on</strong>-glass glazing materials.<br />

The designer should specify the absolute maximum differential drift. Figures 8.1 to 8.5 depict the de<str<strong>on</strong>g>for</str<strong>on</strong>g>med geometries<br />

of several typical skylight <str<strong>on</strong>g>for</str<strong>on</strong>g>ms.<br />

Glazed ends of freestanding nding frames can pose complex detail problems if sideway is large. End details must transfer<br />

transverse load into the system and still allow the primary frame to sway. When improperly designed, differential<br />

sideway will lead to warping and possibly break breakage age in the glazing material. C<strong>on</strong>sultati<strong>on</strong> with knowledgeable<br />

manufacturers may be appropriate <str<strong>on</strong>g>for</str<strong>on</strong>g> details of this nature.<br />

c) CONNECTIONS<br />

When analysing an aluminium skylights, c<strong>on</strong>necti<strong>on</strong>s account <str<strong>on</strong>g>for</str<strong>on</strong>g> the vast majority of engineering documentati<strong>on</strong>.<br />

Assumpti<strong>on</strong>s made in the general frame analysis must be coordinated with the design of the c<strong>on</strong>necti<strong>on</strong>s. As custom<br />

shapes are the rule rather than the excepti<strong>on</strong>, most c<strong>on</strong>necti<strong>on</strong>s must be engineered from scratch.<br />

Moment c<strong>on</strong>necti<strong>on</strong>s are comm<strong>on</strong>place in alumin aluminium ium skylights, yet are often not scrutinized as closely as they should be.<br />

The elastic method <str<strong>on</strong>g>for</str<strong>on</strong>g> design of eccentrically loaded fastener groups is the most widely accepted in aluminium<br />

c<strong>on</strong>structi<strong>on</strong>.<br />

The development of high-strength strength steel bolts has led mmany<br />

any designers to utilize the c<strong>on</strong>cept of fricti<strong>on</strong> c<strong>on</strong>necti<strong>on</strong>s in steel<br />

design. Aluminium would seem to be a natural <str<strong>on</strong>g>for</str<strong>on</strong>g> this technique the coefficient of fricti<strong>on</strong> is quite high. However,<br />

skylight comp<strong>on</strong>ents are typically pre-finished, finished, there<str<strong>on</strong>g>for</str<strong>on</strong>g>e this justi justificati<strong>on</strong> becomes suspect.<br />

Furthermore, aluminium and stainless steel bolts are not capable of the high torques required <str<strong>on</strong>g>for</str<strong>on</strong>g> fricti<strong>on</strong> c<strong>on</strong>necti<strong>on</strong>s.<br />

Fricti<strong>on</strong> c<strong>on</strong>necti<strong>on</strong>s should not be counted up<strong>on</strong> in the design of aluminium framed skylights.<br />

Figure 8.1: : Deflecti<strong>on</strong> C<strong>on</strong>siderati<strong>on</strong>s of a Single Slope Skylight<br />

Page 115


Figure 8.2: : Ridge Skylight De<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> under Gravity Loads<br />

Figure 8.3: : Lean Lean-to Skylight De<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> under Wind Load<br />

Figure 8.4 8.4a: Gable Frame De<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> under Wind Load<br />

Figure 8.4b: b: Gable Frame De<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> under Gravity Loads<br />

Page 116


d) SUPPORTS<br />

Figure 8.5a: a: Arched Frame De<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> under Gravity Loads<br />

Figure 8.5b: b: Arched Frame De<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> under Wind Loads<br />

Support c<strong>on</strong>diti<strong>on</strong>s and other interfaces between aluminium and adjacent c<strong>on</strong>structi<strong>on</strong> can also be complex. Not <strong>on</strong>ly<br />

should thermal movement, deflecti<strong>on</strong>, water infiltrati<strong>on</strong> and electrolytic corrosi<strong>on</strong> effects be c<strong>on</strong>sidered, but the transfer<br />

of loads from <strong>on</strong>e structural element to another must be accomplished. Care must be exer exercised in coordinating the<br />

structural requirements and assumpti<strong>on</strong>s of the supporting structure with those of the skylight.<br />

All skylights exert some degree of both vertical and horiz<strong>on</strong>tal <str<strong>on</strong>g>for</str<strong>on</strong>g>ces <strong>on</strong> the supporting structure. C<strong>on</strong>siderable<br />

horiz<strong>on</strong>tal <str<strong>on</strong>g>for</str<strong>on</strong>g>ces <strong>on</strong> n the supporting structure. Gravity loads al<strong>on</strong>e can generate c<strong>on</strong>siderable horiz<strong>on</strong>tal thrust.<br />

Improperly designed supports can lead to excessive skylight deflecti<strong>on</strong> and other associated complicati<strong>on</strong>s. As a general<br />

<str<strong>on</strong>g>guide</str<strong>on</strong>g><strong>line</strong> horiz<strong>on</strong>tal deflecti<strong>on</strong> of skylight ght supporting curbs should be limited to 1/750 of the curb length or 12mm unless<br />

curb flexibility is c<strong>on</strong>sidered in the analysis of the skylight frame.<br />

The skylight manufacturer is resp<strong>on</strong>sible <str<strong>on</strong>g>for</str<strong>on</strong>g> the structure integrity of the skylight system and should fully describe all<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g>ces exerted <strong>on</strong> the supporting structure. Resp<strong>on</strong>sibility <str<strong>on</strong>g>for</str<strong>on</strong>g> the design of the structure supporting the skylight is that o oof<br />

the building’s structural engineer. Improved communicati<strong>on</strong> between engineers, designers and manufacturers is the key<br />

to eliminating problems associate with supporting structure. Typically, the supporting structure is c<strong>on</strong>structed of steel,<br />

c<strong>on</strong>crete or wood. All three of these materials can be engineered to properly support a skylight; however, several<br />

practical c<strong>on</strong>cerns warrant review.<br />

i) Steel<br />

Erecti<strong>on</strong> tolerances <str<strong>on</strong>g>for</str<strong>on</strong>g> steel are comm<strong>on</strong>ly unacceptable <str<strong>on</strong>g>for</str<strong>on</strong>g> pre pre-fabricated fabricated skylights. Dimensi<strong>on</strong>s must be either<br />

guaranteed or adequate provisi<strong>on</strong>s made <str<strong>on</strong>g>for</str<strong>on</strong>g> adjustment within the skylight system. Pre Pre-drilled holes and shop-<br />

welded support brackets must be detailed with cauti<strong>on</strong> as their in in-place place locati<strong>on</strong> is often suspect. Access to<br />

supporting steel can also be complicated by prior coordinati<strong>on</strong> between trades. Careful planning with input from<br />

the skylight manufacturer is recommended.<br />

ecommended.<br />

ii) C<strong>on</strong>crete<br />

As with steel, tolerance and accessibility are critical c<strong>on</strong>cerns. Cast Cast-in-place place anchor bolts are often located<br />

improperly. Zinc or cadmium plated steel expansi<strong>on</strong> anchors are usually preferred. Minimum spacing and edge<br />

distances <str<strong>on</strong>g>for</str<strong>on</strong>g> expansi<strong>on</strong> anchors in c<strong>on</strong>crete often dictate a curb width of at least 200mm.<br />

Page 117


iii) Wood<br />

Wood is a popular choice <str<strong>on</strong>g>for</str<strong>on</strong>g> skylights substructure, but must be engineered with cauti<strong>on</strong>. Wood is very flexible.<br />

Its stiffness is <strong>on</strong>e-tenth tenth that of aluminium. Curb defl deflecti<strong>on</strong> ecti<strong>on</strong> must be closely scrutinized. Lag bolts in wood have<br />

limited holding power compared to steel or c<strong>on</strong>crete. Anchor design is typically governed by the strength of the<br />

wood, not the fastener, and in many instances leads to an excessive number of ancho anchors. rs.<br />

i) LATERAL BRACING OF BEAMS<br />

Lateral bucking is a failure mode comm<strong>on</strong>ly overlooked in the design of aluminium skylights.<br />

j) SLENDERNESS AND STABILITY RATIO<br />

C<strong>on</strong>tact the Aluminium Federati<strong>on</strong> of Southern Africa <str<strong>on</strong>g>for</str<strong>on</strong>g> in<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> regarding Standards and Stability ratios. This<br />

failure mode can be prevented by adequate lateral bracing of the compressi<strong>on</strong> flange. Of course, cross bars or purlins,<br />

provide this critical functi<strong>on</strong> under typical live and load c<strong>on</strong>diti<strong>on</strong>s. However, under negative wind load cases, the<br />

compressi<strong>on</strong> flange may be partially brace or un un-braced. braced. For adequate crossbar bracing of the compressi<strong>on</strong> flange in this<br />

mode, the crossbar depth must be at least 50% of the main rafter bar’s depth.<br />

8.9 PROPERTIES FOR SPECIALIZED PLASTIC GLAZING MATE MATERIALS<br />

Cast Acrylic Sheet<br />

Clear<br />

Br<strong>on</strong>ze<br />

Opal<br />

Polycarb<strong>on</strong>ate Sheet<br />

Clear<br />

Br<strong>on</strong>ze<br />

Opal<br />

Table 8.2: Shading Coefficients* <str<strong>on</strong>g>for</str<strong>on</strong>g> Specialised Plastic Glazing Materials<br />

Multiwalled Polycarb<strong>on</strong>ate Sheet 6mm<br />

Table 8.3: Acoustical Insulati<strong>on</strong> Solid<br />

Table 8.4Heat Heat Loss Properties<br />

Polycarb<strong>on</strong>ate * Sheet DIN 52210<br />

Solid Polycarb<strong>on</strong>ate * Sheets<br />

Thickness<br />

75 Rw<br />

Thickness<br />

U-Value<br />

in mm<br />

(db)<br />

in mm<br />

W/m<br />

4<br />

27 4<br />

5<br />

28 5<br />

6<br />

29 6<br />

8<br />

31 8<br />

9.5<br />

32 9.5<br />

12<br />

34 12<br />

* Due to the vast range of available product the specifier is advised to c<strong>on</strong>sult with manufacturers/suppliers to<br />

obtain/c<strong>on</strong>firm relevant data.<br />

2 K<br />

5,33<br />

5,21<br />

5,09<br />

4,84<br />

4,69<br />

4,35<br />

manufacturers/suppliers to<br />

Page 118<br />

1,0<br />

0,78<br />

0,47<br />

0,97<br />

0,75<br />

0,67<br />

Clear<br />

0,99<br />

10mm<br />

0,98<br />

Br<strong>on</strong>ze<br />

0,63<br />

0,63<br />

Grey<br />

0,58<br />

0,58<br />

Blue<br />

0,81<br />

0,76<br />

Green<br />

0,59<br />

0,59<br />

Opal<br />

0,87<br />

0,82<br />

* Due to the vast range of available product the specifier is advised to c<strong>on</strong>sult with manufacturers/suppliers to<br />

obtain/c<strong>on</strong>firm relevant data.


Page 119


Page 120


CHAPTER IX<br />

BALUSTRADES<br />

Page 121


9. BALUSTRADES<br />

9.1 DESIGN CRITERIA FOR BALUSTRADES<br />

This chapter <strong>on</strong>ly applies to balustrades and railings that guard a drop of more than 750m.<br />

Balustrade <str<strong>on</strong>g>for</str<strong>on</strong>g> vehicle traffic is explicitly excluded as this falls outside the scope of this publicati<strong>on</strong>.<br />

The Nati<strong>on</strong>al Building Regulati<strong>on</strong>s menti<strong>on</strong>ed above refers to (Code of Practice <str<strong>on</strong>g>for</str<strong>on</strong>g> the applicati<strong>on</strong> of the Nati<strong>on</strong>al<br />

Building Regulati<strong>on</strong>s). It is this standard which invokes the SANS 10160. Code of Practice <str<strong>on</strong>g>for</str<strong>on</strong>g> the General Procedures<br />

and Loadings to be Adopted in the Design of Buildings) and SANS 10137 (Code of Practice <str<strong>on</strong>g>for</str<strong>on</strong>g> glazing materials in<br />

buildings).<br />

The design of barrier adopted should be such as to minimize the risk of pers<strong>on</strong>s falling, rolling, sliding or slipping<br />

through gaps in the barrier. Barriers should be designed so that the widest gap in the barrier does not permit a sphere of<br />

diameter 100mm to pass through, rough, making due allowance <str<strong>on</strong>g>for</str<strong>on</strong>g> deflecti<strong>on</strong> under load.<br />

The prescribed loadings are as follows:<br />

9.2 RESIDENTIAL APPLICATION OTHER THAN ROOFS<br />

For Balustrade guarding stairs, landings, gangways and balc<strong>on</strong>ies the following loads are to be taken into c<strong>on</strong>sid c<strong>on</strong>siderati<strong>on</strong>.<br />

a) A c<strong>on</strong>centrated <str<strong>on</strong>g>for</str<strong>on</strong>g>ce of 1 kN acting in any directi<strong>on</strong> between vertically downward and horiz<strong>on</strong>tally inward or<br />

outward, applied over a 100 mm length <str<strong>on</strong>g>for</str<strong>on</strong>g> beam elements and over a 100mm x 100mm area <str<strong>on</strong>g>for</str<strong>on</strong>g> plate elements<br />

and acting at the top or any other r positi<strong>on</strong> of the guard, whichever is the most severe; or<br />

b) A distributed horiz<strong>on</strong>tal <str<strong>on</strong>g>for</str<strong>on</strong>g>ce of 500 N/m applied at the top of the guard and acting outward, except that, where<br />

the guard may be exposed to crowd surge loads from either side, the <str<strong>on</strong>g>for</str<strong>on</strong>g>ce must be taken as liable to act inward or<br />

outward.<br />

9.3 PLACES OF PUBLIC IC ASSEMBLY OTHER THAN GRANDSTANDS AND TO ROOFS TO WHICH<br />

PUBLIC HAS ACCESS<br />

For Balustrade guarding stairs, landings, gangways and balc<strong>on</strong>ies the following loads are to be taken into c<strong>on</strong>siderati<strong>on</strong>:<br />

a. A c<strong>on</strong>centrated <str<strong>on</strong>g>for</str<strong>on</strong>g>ce of 1 kN acting in any directi<strong>on</strong> between vertically downward and horiz<strong>on</strong>tally inward or<br />

outward, applied over a 100mm length <str<strong>on</strong>g>for</str<strong>on</strong>g> beam elements and over a 100mm x 100mm area <str<strong>on</strong>g>for</str<strong>on</strong>g> plate elements and<br />

acting at the top or any other positi<strong>on</strong> of the guard, whichever is the most severe; or<br />

b. A distributed tributed horiz<strong>on</strong>tal <str<strong>on</strong>g>for</str<strong>on</strong>g>ce of 1.5 kN/m applied at the top of the guard and acting outward, except that, where<br />

the guard may be exposed to crowd surge loads from either side, the <str<strong>on</strong>g>for</str<strong>on</strong>g>ce must be taken as liable to act inward or<br />

outward.<br />

9.4 GRANDSTANDS<br />

For Balustrade guarding stairs landing gangways and balc<strong>on</strong>ies the following loads are to be taken into c<strong>on</strong>siderati<strong>on</strong>:<br />

a) A c<strong>on</strong>centrated <str<strong>on</strong>g>for</str<strong>on</strong>g>ce of 1 kN acting in any directi<strong>on</strong> between vertically downward and horiz<strong>on</strong>tally inward or<br />

outward, applied over a 100mm len length gth <str<strong>on</strong>g>for</str<strong>on</strong>g> beam elements and over a 100mm x 100mm area <str<strong>on</strong>g>for</str<strong>on</strong>g> plate elements and<br />

acting at the top or any other positi<strong>on</strong> of the guard, whichever is the most severe; or<br />

b) A distributed horiz<strong>on</strong>tal <str<strong>on</strong>g>for</str<strong>on</strong>g>ce of 3 kN/m applied at the top of the guard and acting outward, except that, where the<br />

guard may be exposed to crowd surge loads from either side, the <str<strong>on</strong>g>for</str<strong>on</strong>g>ce must be taken as liable to act inward or<br />

outward.<br />

9.5 INDUSTRIAL BUILDINGS<br />

For catwalks and similar access areas where crowding is unlikely the following load is to be taken into c<strong>on</strong>siderati<strong>on</strong>.<br />

a) A c<strong>on</strong>centrated <str<strong>on</strong>g>for</str<strong>on</strong>g>ce of 1 kN acting in any directi<strong>on</strong> between vertically downward and horiz<strong>on</strong>tally inward or<br />

outward, applied over a 100mm length <str<strong>on</strong>g>for</str<strong>on</strong>g> beam elements and over a 100mm x 10 100mm mm area <str<strong>on</strong>g>for</str<strong>on</strong>g> plate elements and<br />

acting at the top or any other positi<strong>on</strong> of the guard, whichever is the most severe.<br />

Page 122


9.6 PRESCRIBED HEIGHT (SANS 10400 – Part D)<br />

a) All balustrades except <str<strong>on</strong>g>for</str<strong>on</strong>g> swimming pools and swimming baths shall have a height of not less than 1 metre and<br />

shall not have any openings that permit the passage of a 100mm diameter ball.<br />

b) All ll balustrades <str<strong>on</strong>g>for</str<strong>on</strong>g> swimming pools and swimming baths shall have a height of not less than 1.2 metre measured<br />

from ground level and shall not c<strong>on</strong>tain any opening, which will permit the passage of a 100mm-diameter ball.<br />

The c<strong>on</strong>structi<strong>on</strong>al requirements of such fence or gate shall comply with SANS 1390.<br />

9.7 ALLOWABLE DEFLECTION<br />

Maximum allowable deflecti<strong>on</strong> is 1/125 th of height or span or 25mm whichever is the lesser.<br />

9.8 BALUSTRADE WITH VERTICAL MEMBERS<br />

By nature this Balustrade has gaps between vertical bars, horiz<strong>on</strong>tal bars and between the sec<strong>on</strong>dary horiz<strong>on</strong>tal rail<br />

(bottom rail) and the floor or stair tread or upstand.<br />

No such gaps may be larger than 100mm in every case to prevent climbing thr through ough and/or feet being caught. The test is<br />

that a solid sphere of 100mm diameter cannot be pushed through the gaps described above.<br />

The sec<strong>on</strong>dary rail must be capable of accepting a load of 1 kN in a downward directi<strong>on</strong> to avoid damage by pers<strong>on</strong><br />

standing <strong>on</strong> this sec<strong>on</strong>dary rail. The systems used <str<strong>on</strong>g>for</str<strong>on</strong>g> the manufacture of this type of Balustrade are usually of proprietary<br />

designs and the specifier is to c<strong>on</strong>sult with the appropriate manufacturer <str<strong>on</strong>g>for</str<strong>on</strong>g> relevant c<strong>on</strong>structi<strong>on</strong> and design details.<br />

9.9 BALUSTRADE WITH SAFETY ETY GLAZING MATERIALS<br />

The design and installati<strong>on</strong> of a balustrade using safety glass must be approved by a Competent Pers<strong>on</strong> (Structures) or<br />

(Glazing).<br />

It is a requirement of SANS 10160 that the safety glass of a balustrade within 500mm of the floor level must withstand an<br />

impact of 400J delivered by means of a 250mm diameter bag filled with dry sand to a mass of 30kg.<br />

Page 123


Page 124


CHAPTER X<br />

QUALITY ASSURANCE<br />

INSPECTION GUIDELINES<br />

AND<br />

CERTIFICATION<br />

Page 125


10. GUIDE FOR ACCURACY OF INSTALLED ARCHITECTURAL ALUMINIUM PRODUCTS<br />

This <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> Guide will assist Architects, Specifiers, Manufacturers, Suppliers and Installers of Architectural<br />

