11.07.2015 Views

Oxygen dynamics and plant-sediment interactions in isoetid ...

Oxygen dynamics and plant-sediment interactions in isoetid ...

Oxygen dynamics and plant-sediment interactions in isoetid ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Oxygen</strong> <strong>dynamics</strong> <strong>and</strong> <strong>plant</strong>-<strong>sediment</strong><strong><strong>in</strong>teractions</strong> <strong>in</strong> <strong>isoetid</strong> communitiesfollow<strong>in</strong>g organic enrichment


F A C U L T Y O F S C I E N C EU N I V E R S I T Y O F C O P E N H A G E NB i o l o g i c a l I n s t i t u t eF r e s h w a t e r B i o l o g i c a l L a b o r a t o r yPhD thesisClaus L<strong>in</strong>dskov Møller<strong>Oxygen</strong> <strong>dynamics</strong> <strong>and</strong> <strong>plant</strong>-<strong>sediment</strong> <strong><strong>in</strong>teractions</strong><strong>in</strong> <strong>isoetid</strong> communities follow<strong>in</strong>g organic enrichmentPr<strong>in</strong>cipal Supervisor: Kaj S<strong>and</strong>-JensenSubmitted: 25/05/11


PrefaceThe content of this thesis <strong>in</strong>cludes part of the work I have been <strong>in</strong>volved <strong>in</strong> dur<strong>in</strong>g the last three year as aPhD-student at the Freshwater Biological Laboratory. Five scientific manuscripts are presented forevaluation. Two are already published <strong>in</strong> New Phytologist <strong>and</strong> Plant Signal<strong>in</strong>g <strong>and</strong> Behavior. The otherthree manuscripts are ready for submission. One additional article published <strong>in</strong> the Danish magaz<strong>in</strong>eURT is also <strong>in</strong>cluded.In addition to the papers selected for evaluation I am a co-author of two peer reviewed articles <strong>and</strong> fourarticles published <strong>in</strong> magaz<strong>in</strong>es dur<strong>in</strong>g my time as a PhD-student. One article addresses the rare slow grow<strong>in</strong>gcyanobacterium, Nostoc zetterstedtii (submitted to Limnology & Oceanography), where <strong>in</strong>-situ growth ratesproved to be the slowest recorded for any aquatic macrophyte. Three other articles arose from our yearly fieldtripsto Öl<strong>and</strong> work<strong>in</strong>g with the remarkably <strong>in</strong>habitants of the small alvar ponds an environment with constantlychang<strong>in</strong>g temperatures <strong>and</strong> water levels. One of these articles is published <strong>in</strong> Svensk Botanisk Tidskrift, therema<strong>in</strong><strong>in</strong>g ones <strong>in</strong> URT. The last article is also published <strong>in</strong> URT address<strong>in</strong>g effects of organic enrichment of<strong>sediment</strong>s on root morphology <strong>and</strong> <strong>plant</strong> anchorage.


Content9 Abstract11 Dansk resumé13 Introduction18 Aim of thesis19 Thesis summary25 Conclusions <strong>and</strong> Implications27 Paper 1 <strong>Oxygen</strong>, carbon <strong>and</strong> iron <strong>dynamics</strong> <strong>in</strong> natural <strong>and</strong> organically enriched<strong>sediment</strong>s from oligotrophic lakes <strong>in</strong>habited by <strong>isoetid</strong> vegetation39 Paper 2 High sensitivity of Lobelia dortmanna to <strong>sediment</strong> oxygen depletion follow<strong>in</strong>gorganic enrichment53 Paper 3 Higher gas permeability of leaves provides greater tolerance of Littorellauniflora than Lobelia dortmanna to <strong>sediment</strong> organic enrichment69 Paper 4 Organic enrichment of <strong>sediment</strong>s decreases arbuscular mycorrhizal fungicolonization of the aquatic macrophytes Lobelia dortmanna <strong>and</strong> Littorellauniflora85 Paper 5 Outst<strong>and</strong><strong>in</strong>g Lobelia dortmanna <strong>in</strong> iron armor91 Paper 6 Planterødders overlevelse i v<strong>and</strong>dækket bund99 Acknowledgements


AbstractAbstract● Isoetids occupy littoral zones of the most prist<strong>in</strong>e oligotrophic softwater lakes due to their uniqueadaptations. Intr<strong>in</strong>sic low growth rates, use of <strong>sediment</strong> CO 2 for photosynthesis <strong>and</strong> mycorrhizalsymbiosis enable them to grow where other <strong>plant</strong>s cannot. Eutrophication of many formeroligotrophic lakes has caused a dramatic decl<strong>in</strong>e <strong>in</strong> the occurrence <strong>and</strong> distribution of <strong>isoetid</strong>sthroughout northern Europe <strong>and</strong> North America with<strong>in</strong> the last 100 years s<strong>in</strong>ce degradable organicmatter builds up <strong>in</strong> <strong>sediment</strong>s creat<strong>in</strong>g a hostile environment for <strong>isoetid</strong>s. The objective of this thesiswas to <strong>in</strong>vestigate effects of changes <strong>in</strong> <strong>sediment</strong> biogeochemistry follow<strong>in</strong>g organic enrichment of<strong>sediment</strong>s on growth <strong>and</strong> survival of <strong>isoetid</strong> species with focus on O 2 <strong>dynamics</strong>, <strong>plant</strong> nutrition <strong>and</strong>mycorrhizal associations.● A comb<strong>in</strong>ation of laboratory <strong>and</strong> <strong>in</strong>-situ experiments was performed to <strong>in</strong>vestigate <strong>plant</strong> <strong>and</strong><strong>sediment</strong> response to organic enrichment. Pore-water samples were used to track changes <strong>in</strong><strong>sediment</strong> biogeochemistry while O 2 electrodes were used to measure O 2 availability <strong>and</strong> <strong>dynamics</strong> <strong>in</strong><strong>plant</strong>s <strong>and</strong> <strong>sediment</strong>. Plant morphology <strong>and</strong> nutrition were used as stress <strong>in</strong>dicators. The response ofmycorrhizal fungi to organic enrichment was also addressed.● The studies showed that addition of even small amounts of labile organic matter to <strong>sediment</strong>s hadprofound <strong>and</strong> long-last<strong>in</strong>g effects on <strong>sediment</strong> biogeochemistry <strong>and</strong> affected <strong>isoetid</strong> growth <strong>and</strong>survival. Moderate additions sometimes resulted <strong>in</strong> <strong>in</strong>creased growth <strong>and</strong> no apparent <strong>plant</strong> stress,but higher additions resulted <strong>in</strong> widespread anoxia <strong>in</strong> <strong>sediment</strong>s <strong>and</strong> <strong>plant</strong>s, decreased <strong>plant</strong> nutrition<strong>and</strong> photosynthesis <strong>and</strong> accumulation of Fe 2+ , NH 4 + <strong>and</strong> dissolved <strong>in</strong>organic carbon <strong>in</strong> pore-water of<strong>sediment</strong>s. Addition of organic matter also resulted <strong>in</strong> reduced arbuscular mycorrhizal fungicolonization of roots.● Sediment composition is therefore a key issue <strong>in</strong> rehabilitation of <strong>isoetid</strong> populations, s<strong>in</strong>ce hostile<strong>sediment</strong>s cause reduced growth <strong>and</strong> survival. Littorella was able to cope with higher organicadditions than Lobelia agree<strong>in</strong>g with its wider distribution presumably because it avoids tissueanoxia dur<strong>in</strong>g the night by O 2 diffusion across permeable leaves from the water column whereasLobelia experiences many hours of anoxia <strong>and</strong> low energy yield <strong>in</strong> anaerobic respiration. Littorellacould due to higher eutrophication tolerance, higher growth rates <strong>and</strong> higher oxygenation capacity of<strong>sediment</strong>s be used <strong>in</strong> restoration projects to creat<strong>in</strong>g suitable <strong>sediment</strong> conditions for less tolerantspecies such as Lobelia.9


Dansk ResuméDansk resumé● Isoetider er den dom<strong>in</strong>erende vegetationstype i bredzonen af nær<strong>in</strong>gsfattige blødv<strong>and</strong>ede søer.Deres lave vækstrate, brug af CO 2 fra <strong>sediment</strong>et til fotosyntese og bedre nær<strong>in</strong>gsforsyn<strong>in</strong>g gennemsymbiose med mykorrhizasvampe muliggør vækst, hvor <strong>and</strong>re <strong>plant</strong>er er ude af st<strong>and</strong> til at klare sig.Eutrofier<strong>in</strong>g har imidlertid forårsaget en voldsom tilbagegang af <strong>isoetid</strong>dom<strong>in</strong>erede søer iNordeuropa og Nordamerika. En del af forklar<strong>in</strong>gen er øget <strong>sediment</strong>ation af omsætteligt organiskstof, som ændrer <strong>sediment</strong>biogeokemien ved at øge iltforbruget og akkumuler<strong>in</strong>g af fytotoks<strong>in</strong>er. Pågrund af den langsomme omsætn<strong>in</strong>g i anaerobe <strong>sediment</strong>er forbliver <strong>sediment</strong>forholdene dårlige ilang tid uanset v<strong>and</strong>kvaliteten i søen. Formålet med dette phd-projekt var at undersøge <strong>isoetid</strong>ersrespons og overlevelse i organisk berigede <strong>sediment</strong>er med særlig fokus på ilttilgængelighed ogsammenspil mellem <strong>plant</strong>er og <strong>sediment</strong>.● Effekter af berign<strong>in</strong>g blev undersøgt i kontrollerede laboratorieforsøg og i naturlige populationer ifelten. Porev<strong>and</strong>sprøver blev brugt til at følge ændr<strong>in</strong>ger i <strong>sediment</strong>processer, mens iltelektroder blevbenyttet til at måle ilttilgængelighed i <strong>plant</strong>er og <strong>sediment</strong>er under varierende forhold.Plantemorfologi, nær<strong>in</strong>gs<strong>in</strong>dhold og fotosyntetisk kapacitet blev brugt som <strong>in</strong>dikatorer for<strong>plant</strong>estress. Mykorrhizasvampes respons på organisk berign<strong>in</strong>g blev også undersøgt.● Undersøgelserne viste, at selv små tilsætn<strong>in</strong>ger af organisk stof til m<strong>in</strong>eralske <strong>sediment</strong>er ændrer<strong>sediment</strong>biogeokemien, og høje tilsætn<strong>in</strong>ger forårsager iltmangel, alkal<strong>in</strong>iser<strong>in</strong>g og akkumuler<strong>in</strong>g afammonium og reduceret jern i porev<strong>and</strong>et. Små tilsætn<strong>in</strong>ger har en positiv effekt på <strong>isoetid</strong>ers vækstmens høje tilsætn<strong>in</strong>ger forårsager iltstress, nedsat rodudvikl<strong>in</strong>g, nedsat fotosyntese og dårlignær<strong>in</strong>gsstofforsyn<strong>in</strong>g, hvis iltforbruget i <strong>sediment</strong>et overskrider <strong>plant</strong>ernes iltn<strong>in</strong>gskapacitet.Tilsætn<strong>in</strong>g af organisk stof nedsætter ligeledes mykorrhizasvampes evne til at kolonisere <strong>plant</strong>ernesrødder.● For at bevarre <strong>isoetid</strong>vegetationen i søer må iltforbruget forbundet med <strong>sediment</strong>er<strong>in</strong>g af organiskstof ikke overskride deres iltn<strong>in</strong>gskapacitet, da det stresser <strong>isoetid</strong>erne, mens nær<strong>in</strong>gsstoffer blivertilgængelige for <strong>and</strong>re hurtigtvoksende <strong>plant</strong>earter. Af de to undersøgte arter var Str<strong>and</strong>bo mestmodst<strong>and</strong>sdygtig overfor <strong>sediment</strong>berign<strong>in</strong>g i overensstemmelse med dens større udbredelse.Årsagen er s<strong>and</strong>synligvis, at Str<strong>and</strong>bo undgår iltstress om natten via O 2 diffusion overbladoverfladerne fra v<strong>and</strong>fasen, mens Tvepibet Lobelie med s<strong>in</strong>e gasimpermeable blade udsættes forlange iltfrie perioder i <strong>plant</strong>evævet, når iltforbruget i <strong>sediment</strong>et stiger. Str<strong>and</strong>bos størreforuren<strong>in</strong>gstolerance kan forvente at sætte den i st<strong>and</strong> til, som en af de første, at genetablere sig irestaurerede søer, og den kan eventuelt bruges til genetabler<strong>in</strong>g af søer via ud<strong>plant</strong>n<strong>in</strong>ger.11


IntroductionIntroductionOligotrophic soft-water lakes are characterizedby waters low <strong>in</strong> nutrients (phosphorus <strong>and</strong>nitrogen) <strong>and</strong> dissolved <strong>in</strong>organic carbon (DIC)because they receive most of their water throughprecipitation or as ground water from carbonate<strong>and</strong> nutrient poor catchments (Smolders et al.2002). The low concentrations of CO 2 (≈18µM), bicarbonate (


Introductionroot surfaces. This radial oxygen loss (ROL)from the roots generates an oxygenatedrhizosphere (S<strong>and</strong>-Jensen et al. 1982; Pedersenet al. 1995; Møller & S<strong>and</strong>-Jensen 2011). Unlikemore nutrient-rich organic <strong>sediment</strong>s, microbialrespiration is so low <strong>in</strong> oligotrophic s<strong>and</strong>y<strong>sediment</strong>s that the entire <strong>sediment</strong> is fullyoxygenized to several centimeters depth dur<strong>in</strong>gday time <strong>in</strong> dense <strong>isoetid</strong> st<strong>and</strong>s (Pedersen et al.1995; Møller & S<strong>and</strong>-Jensen 2011). In thew<strong>in</strong>ter when respiration <strong>in</strong> the <strong>sediment</strong>s isslowed down by low temperatures, <strong>isoetid</strong>sbuild up a sufficiently large pool of O 2 <strong>in</strong> the<strong>sediment</strong> dur<strong>in</strong>g the day to cover the respiratorydem<strong>and</strong> of <strong>sediment</strong> <strong>and</strong> roots throughout thenight (Pedersen et al. 1995). However, <strong>in</strong>creasedrespiration dur<strong>in</strong>g summer at highertemperatures deprives the <strong>sediment</strong> of O 2 for ashort period late <strong>in</strong> the night (Møller & S<strong>and</strong>-Jensen 2011).While most <strong>isoetid</strong>s have gas permeableleaves (S<strong>and</strong>-Jensen et al. 1982), Lobeliadortmanna has its leaves covered with a thickcuticula almost impermeable to gasses result<strong>in</strong>g<strong>in</strong> anoxia <strong>in</strong> roots <strong>and</strong> leaf lacuna when the<strong>sediment</strong> turns anoxic (Møller & S<strong>and</strong>-Jensen2011). Impermeable leaves of Lobeliadortmanna is probably an adaptation to avoidloss of CO 2 from the <strong>sediment</strong> pore-water to thewater column dur<strong>in</strong>g night where CO 2 diffus<strong>in</strong>gfrom the <strong>sediment</strong> cannot be used for <strong>plant</strong>photosynthesis. Most other species of <strong>isoetid</strong>shave permeable leaves, but avoid excessive CO 2loss to the water column due to crassulaseanacid metabolism (CAM), where CO 2 is stored <strong>in</strong>the <strong>plant</strong>s as malate <strong>in</strong> the dark for later use forphotosynthesis <strong>in</strong> the subsequent light period(Madsen 1985; Keeley 1998).Sediment biogeochemistry: By oxidiz<strong>in</strong>g the<strong>sediment</strong> <strong>isoetid</strong>s promote degradation oforganic matter <strong>and</strong> prevent formation of reducedcompounds <strong>in</strong> the pore-water (Wium-Andersen& Andersen 1972b; Farmer et al. 1985; Møller& S<strong>and</strong>-Jensen 2011). Under these conditionsphosphorus is strongly adsorbed to <strong>sediment</strong>particles <strong>and</strong> co-precipitates with highly<strong>in</strong>soluble oxidized metals (e.g. Fe <strong>and</strong> Mnoxides), hence, largely <strong>in</strong>accessible to <strong>plant</strong>s(Christensen & Andersen 1996). Furthermore,shift<strong>in</strong>g from fully oxic <strong>in</strong> the daytime to anoxia<strong>in</strong> some parts of the rhizosphere dur<strong>in</strong>g nightpromotes coupled nitrification-denitrificationlead<strong>in</strong>g to loss of N from the <strong>sediment</strong>(Christensen & Sørensen 1986; Ottosen et al.1999). Isoetids can thereby prevent nutrientsfrom enter<strong>in</strong>g the water column by promot<strong>in</strong>g Nloss to the atmosphere <strong>and</strong> P is adsorbed orprecipitated <strong>in</strong> <strong>sediment</strong>s which is important toma<strong>in</strong>ta<strong>in</strong> oligotrophic conditions.Mycorrhizal associations: Isoetids are the onlyaquatic <strong>plant</strong>s with frequent <strong>and</strong> highcolonization of arbuscular mycorrhiza fungi(AMF). This phenomenon was first discovered<strong>in</strong> aquatic <strong>plant</strong>s by Søndergaard & Laegaard(1977) <strong>and</strong> s<strong>in</strong>ce then confirmed by numerousothers (Farmer et al. 1985; Beck-Nielsen &Madsen 2001; Nielsen 2004). The chronicallyslow growth of <strong>isoetid</strong>s can result <strong>in</strong> strongnutrient depletion zones around roots caus<strong>in</strong>gdecreased uptake (Smith & Read 2008). By<strong>in</strong>vest<strong>in</strong>g <strong>in</strong> AMF the <strong>sediment</strong> volume <strong>and</strong>surface area for absorption <strong>and</strong> <strong>sediment</strong> contactare grossly <strong>in</strong>creased which is important foruptake of especially P (Smith & Read 2008).AMF are <strong>in</strong>volved <strong>in</strong> uptake of P from solid facefractions <strong>and</strong> are of great importance for <strong>isoetid</strong>s(Smolders et al. 2002). It has been shown that Pcontent of <strong>isoetid</strong> leaves, unlike non mycorrhizlaaquatic <strong>plant</strong>s, are correlated to total P <strong>in</strong><strong>sediment</strong> rather than available P <strong>in</strong> the pore-14


Introductionwater (Wig<strong>and</strong> et al. 1998). Very few studieshave addressed the effect of AMF on <strong>isoetid</strong>nutrition <strong>and</strong> this calls for further attention s<strong>in</strong>ce<strong>isoetid</strong>s might be obligate mycorrhizal-<strong>plant</strong>swhen grow<strong>in</strong>g <strong>in</strong> nutrient depleted <strong>sediment</strong>(Smolders et al. 2002).The <strong>isoetid</strong>s are, <strong>in</strong> summary, highly adapted tothe most oligotrophic conditions. They arehighly valued <strong>in</strong>dicators of the most prist<strong>in</strong>eaquatic environments. Their <strong>in</strong>timate contactwith the <strong>sediment</strong> enables them to grow <strong>and</strong>ma<strong>in</strong>ta<strong>in</strong> oligotrophic conditions by oxidiz<strong>in</strong>gthe <strong>sediment</strong> <strong>and</strong> exploit<strong>in</strong>g elevated CO 2concentrations <strong>in</strong> <strong>sediment</strong>s, but this <strong>in</strong>timatecontact also means that <strong>isoetid</strong>s face severalproblems when nutrients <strong>and</strong> <strong>in</strong>organic carbonlevels are <strong>in</strong>creased <strong>in</strong> the environment due toanthropogenic impact.Eutrophication <strong>and</strong> threats: Many formeroligotrophic lakes have received high amountsof nutrients <strong>and</strong> DIC through runoff <strong>and</strong>groundwater from agricultural <strong>and</strong> urban areas(anthropogenic activities) <strong>and</strong> organic matterfrom forest clear<strong>in</strong>g <strong>in</strong> the upl<strong>and</strong> (Arts 2002;Smolders et al. 2002; Jeppesen 2005).Furthermore, deposition of sulfate <strong>and</strong> nitratethrough precipitation has caused acidification.Acidification <strong>in</strong>creases CO 2 availability <strong>in</strong> thewater column <strong>and</strong> <strong>in</strong>creases <strong>sediment</strong>m<strong>in</strong>eralization lead<strong>in</strong>g to <strong>in</strong>creased DIC contentof <strong>sediment</strong>s <strong>and</strong> surface water (Smolders et al.2002) with devastat<strong>in</strong>g consequences for theseprist<strong>in</strong>e environments (Roelofs 1983; Smolderset al. 2002; Pedersen et al. 2006; Geurts et al.2008). Surface waters rich <strong>in</strong> nutrients <strong>and</strong> DICpromote growth of algae <strong>and</strong> fast-grow<strong>in</strong>gelodeid species of aquatic <strong>plant</strong>s shift<strong>in</strong>g thesystems towards competition for light rather thatnutrients <strong>and</strong> CO 2 <strong>in</strong> <strong>sediment</strong>s (Smolders et al.2002).Isoetids by their <strong>in</strong>tr<strong>in</strong>sic low growthrate <strong>and</strong> short leaves therefore receive limitedlight restrict<strong>in</strong>g them to the shallowest parts oflakes (Jeppesen et al. 2005). Furthermore,<strong>in</strong>creased production <strong>in</strong> the water column leadsto <strong>in</strong>creased <strong>sediment</strong>ation of labile organicmatter speed<strong>in</strong>g up decomposition <strong>in</strong> <strong>sediment</strong>s,hence, creat<strong>in</strong>g a higher O 2 dem<strong>and</strong>. Isoetidstherefore face multiple problems with decreasedphotosynthesis caused by shad<strong>in</strong>g <strong>and</strong><strong>in</strong>creas<strong>in</strong>g O 2 dem<strong>and</strong> deplet<strong>in</strong>g the <strong>sediment</strong><strong>and</strong> <strong>plant</strong>s of O 2 (Møller & S<strong>and</strong>-Jensen 2011)which <strong>in</strong> turn causes build-up of potential toxiccompounds <strong>in</strong> the pore-water (Smolders et al.2002). Plants species normally found <strong>in</strong>eutrophic <strong>sediment</strong>s with high O 2 dem<strong>and</strong> formroot barriers by <strong>in</strong>corporation of lign<strong>in</strong> <strong>and</strong>suber<strong>in</strong> <strong>in</strong> the outer epidermis to avoid ROL <strong>and</strong>anoxia (Visser et al. 2000; Colmer 2003) but<strong>isoetid</strong>s are unable to form such barriers <strong>and</strong> aretherefore more susceptible to <strong>sediment</strong> anoxia(Smith et al. 1990; Møller & S<strong>and</strong>-Jensen2008).Restoration projects have reducednutrient levels <strong>in</strong> the water column result<strong>in</strong>g <strong>in</strong>improved light conditions <strong>in</strong> many lakes but the<strong>isoetid</strong>s have rarely returned (Jeppesen et al2005). The reason seems to be changes <strong>in</strong><strong>sediment</strong> conditions (S<strong>and</strong>-Jensen et al. 2008).Sedimentation of organic matter from highproduction <strong>in</strong> the water column builds up <strong>in</strong> the<strong>sediment</strong> dur<strong>in</strong>g periods of eutrophication.Degradation <strong>in</strong> <strong>sediment</strong> is slowed down by lackof O 2 lead<strong>in</strong>g to <strong>in</strong>efficient anaerobicdegradation. Sediments therefore develop amuddy character with low redox potentials, lowO 2 content <strong>and</strong> low <strong>sediment</strong> density whichstrongly <strong>in</strong>hibit growth of <strong>isoetid</strong>s.15


IntroductionIn <strong>sediment</strong>s of high O 2 dem<strong>and</strong> <strong>isoetid</strong>sroots are restricted to the uppermost <strong>sediment</strong>layer where O 2 supply to root tips is possible(S<strong>and</strong>-Jensen et al. 2005; Raun et al. 2010).Short roots offer low anchorage <strong>and</strong> is furtherweakened <strong>in</strong> organic <strong>sediment</strong>s by low density<strong>in</strong>creas<strong>in</strong>g the risk of uproot<strong>in</strong>g <strong>and</strong> loss ofpopulations (Pulido et al. 2010). Furthermore,anoxia <strong>in</strong> roots of <strong>isoetid</strong>s leads to reducedtranslocation of nutrients with decreasedphotosynthesis <strong>and</strong> low tissue content ofnutrients as a result (Sorrell 2004; Møller &S<strong>and</strong>-Jensen 2011). To promote the return of<strong>isoetid</strong>s to their former growth sites improvedunderst<strong>and</strong><strong>in</strong>g of how <strong>isoetid</strong>s respond <strong>and</strong> copewith changes <strong>in</strong> <strong>sediment</strong> biogeochemistry isneeded. This was the ma<strong>in</strong> aim of this thesis.ReferencesArmstrong W. 1979. Aeration <strong>in</strong> higher <strong>plant</strong>s. Advances<strong>in</strong> Botanical Research 7: 225–332.Arts GHP. 2002. Deterioration of Atlantic soft watermacrophyte communities by acidification, eutrophication<strong>and</strong> alkal<strong>in</strong>isation. Aquatic Botany 73: 373-393.Beck-Nielsen D, Madsen TV. 2001. Occurrence ofViscicular-arbuscular mycorrhiza <strong>in</strong> <strong>plant</strong>s from lakes <strong>and</strong>streams. Aquatic Botany 71: 141-148Christensen PB, Sørensen J. 1986. Temporal variationof denitrification activity <strong>in</strong> <strong>plant</strong>-covered, littoral<strong>sediment</strong> from Lake Hampen, Denmark. Applied <strong>and</strong>Environmental Microbiology 51: 1174-1179Christensen KK, Andersen FØ. 1996. Influence ofLittorella uniflora on phosphorus retention <strong>in</strong> <strong>sediment</strong>supplied with artificial porewater. Aquatic Botany 55:183-197Colmer TD. 2003. Long-distance transport of gases <strong>in</strong><strong>plant</strong>s: a perspective on <strong>in</strong>ternal aeration <strong>and</strong> radialoxygen loss from roots. Plant Cell Environment 26: 17-36.Farmer AM. 1985. The occurrence of vesiculararbuscularmycorrhiza <strong>in</strong> <strong>isoetid</strong>-type submerged aquaticmacrophytes under naturally vary<strong>in</strong>g conditions. AquaticBotany 21: 245-249.Geurts JJM, Smolders AJP, Verhoeven JTA, RoelofsJGM, Lamers LPM. 2008. Sediment Fe:PO 4 ratio as adiagnostic <strong>and</strong> prognostic tool for the restoration ofmacrophyte biodiversity <strong>in</strong> fen waters. FreshwaterBiology 53: 2101–2116.Jeppesen E, Søndergaard M, Jensen JP, Havens KE,Anneville O, Carvalho L & others. 2005. Lake responseto reduced nutrient load<strong>in</strong>g – an analysis of contemporarylong-term data from 35 case sturies. Freshwater Biology50:1747-1771Keeley JE. 1998. CAM photosynthesis <strong>in</strong> submergedaquatic <strong>plant</strong>s. The botanical Review 64:121-175.Madsen TV. 1985. A community of submerged aquaticCAM <strong>plant</strong>s <strong>in</strong> Lake Kalgaard, Denmark. Aquatic Botany23: 97-108Murphy KJ. 2002. Plant communities <strong>and</strong> <strong>plant</strong> diversity<strong>in</strong> softwater lakes of northern Europe. Aquatic Botany 73:287-324Møller CL, S<strong>and</strong>-Jensen K. 2008. Iron plaques improvethe oxygen supply to root meristems of the freshwater<strong>plant</strong>, Lobelia dortmanna. New Phytologist 179: 848-56.Møller CL, S<strong>and</strong>-Jensen K. 2011. High sensitivity ofLobelia dortmanna to <strong>sediment</strong> O2 depletion follow<strong>in</strong>gorganic enrichment. New Phytologist 190: 320-331.Nielsen KB, Kjøller R, Olsson PA, Schweiger PF,Andersen FØ, Rosendahl S. 2004. Colonization <strong>and</strong>molecular diversity of arbuscular mycorrhizal fungi <strong>in</strong> theaquatic <strong>plant</strong>s Littorella uniflora <strong>and</strong> Lobelia dortmanna<strong>in</strong> southern Sweden. Mycological research 108: 616-625.Ottosen LDM, Risgaard-Petersen N, Nielsen LP. 1999.Direct <strong>and</strong> <strong>in</strong>direct measurements of nitrification <strong>and</strong>denitrification <strong>in</strong> the rhizosphere of aquatic macrophytes.Aquatic Microbial Ecology 19: 81-91.Pedersen O, Andersen T, Ikejima K, Hossa<strong>in</strong> MZ,Andersen FØ. 2006. A multidiscipl<strong>in</strong>ary approach tounderst<strong>and</strong><strong>in</strong>g the recent <strong>and</strong> historical occurrence of thefreshwater <strong>plant</strong>, Littorella uniflora. Freshwater Biology51: 865-877.Pedersen O, S<strong>and</strong>-Jensen K, Revsbech NP. 1995. Dielpulses of O 2 <strong>and</strong> CO 2 <strong>in</strong> s<strong>and</strong>y lake-<strong>sediment</strong>s <strong>in</strong>habitedby Lobelia dortmanna. Ecology 76: 1536–1545.Raun AL, Borum J, S<strong>and</strong>-Jensen K. 2010. Influence of<strong>sediment</strong> organic enrichment <strong>and</strong> water alkal<strong>in</strong>ity ongrowth of aquatic <strong>isoetid</strong> <strong>and</strong> elodeid <strong>plant</strong>s. FreshwaterBiology 55: 1891-1904.Roelofs JGM. 1983. Impact of acidification <strong>and</strong>eutrophication on macrophyte communities <strong>in</strong> soft waters<strong>in</strong> the Netherl<strong>and</strong>s I. Field observations. Aquatic Botany17: 139-155.S<strong>and</strong>-Jensen K, Borum J, B<strong>in</strong>zer T. 2005. <strong>Oxygen</strong>stress <strong>and</strong> reduced growth of Lobelia dortmanna <strong>in</strong> s<strong>and</strong>ylake <strong>sediment</strong>s subject to organic enrichment. FreshwaterBiology 50:1034-1048.S<strong>and</strong>-Jensen K, Pedersen NL, Thorsgaard I, MoeslundB, Borum J, Brodersen KP. 2008. 100 Years ofvegetation decl<strong>in</strong>e <strong>and</strong> recovery <strong>in</strong> Lake Fure, Denmark.Journal of Ecology 96: 260-271S<strong>and</strong>-Jensen K, Prahl C. 1982. <strong>Oxygen</strong> exchange withthe lacunae <strong>and</strong> across leaves <strong>and</strong> roots of the submergedvascular macrophyte, Lobelia dortmanna L. NewPhytologist 91: 103–120.16


IntroductionS<strong>and</strong>-Jensen K, Prahl C, Stokholm H. 1982. <strong>Oxygen</strong>release from roots of submerged aquatic macrophytes.Oikos 50:1034-1048.S<strong>and</strong>-Jensen K, Riis T, Vestergaard O, Larsen S. 2000.Macrophyte decl<strong>in</strong>e <strong>in</strong> Danish lakes <strong>and</strong> streams over thepast 100 years. Journal of Ecology 88:1030-1040.Smith SE, Read DJ. 2008. Mycorrhizal symbiosis.Elsevier Academic Press, San Diego, CA, USA.Smits AJM, Laan P, Thier RH, V<strong>and</strong>ervelde G. 1990.Root aerenchyma, oxygen leakage patterns <strong>and</strong> alcoholicfermentation ability of the roots of some nymphaeid <strong>and</strong><strong>isoetid</strong> macrophytes <strong>in</strong> relation to the <strong>sediment</strong> type oftheir habitat. Aquatic Botany 38: 3–17.Smolders AJP, Lucassen ECTET, Roelofs JGM. 2002.The <strong>isoetid</strong> environment biogeochemistry <strong>and</strong> threats.Aquatic Botany 73: 325-350.Sorrell B. 2004. Regulation of root anaerobiosis <strong>and</strong>carbon translocation by light <strong>and</strong> root aeration <strong>in</strong> Isoetesalp<strong>in</strong>es. Plant, Cell <strong>and</strong> Environment 27:1102-1111.Søndergaard M, Laegaard S. 1977. Vesciculararbuscularmycorrhiza <strong>in</strong> some vascular <strong>plant</strong>s. Nature268: 232-233.Wig<strong>and</strong> C, Andersen FØ, Christensen KK, Holmer M,Jensen HS. 1998. Endomycorrhizae of <strong>isoetid</strong>s along abiogeochemical gradient. Limnology <strong>and</strong> Oceanography43: 508-515.Visser EJW, Colmer TD, Blom CWPM, VoesenekLACJ. 2000. Changes <strong>in</strong> growth, porosity, <strong>and</strong> radialoxygen loss from adventitious roots of selected mono<strong>and</strong>dicotyledonous wetl<strong>and</strong> species with contrast<strong>in</strong>gtypes of aerenchyma. Plant, Cell & Environment 23:1237–1245.Wium-Andersen S, Andersen JM. 1972a. Carbondioxide content of the <strong>in</strong>terstitial water <strong>in</strong> the <strong>sediment</strong> ofGrane Langsø, a Danish Lobelia lake. Limnology <strong>and</strong>Oceanography 17: 943–947.Wium-Andersen S, Andersen JM. 1972b. The <strong>in</strong>fluenceof vegetation on the redox profile of the <strong>sediment</strong> ofGrane Langsø, a Danish Lobelia lake. Limnology <strong>and</strong>Oceanography 17:948-952.17


Aim of thesisAim of thesisThe aim of this thesis was 1) to <strong>in</strong>vestigate response of <strong>isoetid</strong>s to <strong>sediment</strong>s undergo<strong>in</strong>g organic enrichment2) to establish thresholds for <strong>sediment</strong> conditions where <strong>isoetid</strong> species can grow <strong>and</strong> 3) improve ourunderst<strong>and</strong><strong>in</strong>g of the complex <strong><strong>in</strong>teractions</strong> between <strong>isoetid</strong>s <strong>and</strong> <strong>sediment</strong> under both oligotrophic <strong>and</strong>eutrophic conditions. Sediment conditions were <strong>in</strong>vestigated by measur<strong>in</strong>g O 2 availability <strong>in</strong> <strong>sediment</strong>s <strong>and</strong> byanalyz<strong>in</strong>g pore-water for potential phytotox<strong>in</strong>s <strong>and</strong> reduced compounds to clarify ma<strong>in</strong> biogeochemicalprocesses. Plant response <strong>and</strong> <strong><strong>in</strong>teractions</strong> with <strong>sediment</strong>s were <strong>in</strong>vestigated by measur<strong>in</strong>g O 2 <strong>dynamics</strong> withmicro O 2 electrodes <strong>and</strong> analyz<strong>in</strong>g <strong>plant</strong> content <strong>and</strong> morphology after exposure to hostile <strong>sediment</strong> conditions.18


Thesis summaryThesis summaryAddition of labile organic matter dramaticallychanged biogeochemistry of <strong>sediment</strong>s<strong>in</strong>habited by Lobelia dortmanna <strong>and</strong> Littorellauniflora <strong>and</strong> affected growth <strong>and</strong> survival of the<strong>plant</strong>s. In paper 1 changes <strong>in</strong> <strong>sediment</strong>biogeochemistry, fluxes from <strong>sediment</strong>s <strong>and</strong>retention of carbon <strong>and</strong> nutrients was followed<strong>in</strong> <strong>in</strong>tact <strong>sediment</strong> turfs subjected to addition ofdifferent amounts of labile organic matter <strong>in</strong> thelaboratory. Sediment biogeochemistry wasmonitored by frequent extraction of pore-watersamples <strong>and</strong> O 2 availability <strong>in</strong> <strong>sediment</strong>s wasmeasured by O 2 m<strong>in</strong>i-electrodes.Organic enrichment caused decreased O 2availability s<strong>in</strong>ce O 2 consumption fordegradation of added organic matter exceededthe oxygenation capacity of the <strong>plant</strong>s <strong>and</strong> O 2flux from the water (Fig 1). The lack of O 2resulted <strong>in</strong> accumulation of NH +4 <strong>and</strong> use ofalternative electron acceptors caus<strong>in</strong>gaccumulation of Fe 2+ <strong>in</strong> the pore-water last<strong>in</strong>gFig. 1. Depth of O 2 penetration <strong>in</strong> Lobelia <strong>sediment</strong>s as afunction of time after addition of different amounts oflabile organic matter (per <strong>sediment</strong> DW) (○=control;●=0.1%; □=0.2%; ■=0.4%; ◊= 0.8%; ♦=1.6%).Measurements were made 10–12 h <strong>in</strong>to the 12 h lightperiod. Measurements could not extend deeper than 40mm <strong>in</strong>to the <strong>sediment</strong>, when O 2 penetration <strong>in</strong> control<strong>sediment</strong>s was described as > 40 mm. Values are mean oftwo (0–170 d) <strong>and</strong> three (194 d) measurements ± SD.From Møller & S<strong>and</strong>-Jensen 2011.Fig 2. Pore-water concentrations of Fe 2+ <strong>and</strong> NH 4 + <strong>in</strong><strong>sediment</strong>s <strong>in</strong>habited by Lobelia dortmanna (a & b) orLittorella uniflora(c & d) follow<strong>in</strong>g enrichment withdifferent amounts of labile organic matter (% of<strong>sediment</strong> dry weight; ○=control; ●=0.1%; □=0.2%;■=0.4%; ◊= 0.8%; ♦=1.6%).throughout the experiments <strong>and</strong> be<strong>in</strong>g morepronounced with <strong>in</strong>creas<strong>in</strong>g organic additions(Fig 2). Therefore, addition of even smallamounts of labile organic matter has longlast<strong>in</strong>g effects on <strong>sediment</strong> biogeochemistry <strong>in</strong><strong>isoetid</strong> <strong>sediment</strong>s. In anoxic <strong>sediment</strong>s oxidizediron becomes <strong>in</strong>creas<strong>in</strong>gly important fordecomposition processes; hence, iron reductionconstituted a larger fraction of DIC formation athigh organic additions than at lower additionsbut although <strong>sediment</strong>s at high additionsrema<strong>in</strong>ed anoxic for 200 days only 14% of the+iron pool was reduced. Accumulation of NH 4can be expla<strong>in</strong>ed by nitrification <strong>and</strong> the lack ofshifts from oxic to anoxic conditions lead<strong>in</strong>g tolittle denitrification. In the anoxic <strong>sediment</strong>snitrogen released from degradation thereforeexceeds denitrification rates <strong>and</strong> loss to the-overly<strong>in</strong>g water. S<strong>in</strong>ce <strong>isoetid</strong>s prefers NO 3over NH + 4 as a source of N <strong>and</strong> that other fastergrow<strong>in</strong>g <strong>plant</strong>s <strong>and</strong> algae prefers NH + 4 this is apotential problem for preserv<strong>in</strong>g <strong>isoetid</strong>communities. Phosphorus (P) was opposite+NH 4 efficiently reta<strong>in</strong>ed <strong>in</strong> the <strong>sediment</strong>s19


