11.07.2015 Views

Travaux sur les symétries de Lie des équations aux ... - DMA - Ens

Travaux sur les symétries de Lie des équations aux ... - DMA - Ens

Travaux sur les symétries de Lie des équations aux ... - DMA - Ens

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Joël M E R K E RÉcole Normale SupérieureDépartement <strong>de</strong> Mathématiques et Applications45 rue d’Ulm, F-75230 Paris Ce<strong>de</strong>x 05www.dma.ens.fr/∼merker/in<strong>de</strong>x.htmlmerker@dma.ens.fr<strong>Trav<strong>aux</strong></strong><strong>sur</strong> <strong>les</strong> symétries <strong>de</strong> <strong>Lie</strong><strong>de</strong>s équations <strong>aux</strong> dérivées partiel<strong>les</strong>en relation avec la géométrie CR[384 pages]Document 1, p. 2: Travail (publié) <strong>sur</strong> une caractérisation explicite <strong>de</strong>s systèmesd’équations différentiel<strong>les</strong> ordinaires qui sont localement équivalentsau système décrivant une particule newtonienne dans un champ <strong>de</strong> forcesnul. Calculs très diffici<strong>les</strong> d’élimination algébrico-différentielle; c’est aveccet article que j’ai appris à calculer, cf. <strong>les</strong> trav<strong>aux</strong> <strong>sur</strong> Green-Griffiths.Document 3, p. 93: Travail (publié) produisant <strong>de</strong>s exemp<strong>les</strong> <strong>de</strong> tubes CRnon algébrisab<strong>les</strong> en codimension quelconque.Document 3, p. 144: Travail (publié) donnant <strong>de</strong>s bornes pour la dimensiondu groupe <strong>de</strong>s symétries <strong>de</strong> <strong>Lie</strong> <strong>de</strong> certains systèmes completsd’équations <strong>aux</strong> dérivées partiel<strong>les</strong>.Document 4, p. 185: Travail (récent et soumis) caractérisant explicitement<strong>les</strong> hyper<strong>sur</strong>faces analytiques réel<strong>les</strong> <strong>de</strong> C 2 qui sont localement biholomorphesà la sphère S 3 .Document 5, p. 215: Travail (récent et soumis) caractérisant l’équivalencelocale à la pseudo-sphère <strong>de</strong> Heisenberg dans C n pour n 3.Document 6, p. 233: Travail <strong>de</strong> synthèse (à paraître) contenant <strong>de</strong> trèsnombreuses idées à développer en relation avec la mo<strong>de</strong>rnisation <strong>de</strong>s trav<strong>aux</strong><strong>de</strong> <strong>Lie</strong>.[6 documents. En 2006, je me suis plus ou moins arrêté <strong>de</strong> travailler danscette direction pour étudier <strong>les</strong> œuvres origina<strong>les</strong> <strong>de</strong> <strong>Lie</strong>, plus puissantes quece qui se fait actuellement dans cette direction.]


2Characterization of the Newtonianfree particle systemin m 2 <strong>de</strong>pen<strong>de</strong>nt variab<strong>les</strong>Joël MerkerAbstract. We treat the problem of linearizability of a system of second or<strong>de</strong>r ordinarydifferential equations. The criterion we provi<strong>de</strong> has applications to nonlinearNewtonian mechanics, especially in three-dimensional space.Let K = R or C, let x ∈ K, let m 2, let y := (y 1 ,... ,y m ) ∈ K m and lety 1 xx = F 1 (x,y,y x ) ,...... ,y m xx = F m (x,y,y x ),be a collection of m analytic second or<strong>de</strong>r ordinary differential equations, in generalnonlinear. We obtain a new and applicable necessary and sufficient condition inor<strong>de</strong>r that this system is equivalent, un<strong>de</strong>r a point transformation(x,y 1 ,... ,y m ) ↦→ ( X(x,y),Y 1 (x,y),... ,Y m (x,y) ) ,to the Newtonian free particle system Y 1 XX = · · · = Y m XX = 0.Strikingly, the explicit differential system that we obtain is of first or<strong>de</strong>r in thecase m 2, whereas according to a classical result due to <strong>Lie</strong>, it is of second or<strong>de</strong>rthe case of a single equation (m = 1).Acta Applicandæ Mathematicæ, 92 (2006), no. 2, 125–207Table of contents1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2. Proof of <strong>Lie</strong>’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.3. Systems of second or<strong>de</strong>r ordinary differential equations equivalent to free partic<strong>les</strong> . . . . . . . 22.4. Compatibility conditions for the second <strong>aux</strong>iliary system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59.5. General point transformation of the free particle system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77.


§1. INTRODUCTIONSeveral physically meaningful systems of ordinary differential equationsare of second or<strong>de</strong>r, as for instance the free particle in m-dimensional space,the damped or undamped harmonic oscillator, coupled or not, having constanttime-<strong>de</strong>pen<strong>de</strong>nt frequency or not, etc. Such systems are ubiquitous inNewtonian Mechanics, in Hamiltonian Dynamics and in General Relativity.Two classical major problems are to classify these systems up to point orcontact equivalence (<strong>Lie</strong>’s Grail) and to recognize when they coinci<strong>de</strong> withthe Euler equations associated to a Lagrangian (inverse variational problem).In small dimensions, complete results hold (<strong>Lie</strong>, Tresse, Cartan; Darboux,Douglas). However, in arbitrary dimension, both tasks quickly exceed thehuman as well as the digital computer scale, due to the intrinsic complexityof the un<strong>de</strong>rlying symbolic computations (explosion, swelling) and to theexponentially increasing number of cases to be treated. We refer to Olver’smonograph [Ol1995] for a panorama of problems, methods and results.At least, as a first step in classification, with respect to applications, thereare both a mathematical and a physical interest in <strong>de</strong>termining concrete, explicitand applicable (“ready-ma<strong>de</strong>”) criteria for a system of ordinary differentialequation to be equivalent, via a local point transformation, to a linearequation.31.1. Scalar equation. In this respect, we remind the celebrated linearizabilitycriterion for a single equation, due to <strong>Lie</strong>. Let K = R of C. Let x ∈ Kand y ∈ K. Consi<strong>de</strong>r a local second or<strong>de</strong>r ordinary differential equationy xx = F(x, y, y x ), possibly nonlinear, with a locally K-analytic right-handsi<strong>de</strong> 1 .Theorem 1.2. ([<strong>Lie</strong>1883], pp. 362–365; [GTW1989]; [Ol1995], p. 406) Thefollowing four conditions are equivalent:(1) y xx = F(x, y, y x ) is equivalent un<strong>de</strong>r a local point transformation(x, y) ↦→ (X, Y ) to the free particle equation Y XX = 0;(2) y xx = F(x, y, y x ) is equivalent to some linear equation Y XX =G 0 (X) + G 1 (X) Y + H(X) Y X ;(3) the local <strong>Lie</strong> symmetry group of y xx = F(x, y, y x ) is eightdimensional,locally isomorphic to the group PGL(3, K) of allprojective transformations of P 2 (K).1 By borrowing techniques <strong>de</strong>veloped in [Ma2003], this theorem as well as the next bothhold un<strong>de</strong>r weaker smoothness assumptions, namely with a C 2 or a W 1,∞locright-hand si<strong>de</strong>.


4(4) F yxy xy xy x= 0, or equivalently F = G + y x H + (y x ) 2 L + (y x ) 3 M,where G, H, L, M are functions of (x, y) that satisfy:0 = −2G yy + 4 3 H xy − 1 3 L xx + 2(GL)y − 2G x M − 4GM x + 2 3 H L x − 4 3 H H y,0 = − 2 3 H yy + 4 3 L xy − 2M xx + 2GM y + 4G y M − 2(H M) x − 2 3 H y L + 4 3 LL x.Section 2 of this paper is <strong>de</strong>voted to a <strong>de</strong>tailed exposition of the originalproof of the equivalence between (1) and (4), following [<strong>Lie</strong>1883]. In thecontemporary literature, to the author’s knowledge, there is no mo<strong>de</strong>rn restitutionof <strong>Lie</strong>’s elegant proof, whereas the <strong>de</strong>scription of an alternative proofof Theorem 1.2 as a byproduct of É. Cartan’s equivalence algorithm appearsin the references [Tr1896], [Ca1924], [GTW1989], [Ol1995], [23] 2 .<strong>Lie</strong>’s Grail would comprise:• a complete classification of all <strong>Lie</strong> algebras of local vector fields; <strong>Lie</strong>achieved this task in dimension 2 over C (real case: [GKO1992]); however,as soon as the dimension is 3, the complete classification isunknown, due to the intrinsic richness of imprimitive <strong>Lie</strong> algebras ofvector fields;• a list of all the possible <strong>Lie</strong> algebras that can be realized as infinitesimal<strong>Lie</strong> symmetry algebras of partial differential equations, together withtheir Levi-Malčev <strong>de</strong>composition;• an explicit Gröbner basis of the (noncommutative) algebra of all differentialinvariants of each equation in the list.However, complete results hold only for the scalar second or<strong>de</strong>r ordinarydifferential equation. Some tab<strong>les</strong> extracted from <strong>Lie</strong>’s GesammelteAbhandlungen and from Tresse’s prized thesis [Tr1896] may be foundin [Ol1995].1.3. Systems. Let x ∈ K, let m 2, let y := (y 1 , . . .,y m ) ∈ K m and let(1.4) y 1 xx (x) = F 1 (x, y(x), y x (x)) , . . ....,y m xx (x) = F m (x, y(x), y x (x))2 We note that in these references, the already substantial computations are stopped justafter the reduction to an {e}-structure on an eight-dimensional (local) principal bundle overthe three-dimensional first or<strong>de</strong>r jet space. The vanishing of two (among four) fundamentaltensors in the structure equations of the obtained {e}-structure yields two partial differentialequations satisfied by the right-hand si<strong>de</strong> F(x, y, y x ), which are equivalent to (4) of Theorem1.2. We mention that with the help of Maple programming, the complete reduction toan {e}-structure on the base (not only on the principal bundle) is achieved in [HK1989],in the simpler case of so-called fiber-preserving transformations, namely point transformationsleaving invariant the “vertical” foliation {x = ct.}. To the author’s knowledge, thecomplete confirmation of Tresse’s results by means of É. Cartan’s method has never beenachieved.


e a collection of m analytic second or<strong>de</strong>r ordinary differential equations,possibly nonlinear, of the most general form.Motivated by physical applications and by geometrical questions, someauthors (Leach [Le1980], Grissom-Thompson–Wilkens [GTW1989],González-López [GL1988], Fels [Fe1995], Crampin-Martínez-Sarlet [CMS1996], Doubrov [Do2000], Grossman [Gr2000], Mahomed-Soh [MS2001], and others) have been interested in a least characterizingthose that have the <strong>Lie</strong> symmetry group of maximal dimension. In [Le1980],based on the belief that the equivalence between (1), (2) and (3) of Theorem1.2 would persist in the case m 2, it was conjectured that thesymmetry algebra of every linear system(1.5) y j xx = G j 0(x) +m∑my l G j 1,l (x) + ∑l=1l 1 =1y l 1x H j l 1(x),j = 1, . . .,m,of m 2 second or<strong>de</strong>r differential equations has a <strong>Lie</strong> symmetry group locallyisomorphic to the full transformation group PGL(m+1, K) of the projectivespace P m+1 (K). However, González-López [GL1988] infirmed thisexpectation, and produced a necessary and sufficient condition (see Corollary1.8 below) for local equivalence of such linear systems to the free partic<strong>les</strong>ystem5(1.6) Y j XX= 0, j = 1, . . .,m.Applying <strong>Lie</strong>’s algorithm it is easily seen ([11]) that the free particle systemhas a local symmetry algebra of dimension ≤ m 2 +4 m+3, the bound beingattained by Y j XX= 0, j = 1, . . ., m, with group PGL(m + 1, K).In 1939, for fiber-preserving transformations only, Chern [Ch1939] conductedthe É. Cartan algorithm through absorptions of torsion, normalizationsand prolongations up to the reduction to an {e}-structure. Remarkably,in 1995, Fels [Fe1995] conducted the É. Cartan algorithm for general systemsyxx j = F j (x, y, y x ) and for general point transformations. As a byproductof the uniqueness of the obtained {e}-structure for which all invarianttensors vanish, Fels <strong>de</strong>duced in [Fe1995] that the flat system Y j XX = 0,j = 1, . . .,m, is, up to equivalence, the only system of second or<strong>de</strong>r possessinga symmetry group of maximal dimension. Alas, the {e}-structuresobtained by Chern and by Fels are not parametric, so that the counterpartto (4) of Theorem 1.2 was lacking as soon as m 2. The extraordinaryheaviness of É. Cartan’s method is a well known obstacle.Recently, Neut [N2003] (see also [DNP2005]) wrote a Maple program tocompute (among other {e}-structures) Fels’ tensors in a parametric, explicitway. The digital computations succee<strong>de</strong>d in the case m = 2, yielding Theorem3 of [DNP2005], a statement that may be checked to be equivalent to


6Theorem 1.7 (3) just below in the case m = 2. In the physically most meaningfulcase m = 3, a present-day computer is stuck ([N2003], [DNP2005]).Extending <strong>Lie</strong>’s <strong>les</strong>s heavy computations 3 , we present here a completesolution to the characterization of Y j XX= 0 for arbitrary m 2.Theorem 1.7. Suppose m 2. The following three conditions are equivalent:(1) the system y j xx = F j (x, y, y x ), j = 1, . . .,m, is equivalent, un<strong>de</strong>ra local point transformation (x, y j ) ↦→ (X, Y j ) to the free particleequation Y j XX = 0;(2) the local <strong>Lie</strong> symmetry group of y j xx = F j (x, y, y x ) is (m 2 + 4 m + 3)-dimensional and locally isomorphic to PGL(m + 1, K);(3) the right hand si<strong>de</strong>s F j (x, y, y x ) are of a special form, <strong>de</strong>scribed asfollows.(i) There exist local K-analytic functions G j , H j l 1, L j l 1 ,l 2and M l1 ,l 2,where j, l 1 , l 2 = 1, . . ., m, enjoying the symmetries L j l 1 ,l 2= L j l 2 ,l 1and M l1 ,l 2= M l2 ,l 1and <strong>de</strong>pending only on (x, y) such thatF j (x, y, y x ) may be written as the following specific cubic polynomialwith respect to y x :y j xx = G j +m∑l 1 =1y l 1x H j l 1+m∑m∑l 1 =1 l 2 =1y l 1x y l 2x L j l 1 ,l 2+ y j x ·m∑m∑l 1 =1 l 2 =1y l 1x y l 2x M l1 ,l 2.(I)(ii) The functions G j , H j l 1, L j l 1 ,l 2and M l1 ,l 2satisfy the followingexplicit system of four families of first or<strong>de</strong>r partial differentialequations:⎧⎪⎨⎪⎩0 = − 2 G j + 2 y l 1 δj l 1G l 2+ y l 2 Hj l 1 ,x − δj l 1H l 2m∑+ 2 G k L j l 1 ,k − 2 ∑ m δj l 1G k L l 2l2 ,k +k=1+ 1 2 δj l 1m∑k=1H k l 2H l 2k− 1 2k=1m∑Hl k 1H j k ,k=1l2 ,x +3 Throughout the article, we do not adopt the summation convention, because in severalsubsequent equations, some repeated indices shall appear that will not be summed. Also,we always put commas between the indices. For instance L j l 1,l 3,y l 2 <strong>de</strong>notes ∂Lj l 1,l 3/∂y l2shortly. As usual, δ j i is the Kronecker symbol.