Aluminium and Glazing Products in determining the accuracy of manufacturing and installati<strong>on</strong> dimensi<strong>on</strong>s of<br />

Architectural Aluminium and Glazing Products.<br />

10.1 INHERENT DIMENSIONAL INACCURACIES<br />

Dimensi<strong>on</strong>al accuracies of other building materials are covered in SA SANS 10155-1980 1980 as amended. These inheren inherent<br />

dimensi<strong>on</strong>al inaccuracies are due to the nature of the materials involved and include the following:<br />

10.1.1 MOVEMENT OF FOUNDATIONS<br />

Due to the nature of the products used in Architectural Aluminium and Glass Products, expansi<strong>on</strong> joints which allow<br />

parts of buildings to move independently from <strong>on</strong>e and other can cause the comp<strong>on</strong>ents to de<str<strong>on</strong>g>for</str<strong>on</strong>g>m permanently and/or<br />

break. It is recommended that expansi<strong>on</strong> joints are located away from openings incorporating Architectural Aluminium<br />

and Glazing Products <str<strong>on</strong>g>for</str<strong>on</strong>g> this reas<strong>on</strong>.<br />

The <strong>on</strong>us rests with the Architect/C<strong>on</strong>sulting Engineer/ Specifier to specify the expected movements in the expansi<strong>on</strong><br />

joints at time of tender.<br />

10.1.2 DEFLECTION UNDER LOAD<br />

The design of Architectural Aluminium Products such as Curtain Walling, WWindow<br />

indow Walling, Staircase Screens and<br />

Shopfr<strong>on</strong>ts are very susceptible to damage due to the deflecti<strong>on</strong>s of the structure to which the Architectural Aluminium<br />

and Glazing Products are fixed. At no time is it permitted that loads imposed by the deflecti<strong>on</strong>s of the structure are<br />

supported by the installed Architectural Aluminium and Glazing Products.<br />

Settlement, creep, occupati<strong>on</strong> load deflecti<strong>on</strong>s and any other type of deflecti<strong>on</strong> movements are to be specified by<br />

Architect/C<strong>on</strong>sulting Engineer/Specifier at time of tender.<br />

10.1.3 CHANGES IN DIMENSIONS CAUSED BY VARIATIONS IN TEMPERATURE<br />

In additi<strong>on</strong> to requirements of paragraph 10.1.1, 10.1.2 and 10.2 the manufacturer of Architectural Aluminium Products<br />

must take cognisance during the design of the Products of the changes in dimensi<strong>on</strong>s caused by variati<strong>on</strong>s in temperature.<br />

The range of the expected changes of temperature is to be specified by the Architects/C<strong>on</strong>sulting Engineer/Specifier at<br />

time of tender.<br />

TABLE 10.1: Illustrates llustrates the changes in dimensi<strong>on</strong>s caused by a variati<strong>on</strong> of 65 65°C (-10°C C to + 55 55°C) <str<strong>on</strong>g>for</str<strong>on</strong>g> various building<br />

materials.<br />

Building<br />

Material<br />

Coefficient of Linearr<br />

Expansi<strong>on</strong><br />

/°C<br />

Changes in dimensi<strong>on</strong>s (in mm) caused by variati<strong>on</strong>s in temperature<br />

over a range of 65° centigrade <str<strong>on</strong>g>for</str<strong>on</strong>g> a distance of<br />

1m 2m 3m 4m 5m 6m<br />

C<strong>on</strong>crete 15 x 10 -6 0.98 1.95 2.93 3.90 4.88 5.85<br />

Steel 12 x 10 -6 0.78 1.56 2.34 3.12 3.90 4.68<br />

Aluminium 23 x 10 -6 1.50 2.99 4.49 4.98 7.48 8.97<br />

Glass 9 x 10 -6 0.59 1.19 1.76 2.34 2.93 3.51<br />

PVC 50 x 10 -6 3.25 6.50 9.75 13.00 16.30 19.50<br />

10.2 INDUSED DIMENSIONAL INACCURACIES<br />

Induced Dimensi<strong>on</strong>al Inaccuracies are brought about by the actual work d<strong>on</strong>e during manufacture and installati<strong>on</strong> of<br />

Architectural Aluminium Products and may arise in the determinati<strong>on</strong> of the following: following:-<br />

Page 126


10.2.1 MANUFACTURED DIMENSIONS (ACCURACY OF FABRICATION)<br />

OVERALL FRAME DIMENSIONS<br />

TRANSOM DIMENSIONS (Positi<strong>on</strong>ing within<br />

framing)<br />

MULLION DIMENSIONS (Positi<strong>on</strong>ing within<br />

framing)<br />

10.2.2 INSTALLED DIMENSIONS<br />

TABLE 10.2: INDIVIDUAL FRAMES AND VENTS FRAME DOOR/VENT<br />

i. Fitting of moving comp<strong>on</strong>ents (Opening secti<strong>on</strong>s i.e. doors and vents into<br />

frames)<br />

±1.5mm ± 1.5mm<br />

ii. Level (subject to limit between adjacent units - see 3.3) ± 5mm per bay or per <strong>line</strong>ar metre<br />

iii. Plumb<br />

± 3mm per metre height and<br />

maximum of 10mm per storey height<br />

iv. Positi<strong>on</strong> of fare of frame relative to grid<strong>line</strong> or reference surface ± 10mm<br />

TABLE 10.3: CURTAIN WALL AND STRIP WINDOW COMPONENTS FRAME DOOR/VENT<br />

i. Fitting of moving comp<strong>on</strong>ents (Opening secti<strong>on</strong>s i.e. doors and vents into<br />

frames)<br />

± 1.5mm ± 1.5mm<br />

ii. Level of horiz<strong>on</strong>tal member or edge (subject to limit between adjacent units ± 3mm per <strong>line</strong>ar metre or maximum<br />

- see 3.3)<br />

10mm per structural bay<br />

iii. Plumb of vertical member or edge or plain of glazing ± 3mm per metre height and<br />

maximum of 10mm per storey height<br />

iv. Positi<strong>on</strong> of centre <strong>line</strong> of any vertical member relative to grid<strong>line</strong> or<br />

reference surface<br />

± 10mm<br />

v. Positi<strong>on</strong> of centre <strong>line</strong> of any horiz<strong>on</strong>tal member relative to benchmark or<br />

reference surface<br />

± 10mm<br />

Page 127


10.2.2.1 ACCURACY OF JUNCTION<br />

JUNCTIONS BETWEEN COMPONENTS<br />

a) Within the length of any joint (including in in-<strong>line</strong> <strong>line</strong> c<strong>on</strong>tinuati<strong>on</strong>s across transverse joints). The greatest width shall<br />

not exceed the least width by more than 15% or 2.5mm which ever is greater. Any variati<strong>on</strong> to be evenly<br />

distributed with no sudden changes.<br />

b) The offset in elevati<strong>on</strong> between nominally in in-<strong>line</strong> <strong>line</strong> edges across a vertical or horiz<strong>on</strong>tal transverse joint shall not be<br />

more than 15% or 2.5mm which ever is greater of the width of the transverse joint.<br />

c) The offset in plan or secti<strong>on</strong> between flat surfaces of adjacent panels acro across ss any joint shall not be more than 15%<br />

or 2.5mm which ever is greater of the width of the joint.<br />

10.2.2.2 REVOLVING DOORS<br />

Inner surface of cheeks to be correct to ± 3mm measured from pivot centre<br />

of revolving door.<br />

10.3 GENERAL<br />

10.3.1 The selecti<strong>on</strong> of grade of accuracy <str<strong>on</strong>g>for</str<strong>on</strong>g> Architectural Aluminium Products as laid down in this <str<strong>on</strong>g>guide</str<strong>on</strong>g> has been<br />

based <strong>on</strong> "Grade II accuracy" as defined in Table 4 of the South African Code of Practice <str<strong>on</strong>g>for</str<strong>on</strong>g> Accuracy in<br />

Buildings SANS 10155-1980 1980 as amended where applicable.<br />

10.3.2 At the he time of tender the Architect/C<strong>on</strong>sulting Engineer/Specifier must supply the required in<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> noted<br />

under point 2 and all parties must agree the permitted deviati<strong>on</strong>s <str<strong>on</strong>g>for</str<strong>on</strong>g> movement joints.<br />

10.3.3 It t is noted that the manufacturer of Architectural Aluminium Pr Products oducts assumes that the structure to which the<br />

products are fixed are c<strong>on</strong>structed to Grade II accuracy as laid down in SANS 10155 0155-1980 as amended.<br />

10.3.4 Should hould the structure not be build to Grade II accuracy, this is to be indicated at tender stage as the manufacturer<br />

of Architectural Aluminium Products must compensate <str<strong>on</strong>g>for</str<strong>on</strong>g> the deviati<strong>on</strong> as follows:<br />

10.3.4.1 Structures tructures built to Grade III accuracy require the Architectural Aluminium Products to absorb larger dimensi<strong>on</strong>al<br />

inaccuracies.<br />

10.3.4.2 Structures tructures built to Grade I accu accuracy racy require the Architectural Aluminium Products to absorb smaller dimensi<strong>on</strong>al<br />

inaccuracies and require increased amount of c<strong>on</strong>trol during building, manufacture and installati<strong>on</strong>.<br />

Page 128


10.4 QUALITY GUIDE FOR INSTALLED ARCHITECTURAL ALUMINIUM PRODUCTS<br />

<str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> is very aware of the fact that the quality <str<strong>on</strong>g>for</str<strong>on</strong>g> manufactured aluminium products depends <strong>on</strong> the c<strong>on</strong>trol<br />

exercised by the sub-c<strong>on</strong>tractor c<strong>on</strong>tractor over all the activities c<strong>on</strong>cerned, from design through to fabricati<strong>on</strong> and installati<strong>on</strong>.<br />

Although gh the product may have some <str<strong>on</strong>g>for</str<strong>on</strong>g>m of protecti<strong>on</strong> it is still very susceptible to damage <strong>on</strong> site by following trades.<br />

Unless a product is properly c<strong>on</strong>trolled during these various stages, it will not necessarily meet the requirements expected<br />

by the building owner and specifier.<br />

With the above in mind, the purpose of this <str<strong>on</strong>g>guide</str<strong>on</strong>g> is to enable building owners, specifiers, building c<strong>on</strong>tractors and sub-<br />

c<strong>on</strong>tractors to be able to easily establish <strong>on</strong> <strong>on</strong>-site site that the installed products c<strong>on</strong>firm to acceptable industry no norms.<br />

<str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> c<strong>on</strong>siders the following requirements should be addressed when carrying out <strong>on</strong> <strong>on</strong>-site inspecti<strong>on</strong>s of installed<br />

<str<strong>on</strong>g>architectural</str<strong>on</strong>g> aluminium products.<br />

10.4.1 PRE-INSPECTION INSPECTION COMPLIANCE LIST<br />

Specifiers are recommended prior to the installati<strong>on</strong> of produ products cts to ensure that a thorough check is made <str<strong>on</strong>g>for</str<strong>on</strong>g> compliance<br />

with the specificati<strong>on</strong>. This will include inter alia: alia:-<br />

The producti<strong>on</strong> of relevant <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> test certificates.<br />

Proof that anodising complies with SABS specificati<strong>on</strong><br />

specificati<strong>on</strong>s. SANS S 999 in case of external applicati<strong>on</strong> and SANS<br />

1407 in case of internal applicati<strong>on</strong>.<br />

Proof that powder coating finishes comply with a SABS specificati<strong>on</strong>. SA SANS S 1247 in case of internal applicati<strong>on</strong><br />

and SANS 1796 in case of external applicati<strong>on</strong>.<br />

10.4.2 SURFACE FINISHES<br />

i) ANODISING<br />

There are likely to be variati<strong>on</strong>s in shade in both natural and colour anodising when viewed at different angles, this being<br />

due to the metallurgical structure and surface texture of the aluminium. This can be particularly noticeable between<br />

extrusi<strong>on</strong>s s in opposite planes and also between extruded and sheet products.<br />

It is recommended light and dark colour limits should agreed between the specifier, sub sub-c<strong>on</strong>tractor and finishing<br />

company, be<str<strong>on</strong>g>for</str<strong>on</strong>g>e commencement of any producti<strong>on</strong>. Where a thickness of anodi anodising sing is specified specified, the bottom limit should<br />

not be more than 3 micr<strong>on</strong>s less than the thickness specified. It is an accepted norm that products are manufactured from<br />

pre-anodised or pre-painted materials.<br />

ii) ORGANIC (Paint)<br />

Whilst organic finishes are not as pr<strong>on</strong>e to initial colour variati<strong>on</strong>s as anodising, it is also recommended that the same pre-<br />

producti<strong>on</strong> procedures as <str<strong>on</strong>g>for</str<strong>on</strong>g> anodising be carried out and more importantly - that the correct paint specificati<strong>on</strong>s have<br />

been used. Severe chalking or colourati<strong>on</strong> can occur if incorrect paint quality has been used.<br />

iii) STRUCTURAL SEALANT GLAZING<br />

In structural sealant glazing systems, adhesi<strong>on</strong> of the sealant to the substrates is of prime importance. Since the sealant is<br />

the structural ral element which holds the glass place, it must be absolutely mandatory that the adhesi<strong>on</strong> and compatibility<br />

characteristics of all the elements are thoroughly tested, analysed and verified by the sealant manufacturer.<br />

10.4.3 FRAMING<br />

All aluminium framing g should be cleaned prior to inspecti<strong>on</strong>.<br />

DIMENSIONAL TOLERANCES<br />

The width and height dimensi<strong>on</strong>s of products should all be in accordance with the paragraph 10 10.2.<br />

Sashes and ventilators should always be within dimensi<strong>on</strong>al tolerance in order <str<strong>on</strong>g>for</str<strong>on</strong>g> them to operate freely and seal<br />

correctly.<br />

Page 129


NOTE: When finishes around the frame are applied by trades other than the <str<strong>on</strong>g>architectural</str<strong>on</strong>g> aluminium sub sub-c<strong>on</strong>tractor,<br />

extreme care should be taken to avoid distorting the frame in any way.<br />

CONFIGURATIONS<br />

The c<strong>on</strong>figurati<strong>on</strong> of the product should be in accordance with the c<strong>on</strong>tract drawings.<br />

IN-SITU POSITIONS<br />

Products should be installed in accordance with the positi<strong>on</strong>s shown <strong>on</strong> the c<strong>on</strong>tract dr drawings. awings. All in accordance with the<br />

<str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> Guide <str<strong>on</strong>g>for</str<strong>on</strong>g> Accuracy of Installed Architect Architectural Aluminium Products. (Secti<strong>on</strong> 10.1 & 10.2)<br />

SECURING<br />

Products should be securely anchored into the openings provided by the C<strong>on</strong>tractor, all in accordance with <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g><br />

installati<strong>on</strong> standards.<br />

SQUARENESS<br />

Products should be both plumb and square.<br />

CORNERS, , JOINTS AND GLAZING BEADS<br />

Corners, joints and glazing beads should be accurately mitered or notched and there must be no sharp edges or unsightly<br />

gaps when viewed from a distance of 3 metres under <str<strong>on</strong>g>for</str<strong>on</strong>g>mal lighting c<strong>on</strong>diti<strong>on</strong>s (refer “scratches and blemishes blemishes”). All<br />

corners and intersecti<strong>on</strong>s vulnerable to water penetrati<strong>on</strong> should have adequate sealant applied to ensure functi<strong>on</strong>al<br />

per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance.<br />

SCRATCHES AND BLEMISHES<br />

The scratch and blemish inspecti<strong>on</strong> should be viewed at a distance of 3 metres under normal lighting c<strong>on</strong>diti<strong>on</strong>s. Normal<br />

lighting c<strong>on</strong>diti<strong>on</strong>s shall mean "reas<strong>on</strong>able lighting c<strong>on</strong>diti<strong>on</strong>s under which the product is normally viewed".<br />

Scratches in aluminium are defines as being a mark <strong>on</strong> the aluminium surface which penetrates the anodised or painted<br />

surface urface thereby exposing the natural metal. If visible when viewed from a distance of 3 metres under the lighting<br />

c<strong>on</strong>diti<strong>on</strong>s described, the product/s may be rejected.<br />

Blemishes in aluminium are defined as flaws/stains or runs, or any other indicati<strong>on</strong> that mars the aesthetic appearance of<br />

the aluminium. If visible when viewed from a distance of 3 metres under the lighting c<strong>on</strong>diti<strong>on</strong>s described, the product/s<br />

may be rejected.<br />

SEALING<br />

The external perimeter of the frame should be c<strong>on</strong>tinuously sealed against the surrounding structure.<br />

10.4.4 GLASS<br />

CLEANING<br />

All glass should be cleaned prior to inspecti<strong>on</strong>.<br />

CORRECT GLASS<br />

All glass should be installed in accordance with: with:-<br />

Specificati<strong>on</strong>.<br />

Current Nati<strong>on</strong>al Building Regulati<strong>on</strong> requirements.<br />

<str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> <str<strong>on</strong>g>Selecti<strong>on</strong></str<strong>on</strong>g> Guide <str<strong>on</strong>g>for</str<strong>on</strong>g> Safety Glazing Materials.<br />

GLASS INSPECTION<br />

Scratches in glass which are acceptable, are those which are under 75mm l<strong>on</strong>g in any area, and those which are l<strong>on</strong>ger<br />

than 75mm which do not encroach more than 75mm from the edge.<br />

In laminated glass, interlayer bubbles larger than 1.5mm diameter should not be allowed. Large clusters or close spacing<br />

of smaller bubbles should also not be allowed.<br />

NOTE: Some bubbles or edge delaminati<strong>on</strong> may be expected al<strong>on</strong>g exposed edges particularly where these are i iin<br />

c<strong>on</strong>tact with structural silic<strong>on</strong>e sealants. Bubbles and edge delaminati<strong>on</strong> should not penetrate "lost" in the joint<br />

when viewed from a distance of 3 metres under the lighting c<strong>on</strong>diti<strong>on</strong>s described under “scratches and<br />

blemishes”.<br />

Page 130


In metal coated glasses, s, pinholes in the coating area larger than 1.5mm diameter should not be allowed. Large clusters or<br />

close spacing of smaller pinholes should not be allowed in any area which a pers<strong>on</strong> would normally look through.<br />

When spandrel glazing is viewed from a di distance stance of 3 metres against a dark uni<str<strong>on</strong>g>for</str<strong>on</strong>g>m background under lighting<br />

c<strong>on</strong>diti<strong>on</strong>s as described in “scratches and blemishes” and pinholes or scratches are not obvious, these are c<strong>on</strong>sidered<br />

acceptable.<br />

GLASS DISTORTION/COLOUR VARIATIONS<br />

There will always be some me degree of distorti<strong>on</strong> in glass.<br />

Toughened glass will exhibit more distorti<strong>on</strong> than annealed glass. Some gasket systems such as roll roll-in or wedge gaskets<br />

also trend to create more distorti<strong>on</strong> than other gasket systems.<br />

Sealed insulated glass units will distort due to changes in temperature and atmospheric pressure.<br />