Thesis summaryadsorbed to particles <strong>and</strong> precipitated withmetals (89-93% of added P) so <strong>isoetid</strong><strong>sediment</strong>s can counteract some P load<strong>in</strong>g byefficiently reta<strong>in</strong><strong>in</strong>g it <strong>in</strong> <strong>sediment</strong>s. Regardlessof the amount of organic matter added,<strong>sediment</strong>s <strong>in</strong>habited by Littorella were alwaysmore “oxidized” that Lobelia <strong>sediment</strong>s. This isthe result of higher <strong>plant</strong> density along withhigher photosynthetic rates <strong>and</strong> greater leaf gaspermeability of Littorella (see paper 3)<strong>in</strong>creas<strong>in</strong>g O 2 supply to <strong>sediment</strong>s.The non-destructive sampl<strong>in</strong>g of smallpore-water volumes used <strong>in</strong> this experimentallowed monitor<strong>in</strong>g of both spatial <strong>and</strong> temporalchanges <strong>in</strong> <strong>sediment</strong> biogeochemistry fordeterm<strong>in</strong><strong>in</strong>g degradation <strong>in</strong>tensity <strong>and</strong> ma<strong>in</strong><strong>sediment</strong> processes. This method can, therefore,be a useful tool for further research especially ifcomb<strong>in</strong>ed with measurements of release from<strong>sediment</strong>s to the water column.O 2 dem<strong>and</strong> of <strong>sediment</strong>s) leads to prolongedanoxia <strong>in</strong> Lobelia (Fig 3). Furthermore, additionof organic matter resulted <strong>in</strong> reduced rootlengths, low leaf nutrient <strong>and</strong> chlorophyllcontent <strong>and</strong> low photosynthetic rates of Lobelia.Prolonged anoxia occurred already 7-9 daysafter addition <strong>and</strong> reduced photosynthetic rateswere measured after 18 days <strong>and</strong> were furtherenhanced over the 200 days long laboratoryexperiment (Fig 4).Paper 2 <strong>in</strong>vestigates the response of Lobeliadortmanna to <strong>sediment</strong> O 2 depletion <strong>and</strong>changes <strong>in</strong> <strong>sediment</strong> biogeochemistry follow<strong>in</strong>gorganic enrichment. O 2 <strong>dynamics</strong> <strong>in</strong> <strong>plant</strong>s <strong>and</strong><strong>sediment</strong> were measured by O 2 micro <strong>and</strong> m<strong>in</strong>ielectrodes (50 µm tip diameter for <strong>plant</strong>s <strong>and</strong>500 µm for <strong>sediment</strong>s) <strong>and</strong> <strong>plant</strong> response wasmeasured on several occasions by sacrific<strong>in</strong>g<strong>plant</strong>s <strong>and</strong> measur<strong>in</strong>g leaf content, rootdevelopment <strong>and</strong> maximum photosyntheticrates. Laboratory experiments were coupledwith <strong>in</strong>-situ measurements of O 2 <strong>dynamics</strong> <strong>in</strong>natural populations.In-situ measurements showed that lacunasystems of Lobelia dortmanna <strong>and</strong> <strong>sediment</strong>sare depleted of O 2 for some hours dur<strong>in</strong>g thenight <strong>in</strong> natural populations at summertemperatures (>16o C) <strong>and</strong> <strong>in</strong> laboratoryexperiments organic enrichments (<strong>in</strong>creas<strong>in</strong>g theFig. 3. Diurnal changes of O 2 partial pressure (PO 2 ) <strong>in</strong>leaf lacunae of Lobelia (solid l<strong>in</strong>e), <strong>sediment</strong> porewater at 10 mm depth (dashed l<strong>in</strong>e) <strong>and</strong> water phase(dotted l<strong>in</strong>e) <strong>in</strong> laboratory experiments <strong>in</strong> the control(a), 0.4% (b) <strong>and</strong> 1.6% (c) treatments after 4, 9 <strong>and</strong> 7days of enrichment, respectively. The diurnal tracestarted with a shift from 12 h light to 12 h darknessfollowed by a shift back to 12 h light. Values are s<strong>in</strong>glemeasurements.20


Thesis summaryFig. 4. Chlorophyll content (a) <strong>and</strong> maximum netphotosynthesis (b) of Lobelia leaves after <strong>in</strong>creas<strong>in</strong>gaddition of labile organic matter (% of <strong>sediment</strong> DW).S<strong>in</strong>gle measurements were made after 18 d (○) <strong>and</strong> 59 d(●) <strong>and</strong> triplicate measurements (± SD) after 194 d (□) ofexperiments <strong>in</strong> the laboratory.The long anoxic periods <strong>in</strong> <strong>plant</strong>s dur<strong>in</strong>gthe night is the most plausible reason for theobserved <strong>plant</strong> stress s<strong>in</strong>ce low yield<strong>in</strong>ganaerobic respiration can deplete Lobelia ofcarbon result<strong>in</strong>g <strong>in</strong> <strong>in</strong>sufficient carbon supply toroots. This will cause root malfunction <strong>and</strong>osmotic stress constra<strong>in</strong><strong>in</strong>g transfer of nutrientsto leaves. However, Lobelia can cope withanoxia which is a recurr<strong>in</strong>g phenomenon <strong>in</strong>natural populations dur<strong>in</strong>g the summer.Paper 3 addresses differences <strong>in</strong> <strong>plant</strong>morphology <strong>and</strong> response to organic addition ofLobelia <strong>and</strong> Littorella. Measurements from turfexperiments <strong>in</strong> the laboratory <strong>and</strong> <strong>in</strong>-situexperiments with mixed populations were usedto evaluate effects of enrichment. O 2 loss fromleaf surfaces of both species to hypoxic waterwas used to <strong>in</strong>vestigate leaf gas permeability.Addition of organic matter dramaticallydecreased photosynthetic rates of Lobelia whileLittorella was able to cope with additions <strong>in</strong>laboratory experiments. This is partly expla<strong>in</strong>edby higher <strong>plant</strong> density <strong>in</strong> Littorella turfs, butmarked differences were observed between O 2<strong>dynamics</strong> <strong>in</strong> Lobelia <strong>and</strong> Littorella where O 2concentration <strong>in</strong> leaves was unaffected <strong>in</strong>Littorella regardless of O 2 availability <strong>in</strong><strong>sediment</strong>s while Lobelia faced long anoxicperiods dur<strong>in</strong>g nighttime. Littorella was able toma<strong>in</strong>ta<strong>in</strong> nutrient levels <strong>and</strong> chlorophyll content<strong>in</strong> leaves at higher organic additions thanLobelia. The observed difference <strong>in</strong> O 2<strong>dynamics</strong> is the result of 13-16 times higher gaspermeability of Littorella leaves compared toLobelia (Table 1).In-situ measurements confirmed thatLobelia was more subjected to stress thanLittorella when mixed populations weresubjected to organic enrichments, hence,experienc<strong>in</strong>g exactly the same conditions s<strong>in</strong>cethe higher oxygenation capacity of Littorellaalso benefits Lobelia <strong>in</strong> mixed populations. Inthis experiment Littorella was more stressedthan <strong>in</strong> the laboratory experiments. The higherresponse of both species over the much shorterexperiment (90 days) could be due to highertemperatures (Mean 20.6 o C, maximum 35 o C) <strong>in</strong>the <strong>in</strong>-situ experiment, then the laboratoryTable 1. O 2 flux across leaf surface to hypoxic water withbasal leaf lacunae <strong>in</strong> air contact <strong>and</strong> evaporation to drystill air of Lobelia dortmanna <strong>and</strong> Littorella uniflora.SpeciesTemperature( o C)Flux(n mol O 2 m -2 s -1 )Lobelia 5 30 ± 7 a15 48 ± 3 aLittorella 5 482 ± 199 b15 608 ± 144 bValues are means ± SD of 3 (O 2 flux) or 10 (Evaporation)replicates. Different letters show significant differences(2-way or 1-way ANOVA).21


Thesis summaryexperiment (15 o C), speed<strong>in</strong>g up decompositionprocesses <strong>and</strong> respiration <strong>in</strong> both <strong>plant</strong>s <strong>and</strong><strong>sediment</strong>, hence, <strong>in</strong>creased temperature isprobably an extra stress factor. The ability toma<strong>in</strong>ta<strong>in</strong> oxic conditions <strong>in</strong> <strong>plant</strong> tissue canexpla<strong>in</strong> the broader occurrence of Littorella <strong>in</strong>lakes undergo<strong>in</strong>g eutrophication. Hence,Littorella only needs sufficient light to susta<strong>in</strong>carbon production to cover aerobic respirationof the <strong>plant</strong> tissue. In eutrophic lakes Lobeliawill suffer from both decreased production <strong>and</strong>low energy output under anaerobic respirationwhich could be the ma<strong>in</strong> reason for loss ofLobelia from many former growth sites.Although widespread anoxia occurred <strong>in</strong>Lobelia at summer temperatures, O 2 diffusionacross leaves may be sufficient to satisfy therespiratory dem<strong>and</strong> dur<strong>in</strong>g w<strong>in</strong>ter when snowcovered ice prevents photosynthesis <strong>and</strong> lowtemperature slow down respiration.Paper 4 focus on occurrence of arbuscularmycorrhizal fungi associations <strong>in</strong> <strong>isoetid</strong>s <strong>and</strong><strong>sediment</strong>s <strong>and</strong> the responses to organicenrichment. Mixed field populations were usedto compare AMF colonization of both specieswhile experiments with <strong>in</strong>tact <strong>sediment</strong> turfs ofLobelia or Littorella with <strong>in</strong>digenous AMFassociations were used to <strong>in</strong>vestigate responseof AMF colonization <strong>and</strong> hyphal density <strong>in</strong><strong>sediment</strong> to organic enrichment. Furthermore,experiments with non-colonized Littorella<strong>in</strong>troduced to <strong>sediment</strong>s with AMF <strong>and</strong> differentorganic additions were performed to <strong>in</strong>vestigatecolonization under more eutrophic conditions.In nutrient poor <strong>sediment</strong>s Littorellahave higher AMF colonization than Lobeliawhen grow<strong>in</strong>g <strong>in</strong> mixed populations undernatural conditions. This result is consistent withthe two times higher growth rate of LittorellaFig 5. Root length colonized by AM fungi (%) <strong>in</strong> rootsof Lobelia dortmanna (upper panel) <strong>and</strong> Littorellauniflora (lower panel) after experimentation withaddition of labile organic matter to <strong>sediment</strong>s.Colonization frequencies of roots produced dur<strong>in</strong>g theexperiment (○) <strong>and</strong> roots most likely established priorexperimentation (●) are presented. Values are means ±SD.than Lobelia. i.e., more nutrients are required tosusta<strong>in</strong> higher growth. The <strong>in</strong>vestigation alsoshowed that hyphal density <strong>in</strong> the aquatic<strong>sediment</strong>s were high <strong>and</strong> comparable withterrestrial systems, with hyphal surfacesexceed<strong>in</strong>g the area of roots several times <strong>and</strong>scaveng<strong>in</strong>g a much larger <strong>sediment</strong> volume.Hyphal density was well correlated to colonizedroot length <strong>in</strong> the <strong>sediment</strong>s.Addition of organic matter to <strong>sediment</strong>sdecreased colonization of roots of <strong>plant</strong>s alreadycolonized by AMF <strong>and</strong> was ma<strong>in</strong>ly caused bydecreased colonization of roots produced whilegrow<strong>in</strong>g <strong>in</strong> more reduced <strong>sediment</strong>s (Fig 5).Almost no colonization occurred <strong>in</strong> <strong>in</strong>itiallynon-colonized Littorella at low additions whileAMF colonized roots <strong>in</strong> low-organic control<strong>sediment</strong>s. The stress of Lobelia <strong>and</strong> Littorellaobserved at high organic additions could not be22


Thesis summaryascribed to lack of AMF <strong>and</strong> AMF should beseen as an advantage under the extremelynutrient poor conditions that characterize thegrowth habitat of <strong>isoetid</strong>s.Paper 5 is a short communication (addendum)address<strong>in</strong>g effects of organic enrichment of<strong>sediment</strong>s on O 2 <strong>dynamics</strong> <strong>and</strong> survival of<strong>isoetid</strong> species. Radial O 2 loss (ROL) from rootsof <strong>isoetid</strong>s was compared to other rootedmacrophytes <strong>and</strong> effects of Fe-plaques on rootsurfaces was discussed.Species that normally grow <strong>in</strong> reduced<strong>sediment</strong>s form barriers to prevent O 2 loss fromroots whereas <strong>isoetid</strong>s are believed to lack thisability. However, Fe-plaques form when Fe 2+from anoxic pore-water enters an oxygenatedroot rhizosphere where it precipitates as varioushighly <strong>in</strong>soluble crystall<strong>in</strong>e oxidized ironcompounds. An <strong>in</strong>vestigation of ROL fromroots of Lobelia has shown that Fe-plaquesconstitute a barrier to ROL (Fig 6) result<strong>in</strong>g <strong>in</strong>higher downward O 2 supply to root meristems.This could improve <strong>in</strong>ternal oxygenation of<strong>isoetid</strong>s when eutrophication leads to <strong>in</strong>creasedO 2 dem<strong>and</strong> of <strong>sediment</strong>s. However, uponenrichment roots of <strong>isoetid</strong>s are dramaticallyshortened <strong>and</strong> offer week anchorage.Furthermore, a recent <strong>in</strong>vestigation showed thatLobelia is depleted of O 2 when grown <strong>in</strong><strong>sediment</strong>s added labile organic matter eventhough Fe-plaques occurred on roots (Paper 2).Whether Fe-plaques benefit <strong>isoetid</strong>s grow<strong>in</strong>g <strong>in</strong>organically enriched <strong>sediment</strong>s is still to beshown.Fig 6. Radial oxygen loss measured with plat<strong>in</strong>um sleeveelectrodes along the length of roots <strong>in</strong> an anoxic medium.The basal part of the roots was <strong>in</strong> contact withatmospheric air. Lobelia dortmanna had either none orthick iron coat<strong>in</strong>gs of the root surface (0.09 ± 0.05 <strong>and</strong> 30± 3 mmol Fe m-2 root surface respectively), whilePhragmites australis (from Armstrong & Armstrong2001) <strong>and</strong> the seagrass, Zostera mar<strong>in</strong>a (Unpublished)were without iron coat<strong>in</strong>gs.scientific language to communicate f<strong>in</strong>d<strong>in</strong>gs ofseveral <strong>in</strong>vestigations to a broader audience. O 2supply to root systems via rapid diffusionthrough aerenchyma or pressurized convectivegas-flow <strong>in</strong> stems <strong>and</strong> gas impermeable rootbarriers prevent<strong>in</strong>g excessive O 2 loss from rootsto <strong>sediment</strong> are discussed <strong>in</strong> regard to <strong>sediment</strong>O 2 dem<strong>and</strong>.Paper 6 is a Danish article address<strong>in</strong>gmorphological adaptations of aquatic <strong>and</strong>emergent <strong>plant</strong>s to life <strong>in</strong> waterlogged<strong>sediment</strong>s. The article is written <strong>in</strong> a popular23


Conclusions <strong>and</strong> implicationsConclusions- In natural populations of Lobelia <strong>and</strong> Littorella the entire rhizosphere is oxidized by extensive oxygenloss from roots dur<strong>in</strong>g daytime whereas anoxia occurs <strong>in</strong> <strong>sediment</strong>s late <strong>in</strong> the night at summertemperatures.- <strong>Oxygen</strong> loss from roots prevents formation of reduced compounds <strong>in</strong> the pore-water <strong>and</strong> facilitates lossof nitrogen, use of <strong>in</strong>organic carbon <strong>and</strong> precipitation of P <strong>in</strong> the <strong>sediment</strong>, hence, ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>goligotrophic conditions.- Symbiosis with arbuscular mycorrhizal fungi mediates nutrient supply to <strong>isoetid</strong>s by <strong>in</strong>creas<strong>in</strong>g thesurface area for uptake <strong>and</strong> <strong>sediment</strong> contact <strong>in</strong> oligotrophic <strong>sediment</strong>s.- Addition of even small amounts of organic matter to <strong>sediment</strong>s has long-last<strong>in</strong>g effects on <strong>sediment</strong>biogeochemistry <strong>and</strong> affects growth of <strong>isoetid</strong> species. Isoetids seem to benefit from small enrichmentsdue to <strong>in</strong>creased nutrient <strong>and</strong> CO 2 availability but high organic additions lead to <strong>plant</strong> stress when<strong>sediment</strong> O 2 dem<strong>and</strong> exceeds root oxygenation capacity.- High organic additions leads to anoxia, ankal<strong>in</strong>ization <strong>and</strong> accumulation of NH 4 + <strong>and</strong> Fe 2+ <strong>in</strong> the <strong>sediment</strong>pore-water <strong>and</strong> <strong>in</strong>creased efflux of <strong>in</strong>organic carbon <strong>and</strong> NH 4 + to the water column, hence, favor<strong>in</strong>gfaster grow<strong>in</strong>g <strong>plant</strong> species <strong>and</strong> phytoplankton.- When organic enrichment deprives <strong>sediment</strong>s of O 2 Lobelia experience prolonged tissue anoxia dur<strong>in</strong>gnighttime forc<strong>in</strong>g this low productive species to use low energy yield<strong>in</strong>g anaerobic metabolism to coverthe respiratory dem<strong>and</strong>. Littorella avoids <strong>plant</strong> anoxia due to higher gas permeability of leaves whichmediates O 2 diffusion from the water column across leaf surfaces dur<strong>in</strong>g the night.- Organic addition also results <strong>in</strong> low arbuscular mycorrhizal colonization <strong>in</strong> roots of <strong>isoetid</strong>s but isprobably not responsible for the low nutrient content <strong>and</strong> <strong>plant</strong> stress observed at high additions.Implications- Isoetids counteracts eutrophication <strong>and</strong> ma<strong>in</strong>ta<strong>in</strong> oligotrophic <strong>sediment</strong> conditions by controll<strong>in</strong>g the<strong>sediment</strong> biogeochemistry. Oxidation of <strong>sediment</strong>s prevents accumulation of organic matter <strong>and</strong>mediates denitrification <strong>and</strong> precipitation of P <strong>in</strong> the <strong>sediment</strong>s unless O 2 dem<strong>and</strong> of <strong>sediment</strong>s exceedsthe oxygenation capacity of the <strong>isoetid</strong>s. However, when <strong>isoetid</strong>s are lost from lakes, hostile <strong>sediment</strong>scan prevent re-colonization.- O 2 availability <strong>in</strong> <strong>sediment</strong>s dictates the <strong>sediment</strong> biogeochemistry <strong>and</strong> is thereby the s<strong>in</strong>gle mostimportant parameter s<strong>in</strong>ce permanent anoxic <strong>sediment</strong>s hamper growth of <strong>isoetid</strong>s.- To prevent further loss of <strong>isoetid</strong> populations it is important to keep <strong>sediment</strong>ation of labile organicmatter low <strong>and</strong> water transparency high s<strong>in</strong>ce <strong>isoetid</strong>s otherwise lose control of <strong>sediment</strong>biogeochemistry.- Littorella can by its higher tolerance to eutrophication be used for restoration by improv<strong>in</strong>g <strong>sediment</strong>conditions for less tolerant <strong>isoetid</strong> species such as Lobelia <strong>and</strong> prevent<strong>in</strong>g P release from <strong>sediment</strong>s.25


Paper 1<strong>Oxygen</strong>, carbon <strong>and</strong> iron <strong>dynamics</strong> <strong>in</strong> natural <strong>and</strong>organically enriched <strong>sediment</strong>s from oligotrophiclakes <strong>in</strong>habited by <strong>isoetid</strong> vegetationPhoto: Ole Pedersen


Paper 1<strong>Oxygen</strong>, carbon <strong>and</strong> iron <strong>dynamics</strong> <strong>in</strong> natural <strong>and</strong> organically enriched <strong>sediment</strong>sfrom oligotrophic lakes <strong>in</strong>habited by <strong>isoetid</strong> vegetation.Claus L<strong>in</strong>dskov Møller <strong>and</strong> Kaj S<strong>and</strong>-JensenFreshwater Biological Laboratory, Biological Institute, Hels<strong>in</strong>gørsgade 51, DK-3400 Hillerød, Denmark.Key words: Sediments,<strong>isoetid</strong>s, oligotrophic lakes,iron, iron reduction, oxygen<strong>and</strong> carbon dynamicSummary● Nutrient-poor s<strong>and</strong>y <strong>sediment</strong>s <strong>in</strong>habited by small <strong>isoetid</strong> species, Lobeliadortmanna <strong>and</strong> Littorella uniflora conta<strong>in</strong> O 2 to more than 40 mm depth <strong>in</strong> thelight because of high photosynthetic O 2 release from gas permeable rootsadapted to use <strong>sediment</strong> CO 2 . We exam<strong>in</strong>ed the biogeochemical consequencesof variable organic <strong>sediment</strong> enrichment (0.1-1.6% of <strong>sediment</strong> dry weight) <strong>in</strong> c.200-days long experiments.● To track changes <strong>in</strong> <strong>sediment</strong> chemistry small pore-water samples werefrequently extracted at different depths <strong>and</strong> analyzed for NH + 4 , Fe 2+ <strong>and</strong><strong>in</strong>organic carbon (DIC). M<strong>in</strong>i O 2 electrodes were used to measure changes <strong>in</strong> O 2availability. Fate of added organic matter <strong>and</strong> changes <strong>in</strong> <strong>sediment</strong> pools wasassessed from <strong>sediment</strong> composition after c. 200 days <strong>and</strong> <strong>in</strong>tegrated <strong>sediment</strong>effluxes calculated from pore-water concentrations.● Upon organic enrichment, O 2 penetration dropped immediately to a few mm<strong>and</strong> concentrations of DIC <strong>in</strong>creased up to 10-fold. Anaerobic Fe 3+ reductionwas <strong>in</strong>duced after several days delay <strong>and</strong> did not peak until after 60 days.Cumulative anaerobic Fe 3+ reduction over 200 days <strong>in</strong>creased relative to DICformation with higher organic enrichment, but molar proportions rema<strong>in</strong>ed lessthan 15% accord<strong>in</strong>g to <strong>sediment</strong> accumulation <strong>and</strong> estimated effluxes. Higher O 2release to Littorella than to Lobelia <strong>sediment</strong>s because of 3 times higher leafbiomass <strong>and</strong> 1.3 times higher mass-specific photosynthesis permitted recoveryof O 2 penetration depth <strong>and</strong> decl<strong>in</strong>e of DIC, Fe 2+ <strong>and</strong> NH + 4 to control levels athigher organic enrichment of Littorella (0.1-0.4%) than Lobelia <strong>sediment</strong>s(0.1%). Added phosphorus <strong>in</strong> organic matter was efficiently reta<strong>in</strong>ed (89-93%)<strong>in</strong> the <strong>sediment</strong>s compared to added organic carbon (21-55%).● We conclude that non-destructive measurements of <strong>sediment</strong> depth profiles ofO 2 accurately picture changes <strong>in</strong> oxic <strong>and</strong> anoxic zones over time, while Fe 2+reflects anaerobic Fe 3+ reduction <strong>in</strong> permanent anoxic zones <strong>and</strong> DIC thecomb<strong>in</strong>ed aerobic <strong>and</strong> anaerobic respiration.IntroductionOligotrophic, softwater lakes <strong>in</strong>habited by small<strong>isoetid</strong> species typically have coarse-gra<strong>in</strong>ed<strong>sediment</strong>s low <strong>in</strong> organic matter, dissolved<strong>in</strong>organic carbon (DIC) <strong>and</strong> nutrients (N <strong>and</strong> P)but high <strong>in</strong> Fe (S<strong>and</strong>-Jensen <strong>and</strong> Søndergaard1979, Geurts et al. 2008). Sediments are welloxygenateddue to extensive radial O 2 releasefrom <strong>isoetid</strong> roots <strong>and</strong> low organic degradationrates <strong>and</strong> oxidized Fe 3+ concentrations are highrelative to phosphorus (P; Møller <strong>and</strong> S<strong>and</strong>-Jensen 2011a,b). High P-b<strong>in</strong>d<strong>in</strong>g to Fe 3+strongly constra<strong>in</strong>s growth <strong>and</strong> development offast-grow<strong>in</strong>g, competitive C- <strong>and</strong> R-selectedelodeid species (sensu Grime 1977, Farmer <strong>and</strong>Spence 1986). In contrast, rare S-selected<strong>isoetid</strong>s thrive because of their <strong>in</strong>herently slowgrowth, perennial-evergreen nature <strong>and</strong>capability to effectively extract P from an29


Paper 1extensive <strong>sediment</strong> volume by symbiosis withfungi (S<strong>and</strong>-Jensen <strong>and</strong> Søndergaard 1978,Wig<strong>and</strong> et al. 1998, Andersen <strong>and</strong> Andersen2006).Organic enrichment of <strong>sediment</strong>saccompany<strong>in</strong>g higher algal growth byeutrophication or greater terrestrial <strong>in</strong>put,however, has been a serious threat to thepersistence of transparent lake waters <strong>and</strong>m<strong>in</strong>eral <strong>sediment</strong>s <strong>in</strong>habited by <strong>isoetid</strong>s dur<strong>in</strong>gthe last 100 years (S<strong>and</strong>-Jensen et al. 2000,Smolders et al. 2002). We have recentlyconfirmed the critical consequences of <strong>sediment</strong>anoxia for <strong>plant</strong> performance <strong>and</strong> survivalfollow<strong>in</strong>g organic enrichment (Møller <strong>and</strong> S<strong>and</strong>-Jensen 2011a,b), but the profound alterations of<strong>sediment</strong> chemistry have not been analyzed. Wehere explore changes <strong>in</strong> <strong>sediment</strong>biogeochemistry by repeated measurements ofpore-water chemistry over ca. 200 days <strong>in</strong><strong>sediment</strong>s <strong>in</strong>habited by the two common <strong>isoetid</strong>species, Lobelia dortmanna <strong>and</strong> Littorellauniflora <strong>in</strong>clud<strong>in</strong>g both <strong>in</strong>itial phases ofmarkedly <strong>in</strong>creased organic degradation rates<strong>and</strong> later recovery phases after the most labileorganic matter has vanished.O 2 <strong>dynamics</strong> of <strong>sediment</strong>s is regulatedby O 2 production (photosynthesis), consumption(root <strong>and</strong> bacterial respiration) <strong>and</strong> physicalexchange with lake waters. Addition of organicmatter is expected to enhance degradation rates,accelerate O 2 consumption, <strong>in</strong>crease+accumulation of DIC <strong>and</strong> NH 4 <strong>and</strong> <strong>in</strong>duceanoxic Fe 3+ -reduction to soluble Fe 2+ . Theaccumulation of DIC should reflect thecomb<strong>in</strong>ed O 2 respiration <strong>and</strong> anaerobicrespiration by alternative electron acceptors(NO - 3 , Mn 4+ , Fe 3+ <strong>and</strong> SO 2- 4 ). NO - 3 respiration isrestricted by low N-content of the <strong>sediment</strong>s <strong>and</strong>low nitrification rates once O 2 disappears(Christensen <strong>and</strong> Sørensen 1986, Risgaard-Petersen <strong>and</strong> Jensen 1997). Likewise, SO 2- 4 <strong>and</strong>Mn 4+ reduction are constra<strong>in</strong>ed by lowconcentrations leav<strong>in</strong>g Fe 3+ as the most potentoxidation agent due to very high <strong>sediment</strong> pools(Christensen <strong>and</strong> S<strong>and</strong>-Jensen 1998). We hereanalyze the temporal course of <strong>sediment</strong> porewaterFe 2+ to follow the <strong>in</strong>duction, rise <strong>and</strong>decl<strong>in</strong>e of anaerobic respiration over time <strong>and</strong>use the vertical profiles to estimate Fe 2+ effluxesderiv<strong>in</strong>g from anaerobic Fe 3+ reduction. Fe 2+flux estimates are sensitive measures ofanaerobic Fe 3+ respiration <strong>in</strong> response to organicenrichment <strong>and</strong> effluxes of Fe 2+ relative to DICprovides a proxy of anaerobic Fe reductionrelative to total aerobic <strong>and</strong> anaerobicrespiration.Input of organic matter to <strong>sediment</strong>s<strong>in</strong>creases pools <strong>and</strong> release of organic matter tolake waters. In contrast to <strong>in</strong>organic C releasedby organic decomposition, we foresee that<strong>in</strong>organic N <strong>and</strong> P, <strong>in</strong> particular, will be moreeffectively reta<strong>in</strong>ed <strong>in</strong> the <strong>sediment</strong> due to<strong>in</strong>corporation <strong>in</strong> microbial biomass <strong>and</strong>development of higher N:C <strong>and</strong> P:C ratios <strong>in</strong>organic <strong>sediment</strong> pools. Moreover, NH +4 isbound to organic compounds <strong>and</strong> <strong>sediment</strong>particles with negative charges, while PO 3- 4 isstrongly adsorbed to all particle surfaces <strong>and</strong>forms <strong>in</strong>soluble complexes <strong>and</strong> m<strong>in</strong>erals with Al<strong>and</strong> Fe. Thus, when leaf concentrations of N <strong>and</strong>P <strong>and</strong> photosynthesis of <strong>isoetid</strong>s dropdramatically upon high organic <strong>sediment</strong>enrichment (Møller <strong>and</strong> S<strong>and</strong>-Jensen 2011a,b),despite <strong>in</strong>creas<strong>in</strong>g <strong>sediment</strong> N <strong>and</strong> Pconcentrations, the likely reason is poor rootdevelopment <strong>and</strong> performance (Raun et al.2010, Møller <strong>and</strong> S<strong>and</strong>-Jensen 2011a,b) <strong>and</strong>impaired <strong>in</strong>tra-<strong>plant</strong> translocation of organicsolutes <strong>and</strong> nutrients as a result of <strong>sediment</strong> <strong>and</strong>tissue anoxia (Sorrell 2004).Our objectives here were: (i) todeterm<strong>in</strong>e the temporal course <strong>and</strong> coupl<strong>in</strong>g of+O 2 , DIC, Fe <strong>and</strong> NH 4 <strong>and</strong> aerobic <strong>and</strong>anaerobic respiration processes with <strong>in</strong>creas<strong>in</strong>gorganic enrichment of Lobelia <strong>and</strong> Littorella<strong>sediment</strong>s; (2) to use estimates of Fe 2+ <strong>and</strong> DICeffluxes as a proxy for the relative changes ofanaerobic respiration to total <strong>sediment</strong>respiration; <strong>and</strong> (iii) to evaluate C, N <strong>and</strong> Pretention of added organic matter to <strong>sediment</strong>s.This study present orig<strong>in</strong>al data for <strong>sediment</strong>30


Paper 1biogeochemistry, while O 2 penetration depth <strong>in</strong><strong>sediment</strong>s (Møller <strong>and</strong> S<strong>and</strong>-Jensen 2011b) is<strong>in</strong>cluded to evaluate where <strong>and</strong> when anoxicFe 3+ reduction should take place <strong>and</strong> what therelationship is to Fe 3+ reduction rates.Materials <strong>and</strong> methodsSediment turfs <strong>in</strong> culture facilitySix <strong>in</strong>tact <strong>sediment</strong> turfs <strong>in</strong>habited by Lobeliadortmanna <strong>and</strong> six with Littorella uniflora werecollected from homogeneous <strong>plant</strong> st<strong>and</strong>s <strong>in</strong>ologotrophic, softwater Lake Värsjö, SWSweden as described before (Møller <strong>and</strong> S<strong>and</strong>-Jensen 2011a,b). Turfs were 17 cm long, 15 cmwide <strong>and</strong> 12-14 cm deep to ensure <strong>in</strong>tact rootsystems of about 20 Lobelia <strong>and</strong> 150 Littorella<strong>plant</strong>s with a mean biomass of 47 <strong>and</strong> 142 g dryweight (DW) m -2 , respectively. Turfs werebrought fully submerged to the laboratory forexperiments. One of the six turfs was used as acontrol, while gradually longer rod-shaped drypellets (5 mm <strong>in</strong> diameter, 1-15 mm long) ofcommercially available pasture grass (DLG,Copenhagen, Denmark) were added to the otherfive turfs form<strong>in</strong>g a gradient of added organicmatter equivalent to 0 (control), 0.1, 0.2, 0.4, 0.8<strong>and</strong> 1.6% organic matter of DW. Organic pelletsconta<strong>in</strong>ed (% of DW) 91% organic matter,46.9% organic carbon, 2.3% total nitrogen (TN)<strong>and</strong> 0.27% total phosphorus (TP). Pellets were<strong>in</strong>serted with p<strong>in</strong>cers at 4 cm <strong>sediment</strong> depthwith a fixed horizontal distance of 2 cm. Theturfs were <strong>in</strong>cubated at 14-16 o C <strong>in</strong> 80 l aquaria<strong>in</strong> a 12 : 12 h light : dark cycle exposed to aphotosynthetic active radiation (PAR) of 110µmol photons m -2 s -1 . The water was renewedevery second week to keep nutrients low <strong>and</strong>avoid algal growth <strong>and</strong> it was bubbled slowlywith atmospheric air to ensure mix<strong>in</strong>g <strong>and</strong> airsaturation. Because large water volumes wereneeded we used filtered water from nearby LakeEsrom diluted 20 times with dem<strong>in</strong>eralizedwater to obta<strong>in</strong> a chemical compositionresembl<strong>in</strong>g that of Lake Värsjö (details <strong>in</strong>Møller & S<strong>and</strong>-Jensen 2011a).Pore-water chemistry <strong>and</strong> fluxesPore-water samples for analyz<strong>in</strong>g DIC, pH, Fe 2+<strong>and</strong> NH + 4 were extracted at <strong>in</strong>tervals dur<strong>in</strong>g theexperiment from 1 <strong>and</strong> 4 cm depth <strong>and</strong> from 1,2, 4, 6 <strong>and</strong> 8 cm depth at term<strong>in</strong>ation of the c.200-days long experiments. Water samples wereanalyzed simultaneously. Sediment sampleswere always taken at two (dur<strong>in</strong>g theexperiment) or three (at term<strong>in</strong>ation)representative sites distributed evenly across theturf area. Pore-water was sampled by <strong>in</strong>sert<strong>in</strong>gth<strong>in</strong> capillary glass tubes (1 mm <strong>in</strong> diameter) <strong>in</strong>the <strong>sediment</strong>, keep<strong>in</strong>g the upper end above thewater. Capillary force <strong>and</strong> pressure differencefilled the capillary tube with water from thedesired <strong>sediment</strong> depth with<strong>in</strong> a few m<strong>in</strong>utes.Quantities of 50-100 µl of pore-water werewithdrawn with m<strong>in</strong>imum air contact from thecapillary tube <strong>and</strong> immediately analyzed. DICwas analyzed by <strong>in</strong>ject<strong>in</strong>g a m<strong>in</strong>ute volume <strong>in</strong>to3% HNO 3 <strong>in</strong> a bubble chamber purged with N 2gas carry<strong>in</strong>g evolved CO 2 <strong>in</strong>to an Infrared GasAnalyzer (ADC-225-MK3, Hoddesdon, UK;Vermaat <strong>and</strong> S<strong>and</strong>-Jensen 1987). pH wasmeasured by a flat membrane electrode(LoT403-M8-S7/120, Mettler Toledo,Greifensee, Switzerl<strong>and</strong>) positioned close to aglass surface allow<strong>in</strong>g measurements on smalldroplets <strong>in</strong>jected between the electrodemembrane <strong>and</strong> the glass surface. Free CO 2 <strong>and</strong>HCO - 3 were calculated from pH, ionic strength<strong>and</strong> temperature (Rebsdorf 1972). Fe 2+ wasanalyzed spectrophotometrically by the+phenanthrol<strong>in</strong>e method (Eaton et al 1995). NH 4was measured spectrophotometrically bydilut<strong>in</strong>g 100 µl pore-water with 900 µldem<strong>in</strong>eralized water <strong>and</strong> add<strong>in</strong>g phenol <strong>and</strong>hypochlorite reagents accord<strong>in</strong>g to amicroversion of Solórzano (1996). After theexperiment duplicate cores were analyzed forwet <strong>and</strong> dry weight <strong>in</strong> depth strata of 0-1 cm, 1-3 cm, 3-5 cm <strong>and</strong> 5-8 cm. Dried homogenizedsamples were then analyzed for TN <strong>and</strong> organicC on a CHN Ea1108-elemental analyzer (CarloErba Instruments, Milan, Italy), TP by the31


Paper 1method of Andersen (1976) <strong>and</strong> total Fe (TFe)by the modified phenantrol<strong>in</strong>e method (Møller<strong>and</strong> S<strong>and</strong>-Jensen 2008).Effluxes of DIC (DIC eff ) dur<strong>in</strong>g the course ofthe experiment were calculated from depth-gradients as the sum of CO 2 <strong>and</strong> HCO 3 effluxesby <strong>in</strong>tegration <strong>and</strong> l<strong>in</strong>ear <strong>in</strong>terpolation betweenmeasur<strong>in</strong>g days. Fe 2+ efflux (Fe 2+ eff) wascalculated from the Fe 2+ concentration gradient.Effluxes were estimated as the product of: 1) theconcentration gradient from 10 mm depth to the<strong>sediment</strong> surface (assum<strong>in</strong>g that the latter hadthe same concentration as the lake water), 2) thediffusion coefficient of the element at 15 o C (Li<strong>and</strong> Gregory 1974), 3) the porosity of the<strong>sediment</strong> <strong>and</strong> 4) the <strong>in</strong>verse of turtuositypreviously measured for these <strong>sediment</strong>s(Pedersen et al. 1995). Accumulation of DIC<strong>and</strong> Fe 2+ (DIC acc <strong>and</strong> Fe 2+ acc) <strong>in</strong> the pore-waterwas calculated by the <strong>in</strong>crease of depth<strong>in</strong>tegrated<strong>sediment</strong> concentrations from beforeto term<strong>in</strong>ation of the experiment. Effluxes plusaccumulations are m<strong>in</strong>imum estimates ofprocess rates because exchangeable ions werenot <strong>in</strong>cluded <strong>and</strong> this pool can be considerablefor Fe 2+ . Moreover, we did not necessarily f<strong>in</strong>dthe maximum concentration gradient. F<strong>in</strong>ally,effluxes of CO 2 from the <strong>sediment</strong> to the watervia the <strong>plant</strong> <strong>and</strong> effluxes of Fe 2+ to <strong>and</strong>precipitation of Fe 3+ on root surfaces were not<strong>in</strong>cluded either.Data treatment <strong>and</strong> statistical analysisData were processed <strong>in</strong> Excel 2007 <strong>and</strong>statistical analysis <strong>and</strong> graphs were made <strong>in</strong>Graph Pad Prism 5. Data are presented as means± SD of pseudo replicates from the same turfwhen possible. Experiments were a gradientstudy with no replication of treatments butsuited for regression/correlation analysis acrossthe treatment gradient. Pore-waterconcentrations were measured <strong>in</strong> duplicate atdifferent time po<strong>in</strong>ts <strong>and</strong> <strong>in</strong> triplicate atterm<strong>in</strong>ation of the experiment.ResultsFig. 1. Changes <strong>in</strong> <strong>sediment</strong> biogeochemistry dur<strong>in</strong>g c. 200days follow<strong>in</strong>g organic enrichment of Lobelia <strong>sediment</strong>s(left column) <strong>and</strong> Littorella <strong>sediment</strong>s (right column) at 0%(○), 0.1% (●), 0.2% (□), 0.4% (■), 0.8% (Δ) <strong>and</strong> 1.6% (▲)of <strong>sediment</strong> dry weight. First panel: O 2 penetration depth;second panel: DIC concentration at 1 cm depth; thirdpanel: Fe 2+ concentration at 1 cm depth; fourth panel: NH 4+concentration at 1 cm depth. Mean values of triplicates. SDomitted for clarity.Concentrations of O 2 , DIC, Fe <strong>and</strong> NH 4 NaturalFig. 1. Changes <strong>in</strong> <strong>sediment</strong> biogeochemistry dur<strong>in</strong>g c.200 low-organic days follow<strong>in</strong>g Lobelia organic <strong>and</strong> enrichment Littorella of <strong>sediment</strong>s Lobelia<strong>sediment</strong>s ma<strong>in</strong>ta<strong>in</strong>ed (left deep column) O 2<strong>and</strong> penetration Littorella <strong>sediment</strong>s depth (>(right40column) at 0% (○), 0.1% (●), 0.2% (□), 0.4% (■), 0.8%mm), low DIC concentrations <strong>and</strong> negligible(Δ) <strong>and</strong> 1.6% (▲) of <strong>sediment</strong> dry weight. First panel: O 2penetrationFe 2+ <strong>and</strong>depth;NH + 4 secondat 40-mmpanel:depthDIC concentrationthroughoutatthe1cm 200-days depth; third long panel: experiments Fe 2+ concentration (Fig. 1). at 1 Increas<strong>in</strong>g cm depth;fourth addition panel: NH of +4 concentration organic matter 1 cm depth. stimulated Meanvalues of triplicates. SD omitted for clarity.degradations rates <strong>and</strong> rapidly dim<strong>in</strong>ished O 2penetration depths to just a few mm <strong>and</strong><strong>in</strong>creased DIC concentrations up to 5-20 timesrelative to control <strong>sediment</strong>s. DIC accumulationpeaked only 5-15 days after organic addition<strong>and</strong> a second peak appeared after some 100days. Fe 2+ appeared <strong>in</strong> the pore-water after arelatively long delay (ca. 10 days) <strong>and</strong> slowly32


Paper 1Fig. 2. Depth profiles ofDIC (a <strong>and</strong> d), Fe 2+ (b <strong>and</strong> e)+<strong>and</strong> NH 4 (c <strong>and</strong> f) <strong>in</strong><strong>sediment</strong>s at term<strong>in</strong>ation ofc. 200-days longexperiments with Lobelia(upper panels: a-c) <strong>and</strong>Littorella (lower panels: d-f)with organic enrichments of0% (○), 0.1% (●), 0.2% (□),0.4% (■), 0.8% (Δ) <strong>and</strong>1.6% (▲) of <strong>sediment</strong> dryweight. Mean values ± SDof triplicates.built up maximum concentrations after about 60days suggest<strong>in</strong>g that first anoxia <strong>and</strong> then apopulation of Fe 3+ reduc<strong>in</strong>g bacteria had to beformed before Fe 2+ formation peaked. At theend of the experiment significantly higherconcentrations of Fe 2+ were present <strong>in</strong> Lobeliathan <strong>in</strong> Littorella <strong>sediment</strong>s (L<strong>in</strong>ear regression,slopes different, p