7where the indices j, l 1 vary in {1, 2, . . ., m};⎧0 = − 1 2 Hj + 1 l 1 ,y l 26 δj l 1H l 2+ 1l 2 ,y l 23 δj l 2H l 1+ l 1 ,y l 1+ L j l 1 ,l 2 ,x − 1 3 δj l 1L l 2l2 ,l 2 ,x − 2 3 δj l 2L l 1l1 ,l 1 ,x +(II)⎪⎨⎪⎩+ G j M l1 ,l 2− 1 3 δj l 1G l 2M l2 ,l 2− 2 3 δj l 2G l 1M l1 ,l 1++ 1 ∑ m3 δj l 1G k M l2 ,k − 1 3 δj l 2− 1 2k=1m∑H j k Lk l 1 ,l 2+ 1 2k=1(+ δ j 1l 16(+ δ j 1l 23m∑k=1m∑k=1m∑k=1m∑Hl k 1L j l 2 ,k +k=1H l 2kL k l 2 ,l 2− 1 6H l 1kL k l 1 ,l 1− 1 3m∑k=1m∑k=1G k M l1 ,k−H k l 2L l 2l2 ,kH k l 1L l 1l1 ,kwhere the indices j, l 1 , l 2 vary in {1, 2, . . ., m};⎧0 = L j − l 1 ,l 2 ,y l 3 Lj + l 1 ,l 3 ,y l 2 δj l 3M l1 ,l 2 ,x − δ j l 2M l1 ,l 3 ,x+))+,(III)(IV)⎪⎨⎪⎩+ 1 2 Hj l 3M l1 ,l 2− 1 2 Hj l 2M l1 ,l 3++ 1 ∑ m2 δj l 1Hl k 3M l2 ,k − 1 2 δj l 1k=1+ 1 ∑ m2 δj l 3Hl k 1M l2 ,k − 1 2 δj l 2+k=1m∑k=1∑ mk=1m∑mL k l 1 ,l 3L j l 2 ,k − ∑L k l 1 ,l 2L j l 3 ,k ,k=1k=1H k l 2M l3 ,k+H k l 1M l3 ,k+where the indices j, l 1 , l 2 , l 3 vary in {1, . . .m}; and{m∑m∑0 = M l1 ,l 2 ,y l 3 − M l1 ,l 3 ,y l 2 − L k l 1 ,l 2M l3 ,k + L k l 1 ,l 3M l2 ,k,k=1where the indices l 1 , l 2 , l 3 vary in {1, . . ., m}.Let us provi<strong>de</strong> commentaries and explanations. The form of the righthandsi<strong>de</strong> of (3)(i) is the analog of the form of the right-hand si<strong>de</strong> F in (4)of <strong>Lie</strong>’s Theorem 1.2. However, we notice that the right-hand si<strong>de</strong> of (3)(i)k=1


8is not the most general <strong>de</strong>gree three polynomial in the variab<strong>les</strong> y j x, j =1, . . ., m: some coefficients of the cubic terms vanish.Very strikingly, the differential system (I), (II), (III), (IV) satisfied by thefunctions G j , H j l 1, L j l 1 ,l 2, M l1 ,l 2is of first or<strong>de</strong>r for m 2, whereas thesystem (4) satisfied by G, H, L, M in <strong>Lie</strong>’s Theorem 1.2 is of second or<strong>de</strong>rfor m = 1. This confirms the main theorem of González-López [GL1988],that is recovered here in the special linear case (1.5).Corollary 1.8. ([GL1988]) For m 2, a linear (nonhomogeneous) systemyxx j = G j 0(x)+ ∑ ml=1 yl G j 1,l (x)+∑ ml 1 =1 yl 1 x H j l 1(x) is equivalent to Y j XX = 0if and only if there exists a function B(x) such that the m × m matrix G 1may be written un<strong>de</strong>r the specific form:(1.9) G j 1,l = 1 2 Hj l− 1 m∑H j k4Hk l + δ j l B.k=1We also mention that Fels obtained a characterization of equivalence tothe free particle Y j XX= 0, j = 1, . . ., m, by the vanishing of two (nonexplicit)tensors ˜S j jikland ˜P i (Corollary 5.1 in [Fe1995]). In this reference,some parametric computations are achieved after restricting the initial G-structure, together with its subsequent prolongations, to the i<strong>de</strong>ntity elementof the group; explicit expressions of ˜S j ∣ikl Idand of ˜P j ∣i Idare then obtained,through already hard computations. The vanishing of the two tensors ˜P jiand ˜S j iklat the i<strong>de</strong>ntity of the structure group, namely, as computed inLemma 4.1 of [Fe1995], yields (translating into our notation)(1.10) ⎧⎪⎨⎪⎩0 = (˜S j ikl ) ∣∣∣Id= F j y i xy k xy l x− 1n + 2m∑l 1 =10 = ( ˜P∣ ji ) ∣∣Id= 1 ) (F2 D j y− F j xi y− 1 i 4− 1 m δj i[12 D ( m∑k=1∑δ j σ(l) F l 1y l 1σ∈S 3m∑F k y k xk=1)F j y k xF k y i x −−x yxσ(i) yxσ(k)m∑F k y− 1 k 4k=1,m∑k=1]m∑F l y F k x k y,xlwhere D is the total differentiation operator ∂ +∑ m∂x l=1 yl x ∂ + ∑ m∂y l l=1 F l ∂ ,∂yxland where i, j, k, l = 1, . . .,m. Strikingly, one may check that the firstequation is equivalent to (3)(i) of Theorem 1.2 and then that the secon<strong>de</strong>quation yields the (complicated) four families of first or<strong>de</strong>r partial differentialequations (I), (II), (III) and (IV). So, in Corollary 5.1 of [Fe1995], onemay replace the vanishing of ˜S j jikland of ˜P i by the vanishing of ˜S j ∣ikl Idandof ˜P j ∣i Id, which were explicitly computed there.l=1


This phenomenon could be explained as follows: as soon as the tensors˜S j iklvanish, the system enjoys a projective connection (appendixof [Fe1995]); with such a connection, the tensors ˜P ji then transform accordingto a specific rule via tensorial rotation formulas and their general expressionmay be <strong>de</strong>duced from their expression at the i<strong>de</strong>ntity 4 . We have checkedthis, but as we try to avoid the method of equivalence, <strong>de</strong>tails will not be reproducedhere. Similar observations appear in Hachtroudi [Ha1937].Even if the expressions (1.10) are more compact than the (equivalent)conditions in Theorem 1.7 (3), we prefer the complete expressions of Theorem1.7 (3), since they are more explicit and ready-ma<strong>de</strong> for checkingwhether a physically given nonlinear system is equivalent to a free particle.If the rea<strong>de</strong>r prefers compact expressions and “short” theorems, (s)hemay replace the conditions of Theorem 1.7 (3) by (1.10).Open problem 1.11. Characterize explicitly the linearizability of a Newtoniansystem in m 2 <strong>de</strong>grees of freedom, i.e. local equivalence to :m∑m(1.12) Y j XX = Gj 0(X) + Y l G j 1,l (X) + ∑Y l 1X Hj l 1(X).l=11.13. Organization, avertissement and acknowledgment. Section 2 is <strong>de</strong>votedto a thorough restitution of <strong>Lie</strong>’s original proof of the equivalence between(1) and (4) in Theorem 1.2. Section 3 is <strong>de</strong>voted to the formulationof combinatorial formulas yielding the general form of a system equivalentto Y j XX= 0, j = 1, . . ., m, un<strong>de</strong>r a local K-analytic point transformation(x, y j ) ↦→ (X, Y j ), for general m 2 ; the proof of the main technicalLemma 3.32 is exposed in Section 5. Section 4 is <strong>de</strong>voted to the final proofof the equivalence between (1) and (3) in Theorem 1.7, the equivalence between(1) and (2) being already proved by Fels [Fe1995].Some word about style and intentions. We wanted the proof of the equivalencebetween (1) and (3) be totally complete, every tiny <strong>de</strong>tail being rigorouslyand patiently checked. This is why we <strong>de</strong>ci<strong>de</strong>d to carefully <strong>de</strong>taileach intermediate computational step, seeking first the combinatorics of theformal calculations in the case m = 1 and <strong>de</strong>vising then the un<strong>de</strong>rlying combinatoricsfor the case m 2. Actually, the size of differential expressionsis relatively impressive, as will become soon evi<strong>de</strong>nt. Thus, no intermediatesymbolic computation will be hid<strong>de</strong>n, hence essentially no checking workis left to the rea<strong>de</strong>r, as would have been the case if we did not have typed allthe computations.4 Similar rotation formulas are known in the much simpler case of (pseudo-) Riemannianmetrics, see Chapter 12 of Olver [Ol1995]. It would be interesting to write a program,finer and more efficient than [N2003], which would systematically recognize such rotationformulas in any application of É. Cartan’s equivalence method.l 1 =19


10We also would like to point out that except in every specific standardsituations, as with the much studied Riemann and Ricci tensors, presentdaycomputer programs are not yet powerful enough to apply the É. Cartanequivalence method when the number of some collection of variab<strong>les</strong> is ageneral integer. All the formulas obtained in Sections 2, 3 and 4 were firsttreated completely by hand and then, some of them were confirmed afterwardswith the help of MAPLE release 6 in the cases m = 2 and m = 3.The author is in<strong>de</strong>bted to Sylvain Neut and to Michel Petitot, from the Universityof Lille 1, for their help in computer machine confirmations.§2. PROOF OF LIE’S THEOREM2.1. Argument. This preliminary section contains a <strong>de</strong>tailed exposition of<strong>Lie</strong>’s original proof of the equivalence between (1) and (4) in Theorem 1.2.Since our goal is to guess the combinatorics of computations in several variab<strong>les</strong>,it will be a crucial point for us to explain thoroughly and patientlyeach step of <strong>Lie</strong>’s computation. Without such an intuitive control, it wouldbe hope<strong>les</strong>s to conduct any generalization to several variab<strong>les</strong>. Hence weshall respect a fundamental principle: always explain clearly and completelywhat sort of computation is achieved at each step. Also, we shall many timesintroduce some appropriate new notation.2.2. Combinatorics of the second or<strong>de</strong>r prolongation of a point transformation.Let K = R or C. Let (x, y) ↦→ (X(x, y), Y (x, y)) be a localK-analytic invertible transformation, <strong>de</strong>fined in a neighborhood of the originin K 2 , which maps the second or<strong>de</strong>r differential equation y xx = F(x, y, y x )to the flat equation Y XX = 0. By assumption, the Jacobian <strong>de</strong>terminant(2.3) ∆(x|y) :=∣ X ∣x X y ∣∣∣Y yis nowhere vanishing. Since the equation Y XX = 0 is left unchanged by anyaffine transformation in the (X, Y ) space, we can (and we shall) assume thatthe transformation is tangent to the i<strong>de</strong>ntity at the origin, namely the aboveJacobian matrix equals the i<strong>de</strong>ntity matrix at (x, y) = (0, 0).The computation how the differential equation in the (X, Y ) coordinatesis related to the differential equation in the (x, y)-coordinates is classical,cf. [<strong>Lie</strong>1883], [Tr1896], [BK1989], [Ib1992]: let us remind it. A local graph{y = y(x)} being transformed to a local graph {Y = Y (X)}, we have adirect formula for the first <strong>de</strong>rivative Y X :(2.4) Y X := dYdXY x=dx · ∂Y (x, y(x))/∂xdx · ∂X(x, y(x))/∂x = Y x + y x Y yX x + y x X y.


This yields the prolongation of the transformation to the first or<strong>de</strong>r jet space.For the second or<strong>de</strong>r prolongation, introducing the second or<strong>de</strong>r total differentiationoperator (which geometrically corresponds to differentiation alonggraphs {(x, y(x))}) <strong>de</strong>fined by(2.5) D := ∂∂x + y x∂∂y + y xx∂∂y x,we may compute, simplify and reor<strong>de</strong>r the expression of the second or<strong>de</strong>r<strong>de</strong>rivative in the (X, Y )-coordinates:(2.6) ⎧Y XX := d2 YdX ≡ DY X2 DX = D [(Y x + y x Y y )(X x + y x X x ) −1 ]=X x + y x X y⎪⎨⎪⎩1=[X x + y x X y ] {y 3 xx [X x Y y − Y x X y ] + X x Y xx − Y x X xx ++ y x [2(X x Y xy − Y x X xy ) − (X xx Y y − Y xx X y )] +11+ y x y x [X x Y yy − Y x X yy − 2(X xy Y y − Y xy X y )]++ y x y x y x [−(X yy Y y − Y yy X y )]} .Even if not too complicated, the internal combinatorics of this expressionhas to be analyzed and expressed thoroughly. First of all, as Y XX = 0 byassumption, we may erase the cubic factor [X x +y x X y ] −3 . Next, as the factorof y xx in the right-hand si<strong>de</strong> of (2.6), we just recognize the Jacobian ∆(x|y)expressed in (2.3) above. Also, all the other factors are modifications of theJacobian ∆(x|y), whose combinatorics may be un<strong>de</strong>rstood as follows.There exist exactly three possible distinct second or<strong>de</strong>r <strong>de</strong>rivatives: xx, xyand yy. There are also exactly two columns in (2.3). By replacing each ofthe two columns of first or<strong>de</strong>r <strong>de</strong>rivative in ∆(x|y) by any column of secondor<strong>de</strong>r <strong>de</strong>rivative (leaving X and Y unchanged), we may build exactly sixnew <strong>de</strong>terminants(2.7){ ∆(xx|y) ∆(xy|y) ∆(yy|y)∆(x|xx) ∆(x|xy) ∆(x|yy)where for instance{(2.8) ∆(xx|y) :=∣ X ∣ xx X y ∣∣∣ and ∆(x|xy) :=Y xx Y y∣X xX xyY x Y xy∣ ∣∣∣.Hence, by rewriting (2.6), we see that the equation y xx = F(x, y, y x ) equivalentto Y XX = 0 may be written un<strong>de</strong>r the general explicit form, involving


12<strong>de</strong>terminants(2.9)⎧⎪⎨ 0 = y xx ·∣ X ∣ x X y ∣∣∣ +Y x Y y∣ X ∣ {x X xx ∣∣∣ + yY x Y x · 2xx∣ X ∣ x X xy ∣∣∣ −Y x Y xy∣ X ∣}xx X y ∣∣∣+Y xx Y y{∣ ∣ ∣∣∣⎪⎩X+ y x y x · x X yy ∣∣∣ − 2Y x Y yy∣ X ∣}{xy X y ∣∣∣ + yY xy Y x y x y x · −y∣ X ∣}yy X y ∣∣∣Y yy Y yor equivalently, after solving in y xx , i.e.∆(x|y):(2.10)⎧⎪⎨ y xx = − ∆(x|xx)∆(x|y) + y x ·⎪⎩+ (y x ) 2 ·{−2 ∆(x|xy)∆(x|y) + ∆(xx|y)∆(x|y)}{− ∆(x|yy)∆(x|y) + 2∆(xy|y) ∆(x|y)after dividing by the Jacobian+ (y x ) 3 ·}+{ ∆(yy|y)∆(x|y)At this point, it will be convenient to slightly contract the notation by introducinga new family of square functions as follows. We first in<strong>de</strong>x thecoordinates (x, y) as (y 0 , y 1 ), namely we introduce the two notational equivalences(2.11) y 0 ≡ x, y 1 ≡ y ,which will be very convenient in the sequel, especially to write down generalcombinatorial formulas anticipating our treatment of the case of m 2 <strong>de</strong>pen<strong>de</strong>ntvariab<strong>les</strong> (y 1 , . . .,y m ), to be achieved in Sections 3, 4 and 5 below.With this convention at hand, our six square functions □ k 1y j 1y , symmetricj 2with respect to the lower indices, where 0 j 1 , j 2 , k 1 1, are <strong>de</strong>fined by(2.12)⎧⎪⎨⎪⎩□ 0 xx := ∆(xx|y)∆(x|y) ,□ 1 xx:=∆(x|xx)∆(x|y) ,□0 xy := ∆(xy|y)∆(x|y) ,□1 xy:=∆(x|xy)∆(x|y) ,□0 yy := ∆(yy|y)∆(x|y) ,□1 yy:=∆(x|yy)∆(x|y) .Here of course, the upper in<strong>de</strong>x <strong>de</strong>signates the column upon which the secondor<strong>de</strong>r <strong>de</strong>rivative appears, itself being enco<strong>de</strong>d by the two lower indices.Even if this is hid<strong>de</strong>n in the notation, we shall remember that the squarefunctions are explicit rational expressions in terms of the second or<strong>de</strong>r jetof the transformation (x, y) ↦→ (X(x, y), Y (x, y)). However, we shall beaware of not confusing the in<strong>de</strong>x in the square functions with a second or<strong>de</strong>rpartial <strong>de</strong>rivative of some function “□ j ”, <strong>de</strong>noted by the square symbol:in<strong>de</strong>ed, the partial <strong>de</strong>rivatives are hid<strong>de</strong>n in some <strong>de</strong>terminant.At this point, we may summarize what we have established so far.Lemma 2.13. The equation y xx = F(x, y, y x ) is equivalent to the flat equationY XX = 0 if and only if there exist two local K-analytic functions}.


X(x, y) and Y (x, y) such that it may be written un<strong>de</strong>r the form(2.14)y xx = −□ 1 xx +y x ·(−2□ 1 xy + □0 xx)+(yx ) 2 ·(−□ 1 yy + 2 □0 xy)+(yx ) 3 ·□ 0 yy .At this point, for heuristic reasons, it may be useful to compare the righthandsi<strong>de</strong> of (2.14) with the classical expression of the prolongation to thesecond or<strong>de</strong>r jet space of a general vector field of the form L := X(x, y) ∂ + ∂xY (x, y) ∂ , which is given, according to [<strong>Lie</strong>1883], [Ol1986], [BK1989], by∂y(2.15) ⎧L (2) = X ∂⎪⎨ ∂x + Y ∂ ∂y + [ Y x + y x · (Y y − X x ) + (y x ) 2 · (−X y ) ] ∂+∂y x+ [ Y xx + y x · (2Y xy − X xx ) + (y x ) 2 · (Y yy − 2X xy ) + (y x ) 3 · (−X yy )+⎪⎩+ y xx · (Y y − 2 X x ) + y x y xx · (−3 X y )]∂∂y xx.We immediately see that (up to an overall minus sign) the right-hand si<strong>de</strong>of (2.14) is formally analogous to the second line of (2.15) : the letter Xcorresponds to the symbol □ 0 and the letter Y corresponds to the symbol□ 1 . This analogy is no mystery, just because the formula for L (2) is classicallyobtained by differentiating at ε = 0 the second or<strong>de</strong>r prolongation[exp(εL)(·)] (2) of the flow of L !In fact, as we assumed that the transformation (x, y) ↦→(X(x, y), Y (x, y)) is tangent to the i<strong>de</strong>ntity at the origin, we maythink that X x∼ = 1, Xy∼ = 0, Yx∼ = 0 and Yy∼ = 1, whence the Jacobian∆(x|y) ∼ = 1 and moreover13(2.16){□0xx∼ = Xxx , □ 0 xy ∼ = X xy , □ 0 yy ∼ = X yy ,□ 1 xx ∼ = Y xx , □ 1 xy ∼ = Y xy , □ 1 yy ∼ = Y yy .By means of this (abusive) notational correspon<strong>de</strong>nce, we see that, up to anoverall minus sign, the right-hand si<strong>de</strong> of (2.14) transforms precisely to thesecond line of (2.15). This analogy will be useful in <strong>de</strong>vising combinatorialformulas for the generalization of Lemma 2.13 to the case of m 2variab<strong>les</strong> (y 1 , . . .,y m ), see Lemmas 3.22 and 3.32 below.2.17. Continuation. Clearly, since the right-hand si<strong>de</strong> of (2.14) is a polynomialof <strong>de</strong>gree three in y x , the first condition of Theorem 1.2 (4) immediatelyholds. We are therefore led to establish that the second condition isnecessary and sufficient in or<strong>de</strong>r that there exist two local K-analytic functionsX(x, y) and Y (x, y) which solve the following system of nonlinearsecond or<strong>de</strong>r partial differential equations (remind that the second or<strong>de</strong>r jet


14of (X, Y ) is hid<strong>de</strong>n in the square functions):⎧G = − □ 1 xx⎪⎨,H = − 2 □ 1 xy(2.18)+ □0 xx ,L = − □ 1 yy + 2 □ 0 xy,⎪⎩M = □ 0 yy .In the remain<strong>de</strong>r of this section, following [<strong>Lie</strong>1883], p. 364, we shall studythis second or<strong>de</strong>r system by introducing two <strong>aux</strong>iliary systems of partialdifferential equations which are complete, and we shall see in §2.38 belowthat the compatibility conditions (in<strong>sur</strong>ing involutivity, hence complete integrability)of the second <strong>aux</strong>iliary system exactly provi<strong>de</strong> the two partialdifferential equations appearing in Theorem 1.2 (4).2.19. First <strong>aux</strong>iliary system. We notice that in (2.18), there are two moresquare functions □ 0 xx , □0 xy , □0 yy , □1 xx , □1 xy , □1 yy , than functions G, H, L andM. Hence, as a trick, let us introduce six new in<strong>de</strong>pen<strong>de</strong>nt functions Π k 1j 1 ,j 2of (x, y), symmetric with respect to the lower indices, for 0 j 1 , j 2 , k 1 1and let us seek necessary and sufficient conditions in or<strong>de</strong>r that there existsolutions (X, Y ) to the first <strong>aux</strong>iliary system:{□0xx = Π 0 0,0 , □0 xy = Π0 0,1 , □0 yy = Π0 1,1 ,(2.20)□ 1 xx = Π1 0,0 , □1 xy = Π1 0,1 , □1 yy = Π1 1,1 .According to the (aprooximate) i<strong>de</strong>ntities (2.16), this system looks like acomplete second or<strong>de</strong>r system of partial differential equations in two variab<strong>les</strong>(x, y) and in two unknowns (X, Y ). More rigorously, by means ofelementary algebraic operations, taking account of the fact that X x∼ = 1,X y∼ = 0, Yx∼ = 0 and Yy∼ = 1, one may transform this sytem in a true secondor<strong>de</strong>r complete system, solved with respect to the top or<strong>de</strong>r <strong>de</strong>rivatives,namely of the form{Xxx = Λ 0 0,0 , X xy = Λ 0 0,1 , X yy = Λ 0 1,1 ,(2.21)Y xx = Λ 1 0,0 , Y xy = Λ 1 0,1 , Y yy = Λ 1 1,1 ,where the Λ k 1j 1 ,j 2are local K-analytic functions of (x, y, X, Y, X x , X y , Y x , Y y ).For such a system, the compatibility conditions [which are necessary andsufficient for the existence of a solution (X, Y )] are easily formulated:{(Λ00,0 ) y = (Λ 0 0,1) x , (Λ 0 0,1) y = (Λ 0 1,1) x ,(2.22)(Λ 1 0,0 ) y = (Λ 1 0,1 ) x, (Λ 1 0,1 ) y = (Λ 1 1,1 ) x.Equivalently, we may express the compatibility conditions directly with thesystem (2.20), without transforming it to the form (2.21). This direct strategywill be more appropriate.