Sealed insulated glass units feature a spacer between the two sheets of glass around the perimeter of the unit. This spacer<br />

is set in from the edge to allow <str<strong>on</strong>g>for</str<strong>on</strong>g> the inclusi<strong>on</strong> of a sec<strong>on</strong>dary seal. The spacer is often visible in the rebate and the<br />

primary seal, being soft mastic; it is not always perfectly flush with the spacer inner surface. In additi<strong>on</strong> both the spacer<br />

and the sealant may protrude bey<strong>on</strong>d the sight <strong>line</strong> and, provided the req requirements uirements of secti<strong>on</strong> 10.4.4 are met, this is<br />

c<strong>on</strong>sidered acceptable.<br />

Colour, reflectance and transmissi<strong>on</strong> in functi<strong>on</strong>al glasses may vary slightly and is c<strong>on</strong>sidered acceptable.<br />

10.4.5 GLAZING<br />

The installed glazing materials must in all respects comply with SANS 10400, SANS 10137 and chapters III, IV and V of<br />

the <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> <str<strong>on</strong>g>Selecti<strong>on</strong></str<strong>on</strong>g> Guide <str<strong>on</strong>g>for</str<strong>on</strong>g> Glazed Architectural Products: June 2008.<br />

There should be no glass to metal c<strong>on</strong>tact.<br />

The bite <strong>on</strong> the glazing ing material in the rebate should be sufficient to meet the requirements of the applicati<strong>on</strong>, and no<br />

edges of the glazing material should be visible.<br />

No excess sealant or spillage should be visible when viewed from a distance of 3 metres under the lighting c<strong>on</strong>diti<strong>on</strong>s<br />

described in “scratches and blemishes”.<br />

Sealants used should have no gaps or air pockets and should be visible <strong>on</strong> both sides of the glass when bead <str<strong>on</strong>g>glazed</str<strong>on</strong>g>.<br />

Where translucent structural silic<strong>on</strong>e sealant is used without glazing beads, small air bubbles are acceptable provided<br />

these are not at the exposed surfaces.<br />

Gaskets should be c<strong>on</strong>tinuous and should not be loose or unsightly at corners. A maximum of 2 butt joints per pane is<br />

permissible. If mitered corners are used, <strong>on</strong>ly corner joints are permissible. Gaps in mitered corners and butt joints must<br />

be sealed with an approved sealant and not be visible from a distance of 3 metres under the lighting c<strong>on</strong>diti<strong>on</strong>s described<br />

under “scratches and blemishes”.<br />

10.4.6 FITTINGS AND HARDWARE<br />

All hardware re and fittings to be of a material generally resistant to atmospheric corrosi<strong>on</strong> and should be of adequate<br />

strength and design to serve the purpose of which they are intended and can easily be replaced.<br />

Hardware should be neatly and securely attached to tthe<br />

he window/door with screws or pop rivets which are compatible<br />

which aluminium and which will generally be silver in appearance.<br />

NOTE: Any variati<strong>on</strong>s to the above should be clearly specified at the tender stage.<br />

10.4.7 FUNCTIONAL TEST<br />

All opening sashes and doors should be capable of operating and sealing properly, in accordance with starting and<br />

operating <str<strong>on</strong>g>for</str<strong>on</strong>g>ces described in the <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> test per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance certificate/s and relevant <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> <str<strong>on</strong>g>Selecti<strong>on</strong></str<strong>on</strong>g> Guides.<br />

All locks, catches and any other r fittings should work properly.<br />

Page 131


10.5 QUALITY ASSURANCE<br />

10.5.1 Prior commencement of any site work:<br />

10.5.1 Obtain a copy of the appropriate <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> Per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance Test Certificate from the Manufacturer/Specialist<br />

C<strong>on</strong>tractor supplying/installing the Architectural Aluminium Products.<br />

10.5.1.2 Obtain a full set of detailed manufacturing drawings/manuals relevant to the installed products.<br />

10.5.2 UPON COMPLETION OF ALL LL SITE WORK (AT HAN HANDOVER)<br />

10.5.2.1 OBTAIN THE FOLLOWING CERTIFICATES:<br />

a) <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> Per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance Test Certificate<br />

b) <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> or SAGGA Glass & Glazing Certificate<br />

c) <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> Surface Finishing Certificate<br />

d) <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> or SASA Skylight System Certificate (when applicable)<br />

e) <str<strong>on</strong>g>AAAMSA</str<strong>on</strong>g> Architectural Product Certificate (in the event drawings are not provided)<br />

10.5.3 WARRANTIES<br />

10.5.3.1 POWDER COATED SURFAC SURFACE FINISH<br />

Obtain a warranty, from an approved powder coater, that the powder manufacturer guarantees his product <str<strong>on</strong>g>for</str<strong>on</strong>g> a minimum<br />

of 15 (fifteen) years.<br />

10.5.3.2 GLASS<br />

Obtain a warranty, from the manufacturer of the laminated safety glass and/or the hermetically sealed glazing units,<br />

against delaminati<strong>on</strong> and colour degradati<strong>on</strong> of the products <str<strong>on</strong>g>for</str<strong>on</strong>g> a period of not less than 5 (five) years.<br />

Page 132


Page 133


Page 134


Page 135


Page 136


Page 137


Page 138


CHAPTER XI<br />

ENERGY EFFICIENT FFENESTRATION<br />

ENESTRATION<br />

DEEMED EEMED-TO-SATISFY RULES<br />

Page 139


11.1 INTRODUCTION<br />

Fenestrati<strong>on</strong> is <strong>on</strong>ly <strong>on</strong>e part of many building segments which determine the overall energy use in a building.<br />

The complexity arriving at an overall energy per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance of a building is the prerogative of registered Mechanical and<br />

Electrical Engineers.<br />

However, these qualified Engineers are not in all instances engaged <strong>on</strong> all building c<strong>on</strong>tracts to evalua evaluate the energy<br />

per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance of the building.<br />

It is there<str<strong>on</strong>g>for</str<strong>on</strong>g>e appropriate that deemed-to-satisfy<br />

satisfy rules are implemented to govern the many building segments ensuring<br />

that the overall energy per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance of a building meets the required level. In the event tha that t the deemed deemed-to-satisfy rules<br />

are complied with during the executi<strong>on</strong> of c<strong>on</strong>structi<strong>on</strong> the resulting building will be assumed to meet the energy<br />

per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance criteria.<br />

Only design professi<strong>on</strong>als may deviate from deemed deemed-to-satisfy rules and must give written approval <str<strong>on</strong>g>for</str<strong>on</strong>g> any deviati<strong>on</strong>s.<br />

11.2 DEEMED-TO-SATISFY SATISFY RULES FOR ENERGY EFFICIENT FENESTRATION<br />

These Deemed-to-Satisfy Satisfy rules have been based <strong>on</strong> the rules c<strong>on</strong>tained in the energy efficiency secti<strong>on</strong> of the Building<br />

Code Australia 2007. The following data <str<strong>on</strong>g>for</str<strong>on</strong>g> Australian Climate Z<strong>on</strong>es 6, 5, 3, 6, 1 and 4 have been used as data <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

South African Climate Z<strong>on</strong>es 1, 2, 3, 4, 5 and 6 respectively. Also the following definiti<strong>on</strong>s apply to this secti<strong>on</strong>:<br />

Natural Ventilated Buildings:<br />

Buildings not having envir<strong>on</strong>mentally tally C<strong>on</strong>trolled Heating Air-c<strong>on</strong>diti<strong>on</strong>ing Systems<br />

Mechanically Ventilated Buildings:<br />

Buildings having envir<strong>on</strong>mentally C<strong>on</strong>trolled Heating Air-c<strong>on</strong>diti<strong>on</strong>ing Systems<br />

11.3 CLIMATIC ZONES OF SOUTH AFRICA: DEEMED DEEMED-TO-SATISFY (SANS 204:1)<br />

Page 140


11.4 EXTERNAL VERTICAL RTICAL GLAZING<br />

11.4.1 METHOD 1: FOR NATURAL L VENTILATED BUILDIN BUILDINGS (SANS 204:2)<br />

The glazing in each storey of a sole-occupancy occupancy unit, public space or other occupied space must be assessed separately in<br />

accordance with (a) and (b).<br />

(a) The aggregate c<strong>on</strong>ductance and aggregate solar heat gain of the glazing in each storey of a building must not exceed<br />

the allowances obtained by multiplying the net floor area, measured within the enclosing walls, by<br />

i) <str<strong>on</strong>g>for</str<strong>on</strong>g> c<strong>on</strong>ductance, the c<strong>on</strong>stant CCU;<br />

and<br />

ii) <str<strong>on</strong>g>for</str<strong>on</strong>g> r solar heat gain, the c<strong>on</strong>stant CCSHGC<br />

Obtained from Table below:<br />

TABLE 11.1 1.1 – C<strong>on</strong>stants <str<strong>on</strong>g>for</str<strong>on</strong>g> C<strong>on</strong>ductance and Solar heat gain<br />

Climate z<strong>on</strong>e<br />

1 2 3 4 5 6<br />

CU<br />

1,2 1,4 1,4 1,4 1,4 1,2<br />

0,15 0,12 0,10 0,13 0,11 0,13<br />

CSHGC<br />

(b) The aggregate c<strong>on</strong>ductance and solar heat gain of the glazing in each storey must be calculated by adding the<br />

c<strong>on</strong>ductance and solar heat gain of each glazing element with the following <str<strong>on</strong>g>for</str<strong>on</strong>g>mula:<br />

i) <str<strong>on</strong>g>for</str<strong>on</strong>g> c<strong>on</strong>ductance:<br />

(A1 x U1) + (A2 x U2) ) + (A (A3 x U3) + ………<br />

Where<br />

A1, 2, 3 etc = The area of each glazing element; and<br />

U1, 2, 3 etc = The total system UU-value<br />

value of each glazing element refer table 11.2; and<br />

ii) <str<strong>on</strong>g>for</str<strong>on</strong>g> solar heat gain:<br />

(A1 x SHGC1 x E1) + (A2 x SHGC2 x E2) + (A3 x SHGC3 x E3) + ………<br />

Where<br />

A1, 2, 3 etc = The area of each glazing element; and<br />

SHGC1, 2, 3 etc = The SHGC of the transparent or translucent element in each glazing element refer table<br />

11.2; ; and<br />

E1, 2, 3 etc = The solar exposure factor <str<strong>on</strong>g>for</str<strong>on</strong>g> each glazing element obtained from Table 11.3<br />

TABLE 11.2: WORST CASE WHOLE GLAZING ELEMENT PERFORMANCES VALUES<br />

Thermally broken aluminium or Timber or<br />

Standard Aluminium Framing<br />

Glass descripti<strong>on</strong><br />

uPVC framing<br />

Total U-value value SHGC Total U-value<br />

SHGC<br />

Single clear 7,9<br />

0,81 5,6<br />

0,77<br />

Tinted single 7,9<br />

0,65 5,6<br />

0,61<br />

Clear double (3/6/3) 6,2<br />

0,72 3,8<br />

0,68<br />

1. By referring to “glazing elements: 11.4.4 (b) i) requires Total U-values and SHGCs and is assessed <str<strong>on</strong>g>for</str<strong>on</strong>g> the combined effect of<br />

glass and frames. The measurements of these Total U-values and SHGCs is specified in the <str<strong>on</strong>g>guide</str<strong>on</strong>g><strong>line</strong>s of the Nati<strong>on</strong>al<br />

Fenestrati<strong>on</strong> Rating Council (NFRC), represented in RSA by the South African Fenestrati<strong>on</strong> and Insulati<strong>on</strong> Energy Rating<br />

Associati<strong>on</strong> (SAFIERA).<br />

2. Total U-value value and SHGCs, based <strong>on</strong> the NFRC assessment methods are shown <str<strong>on</strong>g>for</str<strong>on</strong>g> some simple types of glazing elements in the<br />

table below. (Smaller numbers indicate better glazing element per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance). The table gives worst case assessments, which<br />

can be improved by obtaining generic or custom product assessments from suppliers, manufacturers, industry associati<strong>on</strong>s<br />

(including their <strong>on</strong><strong>line</strong> resources) and from ccompetent<br />

ompetent assessors registered with the South African Glass Institute ( (SAGI).<br />