Paper 1Table 3. Retention of added C, N <strong>and</strong> P to <strong>sediment</strong>s at term<strong>in</strong>ation of the c. 200-days longexperiments with Lobelia (Lob) <strong>and</strong> Littorella (Lit).C (mol m -2 ) TN (mol m -2 ) TP (mol m -2 )Treatmen Added LeftLobLeftLitAdded LeftLobLeftLitAdded LeftLobLeftLit0 % 0 0 0 0 0 0 0 0 00.1 % 5.8 4.6 -2.9 0.24 0.16 0.15 0.013 0.017 0.0080.2 % 11.6 3.5 5.8 0.49 0.24 0.60 0.026 0.024 0.0480.4 % 23.1 13.3 6.9 0.97 1.00 -0.10 0.051 0.047 0.0320.8 % 46.2 26.6 13.3 1.94 1.31 1.39 0.103 0.095 0.0631.6 % 92.4 58.9 39.3 3.89 4.02 1.98 0.206 0.121 0.149the two species, while retention wassignificantly smaller for C (44±35%), <strong>and</strong> alsotended to be lower for N (77±26%) than P (ttest;Table 3). Retentions were not significantlydifferent between Lobelia <strong>and</strong> Littorella.DiscussionIn natural low-organic <strong>sediment</strong>s of low O 2consumption rates, high O 2 release frompermeable roots of <strong>isoetid</strong>s builds-up O 2concentrations above air saturation <strong>in</strong> the porewater<strong>in</strong> the light (Møller <strong>and</strong> S<strong>and</strong>-Jensen2011a,b) <strong>and</strong> O 2 penetrates to more than 40 mmdepth <strong>in</strong> the <strong>sediment</strong>s. Lobelia has leaf surfacesof low gas permeability <strong>and</strong> releases mostphotosynthetic O 2 <strong>in</strong> the light from the roots tothe <strong>sediment</strong> <strong>and</strong> takes up O 2 by the roots <strong>in</strong> thedark until the pore-water <strong>and</strong> the <strong>plant</strong> tissueturn anoxic (Møller <strong>and</strong> S<strong>and</strong>-Jensen 2011a).Littorella’s leaf surfaces have 12-14 timeshigher permeability than Lobelia’s (Møller <strong>and</strong>S<strong>and</strong>-Jensen 2011b) <strong>and</strong> releases about 30% ofphotosynthetic O 2 from the roots <strong>in</strong> the light(S<strong>and</strong>-Jensen et al. 1982), while O 2 uptake fromlake water <strong>in</strong> the dark ensures O 2 concentrations<strong>in</strong> the leaf lacunae above 5-10 Pa (Møller <strong>and</strong>S<strong>and</strong>-Jensen 2011b), downstream transport toroots <strong>and</strong> release to <strong>sediment</strong>s at about 20-40%of the rate <strong>in</strong> the light (Christensen et al. 1994).The more rapid recovery of O 2 penetrationdepths <strong>and</strong> disappearance of Fe 2+ after 0.1-0.4%organic enrichment of Littorella but not Lobelia<strong>sediment</strong>s <strong>and</strong> the small efflux <strong>and</strong>accumulation of Fe 2+ relative to DIC ofLittorella <strong>sediment</strong>s suggest that O 2 supply ishigher to Littorella <strong>sediment</strong>s than to Lobelia<strong>sediment</strong>s. Three times higher leaf biomass, 1.3-1.5 times higher mass specific photosynthesis(Møller <strong>and</strong> S<strong>and</strong>-Jensen 2011b) <strong>and</strong>appreciable dark release of Littorella(Christensen et al. 1994) can account for anestimated higher O 2 release to <strong>sediment</strong>s withLittorella (20-40 mmol m -2 d -1 ) than Lobelia(10-20 mmol m -2 d -1 ).Well oxygenated conditions of<strong>sediment</strong>s with no or low organic enrichment(0.1%) ensure that aerobic respiration is theprom<strong>in</strong>ent respiration mode. O 2 depth profiles <strong>in</strong>the light show one peak a few mm below the<strong>sediment</strong> surface due to photosynthesis ofbenthic microalgae <strong>and</strong> a second peak at 20 mmdue to O 2 release from <strong>isoetid</strong> roots (Pedersen etal. 1995, S<strong>and</strong>-Jensen et al. 2005). High O 2concentrations permit conversion of NH +4 toNO - 3 that can drive denitrification dur<strong>in</strong>g anoxia<strong>in</strong> two zones below a surface <strong>and</strong> a deeper zoneof maximum O 2 concentrations at depth<strong>in</strong>tegratedrates of 500-700 µmol m -2 d -1 <strong>in</strong> fieldmeasurements on Littorella <strong>and</strong> laboratoryexperiments with Lobelia (Christensen <strong>and</strong>Sørensen 1986, Risgaard-Petersen <strong>and</strong> Jensen1997). The experiments with Lobelia showedthat denitrification was stimulated by a factorgreater than six when compared to bare<strong>sediment</strong>s <strong>and</strong> this enhanced activity was due to+root mediated oxic stimulation of both NH 4-release <strong>and</strong> NO 3 formation driv<strong>in</strong>g35


Paper 1denitrification <strong>in</strong> the lower anoxic zone(Risgaard-Petersen <strong>and</strong> Jensen 1997). Thisstimulation of nitrification <strong>and</strong> denitrificationcan also develop <strong>in</strong> cyl<strong>in</strong>drical zones with<strong>in</strong>creas<strong>in</strong>g distance from <strong>in</strong>dividual roots.It may seem paradoxical that Lobelia byrelease of O 2 <strong>in</strong>troduces bacterial competitorsfor <strong>in</strong>organic nitrogen <strong>in</strong> the rhizosphere.However, the special anatomy <strong>and</strong> morphologyof Lobelia has evolved as an adaptation toutilize CO 2 from the rhizosphere <strong>and</strong> the rootrelease of O 2 stimulat<strong>in</strong>g N loss bydenitrification is simply a side effect of hav<strong>in</strong>ghighly gas permeable roots. We can argue thatLobelia due to its highly stress-selected traitscan better tolerate N loss than possible <strong>plant</strong>competitors <strong>and</strong> that it by depriv<strong>in</strong>g the<strong>sediment</strong>s of N <strong>and</strong> reduc<strong>in</strong>g the availability ofP due to strong b<strong>in</strong>d<strong>in</strong>g to oxidized Fecompounds generate nutrient-poor <strong>sediment</strong>conditions that it can better tolerate than anyother species. Although the <strong>isoetid</strong> <strong>sediment</strong>swere strongly enriched by addition of organicmatter, they ma<strong>in</strong>ta<strong>in</strong>ed the ability to reta<strong>in</strong> most(avg. 91%) of the added P <strong>and</strong> dissolved ortho-Pcould not be detected <strong>in</strong> the pore-water except <strong>in</strong>the most enriched <strong>sediment</strong>s (Møller <strong>and</strong> S<strong>and</strong>-Jensen 2011a,b).Estimated Fe 3+ -reduction is negligible (c.9-18 µmol m -2 d -1 ) <strong>in</strong> low-organic control<strong>sediment</strong>s of both species relative todenitrification rates, but high Fe 3+ reductionrates (1050-3500 µmol m -2 d -1 ) develop <strong>in</strong><strong>sediment</strong>s of 0.4-1.6% organic enrichment forLobelia <strong>and</strong> 0.8-1.6 % for Littorella, whereasdenitrification should be strongly <strong>in</strong>hibited by-the decl<strong>in</strong>e of NO 3 follow<strong>in</strong>g reduction of<strong>sediment</strong> O 2 penetration to just a few mm thicksurface layer <strong>and</strong> loss of the deep denitrificationzone.Oxidized Mn is more soluble thanoxidized Fe <strong>and</strong> although Mn pools <strong>in</strong> the<strong>sediment</strong>s are 10 times smaller than Fe pools,Mn exceeds Fe concentrations <strong>in</strong> root plaques <strong>in</strong>control <strong>and</strong> low-organic <strong>sediment</strong>s (Christensen<strong>and</strong> S<strong>and</strong>-Jensen 1998). In contrast, Feconcentrations are 10-fold higher <strong>in</strong> the thickroot plaques formed <strong>in</strong> high-organic <strong>sediment</strong>sof <strong>in</strong>tense anaerobic degradation (Christensen<strong>and</strong> S<strong>and</strong>-Jensen 1998). These results suggestthat oxidized Mn contributes significantly toanaerobic respiration at low organic enrichment<strong>and</strong> <strong>in</strong> the early phases follow<strong>in</strong>g higher organicenrichment, while oxidized Fe takes over withtime at high organic enrichment because thesmaller Mn pools are exhausted. Oxidized Feforms such large pools <strong>in</strong> the oligotrophic<strong>isoetid</strong> <strong>sediment</strong>s that even high Fe reductionover 200 days at 1.6% organic enrichmentconsumes less than 11% of the total Fe pool.Bulk measurements of <strong>in</strong>organicelements <strong>and</strong> redox potential are often used <strong>in</strong>freshwater <strong>sediment</strong>s as relatively unspecificmeasures of the characteristics <strong>and</strong> the processesoccurr<strong>in</strong>g there. We demonstrate here thatspecific pore-water measurements ofconcentrations at high depth resolution by theaid of microelectrodes <strong>and</strong> capillary samples<strong>and</strong> estimates of fluxes of O 2 , DIC, Fe 2+ <strong>and</strong>+NH 4 can be made over extended periodswithout disturb<strong>in</strong>g the <strong>sediment</strong>. Thus, O 2microelectode measurements are extremelyprecise descriptors of the spatial <strong>and</strong> temporalvariation of oxic <strong>and</strong> anoxic zones that can evenbe applied <strong>in</strong> the field <strong>and</strong> Fe 2+ is a highlysensitive measure of whether strictly anoxicconditions have existed for some time at thespecific sampl<strong>in</strong>g depth. DIC concentrations <strong>and</strong>efflux estimates are suitable quantifications ofthe comb<strong>in</strong>ed CO 2 formation by aerobic <strong>and</strong>anaerobic respiration over time. In the <strong>isoetid</strong><strong>sediment</strong>s, it is evident that Fe reduction is agradually <strong>in</strong>creas<strong>in</strong>g contributor to microbialrespiration follow<strong>in</strong>g higher organic enrichmentbut that its molar magnitude relative to theformation <strong>and</strong> efflux of DIC rema<strong>in</strong>s relativelymodest (< 15%). The biphasic temporal patternof DIC concentrations suggests that a pool ofhighly labile organic matter (e.g. simplecarbohydrates, organic acids <strong>and</strong> am<strong>in</strong>o acids <strong>in</strong>the organic pellets) is rapidly degraded dur<strong>in</strong>gthe first one-two weeks whereas more36


Paper 1recalcitrant organic pools are later degradedlead<strong>in</strong>g to secondary peaks after more than 100days when the sufficient microbial biomasseshave been established. The late peak of Fe 3+reduction rates after about 60 days suggests thatit takes a while before Mn pools have beenexhausted <strong>and</strong> populations of Fe-reduc<strong>in</strong>gbacteria have been fully established. The timecourse of DIC release <strong>and</strong> Fe reduction is highlytemperature sensitive because it is markedlyshortened by higher temperatures (28 o C) <strong>and</strong>prolonged by lower temperatures (8o C,Hammer 2010). If pulses of organic matter arereceived by the <strong>sediment</strong>s, <strong>isoetid</strong> <strong>plant</strong>s may,therefore, be more capable of cop<strong>in</strong>g with thisimpact at low temperatures because anoxicstress is less severe <strong>and</strong> concentrations ofreduced compounds are lower though of moreprolonged duration because degradation ratesare impeded.AcknowledgementsWe thank the Center for Lake Restoration(CLEAR) a Willum Kann Rasmussen center ofexcellence for fund<strong>in</strong>g.ReferencesAndersen JM 1976. An ignition method fordeterm<strong>in</strong>ation of total phosphorus <strong>in</strong> lake <strong>sediment</strong>s.Water Research 10: 329-331.Andersen FØ, Andersen T 2006. Effects of arbuscularmycorrhizae on biomass <strong>and</strong> nutrients <strong>in</strong> the aquatic <strong>plant</strong>Littorella uniflora. Freshwater Biology 51: 1623-1633.Christensen KK, S<strong>and</strong>-Jensen K 1998. Precipitated iron<strong>and</strong> manganese plaques restrict root uptake of phosphorus<strong>in</strong> Lobelia dortmanna. Canadian Journal of Botany 76:2158-2163.Christensen PB, Sørensen J 1986. Temporal variation ofdenitrification <strong>in</strong> <strong>plant</strong>-covered, littoral <strong>sediment</strong>fromLake Hampen, Denmark. Applied <strong>and</strong> EnvironmentalMicrobiology 51: 1174-1179.Christensen PB, Revsbech NP, S<strong>and</strong>-Jensen K 1994.Microsensor analysis of oxygen <strong>in</strong> the rhizosphere of theaquatic macrophyte Littorella uniflora (L.) Aschers. PlantPhysiology 105: 1174-1179.Eaton AD, Clesceri LS, Greenberg AE 1995. St<strong>and</strong>ardmethods for the exam<strong>in</strong>ation of water <strong>and</strong> wastewater.Wash<strong>in</strong>gton DC, USA: American Public HealthAssociation.Farmer AM, Spence DHN 1986. The growth strategies<strong>and</strong> distribution of <strong>isoetid</strong>s <strong>in</strong> Scottish freshwater lochs.Aquatic Botany 26: 247-258.Geurts JJM, Smolders AJP, Verhoeven JTA, RoelofsJGM, Lamers LPM 2008. Sediment Fe:PO 3 ratio as adiagnostic <strong>and</strong> prognostic tool for the restoration ofmacrophyte biodiversity <strong>in</strong> fen waters. FreshwaterBiology 53: 2101-2116.Grime JP 1977. Plant Strategies <strong>and</strong> VegetationProcesses. John Wileys <strong>and</strong> Sons, New York.Hammer KH 2010. Plante-<strong>sediment</strong> samspil hos Lobeliadortmanna ved stigende temperaturer. BC-Thesis,University of Copenhagen, Denmark.Li Y-H, Gregory S 1974. Diffusion of ions <strong>in</strong> sea water<strong>and</strong> <strong>in</strong> deep-sea <strong>sediment</strong>s. Geochimica et CosmochimicaActa 38: 703-714.Møller CL, S<strong>and</strong>-Jensen K 2008. Iron plaques improvethe oxygen supply to root meristems of the freshwater<strong>plant</strong>, Lobelia dortmanna. New Phytologist 179: 848-856.Møller CL, S<strong>and</strong>-Jensen K 2011a. High sensitivity ofLobelia dortmanna to <strong>sediment</strong> oxygen depletionfollow<strong>in</strong>g organic enrichment. New Phytologist 190:320-331.Møller CL, S<strong>and</strong>-Jensen K 2011b. Higher gaspermeability of leaves provides greater tolerance ofLittorella uniflora than Lobelia dortmanna to <strong>sediment</strong>organic enrichment. (Paper 3).Pedersen O, S<strong>and</strong>-Jensen K, Revsbech NP 1995. Dielpulses of O 2 <strong>and</strong> CO 2 <strong>in</strong> s<strong>and</strong>y <strong>sediment</strong>s <strong>in</strong>habited byLobelia dortmanna. Ecology 76: 1536-1545.Raun AL, Borum J, S<strong>and</strong>-Jensen K 2010. Influence of<strong>sediment</strong> organic enrichment <strong>and</strong> water alkal<strong>in</strong>ity ongrowth of aquatic <strong>isoetid</strong> <strong>and</strong> elodeid <strong>plant</strong>s. FreshwaterBiology 55: 1891-1904.Rebsdorf A 1972. The carbon dioxide system <strong>in</strong>freshwater. Freshwater Biological Laboratory,Copenhagen.Risgaard-Petersen N, Jensen K 1997. Nitrification <strong>and</strong>denitrification <strong>in</strong> the rhizosphere of the aquaticmacrophyte Lobelia dortmanna L. Limnology <strong>and</strong>Oceanography 42: 520-537.S<strong>and</strong>-Jensen K, Borum J, B<strong>in</strong>zer T. 2005. <strong>Oxygen</strong>stress <strong>and</strong> reduced growth of Lobelia dortmanna <strong>in</strong> s<strong>and</strong>ylake <strong>sediment</strong>s subject to organic enrichment. FreshwaterBiology 50: 1034-1048.S<strong>and</strong>-Jensen K, Prahl C 1982. <strong>Oxygen</strong> exchange withthe lacunae <strong>and</strong> across leaves <strong>and</strong> roots of the submerged37


Paper 1vascular macrophyte, Lobelia dortmanna L. NewPhytologist 91: 103-120.S<strong>and</strong>-Jensen K, Prahl C, Stokholm 1982. <strong>Oxygen</strong>release from roots of submerged aquatic macrophytes.Oikos 38: 349-354.S<strong>and</strong>-Jensen K, Riis T, Vestergaard O, Larsen SE2000. Macrophyte decl<strong>in</strong>e i Danish lakes <strong>and</strong> streams overthe past 100 years. Journal of Ecology 46: 269-280.S<strong>and</strong>-Jensen K, Søndergaard M 1978. Growth <strong>and</strong>production of <strong>isoetid</strong>s <strong>in</strong> oligotrophic Lake Kalgaard,Denmark. Internationale Vere<strong>in</strong><strong>in</strong>gung füt theoretischeund angew<strong>and</strong>te Limnologie, Verh<strong>and</strong>lungen 9: 659-666.S<strong>and</strong>-Jensen K, Søndergaard M 1979. Distribution <strong>and</strong>quantitative development of aquatic macrophytes <strong>in</strong>relation to <strong>sediment</strong> characteristics <strong>in</strong> oligotrophic LakeKalgaard, Denmark. Freshwater Biology 9: 1-11.S<strong>and</strong>-Jensen K, Søndergaard M 1997. Plants <strong>and</strong>environmental conditions <strong>in</strong> Danish Lobelia-lakes. In:Freshwater Biology. Priorities <strong>and</strong> Development <strong>in</strong>Danish Research (Eds. K S<strong>and</strong>-Jensen & O Pedersen), pp54-73. GEC Gad Publishers, Copenhagen.Smolders AJP, Lucassen ECHE, Roelofs JGM 2002.The <strong>isoetid</strong> environment: biogeochemistry <strong>and</strong> threats.Aquatic Botany 73: 325-350.Solórzano L 1969. Determ<strong>in</strong>ation of ammonia <strong>in</strong> naturalwater by the phenolhypochlorite method. Limnology <strong>and</strong>Oceanography 14: 799-801.Vermaat, J, S<strong>and</strong>-Jensen, K 1987. Survival, metabolism<strong>and</strong> growth of Ulva lactuca under w<strong>in</strong>ter conditions: alaboratory study of bottlenecks <strong>in</strong> the life cycle. Mar<strong>in</strong>eBiology 95: 55-61.Wig<strong>and</strong> C, Andersen FØ, Christensen KK, Holmer M,Jensen HS 1998. Endomycorrhizae of <strong>isoetid</strong>s along abiogeochemical gradient. Limnology <strong>and</strong> Oceanography43: 508-515.38


Paper 2High sensitivity of Lobelia dortmanna to <strong>sediment</strong>oxygen depletion follow<strong>in</strong>g organic enrichmentPhoto: Ole Pedersen


ResearchPaper 2NewPhytologistHigh sensitivity of Lobelia dortmanna to <strong>sediment</strong>oxygen depletion follow<strong>in</strong>g organic enrichmentClaus L<strong>in</strong>dskov Møller <strong>and</strong> Kaj S<strong>and</strong>-JensenFreshwater Biological Laboratory, Biological Institute, University of Copenhagen, Hels<strong>in</strong>gørsgade 51, DK-3400 Hillerød, DenmarkSummaryAuthor for correspondence:Claus L<strong>in</strong>dskov MøllerTel: +45 3532 1909Email: clmoller@bio.ku.dkReceived: 7 October 2010Accepted: 5 November 2010New Phytologist (2011) 190: 320–331doi: 10.1111/j.1469-8137.2010.03584.xKey words: eutrophication, Lobeliadortmanna, organic enrichment, oxygen,anoxia, photosynthesis, <strong>sediment</strong>biogeochemistry, stress.• Lobelia dortmanna thrives <strong>in</strong> oligotrophic, softwater lakes thanks to O 2 <strong>and</strong>CO 2 exchange across roots <strong>and</strong> uptake of <strong>sediment</strong> nutrients. We hypothesizethat low gas permeability of leaves constra<strong>in</strong>s Lobelia to prist<strong>in</strong>e habitats because<strong>plant</strong>s go anoxic <strong>in</strong> the dark if O 2 vanishes from <strong>sediment</strong>s.• We added organic matter to <strong>sediment</strong>s <strong>and</strong> followed O 2 <strong>dynamics</strong> <strong>in</strong> <strong>plant</strong>s <strong>and</strong><strong>sediment</strong>s us<strong>in</strong>g microelectrodes. To <strong>in</strong>vestigate <strong>plant</strong> stress, nutrient content <strong>and</strong>photosynthetic capacity of leaves were measured.• Small additions of organic matter triggered O 2 depletion <strong>and</strong> accumulation ofNH 4 + ,Fe 2+ <strong>and</strong> CO 2 <strong>in</strong> <strong>sediment</strong>s. O 2 <strong>in</strong> leaf lacunae fluctuated from above airsaturation <strong>in</strong> the light to anoxia late <strong>in</strong> the dark <strong>in</strong> natural <strong>sediment</strong>s, but organicenrichment prolonged anoxia because of higher O 2 consumption <strong>and</strong> restricteduptake from the water. Leaf N <strong>and</strong> P dropped below m<strong>in</strong>imum thresholds for cellfunction <strong>in</strong> enriched <strong>sediment</strong>s <strong>and</strong> was accompanied by critically low chlorophyll<strong>and</strong> photosynthesis.• We propose that anoxic stress restricts ATP formation <strong>and</strong> constra<strong>in</strong>s transfer ofnutrients to leaves. Brief anoxia <strong>in</strong> <strong>sediment</strong>s <strong>and</strong> leaf lacunae late at night is arecurr<strong>in</strong>g summer phenomenon <strong>in</strong> Lobelia populations, but <strong>in</strong>creased <strong>in</strong>put oforganic matter prolongs anoxia <strong>and</strong> reduces survival.IntroductionLobelia dortmanna L. <strong>in</strong>habits s<strong>and</strong>y beaches of the mostprist<strong>in</strong>e oligotrophic, softwater lakes <strong>in</strong> Europe <strong>and</strong> NorthAmerica (Sculthorpe, 1967). It ma<strong>in</strong>ta<strong>in</strong>s an evergreenbiomass <strong>and</strong> displays the lowest metabolism <strong>and</strong> the slowesttissue turnover of any temperate aquatic <strong>plant</strong> (Moeller,1978; S<strong>and</strong>-Jensen & Søndergaard, 1978; Nielsen & S<strong>and</strong>-Jensen, 1991). Lobelia has small, thick leaves <strong>in</strong> a rosettefrom a short stem <strong>and</strong> numerous roots with a higher surfacearea than the leaves (S<strong>and</strong>-Jensen & Prahl, 1982). Largecont<strong>in</strong>uous air lacunae run through leaves <strong>and</strong> roots, a thickleaf cuticle reduces the permeability of O 2 <strong>and</strong> CO 2 , whilethe roots have no barriers to gas exchange with the <strong>sediment</strong>pore water (Møller & S<strong>and</strong>-Jensen, 2008). Thus, Lobeliahas efficient <strong>in</strong>tra<strong>plant</strong> transport of O 2 <strong>and</strong> CO 2 betweenleaves <strong>and</strong> roots <strong>and</strong> rapid gas exchange between roots <strong>and</strong><strong>sediment</strong>. This <strong>plant</strong>–<strong>sediment</strong> coupl<strong>in</strong>g is enforced byextensive root symbiosis with arbuscular mycorrhiza fungi(Wig<strong>and</strong> et al., 1998). Although these features help Lobeliato acquire <strong>sediment</strong> CO 2 <strong>and</strong> nutrients <strong>in</strong> nutrient-poorsoftwater lakes, they could also make the <strong>plant</strong> particularlysusceptible to depletion of O 2 <strong>and</strong> reduced conditions <strong>in</strong><strong>sediment</strong>s follow<strong>in</strong>g higher <strong>sediment</strong>ation of labile organicmatter (S<strong>and</strong>-Jensen et al., 2005a; Raun et al., 2010). Ourgeneral objective was, therefore, to determ<strong>in</strong>e how O 2<strong>dynamics</strong>, <strong>sediment</strong> processes <strong>and</strong> Lobelia’s performancerespond to enrichment of <strong>sediment</strong>s with different amountsof labile organic matter.Eutrophication of numerous Lobelia lakes has led todecl<strong>in</strong>e of Lobelia <strong>and</strong> other <strong>isoetid</strong> species (S<strong>and</strong>-Jensenet al., 2000; Smolders et al., 2002; Geurts et al., 2008).The efficient <strong>in</strong>tra<strong>plant</strong> transport of gases <strong>and</strong> the lack ofdiffusive barriers across the root surfaces mean that O 2 isreadily lost to the <strong>sediment</strong>. At high <strong>sediment</strong> O 2 consumption,steep diffusive gradients result <strong>in</strong> large root O 2 effluxes(Christensen et al., 1994; S<strong>and</strong>-Jensen et al., 2005b) <strong>and</strong>problems <strong>in</strong> ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g sufficient <strong>in</strong>ternal O 2 transportalong the roots to the tips (Armstrong et al., 2000; Møller& S<strong>and</strong>-Jensen, 2008). Other aquatic <strong>plant</strong>s often havediffusive root barriers to prevent radial O 2 loss or producebarriers to ma<strong>in</strong>ta<strong>in</strong> sufficient O 2 transport to the root tips320 New Phytologist (2011) 190: 320–331www.newphytologist.com41Ó 2010 The AuthorsNew Phytologist Ó 2010 New Phytologist Trust


NewPaper 2Phytologist Research 321when <strong>sediment</strong>s become reduced (Colmer, 2003). Lobeliadoes not form root tissue barriers because it requires CO 2for photosynthesis from the <strong>sediment</strong> (Møller & S<strong>and</strong>-Jensen, 2008). As a result, roots of Lobelia <strong>and</strong> other <strong>isoetid</strong>species become shorter when grown <strong>in</strong> <strong>sediment</strong>s with highoxygen dem<strong>and</strong> (S<strong>and</strong>-Jensen et al., 2005a; Raun et al.,2010), but shorter roots also have smaller root surfacesfor absorption of m<strong>in</strong>eral nutrients. Solute transport <strong>and</strong>m<strong>in</strong>eral nutrition can be further compromised by O 2deprivation of roots <strong>and</strong> symbiotic root fungi because ofcessation of ATP production by oxidative phosphorylation<strong>and</strong> thus a severe energy deficit (Colmer & Flowers, 2008).Anaerobic carbohydrate catabolism provides some ATPdur<strong>in</strong>g anoxia, albeit only 3–35% of the rate of energyproduction <strong>in</strong> aerobic cells (Gibbs & Greenway, 2003;Greenway & Gibbs, 2003), but takes a higher toll on carbohydrates.Lobelia could be particularly sensitive to anoxiabecause of the observed low photosynthesis <strong>and</strong> carbohydrateproduction, high proportions by weight of nonphotosyntheticstem <strong>and</strong> root tissue <strong>and</strong> low capability of root tissueto speed up anaerobic fermentation <strong>and</strong> ATP production(S<strong>and</strong>-Jensen & Søndergaard, 1979; Nielsen & S<strong>and</strong>-Jensen,1989; Smits et al.,1990).O 2 availability is the ma<strong>in</strong> determ<strong>in</strong>ant of <strong>sediment</strong> <strong>and</strong><strong>plant</strong> processes. We therefore made a special effort to measureO 2 cont<strong>in</strong>uously dur<strong>in</strong>g light <strong>and</strong> dark periods <strong>in</strong> lakewater, <strong>sediment</strong>s <strong>and</strong> leaf lacunae to establish if, where <strong>and</strong>for how long hypoxia or anoxia occurred <strong>in</strong> laboratory <strong>and</strong>field populations subjected to gradually <strong>in</strong>creas<strong>in</strong>g organicenrichment <strong>and</strong> O 2 consumption rates. Because Lobeliagrows slowly <strong>and</strong> <strong>sediment</strong> processes respond slowly, wefollowed the responses for up to 194 d after organic enrichmentto make sure that <strong>plant</strong> stress was fully expressed <strong>and</strong>recovery was possible.Materials <strong>and</strong> MethodsLaboratory experiments with organic enrichmentSix <strong>in</strong>tact <strong>sediment</strong> turfs were collected <strong>in</strong> mid-Octoberfrom shallow water <strong>in</strong> a homogeneous Lobelia dortmannapopulation <strong>in</strong> oligotrophic Lake Värsjö, south-west Sweden.The low-organic s<strong>and</strong>y turfs (0.60 ± 0.05% (mean ± SD)organic matter of <strong>sediment</strong> DW) were 17 cm long <strong>and</strong>15 cm wide <strong>and</strong> had a <strong>sediment</strong> depth of 12–14 cm thatensured <strong>in</strong>tact root systems of c. 20 <strong>plant</strong>s. Turfs werebrought fully submerged to the laboratory for experiments.One turf was left as a control, while gradually longer rodshapeddry pellets (5 mm <strong>in</strong> diameter, 1–15 mm long) ofcommercially available pasture grass (Dlg, Copenhagen,Denmark) were added to the other five turfs form<strong>in</strong>g a gradientof added labile organic matter equivalent to 0 (control),0.1, 0.2, 0.4, 0.8 <strong>and</strong> 1.6% organic matter of DW. Organicpellets conta<strong>in</strong>ed (as a percentage of DW) 91 ± 1% (n =4)organic matter, 46.9 ± 0.4% organic carbon (C), 2.3 ±0.15% total nitrogen (TN) <strong>and</strong> 0.27 ± 0.01% total phosphorus(TP). This composition is equivalent to weightproportions of 156 C, 8.5 N <strong>and</strong> 1.0 P, which is richer <strong>in</strong>nutrients relative to C <strong>and</strong> richer <strong>in</strong> P relative to N thanLobelia tissue (S<strong>and</strong>-Jensen et al., 2005a). Pellets were<strong>in</strong>serted with p<strong>in</strong>cers at 4 cm <strong>sediment</strong> depth with a fixedhorizontal distance of 2 cm equivalent to 71 pellets per turf.P<strong>in</strong>cers were stuck <strong>in</strong>to control <strong>sediment</strong>s to keep physicaldisturbance constant. Previous experiments have documentedthat aerobic O 2 consumption rates of surface<strong>sediment</strong>s <strong>in</strong>crease l<strong>in</strong>early with addition of this type oforganic matter, generat<strong>in</strong>g an <strong>in</strong>creas<strong>in</strong>g O 2 stress on <strong>plant</strong>roots (Raun et al., 2010). The turf specimens were <strong>in</strong>cubatedat 14–16°C <strong>in</strong> 80 l aquaria with a 12 : 12 h light : darkcycle at an irradiance of 110 lmol photons m )2 s )1 (photosyntheticallyactive radiation, PAR) <strong>and</strong> exposed to the samewater to elim<strong>in</strong>ate possible effects of elevated carbon <strong>and</strong>nutrient availability <strong>in</strong> the water result<strong>in</strong>g from release fromenriched <strong>sediment</strong>s. The water was renewed every secondweek to keep nutrient concentrations low <strong>and</strong> avoid algalgrowth <strong>and</strong> it atmospheric air was bubbled slowly through itto ensure mix<strong>in</strong>g <strong>and</strong> air saturation. Because large watervolumes were needed we used filtered water from nearbyLake Esrum diluted 20 times with dem<strong>in</strong>eralized water toobta<strong>in</strong> a chemical composition closely resembl<strong>in</strong>g that ofLake Värsjö. After dilution mean values were: 0.13 mM<strong>in</strong>organic carbon (DIC), 0.3 lM <strong>plant</strong> available P (ortho-P), 0.4 lMNO ) 3 <strong>and</strong> 0.3 lMNH + 4 .Pore-water chemistry <strong>and</strong> <strong>sediment</strong> characteristicsRepeated pore-water samples from 1, 2, 4, 6 <strong>and</strong> 8 cm depthwere extracted from three representative sites distributedevenly across the turf area at the end of the 194-d-long experiment<strong>and</strong> analysed for dissolved Fe 2+ , DIC, pH, NH + 4 <strong>and</strong>ortho-P. Pore-water was sampled by <strong>in</strong>sert<strong>in</strong>g th<strong>in</strong> capillaryglass tubes (1 mm) <strong>in</strong> the <strong>sediment</strong>, keep<strong>in</strong>g the upper endabove the water. Capillary forces <strong>and</strong> pressure differenceslowly <strong>and</strong> steadily filled the capillary tube with water fromthe desired <strong>sediment</strong> depth with<strong>in</strong> a few m<strong>in</strong>utes. Quantitiesof 50–100 ll of pore-water were withdrawn with a glasssyr<strong>in</strong>ge from each of five capillary tubes at a certa<strong>in</strong> <strong>sediment</strong>site to yield an <strong>in</strong>tegrated sample for 0–8 cm depth withm<strong>in</strong>imum air contact <strong>and</strong> these were analysed immediately.Reduced Fe 2+ was measured spectrophotometrically accord<strong>in</strong>gto the phenanthrol<strong>in</strong> method (Eaton et al., 1995). DICwas determ<strong>in</strong>ed by <strong>in</strong>ject<strong>in</strong>g a m<strong>in</strong>ute pore-water volume<strong>in</strong>to 3% HNO 3 <strong>in</strong> a bubble chamber purged with N 2 gascarry<strong>in</strong>g evolved CO 2 <strong>in</strong>to an Infrared gas analyzer (IRGA,ADC-225-MK3, Hoddesdon, UK) as previously described(Vermaat & S<strong>and</strong>-Jensen, 1987). pH was measured by aflat-membrane pH electrode (LoT403-M8-S7 ⁄ 120, MettlerToledo, Greifensee, Switzerl<strong>and</strong>) positioned close to a glassÓ 2010 The AuthorsNew Phytologist Ó 2010 New Phytologist Trust42New Phytologist (2011) 190: 320–331www.newphytologist.com


322 ResearchPaper 2NewPhytologistsurface allow<strong>in</strong>g pH measurements on small droplets <strong>in</strong>jectedbetween the electrode membrane <strong>and</strong> the glass surface. FreeCO 2 was calculated from DIC, pH, ionic strength <strong>and</strong>temperature (Rebsdorf, 1972). NH 4 + was measured spectrophotometricallyon 100 ll pore water by dilut<strong>in</strong>g with900 ll distilled water <strong>and</strong> add<strong>in</strong>g 100 ll phenol <strong>and</strong> 100 llhypochlorite reagents accord<strong>in</strong>g to a microversion ofSolórzano (1969). Analysis of dissolved ortho-P accord<strong>in</strong>g toStrickl<strong>and</strong> & Parsons (1968) <strong>in</strong>itially caused analytical problemsas a result of very low P concentrations <strong>and</strong> high blanksresult<strong>in</strong>g from nonremovable colloidal organic matter.Measurements succeeded when pore water from each <strong>sediment</strong><strong>and</strong> depth without reagents served as blanks for parallelsamples with reagents added.After the experiment, <strong>sediment</strong> composition was characterized<strong>in</strong> duplicate <strong>sediment</strong> cores by analys<strong>in</strong>g wet <strong>and</strong> dryweight <strong>in</strong> samples from depth <strong>in</strong>tervals of 0–1 cm, 1–3 cm,3–5 cm <strong>and</strong> 5–8 cm. Dried homogenized samples were thenanalysed for TN <strong>and</strong> organic carbon (C) on a CHN EA1108-elemental analyser (Carlo Erba Instruments, Milan, Italy), TPby the method of Andersen (1976), total iron (TFe) by thephenanthrol<strong>in</strong> method slightly modified by Møller & S<strong>and</strong>-Jensen (2008) <strong>and</strong> organic content as loss on ignition at 550°C.Plant morphology <strong>and</strong> performancePlant morphology <strong>and</strong> metabolism were measured on one<strong>plant</strong> of each treatment 18, 59 <strong>and</strong> 109 d <strong>in</strong>to the experiment,while three <strong>plant</strong>s were killed after 194 d. In general,<strong>plant</strong>s with<strong>in</strong> the same treatment looked very similar.Therefore, representative <strong>plant</strong>s could easily be selected.Plants were gently removed from the <strong>sediment</strong> to m<strong>in</strong>imizedisturbance. Total leaf <strong>and</strong> root lengths were measured oneach <strong>plant</strong> by a ruler. Two replicates for measurements ofphotosynthesis <strong>and</strong> respiration were prepared from eachharvested <strong>plant</strong>. Two leaves for each replicate were split longitud<strong>in</strong>allythrough the lacunae to facilitate CO 2 supply<strong>and</strong> avoid the <strong>in</strong>fluence of O 2 storage <strong>in</strong> the extensive lacunae<strong>and</strong> then transferred to gas-tight glass bottles conta<strong>in</strong><strong>in</strong>galkal<strong>in</strong>e water adjusted to pH 6.9 to provide a high saturat<strong>in</strong>gCO 2 concentration of 1000 lM for photosynthesis.The bottles were transferred to a rotat<strong>in</strong>g wheel <strong>in</strong> an<strong>in</strong>cubator at 16°C <strong>and</strong> exposed to a saturat<strong>in</strong>g irradianceof 340 lmol photons m )2 s )1 (PAR). Net photosynthesiswas calculated as the <strong>in</strong>crease <strong>in</strong> O 2 concentration after 2 h<strong>in</strong> the light. O 2 concentration was measured with a Clarktype OX500 m<strong>in</strong>i-electrode (Unisense, Århus, Denmark).Photosynthesis was normalized to leaf DW determ<strong>in</strong>ed after24 h of freeze-dry<strong>in</strong>g. Photosynthetic capacity measuredunder these st<strong>and</strong>ardized experimental conditions is suitablefor evaluat<strong>in</strong>g the physiological well-be<strong>in</strong>g of leaves, butdoes not directly reflect photosynthesis <strong>in</strong> the growthexperiments because of different supplies of <strong>sediment</strong> CO 2to Lobelia between treatments.Chlorophyll was measured on leaves used for photosyntheticexperiments by ethanol extraction for 24 h <strong>and</strong>spectrophotometric analysis accord<strong>in</strong>g to Christoffersen &Jespersen (1986). TN, TP <strong>and</strong> TFe were measured on leavesfrom three to five different <strong>plant</strong>s at different times dur<strong>in</strong>gthe experiments <strong>and</strong> analysed by methods already describedfor <strong>sediment</strong>s.O 2 <strong>dynamics</strong> <strong>and</strong> penetration depthO 2 <strong>dynamics</strong> <strong>in</strong> <strong>plant</strong>s <strong>and</strong> <strong>sediment</strong> were measured on fouroccasions <strong>in</strong> different <strong>plant</strong>s dur<strong>in</strong>g the laboratory experimentus<strong>in</strong>g Clark-type O 2 micro- <strong>and</strong> m<strong>in</strong>i-electrodes (Ox50, tip diameter 50 lm for leaf lacunae <strong>and</strong> Ox 500, sturdytype applicable for <strong>sediment</strong>s with a tip diameter of500 lm) advanced by micromanipulators (Unisense). O 2was recorded us<strong>in</strong>g a picoamperometer connected to acomputer enabl<strong>in</strong>g cont<strong>in</strong>uous logg<strong>in</strong>g of signals. Likewise,temperature was measured cont<strong>in</strong>uously us<strong>in</strong>g thermocouples(type K) connected to the computer through a DC10converter <strong>and</strong> used to correct the electrode signal fortemperature changes. Electrodes were <strong>in</strong>serted <strong>in</strong>to lacunaeof mature leaves number 3–4 <strong>in</strong> the rosette <strong>and</strong> <strong>in</strong>to <strong>sediment</strong>sat the desired depth <strong>and</strong> left for a full 12 : 12 hlight : dark cycle. Electrodes were calibrated before <strong>and</strong>after experiments <strong>in</strong> water bubbled with atmospheric air<strong>and</strong> <strong>in</strong> O 2 -free water obta<strong>in</strong>ed by add<strong>in</strong>g dithionite.Accord<strong>in</strong>g to the manufacturer, the detection limit ofmicroelectrodes for O 2 is 0.03 kPa. However, because oftemperature variations <strong>in</strong> our measurements, determ<strong>in</strong>ationsunder confirmed anoxic conditions suggest that theoperational detection limit is 0.1 kPa. Nonetheless, we stilluse the term anoxia for <strong>sediment</strong>s <strong>and</strong> leaf lacunae <strong>in</strong> thedark below 0.1 kPa, because O 2 concentrations decl<strong>in</strong>edsteeply before reach<strong>in</strong>g the steady m<strong>in</strong>imum O 2 signal,stress<strong>in</strong>g that O 2 consumption rates exceeded O 2 supplyrates to such a great extent that it is unlikely that hypoxiacharacterized by trace amounts of O 2 (i.e. < 0.1 kPa)existed.O 2 penetration depth was measured <strong>in</strong> duplicate <strong>in</strong> each<strong>sediment</strong> turf on n<strong>in</strong>e occasions dur<strong>in</strong>g the course of experiments,<strong>and</strong> <strong>in</strong> triplicate at term<strong>in</strong>ation with the sameequipment used for measur<strong>in</strong>g <strong>sediment</strong> O 2 <strong>dynamics</strong>.Measurements were always made 10–12 h <strong>in</strong>to the lightperiod when O 2 penetrated deepest. The O 2 electrode wasmoved downwards <strong>in</strong> the <strong>sediment</strong> by a micromanipulator<strong>in</strong> steps of 500 lm until anoxia occurred or the depthrange of the manipulator prevented deeper measurements(> 40 mm).Field experiments with organic enrichmentField experiments were performed <strong>in</strong> summer–autumn <strong>in</strong>the same shallow homogeneous Lobelia population <strong>in</strong> LakeNew Phytologist (2011) 190: 320–331www.newphytologist.com43Ó 2010 The AuthorsNew Phytologist Ó 2010 New Phytologist Trust