2.23. Compatibility conditions for the first <strong>aux</strong>iliary system. In<strong>de</strong>ed, tobegin with, let us remind that the ∆(·|·) are <strong>de</strong>terminant, hence we have theskew-symmetry relation ∆(x a y b |x c y d ) = −∆(x c y d |x a y b ) and the followingtwo formulas for partial differentiation{ [∆(x a y b |x c y d ) ] = x ∆(xa+1 y b |x c y d ) + ∆(x a y b |x c+1 y d ),(2.24)[∆(x a y b |x c y d ) ] y = ∆(xa y b+1 |x c y d ) + ∆(x a y b |x c y d+1 ).With these formal ru<strong>les</strong> at hand, as an exercise, let us compute for instancethe following cross differentiation (remember that the lower in<strong>de</strong>x in thesquare functions is not a partial <strong>de</strong>rivative):(2.25) ⎧⎪⎨⎪⎩(□0xx)==)( ) ∆(xx|y)− ∂∆(x|y) ∂x( ) ∆(xy|y)=∆(x|y)−( □ 0 y xy = ∂ x∂y1{∆(xxy|y) · ∆(x|y)[∆(x|y)] 2 a+ ∆(xx|yy) · ∆(x|y)−−∆(xy|y) · ∆(xx|y) b− ∆(x|yy) · ∆(xx|y)−−∆(xxy|y) · ∆(x|y) a− ∆(xy|xy) · ∆(x|y) c+}+∆(xy|y) · ∆(xx|y) b+ ∆(xy|y) · ∆(x|xy) =1{∆(xx|yy) · ∆(x|y) − ∆(x|yy) · ∆(xx|y)+[∆(x|y)]2+∆(xy|y) · ∆(x|xy)}.Crucially, we observe that the third or<strong>de</strong>r <strong>de</strong>rivatives kill each other anddisappear, see the un<strong>de</strong>rlined terms with a appen<strong>de</strong>d. Also, two productsof two <strong>de</strong>terminants ∆(·|·) involving a second or<strong>de</strong>r <strong>de</strong>rivative upon onecolumn of each <strong>de</strong>terminant kill each other: they are un<strong>de</strong>rlined with bappen<strong>de</strong>d. Finally, by antisymmetry of <strong>de</strong>terminants, the term ∆(xy|xy) ·∆(x|y) vanishes gratuitously: it is un<strong>de</strong>rlined with c appen<strong>de</strong>d.However, there still remains one term involving second or<strong>de</strong>r <strong>de</strong>rivativesupon the two columns of a <strong>de</strong>terminant: it is ∆(xx|yy).We must transform this unpleasant term ∆(xx|yy) · ∆(x|y) and expressit as a product of two <strong>de</strong>terminants, each involving a second or<strong>de</strong>r <strong>de</strong>rivativeonly in one column. To this aim, we have:Lemma 2.26. The following three relations between the differential <strong>de</strong>terminants∆(·|·) hold true:(2.27) ⎧⎪⎨∆(xx|xy) · ∆(x|y) = ∆(xx|y) · ∆(x|xy) − ∆(xy|y) · ∆(x|xx),∆(xx|yy) · ∆(x|y) = ∆(xx|y) · ∆(x|yy) − ∆(yy|y) · ∆(x|xx),⎪⎩∆(xy|yy) · ∆(x|y) = ∆(xy|y) · ∆(x|yy) − ∆(yy|y) · ∆(x|xy).15


16Proof. Each of these three formal i<strong>de</strong>ntities is an immediate direct consequenceof the following Plücker type i<strong>de</strong>ntity, easily verified by <strong>de</strong>velopingall the <strong>de</strong>terminants :(2.28)∣ A ∣ 1 B 1∣∣∣·B 2∣ C ∣ 1 D 1 ∣∣∣ =C 2 D 2∣ A ∣ 1 D 1∣∣∣·D 2∣ C ∣ 1 B 1 ∣∣∣ −B 2∣ B ∣ 1 D 1∣∣∣·D 2∣ C ∣1 A 1 ∣∣∣,C 2 A 2A 2A 2where the variab<strong>les</strong> A 1 , A 2 , B 1 , B 2 , C 1 , C 2 , D 1 , D 2 ∈ K are arbitrary.Thanks to the second i<strong>de</strong>ntity (2.27), we may therefore transform the resultleft above in the last two lines of (2.25); as <strong>de</strong>sired, it will remain <strong>de</strong>terminantshaving only one second or<strong>de</strong>r <strong>de</strong>rivative per column, so that afterdivision by [∆(x|y)] 2 , we discover a quadratic expression involving only thesquare functions themselves:(2.29) ⎧( )□0 − ( xx □ 0 y xy)x = 1{∆(xx|y) · ∆(x|yy) − ∆(yy|y) · ∆(x|xx)−[∆(x|y)]2⎪⎨−∆(x|yy) · ∆(xx|y) + ∆(xy|y) · ∆(x|xy)}1= {−∆(yy|y) · ∆(x|xx) + ∆(xy|y) · ∆(x|xy)}[∆(x|y)]2⎪⎩= −□ 0 yy · □1 xx + □0 xy · □1 xy .In sum, the result of the cross differentiation (□ 0 xx) y − (□ 0 xy) x is a quadraticexpression in terms of the square functions themselves! Following the samerecipe (with no <strong>sur</strong>prise), one may establish the following relations, listingall the compatibility conditions (the first one is nothing else than (2.29)):(2.30) ⎧( )□0 − ( )xx □ 0 y xy = − x □1 xx · □0 yy + □1 xy · □0 xy( ),⎪⎨ □0 − ( )xy □ 0 y yy = − x □0 xy · □0 yx − □1 xy · □0 yy + □0 yy · □0 xx + □1 yy · □0 xy( ),□1 − ( )xx □ 1 y xy = − x □0 xx · □1 yx − □1 xx · □1 yy + □0 xy · □1 xx + □1 xy · □1 xy ,⎪⎩( )□1 − ( )xy □ 1 y yy = − x □0 xy · □1 yx + □0 yy · □1 xx .Instead of checking patiently each of the remaining three cross above crossdifferentiation i<strong>de</strong>ntities, it is better to establish directly the following generalrelation.Lemma 2.31. Remind from (2.11) that we i<strong>de</strong>ntify y 0 with x and y 1 with yand let 0 j 1 , j 2 , j 3 , k 1 1. Then(2.32)( ) ( )□ k 1− □ k y j 1y j 12y j y 31y j 3y j 2= −1∑k 2 =0C 2B 2□ k 2y j 1y j 2 ·□k 1y j 3y k 2 + 1∑k 2 =0□ k 2y j 1y j 3 ·□k 1y j 2y k 2 .


This lemma is left to the rea<strong>de</strong>r; anyway, we shall complete the proof ofa generalization of Lemma 2.31 to the case of m 1 <strong>de</strong>pen<strong>de</strong>nt variab<strong>les</strong>(y 1 , . . .,y m ) in Section 2 below (Lemma 3.40).Coming back to the first <strong>aux</strong>iliary system (2.20), we therefore have obtaineda necessary and sufficient condition for the existence of (X, Y ): thefunctions Π k 1j 1 ,jshould satisfy the following system of first or<strong>de</strong>r partial differentialequations, just obtained from (2.30) by replacing the square func-2tions by the Pi functions:(2.33) ⎧( )Π0 − ( )0,0 Π 0 y 0,1 = − x Π1 0,0 · Π0 1,1 + Π1 0,1 · Π0 0,1( ),⎪⎨ Π0 − ( )0,1 Π 0 y 1,1 = − x Π0 0,1 · Π 0 0,1 − Π 1 0,1 · Π 0 1,1 + Π 0 1,1 · Π 0 0,0 + Π 1 1,1 · Π 0 0,1,( )Π1 − ( )0,0 Π 1 y 0,1 = − x Π0 0,0 · Π1 0,1 − Π1 0,0 · Π1 1,1 + Π0 0,1 · Π1 1,1 + Π1 0,1 · Π1 0,1 ,⎪⎩( )Π1 − ( )0,1 Π 1 y 1,1 = − x Π0 0,1 · Π1 0,1 + Π0 1,1 · Π1 0,0 .172.34. Second <strong>aux</strong>iliary system. It is now time to come back to the functionsG, H, L and M and to get rid of the <strong>aux</strong>iliary “Pi” functions. Unfortunately,we cannot invert directly the linear system (2.18), hence we must choose twospecific square functions as principal unknowns, and the best, from a combinatorialpoint of view, is to choose □ 0 xx and □ 1 yy. Remind that by (2.20),we have □ 0 xx = Π 0 0,0 and □ 1 yy = Π 1 1,1. For clarity, it will be useful to adoptthe notational equivalences(2.35) Θ 0 ≡ Π 0 0,0 and Θ 1 ≡ Π 1 1,1.We may therefore quasi-inverse the linear system (2.18), obtaining that thefour functions Π 1 0,0 , Π1 0,1 , Π0 0,1 and Π0 1,1 may be expressed in terms of thefunctions G, H, L and M and in terms of the remaining two principal unknowns(2.35), which yields:⎧Π 1 0,0 = □1 xx = −G(2.36)⎪⎨ Π 1 0,1 = □1 xy = −1 2 H + 1 2 Θ0 ,Π 0 0,1⎪⎩= □0 xy = 1 2 L + 1 2 Θ1 ,Π 0 1,1 = □0 yy = M.Replacing now each of these four expressions in the compatibility conditionsof the first <strong>aux</strong>iliary system (2.33), solving the four equations with respectto Θ 1 y , Θ0 x , Θ1 x and Θ0 y , we get after hygienic simplifications what we shallcall the second <strong>aux</strong>iliary system, which is a complete system of first or<strong>de</strong>r


18partial <strong>de</strong>rivatives in the remaining two principal unknowns Θ 0 and Θ 1 :(2.37) ⎧Θ 1 y = − L y + 2M x + HM − 1 2 L2 + M Θ 0 + 1 ( ) Θ1 2,2⎪⎨ Θ 0 x = − 2 G y + H x + G L − 1 2 H2 − G Θ 1 + 1 2(Θ0 )2 ,Θ 1 x = − 2 3 H y + 1 3 L x + 2 G M − 1 2 H L − 1 2 H Θ1 + 1 2 L Θ0 + 1 2 Θ0 Θ 1 ,⎪⎩ Θ 0 y = − 1 3 H y + 2 3 L x + 2 G M − 1 2 H L − 1 2 H Θ1 + 1 2 L Θ0 + 1 2 Θ0 Θ 1 .We do not comment the intermediate computations, since they offer no newcombinatorial discovery.2.38. Precise lexicographic ru<strong>les</strong>. We group first or<strong>de</strong>r <strong>de</strong>rivatives beforezeroth or<strong>de</strong>r <strong>de</strong>rivatives; in each group, we respect the lexicographic or<strong>de</strong>rof appearance given by the sequence G, H, L, M, Θ 0 , Θ 1 ; we always put rationalcoefficient of every differential monomial in its left; consequently, weaccept a minus sign just after an equality sign, as for instance in (2.36) 1 andin (2.37) 2 ; for clarity, we prefer to write a complicated differential equationas 0 = Φ, with 0 on the left, instead of Φ = 0, since Φ may incoporate 10,20 and up to 150 monomials, as will happen for instance in the next sectionsbelow.2.39. Compatibility conditions for the second <strong>aux</strong>iliary system. Clearly,the necessary and sufficient condition for the existence of solutions (Θ 0 , Θ 1 )to the second <strong>aux</strong>iliary system (2.37) is that the two cross differentiationsvanish:(2.40){ 0 =(Θ0x))− (Θ 0 y y0 = ( )Θ 1 x − ( )Θ 1 y yUsing (2.37), we shall see that we exactly obtain the two second or<strong>de</strong>r partialdifferential equations written in Theorem 1.2 (4). For completeness, weshall perform completely the computation of the first compatibility condition(2.40) and leave the second as an (easy) exercise.First of all, inserting (2.37) and using the rule of Leibniz for the differentiationof a product, let us write the cru<strong>de</strong> result, performing neither anyx ,x .


simplification nor any reor<strong>de</strong>ring:(2.41) ⎧0 = ( )Θ 0 x − ( )Θ 0 y y x⎪⎨ = − 2 G yy + H xy + G y L + G L y − H H y − G y Θ 1 − G Θ 1 y + Θ 0 Θ 0 y++ 1 3 H xy − 2 3 L xx − 2 G x M − 2 G M x + 1 2 H x L + 1 2 H L x+19⎪⎩+ 1 2 H x Θ 1 + 1 2 H Θ1 x − 1 2 L x Θ 0 − 1 2 L Θ0 x − 1 2 Θ0 x Θ1 − 1 2 Θ0 Θ 1 x .Next, replacing each first or<strong>de</strong>r <strong>de</strong>rivative Θ 0 x, Θ 0 y, Θ 1 x and Θ 1 y occuringin (2.41) by its expression given in (2.37), we obtain (suffering a little) as abrute result, before any simplification (except that we put all second or<strong>de</strong>r<strong>de</strong>rivatives in the beginning):(2.42) ⎧0 = − 2 G yy + 4 3 H xy − 2 3 L xx++ G y L + G L y − H H y − G y Θ 1 + G L y − 2 G M x − G H M++ 1 2 G (L)2 − G M Θ 0 − 1 2 G (Θ1 ) 2 − 1 3 H y Θ 0 + 2 3 L x Θ 0 ++ 2 G M Θ 0 − 1 2 H L Θ0 − 1 2 H Θ0 Θ 1 + 1 2 L (Θ0 ) 2 + 1 2 (Θ0 ) 2 Θ 1 −⎪⎨− 2 G x M − 2 G M x + 1 2 H x L + 1 2 H L x + 1 2 H x Θ 1 ++ 1 6 H L x − 1 3 H H y + G H M − 1 4 (H)2 L − 1 4 (H)2 Θ 1 ++ 1 4 H L Θ0 + 1 4 H Θ0 Θ 1 − 1 2 L x Θ 0 + G y L − 1 2 H x L − 1 2 G (L)2 ++ 1 4 H2 L + 1 2 G L Θ1 − 1 4 L ( Θ 0)2 + G y Θ 1 − 1 2 H x Θ 1 −− 1 2 G L Θ1 + 1 4 H2 Θ 1 + 1 2 G (Θ1 ) 2 − 1 4(Θ0 )2 Θ 1 − 1 6 L x Θ 0 ++ 1 3 H y Θ 0 − G M Θ 0 + 1 4 H L Θ0 + 1 4 H Θ0 Θ 1 − 1 4 L (Θ0 ) 2 −⎪⎩− 1 4 (Θ0 ) 2 Θ 1 .