Page 141


P/H<br />

TABLE 11.3: Solar Exposure Factor E - Climate Z<strong>on</strong>e 1<br />

Orientati<strong>on</strong> Sector (refer Figure 11.3)<br />

Refer North North East South South South<br />

Figure 11.2<br />

East<br />

East<br />

West<br />

0,00 0,84 1,08 1,15 0,87 0,61 1,05<br />

0,05 0,71 0,97 1,05 0,78 0,52 0,96<br />

0,10 0,65 0,90 0,99 0,74 0,49 0,91<br />

0,15 0,58 0,83 0,93 0,69 0,47 0,86<br />

0,20 0,52 0,77 0,88 0,65 0,44 0,82<br />

0,25 0,48 0,72 0,84 0,62 0,42 0,78<br />

0,30 0,44 0,68 0,80 0,59 0,40 0,75<br />

0,35 0,40 0,63 0,75 0,57 0,38 0,71<br />

0,40 0,36 0,58 0,71 0,54 0,36 0,67<br />

0,50 0,33 0,51 0,66 0,49 0,33 0,63<br />

0,60 0,30 0,43 0,61 0,45 0,31 0,58<br />

0,70 0,28 0,39 0,56 0,42 0,29 0,54<br />

0,80 0,26 0,35 0,50 0,38 0,26 0,50<br />

0,90 0,24 0,32 0,46 0,35 0,25 0,46<br />

1,00 0,22 0,29 0,42 0,32 0,23 0,42<br />

1,10 0,21 0,26 0,40 0,30 0,23 0,41<br />

1,20 0,20 0,24 0,37 0,29 0,23 0,39<br />

1,30 0,19 0,23 0,34 0,27 0,21 0,36<br />

1,40 0,18 0,22 0,32 0,26 0,19 0,34<br />

1,50 0,17 0,21 0,30 0,25 0,19 0,32<br />

1,60 0,16 0,19 0,28 0,24 0,18 0,31<br />

1,70 0,16 0,19 0,27 0,23 0,18 0,29<br />

1,80 0,15 0,18 0,26 0,22 0,17 0,28<br />

1,90 0,15 0,18 0,25 0,21 0,17 0,27<br />

2,00 0,14 0,17 0,24 0,21 0,17 0,26<br />

P/H<br />

TABLE 11.3: Solar Exposure Factor E - Climate Z<strong>on</strong>e 2<br />

Orientati<strong>on</strong> Sector (refer Figure 11.3)<br />

Refer North North East South South South<br />

Figure 11.2<br />

East<br />

East<br />

West<br />

0,00 0,82 1,09 1,19 0,96 0,68 1,04<br />

0,05 0,69 0,96 1,07 0,85 0,57 0,92<br />

0,10 0,63 0,88 1,01 0,79 0,54 0,86<br />

0,15 0,57 0,82 0,95 0,75 0,51 0,81<br />

0,20 0,51 0,76 0,89 0,70 0,48 0,76<br />

0,25 0,48 0,72 0,85 0,67 0,46 0,72<br />

0,30 0,45 0,67 0,80 0,64 0,43 0,69<br />

0,35 0,42 0,63 0,76 0,60 0,41 0,65<br />

0,40 0,39 0,58 0,71 0,57 0,38 0,62<br />

0,50 0,37 0,52 0,65 0,52 0,36 0,56<br />

0,60 0,35 0,46 0,58 0,47 0,33 0,51<br />

0,70 0,32 0,42 0,54 0,43 0,31 0,47<br />

0,80 0,30 0,37 0,50 0,40 0,28 0,43<br />

0,90 0,28 0,34 0,46 0,37 0,26 0,40<br />

1,00 0,26 0,31 0,42 0,34 0,25 0,37<br />

1,10 0,25 0,28 0,39 0,32 0,23 0,35<br />

1,20 0,24 0,26 0,36 0,30 0,22 0,33<br />

1,30 0,23 0,25 0,34 0,28 0,21 0,31<br />

1,40 0,21 0,23 0,32 0,27 0,20 0,29<br />

1,50 0,21 0,22 0,30 0,25 0,19 0,28<br />

1,60 0,20 0,22 0,29 0,23 0,18 0,27<br />

1,70 0,19 0,21 0,27 0,22 0,18 0,25<br />

1,80 0,18 0,20 0,25 0,21 0,17 0,23<br />

1,90 0,18 0,19 0,24 0,21 0,17 0,22<br />

2,00 0,17 0,17 0,24 0,21 0,16 0,21<br />

Page 142<br />

West North<br />

West<br />

1,40 1,24<br />

1,30 1,13<br />

1,25 1,04<br />

1,18 0,97<br />

1,12 0,91<br />

1,06 0,85<br />

1,01 0,80<br />

0,95 0,75<br />

0,90 0,69<br />

0,83 0,60<br />

0,76 0,51<br />

0,71 0,45<br />

0,66 0,40<br />

0,61 0,38<br />

0,56 0,36<br />

0,52 0,32<br />

0,48 0,29<br />

0,45 0,27<br />

0,42 0,26<br />

0,40 0,24<br />

0,38 0,21<br />

0,36 0,20<br />

0,34 0,20<br />

0,32 0,19<br />

0,31 0,17<br />

West North<br />

West<br />

1,30 1,16<br />

1,19 1,04<br />

1,11 0,94<br />

1,05 0,88<br />

0,99 0,83<br />

0,95 0,77<br />

0,90 0,72<br />

0,85 0,67<br />

0,81 0,62<br />

0,73 0,55<br />

0,65 0,48<br />

0,59 0,44<br />

0,52 0,40<br />

0,49 0,35<br />

0,46 0,31<br />

0,43 0,29<br />

0,40 0,27<br />

0,37 0,26<br />

0,34 0,24<br />

0,32 0,23<br />

0,30 0,21<br />

0,29 0,20<br />

0,27 0,20<br />

0,26 0,19<br />

0,25 0,19


P/H<br />

Refer<br />

Figure 11.2<br />

North<br />

0,00 0,56<br />

0,05 0,47<br />

0,10 0,44<br />

0,15 0,41<br />

0,20 0,38<br />

0,25 0,36<br />

0,30 0,35<br />

0,35 0,34<br />

0,40 0,32<br />

0,50 0,30<br />

0,60 0,28<br />

0,70 0,26<br />

0,80 0,24<br />

0,90 0,22<br />

1,00 0,20<br />

1,10 0,20<br />

1,20 0,19<br />

1,30 0,18<br />

1,40 0,17<br />

1,50 0,17<br />

1,60 0,17<br />

1,70 0,16<br />

1,80 0,15<br />

1,90 0,15<br />

2,00 0,15<br />

P/H<br />

Refer<br />

Figure 11.2<br />

North<br />

0,00 0,84<br />

0,05 0,71<br />

0,10 0,65<br />

0,15 0,58<br />

0,20 0,52<br />

0,25 0,48<br />

0,30 0,44<br />

0,35 0,40<br />

0,40 0,36<br />

0,50 0,33<br />

0,60 0,30<br />

0,70 0,28<br />

0,80 0,26<br />

0,90 0,24<br />

1,00 0,22<br />

1,10 0,21<br />

1,20 0,20<br />

1,30 0,19<br />

1,40 0,18<br />

1,50 0,17<br />

1,60 0,16<br />

1,70 0,16<br />

1,80 0,15<br />

1,90 0,15<br />

2,00 0,14<br />

TABLE 11.3: Solar Exposure Factor E - Climate Z<strong>on</strong>e 3<br />

Orientati<strong>on</strong> Sector (refer Figure 11.3)<br />

North East South South South West North<br />

East<br />

East<br />

West<br />

West<br />

1,04 1,42 1,18 0,66 1,16 1,36 1,01<br />

0,94 1,32 1,08 0,57 1,05 1,26 0,90<br />

0,85 1,25 1,02 0,54 0,99 1,19 0,83<br />

0,79 1,17 0,96 0,50 0,93 1,13 0,78<br />

0,73 1,10 0,90 0,46 0,87 1,06 0,73<br />

0,69 1,05 0,85 0,44 0,83 1,00 0,68<br />

0,64 0,99 0,81 0,42 0,79 0,95 0,64<br />

0,60 0,93 0,76 0,40 0,75 0,90 0,60<br />

0,56 0,88 0,71 0,38 0,72 0,84 0,56<br />

0,49 0,81 0,65 0,35 0,64 0,77 0,50<br />

0,43 0,74 0,58 0,31 0,57 0,71 0,44<br />

0,39 0,67 0,53 0,29 0,53 0,65 0,40<br />

0,35 0,59 0,47 0,27 0,50 0,60 0,35<br />

0,32 0,54 0,44 0,25 0,46 0,56 0,32<br />

0,29 0,50 0,40 0,24 0,43 0,53 0,29<br />

0,28 0,46 0,37 0,22 0,40 0,48 0,28<br />

0,26 0,42 0,34 0,21 0,37 0,43 0,26<br />

0,24 0,39 0,33 0,20 0,35 0,42 0,25<br />

0,22 0,35 0,31 0,20 0,32 0,41 0,23<br />

0,21 0,34 0,29 0,18 0,32 0,38 0,22<br />

0,20 0,33 0,27 0,16 0,31 0,35 0,21<br />

0,19 0,31 0,25 0,16 0,29 0,34 0,20<br />

0,19 0,30 0,24 0,16 0,28 0,33 0,19<br />

0,18 0,28 0,24 0,15 0,26 0,30 0,18<br />

0,18 0,25 0,24 0,15 0,24 0,27 0,17<br />

TABLE 11.3: Solar Exposure Factor E - Climate Z<strong>on</strong>e 4<br />

Orientati<strong>on</strong> Sector (refer Figure 11.3)<br />

North East South South South West North<br />

East<br />

East<br />

West<br />

West<br />

1,08 1,15 0,87 0,61 1,05 1,40 1,24<br />

0,97 1,05 0,78 0,52 0,96 1,30 1,13<br />

0,90 0,99 0,74 0,49 0,91 1,25 1,04<br />

0,83 0,93 0,69 0,47 0,86 1,18 0,97<br />

0,77 0,88 0,65 0,44 0,82 1,12 0,91<br />

0,72 0,84 0,62 0,42 0,78 1,06 0,85<br />

0,68 0,80 0,59 0,40 0,75 1,01 0,80<br />

0,63 0,75 0,57 0,38 0,71 0,95 0,75<br />

0,58 0,71 0,54 0,36 0,67 0,90 0,69<br />

0,51 0,66 0,49 0,33 0,63 0,83 0,60<br />

0,43 0,61 0,45 0,31 0,58 0,76 0,51<br />

0,39 0,56 0,42 0,29 0,54 0,71 0,45<br />

0,35 0,50 0,38 0,26 0,50 0,66 0,40<br />

0,32 0,46 0,35 0,25 0,46 0,61 0,38<br />

0,29 0,42 0,32 0,23 0,42 0,56 0,36<br />

0,26 0,40 0,30 0,23 0,41 0,52 0,32<br />

0,24 0,37 0,29 0,23 0,39 0,48 0,29<br />

0,23 0,34 0,27 0,21 0,36 0,45 0,27<br />

0,22 0,32 0,26 0,19 0,34 0,42 0,26<br />

0,21 0,30 0,25 0,19 0,32 0,40 0,24<br />

0,19 0,28 0,24 0,18 0,31 0,38 0,21<br />

0,19 0,27 0,23 0,18 0,29 0,36 0,20<br />

0,18 0,26 0,22 0,17 0,28 0,34 0,20<br />

0,18 0,25 0,21 0,17 0,27 0,32 0,19<br />

0,17 0,24 0,21 0,17 0,26 0,31 0,17<br />

Page 143


P/H<br />

TABLE 11.3: Solar Exposure Factor E - Climate Z<strong>on</strong>e 5<br />

Orientati<strong>on</strong> Sector (refer Figure 11.3)<br />

Refer North North East South South South<br />

Figure 11.2<br />

East<br />

East<br />

West<br />

0,00 0,52 0,84 1,29 1,24 0,87 1,27<br />

0,05 0,44 0,74 1,19 1,13 0,75 1,17<br />

0,10 0,41 0,68 1,11 1,07 0,68 1,09<br />

0,15 0,39 0,64 1,06 1,00 0,61 1,02<br />

0,20 0,37 0,59 1,01 0,94 0,55 0,94<br />

0,25 0,35 0,56 0,95 0,88 0,52 0,89<br />

0,30 0,33 0,52 0,90 0,82 0,48 0,85<br />

0,35 0,32 0,49 0,84 0,76 0,45 0,80<br />

0,40 0,30 0,45 0,79 0,69 0,42 0,75<br />

0,50 0,27 0,41 0,72 0,64 0,38 0,67<br />

0,60 0,25 0,37 0,66 0,59 0,34 0,60<br />

0,70 0,24 0,34 0,59 0,53 0,32 0,56<br />

0,80 0,22 0,31 0,53 0,47 0,30 0,52<br />

0,90 0,20 0,28 0,49 0,44 0,27 0,48<br />

1,00 0,19 0,26 0,45 0,41 0,25 0,43<br />

1,10 0,18 0,24 0,41 0,37 0,23 0,41<br />

1,20 0,18 0,23 0,37 0,33 0,22 0,39<br />

1,30 0,17 0,22 0,35 0,32 0,22 0,36<br />

1,40 0,17 0,21 0,32 0,30 0,22 0,32<br />

1,50 0,16 0,20 0,30 0,28 0,20 0,31<br />

1,60 0,15 0,18 0,28 0,26 0,18 0,29<br />

1,70 0,14 0,18 0,28 0,24 0,18 0,29<br />

1,80 0,13 0,18 0,27 0,22 0,17 0,28<br />

1,90 0,13 0,18 0,25 0,22 0,17 0,26<br />

2,00 0,12 0,17 0,23 0,21 0,16 0,24<br />

P/H<br />

TABLE 11.3: Solar Exposure Factor E - Climate Z<strong>on</strong>e 6<br />

Orientati<strong>on</strong> Sector (refer Figure 11.3)<br />

Refer North North East South South South<br />

Figure 11.2<br />

East<br />

East<br />

West<br />

0,00 0,72 1,19 1,40 1,05 0,57 0,99<br />

0,05 0,61 1,10 1,31 0,97 0,49 0,91<br />

0,10 0,56 1,00 1,24 0,91 0,46 0,85<br />

0,15 0,49 0,94 1,18 0,86 0,44 0,81<br />

0,20 0,43 0,87 1,12 0,82 0,41 0,76<br />

0,25 0,40 0,82 1,07 0,78 0,39 0,73<br />

0,30 0,37 0,76 1,02 0,74 0,38 0,69<br />

0,35 0,33 0,71 0,97 0,71 0,36 0,66<br />

0,40 0,30 0,66 0,92 0,67 0,34 0,62<br />

0,50 0,29 0,58 0,83 0,61 0,31 0,58<br />

0,60 0,27 0,50 0,74 0,56 0,29 0.53<br />

0,70 0,26 0,44 0,68 0,52 0,27 0,49<br />

0,80 0,24 0,38 0,63 0,49 0,25 0,45<br />

0,90 0,22 0,35 0,59 0,46 0,23 0,42<br />

1,00 0,20 0,31 0,55 0,42 0,22 0,39<br />

1,10 0,20 0,29 0,50 0,39 0,21 0,37<br />

1,20 0,19 0,26 0,46 0,37 0,20 0,35<br />

1,30 0,17 0,24 0,43 0,35 0,18 0,34<br />

1,40 0,16 0,23 0,39 0,34 0,17 0,33<br />

1,50 0,16 0,21 0,38 0,32 0,17 0,31<br />

1,60 0,16 0,20 0,38 0,30 0,16 0,29<br />

1,70 0,15 0,19 0,35 0,29 0,15 0,27<br />

1,80 0,14 0,18 0,32 0,27 0,14 0,25<br />

1,90 0,14 0,17 0,30 0,25 0,14 0,24<br />

2,00 0,13 0,17 0,28 0,23 0,14 0,24<br />

Page 144<br />

West North<br />

West<br />

1,32 0,85<br />

1,23 0,75<br />

1,15 0,69<br />

1,08 0,64<br />

1,00 0,60<br />

0,96 0,57<br />

0,92 0,53<br />

0,88 0,50<br />

0,83 0,47<br />

0,75 0,42<br />

0,66 0,38<br />

0,62 0,35<br />

0,58 0,32<br />

0,53 0,30<br />

0,48 0,28<br />

0,45 0,27<br />

0,42 0,26<br />

0,40 0,24<br />

0,37 0,22<br />

0,36 0,22<br />

0,34 0,21<br />

0,32 0,20<br />

0,30 0,18<br />

0,29 0,17<br />

0,28 0,17<br />

West North<br />

West<br />

1,31 1,12<br />

1,22 1,02<br />

1,17 0,94<br />

1,11 0,87<br />

1,05 0,81<br />

1,00 0,76<br />

0,95 0,71<br />

0,90 0,66<br />

0,85 0,62<br />

0,79 0,53<br />

0,72 0,45<br />

0,66 0,40<br />

0,59 0,36<br />

0,55 0,33<br />

0,51 0,30<br />

0,48 0,27<br />

0,45 0,25<br />

0,41 0,23<br />

0,38 0,21<br />

0,35 0,21<br />

0,33 0,20<br />

0,32 0,18<br />

0,32 .1,17<br />

0,29 0,16<br />

0,26 0,16


11.4.2 METHOD 2: FOR MECHANICALLY VENTILATED BUILDINGS (SANS 204:3)<br />

a) The glazing in each storey of a building and facing each orientati<strong>on</strong> must be assessed separately in accordance<br />

with (b) and (c).<br />

b) The aggregate air-c<strong>on</strong>diti<strong>on</strong>ing energy value attributable to the glazing must not exceed the allowance obtained by<br />

multiplying the façade area of the orientati<strong>on</strong> by the energy index in Table 11.4.<br />

TABLE 11.4: ENERGY INDEX<br />

CLIMATIC ZONE<br />

1 2 3 4 5 6<br />

0,220 0,257 0,221 0,220 0,180 0,227<br />

c) The aggregate air-c<strong>on</strong>diti<strong>on</strong>ing<br />

c<strong>on</strong>diti<strong>on</strong>ing energy value must be calculated by adding the air air-c<strong>on</strong>diti<strong>on</strong>ing energy value<br />

through each glazing element in accordance with the following <str<strong>on</strong>g>for</str<strong>on</strong>g>mula:<br />

A1 [SHGC1 (CA x SH1 + CB x SSC1)<br />

+ CC x U1] + A2 [SHGC2 (CA x SH2 + CB x SC2) + CC x U2] + …<br />

Where:<br />

A1, 2 etc. = the area of each glazing element; and<br />

CA, B and C = the energy c<strong>on</strong>stants A, B and C <str<strong>on</strong>g>for</str<strong>on</strong>g> the specific orientati<strong>on</strong> from Table 11.5; and<br />

SHGC1, 2, etc. = the SHGC of each glazing element; and<br />

SH1, 2, etc. = the heating shading multiplier <str<strong>on</strong>g>for</str<strong>on</strong>g> each glazing element obtained from Table 11.6; and<br />

SC1, 2, etc = the cooling shading multiplier <str<strong>on</strong>g>for</str<strong>on</strong>g> each glazing element obtained from Table 11.7; and<br />

U1, 2, etc = the Total U-value value of each glazing element refer Table 11.2<br />

d) For the purposes of c), where the air-c<strong>on</strong>diti<strong>on</strong>ing energy value of a glazing element is calculated to be negative, it<br />

must be taken to be zero.<br />

Climatic Z<strong>on</strong>e<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

TABLE 11.5: ENERGY CONSTANTS (C (CA, CB AND CC) Energy<br />

C<strong>on</strong>stants North<br />

Orientati<strong>on</strong> Secti<strong>on</strong><br />

CA -0.37<br />

CB 1.53<br />

CC -0.01<br />

CA -0.06<br />

CB 1.46<br />

CC -0.02<br />

CA 0.00<br />

CB 1.01<br />

CC 0.01<br />

CA -0.37<br />

CB 1.53<br />

CC -0.01<br />

CA 0.00<br />

CB 0.80<br />

CC 0.02<br />

CA -0.16<br />

CB 1.25<br />

0.00<br />

North<br />

East<br />

East<br />

South<br />

South<br />

South<br />

East<br />

West<br />

West<br />

0.37 -0.38 -0.59 -0.82 -0.87 -0.90 -0.85<br />

1.53 1.66 1.39 0.80 0.38 0.66 1.07<br />

0.01 -0.01 0.03 0.11 0.15 0.13 0.08<br />

0.06 -0.09 -0.18 -0.41 -0.47 -0.43 -0.28<br />

1.46 1.55 1.32 0.75 0.41 0.68 1.13<br />

0.02 -0.01 0.00 0.05 0.07 0.05 0.02<br />

0.00 0.00 0.00 0.00 0.00 0.00 0.00<br />

1.01 1.16 1.08 0.69 0.41 0.67 1.01<br />

0.01 0.01 0.01 0.02 0.01 0.01 0.01<br />

0.37 -0.38 -0.59 -0.82 -0.87 -0.90 -0.85<br />

1.53 1.66 1.39 0.80 0.38 0.66 1.07<br />

0.01 -0.01 0.03 0.11 0.15 0.13 0.08<br />

0.00 0.00 0.00 0.00 0.00 0.00 0.00<br />

0.80 0.92 0.91 0.67 0.48 0.67 0.88<br />

0.02 0.02 0.02 0.02 0.02 0.02 0.02<br />

0.16 -0.18 -0.30 -0.44 -0.45 -0.46 -0.40<br />

1.25 1.37 1.18 0.68 0.35 0.60 0.98<br />

0.00 0.00 0.03 0.07 0.09 0.08 0.04<br />

North<br />

West<br />

0.85 -0.61<br />

1.07 1.34<br />

0.08 0.03<br />

0.28 -0.14<br />

1.13 1.38<br />

0.02 -0.01<br />

0.00 0.00<br />

1.01 1.09<br />

0.01 0.01<br />

0.85 -0.61<br />

1.07 1.34<br />

0.08 0.03<br />

0.00 0.00<br />

0.88 0.91<br />

0.02 0.02<br />

0.40 -0.26<br />

0.98 1.20<br />

0.04 0.02<br />

C C<br />

TABLE 11.6:<br />

G<br />

PH<br />

Refer Figure<br />

11.2<br />

Refer<br />

Figure 11.1<br />

North<br />

11.6: HEATING SHADING MULTIPLIER (SH) Orientati<strong>on</strong> Secti<strong>on</strong> (Refer Figure 11.3)<br />

North<br />

CLIMATIC ZONE 1 & 4<br />

0.0 1.00<br />

0.2 0.95<br />

0.4 0.82<br />

0.6 0.61<br />

Not more than<br />

100mm<br />

0.8<br />

1.0<br />

1.2<br />

0.31<br />

0.02<br />

0.00<br />

1.4 0.00<br />

1.6 0.00<br />

1.8 0.00<br />

2.0 0.00<br />

North<br />

East<br />

East<br />

South<br />

East<br />

South<br />

South<br />

West<br />

West<br />

1.00 1.00 1.00 1.00 1.00 1.00 1.00<br />

0.95 0.93 0.91 0.90 0.93 0.91 0.91<br />

0.82 0.82 0.78 0.79 0.86 0.81 0.78<br />

0.61 0.66 0.64 0.70 0.80 0.71 0.64<br />

0.31<br />

0.02<br />

0.00<br />

0.46<br />

0.23<br />

0.04<br />

0.49<br />

0.35<br />

0.23<br />

0.63<br />

0.58<br />

0.53<br />

0.74<br />

0.70<br />

0.66<br />

0.63<br />

0.56<br />

0.51<br />

0.52<br />

0.40<br />

0.30<br />

0.00 0.00 0.14 0.49 0.63 0.47 0.22<br />

0.00 0.00 0.10 0.45 0.60 0.44 0.16<br />

0.00 0.00 0.05 0.41 0.58 0.41 0.11<br />

0.00 0.00 0.01 0.37 0.55 0.38 0.05<br />

North<br />

West<br />

1.00 1.00<br />

0.91 0.93<br />

0.78 0.80<br />

0.64 0.62<br />

0.52<br />

0.40<br />

0.30<br />

0.41<br />

0.17<br />

0.02<br />

0.22 0.00<br />

0.16 0.00<br />

0.11 0.00<br />

0.05 0.00<br />

Page 145


HEATING SHADING MULTIPLIER (S<br />

G<br />

PH<br />

Refer<br />

Figure 11.2<br />

Refer<br />

Figure 11.1 North<br />

HEATING SHADING MULTIPLIER (SH) (C<strong>on</strong>tinue)<br />

Orientati<strong>on</strong> Secti<strong>on</strong> (Refer Figure 11.3)<br />

North<br />

CLIMATIC ZONE 1 (C<strong>on</strong>tinue)<br />

0.0 1.00<br />

0.2 0.99<br />

0.4 0.96<br />

More than<br />

100mm but<br />

not more than<br />

500mm<br />

0.6<br />

0.8<br />

1.0<br />

1.2<br />

1.4<br />

0.88<br />

0.75<br />

0.57<br />

0.33<br />

0.14<br />

1.6 0.10<br />

1.8 0.05<br />

2.0 0.00<br />

0.0 1.00<br />

0.2 1.00<br />

0.4 0.99<br />

More than<br />

500mm but<br />

not more than<br />

1200mm<br />

0.6<br />

0.8<br />

1.0<br />

1.2<br />

1.4<br />

0.97<br />

0.94<br />

0.88<br />

0.79<br />

0.66<br />

1.6 0.48<br />

1.8 0.30<br />

2.0 0.13<br />

CLIMATIC ZONE 3 & 5<br />

In climate z<strong>on</strong>es 3 and 5, the heating shading multiplier is to be taken as 1.0<br />

CLIMATIC ZONE 6 & 2<br />

0.0 1.00<br />

0.2 0.96<br />

0.4 0.86<br />

0.6 0.66<br />

Not more than<br />

100mm<br />

0.8<br />

1.0<br />

1.2<br />

0.30<br />

0.00<br />

0.00<br />

1.4 0.00<br />

1.6 0.00<br />

1.8 0.00<br />

2.0 0.00<br />

0.0 1.00<br />

0.2 0.99<br />

0.4 0.97<br />

More than<br />

100mm but<br />

not more than<br />

500mm<br />

0.6<br />

0.8<br />

1.0<br />

1.2<br />

1.4<br />

0.91<br />

0.79<br />

0.59<br />

0.27<br />

0.03<br />

1.6 0.02<br />

1.8 0.01<br />

2.0 0.00<br />

0.0 1.00<br />

0.2 1.00<br />

0.4 0.99<br />

More than<br />

500mm but<br />

not more than<br />

1200m<br />

0.6<br />

0.8<br />

1.0<br />

1.2<br />

1.4<br />

0.98<br />

0.95<br />

0.91<br />

0.82<br />

0.67<br />

1.6 0.45<br />

1.8 0.22<br />

Note:<br />

2.0 0.00<br />

In climate z<strong>on</strong>es 1, 2, 4 and 6, where G is more than 1200mm, the heating shading<br />