NewPaper 2Phytologist Research 323Värsjö as used for collection of <strong>sediment</strong> turf for laboratoryexperiments to make sure that patterns observed <strong>in</strong> laboratoryexperiments resembled natural <strong>sediment</strong> <strong>and</strong> <strong>plant</strong>responses <strong>in</strong> the field.A long-term organic enrichment experiment was madeover 80 d <strong>in</strong> the field (10 July–1 October) <strong>in</strong> which <strong>sediment</strong>chemistry <strong>and</strong> <strong>plant</strong> performance were comparedbetween triplicate controls <strong>and</strong> treatments (20 · 20 cm perplot) enriched with organic matter to 0.8% DW asdescribed for the laboratory experiment. At the end of theexperiment, pore-water concentrations <strong>and</strong> <strong>sediment</strong> compositionwere measured on <strong>sediment</strong> cores (5 cm <strong>in</strong>diameter, 10 cm <strong>in</strong> depth) taken from each plot <strong>and</strong>brought back to the laboratory <strong>in</strong> Perspex tubes with rubberstoppers prevent<strong>in</strong>g disturbance of <strong>sediment</strong> <strong>and</strong> porewater. Cores were stored <strong>in</strong> the laboratory at 15°C <strong>in</strong>a12 : 12 h light : dark cycle for 1–4 d before pore water wasextracted <strong>and</strong> analysed as already described. Likewise, netphotosynthesis was measured <strong>in</strong> the laboratory <strong>in</strong>cubator onleaf samples from each plot. Leaf samples derived fromharvested field <strong>plant</strong>s were transported to the laboratory <strong>in</strong>sealed moist plastic bags <strong>and</strong> stored at 8°C <strong>and</strong> used forexperiments with<strong>in</strong> 2 d.O 2 <strong>dynamics</strong> was measured cont<strong>in</strong>uously over a full 24 hlight–dark cycle <strong>in</strong> the field <strong>in</strong> late August <strong>in</strong> duplicated experimentsby <strong>in</strong>sert<strong>in</strong>g microelectrodes <strong>in</strong>to leaf lacunae of two<strong>plant</strong>s <strong>and</strong> <strong>in</strong>sert<strong>in</strong>g m<strong>in</strong>i-electrodes at 1 cm depth <strong>in</strong> the<strong>sediment</strong> next to these two <strong>plant</strong>s us<strong>in</strong>g the same type of equipmentas for laboratory experiments. HOBO data loggers wereused to measure water temperature <strong>and</strong> irradiance (OnsetComputer Corporation, Bourne, Massachusetts, USA).Data treatment <strong>and</strong> statistical analysisData were processed <strong>in</strong> Excel 2007 <strong>and</strong> statistical analyses<strong>and</strong> graphs were made <strong>in</strong> Graph Pad Prism 5. Data arepresented as means ± SD. P < 0.05 was considered significant.The <strong>in</strong> situ experiment was a block design <strong>in</strong> triplicatesuitable for t-test analysis, whereas the laboratory experimentwas a gradient study with six amounts of added organicmatter to s<strong>in</strong>gle <strong>sediment</strong> turfs <strong>in</strong>habited by 20 <strong>plant</strong>s(pseudo-replicates) suited for regression ⁄ correlation analysis.Values from the laboratory experiment are presented asmeans ± SD of usually three replicates from each <strong>sediment</strong> turf.ResultsSediment processes <strong>and</strong> chemistryOrganic enrichment of <strong>sediment</strong>s <strong>in</strong> long-term laboratoryexperiments stimulated O 2 use for degradation of organicmatter <strong>and</strong> reduced O 2 depth penetration (Fig. 1). O 2 penetrationdepth exceeded 40 mm <strong>in</strong> control <strong>sediment</strong>s butdecl<strong>in</strong>ed to < 3 mm after 25 d <strong>in</strong> <strong>sediment</strong>s fertilized withFig. 1 Depth of O 2 penetration <strong>in</strong> Lobelia <strong>sediment</strong>s as a functionof time after addition of different amounts of labile organic matter(per <strong>sediment</strong> DW) (open circles, control; closed circles, 0.1%; opensquares, 0.2%; closed squares, 0.4%; open diamonds, 0.8%; closeddiamonds, 1.6%). Measurements were made 10–12 h <strong>in</strong>to the 12 hlight period. Measurements could not extend deeper than 40 mm<strong>in</strong>to the <strong>sediment</strong>, when O 2 penetration <strong>in</strong> control <strong>sediment</strong>s wasdescribed as > 40 mm. Values are mean of two (0–170 d) <strong>and</strong> three(194 d) measurements ± SD.‡ 0.4% organic matter. In <strong>sediment</strong>s receiv<strong>in</strong>g only 0.1 <strong>and</strong>0.2% organic matter, O 2 penetration depth had onlydecl<strong>in</strong>ed to 21 <strong>and</strong> 10 mm, respectively, 25 d after fertilization.As degradation of organic matter progressed overtime, O 2 gradually penetrated deeper <strong>in</strong>to the <strong>sediment</strong>s.However, only at the lowest organic dose did O 2 penetrationrecover to the same value (> 40 mm) as <strong>in</strong> the control<strong>sediment</strong> with<strong>in</strong> the 195 d of experiments. At the end ofthe experiment, O 2 penetration depth was significantly<strong>and</strong> negatively correlated to the magnitude of addition(Spearman’s r, P < 0.001). Thus, organic enrichment hadprofound <strong>and</strong> long-last<strong>in</strong>g effects on O 2 availability <strong>and</strong>decomposition processes.This persistent enrichment effect was evident <strong>in</strong> <strong>sediment</strong>chemistry even at the lowest enrichment after 194 d <strong>in</strong>the laboratory experiment (Table 1). Across the gradient,organic content, TN <strong>and</strong> TP <strong>in</strong>creased two- to threefold<strong>and</strong> they were significantly correlated to the amount oforganic matter added (l<strong>in</strong>ear regression, P < 0.0001), whilewater content <strong>and</strong> TFe did not change significantly.Approximately 14.5 mg organic matter, 368 lg TN <strong>and</strong>43 lg TP (all g –1 dry <strong>sediment</strong>) were added with the highest1.6% organic enrichment <strong>and</strong> the treated <strong>sediment</strong> stillconta<strong>in</strong>ed an extra 10.2 mg organic matter, 382 lg TN<strong>and</strong> 25.5 lg TP relative to the control <strong>sediment</strong> after194 d. Likewise, the 0.4% organic treatment received anadditional 3.6 mg organic matter, 92 lg TN <strong>and</strong> 9.8 lgTP per g dry <strong>sediment</strong> <strong>and</strong> still conta<strong>in</strong>ed extra 2.3 mgorganic matter, 96 lg TN <strong>and</strong> 9.8 lg TP after 194 d,stress<strong>in</strong>g that organic matter was lost by degradation butmost N <strong>and</strong> P rema<strong>in</strong>ed <strong>in</strong> the <strong>sediment</strong>.Ó 2010 The AuthorsNew Phytologist Ó 2010 New Phytologist Trust44New Phytologist (2011) 190: 320–331www.newphytologist.com


324 ResearchPaper 2NewPhytologistTable 1 Organic content (%), water content (%), total nitrogen (TN), total phosphorus (TP), total iron (TFe) all normalized to <strong>sediment</strong> DW <strong>and</strong> mean depth-<strong>in</strong>tegrated concentrations ofFe 2+ +,NH 4 , dissolved <strong>in</strong>organic carbon (DIC) <strong>and</strong> CO2 measured <strong>in</strong> <strong>sediment</strong>s after 195 d of experimentation <strong>in</strong> the laboratory across a gradient of added labile organic matter (0–1.6% DW)Treatment Sediment composition Pore-water concentrationOrganic matter added (%) Organic content (%) Water content (%) TN (lg g )1 ) TP(lg g )1 ) TFe (mg g )1 ) Fe 2+ (lM) NH4 + (lM) CO2 (mM) DIC (mM)0 0.60 ± 0.05 31.1 ± 0.5 170 ± 20 24.1 ± 2.3 1.97 ± 0.13 0003 ± 3 4.1 ± 0.8 0.52 ± 0.09 1.99 ± 0.150.1 0.68 ± 0.02 29.7 ± 0.3 186 ± 10 27.6 ± 0.3 1.91 ± 0.01 0070 ± 44 22.6 ± 11 0.67 ± 0.02 2.34 ± 0.270.2 0.66 ± 0.05 28.7 ± 0.3 193 ± 20 29.1 ± 1.8 1.93 ± 0.00 0510 ± 117 200 ± 13 1.03 ± 0.03 4.53 ± 0.120.4 0.83 ± 0.16 31.1 ± 0.4 266 ± 14 33.9 ± 2.2 1.87 ± 0.04 0979 ± 13 590 ± 76 1.78 ± 0.06 7.01 ± 0.020.8 1.06 ± 0.16 30.7 ± 1.0 294 ± 8.9 44.0 ± 2.1 2.02 ± 0.06 1989 ± 107 850 ± 95 2.18 ± 0.09 7.89 ± 0.571.6 1.62 ± 0.37 30.9 ± 1.7 552 ± 241 49.6 ± 3.3 1.79 ± 0.14 2700 ± 152 568 ± 203 4.14 ± 0.17 7.72 ± 0.50r 2 = 0.61,P < 0.0001r 2 = 0.96,P < 0.0001r 2 = 0.45,P < 0.001r 2 = 0.94,P < 0.0001r 2 = 0.11,nsr 2 = 0.90,P < 0.0001r 2 = 0.80,P < 0.0001r 2 = 0.03,nsCorrelation r 2 = 0.96,P < 0.0001r 2 <strong>and</strong> significance levels of l<strong>in</strong>ear regressions between the dependent variable <strong>and</strong> % organic matter added are shown.Mean ± SD, n = 2 (<strong>sediment</strong> composition) or n = 3 (pore water). ns, not significant.In <strong>sediment</strong> pore water exam<strong>in</strong>ed at the end of experiments,DIC <strong>and</strong> CO 2 <strong>in</strong>creased four- to eightfold <strong>and</strong> NH 4 + -N<strong>in</strong>creased > 100-fold with the 1.6% organic enrichmentreflect<strong>in</strong>g the enhanced organic decomposition (Table 1). A1000-fold <strong>in</strong>crease of soluble Fe 2+ is the result of use of Fe 3+by microorganisms (i.e. use of alternative electron acceptors)<strong>and</strong> it is one of the ma<strong>in</strong> reasons for the <strong>in</strong>crease of HCO 3)conta<strong>in</strong>ed <strong>in</strong> DIC (Lucassen et al., 2009). Dissolved ortho-Pconcentrations significantly different from zero could not bedetected <strong>in</strong> <strong>sediment</strong>s with 0–0.8% added organic matter, but<strong>in</strong> the 1.6% organic treatment high concentrations wererecorded (i.e. 328 ± 176 lg Pg )1 <strong>sediment</strong> DW at 4 cmdepth).In field experiments, pore-water chemistry responded as <strong>in</strong>laboratory experiments. Significantly higher pore-waterconcentrations of DIC (4.8 ± 0.95 mM) <strong>and</strong> Fe 2+ (1.03 ±0.54 mM) were found <strong>in</strong> 0.8% organic treatments after 80 dcompared with 1.0 mM DIC <strong>and</strong> 0.02 mM Fe 2+ <strong>in</strong> control<strong>sediment</strong>s (t-test, P < 0.01), reflect<strong>in</strong>g stimulation of organicdecomposition, <strong>sediment</strong> anoxia <strong>and</strong> alkal<strong>in</strong>ization by Fereduction (Table 2).O 2 <strong>dynamics</strong> <strong>in</strong> <strong>plant</strong> lacunae <strong>and</strong> <strong>sediment</strong>sIn leaf lacunae of Lobelia on nonenriched <strong>sediment</strong>s <strong>in</strong>laboratory experiments, O 2 changed from 27–33 kPa(130–160% saturation) late <strong>in</strong> the light period to anoxialate <strong>in</strong> the dark period (Fig. 2a). Diurnal O 2 changes <strong>in</strong><strong>sediment</strong> pore water at 10 mm depth tracked these changesvery closely with a 1 h time lag upon changes to light ordarkness (Fig. 2a). By contrast, leaf lacunae rapidly becameanoxic <strong>in</strong> the dark <strong>in</strong> Lobelia grown for 9 or 7 d on <strong>sediment</strong>senriched with 0.4 (Fig. 2b) <strong>and</strong> 1.6% organicmatter, respectively (Fig. 2c). Pore water at 10 mm depthwas already permanently anoxic 9 d after enrichment with0.4% organic matter. The 1.6% organic treatment still conta<strong>in</strong>edsome O 2 <strong>in</strong> the <strong>sediment</strong> pore water <strong>in</strong> the light 7 dafter organic enrichment because O 2 production by photosynthesiswas <strong>in</strong>itially very high accord<strong>in</strong>g to the steep riseof O 2 <strong>in</strong> the leaf lacunae upon illum<strong>in</strong>ation. Photosynthesisis probably stimulated by high <strong>sediment</strong> CO 2 accompany<strong>in</strong>gfaster organic decomposition (Fig. 2c). However, <strong>in</strong> alllater <strong>in</strong>cubations, <strong>sediment</strong>s enriched with 0.4 <strong>and</strong> 1.6%organic matter rema<strong>in</strong>ed permanently anoxic at 10 mmdepth, whereas the control treatment had similar <strong>sediment</strong>O 2 traces as first observed (data not shown).Dur<strong>in</strong>g the 194-d-long laboratory experiment, thediurnal fluctuation of O 2 <strong>in</strong> the leaf lacunae rema<strong>in</strong>edalmost the same <strong>in</strong> Lobelia grow<strong>in</strong>g on unfertilized <strong>sediment</strong>s(Fig. 3). O 2 <strong>in</strong>creased to c. 30 kPa dur<strong>in</strong>g daytime photosynthesis<strong>and</strong> decl<strong>in</strong>ed to anoxia late at night. Depend<strong>in</strong>gon the specific experiment, maximum daytime O 2 concentrations<strong>in</strong> leaf lacunae of Lobelia on <strong>sediment</strong>s enrichedwith 0.4% organic matter ranged from 15 to 43 kPa <strong>and</strong>New Phytologist (2011) 190: 320–331www.newphytologist.com45Ó 2010 The AuthorsNew Phytologist Ó 2010 New Phytologist Trust


NewPaper 2Phytologist Research 325Table 2 Maximum net photosynthesis (NP), chlorophyll (chl), total phosphorus (TP) <strong>and</strong> total nitrogen (TN) content of Lobelia leaves <strong>in</strong>relation to DW, <strong>sediment</strong> organic content <strong>and</strong> pore-water concentrations of Fe 2+ <strong>and</strong> dissolved <strong>in</strong>organic carbon (DIC) at 4 cm depth after80 d of experiments with s<strong>and</strong>y <strong>sediment</strong>s receiv<strong>in</strong>g 0 <strong>and</strong> 0.8% labile organic matter <strong>in</strong> Lake Värsjö from 10 July to 1 OctoberTreatment Photosynthesis Leaf contentSedimentcompositionPore waterOrganic matteradded (%)NP (lmolO 2 g )1 DW h )1 )Chl (mgg )1 DW)TP (mgg )1 DW)TN (mgg )1 DW)Organiccontent (%) Fe 2+ (lM) DIC (mM)0.0 282 ± 18 2.47 ± 0.34 1.62 ± 0.26 23.2 ± 4.32 0.66 ± 0.10 16.0 ± 5.61 1.03 ± 0.540.8 64 ± 17 0.99 ± 0.15 0.89 ± 0.02 11.3 ± 2.21 0.81 ± 0.03 1204 ± 381 4.78 ± 0.95Mean ± SD, n =3.(a)(b)(c)they rapidly went anoxic <strong>and</strong> stayed anoxic for several hours<strong>in</strong> the dark. Daytime O 2 <strong>in</strong> leaf lacunae of Lobelia on <strong>sediment</strong>senriched with 1.6% organic matter never exceeded20 kPa after 40 d <strong>in</strong>to the experiment <strong>and</strong> O 2 disappearedmore rapidly <strong>in</strong> the dark than <strong>in</strong> the 0.4% organic treatment.The duration of leaf anoxia dur<strong>in</strong>g the 12 h dark periodwas significantly positively correlated to % organic matteradded (Spearman’s r, P < 0.01, jo<strong>in</strong>t analysis of all measurements;Fig. 4). As root morphology changed <strong>and</strong>degradation of organic matter progressed towards the endof the experiment, the anoxic period <strong>in</strong> leaf lacunae <strong>in</strong> thedark decl<strong>in</strong>ed to 1.8 h on control <strong>sediment</strong>s <strong>and</strong> to 5.9 <strong>and</strong>6.6 h on <strong>sediment</strong>s enriched with 0.4 <strong>and</strong> 1.6% organicmatter, respectively (Fig. 4). The decl<strong>in</strong>e of the anoxicperiod with time of the experiment was systematic <strong>in</strong> alltreatments, although not statistically significant.Field experiments with Lobelia populations <strong>in</strong> lateAugust under the same temperatures, a 13 : 11 h light :dark cycle <strong>and</strong> higher daytime irradiance displayed the samediurnal O 2 course <strong>in</strong> leaf lacunae <strong>and</strong> <strong>sediment</strong> pore waterat 1 cm depth as <strong>in</strong> laboratory experiments (Fig. 5). Thus,O 2 <strong>in</strong> the <strong>sediment</strong> reached 20–23 kPa (close to 100%saturation) late <strong>in</strong> the afternoon <strong>and</strong> vanished for 1–6 h late<strong>in</strong> the night. In the leaf lacunae, O 2 peaked at 22–31 kPalate <strong>in</strong> the afternoon <strong>and</strong> vanished for 1–3 h late <strong>in</strong> thenight.Fig. 2 Diurnal changes of O 2 partial pressure (PO 2 ) <strong>in</strong> leaf lacunaeof Lobelia (solid l<strong>in</strong>e), <strong>sediment</strong> pore water at 10 mm depth (dashedl<strong>in</strong>e) <strong>and</strong> water phase (dotted l<strong>in</strong>e) <strong>in</strong> laboratory experiments <strong>in</strong> thecontrol (a), 0.4% (b) <strong>and</strong> 1.6% (c) treatments after 4, 9 <strong>and</strong> 7 d ofenrichment, respectively. The diurnal trace started with a shift from12 h light to 12 h darkness followed by a shift back to 12 h light.Values are s<strong>in</strong>gle measurements.Chlorophyll content <strong>and</strong> photosynthesisChlorophyll content <strong>and</strong> photosynthesis at saturat<strong>in</strong>g light<strong>and</strong> CO 2 changed <strong>in</strong> concert across organic enrichments <strong>and</strong>over time <strong>in</strong> laboratory experiments (Fig. 6). Chlorophyllcontent <strong>and</strong> maximum photosynthesis were highest <strong>and</strong> atapproximately the same level among organic enrichments18 d <strong>in</strong>to the experiment. A small <strong>in</strong>crease of both chlorophyllcontent <strong>and</strong> photosynthesis sometimes occurred atlow organic enrichment (0.1 <strong>and</strong> 0.2%); however, whenomitt<strong>in</strong>g the control treatment from the dataset, both variablessubsequently decl<strong>in</strong>ed significantly (l<strong>in</strong>ear regression,Ó 2010 The AuthorsNew Phytologist Ó 2010 New Phytologist Trust46New Phytologist (2011) 190: 320–331www.newphytologist.com


326 ResearchPaper 2NewPhytologist(a)(b)Fig. 4 Duration of anoxia dur<strong>in</strong>g the 12 h dark period <strong>in</strong> leaf lacunaeof Lobelia as a function of time after addition of different amountsof labile organic matter (circles, control; squares, 0.4%; diamonds,1.6% of added organic matter to <strong>sediment</strong>s). Different <strong>plant</strong>s fromeach treatment were used for measurements over time (n = 1).(c)(d)P < 0.05) across the range of organic enrichments. Photosynthesisdropped to very low amounts <strong>in</strong> the 1.6% organicenrichment.For all leaf samples among treatments <strong>and</strong> over time,chlorophyll content was significantly positively related totissue concentrations of TN <strong>and</strong> almost so to TP (l<strong>in</strong>earregression, P = 0.06, Table 3). Chlorophyll was significantlynegatively related to TFe because some leaves fromthe 1.6% organic treatment had surface plaques of Fe. TP<strong>and</strong> TN were also significantly <strong>in</strong>terrelated. Photosynthesiswas highly significantly related to chlorophyll, TP <strong>and</strong> TN<strong>in</strong> the leaves, while it was significantly negatively related toTFe (Table 3). Also <strong>in</strong> field experiments, photosynthesis,chlorophyll, TN <strong>and</strong> TP decl<strong>in</strong>ed significantly with 0.8%organic enrichment (t-test, P < 0.01; Table 2).Fig. 3 Diurnal changes <strong>in</strong> O 2 partial pressure (PO 2 ) <strong>in</strong> leaf lacunaeof Lobelia with <strong>in</strong>creas<strong>in</strong>g time <strong>in</strong>to the experiment (a, 4–9 d; b, c.40 d; c, c.73d;d,c. 150 d (control <strong>and</strong> 1.6%) <strong>and</strong> 111 d (0.4%))for <strong>plant</strong>s grow<strong>in</strong>g <strong>in</strong> the laboratory <strong>in</strong> <strong>sediment</strong>s with 0% (control,solid l<strong>in</strong>e), 0.4% (dashed l<strong>in</strong>e) <strong>and</strong> 1.6% addition (dotted l<strong>in</strong>e) oflabile organic matter per <strong>sediment</strong> DW. Data <strong>in</strong> (a) are derived fromFig. 2. The diurnal trace started with a shift from 12 h light to 12 hdarkness followed by a shift back to 12 h light. Different <strong>plant</strong>s fromeach treatment were used for measurements over time, n =1.Root development <strong>and</strong> leaf nutrientsMaximum root length decl<strong>in</strong>ed from c. 7.1 ± 1.6 cm <strong>in</strong>control <strong>sediment</strong>s to only 4.3 ± 0.5 cm <strong>in</strong> the organicallyrichest <strong>sediment</strong>s deprived of O 2 <strong>in</strong> laboratory experiments.Across the organic enrichment gradient, the ratio of leaflength to root length <strong>in</strong>creased fourfold from 0.53 ± 0.1<strong>in</strong> the control to 1.89 ± 0.1 <strong>in</strong> the 1.6% organic mattertreatment (Table 3).Total phosphorus <strong>and</strong> TN <strong>in</strong> leaf tissue changed profoundlyamong treatments <strong>and</strong> over time <strong>in</strong> both laboratory<strong>and</strong> field experiments (Fig. 7, Table 2). The highest <strong>and</strong>most constant leaf concentrations occurred <strong>in</strong> <strong>plant</strong>s fromcontrol <strong>sediment</strong>s, but progressively lower TP <strong>and</strong> TNconcentrations occurred with duration of the experiment<strong>and</strong> higher addition of organic matter despite <strong>in</strong>creas<strong>in</strong>gnutrient concentrations <strong>in</strong> the <strong>sediment</strong>s (Tables 1, 2).New Phytologist (2011) 190: 320–331www.newphytologist.com47Ó 2010 The AuthorsNew Phytologist Ó 2010 New Phytologist Trust


NewPaper 2Phytologist Research 327(a)(a)(b)(b)(c)Fig. 6 Chlorophyll content (a) <strong>and</strong> maximum net photosynthesis (b)of Lobelia leaves after <strong>in</strong>creas<strong>in</strong>g addition of labile organic matter(% of <strong>sediment</strong> DW). S<strong>in</strong>gle measurements were made after 18 d(open circles) <strong>and</strong> 59 d (closed circles) <strong>and</strong> triplicate measurements(± SD) after 194 d (squares) of experiments <strong>in</strong> the laboratory.DiscussionFig. 5 Diurnal changes of O 2 partial pressure measured at 10 mmdepth <strong>in</strong> s<strong>and</strong>y <strong>sediment</strong>s next to two different <strong>plant</strong>s (a, solidl<strong>in</strong>e), <strong>in</strong> leaf lacunae of two <strong>plant</strong>s (b, solid l<strong>in</strong>e) <strong>and</strong> <strong>in</strong> the waterphase (a <strong>and</strong> b, dotted l<strong>in</strong>es) <strong>in</strong> Lobelia populations <strong>in</strong> Lake Värsjö<strong>in</strong> late August. Irradiance (photosynthetically active radiation,400–700 nm; c, solid l<strong>in</strong>e) <strong>and</strong> water temperature (c, dashed l<strong>in</strong>e)are also shown.Tissue TP rema<strong>in</strong>ed close to the common critical thresholdfor maximum biomass yield of submerged macrophytes <strong>in</strong>control <strong>sediment</strong>s <strong>and</strong> <strong>in</strong> <strong>sediment</strong>s enriched with only 0.1<strong>and</strong> 0.2% organic matter (Fig. 7, Table 2). However,depletion of TP was more extreme <strong>and</strong> concentrationsdropped below common critical threshold for maximumgrowth rate, maximum biomass yield <strong>and</strong> even m<strong>in</strong>imumthreshold to susta<strong>in</strong> growth of submerged macrophytes at0.4–1.6% organic enrichment (Fig. 7, Table 2). Depletionof TN <strong>in</strong> leaf tissue occurred later dur<strong>in</strong>g the experiment<strong>and</strong> at higher additions of organic matter, <strong>and</strong> TN concentrationsonly dropped below the critical threshold formaximum biomass yield at the highest organic treatmenttowards the end of experiments.O 2 <strong>dynamics</strong> <strong>in</strong> <strong>sediment</strong>s <strong>and</strong> <strong>plant</strong>sLaboratory experiments reflected the natural processes <strong>in</strong>the field. We observed the same profound O 2 fluctuationsfrom above air saturation <strong>in</strong> the light to anoxia <strong>in</strong> the dark<strong>in</strong> the s<strong>and</strong>y <strong>sediment</strong>s <strong>and</strong> also the same <strong>plant</strong> responses <strong>in</strong>the two <strong>in</strong>stances. It was surpris<strong>in</strong>g, however, that leaf lacunaetracked O 2 conditions <strong>in</strong> the <strong>sediment</strong> pore water soclosely <strong>and</strong> that they went anoxic <strong>in</strong> the dark shortly afterO 2 had disappeared from the <strong>sediment</strong>. In a Novemberexperiment at 4°C <strong>in</strong> the same Lobelia population, O 2rema<strong>in</strong>ed <strong>in</strong> leaf lacunae (9 kPa), root lacunae (6 kPa) <strong>and</strong><strong>in</strong> the <strong>sediment</strong> (3 kPa) <strong>in</strong> the dark because <strong>plant</strong> <strong>and</strong> <strong>sediment</strong>respiration is reduced at low w<strong>in</strong>ter temperature(S<strong>and</strong>-Jensen et al., 2005b). Leaf <strong>and</strong> root anoxia is, however,a recurr<strong>in</strong>g phenomenon dur<strong>in</strong>g summer nights <strong>in</strong>field populations of Lobelia despite 100% air saturation <strong>in</strong>lake water <strong>and</strong> large retention capacity for O 2 <strong>in</strong> the extensiveair lacunae (S<strong>and</strong>-Jensen & Prahl, 1982). The impededgas exchange across leaf surfaces as a result of very lowpermeability (S<strong>and</strong>-Jensen & Prahl, 1982; Pedersen &S<strong>and</strong>-Jensen, 1992) implies that air lacunae <strong>and</strong> <strong>plant</strong> tissuego anoxic only 1–2 h after O 2 has disappeared from theÓ 2010 The AuthorsNew Phytologist Ó 2010 New Phytologist Trust48New Phytologist (2011) 190: 320–331www.newphytologist.com


328 ResearchPaper 2NewPhytologistTable 3 Summary of l<strong>in</strong>ear regressions between dependent variable(y) <strong>and</strong> <strong>in</strong>dependent variable (x)(a)y x Slope Intercept r 2 P nL : R Org 0.78 )0.64 0.83 < 0.0001 18Chl TFe )3.84 1.03 0.51 0.0001 23Chl TP 0.76 )2.63 0.16 0.0595 23Chl TN 0.11 )6.14 0.34 0.0026 24TN TP 7.68 )1.31 0.68 < 0.0001 23NP Chl 43.1 0.01 0.59 < 0.0001 72NP TFe )181 1.01 0.27 0.0105 23NP TP 90.4 )0.37 0.55 < 0.0001 23NP TN 8.80 3.57 0.51 < 0.0001 24Ratio of leaf to root length (L : R) to <strong>sediment</strong> enrichment (org, %DW) after 195 d <strong>and</strong> relationship between chlorophyll content (Chl,mg g )1 DW), net photosynthesis (NP, lmol O 2 g )1 DW h )1 ), TNcontent (mg g )1 DW), TP content (mg g )1 DW) <strong>and</strong> TFe content(mg g )1 DW) of Lobelia leaves retrieved after different experimentalperiods (18–194 d) <strong>in</strong> the laboratory from <strong>sediment</strong>s of differentorganic enrichment. Slopes, <strong>in</strong>tercepts, significance levels (P),r 2 -values, <strong>and</strong> number of data po<strong>in</strong>ts (n) used for calculations arepresented [correction added after onl<strong>in</strong>e publication 27 January2011: some values <strong>in</strong> the columns headed ‘Slope’ <strong>and</strong> ‘Intercept’have been altered from negative values to positive values by theremoval of m<strong>in</strong>us signs; additionally with<strong>in</strong> the Probability ‘(P)’column, some significance levels have been altered by the removalof less than (


NewPaper 2Phytologist Research 329oligotrophic habitat. Lobelia’s special structure can <strong>in</strong>steadbe <strong>in</strong>terpreted as an adaptation to use CO 2 <strong>in</strong> the <strong>sediment</strong>pore water as a much richer carbon source for photosynthesisthan the surround<strong>in</strong>g water. Pore water <strong>in</strong> natural s<strong>and</strong>y<strong>sediment</strong>s conta<strong>in</strong>ed 0.60 mM CO 2 (Table 1), which is 40times higher than CO 2 concentrations <strong>in</strong> air-saturated lakewater (c. 0.015 mM). Lobelia can only use CO 2 for photosynthesis<strong>and</strong> air-saturated concentrations are too low tosupport positive net photosynthesis (W<strong>in</strong>kel & Borum,2009). To ensure high CO 2 supply from the <strong>sediment</strong> toleaf photosynthesis, root surfaces must be large <strong>and</strong> highlypermeable <strong>and</strong> air lacunae must be wide <strong>and</strong> short throughroots <strong>and</strong> leaves. Moreover, to ma<strong>in</strong>ta<strong>in</strong> high CO 2 concentrations<strong>in</strong> <strong>plant</strong>s grow<strong>in</strong>g on <strong>sediment</strong>s of low decompositionrates, <strong>plant</strong>s must prevent CO 2 loss to the water via the<strong>in</strong>tra<strong>plant</strong> gas transport route <strong>and</strong> this requires a lid (adiffusion barrier) on leaf surfaces.The diffusion barrier on Lobelia’s leaves also reducesevaporation <strong>and</strong> ensures survival when <strong>plant</strong>s regularlybecome exposed to the air follow<strong>in</strong>g drawdown of the watertable dur<strong>in</strong>g summer (Pedersen & S<strong>and</strong>-Jensen, 1992).Most submerged aquatic <strong>plant</strong>s dry out upon exposure toair <strong>and</strong> several species, <strong>in</strong>clud<strong>in</strong>g the common <strong>isoetid</strong>Littorella uniflora (Nielsen et al., 1991), survive by produc<strong>in</strong>gnew aerial leaves with stomata. Lobelia does not <strong>in</strong>vest<strong>in</strong> a new set of leaves, which would be costly <strong>and</strong> perhapsimpossible consider<strong>in</strong>g its low <strong>in</strong>tr<strong>in</strong>sic growth rate <strong>and</strong>nutrient-poor habitat. Thus, special structural <strong>and</strong> physiologicaladaptations serve several purposes <strong>and</strong> need to beviewed <strong>in</strong> regard to the entire <strong>plant</strong> life.Environmental changes <strong>and</strong> <strong>plant</strong> stressSediment chemistry was very susceptible to addition ofmodest amounts of easily degradable organic matter. O 2disappeared from most of the <strong>sediment</strong> <strong>in</strong> the light withaddition of only 0.1 or 0.2% organic matter <strong>and</strong> it took100 d for O 2 to resume penetration deeper than 40 mm atthe lowest dose. Even after 194 d, pore-water concentrationsof DIC, CO 2 , NH + 4 <strong>and</strong> Fe 2+ were elevated relative tocontrol values, reach<strong>in</strong>g the substantial 200 lM NH + 4 <strong>and</strong>510 lM Fe 2+ at 0.2% organic addition (Table 1). Theselow organic treatments did not reduce leaf nutrients,+chlorophyll <strong>and</strong> photosynthesis, although such high NH 4concentrations stress other macrophytes when leaves aredirectly exposed (Smolders et al., 1996).Higher additions of organic matter (0.4–1.6%) clearlyimpeded photosynthesis <strong>and</strong> <strong>in</strong>corporation of TP <strong>and</strong> TN<strong>in</strong> the leaves. The most parsimonious explanation for thestress is prolonged anoxia <strong>in</strong> leaves <strong>and</strong> roots <strong>in</strong> the darkreduc<strong>in</strong>g ATP production by oxidative phosphorylation tosusta<strong>in</strong> uptake, transport <strong>and</strong> <strong>in</strong>corporation of m<strong>in</strong>eral ions<strong>and</strong> organic solutes <strong>in</strong> cell products (Aguilar et al., 2003;van Dongen et al., 2003). A crucial role of TP <strong>and</strong> TN <strong>in</strong>leaf tissue for form<strong>in</strong>g the photosynthetic apparatus issupported by significant positive correlations between TP,TN, chlorophyll <strong>and</strong> photosynthesis. Accord<strong>in</strong>g to highNH + 4 concentrations <strong>in</strong> all organic amendments <strong>and</strong> highortho-P concentration <strong>in</strong> the 1.6% treatment, it is not alack of N <strong>and</strong> P <strong>in</strong> the <strong>sediment</strong> that restricts leaf nutrients,but <strong>in</strong>sufficient uptake from the <strong>sediment</strong> <strong>and</strong> transfer toleaf tissue.Anoxia <strong>in</strong>itiates the accumulation of NH +4 <strong>and</strong> theformation of Fe 2+ <strong>and</strong> other reduced compounds <strong>in</strong> the<strong>sediment</strong> (e.g. Mn 2+ , sulphides <strong>and</strong> small fatty acids), whichmay contribute to <strong>plant</strong> stress (Gibbs & Greenway, 2003).These compounds accumulate as a consequence of anoxia<strong>and</strong> do not have the same fundamental physiological <strong>in</strong>fluenceas many hours of anoxia <strong>in</strong> the <strong>plant</strong> tissue. Also,<strong>in</strong>sufficient ATP formation <strong>and</strong> gradual depletion of carbohydratereserves can account for the <strong>in</strong>ability to <strong>in</strong>corporateN <strong>and</strong> P <strong>in</strong> leaf tissue despite high <strong>sediment</strong> availability.Moreover, high concentrations of NH + 4 <strong>and</strong> Fe 2+ withoutany apparent stress on photosynthesis developed <strong>in</strong> <strong>sediment</strong>with 0.2% organic addition, i.e., concentrations onlytwo to five times lower than observed at greater organicamendments. This result supports the notion that O 2 deprivationis the overrid<strong>in</strong>g stress factor.Phosphorus <strong>in</strong> leaf tissue decl<strong>in</strong>ed below the general m<strong>in</strong>imumthreshold to support photosynthesis <strong>and</strong> growth ofsubmerged macrophytes at organic amendments of 0.4–1.6% (legend to Fig. 7). Although the critical threshold isan average for many macrophytes <strong>and</strong> Lobelia may havelower requirements than most other species (Moeller, 1978;Demars & Edwards, 2007), leaf P, chlorophyll <strong>and</strong> photosynthesisare so low <strong>in</strong> the 1.6% organic treatment thatLobelia can just barely survive. These results imply that Plimitation <strong>in</strong> Lobelia represents a strong additional stress oforganic enrichment <strong>and</strong> O 2 deprivation as a result of one ormore mechanisms. First, <strong>in</strong>organic P rema<strong>in</strong>s adsorbed tosoil particles or gradually thicker Fe-coat<strong>in</strong>gs formed onroot surfaces <strong>in</strong> reduced <strong>sediment</strong>s (Christensen & S<strong>and</strong>-Jensen, 1998). Second, <strong>and</strong> probably most significantly,reduced root uptake, translocation <strong>and</strong> leaf <strong>in</strong>corporation ofP are the result of O 2 stress <strong>and</strong> <strong>in</strong>sufficient ATP production(Gibbs & Greenway, 2003). Thirdly, widespreadanoxia is proposed to reduce uptake <strong>and</strong> translocation of Pby mycorrhiza fungi (Wig<strong>and</strong> et al., 1998). TN depletion<strong>in</strong> leaf tissue is less severe, perhaps because of cont<strong>in</strong>ued diffusiveuptake of NH + 4 from high pore-water concentrations(Marschner, 1995), which does not require active rootmembrane uptake or transfer by fungi.In summary, anoxia <strong>in</strong> <strong>sediment</strong>s <strong>and</strong> leaf lacunae late atnight was a surpris<strong>in</strong>g recurr<strong>in</strong>g summer phenomenon <strong>in</strong>prist<strong>in</strong>e Lobelia populations on nutrient-poor s<strong>and</strong>y <strong>sediment</strong>s.Small additions of labile organic matter drasticallyreduced O 2 depth penetration <strong>and</strong> prolonged leaf anoxiabecause impermeable leaf surfaces prevented O 2 supplyÓ 2010 The AuthorsNew Phytologist Ó 2010 New Phytologist Trust50New Phytologist (2011) 190: 320–331www.newphytologist.com