20Now, we can simplify this brute expression by chasing every couple (ortriple, or quadruple) of terms killing each other. After (patient) simplificationand lexicographic or<strong>de</strong>ring, we obtain the equation(2.43) ⎧⎪⎨ 0 = −2 G yy + 4 3 H xy − 2 3 L xx+⎪⎩+ 2(G L) y − 2 G x M − 4 G M x + 2 3 H L x − 4 3 H H y,which is exactly the first equation of (4) of Theorem 1.2. The treatment ofthe second one is totally similar. This completes the proof of the equivalencebetween (1) and (4) in Theorem 1.2.2.44. Interlu<strong>de</strong>: about hand-computed formulas. In Section 4 below,when <strong>de</strong>aling with several <strong>de</strong>pen<strong>de</strong>nt variab<strong>les</strong> y 1 , . . .,y m , many simplificationsof i<strong>de</strong>ntities which are much more massive than (2.42) will occurseveral times. It is therefore welcome to explain how we manage to achievesuch computations, without mistakes at the end and strictly by hand. One ofthe trick is to use colors, which, unfortunately, cannot be restituted in thisprinted document. Another trick is to un<strong>de</strong>rline and to number the termswhich disappear together, by pair, by triple, by quadruple, etc. This trickis illustrated in the <strong>de</strong>tailed i<strong>de</strong>ntity (2.45) below, extracted from our manuscript,which is a copy of (2.42) together with the <strong>de</strong>signation of all theterms which vanish together. Hence, we keep a written track of each intermediatestep of every computation and of every simplification. Checking thecorrectness of a computation simply by reading is then the easiest way, bothfor the writer and for the rea<strong>de</strong>r, although of course, it takes time, anyway.On the contrary, when relying upon a digital computer, most intermediatesteps are invisible; the chase of mistakes is by reading the program andby testing it on several instances. Alas, all the finest intuitions which mayawake in the extreme insi<strong>de</strong> of a long computation are essentially absent, themind believing that the machine is stronger for such tasks. This last belief isin part true, in the case where straightforward known computations are concerned,and in part untrue, in the case where some new hid<strong>de</strong>n mathematicalreality is concerned.For us, the challenge is to control everything in a sea of signs. Computationsare to be organized like a living giant coral tree, all part of whichshould be clearly visible in a transparent fluid of thought, and permanentlysubject to corrections.In<strong>de</strong>ed, it often happens that going through a problem involving massiveformal computations, some disharmony or some incoherency is discovered.Then one has to inspect every living atom in the preceding branches of the


aleza, y por otra, las organizaciones necesarias para fijar las relacionesentre ellos. Cultura es todo aquello que incluye el conocimiento, lascreencias, el arte, la moral, el <strong>de</strong>recho, las costumbres y cualquier otrohábito y capacida<strong>de</strong>s adquiridos por el hombre. Es un sistema <strong>de</strong> significadoe información compartido por un grupo y transmitido a través<strong>de</strong> generaciones, que permite proveer <strong>de</strong> sus necesida<strong>de</strong>s básicas <strong>de</strong>supervivencia coordinada a la conducta social para lograr una existenciaviable. Es algo creado por el hombre frente a la naturaleza. La culturaes la herencia social, es la manera en que los seres humanos solucionanproblemas y a su vez un conjunto <strong>de</strong> actitu<strong>de</strong>s, creencias, valores,hábitos, tradiciones adquiridos por los miembros <strong>de</strong> la sociedad.Choque cultural• El choque cultural es un término que fue introducido por primeravez en 1958, <strong>de</strong>scribe la ansiedad producida por la pérdida <strong>de</strong>lsentido <strong>de</strong> qué hacer, cuándo hacer, o cómo hacer las cosas enun nuevo ambiente. Este término expresa un sentimiento <strong>de</strong> falta<strong>de</strong> dirección porque el individuo no conoce qué es apropiado oinapropiado en el nuevo lugar. Se presenta generalmente <strong>de</strong>spués<strong>de</strong> las primeras semanas <strong>de</strong> haber llegado a un nuevo sitio.• Po<strong>de</strong>mos <strong>de</strong>scribir el Choque cultural como la incomodidad físicay emocional que se sufre cuando se llega a vivir a un lugar diferenteal <strong>de</strong> origen. Las conductas aprendidas no son aceptadas o[ 21 ]


22summed together. However, whereas we use the red pencil to un<strong>de</strong>rline thevanishing terms, we use the green pencil to un<strong>de</strong>rline the remaining terms.This small trick is to avoid as much as possible to copy several times somelong formal expressions. Finally, we reor<strong>de</strong>r everything lexicographically,so as to get the conclusion (2.43). In or<strong>de</strong>r to obtain the final equation (2.43)as efficiently as possible, we read the remaining terms, picking them directlyin lexicographic or<strong>de</strong>r. If, by lack of luck, one or two terms are forgotten bythe eyes and not written in the right place, we copy once more the very finalresult in the right or<strong>de</strong>r, or we use the blank corrector.Of course, such a refined methodology could seem to be essentially superfluousfor such relatively accessible computations. However, when passingto several <strong>de</strong>pen<strong>de</strong>nt variab<strong>les</strong>, the current expressions will be approximativelyfive times more massive. We may really ascertain that a clevermethodology of hand computations is helpful in this category.§3. SYSTEMS OF SECOND ORDER ORDINARY DIFFERENTIALEQUATIONS EQUIVALENT TO FREE PARTICLES3.1. Combinatorics of the second or<strong>de</strong>r prolongation of a point transformation.In this section, we en<strong>de</strong>avour to explain how <strong>Lie</strong>’s theoremand proof may be generalized to the case of several <strong>de</strong>pen<strong>de</strong>nt variab<strong>les</strong>.As in the statement of Theorem 1.7 (1), let us assume that the systemyxx j = F j (x, y, y x ), j = 1, . . .,m, is equivalent un<strong>de</strong>r an invertible pointtransformation (x, y) ↦→ (X(x, y), Y (x, y)) to the free particle systemY j XX= 0, j = 1, . . .,m. By assumption, the Jacobian <strong>de</strong>terminant∣ X x X y 1 . . . X y m ∣∣∣∣∣∣∣(3.2) ∆(x|y 1 | . . . |y m ) :=Yx 1 Y 1y. . . Y 1∣1 y m. . . . . . . . . . . .∣Y mxY my 1 . . . Y my mdoes not vanish at the origin. As in the case m = 1, since the flat systemY j XX= 0 is left unchanged by any affine transformation, we can (and weshall) assume that the transformation is tangent to the i<strong>de</strong>ntity at the origin,so that the above Jacobian matrix equals the i<strong>de</strong>ntity matrix at (x, y) =(0, 0), whence in a neighborhood of the origin it is close to the i<strong>de</strong>ntitymatrix, namely(3.3) X x∼ = 1, Xy j ∼ = 0, Y jx ∼ = 0, Y j 2y j 1∼ = δj 2j 1.Inductive formulas for the computation how the differential equation in the(X, Y ) coordinates is related to the differential equation in the (x, y) coordinatesmay be found in [BK1989], [Ol1995]; the explicit formulas are notachieved in these references. Let us recall the inductive formulas, just on the


computational level (differential-geometric conceptional background aboutgraph transformations may be found in [Ol1986], Ch. 2).First of all, we seek how the Y j dY jX:= are explicitely related to the dX yl x .It suffices to replace, in the i<strong>de</strong>ntity(3.4) ()m∑mY j X · X x dx + X y l dy l = Y j X dX = dY j = Yx j dx + ∑Y j dy ly ll=1the differentials dy l by y l x dx and then to i<strong>de</strong>ntify the coefficient of dx onboth si<strong>de</strong>s, which rapidly yields the formulas(3.5) Y j X = Y x j + ∑ ml=1 yl x Y jy lX x + ∑ ml=1 yl x X ,y lfor j = 1, . . .,m.Next, we seek how the Y j XX := d2 Y jdX 2l=123= dY j XdX are related to the yl 1 x , y l 2 xx .It suffices to again replace each dy l by y l x dx and each dy l x by y l xx dx in thei<strong>de</strong>ntity(3.6) ⎧⎪⎨⎪⎩Y j XX ·(X x dx +)m∑X y l dy l = Y j XX · dX = dY j Xl=1= ∂Y j mX∂x dx + ∑l=1(∂Y j mX=∂x + ∑l=1∂Y j X∂y l dy l +∂Y j X∂y l y l x +m∑l=1m∑l=1∂Y j X∂y l x∂Y j X∂y l xBefore entering the precise combinatorics of the explicit expression of Y j XX ,let us observe that the last term of (3.6) simply writes D(Y j X) dx, where D<strong>de</strong>notes the total differentiation operator (of or<strong>de</strong>r two) <strong>de</strong>fined by(3.7) D := ∂∂x + m∑l=1y l x∂∂y + ∑ m ll=1∂yxxl ∂yxlSince dX ≡ DX after replacing each dy l by yx l dx, it follows that we maycompactly rewrite (3.6) as(3.8) Y j XX DX · dx = D ( Y j X)· dxConsequently, the expressions of Y j X (obtained in (3.5)) and of Y j XX are(3.9)Y j X = DY jand Y j XXDX= D ( Y j )XDX= DDY j · DX − DDX · DY j.[DX] 3.y l xxdy l x)· dx.


24As, by assumption, the system yxx j = F j (x, y, y x ) transforms to the flatsystem Y j XX= 0, after erasing the <strong>de</strong>nominator of (3.7), we come to theequations(3.10) 0 = DDY j · DX − DDX · DY j ,for j = 1, . . ., m. However, this too simple and too compact expression ofthe system y j xx = F j (x, y, y x ) is of no use and we must <strong>de</strong>velope (patiently!)the explicit expressions of DDY j , of DX, of DDX and of DY j , using thecomplete expression of D <strong>de</strong>fined in (3.6).At this point, we would like to stress that it constitutes already a nontrivialcomputational and combinatorial task to obtain a complete explicit formulafor the system y j xx = F j (x, y, y x ) hid<strong>de</strong>n in the compact form (3.10), whichwould be the generalization of the nice formula (2.9) involving modificationsof the Jacobian <strong>de</strong>terminant. For general m 2, the complete proofsare postponed to Section 5 below.Since it would be intuitively unsatisfactory to provi<strong>de</strong> directly the finalsimplified expression of the <strong>de</strong>velopment of (3.10) in the general casem 2, let us firstly <strong>de</strong>scribe step by step how one may guess what is thegeneralization of (2.9).


For instance, in the case m = 2, by a direct and relatively short computationwhich consists in <strong>de</strong>veloping plainly (3.10), we obtain for j = 1, 2:(3.11)⎧0 = − X xx Yx j + Y xx j X x+[]+ yx 1 · −X xx Y jy+ Y j1 xx X y 1 − 2 X xy 1 Y x j + 2 Y jxyX 1 x +[+ yx 2 · −X xx Y jy+ Y j2 xx X y 2 − 2 X xy 2 Y x j + 2Y jxyX 2 x]+[]+ yx 1 yx 1 · −2 X xy 1 Y jy+ 2 Y j1 xyX 1 y 1 − X y 1 y 1 Y x j + Y jy 1 yX 1 x +[+ yx 1 y2 x · −2 X xy 1 Y jy+ 2 Y j2 xyX 1 y 2 − 2 X xy 2 Y jy+ 2 Y j1 xyX 2 y 1−⎪⎨⎪⎩]−2 X y 1 y 2 Y x j + 2 Y jy 1 yX 2 x +[]+ yx 2 yx 2 · −2 X xy 2 Y jy+ 2 Y j2 xyX 2 y 2 − X y 2 y 2 Y x j + Y jy 2 yX 2 x +[]+ yx 1 y1 x y1 x · −X y 1 y 1 Y jy+ Y j1 y 1 yX 1 y 1 +[]+ yx 1 y1 x y2 x · −X y 1 y 1 Y jy+ Y j2 y 1 yX 1 y 2 − 2 X y 1 y 2 Y jy+ 2 Y j1 y 1 yX 2 y 1 +[]+ yx 1 yx 2 yx 2 · −X y 2 y 2 Y jy+ Y j1 y 2 yX 2 y 1 − 2 X y 1 y 2 Y jy+ 2 Y j2 y 1 yX 2 y 2 +[]+ yx 2 yx 2 yx 2 · −X y 2 y 2 Y jy+ Y j2 y 2 yX 2 y 2 +[{}]+ yxx 1 · −X y 1 Yx j + Y jyX 1 x + yx 2 · −X y 1 Y jy+ Y j2 yX 1 y 2 ++ y 2 xx ·[−X y 2 Y jx + Y jy 2 X x + y 1 x ·{−X y 2 Y jy 1 + Y jy 2 X y 1}].Unfortunately, the above two equations are not solved with respect to yxx1and to yxx 2 . Consequently, if we abbreviate them as a linear system of theform{0 = A 1 + yxx 1 · B1 1 + y2 xx · B1 2 ,(3.12)0 = A 2 + y 1 xx · B2 1 + y2 xx · B2 2 ,we have to solve for yxx 1 and for yxx 2 by means of the classical rule of Cramer.Here, it is rather quick to check manually that the <strong>de</strong>terminant of this systemhas the following nice expression:⎧⎪⎨(3.13)∣ B1 1 B21 B1 2 B22 ∣ = ∆(x|y1 |y 2 ) · {Xx + yx 1 X y 1 + y2 x X }y 2⎪⎩= ∆(x|y 1 |y 2 ) · DX.However, the complete solving for yxx 1 and for y2 xx requires some more time.After a direct and rather long hand computation (or alternately, using Maple25


26or Mathematica) one obtains formulas involving hid<strong>de</strong>n 3 × 3 <strong>de</strong>terminants,which have to be guessed by the intuition; the first equation that we obtain,namely for yxx 1 is as follows:(3.14)∣ ∣ X x X y 1 X y 2 ∣∣∣∣∣ X x X xx X y 2 ∣∣∣∣∣0 = yxx 1 ·Yx 1 Y 1yY 1∣1 y +2YYx 2 Y 2yY 2x 1 Yxx 1 Y 1y +∣21 yY 22 x Yxx 2 Y 2y⎧ ∣ ∣ 2 ∣⎫ ⎨ ∣∣∣∣∣ X x X xy 1 X y 2 ∣∣∣∣∣ + yx 1 · ⎩ 2 Y x 1 Y X xx X y 1 X y 2 ∣∣∣∣∣ ⎬ 1xyY 1 1 y −2Y 1Yx 2 Y 2xyY 2xx Y 1yY 1∣1 y 21 yY 22 xx Y 2yY 2 ⎭ +1 y⎧ ∣ 2⎨ ∣∣∣∣∣ X x X xy 2 X y 2+ yx 2 · ⎩ 2 Y x 1 Y 1xyY 1 2 y 2Yx 2 Yxy 2 Y 2 2y 2 ∣ ∣∣∣∣∣⎫⎬⎭ +⎧⎨+ yx 1 y1 x ·X x X y 1 y 1 X ∣ ∣⎫ y ∣∣∣∣∣ 2X xy 1 X y 1 X y 2 ∣∣∣∣∣ ⎬ ⎩Yx 1 Y 1y∣1 yY 1 1 y − 22Y 1Yx 2 Y 2y 1 yY 2xyY 1∣1 yY 1 1 y 21 yY 22 xyY 2 1 yY 2 ⎭ +1 y⎧ ∣ 2⎨ ∣∣∣∣∣ X x X y 1 y 2 X ∣ ∣⎫ y ∣∣∣∣∣ 2+ yx 1 yx2 ⎩ 2 Y x 1 Y X xy 2 X y 1 X y 2 ∣∣∣∣∣ ⎬ 1y 1 yY 1 2 y − 22Y 1Yx 2 Y 2y 1 yY 2xyY 1∣2 yY 1 1 y 22 yY 22 xyY 2 2 yY 2 ⎭ +1 y⎧2⎨+ yx 2 y2 x ·X x X y 2 y 2 X ∣⎫ y ∣∣∣∣∣ 2 ⎬ ⎩Yx 1 Y 1y∣2 yY 1 2 y 2Yx 2 Y 2y 2 yY 2 ⎭ +2 y 2⎧ ∣⎨ ∣∣∣∣∣ X y 1 y 1 X y 1 X ∣⎫ ⎧ ∣y ∣∣∣∣∣ 2 ⎬ ⎨ ∣∣∣∣∣ X y 1+ yx 1 yx 1 yx 1 ·⎩ − Y 1y1y Y 1 1 yY 1y 2 X y 1 X ∣⎫ y ∣∣∣∣∣ 2 ⎬ 1 y 2Y 2y 1 yY 2 1 yY 2 ⎭ + y1 x yx 1 yx 2 ·⎩ −2 Y 1y1y Y 1 2 yY 1 1 y 21 yY 22 y 1 yY 2 2 yY 2 ⎭ +1 y⎧ ∣ 2⎨ ∣∣∣∣∣ X y 2 y 2 X y 1 X y 2+ yx 1 yx 2 yx 2 ·⎩ − Y 1y2y Y 1 2 yY 1 1 y 2Y 2y 2 yY 2 2 yY 2 1y 2 ∣ ∣∣∣∣∣⎫⎬⎭ .This formula and the next have been checked by Sylvain Neut and MichelPetitot with the help of Maple. We notice that the size is not negligible,but fortunately, there appears some combinatorics, much more visible than


in (3.11). The second equation that we obtain, namely for y 2 xx, is as follows:27(3.15)∣ 0 = yxx 2 ·X x X y 1 X y 2 ∣∣∣∣∣ X x X y 1 X xxYx 1 Y 1yY 1∣1 y +2YYx 2 Y 2yY 2x 1 Y 1yY 1∣1 xx1 yY 22 x Y 2yY 2 ∣ +2 xx⎧ ∣ ∣⎫ ⎨ ∣∣∣∣∣ X x X y 1 X xy 1 ∣∣∣∣∣ ⎬+ yx 1 ·⎩ 2 Y x 1 Y 1yY 1 1 xy 1Yx 2 Y 2yY 2 ⎭ +1 xy⎧ ∣ 1 ∣ ∣⎫ ⎨ ∣∣∣∣∣ X x X y 1 X xy 2 ∣∣∣∣∣ + yx 2 ·⎩ 2 Y x 1 Y X xx X y 1 X y 2 ∣∣∣∣∣ ⎬ 1yY 1 1 xy −2Y 1Yx 2 Y 2yY 2xx Y 1yY 1∣1 y 21 xyY 22 xx Y 2yY 2 ⎭ +1 y 2⎧∣⎫ ⎨+ yx 1 y1 x ·X x X y 1 X y 1 y ∣∣∣∣∣ 1 ⎬ ⎩Yx 1 Y 1yY 1∣1 y 1 y 1Yx 2 Yy 2 Y 2 ⎭ +1 y 1 y⎧ ∣ 1 ∣ ∣⎫ ⎨ ∣∣∣∣∣ X x X y 1 X y 1 y ∣∣∣∣∣ 2+ yx 1 yx2 ⎩ 2 Y x 1 Y X xy 1 X y 1 X y 2 ∣∣∣∣∣ ⎬ 1yY 1 1 y 1 y − 22Y 1Yx 2 Y 2yY 2xyY 1∣1 yY 1 1 y 21 y 1 yY 22 xyY 2 1 yY 2 ⎭ +1 y⎧∣ 2 ∣⎫ ⎨X x X y 1 X y 2 y ∣∣∣∣∣ 2X xy 2 X y 1 X y 2 ∣∣∣∣∣ ⎬+ yx 2 yx 2 ·⎩Yx 1 Y 1yY 1∣1 y 2 y − 22Y 1Yx 2 Y 2yY 2xyY 1∣2 yY 1 1 y 21 y 2 yY 22 xyY 2 2 yY 2 ⎭ +1 y 2⎧ ∣⎨ ∣∣∣∣∣ X y 1 y 1 X y 1 X ∣⎫ ⎧ ∣y ∣∣∣∣∣ 2 ⎬ ⎨ ∣∣∣∣∣ X y 1+ yx 1 yx 1 yx 2 ·⎩ − Y 1y1y Y 1 1 yY 1y 2 X y 1 X ∣⎫ y ∣∣∣∣∣ 2 ⎬ 1 y 2Y 2y 1 yY 2 1 yY 2 ⎭ + y1 x yx 2 yx 2 ·⎩ −2 Y 1y1y Y 1 2 yY 1 1 y 21 yY 22 y 1 yY 2 2 yY 2 ⎭ +1 y⎧ ∣ 2⎨ ∣∣∣∣∣ X y 2 y 2 X y 1 X y 2+ yx 2 yx 2 yx 2 ·⎩ − Y 1y2y Y 1 2 yY 1 1 y 2Y 2y 2 yY 2 2 yY 2 1y 2 ∣ ∣∣∣∣∣⎫⎬⎭ .Importantly, the obtained formulas seem to be analogous to the formula(2.9), since we observe that the coefficients of the <strong>de</strong>gree three polynomialin the y l x are modifications of the Jacobian <strong>de</strong>terminant ∆(x|y1 |y 2 ).To <strong>de</strong>scribe the un<strong>de</strong>rlying combinatorics, let us observe that there existexactly six possible distinct second or<strong>de</strong>r <strong>de</strong>rivatives: xx, xy 1 , xy 2 , y 1 y 1 ,y 1 y 2 and y 2 y 2 . There are also exactly three columns in the Jacobian <strong>de</strong>terminant(3.2). By replacing each of the three columns of first or<strong>de</strong>r <strong>de</strong>rivativesby a column of second or<strong>de</strong>r <strong>de</strong>tivatives (leaving X, Y 1 and Y 2 unchanged),