1.0.<br />

North<br />

East<br />

East<br />

South<br />

East<br />

South South<br />

West West<br />

1.00 1.00 1.00 1.00 1.00 1.00 1.00<br />

0.99 0.99 0.98 0.97 0.97 0.97 0.97<br />

0.96 0.94 0.91 0.89 0.93 0.91 0.91<br />

0.88<br />

0.75<br />

0.57<br />

0.33<br />

0.14<br />

0.87<br />

0.78<br />

0.66<br />

0.51<br />

0.37<br />

0.83<br />

0.73<br />

0.62<br />

0.51<br />

0.42<br />

0.82<br />

0.70<br />

0.68<br />

0.64<br />

0.60<br />

0.87<br />

0.83<br />

0.78<br />

0.75<br />

0.72<br />

0.84<br />

0.76<br />

0.69<br />

0.63<br />

0.59<br />

0.82<br />

0.71<br />

0.61<br />

0.52<br />

0.44<br />

0.10 0.25 0.33 0.57 0.69 0.55 0.36<br />

0.05 0.12 0.25 0.53 0.67 0.51 0.29<br />

0.00 0.00 0.17 0.50 0.64 0.48 0.21<br />

1.00 1.00 1.00 1.00 1.00 1.00 1.00<br />

1.00 0.99 0.99 0.99 0.99 0.99 0.99<br />

0.99 0.98 0.97 0.96 0.97 0.96 0.96<br />

0.97<br />

0.94<br />

0.88<br />

0.79<br />

0.66<br />

0.96<br />

0.93<br />

0.88<br />

0.82<br />

0.73<br />

0.93<br />

0.89<br />

0.83<br />

0.77<br />

0.69<br />

0.92<br />

0.87<br />

0.82<br />

0.77<br />

0.73<br />

0.94<br />

0.91<br />

0.87<br />

0.85<br />

0.82<br />

0.92<br />

0.88<br />

0.83<br />

0.79<br />

0.75<br />

0.92<br />

0.87<br />

0.81<br />

0.75<br />

0.68<br />

0.48 0.63 0.62 0.69 0.79 0.70 0.61<br />

0.30 0.53 0.54 0.66 0.76 0.66 0.55<br />

0.13 0.42 0.47 0.63 0.74 0.62 0.48<br />

3 and 5, the heating shading multiplier is to be taken as 1.0<br />

1.00 1.00 1.00 1.00 1.00 1.00 1.00<br />

0.96 0.95 0.92 0.90 0.94 0.92 0.92<br />

0.86 0.83 0.79 0.78 0.87 0.83 0.80<br />

0.66 0.65 0.63 0.69 0.81 0.74 0.66<br />

0.30<br />

0.00<br />

0.00<br />

0.41<br />

0.08<br />

0.00<br />

0.43<br />

0.22<br />

0.08<br />

0.62<br />

0.56<br />

0.52<br />

0.77<br />

0.74<br />

0.71<br />

0.66<br />

0.60<br />

0.54<br />

0.50<br />

0.35<br />

0.21<br />

0.00 0.00 0.04 0.48 0.69 0.50 0.12<br />

0.00 0.00 0.02 0.45 0.67 0.46 0.08<br />

0.00 0.00 0.01 0.42 0.66 0.43 0.04<br />

0.00 0.00 0.00 0.39 0.64 0.39 0.00<br />

1.00 1.00 1.00 1.00 1.00 1.00 1.00<br />

0.99 0.99 0.98 0.97 0.98 0.97 0.98<br />

0.97 0.95 0.92 0.89 0.93 0.91 0.92<br />

0.91<br />

0.79<br />

0.59<br />

0.27<br />

0.03<br />

0.88<br />

0.78<br />

0.63<br />

0.45<br />

0.28<br />

0.84<br />

0.73<br />

0.62<br />

0.48<br />

0.35<br />

0.81<br />

0.70<br />

0.67<br />

0.63<br />

0.59<br />

0.88<br />

0.84<br />

0.80<br />

0.78<br />

0.75<br />

0.85<br />

0.79<br />

0.73<br />

0.68<br />

0.63<br />

0.85<br />

0.75<br />

0.65<br />

0.54<br />

0.44<br />

0.02 0.19 0.25 0.56 0.74 0.59 0.34<br />

0.01 0.09 0.14 0.52 0.72 0.55 0.25<br />

0.00 0.00 0.03 0.49 0.70 0.51 0.15<br />

1.00 1.00 1.00 1.00 1.00 1.00 1.00<br />

1.00 1.00 0.99 0.99 0.99 0.99 0.99<br />

0.99 0.98 0.97 0.97 0.97 0.96 0.97<br />

0.98<br />

0.95<br />

0.91<br />

0.82<br />

0.67<br />

0.97<br />

0.94<br />

0.89<br />

0.82<br />

0.71<br />

0.94<br />

0.90<br />

0.84<br />

0.78<br />

0.70<br />

0.92<br />

0.88<br />

0.83<br />

0.78<br />

0.73<br />

0.95<br />

0.92<br />

0.89<br />

0.86<br />

0.84<br />

0.93<br />

0.89<br />

0.85<br />

0.82<br />

0.78<br />

0.94<br />

0.90<br />

0.84<br />

0.78<br />

0.71<br />

0.45 0.58 0.60 0.70 0.81 0.74 0.64<br />

0.22 0.44 0.51 0.66 0.79 0.71 0.56<br />

0.00 0.30 0.42 0.62 0.77 0.67 0.49<br />

In climate z<strong>on</strong>es 1, 2, 4 and 6, where G is more than 1200mm, the heating shading multiplier is to be taken as<br />

North<br />

West<br />

1.00 1.00<br />

0.97 0.98<br />

0.91 0.94<br />

0.82<br />

0.71<br />

0.61<br />

0.52<br />

0.44<br />

0.86<br />

0.75<br />

0.60<br />

0.44<br />

0.30<br />

0.36 0.20<br />

0.29 0.10<br />

0.21 0.00<br />

1.00 1.00<br />

0.99 0.99<br />

0.96 0.98<br />

0.92<br />

0.87<br />

0.81<br />

0.75<br />

0.68<br />

0.96<br />

0.92<br />

0.86<br />

0.79<br />

0.69<br />

0.61 0.57<br />

0.55 0.45<br />

0.48 0.33<br />

1.00 1.00<br />

0.92 0.95<br />

0.80 0.85<br />

0.66 0.70<br />

0.50<br />

0.35<br />

0.21<br />

0.47<br />

0.15<br />

0.00<br />

0.12 0.00<br />

0.08 0.00<br />

0.04 0.00<br />

0.00 0.00<br />

1.00 1.00<br />

0.98 0.99<br />

0.92 0.96<br />

0.85<br />

0.75<br />

0.65<br />

0.54<br />

0.44<br />

0.90<br />

0.81<br />

0.69<br />

0.50<br />

0.31<br />

0.34 0.21<br />

0.25 0.10<br />

0.15 0.00<br />

1.00 1.00<br />

0.99 0.99<br />

0.97 0.99<br />

0.94<br />

0.90<br />

0.84<br />

0.78<br />

0.71<br />

0.97<br />

0.94<br />

0.90<br />

0.84<br />

0.75<br />

0.64 0.62<br />

0.56 0.48<br />

0.49 0.35<br />

multiplier is to be taken as<br />

Page 146


TABLE 11.7:<br />

G<br />

PH<br />

Refer<br />

Figure 11.2<br />

Refer<br />

Figure 11.1 North<br />

: COOLING SHADING MULTIPLIER (SC)<br />

Orientati<strong>on</strong> Secti<strong>on</strong> (Refer Figure 11.3)<br />

North<br />

CLIMATIC ZONE 1 & 4<br />

0.0 1.00<br />

0.2 0.82<br />

0.4 0.63<br />

0.6 0.49<br />

Not more than<br />

100mm<br />

0.8<br />

1.0<br />

1.2<br />

0.40<br />

0.35<br />

0.32<br />

1.4 0.31<br />

1.6 0.30<br />

1.8 0.30<br />

2.0 0.30<br />

0.0 1.00<br />

0.2 0.93<br />

0.4 0.79<br />

More than<br />

100mm but<br />

not more than<br />

500mm<br />

0.6<br />

0.8<br />

1.0<br />

1.2<br />

1.4<br />

0.64<br />

0.52<br />

0.43<br />

0.38<br />

0.35<br />

1.6 0.33<br />

1.8 0.32<br />

2.0 0.31<br />

0.0 1.00<br />

0.2 0.97<br />

0.4 0.91<br />

More than<br />

500mm but<br />

not more than<br />

1200mm<br />

0.6<br />

0.8<br />

1.0<br />

1.2<br />

1.4<br />

0.82<br />

0.72<br />

0.62<br />

0.53<br />

0.47<br />

1.6 0.42<br />

1.8 0.38<br />

2.0 0.35<br />

CLIMATIC ZONE 2 & 6<br />

0.0 1.00<br />

0.2 0.81<br />

0.4 0.61<br />

0.6 0.46<br />

Not More<br />

than 100mm<br />

0.8<br />

1.0<br />

1.2<br />

0.35<br />

0.28<br />

0.24<br />

1.4 0.22<br />

1.6 0.20<br />

1.8 0.20<br />

2.0 0.19<br />

0.0 1.00<br />

0.2 0.93<br />

0.4 0.77<br />

More than<br />

100mm but<br />

not more than<br />

500mm<br />

0.6<br />

0.8<br />

1.0<br />

1.2<br />

1.4<br />

0.62<br />

0.48<br />

0.37<br />

0.32<br />

0.28<br />

1.6 0.25<br />

1.8 0.23<br />

2.0 0.21<br />

North<br />

East<br />

East<br />

South<br />

East<br />

South South<br />

West West<br />

1.00 1.00 1.00 1.00 1.00 1.00 1.00<br />

0.82 0.86 0.87 0.87 0.90 0.88 0.87<br />

0.63 0.69 0.72 0.74 0.80 0.74 0.72<br />

0.49 0.56 0.60 0.64 0.73 0.64 0.61<br />

0.40<br />

0.35<br />

0.32<br />

0.46<br />

0.38<br />

0.34<br />

0.51<br />

0.44<br />

0.39<br />

0.56<br />

0.51<br />

0.48<br />

0.68<br />

0.64<br />

0.61<br />

0.57<br />

0.51<br />

0.47<br />

0.52<br />

0.45<br />

0.41<br />

0.31 0.32 0.36 0.45 0.59 0.44 0.37<br />

0.30 0.30 0.33 0.42 0.57 0.42 0.34<br />

0.30 0.29 0.31 0.41 0.56 0.40 0.32<br />

0.30 0.28 0.29 0.39 0.55 0.38 0.31<br />

1.00 1.00 1.00 1.00 1.00 1.00 1.00<br />

0.93 0.95 0.95 0.95 0.95 0.95 0.95<br />

0.79 0.84 0.86 0.86 0.88 0.86 0.85<br />

0.64<br />

0.52<br />

0.43<br />

0.38<br />

0.35<br />

0.71<br />

0.60<br />

0.51<br />

0.44<br />

0.39<br />

0.75<br />

0.65<br />

0.57<br />

0.50<br />

0.45<br />

0.76<br />

0.63<br />

0.61<br />

0.56<br />

0.52<br />

0.81<br />

0.75<br />

0.71<br />

0.68<br />

0.65<br />

0.76<br />

0.68<br />

0.61<br />

0.56<br />

0.52<br />

0.74<br />

0.65<br />

0.57<br />

0.50<br />

0.46<br />

0.33 0.35 0.41 0.49 0.63 0.49 0.42<br />

0.32 0.33 0.38 0.47 0.62 0.46 0.39<br />

0.31 0.31 0.36 0.45 0.60 0.44 0.36<br />

1.00 1.00 1.00 1.00 1.00 1.00 1.00<br />

0.97 0.98 0.98 0.98 0.98 0.98 0.98<br />

0.91 0.94 0.94 0.94 0.94 0.94 0.94<br />

0.82<br />

0.72<br />

0.62<br />

0.53<br />

0.47<br />

0.87<br />

0.79<br />

0.70<br />

0.62<br />

0.55<br />

0.88<br />

0.81<br />

0.74<br />

0.67<br />

0.62<br />

0.88<br />

0.82<br />

0.76<br />

0.70<br />

0.65<br />

0.90<br />

0.85<br />

0.81<br />

0.77<br />

0.74<br />

0.88<br />

0.81<br />

0.75<br />

0.70<br />

0.65<br />

0.87<br />

0.80<br />

0.73<br />

0.67<br />

0.61<br />

0.42 0.49 0.56 0.61 0.72 0.61 0.56<br />

0.38 0.44 0.51 0.57 0.69 0.57 0.51<br />

0.35 0.40 0.47 0.54 0.67 0.54 0.47<br />

1.00 1.00 1.00 1.00 1.00 1.00 1.00<br />

0.81 0.85 0.87 0.86 0.90 0.88 0.87<br />

0.61 0.68 0.72 0.72 0.81 0.75 0.72<br />

0.46 0.54 0.59 0.61 0.74 0.64 0.60<br />

0.35<br />

0.28<br />

0.24<br />

0.42<br />

0.34<br />

0.29<br />

0.49<br />

0.42<br />

0.37<br />

0.53<br />

0.47<br />

0.43<br />

0.68<br />

0.64<br />

0.62<br />

0.57<br />

0.50<br />

0.46<br />

0.51<br />

0.44<br />

0.38<br />

0.22 0.26 0.33 0.39 0.59 0.42 0.34<br />

0.20 0.23 0.30 0.36 0.57 0.39 0.31<br />

0.20 0.21 0.27 0.34 0.56 0.37 0.29<br />

0.19 0.20 0.25 0.32 0.54 0.34 0.26<br />

1.00 1.00 1.00 1.00 1.00 1.00 1.00<br />

0.93 0.95 0.96 0.95 0.96 0.95 0.95<br />

0.77 0.83 0.86 0.85 0.89 0.86 0.85<br />

0.62<br />

0.48<br />

0.37<br />

0.32<br />

0.28<br />

0.70<br />

0.58<br />

0.48<br />

0.40<br />

0.35<br />

0.74<br />

0.64<br />

0.55<br />

0.48<br />

0.43<br />

0.74<br />

0.60<br />

0.58<br />

0.52<br />

0.48<br />

0.82<br />

0.76<br />

0.72<br />

0.68<br />

0.66<br />

0.77<br />

0.68<br />

0.61<br />

0.56<br />

0.52<br />

0.74<br />

0.64<br />

0.56<br />

0.50<br />

0.44<br />

0.25 0.30 0.39 0.45 0.64 0.48 0.40<br />

0.23 0.27 0.35 0.42 0.62 0.45 0.37<br />

0.21 0.25 0.32 0.39 0.60 0.42 0.34<br />

North<br />

West<br />

1.00 1.00<br />

0.87 0.84<br />

0.72 0.67<br />

0.61 0.54<br />

0.52<br />

0.45<br />

0.41<br />

0.44<br />

0.38<br />

0.35<br />

0.37 0.32<br />

0.34 0.31<br />

0.32 0.30<br />

0.31 0.29<br />

1.00 1.00<br />

0.95 0.95<br />

0.85 0.82<br />

0.74<br />

0.65<br />

0.57<br />

0.50<br />

0.46<br />

0.68<br />

0.57<br />

0.48<br />

0.42<br />

0.38<br />

0.42 0.35<br />

0.39 0.33<br />

0.36 0.32<br />

1.00 1.00<br />

0.98 0.98<br />

0.94 0.93<br />

0.87<br />

0.80<br />

0.73<br />

0.67<br />

0.61<br />

0.85<br />

0.75<br />

0.66<br />

0.58<br />

0.51<br />

0.56 0.46<br />

0.51 0.42<br />

0.47 0.38<br />

1.00 1.00<br />

0.87 0.84<br />

0.72 0.67<br />

0.60 0.53<br />

0.51<br />

0.44<br />

0.38<br />

0.42<br />

0.34<br />

0.29<br />

0.34 0.26<br />

0.31 0.24<br />

0.29 0.22<br />

0.26 0.21<br />

1.00 1.00<br />

0.95 0.95<br />

0.85 0.82<br />

0.74<br />

0.64<br />

0.56<br />

0.50<br />

0.44<br />

0.68<br />

0.56<br />

0.46<br />

0.39<br />

0.34<br />

0.40 0.30<br />

0.37 0.27<br />

0.34 0.25<br />

Page 147


TABLE 11.7: COOLING<br />

G<br />

PH<br />

Refer<br />

Figure 11.2<br />

Refer<br />

Figure 11.1 North<br />

COOLING SHADING MULTIPLIER (SC) (C<strong>on</strong>tinued)<br />

Orientati<strong>on</strong> Secti<strong>on</strong> (Refer Figure 11.3)<br />

North<br />

CLIMATIC ZONE 2 & 6 (C<strong>on</strong>tinue)<br />

0.0 1.00<br />

0.2 0.97<br />

0.4 0.90<br />

More than<br />

500mm but<br />

not more than<br />

1200mm<br />

0.6<br />

0.8<br />

1.0<br />

1.2<br />

1.4<br />

0.81<br />

0.70<br />

0.58<br />

0.47<br />

0.40<br />

1.6 0.35<br />

1.8 0.31<br />

2.0 0.27<br />

CLIMATIC ZONE 3 & 5<br />

0.0 1.00<br />

0.2 0.79<br />

0.4 0.57<br />

0.6 0.41<br />

Note more 0.8 0.32<br />

than<br />

1.0 0.26<br />

100mm 1.2 0.22<br />

1.4 0.20<br />

1.6 0.19<br />

1.8 0.18<br />

2.0 0.17<br />

0.0 1.00<br />

0.2 0.92<br />

0.4 0.72<br />

More than<br />

100mm but<br />

not more than<br />

500mm<br />

0.6<br />

0.8<br />

1.0<br />

1.2<br />

1.4<br />

0.54<br />

0.42<br />

0.34<br />

0.29<br />

0.25<br />

1.6 0.23<br />

1.8 0.21<br />

2.0 0.20<br />

0.0 1.00<br />

0.2 0.97<br />

0.4 0.89<br />

More than<br />

500mm but<br />

not more than<br />

1200mm<br />

0.6<br />

0.8<br />

1.0<br />

1.2<br />

1.4<br />

0.74<br />

0.59<br />

0.49<br />

0.41<br />

0.35<br />

1.6 0.31<br />

1.8 0.28<br />

Note:<br />

2.0 0.25<br />

Where G is more than 1200mm, the cooling shading multiplier is to be taken as 1.0.<br />