330 ResearchPaper 2NewPhytologistfrom the lake water. Prolonged anoxia <strong>and</strong> <strong>in</strong>sufficient ATPproduction to susta<strong>in</strong> root uptake <strong>and</strong> translocation canaccount for the decl<strong>in</strong>e of TP below critical thresholds tosusta<strong>in</strong> optimum photosynthesis, growth <strong>and</strong> cell function.Elevated NH 4 + , Fe 2+ <strong>and</strong> other reduced compounds <strong>in</strong>enriched <strong>sediment</strong>s can further enhance <strong>plant</strong> stress, butprolonged anoxia alone can account for the observed poorperformance of Lobelia.AcknowledgementsWe thank The Willum Kann Foundation for f<strong>in</strong>ancial supportto this study through The Centre of Excellence forResearch on lake Restoration (CLEAR). We thank BirgitKjøller <strong>and</strong> Ole Pedersen for technical assistance <strong>and</strong> threeanonymous referees for constructive comments.ReferencesAguilar EA, Turner DW, Gibbs DJ, Armstrong W, Sivasithamparam K.2003. <strong>Oxygen</strong> distribution <strong>and</strong> movement, respiration <strong>and</strong> nutrientload<strong>in</strong>g <strong>in</strong> banana roots (Musa spp. L.) subjected to aerated <strong>and</strong> oxygendepletedenvironments. Plant <strong>and</strong> Soil 253: 91–102.Andersen JM. 1976. Ignition method for determ<strong>in</strong>ation of totalphosphorus <strong>in</strong> lake <strong>sediment</strong>s. Water Research 10: 329–331.Armstrong W, Cous<strong>in</strong>s D, Armstrong J, Turner DW, Beckett PM. 2000.<strong>Oxygen</strong> distribution <strong>in</strong> wetl<strong>and</strong> <strong>plant</strong> roots <strong>and</strong> permeability barriers togas-exchange with the rhizosphere: a microelectrode <strong>and</strong> modell<strong>in</strong>gstudy with Phragmites australis. Annals of Botany 86: 687–703.Christensen KK, S<strong>and</strong>-Jensen K. 1998. Precipitated iron <strong>and</strong> manganeseplaques restrict root uptake of phosphorus <strong>in</strong> Lobelia dortmanna.Canadian Journal of Botany-Revue Canadienne de Botanique 76:2158–2163.Christensen PB, Revsbech NP, S<strong>and</strong>-Jensen K. 1994. Microsensoranalysis of oxygen <strong>in</strong> the rhizosphere of the aquatic macrophyteLittorella uniflora (L.) Ascherson. Plant Physiology 105: 847–852.Christoffersen K, Jespersen AM. 1986. Gut evacuation rates <strong>and</strong> <strong>in</strong>gestionrates of Eudiaptomus-graciloides measured by means of the gutfluorescence method. Journal of Plankton Research 8: 973–983.Colman JA, Sorsa K, Hoffmann JP, Smith CS, Andrews JH. 1987.Yield-derived <strong>and</strong> photosynthesis-derived critical concentrations oftissue phosphorus <strong>and</strong> their significance for growth of eurasian watermilfoil, Myriophyllum spicatum L. Aquatic Botany 29: 111–122.Colmer TD. 2003. Long-distance transport of gases <strong>in</strong> <strong>plant</strong>s: aperspective on <strong>in</strong>ternal aeration <strong>and</strong> radial oxygen loss from roots. Plant,Cell & Environment 26: 17–36.Colmer TD, Flowers TJ. 2008. Flood<strong>in</strong>g tolerance <strong>in</strong> halophytes. NewPhytologist 179: 964–974.Demars BOL, Edwards AC. 2007. Tissue nutrient concentrations <strong>in</strong>freshwater aquatic macrophytes: high <strong>in</strong>ter-taxon differences <strong>and</strong> lowphenotypic response to nutrient supply. Freshwater Biology 52:2073–2086.van Dongen JT, Schurr U, Pfister M, Geigenberger P. 2003. Phloemmetabolism <strong>and</strong> function have to cope with low <strong>in</strong>ternal oxygen. PlantPhysiology 131: 1529–1543.Farmer AM, Spence DHN. 1986. The growth strategies <strong>and</strong> distributionof <strong>isoetid</strong>s <strong>in</strong> Scottish freshwater lochs. Aquatic Botany 26: 247–258.Eaton A, Clesceri L, Greenberg A. 1995. St<strong>and</strong>ard methods for theexam<strong>in</strong>ation of water <strong>and</strong> wastewater. Wash<strong>in</strong>gton, DC, USA: AmericanPublic Health Association.Gerloff GC, Krombholz PH. 1966. Tissue analysis as a measure ofnutrient availability for growth of angiosperm aquatic <strong>plant</strong>s. Limnology<strong>and</strong> Oceanography 11: 529–537.Geurts JJM, Smolders AJP, Verhoeven JTA, Roelofs JGM, Lamers LPM.2008. Sediment Fe : PO 4 ratio as a diagnostic <strong>and</strong> prognostic tool forthe restoration of macrophyte biodiversity <strong>in</strong> fen waters. FreshwaterBiology 53: 2101–2116.Gibbs J, Greenway H. 2003. Mechanisms of anoxia tolerance <strong>in</strong> <strong>plant</strong>s. I.Growth, survival <strong>and</strong> anaerobic catabolism. Functional Plant Biology 30:1–47.Greenway H, Gibbs J. 2003. Mechanisms of anoxia tolerance <strong>in</strong> <strong>plant</strong>s. II.Energy requirements for ma<strong>in</strong>tenance <strong>and</strong> energy distribution toessential processes. Functional Plant Biology 30: 999–1036.Hutch<strong>in</strong>son G. 1975. A treatise on limnology. New York, NY, USA: JohnWiley & Sons Inc.Lucassen ECHE, Spierenburg P, Fraaije RGA, Smolders AJP, RoelofsJGM. 2009. Alkal<strong>in</strong>ity generation <strong>and</strong> <strong>sediment</strong> CO 2 uptake <strong>in</strong>fluenceestablishment of Sparganium angustifolium <strong>in</strong> softwater lakes. FreshwaterBiology 54: 2300–2314.Marschner H. 1995. M<strong>in</strong>eral nutrition of higher <strong>plant</strong>. San Diego, CA,USA: Academic Press.Moeller RE. 1978. Seasonal-changes <strong>in</strong> biomass, tissue chemistry, <strong>and</strong> netproduction of evergreen hydrophyte, Lobelia dortmanna. CanadianJournal of Botany 56: 1425–1433.Møller CL, S<strong>and</strong>-Jensen K. 2008. Iron plaques improve the oxygen supplyto root meristems of the freshwater <strong>plant</strong>, Lobelia dortmanna. NewPhytologist 179: 848–856.Nielsen SL, Gacia E, S<strong>and</strong>-Jensen K. 1991. L<strong>and</strong> <strong>plant</strong>s of amphibiousLittorella uniflora (L) Aschers ma<strong>in</strong>ta<strong>in</strong> utilization of CO 2 from the<strong>sediment</strong>. Oecologia 88: 258–262.Nielsen SL, S<strong>and</strong>-Jensen K. 1989. Regulation of photosynthetic rates ofsubmerged rooted macrophytes. Oecologia 81: 364–368.Nielsen SL, S<strong>and</strong>-Jensen K. 1991. Variation <strong>in</strong> growth-rates of submergedrooted macrophytes. Aquatic Botany 39: 109–120.Pedersen O, S<strong>and</strong>-Jensen K. 1992. Adaptations of submerged Lobeliadortmanna to aerial life form – morphology, carbon sources <strong>and</strong> oxygen<strong>dynamics</strong>. Oikos 65: 89–96.Pedersen O, S<strong>and</strong>-Jensen K, Revsbech NP. 1995. Diel pulses of O 2 <strong>and</strong>CO 2 <strong>in</strong> s<strong>and</strong>y lake-<strong>sediment</strong>s <strong>in</strong>habited by Lobelia dortmanna. Ecology76: 1536–1545.Raun AL, Borum J, S<strong>and</strong>-Jensen K. 2010. Influence of <strong>sediment</strong> organicenrichment <strong>and</strong> water alkal<strong>in</strong>ity on growth of aquatic <strong>isoetid</strong> <strong>and</strong>elodeid <strong>plant</strong>s. Freshwater Biology 55: 1891–1904.Rebsdorf A. 1972. The carbon dioxide system <strong>in</strong> freshwater. A set of tables foreasy computation of total carbon dioxide <strong>and</strong> other components of thecarbon dioxide system. Copenhagen, Denmark: Freshwater BiologicalLaboratory, University of Copenhagen.S<strong>and</strong>-Jensen K, Borum J. 1991. Interactions among phytoplankton,periphyton, <strong>and</strong> macrophytes <strong>in</strong> temperate freshwaters <strong>and</strong> estuaries.Aquatic Botany 41: 137–175.S<strong>and</strong>-Jensen K, Borum J, B<strong>in</strong>zer T. 2005a. <strong>Oxygen</strong> stress <strong>and</strong> reducedgrowth of Lobelia dortmanna <strong>in</strong> s<strong>and</strong>y lake <strong>sediment</strong>s subject to organicenrichment. Freshwater Biology 50: 1034–1048.S<strong>and</strong>-Jensen K, Pedersen O, B<strong>in</strong>zer T, Borum J. 2005b. Contrast<strong>in</strong>goxygen <strong>dynamics</strong> <strong>in</strong> the freshwater <strong>isoetid</strong> Lobelia dortmanna <strong>and</strong>the mar<strong>in</strong>e seagrass Zostera mar<strong>in</strong>a. Annals of Botany 96: 613–623.S<strong>and</strong>-Jensen K, Prahl C. 1982. <strong>Oxygen</strong> exchange with the lacunae <strong>and</strong>across leaves <strong>and</strong> roots of the submerged vascular macrophyte, Lobeliadortmanna L. New Phytologist 91: 103–120.S<strong>and</strong>-Jensen K, Riis T, Vestergaard O, Larsen SE. 2000. Macrophytedecl<strong>in</strong>e <strong>in</strong> Danish lakes <strong>and</strong> streams over the past 100 years. Journal ofEcology 88: 1030–1040.S<strong>and</strong>-Jensen K, Søndergaard M. 1979. Distribution <strong>and</strong> quantitativedevelopment of aquatic macrophytes <strong>in</strong> relation to <strong>sediment</strong>New Phytologist (2011) 190: 320–331www.newphytologist.com51Ó 2010 The AuthorsNew Phytologist Ó 2010 New Phytologist Trust


NewPaper 2Phytologist Research 331characteristics <strong>in</strong> oligotrophic Lake Kalgaard, Denmark. FreshwaterBiology 9: 1–11.S<strong>and</strong>-Jensen K, Søndergaard M. 1978. Growth <strong>and</strong> production of <strong>isoetid</strong>s<strong>in</strong> oligotrophic Lake Kalgaard, Denmark. Verh<strong>and</strong>lungen InternationaleVere<strong>in</strong>igung der Theoretiche Limnologie 20: 659–666.Sculthorpe C. 1967. The biology of aquatic vascular <strong>plant</strong>s. London, UK:Edward Arnold.Smits AJM, Laan P, Thier RH, Van der Velde G. 1990. Rootaerenchyma, oxygen leakage patterns <strong>and</strong> alcoholic fermentation abilityof the roots of some nymphaeid <strong>and</strong> <strong>isoetid</strong> macrophytes <strong>in</strong> relation tothe <strong>sediment</strong> type of their habitat. Aquatic Botany 38: 3–17.Smolders AJP, Den Hartog C, Van Gestel CBL, Roelofs JGM. 1996. Theeffects of ammonium on growth, accumulation of free am<strong>in</strong>o acids <strong>and</strong>nutritional status of young phosphorus deficient Stratiotes aloides <strong>plant</strong>s.Aquatic Botany 53: 85–96.Smolders AJP, Lucassen ECHET, Roelofs JGM. 2002. The <strong>isoetid</strong>environment: biogeochemistry <strong>and</strong> threats. Aquatic Botany 73: 325–350.Solórzano L. 1969. Determ<strong>in</strong>ation of ammonia <strong>in</strong> natural waters byphenolhypochlorite method. Limnology <strong>and</strong> Oceanography 14:799–801.Strickl<strong>and</strong> J, Parsons T. 1968. A practical h<strong>and</strong>book of seawater analysis.Ottawa, ON, Canada: Fishery Research Board of Canada.Vermaat JE, S<strong>and</strong>-Jensen K. 1987. Survival, metabolism <strong>and</strong> growth ofUlva lactuca under w<strong>in</strong>ter conditions – a laboratory study of bottlenecks<strong>in</strong> the life-cycle. Mar<strong>in</strong>e Biology 95: 55–61.Wig<strong>and</strong> C, Andersen FO, Christensen KK, Holmer M, Jensen HS. 1998.Endomycorrhizae of <strong>isoetid</strong>s along a biogeochemical gradient. Limnology<strong>and</strong> Oceanography 43: 508–515.W<strong>in</strong>kel A, Borum J. 2009. Use of <strong>sediment</strong> CO 2 by submersed rooted<strong>plant</strong>s. Annals of Botany 103: 1015–1023.Ó 2010 The AuthorsNew Phytologist Ó 2010 New Phytologist Trust52New Phytologist (2011) 190: 320–331www.newphytologist.com


Paper 3Higher gas permeability of leaves provides greatertolerance of Littorella uniflora than Lobeliadortmanna to <strong>sediment</strong> organic enrichmentPhoto: Claus L<strong>in</strong>dskov Møller


Paper 3Higher gas permeability of leaves provides greater tolerance of Littorella uniflorathan Lobelia dortmanna to <strong>sediment</strong> organic enrichmentClaus L<strong>in</strong>dskov Møller <strong>and</strong> Kaj S<strong>and</strong>-JensenFreshwater Biological Laboratory, Biological Institute, University of Copenhagen, Hels<strong>in</strong>gørsgade 51, DK-3400 Hillerød,DenmarkKey words: Permeability,<strong>isoetid</strong>s, eutrophication,biogeochemistry, anoxia,oxygen, stress.Summary● Lobelia dortmanna <strong>and</strong> Littorella uniflora are prom<strong>in</strong>ent <strong>in</strong> nutrientpoor,softwater lakes because of efficient root exchange of CO 2 <strong>and</strong> O 2 .We hypothesize that higher gas permeability of Littorella than Lobelialeaves ensures O 2 uptake from water <strong>and</strong> greater tolerance to organicenrichment <strong>and</strong> anoxia of <strong>sediment</strong>s.● We studied O 2 <strong>dynamics</strong> <strong>in</strong> <strong>plant</strong>s <strong>and</strong> <strong>sediment</strong>s <strong>and</strong> leaf photosynthesisupon organic <strong>sediment</strong> enrichment <strong>in</strong> long-term laboratory <strong>and</strong> fieldstudies.● Addition of organic matter triggered O 2 depletion <strong>and</strong> accumulation ofNH 4 + , Fe 2+ <strong>and</strong> CO 2 <strong>in</strong> <strong>sediment</strong>s. O 2 <strong>in</strong> Lobelia’s leaf lacunae fluctuatedfrom air saturation <strong>in</strong> the light to anoxia late at night on natural <strong>sediment</strong>s,but organic enrichment prolonged night anoxia. Littorella’s leaf surfaceswere 13-16 times more permeable <strong>and</strong> O 2 <strong>in</strong> the lacunae rema<strong>in</strong>ed above10 kPa on anoxic <strong>sediment</strong>s due to uptake from the water. Leaf N, P <strong>and</strong>photosynthesis dropped to critically low levels under prolonged <strong>sediment</strong>anoxia for Lobelia but not for Littorella.● High gas permeability of Littorella leaves improves performance <strong>and</strong>survival on organically enriched, anoxic <strong>sediment</strong>s compared with Lobelia.Littorella changes between gas impermeable aerial leaves <strong>and</strong> permeableaquatic leaves whereas Lobelia uses the same impermeable leaves <strong>in</strong> air<strong>and</strong> water which is cost-effective <strong>in</strong> ultra-oligotrophic environments.IntroductionOligotrophic, softwater lakes <strong>in</strong> Europe <strong>and</strong>North America are <strong>in</strong>habited by a taxonomicallydiverse group of small <strong>isoetid</strong> species all hav<strong>in</strong>gleaf rosettes, large root systems <strong>and</strong> extensiveaerenchyma as adaptations to acquire CO 2 <strong>and</strong>nutrients from <strong>sediment</strong>s (Smolders et al. 2002).The <strong>isoetid</strong>s are key species <strong>in</strong> <strong>in</strong>ternationalevaluations of prist<strong>in</strong>e nature quality such asEU’s Habitat Directive <strong>and</strong> Water FrameworkDirective (Stelzer et al. 2005) <strong>and</strong> oligotrophic,softwater lakes are named Lobelia-lakes afterthe conspicuous flower<strong>in</strong>g species, Lobeliadortmanna. Despite the same growth form <strong>and</strong>requirement of relatively unpolluted habitats ofall <strong>isoetid</strong>s, the species vary substantially <strong>in</strong>anatomy <strong>and</strong> physiology which may account fordifferences <strong>in</strong> their distributions (S<strong>and</strong>-Jensen &Søndergaard 1979). For example, Littorellauniflora has a wider ecological range <strong>and</strong>tolerates greater eutrophication than Lobeliadortmanna which has gone ext<strong>in</strong>ct <strong>in</strong> many NWEuropean lakes <strong>and</strong> it is now conf<strong>in</strong>ed to a fewprist<strong>in</strong>e oligotrophic lakes (Arts et al. 1989;S<strong>and</strong>-Jensen et al. 2000; Pedersen et al. 2006).We here test if Littorella is more tolerant thanLobelia to organic enrichment <strong>and</strong> anoxia of55


Paper 3<strong>sediment</strong>s <strong>and</strong>, if so, what the structural <strong>and</strong>functional reasons for these differences couldbe.Both Littorella <strong>and</strong> Lobelia use <strong>sediment</strong>CO 2 for photosynthesis (Wium-Andersen 1971;Søndergaard & S<strong>and</strong>-Jensen 1979) <strong>and</strong> releaseso much O 2 from the roots dur<strong>in</strong>g the day that asubstantial O 2 pool can build up <strong>in</strong> surface<strong>sediment</strong>s of low degradation rate <strong>and</strong> be used<strong>in</strong> night-time respiration (Christensen et al.1994; Pedersen et al. 1995). However, if the<strong>sediment</strong> O 2 dem<strong>and</strong> becomes high, such asoccurs <strong>in</strong> eutrophied lakes (S<strong>and</strong>-Jensen et al.2005), <strong>isoetid</strong>s may be unable to ma<strong>in</strong>ta<strong>in</strong> oxicconditions <strong>in</strong> roots <strong>and</strong> even <strong>in</strong> leaves <strong>and</strong>, as aconsequence, die.Recent experiments show that a smallorganic enrichment of very oligotrophic<strong>sediment</strong>s stimulates growth of Littorella <strong>and</strong>Lobelia because of release of nutrients <strong>and</strong> CO 2from organic degradation (Raun et al. 2010;Møller & S<strong>and</strong>-Jensen 2011). Higherenrichment with labile organic matter, however,reduces root development <strong>and</strong> leafphotosynthesis <strong>and</strong> can dim<strong>in</strong>ish <strong>plant</strong> survivalbecause of widespread <strong>sediment</strong> anoxia <strong>and</strong>,perhaps, additional <strong>plant</strong> stress fromaccumulation of reduced ions (Fe, Mn <strong>and</strong> S)<strong>and</strong> organic acids (Armstrong et al. 2000;Colmer 2003; Møller & S<strong>and</strong>-Jensen 2011).Both Lobelia <strong>and</strong> Littorella have highlypermeable root surfaces to CO 2 <strong>and</strong> O 2exchange <strong>and</strong> will consequently face extensiveradial O 2 loss <strong>in</strong> anoxic <strong>sediment</strong>s <strong>and</strong> higherrisk of root <strong>and</strong> <strong>plant</strong> mortality (Møller & S<strong>and</strong>-Jensen 2008). Several features suggest thatLobelia may be more susceptible to O 2deprivation than Littorella. Lobelia has th<strong>in</strong>nerroots, higher root/leaf mass ratio <strong>and</strong>proportionally greater root O 2 release (virtually100%, S<strong>and</strong>-Jensen & Prahl 1982) ofphotosynthetic O 2 than Littorella (about 30%,S<strong>and</strong>-Jensen et al. 1982) suggest<strong>in</strong>g that Lobeliashould have greater difficulties than Littorellama<strong>in</strong>ta<strong>in</strong><strong>in</strong>g downward O 2 supply to root tips<strong>and</strong> tak<strong>in</strong>g up sufficient O 2 for dark respirationby the leaves from the water column once<strong>sediment</strong>s go anoxic. We propose that lower gaspermeability of leaf surfaces <strong>and</strong> higher capacityfor <strong>in</strong>tra-<strong>plant</strong> gas transport <strong>in</strong> cont<strong>in</strong>uouslacunae would leave Lobelia even moresusceptible to anoxia <strong>in</strong> root <strong>and</strong> leaf tissuesthan Littorella when <strong>sediment</strong>s becomedeprived of O 2 .New experiments have supported theproposition that the threshold of <strong>sediment</strong>organic enrichment <strong>and</strong> O 2 consumption<strong>in</strong>duc<strong>in</strong>g <strong>plant</strong> stress is systematically lower forLobelia than Littorella (Raun et al. 2010). Theseexperiments were performed with <strong>plant</strong>ed<strong>in</strong>dividuals that may be more susceptible toorganic enrichment <strong>and</strong> O 2 stress because newroots were formed <strong>and</strong> this requires extra energyof species with chronically low metabolism <strong>and</strong>growth (S<strong>and</strong>-Jensen & Borum 1991).Therefore, we wanted to determ<strong>in</strong>e theresponses of undisturbed Lobelia <strong>and</strong> Littorellapopulations to changes of <strong>sediment</strong>biogeochemistry by organic enrichment.Because O 2 availability is the ma<strong>in</strong> determ<strong>in</strong>antof many <strong>sediment</strong> <strong>and</strong> <strong>plant</strong> processes, we madea special effort to measure O 2 cont<strong>in</strong>uouslydur<strong>in</strong>g light-dark cycles <strong>in</strong> lake water, <strong>sediment</strong>s<strong>and</strong> leaf lacunae to establish if, where, <strong>and</strong> forhow long hypoxia or anoxia occurred <strong>in</strong>populations subjected to <strong>in</strong>creas<strong>in</strong>g <strong>sediment</strong>organic enrichment.Biogeochemical changes <strong>and</strong>physiological responses of Lobelia have beenstudied recently (Møller & S<strong>and</strong>-Jensen 2011).56


Paper 3Here, we perform a parallel experimental studyof Littorella <strong>and</strong> exp<strong>and</strong> the experimentalstudies of both species exposed to the sametemperature, light-dark cycle <strong>and</strong> organicenrichment of <strong>sediment</strong>s under laboratory <strong>and</strong>field conditions. We tested three specifichypotheses: (i) Both species experienceprofound changes of <strong>sediment</strong> biogeochemistry<strong>and</strong> <strong>plant</strong> stress upon <strong>sediment</strong> organicenrichment, (ii) Sediment anoxia deprivesLobelia of O 2 but not Littorella leaves whichtake up O 2 from the lake water because of highgas permeability compared with Lobelia, <strong>and</strong>(iii) higher gas permeability of Littorella leavesmeans that nutrient content, photosynthesis <strong>and</strong>growth are better susta<strong>in</strong>ed than <strong>in</strong> Lobelia with<strong>sediment</strong> enrichment.Materials <strong>and</strong> methodsLaboratory experiment with <strong>in</strong>tact <strong>sediment</strong>turfsSix <strong>in</strong>tact <strong>sediment</strong> turfs with monocultures ofLobelia dortmanna <strong>and</strong> six with Littorellauniflora were collected <strong>in</strong> mid-October fromshallow homogeneous populations <strong>in</strong>oligotrophic Lake Värsjö, SW Sweden. Turfswere transferred to a laboratory growth facilitysubmerged <strong>in</strong> lake water. In the laboratory turfswere used for experimentation for ca. 200 dayssubmerged (see below) at 14-16 o C <strong>in</strong> a 12-hlight: 12-h dark cycle at an irradiance (400-700nm, PAR) of 110 µmol photons m -2 s -1 aspreviously described (Møller & S<strong>and</strong>-Jensen2011). Experimental water was filtered (1µmfilter) water from a nearby lake diluted <strong>in</strong>dem<strong>in</strong>eralized water to match the chemistry ofLake Värsjö (see Møller & S<strong>and</strong>-Jensen 2011for details). Water was slowly bubbled withatmospheric air, mixed by a submersible pump<strong>and</strong> renewed every second week to prevent algalgrowth. Sediments were exposed to anenrichment gradient by add<strong>in</strong>g <strong>in</strong>creas<strong>in</strong>gamounts of labile organic matter held <strong>in</strong> drypellets of pasture grass equivalent to 0, 0.1, 0.2,0.4, 0.8 <strong>and</strong> 1.6% enrichment per dry weight of<strong>sediment</strong>. Pellets were <strong>in</strong>serted <strong>in</strong> the <strong>sediment</strong>at 4 cm depth with an equi-distance of 2 cm.Pellets conta<strong>in</strong>ed per dry weight (DW): 91± 1% organic matter (of which 46.9 ± 0.4% wasorganic carbon), 2.3 ± 0.15% total nitrogen(TN) <strong>and</strong> 0.27±0.01% total phosphorus (TP).Sediment characteristics, pore-waterchemistry, O 2 <strong>dynamics</strong> <strong>in</strong> <strong>sediment</strong>s <strong>and</strong> leaflacunae, leaf nutrients <strong>and</strong> net photosynthesiswere measured as previously described (Møller& S<strong>and</strong>-Jensen 2011). Here we present O 2penetration depth <strong>in</strong> <strong>sediment</strong>s of both speciesdur<strong>in</strong>g the course of experiments <strong>and</strong> light-darkcycles of O 2 <strong>in</strong> leaf lacunae <strong>and</strong> <strong>sediment</strong>smeasured midway <strong>in</strong>to the experiments.Concentrations of Fe 2+ , DIC, NH + 4 , NO - 3-3 , PO 4<strong>and</strong> pH were measured <strong>in</strong> the pore-water water<strong>and</strong> DW, organic DW, organic C, TN <strong>and</strong> TPwere measured <strong>in</strong> the bulk <strong>sediment</strong> at 1, 2, 4, 6<strong>and</strong> 8 cm at term<strong>in</strong>ation of the experimentpermitt<strong>in</strong>g calculation of mean depth-<strong>in</strong>tegrated<strong>sediment</strong> concentrations <strong>in</strong> the root zone (0-8cm). Leaf chlorophyll, N, P <strong>and</strong> netphotosynthesis at light <strong>and</strong> CO 2 saturation at 15o C were measured at the end of the experimentsus<strong>in</strong>g methods previously described (Møller &S<strong>and</strong>-Jensen 2011).In situ experimentA gradient study was established <strong>in</strong> Lake Värsjöat a w<strong>in</strong>d-exposed site with m<strong>in</strong>eral <strong>sediment</strong>s at0.4 m water depth from May to August. Thesame site was used for collect<strong>in</strong>g <strong>sediment</strong>s<strong>plant</strong>turfs for the laboratory experiment. N<strong>in</strong>e57


Paper 315*15 cm plots homogenously vegetated withboth Lobelia dortmanna <strong>and</strong> Littorella uniflorawere subjected to organic enrichments withorganic pellets <strong>in</strong> the <strong>sediment</strong>s as described forthe laboratory experiment over a gradient<strong>in</strong>clud<strong>in</strong>g 0, 0.2 <strong>and</strong> 0.8 % added organic DW.Dur<strong>in</strong>g the experiment temperature <strong>and</strong>irradiance were measured every 5 m<strong>in</strong>utes at 0.4m depth at the site by a comb<strong>in</strong>ed Lux <strong>and</strong>temperature logger (Onset ComputerCorporation, Bourne, Massachusetts, USA).Averages for the 90-day long experiment were:20.6 o C (range 12-34), 217 µmol m -2 s -1 (PAR)<strong>and</strong> a day length of 17.4 hours.At the end of the <strong>in</strong> situ experiment an<strong>in</strong>tact <strong>sediment</strong> core was sampled from eachplot <strong>in</strong> a Perspex tube (5 cm diameter, 30 cmhigh) equipped with rubber stoppers as bottom<strong>and</strong> lid. The cores were brought back to thelaboratory <strong>and</strong> stored at 16 o C <strong>in</strong> a 12-h light: 12-h dark cycle until measurements of pore-water<strong>and</strong> <strong>sediment</strong> characteristics with<strong>in</strong> 1-3 days.All rema<strong>in</strong><strong>in</strong>g <strong>plant</strong>s from each plot were r<strong>in</strong>sed<strong>and</strong> brought to the laboratory <strong>in</strong> sealed plasticbags hold<strong>in</strong>g some water <strong>and</strong> plenty of air toensure water <strong>and</strong> O 2 supply. In the laboratory,shoot number of each species, wet weight (WW)<strong>and</strong> DW of aboveground biomass weredeterm<strong>in</strong>ed. Leaf samples from each species <strong>and</strong>plot were then analysed for chlorophyll, TN, TPas described <strong>in</strong> Møller & S<strong>and</strong>-Jensen (2011).Pore-water concentrations of DIC, NH + 3-4 , PO 4<strong>and</strong> Fe 2+ <strong>and</strong> <strong>sediment</strong> content of organicmatter, TN <strong>and</strong> TP were also determ<strong>in</strong>ed aspreviously described (Møller & S<strong>and</strong>-Jensen2011).O 2 <strong>and</strong> H 2 O exchange <strong>and</strong> across leaf surfacesLeaf O 2 exchange for a st<strong>and</strong>ard O 2 gradientwas measured as O 2 loss from leaf surfaces tohypoxic water surround<strong>in</strong>g them with the baseof leaf lacunae exposed to atmospheric air. Sixleaves were cut off <strong>and</strong> mounted <strong>in</strong> a PVCcyl<strong>in</strong>der (volume 45.3 ml) through small holes<strong>in</strong> the lid leav<strong>in</strong>g the most basal 1 mm of theleaf outside the cyl<strong>in</strong>der <strong>and</strong> leaf surfacesexposed to water <strong>in</strong> the cyl<strong>in</strong>der. Holes orcracks between leaves, lid <strong>and</strong> cyl<strong>in</strong>der werecarefully sealed with silicone grease. An O 2electrode (Ox 500, Unisense, Århus, Denmark)connected to a computer for cont<strong>in</strong>uouslylogg<strong>in</strong>g was <strong>in</strong>troduced to follow O 2concentration <strong>in</strong> the water of the cyl<strong>in</strong>der. Amagnetic stirrer provided a slow, steady mix<strong>in</strong>g.Measurements were performed undertemperature constant conditions at 5.0 <strong>and</strong> 15.0o C by submerg<strong>in</strong>g the PVC cyl<strong>in</strong>der <strong>in</strong> water butleav<strong>in</strong>g the exposed leaf bases with air contact.Prior to measurements, the cyl<strong>in</strong>der was flushedwith anoxic water <strong>and</strong> left for 20 m<strong>in</strong>utes toequilibrate before the l<strong>in</strong>ear rate of <strong>in</strong>crease ofO 2 was measured for 10 m<strong>in</strong>utes. Allmeasurements were preformed with a low O 2partial pressure of 1-2 kPa <strong>in</strong> the watersurround<strong>in</strong>g the leaves. Similar measurementswithout leaves were used to correct for physicalleakage of O 2 <strong>in</strong>to the PVC cyl<strong>in</strong>der not causedby transport over the leaves. Physical leakagewas very constant (1.45±0.03 <strong>and</strong> 0.43 ± 0.05nmol O 2 h -1 at 5 <strong>and</strong> 15 o C respectively). Afterexperiments, leaf dimensions were measured at45 x magnification with a dissectionmicroscope. Three measurements of leaf width<strong>and</strong> thickness were made along the length ofevery leaf to calculate surface area. Lobelia hasapproximately rectangular leaves <strong>in</strong> crosssection while Littorella has cyl<strong>in</strong>drical leaves.Fluxes of O 2 were normalized to leaf surfacesarea <strong>and</strong> time for a mean gradient of about 19kPa between lacunae at the leaf base <strong>and</strong> O 258


Paper 3Fig. 1. O 2 penetration depth <strong>in</strong> <strong>sediment</strong>s <strong>in</strong>habited by Lobelia dortmanna (left panel from Møller & S<strong>and</strong>-Jensen 2011)<strong>and</strong> Littorella uniflora (right panel) <strong>in</strong> laboratory experiments at different time po<strong>in</strong>ts after addition of different amountsof labile organic matter (0% (○), 0.1% (●), 0.2% (□), 0.4% (■), 0.8% (Δ) <strong>and</strong> 1.6% (▲) of <strong>sediment</strong> dry weight).Measurements were made 10-12 hours <strong>in</strong>to the 12 hour light period when O 2 oxygen penetration depth was highest.Values are means ± SD, n = 2 (0-170 days) or n =3 (end of experiment).depleted water surround<strong>in</strong>g the outer leafsurfaces. The O 2 flux is assumed to be of similarmagnitude but <strong>in</strong> opposite direction for a reversegradient with air-saturated water around theleaves <strong>and</strong> anoxia at the base of leaf lacunae.Water loss across surfaces of newlydetached leaves to dry, still air was measured <strong>in</strong>a desiccator at 20 o C. Each leaf was placedupright with the cut base <strong>in</strong> a small drop ofsilicone grease <strong>in</strong> a weigh<strong>in</strong>g-boat <strong>and</strong>repeatedly weighed on a 5-decimal precisionbalance over time. The <strong>in</strong>itial, constant weightloss by evaporation was normalized to time <strong>and</strong>leaf surface area measured as described above.Ten replicate leaves of both species were tested.Statistical analysisGraphs <strong>and</strong> statistical analyses were performed<strong>in</strong> Graph Pad Prism 5. The laboratoryexperiment was a dose response with sixenrichment levels of organic matter to <strong>sediment</strong>sappropriate for correlation or regressionanalysis. The <strong>in</strong> situ experiment was a blockdesign with three levels of organic addition <strong>in</strong>triplicate appropriate for ANOVA analysis.Differences <strong>in</strong> O 2 <strong>and</strong> H 2 O flux across leafsurfaces were exam<strong>in</strong>ed by one-way ANOVAfor the <strong>in</strong>fluence of temperature <strong>and</strong> species.Data were square root transformed to meet testrequirements when needed. When transformeddata failed to meet test requirements nonparametrictests were used. Probabilities above95% were considered significant. Data arepresented as mean ± 1 St<strong>and</strong>ard Deviation (SD).ResultsSediment biogeochemistryO 2 penetrated to more than 40-mm depth <strong>in</strong> unenriched<strong>sediment</strong>s of both species whenmeasured 10-12 hours <strong>in</strong>to the light period <strong>in</strong>laboratory experiment. Addition of labileorganic matter <strong>in</strong>creased O 2 consumption <strong>in</strong> the<strong>sediment</strong>s <strong>and</strong> significantly lowered O 2penetration depth (Spearmans r, p


Paper 3Table 1. Sediment <strong>and</strong> pore-water chemistry at the term<strong>in</strong>ation of about 200-days long laboratoryexperiments with pure natural st<strong>and</strong>s of Lobelia dortmanna (Lobelia experiment) <strong>and</strong> Littorella uniflora(Littorella experiment) <strong>and</strong> 90-days long field experiments <strong>in</strong> st<strong>and</strong>s of both species (Mixed fieldexperiment). Different amounts of labile organic matter (%) were <strong>in</strong>itially added to the <strong>sediment</strong>s.Experiment/treatmentTP(µg P g -1DW)SedimentTN(mg N g -1DW)Orgcontent(% of DW)DIC(mmol l -1 )Pore-waterNH 4+(µmol l -1 )Fe 2+(µmol l -1 )Lobelia experiment0 24.1±2.2 170±20 0.60±0.05 1.89±0.11 4.1±0.8 2.9±3.20.1 27.6±0.3 186±10 0.68±0.02 2.15±0.25 23±11 70±440.2 29.1±1.9 193±20 0.66±0.05 4.26±0.11 200±13 506±1170.4 33.9±2.2 266±14 0.83±0.16 6.78±0.07 590±76 979±90.8 44.0±2.1 294±8.9 1.06±0.16 7.59±0.42 850±95 1990±1071.6 49.6±3.3 552±241 1.62±0.37 7.71±0.54 568±203 2700±152Littorella experiment0 30.9±1.7 326±40 1.11±0.15 1.42±0.19 9.4±2.1 3.2±3.50.1 32.6±1.4 341±26 1.06±0.03 1.64±0.18 8.2±2.8 4.4±4.30.2 41.0±4.3 383±48 1.21±0.06 2.75±0.49 125±22 54±390.4 37.5±5.0 317±71 1.23±0.10 2.06±0.19 70±25 73±540.8 44.1±5.3 458±20 1.34±0.16 4.75±0.25 240±28 175±361.6 62.2±2.2 514±120 1.79±0.03 10.1±0.57 1099±140 1480±73Mixed field experimentno <strong>plant</strong>s 15.9±1.8a 133±27a 0.43±0.07a 1.00±0.02a 72±16a 53±36ab0.0% 26.5±5.2ab 183±45a 0.63±0.17a 0.58±0.11b 31±4a 16±10ab0.2% 25.8±3.0ab 162±3a 0.73±0.21a 1.01±0.07a 56±27a 0.3±3.0b0.8% 33.2±0.7b 235±136a 0.62±0.04a 2.34±0.35c 178±144a 328±203aMeasurements are means ± SD, n=3. One-way ANOVA was performed <strong>in</strong> field experiments with differentletters show<strong>in</strong>g significant differences among treatments.enrichment of Littorella <strong>sediment</strong>s over ca. 200days, but only <strong>in</strong> the 0.1% organic enrichmentof Lobelia <strong>sediment</strong>s. At the highest 1.6%organic enrichment, <strong>sediment</strong>s rema<strong>in</strong>ed anoxicbelow 5-6 mm depth. Reestablishment ofoxygenated surface <strong>sediment</strong>s was only partial<strong>in</strong> higher organic treatments, but it was alwaysstronger <strong>in</strong> Littorella than Lobelia <strong>sediment</strong>s.DIC concentrations <strong>in</strong>creased 4-7 times<strong>in</strong> the organically enriched <strong>sediment</strong>s <strong>in</strong> thelaboratory as a result of higher organicdegradations rates (Table 1). The <strong>in</strong>crease ofNH 4 + concentrations was even more profound(> 100 times, Table 1). Anoxia <strong>in</strong>ducedextensive anaerobic Fe 3+ reduction result<strong>in</strong>g <strong>in</strong>about 500-1000 times higher Fe 2+concentrations <strong>in</strong> high-organic (1.6 %) thancontrol <strong>sediment</strong>s (Table 1). Concentrations ofNO 3 - <strong>and</strong> PO 4 3- were negligible.In field experiments, all added organicmatter had been degraded <strong>and</strong> lost after 3summer months (Table 1). DIC concentrationswere still significantly higher <strong>in</strong> <strong>sediment</strong>sreceiv<strong>in</strong>g 0.2-0.8 % organic matter, <strong>and</strong> meanconcentrations of NH 4 + <strong>and</strong> Fe 2+ were alsohigher at 0.8 % organic enrichment, althoughnot significantly relative to control <strong>sediment</strong>s.Sediments without <strong>plant</strong>s had higher pore-water60


Paper 3Table 2. O 2 flux across leaf surface to hypoxic waterwith basal leaf lacunae <strong>in</strong> air contact <strong>and</strong> evaporation todry still air of Lobelia dortmanna <strong>and</strong> Littorella uniflorameasured at 5 <strong>and</strong> 15 o C.o CSpeciesFlux Evaporation(n mol O 2 m -2 s -1 ) (µl m -2 s-1)Lobelia 5 30 ± 7 a15 48 ± 3 a 1.20 ± 0.83aLittorella 5 482 ± 199 b15 608 ± 144 b 14.5 ± 8.9bValues are means ± SD of 3 (O 2 flux) or 10(Evaporation) replicates. Different letters showsignificant differences (p


Paper 3In <strong>sediment</strong>s enriched with 0.4 or 1.6%organic matter, anoxia <strong>in</strong> the dark was markedlyprolonged <strong>in</strong> Lobelia’s leaf lacunae compared to<strong>plant</strong>s on un-enriched control <strong>sediment</strong>s (Fig. 2).In contrast, anoxia never developed <strong>in</strong>Littorella’s leaf lacunae <strong>and</strong> the diurnal coursehere typically varied between 25-30 kPa <strong>in</strong> thelight <strong>and</strong> 5-15 kPa <strong>in</strong> the dark with no differencebetween control <strong>and</strong> enriched <strong>sediment</strong>s.Plant performance <strong>and</strong> critical leaf nutrientsBoth Lobelia <strong>and</strong> Littorella reduced thedevelopment of roots relative to leaves with<strong>in</strong>creas<strong>in</strong>g <strong>sediment</strong> enrichment (Fig. 3). Lengthof leaves relative to roots <strong>in</strong>creased significantlyas a function of <strong>sediment</strong> organic matter <strong>and</strong>significantly more for Lobelia than Littorella(L<strong>in</strong>ear regression, slope difference, p


Paper 3Fig. 4. Leaf chlorophyll of Lobelia dortmanna <strong>and</strong>Littorella uniflora (○ upper panel) <strong>and</strong> Littorella uniflora(●, lower panel) after 200 days <strong>in</strong> the laboratory <strong>in</strong><strong>sediment</strong>s receiv<strong>in</strong>g <strong>in</strong>creas<strong>in</strong>g amounts of labile organicmatter. Means ± SD, n = 4-6. Regression l<strong>in</strong>es are alsopresented. Chlorophyll values from control treatmentswere removed from the regression of Lobelia s<strong>in</strong>ce asmall enrichment had a positive effect.field experiments (one-way ANOVA, p