28we may build exactly eighteen new <strong>de</strong>terminants(3.16)⎧⎪⎨⎪⎩∆(xx|y 1 |y 2 ) ∆(x|xx|y 2 ) ∆(x|y 1 |xx)∆(xy 1 |y 1 |y 2 ) ∆(x|xy 1 |y 2 ) ∆(x|y 1 |xy 1 )∆(xy 2 |y 1 |y 2 ) ∆(x|xy 2 |y 2 ) ∆(x|y 1 |xy 2 )∆(y 1 y 1 |y 1 |y 2 ) ∆(x|y 1 y 1 |y 2 ) ∆(x|y 1 |y 1 y 1 )∆(y 1 y 2 |y 1 |y 2 ) ∆(x|y 1 y 2 |y 2 ) ∆(x|y 1 |y 1 y 2 )∆(y 2 y 2 |y 1 |y 2 ) ∆(x|y 2 y 2 |y 2 ) ∆(x|y 1 |y 2 y 2 ),where for instance(3.17)⎧∆(y 1 y 2 |y 1 |y 2 ) :=⎪⎨∆(x|y⎪⎩1 |xy 2 ) :=∣∣X y 1 y 2 X y 1 X ∣y ∣∣∣∣∣∣ 2Y 1y 1 yY 1 2 yY 1 1 y 2 andY 2y 1 yY 2 2 yY 2 1 y 2∣X x X y 1 X xy 2 ∣∣∣∣∣∣Yx 1 Y 1yY 1 1 xy 2 .Yx 2 Y 2yY 2 1 xy 2Hence, using the ∆-notation, we may rewrite the two equation (3.14)and (3.15) un<strong>de</strong>r a more compact form; after division by the Jacobian <strong>de</strong>terminant∆(x|y 1 |y 2 ), the first equation becomes:(3.18)⎧{}0 = yxx 1 + ∆(x|xx|y2 )∆(x|y 1 |y 2 ) + y1 x · 2 ∆(x|xy1 |y 2 )∆(x|y 1 |y 2 ) − ∆(xx|y1 |y 2 )+∆(x|y 1 |y 2 ){ } { }+ yx 2 · 2 ∆(x|xy2 |y 2 ) ∆(x|y+ y 1∆(x|y⎪⎨1 |y 2 x yx 1 1 y 1 |y 2 )·− 2 ∆(xy1 |y 1 |y 2 )+) ∆(x|y 1 |y 2 ) ∆(x|y 1 |y 2 ){} { }+ yx 1 y2 x · 2 ∆(x|y1 y 2 |y 2 )− 2 ∆(xy2 |y 1 |y 2 ) ∆(x|y+ y 2 2∆(x|y 1 |y 2 ) ∆(x|y 1 |y 2 x)y2 x · y 2 |y 2 )+∆(x|y 1 |y 2 ){} {}+ yx 1 y1 x y1 x · − ∆(y1 y 1 |y 1 |y 2 )+ y 1∆(x|y 1 |y 2 x)y1 x y2 x · −2 ∆(y1 y 2 |y 1 |y 2 )+∆(x|y 1 |y 2 ){}⎪⎩ + yx 1 yx 2 yx 2 · − ∆(y2 y 2 |y 1 |y 2 ).∆(x|y 1 |y 2 )


Similarly, the second equation takes the form:(3.19) ⎧{ }0 = yxx 2 + ∆(x|y1 |xx)∆(x|y 1 |y 2 ) + y1 x · 2 ∆(x|y1 |xy 1 )+∆(x|y 1 |y 2 ){}+ yx 2 · 2 ∆(x|y1 |xy 2 )∆(x|y 1 |y 2 ) − ∆(xx|y1 |y 2 )+ y∆(x|y 1 |y 2 x 1 yx 1 ·){}⎪⎨ + yx 1 y2 x · 2 ∆(x|y1 |y 1 y 2 )− 2 ∆(xy1 |y 1 |y 2 )+∆(x|y 1 |y 2 ) ∆(x|y 1 |y 2 ){ }∆(x|y+ yx 2 yx 2 2 |y 2 y 2 )·− 2 ∆(xy2 |y 1 |y 2 )+∆(x|y 1 |y 2 ) ∆(x|y 1 |y 2 ){}+ yx 1 yx 1 yx 2 · − ∆(y1 y 1 |y 1 |y 2 )+ y∆(x|y 1 |y 2 x 1 yx 2 yx 2 ·){}⎪⎩ + yx 2 y2 x y2 x · − ∆(y2 y 2 |y 1 |y 2 ).∆(x|y 1 |y 2 )29{ } ∆(x|y 1 |y 1 y 1 )+∆(x|y 1 |y 2 ){−2 ∆(y1 y 2 |y 1 |y 2 )∆(x|y 1 |y 2 )Since the formulas are still of a consequent size, analogously to what wasachieved in Section 2, we shall introduce a new family of square functions asfollows. We first in<strong>de</strong>x the coordinates (x, y 1 , . . .,y m ) as (y 0 , y 1 , . . ., y m ),namely we introduce the notational equivalence(3.20) y 0 ≡ x ,which will be very convenient in the sequel, especially in or<strong>de</strong>r to write generalformulas. With this convention at hand, our eighteen square functions□ k 1y l 1y , <strong>de</strong>fined for 0 j l 2 1, j 2 , k 1 2 are <strong>de</strong>fined by(3.21)⎧⎪⎨⎪⎩□ 0 xx := ∆(xx|y1 |y 2 )∆(x|y 1 |y 2 )□ 0 y 1 y 1 := ∆(y1 y 1 |y 1 |y 2 )∆(x|y 1 |y 2 )□ 1 xx := ∆(x|xx|y2 )∆(x|y 1 |y 2 )□ 1 y 1 y 1 := ∆(x|y1 y 1 |y 2 )∆(x|y 1 |y 2 )□ 2 xx := ∆(x|y1 |xx)∆(x|y 1 |y 2 )□ 2 y 1 y 1 := ∆(x|y1 |y 1 y 1 )∆(x|y 1 |y 2 )□ 0 xy 1 := ∆(xy1 |y 1 |y 2 )∆(x|y 1 |y 2 )□ 0 y 1 y 2 := ∆(y1 y 2 |y 1 |y 2 )∆(x|y 1 |y 2 )□ 1 xy 1 := ∆(x|xy1 |y 2 )∆(x|y 1 |y 2 )□ 1 y 1 y 2 := ∆(x|y1 y 2 |y 2 )∆(x|y 1 |y 2 )□ 2 xy 1 := ∆(x|y1 |xy 1 )∆(x|y 1 |y 2 )□ 2 y 1 y 2 := ∆(x|y1 |y 1 y 2 )∆(x|y 1 |y 2 )}+□ 0 xy 2 := ∆(xy2 |y 1 |y 2 )∆(x|y 1 |y 2 )□ 0 y 2 y 2 := ∆(y2 y 2 |y 1 |y 2 )∆(x|y 1 |y 2 )□ 1 xy 2 := ∆(x|xy2 |y 2 )∆(x|y 1 |y 2 )□ 1 y 2 y 2 := ∆(x|y2 y 2 |y 2 )∆(x|y 1 |y 2 )□ 2 xy 2 := ∆(x|y1 |xy 2 )∆(x|y 1 |y 2 )□ 2 y 2 y 2 := ∆(x|y1 |y 2 y 2 )∆(x|y 1 |y 2 )Obviously, the square functions are symmetric with respect to the lowerindices: □ k 1y l 1y = l 2 □k 1. Here, the upper in<strong>de</strong>x <strong>de</strong>signates the columny l 2y l 1


30upon which the second or<strong>de</strong>r <strong>de</strong>rivative appears, itself being enco<strong>de</strong>d by thetwo lower indices. Even if this is hid<strong>de</strong>n in the notation, we shall rememberthat the square functions are explicit rational expressions in terms of thesecond or<strong>de</strong>r jet of the transformation (x, y) ↦→ (X(x, y), Y (x, y)). At thispoint, we may summarize what we have established so far.Lemma 3.22. The system of two second or<strong>de</strong>r ordinary differential equationsyxx 1 = F 1 (x, y, y x ) and yxx 2 = F 2 (x, y, y x ) is equivalent, un<strong>de</strong>r a pointtransformation, to the flat system YXX 1 = 0 and Y XX 2 = 0 if and only if thereexist three local K-analytic functions X(x, y), Y 1 (x, y) and Y 2 (x, y) suchthat it may be written un<strong>de</strong>r the form(3.23)⎧0 = yxx 1 + □ 1 xx + yx 1 · (2□ 1 xy − xx) 1 □0 + y2x · (2 )□ 1 xy + 2⎪⎨⎪⎩+ y 1 x y 1 x · (□ 1 y 1 y 1 − 2 □0 xy 1 )+ y1x y 2 x · (2□ 1 y 1 y 2 − 2 □0 xy 2 )+ y2x y 2 x · (□ 1 y 2 y 2 )++ y 1 x y 1 x y 1 x · (−□ 0 y 1 y 1 )+ y1x y 1 x y 2 x · (−2□ 0 y 1 y 2 )+ y1x y 2 x y 2 x · (−□ 0 y 2 y 2 ),0 = y 2 xx + □ 2 xx + y 1 x · (2□ 2 xy 1 )+ y2x · (2□ 2 xy 2 − □0 xx)++ y 1 x y 1 x · (□ 2 y 1 y 1 )+ y1x y 2 x · (2□ 2 y 1 y 2 − 2 □0 xy 1 )+ y2x y 2 x · (□ 2 y 2 y 2 − 2 □0 xy 2 )++ y 1 x y 1 x y 2 x · (−□ 0 y 1 y 1 )+ y1x y 2 x y 2 x · (−2□ 0 y 1 y 2 )+ y2x y 2 x y 2 x · (−□ 0 y 2 y 2 ).3.24. Second <strong>Lie</strong> prolongation of a vector field. At this point, instead ofproceeding further with the case m = 2, it is now time to pass to the generalcase m 2. First of all, we would like to remind from [GM2003] thecomplete explicit expression of the point prolongation to the second or<strong>de</strong>rjet space of a general vector field of the form L = X ∂ + ∑ m∂x j=1 Y j ∂ : it∂y jis a vector field of the form(3.25) L (2) = X ∂∂x + m∑j=1Y j∂∂y + ∑ m jj=1∂R j 1∂yxj+m∑j=1∂R j 2∂yxxj,where the coefficients R j 1 and R j 2 are polynomials in the jet space variab<strong>les</strong>having as coefficients certain specific linear combinations of first and second


or<strong>de</strong>r <strong>de</strong>rivatives of X and of the Y j :(3.26) ⎧⎪⎨⎪⎩R j 1 = Y jx + m∑l 1 =1R j 2 = Y jxx + m∑++++m∑l 1 =1m∑l 1 =1 l 2 =1m∑m∑l 1 =1 l 2 =1 l 3 =1m∑l 1 =1m∑y l 1xx ·m∑l 1 =1 l 2 =1[ ]y l 1x · Y j − y l 1 δj l 1X x +m∑[]y l 1x · 2 Y j − xy l 1 δj l 1X xx +m∑l 1 =1 l 2 =1y l 1x y l 2x · [−δ j l 1X y l 2],[]y l 1x y l 2x · Y jy l 1y − l 2 δj l 1X xy l 2 − δ j l 2X xy l 1 +m∑y l 1x y l 2x y l 3x · [−δ j l 1X y l 2y l 3]+[Y jy l 1 − 2 δj l 1X x]+y l 1x y l 2xx · [−δ j l 1X y l 2 − 2 δ j l 2X y l 1].However, since the notations in [GM2003] are different and since the generalcase of n 1 in<strong>de</strong>pen<strong>de</strong>nt variab<strong>les</strong> and m 1 <strong>de</strong>pen<strong>de</strong>nt variab<strong>les</strong> isconsi<strong>de</strong>red there, it is certainly easier to reconstiture formulas (3.26) directlyby means of the inductive formulas <strong>de</strong>scribed in [Ol1986], [BK1989]).Analogously to the observation ma<strong>de</strong> in Section 2, we guess that thereexists a formal correspon<strong>de</strong>nce between the terms of R j 2 not involving yl xxand the explicit form of the equation yxx j = F j (x, y, y x ) equivalent to Y j XX =0. In the case m = 2, we claim that this formal correspon<strong>de</strong>nce also holdstrue. In<strong>de</strong>ed, it suffices to write formula (3.26) for R j 2 modulo the yxx, l whichyields two expressions in total analogy with the two explicit polynomialsappearing in the right-hand si<strong>de</strong> of (3.23):(3.27)⎧⎪⎨⎪⎩R 1 2 (mod y l xx) ≡ Y 1xx + y 1 x · {2Y 1xy 1 − X xx31}+ y2x · {2Y 1xy 2 }+ y1x y 1 x · {Y 1y 1 y 1 − 2 X xy 1 }++ yx 1 y2 x · {2Y 1y 1 y − 2 X } 2 xy 2 + y2x yx 2 · {Y } 1y 2 y + 2+ yx 1 y1 x y1 x · {−X y 1 y 1} + y1 x y1 x y2 x · {−2 X y 1 y 2} + y1 x y2 x y2 x · {−X y 2 y 2} ,R 2 2 (mod y l xx) ≡ Y 2xx + y 1 x · {2Y 2xy 1 }+ y2x · {2Y 2xy 2 − X xx}+ y1x yx 1 · {Y } 2y 1 y + 1+ y 1 x y2 x · {2Y 2y 1 y 2 − 2 X xy 1 }+ y2x y 2 x · {Y 2y 2 y 2 − 2 X xy 2 }++ y 1 x y1 x y2 x · {−X y 1 y 1} + y1 x y2 x y2 x · {−2 X y 1 y 2} + y2 x y2 x y2 x · {−X y 2 y 2} ,Except for inductive inspiration (see the formulation of Lemma 3.32 below),this observation will not be used further. At this stage, it helps at least


32to maintain a strong intuitive control of the correctness of the un<strong>de</strong>rlyingcombinatorics.3.28. System equivalent to the flat system. By induction, we thereforeguess that the analogy holds for general m 2, namely we guess the followingcombinatorics, which requires some preliminaries.As in the beginning of §3.1, let x ∈ K, let y = (y 1 , . . .,y m ) ∈ K m , let(x, y) ↦→ (X(x, y), Y (x, y)) be a local K-analytic transformation <strong>de</strong>fined ina neighborhood of the origin in K m+1 and assume that the system y j xx =F j (x, y, y x ), j = 1, . . .,m, is equivalent to the flat system Y j XX = 0, j =1, . . ., m. By assumption, the Jacobian matrix of the equivalence equals thei<strong>de</strong>ntity matrix at the origin. Remind that we i<strong>de</strong>ntify x with y 0 . For allk 1 , l 1 , l 2 = 0, . . ., m, we <strong>de</strong>fine a modification(3.29) ∆(x| . . . | k 1y l 1y l 2| . . . |y m )of the Jacobian <strong>de</strong>terminant as follows. We replace the k 1 -th column of the<strong>de</strong>terminant (3.2), which consists of first or<strong>de</strong>r <strong>de</strong>rivatives ·yk 1 , by a columnwhich consists of second or<strong>de</strong>r <strong>de</strong>rivatives ·yl 1y l 2 . In (3.29), the notation | k 1<strong>de</strong>signates the k 1 -th column, the first one being labelled by k 1 = 0 and thelast one by k 1 = m. With this notation at hand, we may <strong>de</strong>fine the squarefunctions(3.30) □ k 1y l 1y l 2 := ∆(x| . . . |k 1y l 1y l 2| . . . |y m )∆(x| . . . | k 1 yk 1| . . .ym ) ,which are rational expressions in the second or<strong>de</strong>r jet of the transformation(x, y) ↦→ (X(x, y), Y (x, y)). As before, the <strong>de</strong>nominator is the Jacobian<strong>de</strong>terminant of the change of coordinates.Since, according to (3.26), the expression of R j 2 (mod yl xx ) is(3.31) ⎧⎪⎨⎪⎩R j 2 (mod y l xx) = Y jxx +++m∑l 1 =1m∑l 1 =1 l 2 =1m∑[]y l 1x · 2 Y j − xy l 1 δj l 1X xx +m∑m∑l 1 =1 l 2 =1 l 3 =1[]y l 1x y l 2x · Y jy l 1y − l 2 δj l 1X xy l 2 − δ j l 2X xy l 1 +m∑y l 1x y l 2x y l 3x · [−δ j l 1X y l 2y l 3],and since, in the cases m = 1 and m = 2, we have already observed stronganalogies between (3.31) and the complete explicit expression of the systemyxx j = F j (x, y, y x ) equivalent to the flat system Y j XX= 0, we guess that thefollowing lemma is formally true.