North<br />

East<br />

East<br />

South<br />

East<br />

South South<br />

West West<br />

) (C<strong>on</strong>tinued)<br />

West<br />

CLIMATIC ZONE 2 & 6 (C<strong>on</strong>tinue)<br />

1.00 1.00 1.00 1.00 1.00 1.00 1.00<br />

0.97 0.98 0.98 0.98 0.98 0.98 0.98<br />

0.90 0.94 0.94 0.94 0.95 0.94 0.94<br />

0.81<br />

0.70<br />

0.58<br />

0.47<br />

0.40<br />

0.86<br />

0.77<br />

0.68<br />

0.60<br />

0.52<br />

0.88<br />

0.81<br />

0.74<br />

0.67<br />

0.61<br />

0.87<br />

0.81<br />

0.74<br />

0.68<br />

0.62<br />

0.91<br />

0.87<br />

0.82<br />

0.79<br />

0.75<br />

0.88<br />

0.81<br />

0.76<br />

0.70<br />

0.65<br />

0.88<br />

0.80<br />

0.73<br />

0.66<br />

0.60<br />

0.35 0.46 0.55 0.58 0.73 0.61 0.55<br />

0.31 0.41 0.50 0.54 0.70 0.57 0.50<br />

0.27 0.36 0.45 0.50 0.68 0.54 0.46<br />

1.00 1.00 1.00 1.00 1.00 1.00 1.00<br />

0.79 0.84 0.86 0.85 0.87 0.87 0.87<br />

0.57 0.66 0.71 0.70 0.76 0.73 0.72<br />

0.41 0.52 0.58 0.58 0.68 0.62 0.60<br />

0.32 0.40 0.47 0.48 0.62 0.54 0.50<br />

0.26 0.32 0.39 0.42 0.58 0.48 0.43<br />

0.22 0.28 0.33 0.38 0.56 0.43 0.37<br />

0.20 0.24 0.29 0.34 0.53 0.39 0.33<br />

0.19 0.22 0.26 0.32 0.52 0.36 0.29<br />

0.18 0.20 0.23 0.30 0.50 0.33 0.26<br />

0.17 0.18 0.21 0.28 0.49 0.31 0.24<br />

1.00 1.00 1.00 1.00 1.00 1.00 1.00<br />

0.92 0.94 0.95 0.94 0.93 0.94 0.95<br />

0.72 0.81 0.85 0.83 0.84 0.84 0.85<br />

0.54<br />

0.42<br />

0.34<br />

0.29<br />

0.25<br />

0.68<br />

0.56<br />

0.46<br />

0.38<br />

0.32<br />

0.73<br />

0.63<br />

0.54<br />

0.46<br />

0.40<br />

0.72<br />

0.57<br />

0.54<br />

0.48<br />

0.43<br />

0.77<br />

0.71<br />

0.66<br />

0.62<br />

0.60<br />

0.75<br />

0.66<br />

0.59<br />

0.54<br />

0.50<br />

0.74<br />

0.64<br />

0.56<br />

0.49<br />

0.44<br />

0.23 0.29 0.35 0.40 0.57 0.46 0.39<br />

0.21 0.26 0.32 0.37 0.56 0.42 0.36<br />

0.20 0.24 0.29 0.34 0.54 0.39 0.32<br />

1.00 1.00 1.00 1.00 1.00 1.00 1.00<br />

0.97 0.98 0.98 0.98 0.96 0.98 0.98<br />

0.89 0.93 0.94 0.93 0.91 0.93 0.94<br />

0.74<br />

0.59<br />

0.49<br />

0.41<br />

0.35<br />

0.85<br />

0.76<br />

0.66<br />

0.58<br />

0.51<br />

0.88<br />

0.81<br />

0.73<br />

0.66<br />

0.59<br />

0.6<br />

0.79<br />

0.72<br />

0.65<br />

0.59<br />

0.86<br />

0.81<br />

0.77<br />

0.73<br />

0.69<br />

0.86<br />

0.80<br />

0.73<br />

0.68<br />

0.63<br />

0.87<br />

0.80<br />

0.72<br />

0.66<br />

0.60<br />

0.31 0.44 0.53 0.54 0.66 0.59 0.55<br />

0.28 0.39 0.48 0.50 0.64 0.55 0.50<br />

0.25 0.35 0.43 0.46 0.61 0.51 0.45<br />

Where G is more than 1200mm, the cooling shading multiplier is to be taken as 1.0.<br />

North<br />

West<br />

1.00 1.00<br />

0.98 0.98<br />

0.94 0.93<br />

0.88<br />

0.80<br />

0.73<br />

0.66<br />

0.60<br />

0.85<br />

0.75<br />

0.66<br />

0.58<br />

0.50<br />

0.55 0.44<br />

0.50 0.39<br />

0.46 0.35<br />

1.00 1.00<br />

0.87 0.84<br />

0.72 0.67<br />

0.60 0.53<br />

0.50 0.43<br />

0.43 0.35<br />

0.37 0.30<br />

0.33 0.25<br />

0.29 0.22<br />

0.26 0.20<br />

0.24 0.18<br />

1.00 1.00<br />

0.95 0.94<br />

0.85 0.81<br />

0.74<br />

0.64<br />

0.56<br />

0.49<br />

0.44<br />

0.68<br />

0.56<br />

0.47<br />

0.41<br />

0.35<br />

0.39 0.31<br />

0.36 0.38<br />

0.32 0.25<br />

1.00 1.00<br />

0.98 0.98<br />

0.94 0.92<br />

0.87<br />

0.80<br />

0.72<br />

0.66<br />

0.60<br />

0.84<br />

0.74<br />

0.66<br />

0.58<br />

0.51<br />

0.55 0.46<br />

0.50 0.41<br />

0.45 0.37<br />

Page 148


Note:<br />

2. The directi<strong>on</strong> that all wall or glazing element faces is the directi<strong>on</strong> of a perpendicular <strong>line</strong> from the wall or glazing elemen element.<br />

3. Figure 11.1 is based <strong>on</strong> True North and all angles are measured clockwise from True North. Survey angles <strong>on</strong> site plans are<br />

usually marked in angles from True North. These angles can be used to establish True North <str<strong>on</strong>g>for</str<strong>on</strong>g> a particular site.<br />

4. Magnetic North, found by a magnetic compass, varies from True North over time and by different amounts in different<br />

locati<strong>on</strong>s. Magnetic North h is not an acceptable approximati<strong>on</strong> of True North.<br />

5. The eight orientati<strong>on</strong> sectors shown in Figure 11.1 do not overlap at their boundaries. North sector, <str<strong>on</strong>g>for</str<strong>on</strong>g> example, begins jus just<br />

clockwise after the NNW <strong>line</strong> and ends exactly <strong>on</strong> the NNE <strong>line</strong>. The start and end of other secti<strong>on</strong>s are determined in a<br />

similar way, as indicated by the outer curved arrows.<br />

11.5 SHADING<br />

Where shading is required it must-<br />

Figure 11.1: ORIENTATION SECTORS<br />

(a) be provided by an external permanent projecti<strong>on</strong>, such as a verandah, balc<strong>on</strong>y, fixed canopy, eaves, shading hood<br />

or carport, which-<br />

i) extends horiz<strong>on</strong>tally <strong>on</strong> both sides of the glazing <str<strong>on</strong>g>for</str<strong>on</strong>g> a distance not less than the projecti<strong>on</strong> distance P in<br />

Figure 11.2; or<br />

ii) provide the equivalent shading to (i) with a reveal or the like; or<br />

(b) be provided by an external shading device, such as a shutter, blind, vertical or horiz<strong>on</strong>tal building screen with<br />

blades, battens or slats, which-<br />

i) is capable of restricting at least 80% of the summer solar radiati<strong>on</strong>; and<br />

ii) if adjustable, is readily operated either manually, mechanicall mechanically y or electr<strong>on</strong>ically by the building occupants.<br />

Page 149


Note:<br />

Figure 11.2: METHOD OF MEASURING P AND H<br />

1. Shading devices can include fixed louvers, shading screens and other types of per<str<strong>on</strong>g>for</str<strong>on</strong>g>ated or fixed angle slatted shades.<br />

However, such devices need to be designed <str<strong>on</strong>g>for</str<strong>on</strong>g> the climate and latitude to ensure that summer sun penetrati<strong>on</strong> is restricted,<br />

while winter sun access is achieved.<br />

2. Gutters can <strong>on</strong>ly be c<strong>on</strong>sidered as providing shading if attached to a shading projecti<strong>on</strong> such as a verandah, fixed canopy,<br />

eaves, shading hood, balc<strong>on</strong>y or the like.<br />

3. Shading devices can be either attached or located adjacent to the building. For example, a free free-standing lattice screen may<br />

be c<strong>on</strong>sidered to provide shading to glazing if it complies with 11.5.<br />

Page 150


11.6 PERMISSIBLE AIR LEAKAGE<br />

Maximum permissible air leakage <str<strong>on</strong>g>for</str<strong>on</strong>g> open<br />

tested to ASTM E283.<br />

Maximum permissible air leakage <str<strong>on</strong>g>for</str<strong>on</strong>g> open-able windows shall be 2 l/m 2 /s with a pressure difference of 75Pa, when<br />

Maximum permissible air leakage <str<strong>on</strong>g>for</str<strong>on</strong>g> n<strong>on</strong><br />

tested to ASTM E283.<br />

Maximum permissible air leakage <str<strong>on</strong>g>for</str<strong>on</strong>g> n<strong>on</strong>-open-able windows is 0.306 l/m 2 /s with pressure<br />

For double acti<strong>on</strong> swing doors and revolving doors, the maximum permissible air leakage shall be 5 l/m<br />

difference of 75Pa, when tested to ASTM E283.<br />

2 /s with a pressure<br />

11.7 ROOFLIGHTS<br />

Roof lights serving a habitable room, public area <strong>on</strong> an interc<strong>on</strong>necting space such as a corridor, hallway, stairway or the<br />

like.<br />

a) If the total area of roof lights is more than 1,5% but not more than 10% of the floor area or space they serve, must<br />

comply with Table 11.8.<br />

b) If the total area of roof lights is more than 10% of the floor area of the room or space they serve may <strong>on</strong>ly be used<br />

where the transparent and translucent elements of the roof lights including any imper<str<strong>on</strong>g>for</str<strong>on</strong>g>ated ceiling diffuser<br />

achieves an SHGH of not more than 00.30<br />

and a total U-value of not more than 2.0.<br />

Page 151<br />

/s with pressure difference of 75Pa, when<br />

TABLE 11.8: : Roof lights – Thermal Per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance of Transparent and Translucent Elements<br />

Total are of roof lights serving the room or space as a percentage of the floor area of the<br />

Roof light shaft index<br />

room or space<br />

(see Note 1) More than 1.5% and up to More than 3% and More than 5% and<br />

3%<br />

up to 5%<br />

up to 10%<br />

SHGC of not more than 0.75 SHGC of not more than 0.50 SHGC of not more than 0.25<br />

Less than 0.5 and a Total UU-value<br />

of not and a Total U-value of not and a Total U-value of not<br />

more than 5.0<br />

more than 5.0<br />

more than 2.5<br />

0.5 to less than 1.0<br />

Total U-value value of not more<br />

than 5.0<br />

SHGC of not more than 0.70<br />

and a Total U-value of not<br />

more than 5.0<br />

SHGC of not more than 0.35<br />

and a Total U-value of not<br />

more than 2.5<br />

1.0 to less than 2.5<br />

Total U-value value of not more<br />

than 5.0<br />

Total U-value of not more<br />

than 5.0<br />

SHGC of not more than 0.45<br />

and a Total U-value<br />

0.5 to less than 1.0<br />

Notes:<br />

Total U-value value of not more<br />

than 5.0<br />

Total U-value of not more<br />

than 5.0<br />

Total U-value of not more<br />

than 2.5<br />

1. The roof light shaft index is determined by measuring the distance from the centre of the shaft at the roof to the centre of the shaft<br />

at the ceiling level and dividing it by the average internal dimensi<strong>on</strong> of the shaft opening at the ceiling level (or the diameter <str<strong>on</strong>g>for</str<strong>on</strong>g> a<br />

circular shaft) in the same units of measurement.<br />

2. The total area of a roof lights is the combined area <str<strong>on</strong>g>for</str<strong>on</strong>g> all roof lights serving the room or space.<br />

3. The area of a roof light is the area of the roof opening that allows light to enter the building.<br />

4. The thermal per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance of an imper<str<strong>on</strong>g>for</str<strong>on</strong>g>ate ceiling diffuser may be included in the Total RR-value<br />

value of a roof light.


Page 152


CHAPTER XII<br />

SAFIERA<br />

TESTING PROTOCOL<br />

Page 153


12. SAFIERA TESTING PROTOCOL<br />

12.1. INTRODUCTION<br />

Fenestrati<strong>on</strong> refers to the arrangement, proporti<strong>on</strong>ing, and design of windows and doors in a building. The energy<br />

efficiency of the building envelope is greatly impacted by the fenestrati<strong>on</strong> systems. Windows ws str<strong>on</strong>gly influence the use<br />

of the building and the productivity and com<str<strong>on</strong>g>for</str<strong>on</strong>g>t of its occupants<br />

The annual thermal per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance of any fenestrati<strong>on</strong> system can be determined from three energy per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance<br />

characteristics:<br />

Solar heat gain coefficient (SHGC) <str<strong>on</strong>g>for</str<strong>on</strong>g>merly known as the shading coefficient<br />

U-factor factor sometimes referred to as UU-value<br />

or thermal transmittance<br />

Air leakage rating<br />

The fenestrati<strong>on</strong> testing procedure has been developed by the Nati<strong>on</strong>al Fenestrati<strong>on</strong> Rating Council (NFRC) in America<br />

to meet the need <str<strong>on</strong>g>for</str<strong>on</strong>g> a uni<str<strong>on</strong>g>for</str<strong>on</strong>g>m and accurate means <str<strong>on</strong>g>for</str<strong>on</strong>g> evaluating the UU-Factors<br />

Factors of fenestrati<strong>on</strong> systems. This procedure<br />

uses state-of-the-art art computer simulati<strong>on</strong> software tools and physical hot hotbox testing.<br />

The SHGC and U-factor factor have been determined by an internatio internati<strong>on</strong>al nal certificati<strong>on</strong> and labelling program developed by the<br />

Nati<strong>on</strong>al Fenestrati<strong>on</strong> Rating Council (NFRC NFRC) in America.<br />

Because NFRC combines testing and computer simulati<strong>on</strong> to determine the actual values used to characterize the thermal<br />

per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance of a particular fenestrati<strong>on</strong> system, it is important that the most accurate test and simulati<strong>on</strong> methods be used<br />

to evaluate the products.<br />

Ratings per this procedure are based <strong>on</strong> computer simulati<strong>on</strong>s. A physical test <strong>on</strong> a representa representative specimen is used to<br />

validate product c<strong>on</strong><str<strong>on</strong>g>for</str<strong>on</strong>g>mance and the computer simulati<strong>on</strong>s. Products that cannot be simulated use ratings based <strong>on</strong><br />

physical testing.<br />

The Rotatable Guarded Hot Box (RGHB) RGHB) is typically used to measure the thermal transmittance (U (U-factor) of test<br />

specimens mounted in a vertical orientati<strong>on</strong>, but the entire chamber can rotate so that measurements can be per<str<strong>on</strong>g>for</str<strong>on</strong>g>med<br />

with the test specimen at any tilt between vertical and horiz<strong>on</strong>tal. Not <strong>on</strong>ly can this chamber be used to test in accordance<br />

with ASTM C 1363, but also it can per<str<strong>on</strong>g>for</str<strong>on</strong>g>m thermal transmittance tests of fenestrati<strong>on</strong> systems that are smaller than the<br />

area required by ASTM C 1199-97.<br />

The Rotatable Guarded Hot Box (RGHB RGHB) is capable of testing the U-factors factors of building envelope systems in accordance<br />

with ASTM C 1363-05. This would include insulati<strong>on</strong> products and roof systems. The insulati<strong>on</strong> testing procedure is in<br />

accordance with the thermal per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance of building materi materials and envelope assemblies.<br />

PROCEDURE TO EVALUATE E FENESTRATION<br />

1. Total product solar heat gain coefficient and visible transmittance NFRC 200<br />

2. Glazing layer optical properties<br />

NFRC 300<br />

3. Air leakage<br />

NFRC 400<br />

4. C<strong>on</strong>densati<strong>on</strong> resistance rating<br />

NFRC 500<br />

12.2 REFERENCES<br />

NFRC 200: PROCEDURE FOR INTERIM STANDARD TEST METHOD FOR MEAS MEASURING THE SOLAR<br />

HEAT GAIN COEFFICIEN<br />

COEFFICIENT OF FENESTRATION SYSTEMS STEMS USING CALORIME<br />

CALORIMETRY HOT<br />

BOX METHODS<br />

RELEVANT STANDARDS APPLICABLE PPLICABLE TO NFRC 20 200:<br />

ASTM C 168: Terminology Relating elating to Thermal Insulating Materials, Annual Book of ASTM Standards, Vol. 04.06<br />

ASTM E 631: Terminology of Building C<strong>on</strong>structi<strong>on</strong>s. Annual Book of ASTM Standards, Vol. 12.02.<br />

ASTM E 772: Terminology Relating to Solar Energy C<strong>on</strong>versi<strong>on</strong>, Annual Book of ASTM Standards, Vol. 12.02.<br />

ASTM C 1199-97: 97: Test Method <str<strong>on</strong>g>for</str<strong>on</strong>g> Measuring the Steady Steady-State State Thermal Transmittance of Fenestrati<strong>on</strong> Systems Using<br />

Hot Box Methods, Annual Book of ASTM Standards, Vol. 04.11.<br />

Page 154


ASTM E 283: Test Method <str<strong>on</strong>g>for</str<strong>on</strong>g> Rate of Air Leakage through Exterior Windows, Curtain Walls and Doors under<br />

Specified Pressure Difference across the Specimen, Annual Book of ASTM Standards, Vol. 04.11.<br />

ASTM E 1423: Practice <str<strong>on</strong>g>for</str<strong>on</strong>g> Determining the Steady Steady-State State Thermal Transmittance of Fenestrati<strong>on</strong> Sy Systems, Annual<br />

Book of ASTM Standards, Vol. 12.02. (SHGC)<br />

ASTM E 824: Test Method <str<strong>on</strong>g>for</str<strong>on</strong>g> Transfer of Calibrati<strong>on</strong> from Reference to Field Radiometers, Annual Book of ASTM<br />

Standards, Vol. 14.04.<br />

ASTM C 1363-05: 05: Surface Temperature Differences/Air Temperatures Standard Test Method <str<strong>on</strong>g>for</str<strong>on</strong>g> the Thermal<br />

Per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance of Building Assemblies by Means of a Hot Box Apparatus<br />

ASTM C 1363: Standard Method of Test <str<strong>on</strong>g>for</str<strong>on</strong>g> The Thermal Per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance of Building Assemblies by Means of A Hot Box<br />

Apparatus, Annual Book of ASTM Standa Standards, rds, Vol. 04.11 (Interior surface temperatures)<br />

ASTM E 903: Standard Methods of Test <str<strong>on</strong>g>for</str<strong>on</strong>g> Solar Absorbance, Reflectance and Transmittance of Materials Using<br />

Integrating Spheres<br />

ASTM C 1371: Standard Test Method <str<strong>on</strong>g>for</str<strong>on</strong>g> Determinati<strong>on</strong> of Emittance of Materia Materials ls near Room Temperature Using<br />

Portable Emissometers, Annual Book of ASTM Standards, Vol. 04.11.<br />

ASTM E 1585: Standard Test Method of Emittance of Specular Using Spectrometric Measurements.<br />

ISO 9060: Solar Energy – Specificati<strong>on</strong> and Classificati<strong>on</strong> of Instruments <str<strong>on</strong>g>for</str<strong>on</strong>g> Measuring Hemispherical Solar and<br />

Direct Solar Radiati<strong>on</strong>. Available from ASHRAE Inc.<br />

ISO 15099: Thermal Per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance of Windows, Doors and Shading Devices — Detailed Calculati<strong>on</strong>s. Available from<br />

ASHRAE Inc.<br />

NFRC 300: TEST METHOD D FOR DE DETERMINING THE SOLAR OPTICAL PROPERTIES OOF<br />

GLAZING<br />

MATERIALS AND SYSTEM SYSTEMS<br />

RELEVANT STANDARDS APPLICABLE PPLICABLE TO NFRC 30 300:<br />

ASTM E 903-1996: 1996: Standard Test Method <str<strong>on</strong>g>for</str<strong>on</strong>g> Solar Absorptance, Reflectance and Transmittance of Materials Using<br />