Paper 3Fig. 5. Net photosynthesis at light <strong>and</strong> CO 2 saturation (y)as a function of leaf chlorophyll content x) of Lobeliadortmanna (upper panel) <strong>and</strong> Littorella uniflora (lowerpanel). Measurements were made with leaves fromcontrol <strong>sediment</strong>s (open symbols) <strong>and</strong> <strong>sediment</strong>sreceiv<strong>in</strong>g <strong>in</strong>creas<strong>in</strong>g amounts of labile organic matter(0.1-1.6% DW; gradually darker symbols).Littorella <strong>sediment</strong>s, whereas Lobelia <strong>sediment</strong>swent anoxic. The higher oxygenation ofLittorella <strong>sediment</strong>s can be expla<strong>in</strong>ed by thehigher biomass, photosynthesis <strong>and</strong> darktransport of O 2 from the lake water through the<strong>plant</strong> to the <strong>sediment</strong>. High O 2 permeability ofLittorella’s leaf surfaces can account for thesubstantial O 2 content (10 kPa) <strong>in</strong> the leaflacunae <strong>in</strong> the dark despite anoxic <strong>sediment</strong>s,whereas Lobelia’s leaf surfaces are almostimpermeable <strong>and</strong> lacunae go anoxic <strong>in</strong> the dark.The higher resistance to O 2 release from leafthan root surfaces of Lobelia accords with thepredom<strong>in</strong>ant (90-100%) release of O 2 from rootsurfaces dur<strong>in</strong>g photosynthesis, whereasLittorella releases more O 2 from leaves (72%)than roots (28 %; S<strong>and</strong>-Jensen et al. 1982, S<strong>and</strong>-Jensen & Prahl 1982). Thus, whereas Lobeliaturns anoxic entirely when <strong>in</strong> anoxic <strong>sediment</strong>s,Littorella’s leaves rema<strong>in</strong> oxic <strong>and</strong> rootscont<strong>in</strong>ue to receive O 2 from the lake waterthrough leaf surfaces <strong>and</strong> <strong>in</strong>tra-<strong>plant</strong> downwardtransport. The longest Littorella roots,nonetheless, face O 2 deficiency on highlyreduc<strong>in</strong>g <strong>sediment</strong>s accord<strong>in</strong>g to observed FeSprecipitates at the root tips <strong>and</strong> the roots growshorter to ensure sufficient downward O 2transport to the active meristmatic root zone(Colmer 2003, Raun et al. 2010). Lobelia ismuch more susceptible to <strong>sediment</strong> anoxia <strong>and</strong>reduces root development earlier <strong>and</strong> moreprofoundly than Littorella upon organicenrichment of the <strong>sediment</strong> (Fig. 4, see alsoRaun et al. 2010).The almost gas impermeable leaf surfaceof Lobelia is responsible for extensive anoxia <strong>in</strong>all <strong>plant</strong> tissue once the O 2 supply from the<strong>sediment</strong> vanishes. A few hours of anoxia late atnight is a natural recurr<strong>in</strong>g phenomenon even onnutrient-poor, low-organic s<strong>and</strong>y <strong>sediment</strong>sdur<strong>in</strong>g summer because the species has almostno O 2 uptake from the water (Møller & S<strong>and</strong>-Jensen 2011). Even a modest <strong>in</strong>crease of O 2consumption <strong>in</strong> the <strong>sediment</strong>s due to supply oflabile organic matter, therefore, <strong>in</strong>creases theduration of night anoxia <strong>in</strong> Lobelia <strong>in</strong> contrast toLittorella leaves which rema<strong>in</strong> permanentlyoxic. It is unlikely that the leaf anatomy ofLobelia has been selected to optimize O 2<strong>dynamics</strong> because it strongly <strong>in</strong>creases the riskof anoxia <strong>and</strong> several associated stress reactions.Thus, low leaf permeability must havealternative advantages <strong>in</strong> order to have becomeselected.Firstly, the gas impermeable Lobelialeaves reduces the passive loss of CO 2 from the64


Paper 3high <strong>in</strong>ternal concentrations <strong>in</strong> the leaf lacunaeto the low air-equilibrium CO 2 concentrations <strong>in</strong>the lake water. Because CO 2 formation isextremely low <strong>in</strong> prist<strong>in</strong>e, oligotrophic Lobelialakesit is essential to ma<strong>in</strong>ta<strong>in</strong> <strong>in</strong>timateexchange between the <strong>plant</strong> <strong>and</strong> the <strong>sediment</strong>both dur<strong>in</strong>g photosynthesis <strong>and</strong> respiration <strong>and</strong>m<strong>in</strong>imize CO 2 losses to the lake water becauseCO 2 concentrations needed to saturatephotosynthesis (~ 3000 µM) or just tocompensate respiration (~ 60 µM) are muchhigher than air-saturated levels (~ 15 µM; S<strong>and</strong>-Jensen 1987, Pedersen et al. 1995, W<strong>in</strong>kel &Borum 2009). High permeability of Littorellaleaves could result <strong>in</strong> much greater CO 2 loss tothe lake water <strong>in</strong> the dark, but Littorellapossesses a special physiological feature whichallows temporary <strong>in</strong>corporation of leaf CO 2 byPEP-carboxylase <strong>in</strong>to malate <strong>in</strong> the dark, <strong>and</strong>decarboxylation <strong>and</strong> CO 2 <strong>in</strong>corporation vianormal C-3 photosynthesis <strong>in</strong> the follow<strong>in</strong>g lightperiod, thus lower<strong>in</strong>g <strong>plant</strong>-mediated CO 2release from the <strong>sediment</strong> via the aerenchyma(Madsen 1985). These CO 2 fluxes through the<strong>plant</strong>s have not been quantified as yet.Secondly, the diffusion barrier onLobelia leaves effectively reduces evaporation<strong>and</strong> ensures survival of leaves when theyregularly become exposed to the air follow<strong>in</strong>gdrawdown of the water table dur<strong>in</strong>g summer <strong>in</strong>the seepage lakes (Pedersen & S<strong>and</strong>-Jensen1992). Most submerged aquatic <strong>plant</strong>s,<strong>in</strong>clud<strong>in</strong>g Littorella with 12-fold fasterevaporation rates than Lobelia, dry out upon airexposure <strong>and</strong> these species either die or survive,as <strong>in</strong> the case of Littorella, by produc<strong>in</strong>g newaerial, less permeable leaves with cuticle <strong>and</strong>functional stomata (Nielsen et al. 1991). Lobeliadoes not need to <strong>in</strong>vest <strong>in</strong> a new set of leavesfollow<strong>in</strong>g alternat<strong>in</strong>g submergence <strong>and</strong> airexposure which is costly <strong>and</strong> perhaps impossibleconsider<strong>in</strong>g its low <strong>in</strong>tr<strong>in</strong>sic growth rate <strong>and</strong>very nutrient-poor habitat. In contrast, Littorellafaces this extra cost, but also has a faster<strong>in</strong>tr<strong>in</strong>sic growth rate <strong>and</strong> prefers to <strong>in</strong>habitnutrient-richer <strong>sediment</strong>s (S<strong>and</strong>-Jensen &Søndergaard 1978, 1979). Thus, particularstructural <strong>and</strong> physiological adaptations fulfillseveral purposes <strong>and</strong> need to be viewed <strong>in</strong>regard to the entire <strong>plant</strong> life <strong>and</strong> the complexityof environmental conditions.Organic additions had more profound<strong>and</strong> last<strong>in</strong>g effects on <strong>sediment</strong> chemistry <strong>in</strong>laboratory than <strong>in</strong> field experiments. The muchfaster loss of organic matter <strong>and</strong> produced DIC,NH 4 + <strong>and</strong> Fe +2 <strong>in</strong> the field can be expla<strong>in</strong>ed byhigher field temperatures promot<strong>in</strong>g degradationrates, longer days with higher irradiancesstimulat<strong>in</strong>g oxygenation <strong>and</strong>, thereby, organicdegradation <strong>and</strong>, very likely, better physicalexchange by pressure waves or groundwaterflow between pore-water <strong>and</strong> lake water.Anoxic stress, nutrient supply <strong>and</strong> <strong>plant</strong>performanceLobelia experienced extensive anoxia <strong>in</strong> bothleaves <strong>and</strong> roots by organic enrichment, whereasLittorella leaves always rema<strong>in</strong>ed oxic <strong>and</strong>could supply O 2 to the roots. More widespreadanoxia <strong>in</strong> Lobelia will impede effective ATPformation by oxidative phosphorylation, exhaustenergy resources (Greenway & Gibbs 2003a,b)<strong>and</strong>, <strong>in</strong> turn, restrict ion uptake <strong>and</strong> transportfrom roots to shoots (Colmer & Flowers 2008;Møller & S<strong>and</strong>-Jensen 2011). Catabolicprocesses to susta<strong>in</strong> the photosyntheticapparatus <strong>in</strong> the leaves can also be impededbecause less metabolic energy <strong>and</strong> fewernutrients are available. This may account for thedecl<strong>in</strong>e of nutrients, chlorophyll <strong>and</strong>65


Paper 3photosynthesis of Lobelia leaves at all organicenrichments whereas TN, chlorophyll <strong>and</strong>photosynthesis of Littorella leaves are notsignificantly reduced by any organic enrichment<strong>and</strong> only TP is reduced at 0.8 <strong>and</strong> 1.6 % organicmatter.TP decl<strong>in</strong>ed more significantly than TN<strong>in</strong> the leaves by organic <strong>sediment</strong> enrichment<strong>and</strong> TP <strong>in</strong> Lobelia <strong>in</strong> several <strong>in</strong>stances droppedbelow the m<strong>in</strong>imum average threshold ofsubmerged macrophytes to susta<strong>in</strong> growth (0.08% P; Colman et al. 1987, Demars <strong>and</strong> Edwards2007) both <strong>in</strong> laboratory <strong>and</strong> field experiments.3-While PO 4 rema<strong>in</strong>ed below analyticaldetection (0.2 µM) <strong>in</strong> the pore-water oforganically enriched <strong>sediment</strong>s due to strongadsorption, NH +4 reached high concentrations<strong>and</strong> can be supplied to the <strong>plant</strong>s by passivediffusion (Marchner 1986). P-supply to roots viaVA-fungi is also believed to be impeded by<strong>sediment</strong> anoxia (Wig<strong>and</strong> et al. 1998) <strong>and</strong><strong>in</strong>fection of new roots is grossly reduced <strong>in</strong>organically enriched anoxic <strong>sediment</strong>s (Møller,Kjøller & S<strong>and</strong>-Jensen, pers. comm.).Our results, therefore, imply that low gaspermeability of leaf surfaces is essential for theexcellent ability of Lobelia to thrive onextremely low-organic, nutrient-poor m<strong>in</strong>eral<strong>sediment</strong>s by ensur<strong>in</strong>g an <strong>in</strong>timate O 2 <strong>and</strong> CO 2exchange between <strong>plant</strong> <strong>and</strong> <strong>sediment</strong> <strong>and</strong>permitt<strong>in</strong>g the same leaves to function <strong>in</strong> air <strong>and</strong>under water. In contrast, even small enrichmentof <strong>sediment</strong>s with labile organic matter led toprogressive problems for Lobelia’s performance<strong>and</strong> survival by <strong>in</strong>duc<strong>in</strong>g <strong>sediment</strong> <strong>and</strong> <strong>plant</strong>anoxia, imped<strong>in</strong>g P uptake <strong>and</strong>, f<strong>in</strong>ally, stopp<strong>in</strong>gvirtually all photosynthesis <strong>and</strong> growth.Littorella by possess<strong>in</strong>g gas permeable leafsurfaces is less likely to experience anoxia <strong>and</strong>m<strong>and</strong>atory nutrient supply, photosynthesis <strong>and</strong>growth <strong>and</strong> can much better cope <strong>and</strong> evenprofit from <strong>sediment</strong> enrichment. The ma<strong>in</strong>disadvantage for Littorella is that it must <strong>in</strong>vest<strong>in</strong> new leaves upon air exposure or submergenceputt<strong>in</strong>g an extra burden on the species undervery nutrient-poor conditions but permitt<strong>in</strong>g it toadapt <strong>and</strong> grow faster under richer conditions.Thus, a dist<strong>in</strong>ct anatomical trait, i.e., leaf gaspermeability appears to have heavyconsequences for the fundamental <strong>and</strong> realizedniche of the two species <strong>and</strong>, therefore, for theirdistribution <strong>and</strong> survival <strong>in</strong> an <strong>in</strong>creas<strong>in</strong>glyeutrophied environment.AcknowledgementsWe thank Tim D. Colmer for comment<strong>in</strong>g on themanuscript <strong>and</strong> Birgit Kjøller <strong>and</strong> Annette Adamssonfor technical assistance. This project was funded bya gr<strong>and</strong> from the Willum Kann RasmussenFoundation to Center of Lake Restoration (CLEAR).ReferencesArmstrong W, Cous<strong>in</strong>s D, Armstrong J, Turner DW,Beckett PM 2000. <strong>Oxygen</strong> distribution <strong>in</strong> wetl<strong>and</strong> <strong>plant</strong>roots <strong>and</strong> permeability barriers to gas-exchange with therhizonsphere: a microelectrode <strong>and</strong> model<strong>in</strong>g study withPhragmites australis. Annals of Botany 54: 177-198.Arts GHP 2002. Deterioration of Atlantic softwatermacrophyte communities by acidification, eutrophication<strong>and</strong> alkal<strong>in</strong>isation. Aquatic Botany 73: 273-393.Christensen PB, Revsbech NP, S<strong>and</strong>-Jensen K 1994.Microsensor analysis of oxygen <strong>in</strong> the rhizosphere of theaquatic macrophyte Littorella uniflora (L.) Aschers. PlantPhysiology 105: 1174-1179.Colman JA, Sorsa K, Hofmann JP, Smith CS,Andrews JH 1987. Yield-derived <strong>and</strong> photosynthesisderivedcritical concentrations of tissue phosphorus <strong>and</strong>their significance for growth of Eurasian Water Milfoil,Myriophyllum spicatum L. Aquatic Botany 29: 111-122.66


Paper 3Colmer TD 2003. Long-distance transport of gases <strong>in</strong><strong>plant</strong>s: a perspective on <strong>in</strong>ternal aeration <strong>and</strong> radialoxygen loss from roots. Plant, Cell <strong>and</strong> Environment 26:17-36.Colmer TD, Flowers TJ 2008. Flood<strong>in</strong>g tolerance <strong>in</strong>halophytes. New Phytologist 179: 964-974.Demars BOL, Edwards AC 2007. Tissue nutrientconcentrations <strong>in</strong> freshwater aquatic macrophytes: high<strong>in</strong>ter-taxon differences <strong>and</strong> low phenotypic response tonutrient supply. Freshwater Biology 52: 2073-2086.Gerloff GC, Krombholz PH 1966. Tissue analysis as ameasure of nutrient availability for the growth ofangiosperm aquatic <strong>plant</strong>s. Limnology <strong>and</strong> Oceanography11: 529-537.Gibbs J, Greenway H 2003. Mechanisms of anoxiatolerance <strong>in</strong> <strong>plant</strong>s. I. Growth, survival <strong>and</strong> anaerobiccatabolism. Functional Plant Biology 30: 1-47.Greenway H, Gibbs J 2003. Mechanisms of anoxiatolerance <strong>in</strong> <strong>plant</strong>s. II- Energy requirements forma<strong>in</strong>tenance <strong>and</strong> energy distribution to essentialprocesses. Functional Plant Biology 30: 999-1036.Madsen TV 1985. A community of submerged aquaticCAM <strong>plant</strong>s <strong>in</strong> Lake Kalgaard, Denmark. Aquatic Botany23: 97-108.Marschner H. 1986. M<strong>in</strong>eral nutrition of higher <strong>plant</strong>s.Academic Press, London.Nielsen SL, Gacia E, S<strong>and</strong>-Jensen K 1991. L<strong>and</strong> <strong>plant</strong>sof amphibious Littorella uniflora (L.) Aschers. ma<strong>in</strong>ta<strong>in</strong>utilization of CO 2 from <strong>sediment</strong>s. Oecologia 88: 258-263.Møller CL, S<strong>and</strong>-Jensen K 2008. Iron plaques improvethe oxygen supply to root meristems of the freshwater<strong>plant</strong>, Lobelia dortmanna. New Phytologist 179: 848-856.Møller CL, S<strong>and</strong>-Jensen K 2011. High sensitivity ofLobelia dortmanna to <strong>sediment</strong> oxygen depletionfollow<strong>in</strong>g organic enrichment. New Phytologist 190: 320-331.Pedersen O, Andersen T, Ekejima K, Hossa<strong>in</strong> MZ,Andersen FØ 2006. A multidiscipl<strong>in</strong>ary approach tounderst<strong>and</strong><strong>in</strong>g the recent <strong>and</strong> historical occurrence of thefreshwater <strong>plant</strong> Littorella uniflora. Freshwater Biology51: 865-873.Pedersen O, S<strong>and</strong>-Jensen K, Revsbech NP 1995. Dielpulses of O 2 <strong>and</strong> CO 2 <strong>in</strong> s<strong>and</strong>y <strong>sediment</strong>s <strong>in</strong>habited byLobelia dortmanna. Ecology 76: 1536-1545.Pedersen O, S<strong>and</strong>-Jensen K 1992. Adaptations ofsubmerged Lobelia dortmanna to aerial life form:morphology, carbon sources <strong>and</strong> oxygen <strong>dynamics</strong>. Oikos65: 89-96.Raun AL, Borum J, S<strong>and</strong>-Jensen K 2010. Influence of<strong>sediment</strong> organic enrichment <strong>and</strong> water alkal<strong>in</strong>ity ongrowth of aquatic <strong>isoetid</strong> <strong>and</strong> elodeid <strong>plant</strong>s. FreshwaterBiology 55: 1891-1904.S<strong>and</strong>-Jensen K 1987. Environmental control ofbicarbonate use among freshwater <strong>and</strong> mar<strong>in</strong>emacrophytes. In RM Crawford (ed), Ecology <strong>and</strong>Physiology of Intertidal <strong>plant</strong>s, pp. 99-112. Blackwell,Oxford.S<strong>and</strong>-Jensen K, Borum J 1991. Interactions amongphytoplankton, periphyton <strong>and</strong> macrophytes <strong>in</strong> temperatefreshwaters. Aquatic Botany 41: 137-175.S<strong>and</strong>-Jensen K, Borum J, B<strong>in</strong>zer T 2005. <strong>Oxygen</strong> stress<strong>and</strong> reduced growth of Lobelia dortmanna <strong>in</strong> s<strong>and</strong>y lake<strong>sediment</strong>s subject to organic enrichment. FreshwaterBiology 50: 1034-1048.S<strong>and</strong>-Jensen K, Riis T, Vestergaard O, Larsen SE2000. Macrophyte decl<strong>in</strong>e <strong>in</strong> Danish lakes <strong>and</strong> streamsover the past 100 years. Journal of Ecology 88: 1030-1040.S<strong>and</strong>-Jensen K, Prahl C 1982. <strong>Oxygen</strong> exchange withthe lacunae <strong>and</strong> across leaves <strong>and</strong> roots of the submergedvascular macrophyte, Lobelia dortmanna L. NewPhytologist 91: 103-120.S<strong>and</strong>-Jensen K, Prahl C, Stokholm H 1982. <strong>Oxygen</strong>release from roots of submerged aquatic macrophytes.Oikos 38: 349-354.S<strong>and</strong>-Jensen K, Søndergaard M 1978. Growth <strong>and</strong>production of <strong>isoetid</strong>s <strong>in</strong> oligotrophic Lake Kalgaard,Denmark. Internationale Vere<strong>in</strong><strong>in</strong>gung füt theoretischeund angew<strong>and</strong>te Limnologie, Verh<strong>and</strong>lungen 9: 659-666.S<strong>and</strong>-Jensen K, Søndergaard M 1979. Distribution <strong>and</strong>quantitative development of aquatic macrophytes <strong>in</strong>relation to <strong>sediment</strong> characteristics <strong>in</strong> oligotrophic LakeKalgaard, Denmark. Freshwater Biology 9: 1-11.Smolders AJP, Lucassen ECHE, Roelofs JGM 2002.The <strong>isoetid</strong> environment: biogeochemistry <strong>and</strong> threats.Aquatic Botany 73: 325-350.Stelzer D, Schneider S, Melzer A 2005. Macrophytebasedassessment of lakes – a contribution for theimplementation of the European Water Framework67


Paper 3Directive <strong>in</strong> Germany. Internationale Revue ofHydrobiologie 90: 223-237.Søndergaard M, S<strong>and</strong>-Jensen K 1979. Carbon uptakeby leaves <strong>and</strong> roots of Littorella uniflora (L.) Aschers.Aquatic Botany 6: 1-12.Wig<strong>and</strong> C, Andersen FØ, Christensen KK, Holmer M,Jensen HS 1998. Endomycorrhizae of <strong>isoetid</strong>s along abiogeochemical gradient. Limnology <strong>and</strong> Oceanography43: 508-515.W<strong>in</strong>kel A, Borum J 2009. Use of <strong>sediment</strong> CO 2 bysubmersed rooted <strong>plant</strong>s. Annals of Botany 103: 1015-1023.Wium-Andersen S 1971. Photosynthetic uptake of freeCO 2 by the roots of Lobelia dortmanna. PhysiologiaPlantarum 25: 245-248.68


Paper 4Organic enrichment of <strong>sediment</strong>s reduces arbuscular mycorrhizalfungi colonization of the aquatic macrophytes Lobelia dortmanna<strong>and</strong> Littorella unifloraPhotos: Claus L<strong>in</strong>dskov Møller


Paper 4Organic enrichment of <strong>sediment</strong>s reduces arbuscular mycorrhizal fungicolonization of the aquatic macrophytes Lobelia dortmanna <strong>and</strong> Littorellauniflora.Claus L<strong>in</strong>dskov Møller 1 , Rasmus Kjøller 2 <strong>and</strong> Kaj S<strong>and</strong>-Jensen 11 Freshwater Biological Laboratory, Biological Institute, University of Copenhagen, Hels<strong>in</strong>gørsgade 51, DK-3400Hillerød, Denmark.2 Terrestrial Ecology, Biological Institute, University of Copenhagen, Øster Farimagsgade 2B.SummaryKey words: Isoetids, arbuscularmycorrhizal fungi, colonization, hyphaldensity, eutrophication, oxygen,anoxia, organic enrichment.● Arbuscular mycorrhizal fungi (AMF) commonly colonize <strong>isoetid</strong> species<strong>in</strong>habit<strong>in</strong>g the littoral zone <strong>in</strong> oligotrophic lakes but are absent <strong>in</strong> other aquatic<strong>plant</strong>s. We hypothesize that organic enrichment of oligotrophic <strong>sediment</strong>sreduces AMF colonization <strong>and</strong> hyphal growth because O 2 depletion, highernutrient availability <strong>and</strong> low carbon supply from stressed host <strong>plant</strong>s.● We added organic matter to <strong>sediment</strong>s <strong>in</strong>habited by <strong>isoetid</strong>s <strong>and</strong> measured O 2availability with m<strong>in</strong>i O 2 electrodes, pore-water content of <strong>in</strong>organic carbon,Fe 2+ <strong>and</strong> NH 4 + , colonization <strong>in</strong>tensity of roots <strong>and</strong> hyphal density after exposure.We also report hyphal densities relative to root density <strong>and</strong> colonization<strong>in</strong>tensity.● Addition of organic matter reduced AMF colonization of roots of Lobelia <strong>and</strong>Littorella <strong>and</strong> high additions clearly stressed the <strong>plant</strong>s. Even small additionsalmost stopped AMF colonization of <strong>in</strong>itially un-colonized Littorella. Hyphaldensities <strong>in</strong> <strong>sediment</strong>s were low <strong>in</strong> the upper 1 cm but otherwise high <strong>in</strong> the rootzone <strong>and</strong> positively related to root density. Hyphal surface area exceeded rootsurfaces 1.7-3.2 times.● We conclude that AMF efficiently colonize <strong>isoetid</strong>s <strong>in</strong> oligotrophic <strong>sediment</strong>s<strong>and</strong> mediate nutrients supply to <strong>plant</strong>s by their extensive hyphal net-works.However, even small organic additions to <strong>sediment</strong>s with no apparent <strong>plant</strong>stress reduce AMF colonization of roots.IntroductionMore than 80% of all <strong>plant</strong> species arecolonized by arbuscular mycorrhizal fungi(AMF; Smith & Read 2008). Although AMF isvery common on l<strong>and</strong>, high AMF colonizationamong aquatic <strong>plant</strong>s is only found <strong>in</strong> smallrosette species (so-called <strong>isoetid</strong>s) <strong>in</strong>habit<strong>in</strong>goxygenated <strong>sediment</strong>s <strong>in</strong> oligotrophic freshwaterlakes (Søndergaard & Laegaard 1977, Beck-Nielsen & Madsen 2001, Nielsen et al. 2004). Ineutrophic lakes <strong>plant</strong>s are rarely colonized <strong>and</strong><strong>in</strong> streams only emergent species have beenfound to be mycorrhizal (Beck-Nielsen &Madsen 2001).71


Paper 4Surveys on aquatic <strong>plant</strong>s report fall<strong>in</strong>gAMF colonization <strong>in</strong> <strong>plant</strong>s grow<strong>in</strong>g <strong>in</strong><strong>sediment</strong>s of high contents of organic matter <strong>and</strong>nutrients <strong>and</strong> low redox potential (Tanner &Calyton 1985; Wig<strong>and</strong> et al 1998; Beck-Nielsen& Madsen 2001). However, no experiment hasdirectly addressed the response of AMFcolonization of roots to O 2 depletion <strong>and</strong>changes <strong>in</strong> <strong>sediment</strong> biogeochemistry follow<strong>in</strong>gorganic enrichment of aquatic <strong>sediment</strong>s. Herewe tested this aspect by enrich<strong>in</strong>g aquatic<strong>sediment</strong>s with labile organic matter <strong>and</strong>quantify<strong>in</strong>g AMF root colonization, <strong>sediment</strong>hyphal density <strong>and</strong> <strong>plant</strong> nutrition of the <strong>isoetid</strong>species Lobelia dortmanna <strong>and</strong> Littorellauniflora.Isoetids are small slow-grow<strong>in</strong>g <strong>plant</strong>sdom<strong>in</strong>at<strong>in</strong>g the littoral zones of oligotrophicsoft-water lakes due to their unique adaptationsto take up <strong>sediment</strong> CO 2 for photosynthesisacross permeable root surfaces <strong>and</strong> ensure fast<strong>in</strong>tra-<strong>plant</strong> diffusion through aerenchyma to theleaves (S<strong>and</strong>-Jensen et al. 1982; Møller & S<strong>and</strong>-Jensen 2008). These features also result <strong>in</strong> largeproportions of photosynthetic O 2 be<strong>in</strong>g releasedfrom the roots <strong>and</strong> generat<strong>in</strong>g an oxygenatedrhizosphere (S<strong>and</strong>-Jensen et al. 1982; Pedersenet al. 1995; Møller & S<strong>and</strong>-Jensen 2001b) whichis believed to be required by AMF (Le Tacon etal. 1983; Beck-Nielsen & Madsen 2001). Most<strong>isoetid</strong>s are reported with mycorrhiza(Søndergaard & Laegaard 1977; Wig<strong>and</strong> et al.1998; Beck-Nielsen & Madsen 2001) <strong>and</strong> couldbenefit from the symbiosis because they: (i)<strong>in</strong>habit the most nutrient-poor aquaticenvironments of low P availability (Christensen& Andersen 1996; Christensen & Wig<strong>and</strong> 1998;Smolders et al. 2002), (ii) have relatively thickroots <strong>and</strong> lack roots hairs to provide high<strong>sediment</strong> contact (Søndergaard & Laegaard721977; Beck-Nielsen & Madsen 2001; Farmer1985), <strong>and</strong> (iii) have slow root growth<strong>in</strong>creas<strong>in</strong>g the risk of strong nutrient depletionzones around roots (S<strong>and</strong>-Jensen & Søndergaard1978). AMF associations <strong>in</strong>crease both thesurface area <strong>and</strong> the <strong>sediment</strong> volume fornutrient uptake <strong>and</strong> hyphae extend beyond thedepletion zones surround<strong>in</strong>g the roots (Smith &Read 2008). We report here distribution <strong>and</strong>extension of the mycorrhizal mycelia <strong>in</strong> relationto <strong>plant</strong> density of <strong>isoetid</strong>s <strong>in</strong> lakes for the firsttime.Most studies on AMF <strong>in</strong> aquatic <strong>plant</strong>shave focused on AMF colonization underdifferent natural conditions (Beck-Nielsen &Madsen 2001; Søndergaard & Laegaard 1977;Wig<strong>and</strong> et al. 1998), <strong>and</strong> on <strong>plant</strong> morphologiesassociated with high AMF colonization(Søndergaard & Laegaard 1977; Beck-Nielsen& Madsen 2001). AMF benefits aquatic <strong>plant</strong>sby <strong>in</strong>creas<strong>in</strong>g P uptake <strong>and</strong> P content of leaves(Tanner & Clayton 1985; Wig<strong>and</strong> & Stevenson1997) <strong>and</strong> <strong>plant</strong> biomass (Andersen & Andersen2006). Among different populations of Lobeliadortmanna <strong>plant</strong>s with low tissue P content hadhigher AMF colonization (Wig<strong>and</strong> et al. 1998).Occurrence <strong>and</strong> extension of hyphae <strong>in</strong> aquatic<strong>sediment</strong>s are largely unknown <strong>in</strong> contrast tonumerous terrestrial <strong>in</strong>vestigations (Smith &Read 2008). Only Beck-Nielsen <strong>and</strong> Madsen(2001) reported hyphal densities <strong>in</strong> aquatic<strong>sediment</strong>s <strong>in</strong>habited by Littorella uniflora, butthe lack of measurements of <strong>plant</strong> densityprevented conversion to densities of hyphae pervolume or surface area of <strong>sediment</strong>s needed forcomparison with terrestrial communities. Herewe made a special effort to measure densities ofhyphae <strong>and</strong> roots for comparison with terrestrialcommunities.


Paper 4Organic enrichment of lake <strong>sediment</strong>scan result from eutrophication <strong>and</strong> enhancedprimary production <strong>and</strong> <strong>sediment</strong>ation oforganic matter (Smolders et al. 2002). A smallorganic <strong>in</strong>crement can stimulate <strong>isoetid</strong> growthdue to higher <strong>sediment</strong> concentrations of CO 2<strong>and</strong> nutrients (S<strong>and</strong>-Jensen et al. 2005; Raun etal. 2010; Møller & S<strong>and</strong>-Jensen 2011).However, high organic additions lead to anoxia<strong>in</strong> <strong>sediment</strong>s <strong>and</strong> root systems dur<strong>in</strong>g the night<strong>and</strong> subsequently reduced nutrient translocation<strong>and</strong> photosynthesis (S<strong>and</strong>-Jensen et al. 2005;Raun et al. 2010; Møller & S<strong>and</strong>-Jensen 2011).Nutrient stress <strong>in</strong> <strong>isoetid</strong>s is ascribed to<strong>in</strong>efficient transport of <strong>in</strong>organic nutrients fromroots <strong>and</strong> photosynthates from leaves underanaerobic conditions caus<strong>in</strong>g root die-off(Sorrell 2004; Møller & S<strong>and</strong>-Jensen 2011).Similarly AMF colonization has been found todecrease with <strong>in</strong>creas<strong>in</strong>g organic content of<strong>sediment</strong>s, but relations has not been evaluated<strong>in</strong> regard to <strong>plant</strong> stress. Hence, lack of AMFassociations could contribute to lower <strong>plant</strong>nutrition.Two experiments were carried out toaddress the response of <strong>plant</strong>s <strong>and</strong> AMF toorganic <strong>sediment</strong> enrichment. In the firstexperiment Littorella uniflora runners with no<strong>in</strong>itial AMF colonization were grown <strong>in</strong> natural<strong>sediment</strong>s without or with addition of organicmatter to determ<strong>in</strong>e root colonization rates <strong>and</strong><strong>plant</strong> response. In the second experiment natural<strong>sediment</strong> turfs with <strong>in</strong>digenous arbuscularmycorrhiza fungi <strong>in</strong>habited with mono-speciesst<strong>and</strong>s of Lobelia dortmanna or Littorellauniflora were subjected to organic enrichment todeterm<strong>in</strong>e the response of AMF <strong>in</strong> roots <strong>and</strong><strong>sediment</strong>s <strong>and</strong> changes <strong>in</strong> <strong>plant</strong> fitness.73Materials <strong>and</strong> methodsColonization of Littorella unifloraLittorella uniflora without AMF colonizationwas supplied by the aquatic <strong>plant</strong> manufactureAnubias (France). Prior to the experiment, sixLittorella <strong>plant</strong>s were sta<strong>in</strong>ed <strong>and</strong> tested formycorrhizal colonization <strong>and</strong> none were foundto be colonized (see below). For the experimentnatural <strong>sediment</strong> with a high density ofLittorella uniflora (ca. 15,000 <strong>plant</strong>s m -2 ) fromoligotrophic, softwater Lake Värsjö, SWSweden was collected. Plants were removed <strong>and</strong>the <strong>sediment</strong> was thoroughly mixed <strong>and</strong> divided<strong>in</strong>to three portions. One portion was used as acontrol, while the other two portions receivedfeed<strong>in</strong>g pellets made of pasture grass equivalentto 0.2% <strong>and</strong> 0.8% organic matter of <strong>sediment</strong>dry weight (DW), respectively. Pellets conta<strong>in</strong>ed91±1% (n=4) organic matter (47± 0.4% organicC) 2.3 ±0.15% total nitrogen (TN) <strong>and</strong> 0.27 ±0.01% total phosphorus (TP). Sediments werethen left for two weeks under waterlogg<strong>in</strong>g toallow new <strong>sediment</strong> conditions to establishbefore <strong>sediment</strong>s were transferred to 5 Perspexcyl<strong>in</strong>ders (6.5 cm diameter <strong>and</strong> 15 cm deep) foreach treatment <strong>and</strong> one AMF-free Littorellauniflora of uniform mean size of 0.23-0.29 gwet weight <strong>in</strong> the treatments (One-way Anova, p< 0.05) was <strong>plant</strong>ed <strong>in</strong> each cyl<strong>in</strong>der. Cyl<strong>in</strong>derswith <strong>plant</strong>s were placed <strong>in</strong> 15 separate 9 Laquaria for 135 days <strong>in</strong> the laboratory at 15 o C <strong>in</strong>a 12: 12 hour light: dark cycle with aphotosynthetic available radiation (PAR) of 110µmol photons m -2 s -1 . Plants were growncompletely submerged <strong>in</strong> experimental water ofsimilar composition as water from Lake Värsjö(see Møller & S<strong>and</strong>-Jensen 2011a for details)<strong>and</strong> slowly bubbled with atmospheric air to


Paper 4ensure mix<strong>in</strong>g <strong>and</strong> air saturated conditions.Water was changed weekly.Pore-water content <strong>and</strong> O 2 penetrationM<strong>in</strong>ute pore-water samples were extracted after135 days of experiments by small glass tubes<strong>in</strong>serted <strong>in</strong> 4 cm depth <strong>in</strong> the <strong>sediment</strong>s (Møller& S<strong>and</strong>-Jensen 2011) <strong>and</strong> analyzed fordissolved <strong>in</strong>organic carbon (DIC), reduced Fe 2+ ,ortho-phosphate (O-P) <strong>and</strong> NH + 4 . DIC wasdeterm<strong>in</strong>ed by <strong>in</strong>ject<strong>in</strong>g 5-50 µl samples <strong>in</strong>to3% HNO 3 <strong>in</strong> a bubble chamber purged with N 2gas carry<strong>in</strong>g evolved CO 2 <strong>in</strong>to an Infrared gasanalyzer (IRGA, ADC-225-MK3, Hoddesdon,UK; Vermaat & S<strong>and</strong>-Jensen, 1987). Fe 2+ wasmeasured on 100 µl samples diluted <strong>in</strong> 900 µl0.1 M HCL accord<strong>in</strong>g to Eaton et al. (1995). O-P was measured accord<strong>in</strong>g to a modified versionof Strickl<strong>and</strong> & Parsons (1968) as previouslydescribed <strong>in</strong> Møller & S<strong>and</strong>-Jensen (2011).NH +4 was measured on 100 µl pore-waterdiluted <strong>in</strong> 900 µl distilled water added 100 µlphenol <strong>and</strong> 100µl hypochlorite reagentsaccord<strong>in</strong>g to Solórzano (1969). O 2 penetrationdepth was measured by a m<strong>in</strong>i O 2 electrodes(Ox 500, Unisense, Århus, Denmark) moved<strong>and</strong> positioned by a micromanipulator between0 <strong>and</strong> 40 mm depth <strong>in</strong> the <strong>sediment</strong>. O 2penetration was measured with<strong>in</strong> the last twohours of the light period to ensure nearmaximum O 2 penetration.Plant morphology <strong>and</strong> myzorrhizal colonizationPlants were gently removed from the <strong>sediment</strong><strong>and</strong> r<strong>in</strong>sed <strong>in</strong> water after the 135-days longcolonization experiment. Number of leaves wasrecorded <strong>and</strong> <strong>plant</strong>s were split <strong>in</strong>to above-(leaves) <strong>and</strong> below-ground (stem <strong>and</strong> roots)biomass. Freeze-dried leaves were analyzed forTP, TN <strong>and</strong> chlorophyll content. TP wasmeasured accord<strong>in</strong>g to Andersen (1976), TN bya CHN EA1108-elemental analyzer (Carlo ErbaInstruments, Milan, Italy) <strong>and</strong> chlorophyll byextraction <strong>in</strong> ethanol for 24 hours <strong>and</strong>spectrophotometrical analysis (Christoffersen<strong>and</strong> Jespersen (1986). Total root length of each<strong>plant</strong> was determ<strong>in</strong>ed by the grid <strong>in</strong>terceptmethod (Newman (1966). Roots were cleared <strong>in</strong>10% KOH <strong>and</strong> sta<strong>in</strong>ed for AMF with tryphanblue(Kormanik & Mosse 1980) <strong>and</strong> stored <strong>in</strong>lactoglycerol. AMF colonization frequency wasdeterm<strong>in</strong>ed at 20 x magnification as the averageoccurrence of hyphae, arbuscles or vesicles <strong>in</strong> 2x 100 <strong>in</strong>tercepts between grit <strong>and</strong> roots(Giovannetti & McGraw 1982). Supplied AMFfree<strong>plant</strong>s had been grown emerged with roots<strong>in</strong> an agar medium exposed to light result<strong>in</strong>g <strong>in</strong>lateral root systems with chlorophyll. This madeit possible to determ<strong>in</strong>e that all roots had beenreplaced at the end of the experiment s<strong>in</strong>ce onlyvertically oriented roots without chlorophyllrema<strong>in</strong>ed. Similarly, the <strong>in</strong>itial air leaves (th<strong>in</strong><strong>and</strong> long) had been shed <strong>and</strong> renewed by aquaticleaves (shorter <strong>and</strong> thick) at the end of theexperiment.Experiment with <strong>in</strong>digenous AMF associationsSix <strong>in</strong>tact <strong>sediment</strong> turfs (15 cm long, 17 cmwide <strong>and</strong> 13 cm deep) <strong>in</strong>habited by densepopulations of Lobelia dortmanna <strong>and</strong> six withLittorella uniflora with <strong>in</strong>digenous AMFcolonization <strong>and</strong> normal hyphal density werecollected at a s<strong>and</strong>y site <strong>in</strong> Lake Värsjö. Turfswere brought back to the laboratory submerged<strong>in</strong> lake water <strong>and</strong> subjected to organicenrichments of 0, 0.1, 0.2, 0.4, 0.8, 1.6%organic matter per <strong>sediment</strong> DW by <strong>in</strong>sert<strong>in</strong>gfeed<strong>in</strong>g pellets of variable length at 4 cm depth74