Lemma 3.32. The system yxx j = F j (x, y, y x ), j = 1, . . .,m, is equivalentto the flat system Y j XX= 0, j = 1, . . .,m, if and only if there exist localK-analytic functions X(x, y) and Y j (x, y), j = 1, . . .,m, such that it maybe written un<strong>de</strong>r the specific form(3.33) ⎧⎪⎨⎪⎩0 = y j xx + □j xx + m∑+l 1 =1m∑l 1 =1 l 2 =1+ y j x[]y l 1x · 2 □ j − xy l 1 δj l 1□ 0 xx +m∑m∑l 1 =1 l 2 =1[]y l 1x y l 2x · □ j y l 1y − l 2 δj l 1□ 0 xy − l 2 δj l 2□ 0 xy+ l 1m∑[ ]y l 1x y l 2x · −□ 0 y l 1y. l 2The complete proof of this lemma involves only linear algebra consi<strong>de</strong>rations,although with rather massive terms. This makes it rather lengthy.Consequently, we postpone it to the final Section 5 below.3.34. First <strong>aux</strong>iliary system. Clearly, if we set⎧G j := −□ j xx,⎪⎨ H j l 1:= −2 □ j(3.35)+ xy l 1 δj l 1□ 0 xx ,L j l 1 ,l 2:= −□ j y⎪⎩l 1y + l 2 δj l 1□ 0 xy l 2+ δ j l 2□ 0 xy 1, lM l1 ,l 2:= □ 0 y l 1y , l 2we immediately see that the first condition of Theorem 1.7 holds true. Moreover,we claim that there are m+1 more square functions than functions G j ,H j l 1, L j l 1 ,l 2and M l1 ,l 2. In<strong>de</strong>ed, taking account of the symmetries, we enumerate:(3.36) ⎧#{□ j xx} = m, #{□ 0 xx} = 1,⎪⎨#{□ j } = xy l 1 m2 , #{□ 0 xy l 1} = m,⎪⎩ #{□ j y l 1y } = m2 (m + 1), #{□ 0 m(m + 1)l 2 y2l 1y l 2} = ,2whereas(3.37) ⎧⎨ #{G j } = m, #{H j l 1} = m 2 ,⎩ #{L j l 1 ,l 2} = m2 (m + 1)m(m + 1), #{M l1 ,l22} = .2Similarly as in Section 2, for j, l 1 , l 2 = 0, 1, . . ., m, let us introduce functionsΠ j l 1 ,l 2of (x, y 1 , . . .,y m ), symmetric with respect to the lower indices,33


34and let us seek necessary and sufficient conditions in or<strong>de</strong>r that there existsolutions (X, Y ) to the first <strong>aux</strong>iliary system <strong>de</strong>fined precisely by:(3.38){ □0xx = Π 0 0,0, □ 0 xy l 1= Π 0 0,l 1, □ 0 y l 1y l 2= Π 0 l 1 ,l 2,□ j xx = Π j 0,0, □ j xy l 1 = Πj 0,l 1, □ j y l 1y l 2 = Πj l 1 ,l 2.3.39. Compatibility conditions for the first <strong>aux</strong>iliary system. As in Section2, the compatibility conditions for this system will simply be obtainedby computing the cross differentiations. The following statement generalizesLemma 2.31 and also provi<strong>de</strong>s a proof of it, in the case m = 1.Lemma 3.40. For all j, l 1 , l 2 , l 3 = 0, 1, . . ., m, we have the cross differentiationrelations(3.41)( ) ( ) m∑m∑□ j − □ j = − □ k y l 1y l 2y l 3 y l 1y l 3y l y l 1y l 2· □ j + □ k2y l 3y k y l 1y l 3· □ j .y l 2y kk=0Proof. To begin with, as a preliminary, let us generalize the Plücker i<strong>de</strong>ntity(2.28). Let C 1 , C 2 , . . .,C m , D, E be (m + 2) column vectors in K m andintroduce the following notation for the m × (m + 2) matrix consisting ofthese vectors:(3.42) [C 1 |C 2 | · · · |C m |D|E].Extracting columns from this matrix, we shall construct m×m <strong>de</strong>terminantswhich are modification of the following “fundamental” <strong>de</strong>terminant(3.43) |C 1 | · · · |C m | ≡ ∣ ∣ ∣ ∣ C1 | · · · | j 1C j1 | · · · | j 2C j2 | · · · |C m∣ ∣ ∣ ∣ .Here and in the sequel, we use a double vertical line in the beginning and inthe end to <strong>de</strong>note a <strong>de</strong>terminant. Also, we emphasize two distinct columns,the j 1 -th and the j 2 -th, where j 2 > j 1 , since we will modify them. Forinstance in this matrix, let us replace these two columns by the column Dand by the column E, which yields the <strong>de</strong>terminant(3.44)∣ ∣ ∣ C1 | · · · | j 1D| · · · | j 2E| · · · |C m∣ ∣∣ ∣.In this notation, one should un<strong>de</strong>rstand that only the j 1 -th and the j 2 -thcolumns are distinct from the columns of the fundamental m × m <strong>de</strong>terminant(3.43). With this notation at hand, we can now formulate and prove apreliminary lemma that will be useful later.k=0


Lemma 3.45. The following quadratic i<strong>de</strong>ntity between <strong>de</strong>terminants holdstrue:(3.46)⎧∣ ∣ ∣ ∣ ∣ ⎪⎨ C1 | · · · | j 1D| · · · | j 2E| · · · |C n ∣ · ∣C1 | · · · | j 1C j1 | · · · | j 2C j2 | · · · |C n == ∣ ∣ ∣ ∣ ∣ C1 | · · · | j 1D| · · · | j 2C j2 | · · · |C n · ∣C1 | · · · | j 1C j1 | · · · | j 2E| · · · |C n ∣ −⎪⎩− ∣ ∣ ∣ ∣ C1 | · · · | j 1E| · · · | j 2C j 2| · · · |C n · ∣C1 | · · · | j 1C j1 | · · · | j 2D| · · · |C n .Proof. After some permutations of columns, this i<strong>de</strong>ntity amounts to(3.47)⎧⎪⎨⎪⎩|C 1 | · · · |C m−2 |D|E | · |C 1 | · · · |C m−2 |C m−1 |C m | == |C 1 | · · · |C m−2 |D|C m | · |C 1 | · · · |C m−2 |C m−1 |E | −− ||C 1 | · · · |C m−2 |E|C m | · |C 1 | · · · |C m−2 |C m−1 |D |.To establish this i<strong>de</strong>ntity, we introduce some notation. If A and B are verticalvectors in K m and if i 1 , i 2 = 1, . . .,m with i 1 < i 2 , we <strong>de</strong>note(3.48) ∆ 2 i 1 ,i 2(A|B) :=∣ A ∣i 1B i1 ∣∣∣.A i2 B i2If |A 1 |A 2 |A 3 | · · · |A m | is a m×m <strong>de</strong>terminant, and if i 1 , i 2 = 1, . . .,m withi 1 < i 2 , we <strong>de</strong>note by M m−2i 1 ,i 2(A 3 | · · · |A m ) the (m−2)×(m−2) <strong>de</strong>terminantobtained from the matrix [A 3 | · · · |A m ] by erasing the i 1 -th line and the i 2 -thline. Without proof, we recall an elementary classical formula(3.49)⎧⎨ |A 1 |A 2 |A 3 | · · · |A m | =⎩= ∑1i 1


36∑1i 1


often be <strong>de</strong>noted by the sign “·”, for clarity. Here is the computation:(3.53) ⎧ ( ) ( )□ j − □ j =y l 1y l 2y l 3 y l 1y l 3y l 2(= ∂(∆ y 0 | · · · | j y l 1y l 2| · · · |y m) ) (−∂(∆ y 0 | · · · | j y l 1y l 3| · · · |y m) )∂y l 3∆ (y 0 | · · · |y m ) ∂y l 2∆ (y 0 | · · · |y m )⎡∆ ( y 0 y l 3| · · · | j y l 1y l 2| · · · |y m) ⎤· ∆ + · · ·+⎪⎨ = 1+ ∆ ( y 0 | · · · | j y l 3y l 1y l 2| · · · |y m) · ∆ + · · ·+a [∆] 2 + ∆ ( y 0 | · · · | j y l 1y l 2| · · · |y l 3y m) · ∆−⎢⎣ − ∆ ( y 0 | · · · | j y l 1y l 2| · · · |y m) · [∆ ( −y 0 y l 3| · · · |y m) + · · ·+ ⎥+∆ ( y 0 | · · · |y l 3y m)] ⎦⎡∆ ( y 0 y l 2| · · · | j y l 1y l 3| · · · |y m) ⎤· ∆ + · · ·+− 1+ ∆ ( y 0 | · · · | j y l 2y l 1y l 3| · · · |y m) · ∆ + · · ·+a [∆] 2 + ∆ ( y 0 | · · · | j y l 1y l 3| · · · |y l 2y m) · ∆−⎢⎣ − ∆ ( y 0 | · · · | j y l 1y l 3| · · · |y m) · [∆ ( .y 0 y l 2| · · · |y m) + · · ·+ ⎥⎪⎩+∆ ( y 0 | · · · |y l 2y m)] ⎦37Crucially, we observe that all the <strong>de</strong>terminants involving a third or<strong>de</strong>r <strong>de</strong>rivativeupon one of their columns kill each other and disappear: we haveun<strong>de</strong>rlined them with a appen<strong>de</strong>d. However, it still remains plenty of <strong>de</strong>terminantsinvolving a second or<strong>de</strong>r <strong>de</strong>rivative upon two different columns.We must transform all of them and express them in terms of <strong>de</strong>terminantsinvolving a second or<strong>de</strong>r <strong>de</strong>rivative upon only one column. To this aim, as anapplication of our preliminary Lemma 3.45, we have the following relations,valid for j 1 , j 2 , l 1 , l 2 , l 3 , l 4 = 0, . . ., m and j 1 < j 2 :(3.54)⎧∆ ( y ⎪⎨0 | · · · | j 1y l 1y l 2| · · · | j 2y l 3y l 4| · · · |y m) · ∆ ( y 0 | · · · | j 1y j 1| · · · | j 2y j 2| · · · |y m) == ∆ ( y 0 | · · · | j 1y l 1y l 2| · · · | j 2y j 2| · · · |y m) · ∆ ( y 0 | · · · | j 1y j 1| · · · | j 2y l 3y l 4| · · · |y m)⎪⎩− ∆ ( y 0 | · · · | j 1y l 3y l 4| · · · | j 2y j 2| · · · |y m) · ∆ ( y 0 | · · · | j 1y j 1| · · · | j 2y l 1y l 2| · · · |y m) .With these formulas, we may transform the lines number 3, 4, 5 and 8, 9, 10of (3.53). Also, we observe that the lines 6, 7 and 11, 12 of (3.53) involve<strong>de</strong>terminants having a single second or<strong>de</strong>r <strong>de</strong>rivative. Taking account of the1[∆] 2 factor, we <strong>de</strong>duce that the lines 6, 7 and 11, 12 of (3.53) may already beexpressed as sums of square functions. Achieving all these transformations,


38we may rewrite (3.53) as follows(3.55)⎧ ( ) ( )□ j − □ j =y l 1y l 2y l 3 y l 1y l 3y l 2⎡∆ ( y 0 y l 3| · · · | j y j | · · · |y m) · ∆ ( y 0 | · · · | j y l 1y l 2| · · · |y m) ⎤−= 1− ∆ ( y l 1y l 2| · · · | j y j | · · · |y m) · ∆ ( y 0 | · · · | j y 0 y l 3| · · · |y m) ++ · · ·+[∆] 2 ⎢⎣ + ∆ ( y 0 | · · · | j y l 1y l 2| · · · |y m) · ∆ ( −y 0 | · · · | j y j | · · · |y l 3y m) −⎥− ∆ ( y 0 | · · · | j y l 3y m | · · · |y m) · ∆ ( y 0 | · · · | j y j | · · · |y l 1y ) ⎦l 2⎪⎨m∑− □ j y l 1y l 2 □k y l 3y− k⎪⎩k=0⎡∆ ( y 0 y l 2| · · · | j y j | · · · |y m) · ∆ ( y 0 | · · · | j y l 1y l 3| · · · |y m) ⎤−− 1− ∆ ( y l 1y l 3| · · · | j y j | · · · |y m) · ∆ ( y 0 | · · · | j y 0 y l 2| · · · |y m) ++ · · ·+[∆] 2 ⎢⎣ + ∆ ( y 0 | · · · | j y l 1y l 3| · · · |y m) · ∆ ( +y 0 | · · · | j y j | · · · |y l 2y m) −⎥− ∆ ( y 0 | · · · | j y l 2y m | · · · |y m) · ∆ ( y 0 | · · · | j y j | · · · |y l 1y ) ⎦l 3m∑+ □ j y l 1y l 3 □k y l 2y. kk=0Notice that two pairs of “cdots” terms + · · ·+ appearing in the lines 3,4 and 8, 9 of (3.53) are replaced by a single “cdots” term + · · ·+ in thelines 4 and 9 of (3.55). Importantly, we point that in the “middle” of the two“cdots” terms + · · ·+ appearing in the lines 4 and 10 of (3.55) just above,there are two terms which do not occur: they simply correspond to the twoun<strong>de</strong>rlined terms having a appen<strong>de</strong>d appearing in the lines 4 and 9 (3.53).


1Now, taking account of the factor , we can re-express all the terms[∆] 2of (3.55) as sums of square functions:⎧ ( ) ( )□ j − □ j =y l 1y l 2 y l 1y l 3(3.56)⎪⎨⎪⎩=−−+y l 3m∑k=0; k≠jy l 2□ k y l 3y k □ j y l 1y l 2 −m∑□ j y l 1y l 2 □k y l 3y− kk=0m∑k=0; k≠j□ k y l 2y k □ j y l 1y l 3 +m∑□ j y l 1y l 3 □k y l 2y. kk=0m∑k=0; k≠jm∑k=0; k≠j□ k y l 1y l 2□ j y l 3y k −□ k y l 1y l 3□ j y l 2y k +Finally, we observe that in the two pairs of sums having k ≠ j appearingin the lines 2 and 4 just above, we can inclu<strong>de</strong> the term k = j in each pair,because these two terms are immediately killed insi<strong>de</strong> the correspondingpair. In conclusion, after a final obvious killing of four (among six) completesums in this modification of (3.56), we obtain the <strong>de</strong>sired formula (3.41),with two sums. This completes the proof of Lemma 3.40 and also at thesame occasion, the proof of Lemma 2.31.3.57. Compatibility conditions for the first <strong>aux</strong>iliary system. Accordingto the (approximate) i<strong>de</strong>ntities (3.3), taking account of the explicit <strong>de</strong>finitions(3.30) of the square functions, we have{ □0 ∼ xx = Xxx , □ 0 ∼xy l 1 = Xxy l 1 , □ 0 ∼y l 1y l 2 = Xy l 1y l 2 ,(3.58)□ j xx ∼ = Y jxx, □ j xy l 1∼ = Yjxy l 1 , □j y l 1y l 2∼ = Yjy l 1y l 2 .Consequently, the first <strong>aux</strong>iliary system (3.38) looks approximatively like acomplete second or<strong>de</strong>r system of partial differential equations in the (m+1)in<strong>de</strong>pen<strong>de</strong>nt variab<strong>les</strong> (x, y) and in the (m+1) <strong>de</strong>pen<strong>de</strong>nt variab<strong>les</strong> (X, Y ).By means of elementary algebraic operations, one may transform this systemin a true second or<strong>de</strong>r complete system, solved with respect to the topor<strong>de</strong>r <strong>de</strong>rivatives, namely of the form{Xxx = Λ 0 0,0 , X xy l 1 = Λ 0 0,l 1, X y l 1y l 2 = Λ 0 l 1 ,l 2,(3.59)Y jxx = Λ j 0,0,Y jxy l 1 = Λj 0,l 1, Y y l 1y l 2 = Λ j l 1 ,l 2,where the Λ k 1j 1 ,j 2are local K-analytic functions of (x, y l 1, X, Y j , X x , X y l 1 , Y jx , Y jy l 1 ).For such a system, the compatibility conditions [which are necessary andsufficient for the existence of a solution (X, Y )] follow by obvious cross39