Integrating Spheres.<br />

CIE 89/3-1991: 1991: CIE Technical Collecti<strong>on</strong> 1990/3. Divisi<strong>on</strong> 6 Report: On the deteriorati<strong>on</strong> of exhibited Museum Objects<br />

by Optical radiati<strong>on</strong>.<br />

ISO 9845-1:1992 1:1992 (E): Solar energy - Reference Solar Spectral Irradiance at the Ground at Different Receiving<br />

C<strong>on</strong>diti<strong>on</strong>s.<br />

ISO/CIE 10526: 1991 (E) CIE: Standard Colorimetric Illuminants.<br />

ISO/CIE 10527: 1991 (E) CIE: Standard Colorimetric Observers.<br />

ASTM E 179-96 (2003): Standard Guide <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>Selecti<strong>on</strong></str<strong>on</strong>g> of Geometric C<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>for</str<strong>on</strong>g> Measurement of Reflecti<strong>on</strong> and<br />

Transmissi<strong>on</strong> Properties of Materials<br />

ASTM E 284-03a: 03a: Standard Terminology of Appearance<br />

ASTM E 932-89 89 (2002): Standard Practice <str<strong>on</strong>g>for</str<strong>on</strong>g> Describing and Measuring Per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance of Dispersive Infrared<br />

Spectroradiometers<br />

ASTM E 1164-02 02 (2003): Standard Practice <str<strong>on</strong>g>for</str<strong>on</strong>g> Obtaini Obtaining Spectrometric Data <str<strong>on</strong>g>for</str<strong>on</strong>g> Object-Color Color Evaluati<strong>on</strong><br />

NFRC 400: PROCEDURE FOR DETERMINING FENE FENESTRATION PRODUCT AIR LEAKAGE<br />

RELEVANT STANDARDS APPLICABLE PPLICABLE TO NFRC 40 400:<br />

ASTM E 283: Test Method <str<strong>on</strong>g>for</str<strong>on</strong>g> Rate of Air Leakage through Exterior Windows, Curtain Walls a aand<br />

Doors under<br />

Specified Pressure Difference across the Specimen, Annual Book of ASTM Standards, Vol. 04.11.<br />

Page 155


NFRC 500: PROCEDURE FOR DETERMINING FENE FENESTRATION STRATION PRODUCT CON CONDENSATION<br />

RESISTANCE VALUES<br />

RELEVANT STANDARDS APPLICABLE PPLICABLE TO NFRC 50 500:<br />

NFRC: Software Approval Guide<strong>line</strong>s (Simulati<strong>on</strong> Method)<br />

NFRC 100: Procedures <str<strong>on</strong>g>for</str<strong>on</strong>g> Determining Fenestrati<strong>on</strong> Product UU-Factors<br />

NFRC 101: Procedure <str<strong>on</strong>g>for</str<strong>on</strong>g> Determining Thermophysical Properties of Materials <str<strong>on</strong>g>for</str<strong>on</strong>g> Use in NFRC NFRC-Approved Software<br />

Programs<br />

NFRC 102: Procedure dure <str<strong>on</strong>g>for</str<strong>on</strong>g> Measuring the Steady State Thermal Transmittance of Fenestrati<strong>on</strong> Systems.<br />

ASTM C 1199-97: 97: Test Method <str<strong>on</strong>g>for</str<strong>on</strong>g> Measuring the Steady Steady-State State Thermal Transmittance of Fenestrati<strong>on</strong> Systems Using<br />

Hot Box Methods, Annual Book of ASTM Standards, Vol. 04.11.<br />

ASTM E 1423: Practice <str<strong>on</strong>g>for</str<strong>on</strong>g> Determining the Steady Steady-State State Thermal Transmittance of Fenestrati<strong>on</strong> Systems, Annual Book<br />

of ASTM Standards, Vol. 12.02. (SHGC)<br />

12.3 AIM<br />

The aim is to reduce heat transfer through the building envelope and thus the electricity required and improving energy<br />

efficiency of the building envelope.<br />

12.4 PURPOSE<br />

To specify a method of testing determining the UU-Factor<br />

Factor (thermal transmittance) of fenestrati<strong>on</strong> products, fenestrati<strong>on</strong><br />

systems, insulati<strong>on</strong> products and insulati<strong>on</strong> and roof ssystems<br />

ystems to reduce the energy c<strong>on</strong>sumpti<strong>on</strong> of a building envelope<br />

which is <strong>on</strong>e aspect of energy c<strong>on</strong>servati<strong>on</strong>.<br />

12.5 SCOPE<br />

PRODUCTS COVERED<br />

A. Products of all types as defined in Table 7.1.<br />

B. Products of all frame materials including, but not limited to, aluminum, steel, thermally broken aluminum, wood,<br />

vinyl, rein<str<strong>on</strong>g>for</str<strong>on</strong>g>ced vinyl, fiberglass and plastic, used singularly or in combinati<strong>on</strong> or products utilizing foam as a<br />

core material.<br />

C. Products s of all glazing materials, tints and types, including, but not limited to, clear glass, tinted glass, stained<br />

glass, glass block, thin plastic films (internally suspended, internally applied or externally applied), rigid plastics<br />

and translucent fiberglass s with or without any solar c<strong>on</strong>trol, low low-E E or any other partially transparent coating and<br />

products with manufactured decorative opaque insulated lazing panels, designed <str<strong>on</strong>g>for</str<strong>on</strong>g> interchangeability with other<br />

glazing opti<strong>on</strong>s.<br />

D. Products with any or no gap width dth between glazing layers.<br />

E. Products with any spacer or spacer systems between glazings, including, but not limited to, metallic, n<strong>on</strong> n<strong>on</strong>-metallic<br />

or composite spacers.<br />

F. Products utilizing any and all glazing dividers, including, but not limited to, interior, exterior or between glazing<br />

grilles, muntin bars, true divided lites or simulated divided lites.<br />

G. Products with any gas-fill fill between glazing layers, including, but not limited to, air, arg<strong>on</strong>, krypt<strong>on</strong> or mixes of<br />

these gases; and<br />

H. Products utilizing shading systems between glazing layers, currently limited to those that are an integral, i.e., n<strong>on</strong> n<strong>on</strong>removable,<br />

part of the product.<br />

1.<br />

Page 156<br />

Dynamic Glazing Products


12.6 PRODUCTS AND EFFECTS NOT COVERED<br />

A. Products with shading systems other than those listed in Secti<strong>on</strong> 12.1.<br />

B. Thermal per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance changes of a fenestrati<strong>on</strong> product over the course of time, i.e., l<strong>on</strong>g l<strong>on</strong>g-term energy<br />

per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance; and<br />

12.7 MODEL SIZES AND CONFIGURATIONS<br />

IGURATIONS<br />

For each individual product, total fenestrati<strong>on</strong> pro product U-Factors Factors shall be reported <str<strong>on</strong>g>for</str<strong>on</strong>g> the specified c<strong>on</strong>figurati<strong>on</strong> at the<br />

model size as shown in the Table 12.7.1<br />

TABLE 12.7.1: Product Types and Model Sizes<br />

Product Type<br />

Opening (X)<br />

N<strong>on</strong>-operating (O)<br />

Model Size (width by height)<br />

Opening dimensi<strong>on</strong>s<br />

Fixed (includes n<strong>on</strong>standard shapes)<br />

O 1190mm x 1490mm<br />

Casement – Top hung<br />

XX 1190mm x 1490mm<br />

Casement – Side hung<br />

X 590mm 0mm x 1490mm<br />

Turn and Tilt<br />

X 1190mm x 1490mm<br />

Pivoted<br />

X 1190mm x 1490mm<br />

Horiz<strong>on</strong>tal slider<br />

XO or XX 1490mm x 1190mm<br />

Vertical slider<br />

XO or XX 1190mm x 1490mm<br />

Standard Patio Door<br />

XO or XX 2090mm x 2090mm<br />

Sidelight<br />

X 590mm x 2090 2090mm<br />

Hinged doors<br />

X or XX 990mm x 2090mm mm or 2090 x 2090<br />

Swing doors<br />

X or XX 990mm x 2090mm mm or 2090 x 2090<br />

Sliding folding door<br />

X 4100mm x 22600mm<br />

Stackaway door<br />

X 4100mm x 22600mm<br />

Adjustable glass louvers<br />

X 590mm 0mm x 11190mm<br />

Skylight/roof window<br />

X 1190mm x 1190mm<br />

Tubular Daylighting Device<br />

O 350mm in diameter<br />

Insulati<strong>on</strong> <strong>on</strong>ly<br />

X 1190mm x 1490mm (assembly size)<br />

Roofing assemblies<br />

X 4100mm x 2600mm<br />

Note: Actual fenestrati<strong>on</strong> size is less 60mm in overall dimensi<strong>on</strong>s, i.e. window size 1190mm x 1490mm into 1250mm x 1551mm<br />

opening.<br />

12.7.2 CONFIGURATIONS<br />

SEE ANNEXURE A<br />

12.8 APPLICATION FOR TESTING ING<br />

12.8.1 FENESTRATION PRODUCT PRODUCTS<br />

Applicants must provide proof that the products offered <str<strong>on</strong>g>for</str<strong>on</strong>g> testing have a valid Per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance Test Certificate/Compliance<br />

Report, c<strong>on</strong>firmati<strong>on</strong> of deflecti<strong>on</strong>, structural pressure, water penetrati<strong>on</strong> and air infiltrati<strong>on</strong> of the product.<br />

12.8.2 Applicati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g>m - see Annexure B<br />

12.8.3 Manufacturers Resp<strong>on</strong>sibility<br />

a) A producti<strong>on</strong> <strong>line</strong> sample of the product subject to test, which shall be shipped, freight prepaid, to the SAFIERA<br />

laboratory situated at TTL.<br />

b) Product drawings, installati<strong>on</strong> specificati<strong>on</strong>s and any other in<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> necessary to c<strong>on</strong>duct the test simulati<strong>on</strong> of<br />

the product shall be delivered together with the sample to be tested, to the SAFIERA laboratory situated at TTL. In<br />

particular, the manufacturer urer shall also provide the complete results of THERM THERM-computer computer simulati<strong>on</strong>s (see Secti<strong>on</strong><br />

2) <str<strong>on</strong>g>for</str<strong>on</strong>g> the product to be tested as per<str<strong>on</strong>g>for</str<strong>on</strong>g>med by in in-house house simulators or c<strong>on</strong>tracted simulators <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>mal verificati<strong>on</strong><br />

by the TTL simulators.<br />

Page 157


12.9 RATING<br />

TTL shall generate enerate a comprehensive report following testing. The UU-Factor<br />

Factor measured shall be reported to 0.05 W/m<br />

If area-weighting weighting is d<strong>on</strong>e, software full floating floating-point accuracy shall be used and the final U<br />

two digits following the decimal imal point. If a spreadsheet or hand calculati<strong>on</strong>s are required, all variables used in the<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g>mula shall be expressed to at least three significant decimal places and the final UU-Factor<br />

rounded to two digits bey<strong>on</strong>d<br />

the decimal point.<br />

2 K.<br />

point accuracy shall be used and the final U-Factor shall be rounded to<br />

If a spreadsheet or hand calculati<strong>on</strong>s are required, all variables used in the<br />

Factor rounded to two digits bey<strong>on</strong>d<br />

CONFIGURATIONS<br />

The RGHB can test specimens of up to 4100mm x 2600mm in size. For fenestrati<strong>on</strong> products, the standard size of test<br />

specimens tested or rating purposes is 1190mm x 1490mm. In cases where manufacturers want to test products with n<strong>on</strong>-<br />

standards sizes, it is recommended that the manufacturers engage with the test team at TTL to discuss the cost and other<br />

implicati<strong>on</strong>s of preparing a test frame to accept such a n<strong>on</strong> n<strong>on</strong>-standard standard specimen.<br />

Page 158


Authors:<br />

ANNEX A<br />

ENVIROMENTAL COMPARISON<br />

OF<br />

WINDOW MATERIALS<br />

(Carb<strong>on</strong> footprint)<br />

Discussi<strong>on</strong> Paper<br />

Dr P Ly<strong>on</strong>s – Peter Ly<strong>on</strong>s & Associates, Australia<br />

Dr A E Paters<strong>on</strong> – Aluminium Federati<strong>on</strong> of Southern Africa<br />

Page 159


A.1 INTRODUCTION<br />

This paper was commissi<strong>on</strong>ed by the South African Fenestrati<strong>on</strong> & Insulati<strong>on</strong> Energy Rating Associati<strong>on</strong> (SAFIERA)<br />

and coincides with the introducti<strong>on</strong> of the US Nati<strong>on</strong>al Fenestrati<strong>on</strong> Rating Council (NFRC)<br />

Our report explores the relative envir<strong>on</strong>mental advantages and disadvantages of aluminium, tim<br />

windows. All calculati<strong>on</strong>s are based <strong>on</strong> a 1200mm (h) x 1500mm (w) 22-light<br />

window with <strong>on</strong>e vertical mulli<strong>on</strong>.<br />

3 system by South Africa.<br />

Our report explores the relative envir<strong>on</strong>mental advantages and disadvantages of aluminium, timber, uPVC and steel<br />

light window with <strong>on</strong>e vertical mulli<strong>on</strong>.<br />

When <strong>on</strong>e c<strong>on</strong>siders envir<strong>on</strong>mental impact <strong>on</strong> buildings, three energy periods are involved during the life cycle. These<br />

are the energy nergy of c<strong>on</strong>structi<strong>on</strong>, the energy of use and the energy of demoliti<strong>on</strong>, the embodied energy, the operati<strong>on</strong>al<br />

energy and the residual energy respectively. (The ttypical<br />

ypical energy usage in Europe over a 50 50-year life span is 132 Terra<br />

joules. Of this 18 Terra joules ules (14%) relates to materials and c<strong>on</strong>structi<strong>on</strong> 80 (61%), to use, 21 (16%) to maintenance,<br />

and 12 to fitting out (9%).) For calculati<strong>on</strong> c<strong>on</strong>sistency a factor of three (about 75% 61/14 to allow <str<strong>on</strong>g>for</str<strong>on</strong>g> the more benign<br />

RSA c<strong>on</strong>diti<strong>on</strong>s) has been used between embo embodied died energy and thermal loss to measure envir<strong>on</strong>mental impact.<br />

Embodied energy is defined as the total primary energy that has to be removed from a stock within the earth to produce a<br />

specific product or service. Operati<strong>on</strong>al energy is the quantity of energy (mainly heating, lighting and air c<strong>on</strong>diti<strong>on</strong>ing)<br />

c<strong>on</strong>sumed during the life of the building and lost through the building envelope, a functi<strong>on</strong> of thermal loss through<br />

c<strong>on</strong>ductivity and leakage. Residual energy is the embodied energy that can be reclai reclaimed med at end of life. Greenhouse<br />

gasses are c<strong>on</strong>tributed to by the producti<strong>on</strong> of energy the extent of c<strong>on</strong>tributi<strong>on</strong> depending <strong>on</strong> the energy source used. In<br />

South Africa about 0,361kg of CO2-e e is produced per MJ of energy produced mainly from coal.<br />

Based <strong>on</strong> a comm<strong>on</strong> source of energy, comparis<strong>on</strong>s between materials are relatively simple. However the embodied<br />

energy in electricity producti<strong>on</strong> differs widely depending <strong>on</strong> the c<strong>on</strong>versi<strong>on</strong> efficiency related to the source of energy;<br />

Hydro and nuclear power require 3600, 600, coal 18784, natural gas 28360 and fuel oil 27180MJ/MWh respectively (source<br />

IAI). The c<strong>on</strong>versi<strong>on</strong> efficiency of each source to electricity can be assessed from the scientific definiti<strong>on</strong> 1J=1Ws. As<br />

an example, the c<strong>on</strong>versi<strong>on</strong> efficiency of coal to elec electricity is about 20%.<br />

Throughout this report we have used as our unit of energy the megajoule [1 MJ = 10<br />

joules = 1000 MJ) and petajoule (1 PJ = 10<br />

3.6 MJ, i.e. 1Ws=1J) as an alternative unit of energy. The basis <str<strong>on</strong>g>for</str<strong>on</strong>g> analysing embodied energy of windows is the<br />

input-output method’ (Craw<str<strong>on</strong>g>for</str<strong>on</strong>g>d 2005).(1)<br />

6 joules (J)], gigajoule (1 GJ = 10<br />

joules = 1000 MJ) and petajoule (1 PJ = 10 15 J = 10 9 joules (J)], gigajoule (1 GJ = 10<br />

MJ). For electricity <strong>on</strong>ly we have used the kilowatt<br />

1Ws=1J) as an alternative unit of energy. The basis <str<strong>on</strong>g>for</str<strong>on</strong>g> analysing embodied energy of windows is the<br />

(Craw<str<strong>on</strong>g>for</str<strong>on</strong>g>d 2005).(1)<br />

9<br />

MJ). For electricity <strong>on</strong>ly we have used the kilowatt-hour (1 kWh =<br />

1Ws=1J) as an alternative unit of energy. The basis <str<strong>on</strong>g>for</str<strong>on</strong>g> analysing embodied energy of windows is the ‘hybrid<br />

A.2 WINDOW MATERIALS<br />

Energy per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance ratings <str<strong>on</strong>g>for</str<strong>on</strong>g> windows have been established <str<strong>on</strong>g>for</str<strong>on</strong>g> climatic regi<strong>on</strong>s in numerous countries including the<br />

USA, most European countries and Australasia.<br />

The main headings <str<strong>on</strong>g>for</str<strong>on</strong>g> which ratings have been decided are:<br />

1) The U factor – expressed as U-value, alue, the rate at which heat is lost from a building. The lower the value the better.<br />

2) The R-value. alue. This relates how well the window insulates the building and restricts heat transfer. The higher the<br />

value, the more effective the insulati<strong>on</strong> is in resisting heat flow.<br />

3) SHGC, the solar heat gain coefficient. This indicates how well a product blocks heat from the sun. The lower the<br />

number the better. A low SHGC means the window transmits less solar heat.<br />

4) VT, the visible transmittance refers to the visible light being transmitted. The higher the VT, the more light is<br />

transmitted.<br />

5) AL, the leakage. Heat loss and gin occur by infiltrati<strong>on</strong> of air through the cracks in the window assembly (or<br />

opening sash). The lower the AL the bette better.<br />

6) C<strong>on</strong>densati<strong>on</strong> resistance measures the ability of a product to resist the <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> of c<strong>on</strong>densati<strong>on</strong> <strong>on</strong> the interior<br />

surface of the product.<br />

Of the above, items 3, 4 and 6 relate mainly to the glass. All factory factory-manufactured manufactured windows used glass glass, or occasi<strong>on</strong>ally<br />