Paper 4<strong>in</strong> the <strong>sediment</strong> at a fixed equi-distance of 2 cm,thereby keep<strong>in</strong>g the AMF-<strong>plant</strong> association asundisturbed as possible (Møller & S<strong>and</strong>-Jensen2011 for further <strong>in</strong>formation). Turfs were grown<strong>in</strong> the laboratory facility <strong>in</strong> two 80 liter aquariafor about 200 days <strong>in</strong> the same experimentalwater <strong>and</strong> under the same daily irradiance,temperature <strong>and</strong> aeration regimes as describedfor the colonization experiment.Pore-water concentrations of DIC, Fe 2+<strong>and</strong> NH +4 were measured at the end of theexperiment <strong>in</strong> 1, 2, 4, 6 <strong>and</strong> 8 cm depth <strong>and</strong> arepresented here as depth-<strong>in</strong>tegrated means.Plant morphology <strong>and</strong> leaf content ofTP, TN <strong>and</strong> chlorophyll were determ<strong>in</strong>ed onr<strong>and</strong>omly drawn <strong>plant</strong>s (three Lobelia <strong>and</strong> sixLittorella). Leaf content was analyzed asdescribed for the colonization experiment whileroot <strong>and</strong> leaf length were measured by a ruler. Itwas possible to divide Lobelia roots <strong>in</strong>to old <strong>and</strong>newly set roots at harvest s<strong>in</strong>ce new rootsemerge further up the stem <strong>and</strong> did not have thesame thick iron-plaques as old roots at highorganic enrichments. However, the exact rootage is unknown <strong>and</strong> may vary amongtreatments. When calculat<strong>in</strong>g colonized rootlength of Lobelia new <strong>and</strong> old roots wereassumed to have the same length. Thisdist<strong>in</strong>ction between old <strong>and</strong> newly set roots wasnot possible for Littorella. Root surface areawas calculated from the measured root lengths<strong>and</strong> literature values for root diameters ofLobelia (mean=0.728 mm) <strong>and</strong> Littorella (1.248mm; Raun et al. 2010). Root density wascalculated from root lengths of <strong>in</strong>vestigated<strong>plant</strong>s multiplied by measured <strong>plant</strong> density atthe end of the experiment. Sediment content oforganic matter was determ<strong>in</strong>ed on dried mixed<strong>sediment</strong> samples (24 hours at 105 o C) as losson ignition at 550o C. TP <strong>and</strong> TN were75determ<strong>in</strong>ed as described for leaves on mixed<strong>sediment</strong> samples from 1 to 10 cm depth.Hyphal density <strong>in</strong> <strong>sediment</strong>s wasdeterm<strong>in</strong>ed <strong>in</strong> duplicate for each <strong>sediment</strong> turfon <strong>sediment</strong> cores (1 cm diameter 10 cm depth)sliced for every 1 cm from 0 to 10 cm depthaccord<strong>in</strong>g to Kjøller <strong>and</strong> Rosendahl (2000). Inbrief, <strong>sediment</strong> samples were suspended <strong>in</strong> 50ml distilled water whereafter hyphae werecollected on a 38 µm sieve. Hyphae were thentransferred to a test-tube <strong>and</strong> suspended <strong>in</strong> 30 mlwater shaken vigorously <strong>and</strong> two 5 mlsubsamples were transferred to a filter, sta<strong>in</strong>edwith tryphan-blue <strong>and</strong> conserved <strong>in</strong>lactoglycerol. Hyphal density was determ<strong>in</strong>edby count<strong>in</strong>g <strong>in</strong>tercepts between grid <strong>and</strong> hyphaon 20 views for each subsample at 200 xmagnification accord<strong>in</strong>g to Giovannetti &McGraw (1982). Hyphal diameter wasmeasured on 6 hyphae from 4 r<strong>and</strong>om views ofeach treatment.In natural homogeneous <strong>plant</strong>populations <strong>in</strong> shallow s<strong>and</strong>y areas <strong>in</strong> LakeVärsjö, AMF colonization, <strong>plant</strong> biomass <strong>and</strong>nutrient content of both Lobelia <strong>and</strong> Littorellawere determ<strong>in</strong>ed <strong>in</strong> triplicate 15 x 15 cm plots.Plants were gently r<strong>in</strong>sed from <strong>sediment</strong> <strong>and</strong>brought to the laboratory <strong>in</strong> sealed plastic bags.In the laboratory 4 r<strong>and</strong>om Lobelia <strong>and</strong> 5Littorella <strong>plant</strong>s were removed for determ<strong>in</strong><strong>in</strong>groot length <strong>and</strong> AMF colonization. Therema<strong>in</strong><strong>in</strong>g <strong>plant</strong>s were separated <strong>in</strong>to above- <strong>and</strong>below-ground biomass of each species. Dryweight, TP, TN <strong>and</strong> chlorophyll content ofleaves <strong>and</strong> root length <strong>and</strong> AMF colonizationfrequency were determ<strong>in</strong>ed as previouslydescribed for the colonization experiment.Data treatment <strong>and</strong> statistical analysis


Paper 4ResultsFig 1. O 2 -penetration depth <strong>in</strong> <strong>in</strong>tact <strong>sediment</strong> turfs<strong>in</strong>habited by Lobelia dortmanna (○) or Littorella uniflora(●) after about 200 days <strong>and</strong> <strong>in</strong> <strong>sediment</strong>s from thecolonization experiments with Littorella uniflora (■) after135 days enrichment with labile organic matter. O 2 -penetration deeper that 40 mm could not be measured.Values are mean ± SD (n=3 for turf experiments, n=5 forcolonization experiments).Statistical analysis was performed <strong>in</strong> GraphPadprism 5 (software <strong>in</strong>fo). The colonizationexperiment was a gradient study with threelevels of 5 replicates appropriate for ANOVAanalysis. When data failed to meet testrequirements for variance-homogeneity, datawere square-root transformed prior to analysis.The experiment with <strong>in</strong>tact <strong>sediment</strong> turfs was agradient study with six levels withoutreplication for Lobelia <strong>and</strong> Littorella turfs <strong>and</strong>differences were tested by l<strong>in</strong>ear regression orSpearmann´s correlation analysis. Differencesbetween Lobelia <strong>and</strong> Littorella from mixed <strong>in</strong>situpopulations were <strong>in</strong>vestigated by t-test.Probabilities above 0.95 were consideredsignificant. Data are presented as mean ± 1st<strong>and</strong>ard deviation (SD) of true replicates for thecolonization experiment <strong>and</strong> mixed <strong>in</strong>-situpopulations while SD of pseudo-replicates ispresented for the turf experiment when possible.Sediment biogeochemistryAddition of organic matter caused O 2 depletion<strong>and</strong> accumulation of DIC, Fe 2+ , NH 4 + <strong>and</strong> NH 4+<strong>in</strong> <strong>sediment</strong>s throughout both experiments (Fig1, Fig 2ab & Table 1). O 2 penetrated to morethan 40 mm <strong>in</strong> control <strong>sediment</strong>s but organicadditions significantly reduced O 2 penetrationdepths (Spearman´s r, p


Paper 4Fig 2. Pore-water content of dissolved <strong>in</strong>organic carbon(DIC, ○) reduced iron (Fe 2+ , ●), AMF root colonizationfrequency <strong>in</strong> old roots (□) <strong>and</strong> new roots (■; <strong>in</strong> c data isfrom the colonization experiment) <strong>and</strong> chlorophyll (Δ)<strong>and</strong> TP (▲) content of leaves as a function of addedorganic matter to <strong>in</strong>tact <strong>sediment</strong> turfs with <strong>in</strong>digenousAMF <strong>in</strong>habited by Littorella uniflora (a,c,e) or Lobeliadortmanna (b,d,f) after about 200 days.Plant growth, morphology <strong>and</strong> leaf contentLeaves <strong>and</strong> roots were completely replacedwith<strong>in</strong> the 135-days long colonizationexperiment with Littorella. Average root lengthdecreased significantly with <strong>in</strong>creas<strong>in</strong>g additionof organic matter (One-way ANOVA, p


Paper 4Table 2. Individual leaf biomass, mean root length, total root length per <strong>plant</strong> <strong>and</strong> two measures of AMF colonization (% ofroot length colonized <strong>and</strong> root length colonized per leaf biomass) <strong>in</strong> field <strong>and</strong> laboratory experiments with Littorella <strong>and</strong>Lobelia. Relations between root length colonized <strong>and</strong> leaf biomass are also shown. Experimental treatment was addition oflabile organic matter <strong>in</strong> different percentages of <strong>sediment</strong> dry weight. Measurements were taken after 135 days <strong>in</strong> AMFcolonization experiments <strong>and</strong> after about 200 days <strong>in</strong> turf experiments.Treatment(addition oforganicmatter)Mean rootlength (cmroot -1 )Total rootlength (m<strong>plant</strong> -1 )Colonization(% of rootlength)Root lengthcolonized(m <strong>plant</strong> -1 )Root lengthcolonized:Leaf biomass (mg -1 DW)Leaf biomass(mg DW <strong>plant</strong> -1 )Colonization experiment with Littorella unifloraControl 9.7±2.4 a 1.18±0.13 a 30 ± 17 a 0.37 ± 0.24 a 14.9±8.3 23.8±3.90.2% 5.3±2.0 b 1.24±0.35 a 5.1 ± 6.5 b 0.048±0.042 b 1.2±1.3 31.3±4.40.8% 2.2±0.4 c 0.22±0.03 b 3.2 ± 6 b 0.007±1.46 b 0.5±1.0 15.3±8.5Littorella turfsControl 4.1 ±1.1 0.40 ±0.17 91 ±5.7 0.36 41.5 8.7 ±2.10.1% 3.4 ±0.6 0.32 ±0.12 93 ±1.4 0.29 23.8 12.2 ±1.30.2% 3.1 ±0.7 0.28 ±0.07 86 ±3.5 0.24 20.8 11.5 ±2.60.4% 4.2 ±0.6 0.42 ±0.13 63 ±18 0.26 17.6 14.8 ±5.70.8% 3.3 ±0.5 0.29 ±0.07 36 ±3.5 0.10 6.8 14.8 ±4.41.6% 2.9 ±0.3 0.16 ±0.04 54 ±6.0 0.09 7.2 12.5 ±3.9r 2 (p) 0.33 (0.23) 0.62 (0.06) 0.55 (0.09) 0.79 (0.02) 0.62 (0.06) 0.16 (0.42)Lobelia turfsControl 4.0 ± 0.5 0.65 ±0.29 * 53 ±0.1 0.34 * 14.4 24 ±60.1% 5.2 ±0.6 1.32 ±0.28 51 ±0.9 0.68 15.7 43 ±70.2% 4.2 ±0.5 1.03 ±0.10 59 ±6.8 0.61 12.7 48 ±70.4% 2.8 ±0.4 0.61 ±0.22 39 ±13 0.23 3.4 68 ±220.8% 4.1 ±0.8 0.70 ±0.21 43 ±14 0.33 4.7 70 ±141.6% 1.7 ±0.2 0.30 ±0.09 16 ±22 0.05 1.6 31 ±10r 2 (p) 0.61 (0.07) 0.75 (0.06) 0.85 (0.09) 0.74 (0.06) 0.68 (0.04) 0.00 (1.0)Mixed populations from VärsjöLittorella Nd 0.25±0.01 a 77.5±4.4 a 0.20±0.01 a 231±66 a 0.89±0.26 aLobelia Nd 0.81±0.25 b 49.7±3.1 b 0.41±0.12 b 48.9±13.7 b 8.6±2.5 bValues are means ± SD of true replicates <strong>in</strong> colonization experiments <strong>and</strong> mixed populations <strong>and</strong> of pseudo-replicates <strong>in</strong>Lobelia <strong>and</strong> Littorella turfs, n=3-5. Superscripted letters show significant differences <strong>in</strong> colonization experiments <strong>and</strong> mixed<strong>in</strong>-situ populations respectively (One-way ANOVA, p


Paper 4Table 3. Leaf content of total phosphorus (TP), total nitrogen (TN) <strong>and</strong> chlorophyll from monocultures of Lobelia dortmanna<strong>and</strong> Littorella uniflora grown <strong>in</strong> the laboratory after about 200 days <strong>in</strong> experiments with addition of different amounts oflabile organic matter.LobeliaLittorellaTreatment TPTN Chlorophyll TPTN(mg P g -1 (mg N g -1 (mg g -1 (mg P g -1 (mg N g -1 Chlorophyll(mg g -1 DW)DW) DW) DW)DW) DW)0.0% 1.47 ± 0.19 22.0 ± 3.92 1.79 ± 0.29 1.30 ± 0.33 24.9 ± 2.8 5.17 ±0.890.1% 0.88 ± 0.24 14.3 ± 3.01 2.74 ± 0.39 1.21± 0.15 20.3 ± 0.8 4.32 ±0.540.2% 0.89 ± 0.25 18.8 ± 3.66 3.15 ± 0.97 0.93 ± 0.15 22.5 ± 1.2 5.30 ±1.210.4% 0.69 ± 0.18 18.1 ± 3.62 2.46 ± 0.57 1.23 ± 0.33 23.0 ± 4.9 5.97 ±1.320.8% 0.53 ± 0.17 12.6 ± 2.52 1.90 ± 0.31 0.62 ± 0.12 15.3 ± 2.7 4.79 ±0.811.6% 0.61 ± 0.13 13.0 ± 3.33 0.75 ± 0.13 0.81 ± 0.20 23.0 ± 6.7 4.67 ±1.94L<strong>in</strong> reg. p p=0.09 p=0.11 p


Paper 4Fig. 4. Root density (○) <strong>and</strong> hyphal density (●) <strong>in</strong><strong>sediment</strong>s of Littorella uniflora (upper panel) <strong>and</strong> Lobeliadortmanna (lower panel) <strong>in</strong> experiments with addition oflabile organic matter to <strong>sediment</strong> with <strong>in</strong>digenous AMFcolonization <strong>and</strong> <strong>sediment</strong> density. Values for hyphaldensity are mean ± SD whereas root density is derivedfrom average root length of harvested <strong>plant</strong>s, <strong>plant</strong> density<strong>and</strong> <strong>sediment</strong> depth.root surface area 1.7 times for Littorella <strong>and</strong> 3.2times for Lobelia <strong>in</strong> control <strong>and</strong> 0.1 <strong>and</strong> 0.2%organic enrichments.DiscussionOrganic enrichment <strong>and</strong> AMF colonizationAMF colonization decl<strong>in</strong>ed by addition of labileorganic matter <strong>and</strong> even small additions with noapparent <strong>plant</strong> stress resulted <strong>in</strong> very lowcolonization of <strong>in</strong>itially un-colonized Littorellauniflora. This f<strong>in</strong>d<strong>in</strong>g is consistent with surveysfrom wetl<strong>and</strong>s <strong>and</strong> lakes of colonizationdecreas<strong>in</strong>g with higher organic content <strong>and</strong>80lower redox potentials of <strong>sediment</strong>s (Beck-Nielsen & Madsen 2001; Wig<strong>and</strong> et al. 1998).Reduced colonization upon organic enrichmentwas also observed <strong>in</strong> Lobelia dortmanna <strong>and</strong>Littorella already colonized by AMF althoughthe effect was less pronounced. The slowreplacement of roots of <strong>isoetid</strong>s (S<strong>and</strong>-Jensen &Søndergaard 1978) <strong>and</strong> the fact that establishedroots rema<strong>in</strong> colonized under suboptimalconditions (Filer & Boardfood 1968) are themost plausible explanations for the smallresponse <strong>in</strong> already colonized <strong>plant</strong>s. This<strong>in</strong>terpretation is also supported by the muchlower colonization of new roots of Lobeliaformed under high organic treatment whereascolonization rema<strong>in</strong>ed high on new roots underlow organic treatment.Reduced root colonization could be dueto lack of AMF species acclimatized to thenewly established <strong>sediment</strong> conditions, butsimilar patterns have been reported for naturalpopulations (Wig<strong>and</strong> et al. 1998). The diversityof AMF <strong>in</strong> <strong>isoetid</strong> lakes is high <strong>and</strong> comparableto terrestrial habitats <strong>and</strong> AMF can survive longunder unfavorable periods as spores (Miller2000; Nielsen et al. 2004). It therefore seemsmore likely that AMF are unable to thrive underreduced conditions <strong>in</strong> organically enriched<strong>sediment</strong>s.Investigations have shown that AMFcolonization decreases with addition of P toterrestrial soils (Abbott et al. 1984) <strong>and</strong> aquatic<strong>sediment</strong>s (Tanner & Clayton 1985). P wasadded here conta<strong>in</strong>ed <strong>in</strong> the organic matter, butO-P <strong>in</strong> the pore-water rema<strong>in</strong>ed low due tostrong b<strong>in</strong>d<strong>in</strong>g <strong>and</strong> P content rema<strong>in</strong>ed low <strong>in</strong>leaves, imply<strong>in</strong>g that <strong>plant</strong>s could still benefitfrom <strong>in</strong>creased P uptake through AMF.Hyphal density of <strong>sediment</strong>s


Paper 4Hyphal densities of <strong>isoetid</strong> <strong>sediment</strong>s arecomparable to terrestrial soils hav<strong>in</strong>g typicallengths of hyphae between 2 <strong>and</strong> 40 m per cm -3(Smith <strong>and</strong> Read 2008). Densities were low <strong>in</strong>the upper 1 cm of the <strong>isoetid</strong> <strong>sediment</strong> probablydue to disturbance by wave exposure <strong>and</strong>bioturbation <strong>and</strong> pH-changes due tophotosynthesis of microalgae (Jasper et al. 1991;Van Aarle et al. 2002). In the root zone, hyphaldensity was high <strong>and</strong> correlated positively withroot density. With lengths of hyphae relative toroots of 700 <strong>and</strong> conservative estimates ofhyphal surface area exceed<strong>in</strong>g that of rootsurface areas by 1.7- 3.2 times <strong>in</strong> low-organic<strong>sediment</strong>s the AMF-<strong>isoetid</strong> symbiosis results <strong>in</strong>a large <strong>in</strong>crease of <strong>sediment</strong> contact for nutrientretrieval. Lengths of hyphae relative to <strong>in</strong>fectedroots were also comparable to terrestrial potexperiments with Trifolium subterraneum<strong>in</strong>oculated with Glomus fasciculatum (450-900,Abbott et al. 1984) suggest<strong>in</strong>g quantitativesimilarity to well-oxygenated nutrient-poor<strong>isoetid</strong> <strong>sediment</strong>s.In contrast to AMF root colonizationpercentages, no decrease was observed <strong>in</strong>hyphal density <strong>in</strong> <strong>sediment</strong>s follow<strong>in</strong>g organicenrichment. In fact, addition of organic mattertended to <strong>in</strong>crease hyphal density (Fig 4). Thisresult could, however, be due to sta<strong>in</strong><strong>in</strong>g of bothliv<strong>in</strong>g <strong>and</strong> dead hyphae because degradation ofdead hyphae can be slow <strong>in</strong> anaerobic<strong>sediment</strong>s.Beck-Nielsen & Madsen (2001) havereported hyphal densities from aquatic<strong>sediment</strong>s <strong>in</strong>habited by Littorella at 3-20 timeslower density than <strong>in</strong> the present <strong>in</strong>vestigation.They found hyphal densities to decrease withlower redox potential of <strong>sediment</strong>s. However,different redox potentials were found bysampl<strong>in</strong>g <strong>in</strong> <strong>sediment</strong>s differ<strong>in</strong>g <strong>in</strong> <strong>plant</strong> density<strong>and</strong>, therefore, relations could alternatively arisefrom differences <strong>in</strong> root densities which werehighly correlated to hyphal density <strong>in</strong> thepresent <strong>in</strong>vestigation. S<strong>and</strong>ers et al. (1998)reported of <strong>in</strong>creased hyphal growth <strong>in</strong>terrestrial soils under elevated CO 2 levels <strong>and</strong>similarly Andersen & Andersen (2006) found<strong>in</strong>creased AMF colonization of Littorella grownsubmerged at 10 times CO 2 air saturation <strong>in</strong> thewater. Addition of organic matter <strong>and</strong> thefollow<strong>in</strong>g <strong>in</strong>crease <strong>in</strong> CO 2 could be responsiblefor the observed tendencies of higher hyphaldensities upon organic enrichments but coupled<strong>in</strong>vestigations of hyphae growth <strong>and</strong> AMFcolonization are needed to address this questionfurther.Sediment biogeochemistryAMF colonization decreased when organicadditions deprived <strong>sediment</strong>s of O 2 <strong>and</strong> Fe 2+accumulated <strong>in</strong> the pore-water. Redox potentialswere not measured, but <strong>in</strong> <strong>sediment</strong>s at normalpH levels (≈7) thermo<strong>dynamics</strong> favor theoccurrence of Fe 2+ as the primary form below 0mV, while the presence of O 2 leads to rapid Fe 2+oxidation to Fe 3+ (half-life of m<strong>in</strong>utes; Canfieldet al. 2005). With anoxic <strong>sediment</strong>s <strong>and</strong>certa<strong>in</strong>ly low redox potentials follow<strong>in</strong>g organicenrichment the results are consistent with thoseof Beck-Nielsen & Madsen (2001) show<strong>in</strong>greduced AMF colonization <strong>in</strong> roots at redoxpotentials below 250 mV. Recent experimentsby Møller & S<strong>and</strong>-Jensen (2011) showed thatanoxia occurred <strong>in</strong> oligotrophic <strong>isoetid</strong><strong>sediment</strong>s dur<strong>in</strong>g nighttime, <strong>and</strong> anoxia evendeveloped <strong>in</strong> root <strong>and</strong> leaf aerenchyma ofLobelia late at night. This result implies thatAMF can cope with anoxia for at least some81


Paper 4hours every night although low O 2 tension hasbeen shown to prevent AMF development (LeTacon et al. 1983).Plant growth, stress <strong>and</strong> nutritionPlants were clearly stressed by high organicaddition <strong>and</strong> this was always coupled with lowerAMF colonization. In experiments with <strong>in</strong>tact<strong>sediment</strong> turfs, P levels <strong>in</strong> leaves tended todecrease at the same organic addition (0.4%)caus<strong>in</strong>g AMF colonization to drop (Fig. 2; Table3). In contrast, Littorella was able to grow <strong>and</strong>ma<strong>in</strong>ta<strong>in</strong> unaltered nutrient <strong>and</strong> chlorophylllevels <strong>and</strong> biomasses with very low AMFcolonization at low organic enrichments (0.2%<strong>in</strong> the colonization experiment) as <strong>plant</strong>s withhigh AMF colonization <strong>in</strong> control <strong>sediment</strong>s(Table 1). There is, therefore, no clear evidenceof AMF be<strong>in</strong>g responsible for the observedstress. It has been shown for the <strong>isoetid</strong> Isoetesalp<strong>in</strong>us that root anoxia stops translocation ofphotosynthates from leaves to roots (Sorrell2004) which can lead to root malfunction <strong>and</strong>decreased <strong>plant</strong> nutrition (Møller & S<strong>and</strong>-Jensen2011) <strong>and</strong> this is the most plausible reason forthe observed stress. Furthermore, under these<strong>sediment</strong> conditions shad<strong>in</strong>g of the <strong>isoetid</strong>s byfaster grow<strong>in</strong>g <strong>plant</strong>s or filamentous algae islikely to occur (S<strong>and</strong>-Jensen 2000; Arts 2002).It is, therefore, more reasonable to regard AMFas an advantage under very nutrient-poorconditions whereas transport of photosynthatesto AMF under more nutrient-rich <strong>sediment</strong>conditions can be spared because <strong>plant</strong>s cansusta<strong>in</strong> sufficient nutrient uptake without thepresence of AMF (Smith & Read 2008).This <strong>in</strong>vestigation showed that <strong>isoetid</strong>swith high AMF colonization have extensivehyphal networks <strong>in</strong>creas<strong>in</strong>g <strong>sediment</strong> contact<strong>and</strong> surface area for nutrient uptake <strong>in</strong> nutrientpoor<strong>sediment</strong>s. AMF colonization <strong>in</strong> <strong>plant</strong>sfrom mixed populations <strong>in</strong> Värsjö was similar tothat <strong>in</strong> long-term laboratory experiments withmono-specific populations <strong>in</strong> Littorella <strong>and</strong>Lobelia turfs collected <strong>in</strong> the field. Littorellahad higher root colonization <strong>and</strong> a higher AMFcolonization per leaf weight than Lobelia <strong>and</strong> isknown to have two times higher growth rateunder field conditions (S<strong>and</strong>-Jensen &Søndergaard 1978; Bosten & Adams 1989).Thus, Littorella needs a higher nutrient uptakeper biomass than Lobelia. Higher colonizationof Littorella roots be<strong>in</strong>g replaced more rapidlythan Lobelia roots requires higher colonizationrates. This higher colonization rate of AMFcould be supported by higher downward O 2supply to Littorella roots <strong>and</strong> <strong>sediment</strong>s dur<strong>in</strong>gthe night whereas Lobelia even at moderatetemperatures (≈16 o C) under natural conditionsexperiences anoxia <strong>in</strong> the roots (Møller & S<strong>and</strong>-Jensen 2011a). Furthermore, higherphotosynthesis of Littorella than Lobelia couldpromote higher organic carbon supplies to thesymbionts.AcknowledgementsWe thank Anubias (France) <strong>and</strong> Jan OlePedersen for provid<strong>in</strong>g non-mycorrhizalLittorella uniflora <strong>and</strong> Helene Rasmussen forprocess<strong>in</strong>g <strong>and</strong> count<strong>in</strong>g hyphal lengths <strong>in</strong><strong>sediment</strong> samples. We thank The Willum KannFoundation for f<strong>in</strong>ancial support to this studythrough The Centre of Excellence for Researchon Lake Restoration (CLEAR).References82


Paper 4van Aarle IM, Olsson PA, Söderström B. Arbuscularmycorrhizal fungi respond to the substrate pH of theirextraradical mycelium by altered growth <strong>and</strong> rootcolonization. New Phytologist 155: 173-182.Abott LK, Robson AD & De Boer G. 1984. The effectof phosphorus on the formation of hyphae <strong>in</strong> soil by thevesicular-arbuscular mycorrhizal fungus, Glomusfasciculatumb. New Phytologist 97: 437-446.Amijee F, T<strong>in</strong>ker PB, Stribley DP. 1989. Thedevelopment of endomycorrhizal root systems. VII. Adetailed study of the effects of soil phosphorus oncolonization. New Phytologist 111:435-446.Andersen FØ, Andersen 2006. Effects of arbuscularmycorrhizae on biomass <strong>and</strong> nutrients <strong>in</strong> the aquatic <strong>plant</strong>Littorella uniflora. Freshwater Biology 51: 1623–1633.Andersen JM. 1976. Ignition method for determ<strong>in</strong>ationof total phosphorus <strong>in</strong> lake <strong>sediment</strong>s. Water Research 10:329–331.Armstrong W. 1979. Aeration <strong>in</strong> higher <strong>plant</strong>s. Advances<strong>in</strong> Botanical Research 7: 225–332.Arts GHP. 2002. Deterioration of Atlantic soft watermacrophyte communities by acidification, eutrophication<strong>and</strong> alkal<strong>in</strong>isation. Aquatic Botany 73: 373-393.Beck-Nielsen D, Madsen TV. 2001. Occurrence ofViscicular-arbuscular mycorrhiza <strong>in</strong> <strong>plant</strong>s from lakes <strong>and</strong>streams. Aquatic Botany 71: 141-148B<strong>in</strong>gham MA, Bond<strong>in</strong>i M. 2009. Mycorrhizal hyphallength as a function of <strong>plant</strong> community richness <strong>and</strong>composition <strong>in</strong> restored northern tallgrass prairies (USA).Rangel<strong>and</strong> Ecology & Management 62: 60-67.Boston HL, Adams MS. 1987. Productivity, growth <strong>and</strong>photosynthesis of two small ‘<strong>isoetid</strong>’ <strong>plant</strong>s, Littorellauniflora <strong>and</strong> Isoetes macrospora. Journal of Ecology75:333-350Canfield D, Thamdrup B, Christensen E. 2005. AquaticGeomicrobiology. Advances <strong>in</strong> Mar<strong>in</strong>e Biology 48. SanDiego, CA, USA: Elsevier Academic Press.Christensen KK, Andersen FØ. 1996. Influence ofLittorella uniflora on phosphorus retention <strong>in</strong> <strong>sediment</strong>supplied with artificial porewater. Aquatic Botany 55:183-197Christoffersen K, Jespersen AM. 1986. Gut evacuationrates <strong>and</strong> <strong>in</strong>gestion rates of Eudiaptomus-graciloidesmeasured by means of the gut fluorescence method.Journal of Plankton Research 8: 973–983.Colmer TD. 2003. Long-distance transport of gases <strong>in</strong><strong>plant</strong>s: a perspective on <strong>in</strong>ternal aeration <strong>and</strong> radialoxygen loss from roots. Plant, Cell & Environment 26:17–36.Cornwell WK, Bedford BL, Chap<strong>in</strong> CT. 2001.Occurrence of arbuscular mycorrhizal fungi <strong>in</strong> aphosphorus-poor wetl<strong>and</strong> <strong>and</strong> mycorrhizal response tophosphorus fertilization. American Journal of Botany 88:1824-1829.Eaton A, Clesceri L, Greenberg A. 1995. St<strong>and</strong>ardmethods for the exam<strong>in</strong>ation of water <strong>and</strong> wastewater.Wash<strong>in</strong>gton, DC, USA: American Public HealthAssociation.Farmer AM. 1985. The occurrence of vesiculararbuscularmycorrhiza <strong>in</strong> <strong>isoetid</strong>-type submerged aquaticmacrophytes under naturally vary<strong>in</strong>g conditions. AquaticBotany 21: 245-249.Filer TH Jr, Boardfoot WM 1968. Sweetgummycorrhizae <strong>and</strong> soil microflora survive <strong>in</strong> shallow-waterimpoundment. Phytopathology 58: 1050.Giovannetti M, Mosse B. 1980. An evaluation oftechniques for measur<strong>in</strong>g vesicular arbuscular <strong>in</strong>fection <strong>in</strong>roots. New Phytologist 84: 489-500.Kjøller R, Rosenhahl S. 2000. Effects of fungicides onarbuscular mycorrhizal fungi: differential responses <strong>in</strong>alkal<strong>in</strong>e phosphatase activity of external <strong>and</strong> <strong>in</strong>ternalhyphae. Biology <strong>and</strong> Fertility of Soils 31:361-365.Kormanik PP, McGraw AC. 1982. Quantification ofvesicular-arbuscular mycorrhiza <strong>in</strong> <strong>plant</strong> roots. In:Schenck NC (ed) Methods <strong>and</strong> Pr<strong>in</strong>ciples of MycorrhizalResearch. APS Press, St Paul, M<strong>in</strong>n. p 37-45.Jasper DA, Abbott LK, Robson AD. The effect of soildisturbance on vesicular-arbuscular mycorrhizal fungi <strong>in</strong>soils from different vegetation types. New Phytologist118: 471-476.Le Tacon F, Sk<strong>in</strong>ner FA, Mosse B. 1983. Sporegerm<strong>in</strong>ation <strong>and</strong> hyphal growth of a vesicular–arbuscularmycorrhizal fungus, Glomus mosseae (Gerdemann <strong>and</strong>Trappe), under decreased oxygen <strong>and</strong> <strong>in</strong>creased carbondioxide concentrations. Canadian journal ofMicrobiology 29:1280-1285.Miller RM, Re<strong>in</strong>hardt DR, Jastrow JD. 1995. Externalhyphal production of vesicular-arbuscular mycorrhizalfungi <strong>in</strong> pasture <strong>and</strong> tallgrass prairie communities.Oecologia 103: 17-23.Miller SP. 2000. Arbuscular mycorrhizal colonization ofsemi-aquatic grasses along a wide hydrological gradient.New Phytologist 145: 145-155.83


Paper 4Møller CL, S<strong>and</strong>-Jensen K. 2008. Iron plaques improvethe oxygen supply to root meristems of the freshwater<strong>plant</strong>, Lobelia dortmanna. New Phytologist 179: 848–856.Møller CL, S<strong>and</strong>-Jensen K. 2011. High sensitivity ofLobelia dortmanna to <strong>sediment</strong> oxygen depletionfollow<strong>in</strong>g organic enrichment. New Phytologist 190: 320-331.Newman EI. 1966. A method for estimat<strong>in</strong>g the total rootlength of root <strong>in</strong> a sample. Journal of Applied Ecology 23:21-27.Nielsen KB, Kjøller R, Olsson PA, Schweiger PF,Andersen FØ, Rosendahl S. 2004. Colonization <strong>and</strong>molecular diversity of arbuscular mycorrhizal fungi <strong>in</strong> theaquatic <strong>plant</strong>s Littorella uniflora <strong>and</strong> Lobelia dortmanna<strong>in</strong> southern Sweden. Mycological research 108: 616-625.Pedersen O, S<strong>and</strong>-Jensen K, Revsbech NP. 1995. Dielpulses of O 2 <strong>and</strong> CO 2 <strong>in</strong> s<strong>and</strong>y lake-<strong>sediment</strong>s <strong>in</strong>habitedby Lobelia dortmanna. Ecology 76: 1536–1545.Raun AL, Borum J, S<strong>and</strong>-Jensen K. 2010. Influence of<strong>sediment</strong> organic enrichment <strong>and</strong> water alkal<strong>in</strong>ity ongrowth of aquatic <strong>isoetid</strong> <strong>and</strong> elodeid <strong>plant</strong>s. FreshwaterBiology 55: 1891-1904.S<strong>and</strong>ers FE, T<strong>in</strong>ker PB, Black RLB, Palmerley SM.1977. The development of endomycorrhizal root systems.I. Spread of <strong>in</strong>fection <strong>and</strong> growth-promot<strong>in</strong>g effects withfour species of vesicular-arbuscular endophyte. NewPhytologist 78:257-268.S<strong>and</strong>ers IR, Streitwolf-Engel R, Van der HeijdenMGA, Boller T, Wiemken A. 1998. Increased allocationto external hyphae of arbuscular mycorrhizal fungi underCO2 enrichment. Oecologia. 117: 496-503.S<strong>and</strong>-Jensen K, Borum J, B<strong>in</strong>zer T. 2005a. <strong>Oxygen</strong>stress <strong>and</strong> reduced growth of Lobelia dortmanna <strong>in</strong> s<strong>and</strong>ylake <strong>sediment</strong>s subject to organic enrichment. FreshwaterBiology 50: 1034–1048.S<strong>and</strong>-Jensen K, Prahl C, Stokholm H. 1982. <strong>Oxygen</strong>release from roots of submerged macrophytes. Oikos 38,349–354.S<strong>and</strong>-Jensen K, Riis T, Vestergaard O, Larsen S. 2000.Macrophyte decl<strong>in</strong>e <strong>in</strong> Danish lakes <strong>and</strong> streams over thepast 100 years. Journal of Ecology 88:1030-1040.S<strong>and</strong>-Jensen K, Søndergaard M. 1978. Growth <strong>and</strong>production of <strong>isoetid</strong>s <strong>in</strong> oligotrophic Lake Kalgaard,Denmark. Verh<strong>and</strong>lungen Internationale Vere<strong>in</strong>igung furTheoretische und Angew<strong>and</strong>te Limnologie 20: 659-666.Smith SE, Read DJ. 2008. Mycorrhizal symbiosis.Elsevier Academic Press, San Diego, CA, USA.Smolders AJP, Lucassen ECTET, Roelofs JGM. 2002.The <strong>isoetid</strong> environment biogeochemistry <strong>and</strong> threats.Aquatic Botany 73: 325-350.Solo´rzano L. 1969. Determ<strong>in</strong>ation of ammonia <strong>in</strong> naturalwaters by phenolhypochlorite method. Limnology <strong>and</strong>Oceanography 14: 799–801.Sorrell B. 2004. Regulation of root anaerobiosis <strong>and</strong>carbon translocation by light <strong>and</strong> root aeration <strong>in</strong> Isoetesalp<strong>in</strong>es. Plant, Cell <strong>and</strong> Environment 27:1102-1111.Strickl<strong>and</strong> J, Parsons T. 1968. A practical h<strong>and</strong>book ofseawater analysis. Ottawa, ON, Canada: Fishery ResearchBoard of Canada.Søndergaard M, Laegaard S. 1977. Vesciculararbuscularmycorrhiza <strong>in</strong> some vascular <strong>plant</strong>s. Nature268: 232-233.Tanner CC, Clayton JS. 1985. Effects of vesiculararbuscularmycorrhizas on growth <strong>and</strong> nutrition of asubmerged aquatic <strong>plant</strong>. Aquatic Botany 22:377-386.Thomson BD, Robson AD, Abbott LK. 1986. Effects ofphosphorus on the formation of mycorrhizas byGigaspora calospora <strong>and</strong> Glomus fasciculatum <strong>in</strong> relationto root carbohydrates. New Phytologist. 103: 751-765.Vermaat JE, S<strong>and</strong>-Jensen K. 1987. Survival,metabolism <strong>and</strong> growth of Ulva lactuca under w<strong>in</strong>terconditions – a laboratory study of bottlenecks <strong>in</strong> the lifecycle.Mar<strong>in</strong>e Biology 95: 55–61.Wig<strong>and</strong> C, Andersen FØ, Christensen KK, Holmer M,Jensen HS. 1998. Endomycorrhizae of <strong>isoetid</strong>s along abiogeochemical gradient. Limnology <strong>and</strong> Oceanography43: 508-515.Wig<strong>and</strong> C, Stevenson JC. 1997. Facilitation ofphosphate assimilation by aquatic mycorrhizae ofVallisneria americana Michx. Hydrobiologia 342/343:35–41.Wium-Andersen S, Andersen JM. 1972. The <strong>in</strong>fluenceof vegetation on the redox profile of the <strong>sediment</strong> ofGrane Langsø, a Danish Lobelia lake. Limnology <strong>and</strong>Oceanography 17:948-952.84


Paper 5Outst<strong>and</strong><strong>in</strong>g Lobelia dortmanna <strong>in</strong> iron armorPhoto: Ole Pedersen


[Plant Signal<strong>in</strong>g & Behavior 3:10, 882-884; October 2008]; ©2008 L<strong>and</strong>es BiosciencePaper 5Article AddendumOutst<strong>and</strong><strong>in</strong>g Lobelia dortmanna <strong>in</strong> iron armorKaj S<strong>and</strong>-Jensen, Claus L<strong>in</strong>dskov Møller* <strong>and</strong> Ane Løvendahl RaunFreshwater Biological Laboratory; Biological Institute; University of Copenhagen; Hillerød DenmarkKey words: <strong>isoetid</strong>s, Lobelia dortmanna, iron, ROL, <strong>sediment</strong> oxygen, iron plaquesLobelia dortmanna leads a group of small, highly-valued rosettespecies that grow on coarse, nutrient-poor soils <strong>in</strong> temperate softwaterlakes. They acquire most CO 2for photosynthesis by rootuptake <strong>and</strong> efficient gas transport <strong>in</strong> large air channels to the leaves.Lobelia is the only species that releases virtually all photosyntheticoxygen from the roots <strong>and</strong> generates profound day-night changes <strong>in</strong>oxygen <strong>and</strong> CO 2<strong>in</strong> the <strong>sediment</strong> pore-water. While oxygen releasefrom roots stimulates decomposition <strong>and</strong> supports VA-mycorrhizafungi, the ready gas exchange presents a risk of <strong>in</strong>sufficient oxygensupply to the distal root meristems as <strong>sediment</strong>s accumulate organicmatter from lake pollution. So the <strong>plant</strong> with the greatest oxygenrelease from roots is also the most sensitive to oxygen depletion <strong>in</strong><strong>sediment</strong>s <strong>and</strong> it dies or losses anchorage by shorten<strong>in</strong>g the rootsfrom 10 to 2 cm at even modest contents (2.4%) of degradableorganic matter. Coat<strong>in</strong>gs of oxidized iron on roots <strong>in</strong> organicallyenriched <strong>sediment</strong>s reduce radial oxygen loss <strong>and</strong>, thereby, <strong>in</strong>crease<strong>in</strong>ternal concentrations <strong>and</strong> supply of oxygen to root tips. Oxidizediron is also a redox buffer which may prevent the <strong>in</strong>gress of sulfides<strong>and</strong> other reduced toxic solutes dur<strong>in</strong>g nights. Controlled experimentsare under way to test if iron enrichment can help survival ofrosette species threatened by lake pollution or whether removal oforganic surface <strong>sediment</strong>s is required.Inhospitable SedimentsAquatic <strong>sediment</strong>s <strong>and</strong> waterlogged soils are usually anoxic a fewmm below the surface. 1,2 Aquatic <strong>and</strong> wetl<strong>and</strong> <strong>plant</strong>s, therefore,need to supply oxygen to the roots by rapid <strong>in</strong>tra-<strong>plant</strong> gas transportthrough large air channels runn<strong>in</strong>g from the green shoot <strong>in</strong> contactwith atmospheric air or aerated water to the roots deeply buried <strong>in</strong>anoxic environments. 3,4 To ensure oxygen transport to the root tip<strong>in</strong> competition with radial oxygen loss to the anoxic hydrosoil, itshould be advantageous for roots to be thick, short <strong>and</strong> impermeableto radial oxygen loss. 5,6 Thick roots, however, are costly to producerelative to their capacity to take up nutrients so this morphology is*Correspondence to: Claus L<strong>in</strong>dskov Møller; Freshwater Biological Laboratory;Biological Institute; University of Copenhagen; Hels<strong>in</strong>gørgade 51; Hillerød DE-3400Denmark; Email: clmoller@bio.ku.dkSubmitted: 06/26/08; Accepted: 06/26/08Previously published onl<strong>in</strong>e as a Plant Signal<strong>in</strong>g & Behavior E-publication:http://www.l<strong>and</strong>esbioscience.com/journals/psb/article/6500Addendum to: Møller CL, Jensen KS. Iron plaques improve the oxygen supply to rootmeristems of the freshwater <strong>plant</strong>, Lobelia dortmanna. New Phytol 2008; 179:848–56; PMID: 18513220; DOI: 10.1111/j.1469-8137.2008.02506.x.not a general solution to cope with anoxic hydrosoils. Short roots,likewise, have a reduced nutrient uptake capacity <strong>and</strong> also a pooranchorage. Thus, the third option—hav<strong>in</strong>g roots relatively impermeableto radial oxygen loss—appears to be a suitable solution. Indeed,this property is common among wetl<strong>and</strong> <strong>plant</strong>s, 6 it is present <strong>in</strong> themar<strong>in</strong>e seagrass, Zostera mar<strong>in</strong>a <strong>and</strong> probably widespread amongmar<strong>in</strong>e <strong>and</strong> freshwater <strong>plant</strong>s (Fig. 1).Small freshwater rosette species, however, have highly gas permeableroot surfaces as an adaptation to take up free CO 2forphotosynthesis from the CO 2-rich hydrosoil <strong>in</strong> the nutrient-poors<strong>and</strong>y <strong>sediment</strong>s of softwater lakes. 1,7 These rosette species have thickentire leaves from a short stem, many roots <strong>and</strong> well-developed airchannels facilitat<strong>in</strong>g transport of oxygen <strong>and</strong> CO 2between leaves<strong>and</strong> roots. Utiliz<strong>in</strong>g CO 2from the hydrosoil for photosynthesis, theroots are also highly permeable to radial oxygen transport 8 <strong>and</strong> thisproperty has recently been confirmed by quantification of oxygenloss <strong>and</strong> root wall permeability for every 5 mm along the roots ofLobelia dortmanna. 9 The question therefore arises: how do thesespecies supply oxygen to root tips <strong>in</strong> <strong>sediment</strong>s undergo<strong>in</strong>g organicenrichment <strong>and</strong> oxygen depletion?Cop<strong>in</strong>g with Sediment <strong>Oxygen</strong> DepletionLobelia dortmanna is the only known species that releases virtuallyall photosynthetic oxygen from the roots to the <strong>sediment</strong>s thanksto high root surface permeability <strong>and</strong> low leaf surface permeability<strong>and</strong> it, therefore, generates profound day-night fluctuations <strong>in</strong> pools<strong>and</strong> penetration depth of oxygen <strong>in</strong> s<strong>and</strong>y <strong>sediment</strong>s of low oxygenconsumption. 1,2 Sediment CO 2varies opposite to oxygen due totheir complementary roles <strong>in</strong> photosynthesis <strong>and</strong> respiration. 1 Otherrosette species also exchange much CO 2<strong>and</strong> oxygen via the roots, 8but leaf exchange is more important than <strong>in</strong> Lobelia.The ready oxygen exchange across Lobelia roots <strong>and</strong> the oxicconditions <strong>in</strong> nutrient-poor <strong>sediment</strong>s have been regarded as anadvantage for the nutrient supply due to stimulation of organicdecomposition by aerobic <strong>sediment</strong> bacteria <strong>and</strong> mycorrhiza fungi. 1This situation is reversed, however, <strong>in</strong> <strong>sediment</strong>s undergo<strong>in</strong>g organicenrichment by <strong>in</strong>put from the catchment or from phytoplankton-richlake water. Organically enriched <strong>sediment</strong>s of higher oxygen dem<strong>and</strong>offer a threat to survival of rosette species due to higher radial oxygenloss <strong>and</strong> <strong>in</strong>sufficient oxygen supply to root tips dur<strong>in</strong>g the night whenphotosynthetic oxygen production is switched off <strong>and</strong> the lake wateris the only oxygen source to <strong>plant</strong> <strong>and</strong> <strong>sediment</strong> respiration. 7,9Organic enrichment of s<strong>and</strong>y Lobelia <strong>sediment</strong>s leads to a decl<strong>in</strong>e<strong>in</strong> root length from about 10 cm to 2 cm (Fig. 2). While growth <strong>and</strong>882 87Plant Signal<strong>in</strong>g & Behavior 2008; Vol. 3 Issue 10