40differentiation. Coming back to the system 3.38, these compatibilityconditions amount to the quadratic-like compatibility conditions expressedin Lemma 3.40. In conclusion, we have proved the following intermediatestatement.Proposition 3.60. There exist functions X, Y j solving the first <strong>aux</strong>iliarysystem (3.38) of nonlinear second or<strong>de</strong>r partial differential equations if andonly if the right-hand si<strong>de</strong> functions Π j l 1 , l 2(x, y) satisfy the quadratic compatibilityconditions(3.61)∂Π j l 1 ,l 2∂y l 3− ∂Πj l 1 ,l 3∂y l 2m∑m= − Π k l 1 ,l 2 · Π j l 3 ,k + ∑Π k l 1 ,l 3 · Π j l 2 ,k ,k=0k=0for j, l 1 , l 2 , l 3 = 0, 1, . . ., m.3.62. Principal unknowns. As there are (m + 1) more square (or Pi) functionsthan the functions G j , H j l 1, L j l 1 ,l 2and M l1 ,l 2<strong>de</strong>fined by (3.35), wecannot invert directly the linear system (3.35) (which is of maximal rank).Hence we must choose (m+1) specific square functions, calling them principalunknowns, and similarly as in §2.34, the best choice is to choose □ 0 xxand □ j xx , for j = 1, . . .,m. For clarity, it will be useful to adopt the notationalequivalences(3.63) Θ 0 ≡ Π 0 0,0 and Θ j ≡ Π j j,j .Then we may quasi-inverse the system (3.35), which yields :(3.64) ⎧Π j 0,0 = □j xx = −Gj ,Π j 0,l 1= □ j xy⎪⎨= −1 l 12 Hj l 1+ 1 2 δj l 1Θ 0 ,Π j l 1 ,l 2= □ j y l 1y = l 2 −Lj l 1 ,l 2+ 1 2 δj l 1L l 2l2 ,l 2+ 1 2 δj l 2L l 1l1 ,l 1+ 1 2 δj l 1Θ l 2+ 1 2 δj l 2Θ l 1,Π 0 0,l 1= □ 0 xy l 1= 1 2 Ll 1l1 ,l 1+ 1 2 Θl 1,⎪⎩Π 0 l 1 ,l 2= □ 0 y l 1y = M l 2 l 1 ,l 2.Before replacing these new expressions of the functions Π j 0,0, Π j 0,l 1, Π j l 1 ,l 2,Π 0 l 1 ,l 2and Π l 10,l1into the compatibility conditions (3.61), it is necessary toexpound first (3.61), taking account of the original splitting of the indices inthe two sets {0} and {1, 2, . . ., m}. This yields six families of compatibility


conditions, totally equivalent to the compact i<strong>de</strong>ntities (3.61):(3.65) ⎧( )Π j 0,0 −(Π j 0,l 1)x m = −Π0 0,0 Π j l 1 ,0 − ∑m Π k 0,0 Π j l 1 ,k + Π0 0,l 1Π j 0,0 + ∑Π k 0,l 1Π j 0,k ,⎪⎨⎪⎩y l 1( )(Π j l 1 ,l 2)x − Π j l 1 ,0y l 2(Π j l 1 ,l 2)y l 3)−(Π j l 1 ,l 3 y l 2k=1k=1m= −Π 0 l 1 ,l 2Π j 0,0 − ∑m Π k l 1 ,l 2Π j 0,k + Π0 l 1 ,0 Πj l 2 ,0 + ∑Π k l 1 ,0 Πj l 2 ,k ,k=141k=1m= −Π 0 l 1 ,l 2Π j l 3 ,0 − ∑m Π k l 1 ,l 2Π j l 3 ,k + Π0 l 1 ,l 3Π j l 2 ,0 + ∑Π k l 1 ,l 3Π j l 2 ,k ,k=1(Π00,0)y − ( Π 0 l 1 0,l 1)x = −Π0 0,0 Π0 l 1 ,0 − ∑m Π k 0,0a Π0 l 1 ,k + Π0 0,l 1Π 0 0,0 + ∑m Π k 0,la 1Π 0 0,k ,k=1( )Π0l1 ,l 2 x − ( Π 0 l 1 ,0)y m = l −Π0 2 l 1 ,l 2Π 0 0,0 − ∑m Π k l 1 ,l 2Π 0 0,k + Π0 l 1 ,0 Π0 l 2 ,0 + ∑Π k l 1 ,0 Π0 l 2 ,k ,k=1(Π0l1 ,l 2)y − ( Π 0 l 3 l 1 ,l 3)y m = l −Π0 2 l 1 ,l 2Π 0 l 3 ,0 − ∑m Π k l 1 ,l 2Π 0 l 3 ,k + Π0 l 1 ,l 3Π 0 l 2 ,0 + ∑Π k l 1 ,l 3Π 0 l 2 ,k .k=1k=1k=1k=1k=13.66. Convention about sums. Up to the end of Section 4, we shall abbreviateany sum ∑ mk=1 or ∑ mp=1 as ∑ k or ∑ p. Such sums will appear veryfrequently. For all other sums, we shall precisely write down the domain ofvariation of the summation in<strong>de</strong>x.3.67. Continuation. Thus, we have to replace (3.64) in the six i<strong>de</strong>ntities(3.65). Firstly, let us expose all the intermediate steps in <strong>de</strong>aling with


42the first i<strong>de</strong>ntity (3.65) 1 . Replacing plainly (3.64) in (3.65) 1 , we get:(3.68)⎧ ( ) )Π j 0,0 −(Π j 0,l = 1 x Gj y + 1 l 12 Hj l 1 ,x − 1 2 δj l 1Θ 0 x =y l 1= 1 2 Θ0 H j l 1− 1 2 δj l 1Θ 0 Θ 0 −− ∑ ( ( −G k) −L j l 1 ,k + 1 2 δj l 1L k k,k + 1 2 δj k Ll 1l1 ,l 1+ 1 2 δj l 1Θ k + 1 2 δj k)+ Θkk⎪⎨⎪⎩( 1+2 Ll 1l1 ,l 1+ 1 1) (−G2 Θl j ) ++ ∑ (− 1 2 Hk l 1+ 1 2 δk l 1Θ)(− 0 1 2 Hj k + 1 )2 δj k Θ0 =k= 1 2 Hj l 1Θ 0 − 1a 2 δj l 1Θ 0 Θ 0 − ∑ G k L j l 1 ,k + 1 ∑2 δj l 1kk+ 1 ∑2 δj l 1G k Θ k + 1 2 Gj Θ l 1k− 1 4 Hj l 1Θ 0 − 1a 4 Hj l 1Θ 0 + 1a 4 δj l 1Θ 0 Θ 0 .cG k L k k,k + 1 2 Gj L l 1l1 ,l 1b+− 1 2 Gj L l 1l1 ,l 1− 1b 2 Gj Θ l 1+ 1c 4∑Hl k 1H j k −kEliminating the un<strong>de</strong>rlined vanishing terms with the letters a, b, c and dappen<strong>de</strong>d, multiplying by −2 and reorganizing the i<strong>de</strong>ntity so as to put theterm δ j l 1Θ 0 x solely in the left-hand si<strong>de</strong>, we obtain the relation(3.69) ⎧δ⎪⎨j l 1Θ 0 x = −2 G j + y l 1 Hj l 1 ,x + 2 ∑ G k L j l 1 ,k − ∑δj l 1G k L k k,k−kk⎪⎩− 1 ∑Hl k 2 1H j k − ∑δj l 1G k Θ k + 1 2 δj l 1Θ 0 Θ 0 .k3.70. Conventions for simplifications of formal expressions. Before proceedingfurther, let us explain how we will organize the computations withthe formal expressions we shall encounter until the end of Section 4. Ourmain goal is to <strong>de</strong>vise a methodology of writing formal computations whichenab<strong>les</strong> to check every computation visually, without being forced to rebuildany intermediate step. In fact, it would be unsatisfactory to justclaim that Theorem 1.7 (3) follows by hid<strong>de</strong>n massive formal computations,so that we have to gui<strong>de</strong> the rigorous and <strong>de</strong>manding rea<strong>de</strong>r until the veryextremal branches of our coral tree of formal computations.As an example, suppose that we have to simplify the equation 0 = A x +B y +A−B +2C − 1 D − 2 A+ 1 D +E +B −2 C. In the beginning, the3 3 6terms A x and B y are differentiated once and they do not simplify with otherterms. To distinguish them, we un<strong>de</strong>rline them plainly and we copy the ninek


43remaining terms afterwards:(3.71) ⎧⎪⎨0 = A x + B y +⎪⎩+ A 1− B a+ 2C b− 1 3 D 2− 2 3 A 1+ 1 6 D 2+ E 3+ B a− 2C b.Here, each remaining term is also un<strong>de</strong>rlined, with a number or with a letterappen<strong>de</strong>d. For reasons of typographical readability, we never un<strong>de</strong>rline thesign, + or − of each term; however, it should be un<strong>de</strong>rstood that every termalways inclu<strong>de</strong>s its (not un<strong>de</strong>rlined) sign. Until the end of Section 4, we shalluse the roman alphabetic letters a, b, c, etc. insi<strong>de</strong> an octagon to exhibitthe vanishing terms. As readily checked by the eyes, we in<strong>de</strong>ed have −B a+B a= 0 and 2 C b−2 C b= 0. Also, until the end of Section 4, we shall usethe numbers 1, 2, 3, etc. insi<strong>de</strong> a square □ to exhibit the remaining terms,collected in a certain or<strong>de</strong>r. The numbers have the following signification:after the simplifications, the equation (3.71) may be written⎧⎨ 0 = A x + B y +(3.72)⎩ + 1 3 A − 1 6 D + E.Here, the plainly un<strong>de</strong>rlined terms A x + B y do not count in the numbering(their number is zero, for instance) and the first term of the second line 1 A 3correspond to the addition of all terms 1 in (3.69). Analogously, the secondterm − 1 D correspond to the addition of all terms 2 in (3.69). Again, this6guiding facilitates the checking of the correctness of the computation, usingsimply the eyes. No hid<strong>de</strong>n <strong>de</strong>licate computational step is “left to the rea<strong>de</strong>r”for the convenience of the writer.This principle will be constantly used until the end of Section 4; it hasbeen systematically used in [M2004] and it could be applied in various othercontexts. Again, the advantage is that it enab<strong>les</strong> to check the correctness ofall the formal computations just by reading, without having to write anythingmore. This is also useful for the author.3.73. Choice of an or<strong>de</strong>ring. Until the end of Section 4, we shall have to<strong>de</strong>al with terms G, H, L, M, Θ together with indices and partial <strong>de</strong>rivativesup to or<strong>de</strong>r two. In or<strong>de</strong>r to organize the formal expressions in a waywhich provi<strong>de</strong>s an easier <strong>de</strong>ciphering, it is convenient to introduce an or<strong>de</strong>rbetween these differential monomials. In a symbolic in<strong>de</strong>x-free notation, wechoose:(3.74) G < H < L < M < Θ.It follows for instance that G < GH < GL < HHL < HLMΘ. Also, if asum appears, we choose: GM < ∑ GM.


44Here, we have only consi<strong>de</strong>red terms of or<strong>de</strong>r zero, without partial differentiation.The first or<strong>de</strong>r partial differentiations are (·) x and (·) y , again insymbolic notation, dropping the indices. We choose:(3.75)G x < G y < H x < H y < L x < L y < M x < M y < Θ x < Θ y < G < · · · .For second or<strong>de</strong>r <strong>de</strong>rivatives, we choose:(3.76) G xx < G xy < G yy < H xx < · · · < Θ yy < G x < · · · .As a final general example including indices we have the inequalitiesm∑m∑(3.77) H j < l 1 ,y l 2 Lj l 1 ,l 2 ,x < Gj M l1 ,l 2< G k M l2 ,k < H l 2kHl k 2 ,l 2,extracted from (II) of Theorem 1.7 (3).In the sequel, we shall call• terms of or<strong>de</strong>r 0 monomials like G, H, L M, G H M;• terms of or<strong>de</strong>r 1 monomials like G x , G x M, L x Θ;• terms of or<strong>de</strong>r 2 monomials like G xy , L yy , M xx (our terms of or<strong>de</strong>r twowill always be linear),k=1according to the top or<strong>de</strong>r partial <strong>de</strong>rivatives.3.78. A mean of checking intuitively the validity of partial differentialrelations. Before replacing (3.64) in the five remaining i<strong>de</strong>ntities (3.65) 2 ,(3.65) 3 , (3.65) 4 , (3.65) 5 and (3.65) 6 , let us observe that if we assume thatj ≠ l 1 in (3.69), then all the terms involving Θ vanish, so that we obtain thenontrivial partial differential equations:(3.79) 0 = −2 G j + y l 1 Hj l 1 ,x + 2 ∑ G k L j l 1 ,k − 1 ∑Hl k 2 1H j k ,kkfor j ≠ l 1 . Here, we have un<strong>de</strong>rlined the first or<strong>de</strong>r terms plainly, in or<strong>de</strong>rto distinguish them from the terms of or<strong>de</strong>r zero. These equations coinci<strong>de</strong>swith (I) of Theorem 1.7 (3), again specialized with j ≠ l 1 . Importantly,we notice that the choice of indices j ≠ l 1 is possible only if m 2.Thus, we have <strong>de</strong>rived a subpart of (I) as a necessary condition for the pointequivalence to Y j XX= 0, j = 1, . . .,m 2. These first or<strong>de</strong>r equationsshow at once that there is a strong difference with the case m = 1.How can we confirm (at least informally) that the functions G j , H j l 1andL j l 1 ,l 2given by (3.35) in terms of X and Y j do in<strong>de</strong>ed satisfy these equationsfor j ≠ l 1 ? Dropping the zero or<strong>de</strong>r terms in (3.79) above, we obtain anapproximated equation(3.80) 0 ≡ −2 G j y l 1 + Hj l 1 ,x .k=1


Here, the sign ≡ precisely means: “modulo zero or<strong>de</strong>r terms”. We claimthat this approximated equation is a consequence of the existence of X, Y j .In<strong>de</strong>ed, according to the approximation (3.58), together with the <strong>de</strong>finition(3.35) of the functions G j and H j l 1, we have45(3.81){ Gj= −□ j xx ∼ = −Y jH j l 1= −2 □ j xy l 1xx,∼= −2 Y jxy l 1 .Differentiation of the first line with respect to y l 1and of the second line withrespect to x yields:(3.82) G j y l 1∼ = −Yjxxy l 1and H j l 1 ,x ∼ = −2 Y jxy l 1x ,so that we in<strong>de</strong>ed have 0 ≡ −2 G j + y l 1 Hj l 1 ,x, approximatively and modulothe <strong>de</strong>rivatives of or<strong>de</strong>r 0, 1 and 2 of the functions X, Y j .Similar verifications have been effected constantly in our manuscript inor<strong>de</strong>r to control the truth of the formal computations that we shall exposeuntil the end of Section 4.3.83. Continuation. From now on and up to the end of Section 4, the har<strong>de</strong>stcomputational core of the proof may — at last — be <strong>de</strong>veloped. Furtheramazing computational obstac<strong>les</strong> will be encountered.Replacing plainly (3.64) in (3.65) 2 , we get:(3.84)( )(Π j l 1 ,l 2)x − Π j l 1 ,0y l 2= −L j l 1 ,l 2 ,x + 1 2 δj l 1L l 2l2 ,l 2 ,x + 1 2 δj l 2L l 1l1 ,l 1 ,x + 1 2 δj l 1Θ l 2 x ++ 1 2 δj l 2Θ l 1 x + 1 2 Hj l 1 ,y l 2 − 1 2 δj l 1Θ 0 y l 2 == −Π 0 l 1 ,l 2 · Π j 0,0 − ∑ Π k l 1 ,l 2 · Π j 0,k + Π0 l 1 ,0 · Πj l 2 ,0 + ∑ Π k l 1 ,0 · Πj l 2 ,k =kk= M l1 ,l 2G j − ∑ (−L k l 1 ,l 2+ 1 2 δk l 1L l 2l2 ,l 2+ 1 2 δk l 2L l 1l1 ,l 1+ 1 2 δk l 1Θ l 2+ 1 )2 δk l 2Θ l 1·k·(− 1 2 Hj k + 1 )2 δj k Θ0 +( 1+2 Ll 1l1 ,l 1+ 1 )2 Θl 1·(− 1 2 Hj l 2+ 1 )2 δj l 2Θ 0 ++ ∑ (− 1 2 Hk l 1+ 1 )2 δk l 1Θ 0 ·k(· −L j l 2 ,k + 1 2 δj l 2L k k,k + 1 2 δj k Ll 2l2 ,l 2+ 1 2 δj l 2Θ k + 1 )2 δj k Θl 2.


46Developing the products and or<strong>de</strong>ring each monomial, we get:(3.85)= G j M l1 ,l − 1 ∑2+ 1 1 24 Hj l 1L l 2l2 ,l 2+ 1a 4 Hj l 2L l 1l1 ,l 1b++ 1 4 Hj l 1Θ l 2ck+ 1 4 Hj l 2Θ l 1H j k Lk l 1 ,l 22d+ 1 2 Lj l 1 ,l 2Θ 0 e− 1 4 δj l 1L l 2l2 ,l 2Θ 0 f−− 1 4 δj l 2L l 1l1 ,l 1Θ 0 − 1g 4 δj l 1Θ 0 Θ l 2− 1h 4 δj l 2Θ 0 Θ l 1− 1i 4 Hj l 2L l 1l1 ,l 1b++ 1 4 δj l 2L l 1l1 ,l 1Θ 0 − 16 4 Hj l 2Θ l 1+ 1d 4 δj l 2Θ 0 Θ l 1+ 1 ∑Hl ki 2 1L j l 2 ,k− 1 4∑Hl k 1L k k,kk4− 1 4 Hj l 1L l 2l2 ,l 2− 1 ∑a 4 δj l 2Hl k 1Θ kk5k3− 1 4 Hj l 1Θ l 2− 1 2 Lj l 2 ,l 1Θ 0 + 1e 4 δj l 2L l 1l1 ,l 1Θ 0 + 1g 4 δj l 1L l 2l2 ,l 2Θ 0 + 1f 4 δj l 2Θ 0 Θ l 1+7+ 1 4 δj l 1Θ 0 Θ l 2.h−−cWe simplify according to our general princip<strong>les</strong> and we reorganize the equalitybetween the first two lines of (3.84) and (3.85) so as to put all terms Θ xin the left-hand si<strong>de</strong> of the equality and to put all remaining terms in theright-hand si<strong>de</strong>, respecting the or<strong>de</strong>r of §3.73. We get:(3.86)12 δj l 1Θ l 2x + 1 2 δj l 2Θ l 1x − 1 2 δj l 1Θ 0 y l 2 == − 1 2 Hj l 1 ,y l 2 + Lj l 1 ,l 2 ,x − 1 2 δj l 1L l 2l2 ,l 2 ,x − 1 2 δj l 2L l 1l1 ,l 1 ,x ++ G j M l1 ,l 2− 1 ∑H j k2Lk l 1 ,l 2+ 1 ∑Hl k 2 1L j l 2 ,k −kk− 1 ∑4 δj l 2Hl k 1L k k,k − 1 ∑4 δj l 2Hl k 1Θ k + 1 4 δj l 2L l 1l1 ,l 1Θ 0 +kk+ 1 4 δj l 2Θ 0 Θ l 1.Here, we have un<strong>de</strong>rlined plainly the four first or<strong>de</strong>r terms appearing in thesecond line.