PMMA (acrylic sheet). In this report we assume that various glazing opti<strong>on</strong>s are available equally am<strong>on</strong>g competing<br />

window frame technologies, and there<str<strong>on</strong>g>for</str<strong>on</strong>g>e the envir<strong>on</strong>mental impacts of the <str<strong>on</strong>g>glazed</str<strong>on</strong>g> part of windows are not c<strong>on</strong>sidered<br />

further.<br />

GREENHOUSE-GAS GAS IMPACT OF FRAME MATERIALS<br />

The use of energy c<strong>on</strong>tributes to the development of the greenhouse gasses that impact <strong>on</strong> global warming. The material<br />

analyses that follow are made up of three comp<strong>on</strong>ents. The first is the producti<strong>on</strong> of electricity, the sec<strong>on</strong>d the<br />

manufacture anufacture of the material, the third the residual energy.<br />

3 www.nfrc.org<br />

Page 160


ALUMINIUM<br />

Aluminium is the most widely-used used frame material in South Africa’s windows. It is smelted locally. While it is highly<br />

c<strong>on</strong>ductive, this potential heat flow disadvantage can be all but eliminated by better frame design and/or additi<strong>on</strong>al<br />

measures such as thermal breaks.<br />

The South African primary aluminium smelters draw 14MWh (50M (50MJ) J) of electricity per t<strong>on</strong> of primary aluminium. Thus<br />

when manufactured solely from primary aluminium ( (i.e., , derived from alumina), without any recycled c<strong>on</strong>tent, and using<br />

coal as 88% (4) of the source of electricity (remainder hydro, nuclear, storage and other) and m), it requires<br />

approximately 64MWh (230MJ) of embodied energy to manufacture 1 kg of aluminium. (This compares reas<strong>on</strong>ably with<br />

the Laws<strong>on</strong> mean of 250MJ/kg (2). The embodied energy varies from <strong>on</strong>e smelter to another depending mainly <strong>on</strong> the<br />

energy rgy source and to some extent <strong>on</strong> smelter efficiency. While the range 200 – 300 MJ/kg is suggested by Laws<strong>on</strong>, using<br />

differing energy sources <str<strong>on</strong>g>for</str<strong>on</strong>g> an equally efficient smelter show this range to be too small, the factor of 1,5 is reas<strong>on</strong>able as<br />

an assessment of the smelter efficiency range.<br />

While this ‘embodied energy’ <strong>on</strong> a per-kilogram kilogram basis using primary aluminium is apparently high, a typical window both<br />

uses a proporti<strong>on</strong> of recycled metal and retains energy at end of life; the majority of the embodied ene energy in the material<br />

itself is reclaimed <strong>on</strong> re-melting – it is not lost; it remains embodied energy.<br />

To re-melt melt aluminium theoretically takes 5% of the energy required to initially separate the metal from its oxide. This<br />

can be repeated time and again, , theoretically infinitely, as the metal, being an element, does not degrade with reuse.<br />

EMBEDDED ENERGY USE - EXTRUSIONS<br />

Primary aluminium extrusi<strong>on</strong>s include primary metal and recycled metal. Recycled metal can be run round scrap (scrap<br />

that does not leave eave the premises) and bought in scrap. As aluminium is an element, re re-melting melting does not degrade the<br />

material – however as the recycling process does add small quantities of other elements such as ir<strong>on</strong> pick up from the<br />

holding furnace, there is a need to add dd some primary metal as a “sweetener”.<br />

Original kg primary metal 230 MJ/kg. Practical extrusi<strong>on</strong> 40% primary aluminium, 60% scrap (combinati<strong>on</strong> of bought in<br />

scrap and run round scrap). 40% primary material fully recovered, 100% re re-melt 40 x 230 0 = 60% x 5% x 230 = 99MJ/kg 99MJ/kg.<br />

From Table 1 based <strong>on</strong> the Laws<strong>on</strong> model, the mass of aluminium in a typical residential window is about 7kg which,<br />

based <strong>on</strong> primary aluminium requires about 1489MJ of electricity to produce, (equivalent to about 537kg of CO2-e of<br />

greenhouse gas emissi<strong>on</strong>s) in South Africa. However as average aluminium extrusi<strong>on</strong>s include 61% recycled stock; the<br />

electricity requirement is 704MJ/kg. A recycled c<strong>on</strong>tent of 90% is possible which will reduce the above figures to as low<br />

as 47 kWh (169 MJ), or 61 kg CO2-e.)<br />

USE PHASE – THERMAL LOSS<br />

Thermal flow can be divided into two secti<strong>on</strong>s; loss through ill fitting windows and loss through material properties and<br />

loss through leakage. Thermal break, double <str<strong>on</strong>g>glazed</str<strong>on</strong>g> Aluminium has been c<strong>on</strong>sider c<strong>on</strong>sidered ed a high per<str<strong>on</strong>g>for</str<strong>on</strong>g>ming window wi with a<br />

thermal per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance similar to uPVC and timber. It has also been assumed well fitting.<br />

DEMOLITION/ REUSE<br />

Residual energy embodied in the frame which can be released <strong>on</strong> end of life, re re-melted melted and reused 90% recovery x 250<br />

1MJ/kg = 150MJ/kg. The net energy used is apparently negative (105,1 – 150) because the re re-melted material is<br />

measured against the energy requirements of primary metal which would otherwise be used recovery. However the<br />

greenhouse gases associated with th the original producti<strong>on</strong> remain.<br />

TIMBER<br />

The most comm<strong>on</strong> timbers used in residential windows are kiln kiln-dried dried softwoods and hardwoods. All timbers are highly<br />

thermally insulating. The most popular wood used to be western red cedar from the northwest U UUnited<br />

States and western<br />

Canada. In Australia in recent years this has been supplemented or replaced by cheaper hardwood imports from<br />

Southeast Asia (especially Malaysia) such as meranti and merbau (kwila). In some Countries, ountries, c<strong>on</strong>structi<strong>on</strong> timbers come<br />

from local plantati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g>ests. In South Africa, where the most comm<strong>on</strong> window framing material is meranti a relatively<br />

unstable wood, much window-frame frame timber is imported from Gab<strong>on</strong>. The instability of meranti leads to thermal leakage.<br />

Increasingly, rain<str<strong>on</strong>g>for</str<strong>on</strong>g>est timbers used <str<strong>on</strong>g>for</str<strong>on</strong>g> windows have been the subject of close scrutiny by envir<strong>on</strong>mental groups<br />

because they are typically harvested <strong>on</strong> an unsustainable basis. (In South Africa structural timber is in short supply and is<br />

anticipated by the timber industry to be 30% short of nati<strong>on</strong>al needs <str<strong>on</strong>g>for</str<strong>on</strong>g> at least the next ten years.) This accelerates the<br />

destructi<strong>on</strong> of tropical <str<strong>on</strong>g>for</str<strong>on</strong>g>ests and with them the habitat <str<strong>on</strong>g>for</str<strong>on</strong>g> irreplaceable flora and fauna; it also c<strong>on</strong>tributes to soil<br />

erosi<strong>on</strong>, landslides and the loss of living <str<strong>on</strong>g>for</str<strong>on</strong>g>est biomass as a carb<strong>on</strong> sink. There have been str<strong>on</strong>g c<strong>on</strong>cerns about illegally<br />

harvested Malaysian timber being imported into Australia. Several third third-party party certificati<strong>on</strong> schemes exist to provide<br />

unbiased in<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> about the origin and c<strong>on</strong>sequences of using imported timbers in c<strong>on</strong>structi<strong>on</strong> but these schemes do<br />

not operate in all countries.<br />

Page 161


Using the Craw<str<strong>on</strong>g>for</str<strong>on</strong>g>d hybrid input-output output model, the embodied energy of kiln kiln-dried dried hardwood is about 25 MJ/kg. This<br />

translates to about 414 MJ embodied energy in a typical wooden window frame. This is spread over extracti<strong>on</strong>, milling<br />

and transportati<strong>on</strong> – processes which depend <strong>on</strong> fossil fuels. The coal coal-fired fired electrical carb<strong>on</strong> equivalent is 150 kg CO CO2-e.<br />

A.3 ENERGY OF USE. USE PHASE ASE – THERMAL LOSS<br />

Maintenance. Timber windows are typically recoated every three to five five-years. years. On the highveld, because of the wet/dry<br />

cycles the timber preservative sector recommended frequency is every two two-years. years. The wet dry cycles also encourage<br />

thermal leakage.<br />

Thermal flow can be divided into two secti<strong>on</strong>s; loss through ill fitting windows and loss through material properties and<br />

loss through leakage. The thermal properties of timber are good, <strong>on</strong> a par with uPVC. However they generally leak.<br />

Shapiro and James (3) c<strong>on</strong>sider timber sash windows 900mm wide x1500mm high. They found leakage of timber<br />

windows to be between the equivalent of a<br />

insert reduced the leakage to 187mm 2 Thermal flow can be divided into two secti<strong>on</strong>s; loss through ill fitting windows and loss through material properties and<br />

loss through leakage. The thermal properties of timber are good, <strong>on</strong> a par with uPVC. However they generally leak.<br />

Shapiro and James (3) c<strong>on</strong>sider timber sash windows 900mm wide x1500mm high. They found leakage of timber<br />

windows to be between the equivalent of a whole 554mm<br />

. The work shows that be<str<strong>on</strong>g>for</str<strong>on</strong>g>e upgrading refit the average loss through leakage was<br />

21% of the energy lest through the window as a whole, this including glass. After retrofit, with the excepti<strong>on</strong> of a poorly<br />

fitting sash (ignored), the c<strong>on</strong>tributi<strong>on</strong> of<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g> typical energy leakage of 21%.<br />

2 (tight fitting) and 1794mm 2 Thermal flow can be divided into two secti<strong>on</strong>s; loss through ill fitting windows and loss through material properties and<br />

loss through leakage. The thermal properties of timber are good, <strong>on</strong> a par with uPVC. However they generally leak.<br />

Shapiro and James (3) c<strong>on</strong>sider timber sash windows 900mm wide x1500mm high. They found leakage of timber<br />

loose fitting). Including a vinyl<br />

. The work shows that be<str<strong>on</strong>g>for</str<strong>on</strong>g>e upgrading refit the average loss through leakage was<br />

21% of the energy lest through the window as a whole, this including glass. After retrofit, with the excepti<strong>on</strong> of a poorly<br />

fitting sash (ignored), the c<strong>on</strong>tributi<strong>on</strong> of leakage to energy costs was 7%, the remainder being n<strong>on</strong> leakage costs. Allow<br />

Residual energy – whilst some windows are reclaimed (say 10%) the majority are simply burned. It is not clear to me<br />

whether this allows <str<strong>on</strong>g>for</str<strong>on</strong>g> in n process off off-cuts of about 15%, i.e. 85% recovery, or the subsequent effects of disposal,<br />

generally by burning – which c<strong>on</strong>tributes to greenhouse gasses. C<strong>on</strong>sidering the treatment of aluminium, I would<br />

anticipate that it does not. According to the (Austr (Australian) alian) Nati<strong>on</strong>al Associati<strong>on</strong> of Forestry Industries, (internet reference<br />

lost but obtainable) greenhouse gas emissi<strong>on</strong>s from burning timber are about eight times less than generating the same<br />

amount of energy using coal. (An equal dry biomass will have the same calorific value, coal has a typical sg of 1,7, cut<br />

timber 0,7 – factor 2,4. cf embodied energy of coal 18784/MJ/MWh, in n South Africa about 0,361kg of CO CO2-e is produced<br />

per MJ of energy produced mainly from coal.)<br />

uPVC<br />

Un-plasticised polyvinyl chloride loride (uPVC) is a widely widely-used used frame material in Europe and North America. It is highly<br />

insulating (<strong>on</strong> a par with timber), oil-based based and extruded like aluminium. It’s Craw<str<strong>on</strong>g>for</str<strong>on</strong>g>d embodied energy is estimated at<br />

163 MJ/kg which translates to about 849 MJ emb embodied odied energy in a complete, typical uPVC window. Some uPVC<br />

windows require additi<strong>on</strong>al internal aluminium or hardwood rein<str<strong>on</strong>g>for</str<strong>on</strong>g>cing which increases the embodied energy. Taking a<br />

round figure of 1000 MJ, this is more than the embodied energy of an aluminium window having a recycled c<strong>on</strong>tent<br />

greater than 40%. The coal-fired fired electrical carb<strong>on</strong> equivalent is 360 kg CO CO2-e.<br />

1) The energy required to reclaim uPVC is the same as to claim it in the first place (Source EAA analysis of energy<br />

demand <str<strong>on</strong>g>for</str<strong>on</strong>g> primary and recycling ing – reference available if required). If we assume that off off-cuts re reclaimed there<br />

is no a net effect from disposal, but the energy required from a typical 15% off off-cut cut reclamati<strong>on</strong> needs to be<br />

c<strong>on</strong>sidered, practically we c<strong>on</strong>sider 85% recovery.<br />

2) Energy of use – assume high per<str<strong>on</strong>g>for</str<strong>on</strong>g>ming windows windows.<br />

3) Residual energy – assume reclamati<strong>on</strong> possible.<br />

STEEL<br />

Mild steel is a widely-used used window frame material in South Africa. It is highly c<strong>on</strong>ductive. It is also highly ill fitting –<br />

which is acceptable in a relatively benign climate until <strong>on</strong>e c<strong>on</strong>siders energy effects. It’s Craw<str<strong>on</strong>g>for</str<strong>on</strong>g>d embodied energy is<br />

estimated at 85.3 MJ/kg which translates to about 2646 MJ embodied energy in a complete steel window of frame mass<br />

31kg. This is about 57% larger than the embodied energ energy y in an aluminium window frame of the same dimensi<strong>on</strong>s. The<br />

coal-fired fired electrical carb<strong>on</strong> equivalent is 956 kg CO CO2-e.<br />

1) The energy required to reclaim steel is the same as to claim it in the first place. If we assume that off off-cuts<br />

reclaimed there is no a net effect from disposal, but the energy required from a typical 15% off off-cut reclamati<strong>on</strong><br />

needs to be c<strong>on</strong>sidered, practically we c<strong>on</strong>sider 85% recovery.<br />

2) Energy of use – assume very low per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance – greater than 21% energy leakage<br />

3) Residual energy – assume reclamati<strong>on</strong> possible.<br />

IMPACT OF FRAME MATERIAL RIAL SURFACE FINISHE FINISHES<br />

ALUMINIUM<br />

Apart from the energy and CO2 impacts of aluminium producti<strong>on</strong>, there is a small impact from the anodising or powdercoating<br />

of window frame secti<strong>on</strong>s. The expected lifetime of such surface finishes is good – typically in excess of 20years.<br />

Page 162


TIMBER<br />

Most timber windows require staining g or painting to withstand the weather. Normally these treatments are re re-applied<br />

every 2 – 5 years. It is true that western red cedar c<strong>on</strong>tains oils which resist rot and weathering much l<strong>on</strong>ger than other<br />

timbers, but many building owners do not like the ccoarse,<br />

oarse, weathered silver appearance that cedar takes <strong>on</strong> if it is not<br />

protected. The result is that most timber windows are end up being recoated a number of times during their service life.<br />

uPVC<br />

Most uPVC windows are supplied white and do not require pain painting ting or other <str<strong>on</strong>g>for</str<strong>on</strong>g>ms of surface protecti<strong>on</strong>. In the past,<br />

some uPVC frames were not stabilised against degradati<strong>on</strong> from ultraviolet radiati<strong>on</strong>, and this was a serious problem in<br />

sunny countries like South Africa. Modern uPVC windows should be structurally sstable<br />

table in all climates.<br />

STEEL<br />

Steel window frames must be painted to prevent corrosi<strong>on</strong>, especially in coastal areas. It is assumed that such finishes<br />

must be re-applied every 5 – 10 years.<br />

A.4 CONCLUSIONS<br />

Using the most up-to-date date assessment methods, it is clear that all window frame materials cause some envir<strong>on</strong>mental<br />

damage. Like other industries, the South African aluminium industry must strive to reduce its energy usage and carb<strong>on</strong><br />

emissi<strong>on</strong>s. However it is clear that aluminium windows can compete directly with timber windows <strong>on</strong> an embodied embodied-<br />

energy basis if the recycled aluminium c<strong>on</strong>tent is greater than 75%.<br />

Aluminium frames can compete with uPVC windows if the recycled c<strong>on</strong>tent is greater than 40%. The damage caused by<br />

sourcing of some rain<str<strong>on</strong>g>for</str<strong>on</strong>g>est timbers is of very serious c<strong>on</strong>cern and requires a coordinated approach by Government,<br />

academics and c<strong>on</strong>sumer groups to provide society with in<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> it requires.<br />

uPVC PVC windows have the lowest <strong>on</strong>going exterior maintenance costs, followed closely by aluminium, while timber<br />

windows require the most maintenance to maintain appearance and functi<strong>on</strong>. The embodied energy of steel windows is,<br />

<strong>on</strong> average, greater than that of aluminium windows. The maintenance require requirements ments of steel windows are fairly high:<br />

greater than those of aluminium windows and potentially approaching those of timber windows.<br />

TABLE 1. Embodied energy and CO CO2-equivalent equivalent <str<strong>on</strong>g>for</str<strong>on</strong>g> window frame materials, assuming electricity used to<br />

manufacture each material. .<br />

Material<br />

Craw<str<strong>on</strong>g>for</str<strong>on</strong>g>d<br />

embodied<br />

energy<br />

(MJ/kg)<br />

Mass<br />

(1200h x 1500w<br />

window)<br />

Craw<str<strong>on</strong>g>for</str<strong>on</strong>g>d<br />

embodied<br />

energy (MJ)<br />

Craw<str<strong>on</strong>g>for</str<strong>on</strong>g>d<br />

embodied<br />

energy (kWh)<br />

Craw<str<strong>on</strong>g>for</str<strong>on</strong>g>d<br />

embodied<br />

CO2-e (kg)<br />

Aluminium 252, ,6 6,7 1690<br />

469 610<br />

Aluminium, 60% recycled 105,1 6,7 704<br />

195 238<br />

Kind-dried hardwood 25,11<br />

16,5 414<br />

115 150<br />

uPVC 192, ,0 5,2 998<br />

277 360<br />

Structural steel<br />

Notes:<br />

85,33<br />

31,0 2646<br />

735 956<br />

1) To o comply with the title this table needs to be extended to include life cycle c<strong>on</strong>tributi<strong>on</strong>s.<br />

(This <strong>on</strong>ly deals with <strong>on</strong>e phase of the envir<strong>on</strong>mental c<strong>on</strong>tributi<strong>on</strong>).<br />

2) The he Laws<strong>on</strong> embodied energy calculati<strong>on</strong>s have not been changed to reflect the fossil fuel (coal) usage in RSA RSA.<br />

A.5 REFERENCES<br />

Craw<str<strong>on</strong>g>for</str<strong>on</strong>g>d, RH. Validati<strong>on</strong> of the Use of Input Input-Output Data <str<strong>on</strong>g>for</str<strong>on</strong>g> Embodied Energy Analysis of the Australian<br />

C<strong>on</strong>structi<strong>on</strong> Industry, , Journal of C<strong>on</strong>structi<strong>on</strong> Research, 6, 1, pp 71 71-90 (2005).<br />

Laws<strong>on</strong>, Bill. Embodied Energy of Building Materials Materials. . BDP Envir<strong>on</strong>ment Design Guide, Royal Australian Institute of<br />

Architects, Pro 2 (August 2006).<br />

Shapiro A M and James B. Creating windows of energy –saving opportunity Home Energy magazine On<strong>line</strong><br />

September/October 1997 (homeenergy.org/archive/hem.dis.anl.gov/ehem/97/970908)<br />

(homeenergy.org/archive/hem.dis.anl.gov/ehem/97/970908).<br />

John Begg. Eskom, Eskom build programme and its oppo opportunities <str<strong>on</strong>g>for</str<strong>on</strong>g> industry, Keynote address SAIW 60<br />

C<strong>on</strong>ference, 28-29 May 2008, Johannesburg esburg.<br />

Page 163<br />

Keynote address SAIW 60 th Anniversary


Notes:<br />

Page 164


Notes:<br />

Page 165


Notes:<br />

Page 166


Notes:<br />

Page 167


Notes:<br />

Page 168


������������� ������������� �������������<br />

��������������� ���������������� ����������������<br />

����������� ����������� �����������

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!