Outst<strong>and</strong><strong>in</strong>g Lobelia dortmanna <strong>in</strong> iron armortissue concentrations of N <strong>and</strong> P are stimulated by a small organicenrichment (e.g., from 0.3 to 0.6% of dry weight) due to higherm<strong>in</strong>eralization, a stronger organic enrichment (2.4%) stresses the<strong>plant</strong>s <strong>and</strong> leads to loss of chlorophyll, poor growth <strong>and</strong> die off 4 .Organic enrichment is accompanied by deprivation of oxygen pools<strong>and</strong> lower oxygen penetration depths (e.g., from 35 to 5 mm) <strong>in</strong> the<strong>sediment</strong>s signal<strong>in</strong>g that <strong>in</strong>sufficient oxygen supply to the root tipsis a ma<strong>in</strong> reason for the reduction of root length <strong>and</strong> <strong>plant</strong> performance.4 Quantity <strong>and</strong> degradability of the organic matter <strong>in</strong>put willobviously determ<strong>in</strong>e the severity of <strong>plant</strong> stress. 6Other rosette species such as Littorella uniflora <strong>and</strong> Isoetes lacustrisrespond similarly but are less sensitive to <strong>sediment</strong> anoxia presumablydue to lower radial oxygen loss from the roots. Littorella produces amixture of th<strong>in</strong>, short roots <strong>and</strong> thick, longer <strong>and</strong> probably lesssusceptible roots. Both species tolerate organic <strong>sediment</strong>s <strong>and</strong> <strong>in</strong> deepcalm water you f<strong>in</strong>d Isoetes lacustris anchored with just the stem <strong>in</strong>very soft organic <strong>sediment</strong>s, but with no roots <strong>and</strong> an obvious riskof vegetation loss dur<strong>in</strong>g storms or release of methane bubbles fromthe <strong>sediment</strong>s.Iron Plaques as a Protection?Wetl<strong>and</strong> <strong>plant</strong>s <strong>and</strong> probably most aquatic <strong>plant</strong>s have cont<strong>in</strong>uouslayers of suber<strong>in</strong> or lign<strong>in</strong> just below the root surface as barriers toradial oxygen loss to the <strong>sediment</strong>. 6,11 In Phragmites australis thebarrier becomes stronger when the roots are exposed to anoxia <strong>and</strong>small fatty acids from anaerobic fermentation. 5 There is no sign thatthis diffusion barrier is present or <strong>in</strong>ducible <strong>in</strong> Lobelia roots, whilethe response of other rosette species is unknown. 9 If the diffusionbarrier turns out to be <strong>in</strong>ducible, it will impede root uptake of CO 2,but because <strong>sediment</strong> CO 2concentrations are elevated by organicenrichment 4 it could match a certa<strong>in</strong> reduction of root permeability<strong>and</strong> still ma<strong>in</strong>ta<strong>in</strong> the CO 2<strong>in</strong>flux for photosynthesis.Figure 1. Radial oxygen loss measured with plat<strong>in</strong>um sleeve electrodes alongthe length of roots <strong>in</strong> an anoxic medium. The basal part of the roots was <strong>in</strong>contact with atmospheric air. Lobelia dortmanna had either none or thickiron coat<strong>in</strong>gs of the root surface (0.09 ± 0.05 <strong>and</strong> 30 ± 3 mmol Fe m -2 rootsurface respectively), 9 while Phragmites australis 5 <strong>and</strong> the seagrass, Zosteramar<strong>in</strong>a (Unpublished) were without iron coat<strong>in</strong>gs.For Lobelia, alteration of bio-geochemical processes accompany<strong>in</strong>gorganic enrichment of the <strong>sediment</strong> can offer additional protectionto radial oxygen loss from the roots <strong>and</strong> this mechanism has hithertobeen overlooked. As Lobelia’s roots become shorter by oxygen depletionof <strong>sediment</strong>s, 1–2 mm thick coat<strong>in</strong>gs of oxidized iron precipitateon the root surfaces 4,10 (Fig. 2). Mobile dissolved Fe 2+ is producedfrom <strong>in</strong>soluble Fe 3+ by degradation of organic matter <strong>in</strong> the anoxic<strong>sediment</strong> <strong>and</strong> Fe 2+ is re-precipitated as Fe 3+ -oxyhydroxides at theroot surface when it meets the outward oxygen flux. Iron coat<strong>in</strong>gs onaquatic <strong>plant</strong> roots <strong>in</strong> organically rich <strong>sediment</strong>s are common <strong>and</strong> theconsequences should be general.Figure 2. Roots become shorter <strong>and</strong> iron coat<strong>in</strong>gs thicker on Lobelia roots exposed from left to right to <strong>in</strong>creas<strong>in</strong>g levels of organic matter (from 0.2 to 3.4% of dry weight) <strong>and</strong> potential oxygen consumption rates (from 1.1 to 24.0 μg O 2 ml -1 <strong>sediment</strong> h -1 ) for 16 weeks. 10www.l<strong>and</strong>esbioscience.com Plant Signal<strong>in</strong>g & Behavior 883


Outst<strong>and</strong><strong>in</strong>g Lobelia dortmanna <strong>in</strong> iron armorPaper 5Iron coat<strong>in</strong>gs on Lobelia roots (30 mmol m -2 ) reduce 10-foldoxygen permeability of the root wall <strong>and</strong> two-fold radial oxygen loss(Fig. 1). Therefore, oxygen concentrations rise with<strong>in</strong> the roots <strong>and</strong>can better susta<strong>in</strong> root respiration <strong>in</strong>clud<strong>in</strong>g the distal meristem. 9While iron coat<strong>in</strong>gs only lead to c. 15% higher <strong>in</strong>ternal oxygenconcentrations <strong>in</strong> the root tips at low respiration rates at low temperatures,9 the <strong>in</strong>fluence will be stronger at higher respiration rates <strong>and</strong>at reduced oxygen supply from the leaves <strong>in</strong> the dark.Therefore, we anticipate that iron coat<strong>in</strong>gs should offer the strongestprotection to root anoxia <strong>and</strong> other toxic effects dur<strong>in</strong>g warmsummer nights when oxygen consumption rates <strong>in</strong> the <strong>plant</strong>s <strong>and</strong> the<strong>sediment</strong>s peak, hence, no oxygen is produced by photosynthesis <strong>and</strong>oxygen supply from the bottom waters is reduced by fall<strong>in</strong>g oxygenconcentrations.Oxidized iron may offer additional protection by <strong>in</strong>creas<strong>in</strong>gthe diffusive resistance to toxic solutes across the root surfaces <strong>and</strong>provid<strong>in</strong>g an oxidation capacity slow<strong>in</strong>g the <strong>in</strong>gress of sulfide <strong>and</strong>reduced metals from the <strong>sediment</strong>. 5,9 Iron coat<strong>in</strong>gs formed byoxygen release from the roots dur<strong>in</strong>g the day can, thereby, offerprotection dur<strong>in</strong>g the night when oxygen release dim<strong>in</strong>ishes or isreversed. 1 Likewise, iron coat<strong>in</strong>gs formed dur<strong>in</strong>g sunny days canoffer protection dur<strong>in</strong>g dark days.Studies of mar<strong>in</strong>e <strong>sediment</strong>s have clearly demonstrated howsurface pools of oxidized iron formed <strong>in</strong> w<strong>in</strong>ter <strong>and</strong> spr<strong>in</strong>g whenbottom waters are rich <strong>in</strong> oxygen can protect the anoxic bottomlayer dur<strong>in</strong>g summer aga<strong>in</strong>st the release of toxic sulfides from deeper<strong>sediment</strong>s. 12To test the protective effect of oxidized iron on or close to rootsurfaces <strong>in</strong>dependent of the <strong>in</strong>fluence of <strong>sediment</strong> anoxia <strong>and</strong> oxygensupply from the water, we shall expose Lobelia <strong>and</strong> other freshwaterspecies to controlled crossed gradients of degradable organic matter<strong>and</strong> iron <strong>in</strong> the <strong>sediment</strong>s <strong>and</strong> set levels of dissolved oxygen <strong>in</strong> thewater <strong>and</strong> evaluate the result<strong>in</strong>g morphological <strong>and</strong> functional <strong>plant</strong>responses.Iron <strong>and</strong> other important redox constituents vary extensively <strong>in</strong>amount <strong>and</strong> <strong>in</strong>put by groundwater seepage through <strong>sediment</strong>s fromdifferent lakes <strong>and</strong> wetl<strong>and</strong>s as do the presence <strong>and</strong> well-be<strong>in</strong>g of thevegetation. Thus, if oxidized iron is generally ecological significantfor <strong>plant</strong> survival it will also be important for <strong>plant</strong> distribution <strong>and</strong>historical changes of the vegetation. Work is under way to evaluatethe importance of light availability <strong>and</strong> <strong>sediment</strong> contents of organicmatter <strong>and</strong> iron for the survival of the Red-listed rosette vegetation <strong>in</strong>the dim<strong>in</strong>ish<strong>in</strong>g numbers of oligotrophic lakes worldwide. 13References1. Pedersen O, S<strong>and</strong>-Jensen K, Revsbech NP. Diel pulses of O 2 <strong>and</strong> CO 2 <strong>in</strong> s<strong>and</strong>y lake <strong>sediment</strong>s<strong>in</strong>habited by Lobelia dortmanna. Ecology 1995; 76:1536-45.2. S<strong>and</strong>-Jensen K, Pedersen O, B<strong>in</strong>zer T, Borum J. Contrast<strong>in</strong>g oxygen <strong>dynamics</strong> <strong>in</strong> the freshwater<strong>isoetid</strong> Lobelia dortmanna <strong>and</strong> the mar<strong>in</strong>e seagrass Zostera mar<strong>in</strong>a. Ann Bot 2005;96:613-23.3. Just<strong>in</strong> SHFW, Armstrong W. The anatomical characteristics of roots <strong>and</strong> <strong>plant</strong>-response tosoil flood<strong>in</strong>g. New Phytol 1987; 106:465-95.4. S<strong>and</strong>-Jensen K, Borum J, B<strong>in</strong>zer T. <strong>Oxygen</strong> stress <strong>and</strong> reduced growth of Lobelia dortmanna<strong>in</strong> s<strong>and</strong>y lake <strong>sediment</strong>s subject to organic enrichment. Freshwater Biol 2005; 50:1034-48.5. Armstrong J, Armstrong W. Rice <strong>and</strong> Phragmites: effects of organic acids on growth, rootpermeability <strong>and</strong> radial oxygen loss to the rhizosphere. Am J Bot 2001; 88:1359-70.6. Colmer TD. Long-distance transport of gases <strong>in</strong> <strong>plant</strong>s: a perspective on <strong>in</strong>ternal aeration<strong>and</strong> radial oxygen loss from roots. Plant Cell Environm 2003; 26:17-36.7. S<strong>and</strong>-Jensen K, Prahl C. <strong>Oxygen</strong> exchange with the lacunae <strong>and</strong> across leaves <strong>and</strong> roots ofthe submerged vascular macrophyte, Lobelia dortmanna L. New Phytol 1982; 91:103-20.8. S<strong>and</strong>-Jensen K, Prahl C, Stokholm H. <strong>Oxygen</strong> release from roots of submerged aquaticmacrophytes. Oikos 1982; 50:1034-48.9. Møller CL, S<strong>and</strong>-Jensen K. Iron plaques improve the oxygen supply to root meristems ofthe freshwater <strong>plant</strong>, Lobelia dortmanna. New Phytol 2008; 179:848—56.10. Raun AL. Sediment organic matter <strong>in</strong>fluences growth <strong>and</strong> survival of submerged <strong>plant</strong>s. MS.Thesis, Freshwater Biological Laboratory 2008; University of Copenhagen.11. Soukup A, Armstrong W, Schreiber L, Franke R, Votrubova O. Apoplastic barriers to radialoxygen loss <strong>and</strong> solute penetration: a chemical <strong>and</strong> functional comparison of the exodermisof two wetl<strong>and</strong> species, Phragmites australis <strong>and</strong> Glyceria maxima. New Phytol 2007;173:264-78.12. Azzoni R, Giordani G, Viaroli P. Iron-sulphur-phosphorus <strong><strong>in</strong>teractions</strong>: implications for<strong>sediment</strong> buffer<strong>in</strong>g capacity <strong>in</strong> a Mediterranean eutrophic lagoon (Sacca di Goro, Italy).Hydrobiologia 2005; 550:131-48.13. S<strong>and</strong>-Jensen K, Riis T, Vestergaard O, Larsen S. Macrophyte decl<strong>in</strong>e <strong>in</strong> Danish lakes <strong>and</strong>streams over the past 100 years. J Ecol 2000; 88:1030-40.884 89Plant Signal<strong>in</strong>g & Behavior 2008; Vol. 3 Issue 10


Paper 6Planterødders overlevelse i v<strong>and</strong>dækket bundFoto: Ane Raun, modified by Claus MøllerPhoto: Ole Pedersen


Planterødders overlevelse iv<strong>and</strong>dækket bundClaus L<strong>in</strong>dskov Møller og Kaj S<strong>and</strong>-JensenIlttransport gennemluftvævAt <strong>plant</strong>erødder kan have problemermed at overleve i env<strong>and</strong>dækket bund har somudgangspunkt en simpel fysiskforklar<strong>in</strong>g. Luftmættet v<strong>and</strong> <strong>in</strong>deholdernemlig 20-25 gangem<strong>in</strong>dre ilt end samme volumenluft, så den tilgængelige iltpuljeer lille. Endvidere er forsyn<strong>in</strong>genmed ny ilt til denne iltpulje vedmolekylernes egenbevægelse(diffusion) ekstrem langsom iv<strong>and</strong>, faktisk 10.000 gange langsommereend i luft.I akvatiske <strong>sediment</strong>er og v<strong>and</strong>mættedejorder forsv<strong>in</strong>der ilten derforsædvanligvis i få mm’s dybde selvved et beskedent iltforbrug, ford<strong>in</strong>ytilførslen ovenfra går usædvanligtlangsomt. Skal <strong>plant</strong>erødderne overleve,må ilttransporten i de flestetilfælde ske <strong>in</strong>de i selve <strong>plant</strong>en fraskuddet i kontakt med ilt til røddernedybt nede i den iltfrie bund.Skal transporten gennem <strong>plant</strong>envære effektiv, må den foregå iluft. De fleste sump<strong>plant</strong>er ogv<strong>and</strong><strong>plant</strong>er danner da ogsåsammenhængende luftkanalerfra blade og stængler til rodspidserne.Er der meget luftvæv,Paper 6Hvis kornmarken står under v<strong>and</strong>, rådner rødderneaf mangel på ilt og <strong>plant</strong>erne dør. Mensom bekendt vokser sump<strong>plant</strong>er og egentligev<strong>and</strong><strong>plant</strong>er aldeles udmærket på en v<strong>and</strong>dækketbund. Hvordan formår netop de at forsyne røddernemed ilt? Det spørgsmål har en rækkespændende svar.bliver der samtidigt færre iltforbrugendeceller, så ilttransportenbedre kan dække behovet til respirationend hvis levende cellerudfyldte hele <strong>plant</strong>ens <strong>in</strong>dre.Plantearter, der kan vokse påen v<strong>and</strong>mættet bund, har derforkarakteristiske tilpasn<strong>in</strong>ger (figur1). De <strong>in</strong>deholder meget luftvævog de kan ofte øge mængdenmarkant, når de oplever et skiftefra en veldrænet iltholdig bundtil en v<strong>and</strong>mættet iltfri bund ogkan herved opretholde iltforsyn<strong>in</strong>gentil rødderne. Omvendthar <strong>plant</strong>er, som er knyttet til enveldrænet bund, kun lidt luftvævog de formår heller ikke at øgeluftmængden nævneværdigt, hvisbunden v<strong>and</strong>mættes. Så derfordør deres rødder.Rødderne bliver tykkere,kortere og gastætteRøddernes vækstpunkt liggerlige bag rodspidsen. Her foregåralle celledel<strong>in</strong>ger, respirationener høj og behovet for organiskstof og ilt særlig stort. Uden iltproducerer rødderne kun 2-4molekyler af det universelle energimolekyle,ATP, for hvertomsat glukosemolekyle, mensdet bliver til 38 molekyler medilt til stede. På grund af dennekæmpeforskel i energiudbytte erdet let at forstå, hvorfor iltenhelst skal frem til den energikrævenderodspids.Først og fremmest skal iltendiffundere ned gennem roden iluftfase (figur 2). Dernæst skaldiffusionen nedad være så effektivsom mulig i forhold til denFigur 1. Omfanget af luftvæv (%) er større bl<strong>and</strong>t sump<strong>plant</strong>er end tørbunds<strong>plant</strong>er.Sump<strong>plant</strong>er er også i st<strong>and</strong> til at øge luftvævet mest ved et skiftefra en veldrænet til en v<strong>and</strong>mættet bund. Efter Just<strong>in</strong> & Armstrong (1987).54 URT 32:1 • februar 200893


Paper 6mangel på ilt eller af de stoffer(fx små organiske syrer), der produceresi bunden under iltfrie forhold.Effekten af aflejr<strong>in</strong>gerne erstor, idet de nedsætter rodoverfladensgaspermeabilitet til m<strong>in</strong>dreend 1/10 af niveauet uden aflejr<strong>in</strong>ger.Ned mod rodspidsen falderilt<strong>in</strong>dholdet i luftkanalerne gradvist,fordi ilten forbruges vedrespiration og der trods alt skeret radiært tab til den omgivendebund. Jo længere roden er, destovanskeligere er det derfor at forsynerodspidsen med ilt. Derforbliver rødderne kortere, hvis deenten vokser på en særlig stærktiltforbrugende bund, eller hvisforsyn<strong>in</strong>gen fra skuddet vanskeliggøres.Det sidste sker, hvis sump<strong>plant</strong>eroversvømmes, så skuddetikke længere har kontakt med atmosfæriskluft, men må klare sigmed den m<strong>in</strong>dre iltforsyn<strong>in</strong>g fraoversvømmende v<strong>and</strong>. De kortererødder forankrer <strong>plant</strong>endårligere, hvilket øger risikoenfor, at den rives løs. Den risikoforstærkes af, at rødderne fæstersig dårligere i en v<strong>and</strong>mættetbund, især hvis den ligner flydendemudder.Samlet set skaber en v<strong>and</strong>mættetbund derfor risiko for dårligereenergiudnyttelse, nær<strong>in</strong>gsoptagelseog fasthæftn<strong>in</strong>g afrødderne. Dog kan visse reduceredemetalioner af jern og manganvære mere tilgængelige underiltfrie forhold, men risikoenfor giftige effekter af disse ionersamt af sulfid og organiske syrerer samtidig større. Her sikrer degastætte rodoverflader formentligen vis beskyttelse.Figur 2. Tykke, luftfyldte rødder (A) og rødder med stor modst<strong>and</strong> modradiært ilttab (B) har lettere ved at forsyne rodspidserne med ilt end tynderødder med lille modst<strong>and</strong> mod radiært ilttab (C).konkurrerende diffusion ud afroden til den omliggende iltfribund. Effektiv transport nedadopnås bedst ved, at roden er tyk,så rodoverfladens areal, hvorigennemilttabet til omgivelsernesker, er lavt i forhold til luftkanalernestværsnitareal, der befordrertransporten til rodspidsen(figur 2). Men en tyk rod er dårligtil at optage nær<strong>in</strong>gsstoffer iforhold til s<strong>in</strong> vægt, så der er enklar grænse for, hvor tykke røddernekan blive og fortsat væreeffektive til at opsuge nær<strong>in</strong>gsstoffer.Det <strong>and</strong>et pr<strong>in</strong>cip er derformere generelt anvendeligt: ”Rodoverfladenskal være så gastætsom muligt frem til rodspidsen”(figur 2). Det er da også et fællestræk for alle de sump<strong>plant</strong>er ogv<strong>and</strong><strong>plant</strong>er, der kan vokse på eniltfri v<strong>and</strong>mættet bund. Denneeffekt opnås med svært gennemtrængeligelign<strong>in</strong>- og suber<strong>in</strong>aflejr<strong>in</strong>ger,der ligger som en ubrudtcyl<strong>in</strong>der umiddelbart under rodoverfladen(figur 3). Helt tæt pårodspidsen er aflejr<strong>in</strong>gerneendnu ikke udviklede. Aflejr<strong>in</strong>gerne<strong>in</strong>duceres og forstærkes afMassetransport gennemsump<strong>plant</strong>ers luftkanalerDen hidtidige beskrevne iltforsyn<strong>in</strong>gfra skuddet til røddernesker ved molekylær diffusion istillestående luft. Det er en effektivproces over korte afst<strong>and</strong>e,men en <strong>in</strong>effektiv proces overlange afst<strong>and</strong>e. Hvis afst<strong>and</strong>enfra iltkilden i skuddet til rodspidserneer længere end en halv meter,så er diffusionen heltutilstrækkelig til at dække selv etbeskedent iltbehov.Her kræves derfor en megetmere effektiv massetransport afilt med en luftstrøm gennemluftkanalerne. En sådan <strong>in</strong>drev<strong>in</strong>d blev opdaget af John Daceyi gul åk<strong>and</strong>e tilbage i 1981.Gul åk<strong>and</strong>e har en kraftig jordstængelog veludviklede rødder iden iltfrie mudderbund på 1-3meters dybde og kun flydebladeneer i kontakt med luften. I deyngste blade skabes et svagt overtryk(~250 pascal) i lys, som driveren <strong>in</strong>dre v<strong>in</strong>d gennem deluftfyldte bladstilke og jordstænglertilbage til atmosfæren via degamle blade. Overtrykket i deunge blade skyldes en komb<strong>in</strong>ationaf solopvarmn<strong>in</strong>g, der fårluften i bladet til at udvide sig ogskabe tryk, og tilstedeværelse afmættet v<strong>and</strong>damp i bladet, som94URT 32:2 • maj 2008 55


Paper 6Figur 3. Aflejr<strong>in</strong>ger af lign<strong>in</strong> og suber<strong>in</strong> (rødt efter farvn<strong>in</strong>g) i et cyl<strong>in</strong>drisklag umiddelbart under rodoverfladen nedsætter det radiære ilttab til denomgivende iltfrie bund. Fotos af tagrør i Armstrong & Armstrong (2001) ogSoukup et al. (2007). Målestok 60 µm.udøver et separat overtryk påomkr<strong>in</strong>g 1000 pascal i forhold tilatmosfæren. De yngste blade harkontakt med atmosfæren via ultrasmåporer (< 0,1 µm), derikke tillader trykudlign<strong>in</strong>g, mengør det muligt for kvælstof og iltat diffundere <strong>in</strong>d i bladet til erstatn<strong>in</strong>gfor den luft, som strømmernedad i bladstilken. Tilstedeværelseaf et højere tryk afv<strong>and</strong>damp <strong>in</strong>de i bladenes luftrumend i atmosfæren er afgørendefor, at partialtrykket afkvælstof og ilt er større i atmosfærenend i bladene, så erstatn<strong>in</strong>gsluftdiffunderer <strong>in</strong>d. Deældre blade har udvidet sig ogmistet den f<strong>in</strong>e poreadskillelse oghar kun et marg<strong>in</strong>alt overtryk iforhold til atmosfæren. Derforløber en luftstrøm på omkr<strong>in</strong>g1,5 liter i timen fra de yngsteblade via jordstænglerne i søbundentilbage til atmosfæren gennemde ældste blade. Typisk fal­der iltprocenten i luftstrømmenfra 20,7% i de yngste til 19,4% ide ældste blade, og dette iltfaldsikrer en iltforsyn<strong>in</strong>g, som er 20gange højere end den diffusionenmaksimalt kan levere. Da jordstængleni søbunden ventileres ogopnår en høj iltprocent, kan iltenherfra diffundere passivt ned i deret tykke rødder, som bliver 20-30 cm lange. På grund af respirationi <strong>plant</strong>en og omsætn<strong>in</strong>g isøbunden <strong>in</strong>deholder udstrømn<strong>in</strong>gsluftenganske meget CO 2(~1,5%) og methan (0,3%).Det har vist sig, at flere alm<strong>in</strong>deligesump<strong>plant</strong>er såsom Tagrør,Dunhammer, Kogleaks,Sumpstrå og arter af Siv ogsåhar en ventileret massetransportdrevet af solopvarmn<strong>in</strong>g ogv<strong>and</strong>dampes tryk. I et studiumfra 1992 af Hans Brix varieredetrykopbygn<strong>in</strong>gen i luftrummenei sump<strong>plant</strong>er mellem 20 og1300 pascal og luftstrømmen ermellem 10 og 600 ml i timen perskudsystem. Nogle gange kanv<strong>in</strong>den også skabe masse-strøm,hvis den blæser med forskellighastighed over forbundne <strong>plant</strong>edele.Øget v<strong>in</strong>dhastighed skaberstørre trykfald og luftfyldte åbnestængler af forskellig højde hostagrør, vil derfor opleve det lavestetryk i de højeste og mest v<strong>in</strong>dombrustestængler, der såledeskan trække en luftstrøm gennemjordstænglen fra de kortere,v<strong>in</strong>dbeskyttede stængler.Da massetransport forudsætterventiler<strong>in</strong>g og strukturer,hvor gasser fra atmosfæren kankomme <strong>in</strong>d i <strong>plant</strong>en ellerforlade den, så f<strong>in</strong>des den ikkehos <strong>plant</strong>er under v<strong>and</strong>. De måalene klare sig med diffusion ogde bliver derfor alle påvirkede afiltsv<strong>in</strong>d i v<strong>and</strong>et.Ilttransport hos ægte underv<strong>and</strong>s<strong>plant</strong>erÅlegræs og Tvepibet LobelieFigur 4. Radiært ilttab fra rodspidstil basis hos Tagrør, Ålegræs ogTvepibet Lobelie. Efter Armstrong& Armstrong (2001) og Møller &S<strong>and</strong>-Jensen (2008).56 URT 32:1 • februar 200895


Paper 6Figur 5. Rødderne bliver kortere og jernudfældn<strong>in</strong>gerne tykkere hos Lobelieopvokset med stigende <strong>in</strong>dhold af iltforbrugende organisk stof i søbunden,vist fra højre mod venstre. Foto efter Raun (2008).repræsenterer to yderpoler, hvadangår levesteder og iltforsyn<strong>in</strong>gbl<strong>and</strong>t underv<strong>and</strong>s<strong>plant</strong>erne. Ålegræsvokser i en havbund, der altovervejendeer iltfri og <strong>in</strong>deholderbetydelige mængder af sulfidog reduceret jern og mangan.De underjordiske jordstænglerog rødderne har da ogsåmarkante barrierer mod tab afilt fra de <strong>in</strong>dre luftkanaler tilhavbunden (figur 4). Barrierernesikrer, at ilten normalt kan nåfrem til de yderste rodspidser.Det kræver selvfølgelig, at dereksisterer en iltkilde. I lys kanbladenes fotosyntese producereden nødvendige ilt. I mørke,hvor hele <strong>plant</strong>en respirerer ogforbruger ilt, må v<strong>and</strong>et omkr<strong>in</strong>gbladene levere ilten. Det er derforkritisk for røddernes overlevelse,hvis der optræder langvarigeperioder med iltsv<strong>in</strong>d ibundv<strong>and</strong>et, eller hvis <strong>plant</strong>erneskygges af tætte algebest<strong>and</strong>e.Nedsat iltforsyn<strong>in</strong>g til rødderneøger også risikoen for, at giftigsulfid trænger <strong>in</strong>d ved rodspidserne,hvor normal iltforsyn<strong>in</strong>gkan afgifte sulfiden ved at omdanneden til sulfat. At der ertale om en kritisk situation fremgåraf, at rodspidserne svitses afved lav lystilgang og dårlige iltforholdi bundv<strong>and</strong>et. Hvis iltforsyn<strong>in</strong>gentil selve vækstpunktet vedbasis af bladene svigter, dør<strong>plant</strong>en.De fleste ferskv<strong>and</strong>s<strong>plant</strong>er erformodentlig også ret gastætte ijordstængler og rødder for atsikre røddernes iltforsyn<strong>in</strong>g ogholde sulfid og reducerede metallerude, men der mangler mål<strong>in</strong>ger.Forholdene er helt <strong>and</strong>erledesfor Tvepibet Lobelie og<strong>and</strong>re små roset<strong>plant</strong>er somStr<strong>and</strong>bo og Brasenføde. Deoptager det meste af deres CO 2til fotosyntesen via rødderne isøbunden og de kan derfor ikkevære tætte for CO 2. De bliversamtidig piv utætte for ilt og det<strong>in</strong>dsnævrer deres levemuligheder.Foreløbig ved vi fra eksperimentermed Tvepibet Lobelie,at den overhovedet ikke dannervævsbarrierer i roden mod ilttabover overfladen (figur 4).Roset<strong>plant</strong>erne vokser især påen fattig m<strong>in</strong>eralbund af s<strong>and</strong> ellergrus i de mest nær<strong>in</strong>gsfattigesøer. Faktisk er iltforbruget sålavt i disse søbunde, at Lobeliesiltfrigivelse fra rødderne sikrertilstedeværelse af opløst ilt tilflere cm’s dybde i bunden. Hervedomdannes sulfid og reduceretjern og mangan til iltede ufarligeforb<strong>in</strong>delser.Imidlertid opstår der problemer,når søbunden beriges mediltforbrugende organisk stofenten fra planktonproduktioneneller tilløb af spildev<strong>and</strong> fral<strong>and</strong>brug eller husholdn<strong>in</strong>ger.Da lobelies rødder er utætteFigur 6. Det radiære ilttab overrodvæggen til søbunden falder i taktmed øget tykkelse af jernudfældn<strong>in</strong>gernepå lobelies rødder. EfterMøller & S<strong>and</strong>-Jensen (2008).96URT 32:2 • maj 2008 57


Paper 6Vi har sat <strong>plant</strong>erødders ve ogvel højt på vores forskn<strong>in</strong>gsagenda!Forfatternes adresseFerskv<strong>and</strong>sbiologisk Laboratorium,Biologisk Institut, Hels<strong>in</strong>gørgade 51,3400 Hillerød. clmoller@bio.ku.dkFigur 7. Lobelierødder med jernbelægn<strong>in</strong>ger opretholder højere iltkoncentrationeri luftkanalerne end rødder uden belægn<strong>in</strong>ger. Efter Møller ogS<strong>and</strong>-Jensen (2008).tabes ilten i stor stil til søbunden,når dens ilt forbruges af dettilførte organiske stof. For atsikre forsyn<strong>in</strong>gen til rodspidsernebliver rødderne gradvistafkortet fra 10 cm til 2 cm ellerendnu kortere ved fortsat berign<strong>in</strong>gmed organisk stof (figur5). Selv ved ret beskedne berign<strong>in</strong>germed organisk stof (~ 2%)ender lobelie med at dø ellermiste rodfæste.Vi har påvist, at jern kan medvirketil en vis beskyttelse, idetden i stor stil fælder ud på overfladenaf rødderne ved berign<strong>in</strong>gaf søbunden med organiskstof. Forklar<strong>in</strong>gen er den, at udfældetiltet jern (Fe+++) bidragertil nedbrydn<strong>in</strong>gen af organiskstof ude i den iltfrie søbundunder omdannelse til opløst reduceretjern (Fe++). Det reduceredejern diffunderer frem tilrodoverfladen, hvor iltet jerngendannes, fælder ud og dannerfaste belægn<strong>in</strong>ger ved kontaktmed ilten fra roden. Jernbelægn<strong>in</strong>genligner kemisk set rust oghar vist sig at udgøre en barrierefor det radiære ilttab ud af roden(figur 6) og dermed øgerden faktisk ilt<strong>in</strong>dholdet i rodensluftkanaler og iltforsyn<strong>in</strong>gen tilrodspidsen (figur 7). Den beskyttermåske også mod <strong>in</strong>dtrængn<strong>in</strong>gaf giftige stoffer fra den iltfrieomsætn<strong>in</strong>g i søbunden.Ved at eksperimentere medforskellige <strong>in</strong>dhold af organiskstof og jern i søbunden er v<strong>in</strong>etop nu i færd med at afklarejernets betydn<strong>in</strong>g for lobeliesvækst og overlevelse.Søbundens betydn<strong>in</strong>g for<strong>plant</strong>ebest<strong>and</strong>eneVi forsøger også at afklare, ihvilket omfang <strong>and</strong>re ferskv<strong>and</strong>s<strong>plant</strong>ertåler fravær af ilt og tilstedeværelseaf potentielle giftigestoffer i søbunden ved at ændrerøddernes tykkelse, længde ogdiffusionsbarrierer. Røddernesstofskifte og følsomhed ændrersig måske også.Resultaterne bliver afgørendefor vores endelige svar på spørgsmålet:Hvor stort et problem eriltforbrugende organisk stof isøbunden for <strong>plant</strong>ernes vækstog overlevelse? Svaret skal giveos retn<strong>in</strong>gsl<strong>in</strong>jer for, hvordan vikan restaurere søernes <strong>plant</strong>ebest<strong>and</strong>eved enten at forbedre lysforholdenei v<strong>and</strong>et eller fjernesøbundens iltforbrugende mudder.Måske må vi gøre beggedele for at sikre roset<strong>plant</strong>ernesoverlevelse.LitteraturArmstrong, J., Armstrong, W. 2001. Rice<strong>and</strong> Phragmites: effects of organic acidson growth, root permeability, <strong>and</strong>radial oxygen loss to the rhizosphere.American Journal of Botany 88:1359-1370.Brix, H., Sorrell, B.K., Orr, P.T. 1992.Internal pressurization <strong>and</strong> convectivegas-flow <strong>in</strong> some emergent fresh-watermacrophytes. Limnology <strong>and</strong> Oceanography37: 1420-1433.Dacey, J.W.H. 1981. Pressurized ventilation<strong>in</strong> the yellow water-lily. Ecology62: 1137-1147.Just<strong>in</strong>, S.H.F.W., Armstrong, W. 1987.The anatomical characteristics ofroots <strong>and</strong> <strong>plant</strong>-response to soil flood<strong>in</strong>g.New Phytologist 106: 465-495.Møller, C.L., S<strong>and</strong>-Jensen, K. 2008.Iron plaques improve the oxygen supplyto root meristems of the freshwater<strong>plant</strong> Lobelia dortmanna. Indsendt.Raun, A.L. 2008. Sediment organicmatter <strong>in</strong>fluences growth <strong>and</strong> survivalof submerged <strong>plant</strong>s. Specialerapport,Københavns universitet, København,DK.Soukup, A., Armstrong, W., Schreiber,L., Franke, R., Votrubova, O. 2007.Apoplastic barriers to radial oxygenloss <strong>and</strong> solute penetration: a chemical<strong>and</strong> functional comparison of theexodermis of two wetl<strong>and</strong> species,Phragmites australis <strong>and</strong> Glyceriamaxima. New Phytologist 173: 264-278.58 URT 32:1 • februar 200897


AcknowledgementsAcknowledgementsNumerous people have supported me <strong>and</strong> contributed to my accomplishments over the past three years. Iwill start by thank<strong>in</strong>g my girlfriend Ditte for moral support <strong>and</strong> cop<strong>in</strong>g with my chang<strong>in</strong>g mood whenapproach<strong>in</strong>g deadl<strong>in</strong>es. Thanks to all the people at Freshwater Biological Laboratory for contribut<strong>in</strong>g tothe relaxed but productive atmosphere at the lovely surround<strong>in</strong>gs <strong>in</strong> Hillerød. A special thanks to Kaj of<strong>in</strong>sightful supervision <strong>and</strong> for <strong>in</strong>troduc<strong>in</strong>g me to the wonderful world of birdwatch<strong>in</strong>g. Thanks to JensBorum for scientific discussions <strong>and</strong> assistance when needed. I would probably still be <strong>in</strong> the laboratoryanalyz<strong>in</strong>g samples without the help from Birgit Kjøller <strong>and</strong> Ayoe Lüchau so thank you very much forthat <strong>and</strong> assistance dur<strong>in</strong>g field-work. Thanks to Lars Båstrup-Spohr for field assistance <strong>and</strong> the manyrelax<strong>in</strong>g hours spend at various shorel<strong>in</strong>es try<strong>in</strong>g to “catch a big one”; I am sure that we eventually willsucceed. Thanks to Anders, Crist<strong>in</strong>a, Laci, Matteo, St<strong>in</strong>e, Mette, Ane, Mikkel <strong>and</strong> all the other current<strong>and</strong> present students at FBL for great times. Also thanks to Tim, Tash <strong>and</strong> Sarah for mak<strong>in</strong>g me feel athome dur<strong>in</strong>g my visit to University of Western Australia <strong>and</strong> to Tim for comments <strong>and</strong> discussions ofmy scientific work. F<strong>in</strong>ally I would like to thank Ole Pedersen for provid<strong>in</strong>g beautiful pictures(<strong>in</strong>clud<strong>in</strong>g the front cover) to “spice up” the layout of my thesis.Hopefully we will keep <strong>in</strong> touch <strong>in</strong> the future,Claus99

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!