Next, replacing plainly (3.64) in (3.65) 3 , we get:(3.87) (Π j l 1 ,l 2)y l 3)−(Π j l 1 ,l 3 y l 2== −L j l 1 ,l 2 ,y l 3 + 1 2 δj l 1L l 2l 2 ,l 2 ,y l 3 + 1 2 δj l 2L l 1l 1 ,l 1 ,y l 3 + 1 2 δj l 1Θ l 2y l 3 + 1 2 δj l 2Θ l 1y l 3 ++ L j l 1 ,l 3 ,y l 2 − 1 2 δj l 1L l 3l 3 ,l 3 ,y l 2 − 1 2 δj l 3L l 1l 1 ,l 1 ,y l 2 − 1 2 δj l 1Θ l 3y l 2 − 1 2 δj l 3Θ l 1y l 2 == −Π 0 l 1 ,l 2 · Π j l 3 ,0 − ∑ Π k l 1 ,l 2 · Π j l 3 ,k + Π0 l 1 ,l 3 · Π j l 2 ,0 + ∑kk= −M l1 ,l 2 ·(− 1 2 Hj l 3+ 1 )2 δj l 3Θ 0 − ∑ k)+ 1 2 δk l 2L l 1l1 ,l 1+ 1 2 δk l 1Θ l 2+ 1 2 δk l 2Θ l 1+ 1 2 δj k Ll 3l3 ,l 3+ 1 2 δj l 3Θ k + 1 2 δj k Θl 3+ M l1 ,l 3 ·)+(− 1 2 Hj l 2+ 1 )2 δj l 2Θ 0 + ∑ k)+ 1 2 δk l 3L l 1l1 ,l 1+ 1 2 δk l 1Θ l 3+ 1 2 δk l 3Θ l 1+ 1 2 δj k Ll 2l2 ,l 2+ 1 2 δj l 2Θ k + 1 2 δj k Θl 2).Π k l 1 ,l 3 · Π j l 2 ,k =(−L k l 1 ,l 2+ 1 2 δk l 1L l 2l2 ,l 2+(· −L j l 3 ,k + 1 2 δj l 3L k k,k +(−L k l 1 ,l 3+ 1 2 δk l 1L l 3l3 ,l 3+(· −L j l 2 ,k + 1 2 δj l 2L k k,k +Developing the products and or<strong>de</strong>ring each monomial, we get:(3.88)= 1 2 Hj l 3M l1 ,l 2− 11 2 δj l 3M l1 ,l 2Θ 0 − ∑ L k l 1 ,l 2L j l 3 ,k+ 1 ∑162 δj l 3k+ 1 2 Lj l 1 ,l 2L l 3l3 ,l 3+ 1 ∑a 2 δj l 3L k l 1 ,l 2Θ kk136+ 1 2 Lj l 1 ,l 2Θ l 3bk47L k l 1 ,l 2L k k,k+ 1 2 Ll 2l2 ,l 2L j l 3 ,l 1c−− 1 4 δj l 3L l 2l2 ,l 2L l 1l1 ,l 1− 14 4 δj l 1L l 2l2 ,l 2L l 3l3 ,l 3− 1d 4 δj l 3L l 2l2 ,l 2Θ l 1− 1e 4 δj l 1L l 2l2 ,l 2Θ l 3+f+ 1 2 Ll 1l1 ,l 1L j l 3 ,l 2− 1g 4 δj l 3L l 1l1 ,l 1L l 2l2 ,l 2− 1h 4 δj l 2L l 1l1 ,l 1L l 3l3 ,l 3− 1i 4 δj l 3L l 1l1 ,l 1Θ l 2−j7+− 1 4 δj l 2L l 1l1 ,l 1Θ l 3k+ 1 2 Lj l 3 ,l 1Θ l 2l− 1 4 δj l 3L l 1l1 ,l 1Θ l 210− 1 4 δj l 1L l 3l3 ,l 3Θ l 2−m− 1 4 δj l 3Θ l 2Θ l 1n− 1 4 δj l 1Θ l 2Θ l 3o+ 1 2 Lj l 3 ,l 2Θ l 1p− 1 4 δj l 3L l 2l2 ,l 2Θ l 112−− 1 4 δj l 2L l 3l3 ,l 3Θ l 1q− 1 4 δj l 3Θ l 1Θ l 218− 1 4 δj l 2Θ l 1Θ l 3−r


48− 1 2 Hj l 2M l1 ,l 32+ 1 2 δj l 2M l1 ,l 3Θ 0 15− 1 2 Lj l 1 ,l 3L l 2l2 ,l 2c− 1 2 δj l 2∑k+ ∑ kL k l 1 ,l 3Θ k 14L k l 1 ,l 3L j l 2 ,k− 1 2 Lj l 1 ,l 3Θ l 25l− 1 ∑2 δj l 2L k l 1 ,l 3L k k,kk− 1 2 Ll 3l3 ,l 3L j l 2 ,l 1a+8−+ 1 4 δj l 2L l 3l3 ,l 3L l 1l1 ,l 13+ 1 4 δj l 1L l 3l3 ,l 3L l 2l2 ,l 2d+ 1 4 δj l 2L l 3l3 ,l 3Θ l 1q+ 1 4 δj l 1L l 3l3 ,l 3Θ l 2− 1 2 Ll 1l1 ,l 1L j l 2 ,l 3g+ 1 4 δj l 2L l 1l1 ,l 1L l 3l3 ,l 3i+ 1 4 δj l 3L l 1l1 ,l 1L l 2l2 ,l 2h+ 1 4 δj l 2L l 1l1 ,l 1Θ l 3+ 1 4 δj l 3L l 1l1 ,l 1Θ l 2j− 1 2 Lj l 2 ,l 1Θ l 3b+ 1 4 δj l 2L l 1l1 ,l 1Θ l 3k+ 1 4 δj l 1L l 2l2 ,l 2Θ l 3+f9−m++ 1 4 δj l 2Θ l 3Θ l 117+ 1 4 δj l 1Θ l 3Θ l 2o− 1 2 Lj l 2 ,l 3Θ l 1p+ 1 4 δj l 2L l 3l3 ,l 3Θ l 111++ 1 4 δj l 3L l 2l2 ,l 2Θ l 1e+ 1 4 δj l 2Θ l 1Θ l 3r+ 1 4 δj l 3Θ l 1Θ l 2.nWe simplify and we reorganize the equality between the second and thirdlines of (3.88) and (3.85) so as to put all terms Θ y in the left-hand si<strong>de</strong> ofthe equality and to put all remaining terms in the right-hand si<strong>de</strong>, respecting


49the or<strong>de</strong>r of §3.73. We get:(3.89)12 δj l 1Θ l 2− 1 y l 32 δj l 1Θ l 3+ 1 y l 22 δj l 2Θ l 1− 1 y l 32 δj l 3Θ l 1= y l 2= L j l 1 ,l 2 ,y l 3 − Lj l 1 ,l 3 ,y l 2 + 1 2 δj l 1L l 3l 3 ,l 3 ,y l 2 − 1 2 δj l 1L l 2l 2 ,l 2 ,y l 3 ++ 1 2 δj l 3L l 1l 1 ,l 1 ,y l 2 − 1 2 δj l 2L l 1l 1 ,l 1 ,y l 3 ++ 1 2 Hj l 3M l1 ,l 2− 1 2 Hj l 2M l1 ,l 3+ 1 4 δj l 2L l 3l3 ,l 3L l 1l1 ,l 1− 1 4 δj l 3L l 2l2 ,l 2L l 1l1 ,l 1++ ∑ kL k l 1 ,l 3L j l 2 ,k − ∑ kL k l 1 ,l 2L j l 3 ,k ++ 1 ∑2 δj l 3L k l 1 ,l 2L k k,k − 1 ∑2 δj l 2L k l 1 ,l 3L k k,k +kk+ 1 4 δj l 2L l 1l1 ,l 1Θ l 3− 1 4 δj l 3L l 1l1 ,l 1Θ l 2+ 1 4 δj l 2L l 3l3 ,l 3Θ l 1− 1 4 δj l 3L l 2l2 ,l 2Θ l 1++ 1 ∑2 δj l 3L k l 1 ,l 2Θ k − 1 ∑2 δj l 2L k l 1 ,l 3Θ k +kk+ 1 2 δj l 2M l1 ,l 3Θ 0 − 1 2 δj l 3M l1 ,l 2Θ 0 + 1 4 δj l 2Θ l 3Θ l 1− 1 4 δj l 3Θ l 2Θ l 1.Next, replacing plainly (3.64) in (3.65) 4 , we get:(3.90) (Π00,0)y l 1 − ( Π 0 0,l 1)x == Θ 0 y l 1 − 1 2 Ll 1l1 ,l 1 ,x − 1 2 Θl 1 x == −Π 0 0,0 · Π0 l 1 ,0 − ∑ Π k 0,0 · a Π0 l 1 ,k + Π0 0,l 1 · Π 0 0,0 + ∑ akk= − ∑ (−G k) · (M l1 ,k) + ∑ (− 1 2 Hk l 1+ 1 )2 δk l 1Θ 0 ·kk( 1·2 Lk k,k + 1 )2 Θk == ∑ kG k M l1 ,k − 1 ∑Hl k 4 1L k k,k − 1 ∑4kkΠ k 0,l 1 · Π 0 0,k =H k l 1Θ k + 1 4 Ll 1l1 ,l 1Θ 0 + 1 4 Θ0 Θ l 1.


50Reorganizing the equality so as to put the terms Θ x and Θ y alone in theleft-hand si<strong>de</strong>, we get:(3.91)− 1 2 Θl 1x + Θ 0 y l 1= 1 2 Ll 1l1 ,l 1 ,x ++ ∑ kG k M l1 ,k − 1 ∑Hl k 4 1L k k,k − 1 ∑Hl k 4 1Θ k ++ 1 4 Ll 1l1 ,l 1Θ 0 + 1 4 Θ0 Θ l 1.kkNext, replacing plainly (3.64) in (3.65) 5 , we get:(3.92) ( )Π0l1 ,l 2 x − ( Π 0 )l 1 ,0y l 2 == M l1 ,l 2 ,x − 1 2 Ll 1l 1 ,l 1 ,y l 2 − 1 2 Θl 1y l 2 == −Π l1 ,l 2 · Π 0 0,0 − ∑ Π k l 1 ,l 2 · Π 0 0,k + Π0 l 1 ,0 · Π0 l 2 ,0 + ∑ Π k l 1 ,0 · Π0 l 2 ,k =kk= −M l1 ,l 2Θ 0 − ∑ (−L k l 1 ,l 2+ 1 2 δk l 1L l 2l2 ,l 2+ 1 2 δk l 2L l 1l1 ,l 1+k+ 1 2 δk l 1Θ l 2+ 1 ) (2 δk l 2Θ l 1 1·2 Lk k,k + 1 )2 Θk +))++( 12 Ll 1l1 ,l 1+ 1 2 Θl 1+ ∑ k·( 12 Ll 2l2 ,l 2+ 1 2 Θl 2(− 1 2 Hk l 1+ 1 2 δk l 1Θ 0 )· M l2 ,k == −M l1 ,l 2Θ 0 7 + 1 2∑L k l 1 ,l 2L k k,kk3+ 1 2∑L k l 1 ,l 2Θ kk6− 1 4 Ll 2l2 ,l 2L l 1l1 ,l 1 2−− 1 4 Ll 2l2 ,l 2Θ l 1− 1 4 Θl 1Θ l 2d+ 1 4 Ll 1l1 ,l 1Θ l 2a− 1 4 Ll 1l1 ,l 1L l 2l2 ,l 2− 1b 4 Ll 1l1 ,l 1Θ l 2− 1c 4 Ll 1l1 ,l 1Θ l 2−4− 1 4 Ll 2l2 ,l 2Θ l 1c+ 1 2 M l 2 ,l 1Θ 0 .75+ 1 4 Ll 2l2 ,l 2Θ l 1a− 1 4 Θl 1Θ l 2+ 1 4 Θl 1Θ l 28+ 1 4 Ll 1l1 ,l 1L l 2l2 ,l 2b+d− 1 2∑Hl k 1M l2 ,kk1+


51Multiplying by −2 and reorganizing the equality, we get:Θ l 1y l 2 = −Ll 1l 1 ,l 1 ,y l 2 + 2 M l 1 ,l 2 ,x+(3.93)+ ∑ kH k l 1M l2 ,k + 1 2 Ll 1l1 ,l 1L l 2l2 ,l 2− ∑ k+ 1 2 Ll 1l1 ,l 1Θ l 2+ 1 2 Ll 2l2 ,l 2Θ l 1− ∑ kL k l 1 ,l 2L k k,k +L k l 1 ,l 2Θ k ++ M l1 ,l 2Θ 0 + 1 2 Θl 1Θ l 2.Next, replacing plainly (3.64) in (3.65) 4 , we get:(3.94) (Π0l1 ,l 2)y l 3 − ( Π 0 l 1 ,l 3)y l 2 == M l1 ,l 2 ,y l 3 − M l1 ,l 3 ,y l 2 == −Π 0 l 1 ,l 2 · Π 0 l 3 ,0 − ∑ k( 1= −M l1 ,l 22 Ll 3l3 ,l 3+ 1 )2 Θl 3− ∑ k+ 1 2 δk l 2L l 1l1 ,l 1+ 1 2 δk l 1Θ l 2+ 1 2 δk l 2Θ l 1+ M l1 ,l 3( 12 Ll 2l2 ,l 2+ 1 2 Θl 2Π k l 1 ,l 2 · Π 0 l 3 ,k + Π0 l 1 ,l 3 · Π 0 l 2 ,0 + ∑ k)+ ∑ k+ 1 2 δk l 3L l 1l1 ,l 1+ 1 2 δk l 1Θ l 3+ 1 2 δk l 3Θ l 1M l3 ,k)+M l2 ,k).Π k l 1 ,l 3 · Π 0 l 2 ,k =(−L k l 1 ,l 2+ 1 2 δk l 1L l 2l2 ,l 2+(−L k l 1 ,l 3+ 1 2 δk l 1L l 3l3 ,l 3+Developing the products and or<strong>de</strong>ring each monomial, we get:(3.95)= − 1 2 Ll 3l3 ,l 3M l1 ,l 2− 1a 2 M l 1 ,l 2Θ l 3+ ∑b kL k l 1 ,l 2M l3 ,k1− 1 2 Ll 2l2 ,l 2M l3 ,l 1c−− 1 2 Ll 1l1 ,l 1M l3 ,l 2− 1d 2 M l 3 ,l 1Θ l 2− 1e 2 M l 3 ,l 2Θ l 1+ 1f 2 Ll 2l2 ,l 2M l3 ,l 1c++ 1 2 M l 1 ,l 3Θ l 2e− ∑ kL k l 1 ,l 3M l2 ,k2+ 1 2 Ll 3l3 ,l 3M l2 ,l 1+ 1a 2 Ll 1l1 ,l 1M l2 ,l 3d++ 1 2 M l 2 ,l 1Θ l 3b+ 1 2 M l 2 ,l 3Θ l 1.fSimplifying, we obtain the family (IV) in the statement of Theorem 1.7 (3):(3.96) 0 = M l1 ,l 2 ,y l 3 − M l1 ,l 3 ,y l 2 − ∑ kL k l 1 ,l 2M l3 ,k + ∑ kL k l 1 ,l 3M l2 ,k.


523.97. Solving Θ 0 x , Θ0 , y l 1 Θl 1 x and Θ l 1. It is now easy to solve all first or<strong>de</strong>rpartial <strong>de</strong>rivatives of the functions Θ 0 and Θ l . Equation (3.93) alreadyy l 2provi<strong>de</strong>s the solution for Θ l 1. We state the result as an in<strong>de</strong>pen<strong>de</strong>nt proposition.y l 2Proposition 3.98. As a consequence of the six families of equations (3.69),(3.86), (3.89), (3.91), (3.93) and (3.96) the first or<strong>de</strong>r <strong>de</strong>rivatives Θ 0 x , Θ0 y l 1 ,Θ l 1 x and Θ l 1y l 2of the principal unknowns are given by:(3.99)⎧⎪⎨Θ 0 x = −2 G l 1y l 1 + Hl 1l1 ,x ++ 2 ∑ kG k L l 1l1 ,k − ∑ kG k L k k,k − 1 2∑kH k l 1H l 1k−⎪⎩− ∑ kG k Θ k + 1 2 Θ0 Θ 0 .(3.100)⎧Θ 0 y = 2 l 13 Ll 1l1 ,l 1 ,x − 1 3 Hl 1+ l 1 ,y l 1⎪⎨⎪⎩+ 2 3 Gl 1M l1 ,l 1+ 4 ∑G k M l1 ,k − 1 ∑H l 133 kL k l 1 ,l 1+kk+ 1 ∑Hl k 3 1L l 1l1 ,k − 1 ∑Hl k 2 1L k k,k − 1 ∑Hl k 2 1Θ k +k+ 1 2 Ll 1l1 ,l 1Θ 0 + 1 2 Θ0 Θ l 1.kk(3.101)⎧Θ l 1x = − 2 3 Hl 1+ 1l 1 ,y l 13 Ll 1l1 ,l 1 ,x +⎪⎨+ 4 3 Gl 1M l1 ,l 1+ 2 ∑G k M l1 ,k − 2 ∑H l 133 kL k l 1 ,l 1+kk+ 2 ∑Hl k 3 1L l 1l1 ,k − 1 ∑Hl k 2 1L k k,k − 1 ∑Hl k 2 1Θ k +⎪⎩k+ 1 2 Ll 1l1 ,l 1Θ 0 + 1 2 Θ0 Θ l 1.kk


⎧Θ l 1y l 2 = −Ll 1l 1 ,l 1 ,y l 2 + 2 M l 1 ,l 2 ,x+53(3.102)⎪⎨⎪⎩+ ∑ kH k l 1M l2 ,k + 1 2 Ll 1l1 ,l 1L l 2l2 ,l 2− ∑ k+ 1 2 Ll 1l1 ,l 1Θ l 2+ 1 2 Ll 2l2 ,l 2Θ l 1− ∑ k+ M l1 ,l 2Θ 0 + 1 2 Θl 1Θ l 2.L k l 1 ,l 2L k k,k +L k l 1 ,l 2Θ k +We notice that the right-hand si<strong>de</strong> of (3.99) should be in<strong>de</strong>pen<strong>de</strong>nt of l 1 ;this phenomenon will be explained in a while.Proof. For Θ 0 x in (3.99), it suffices to put j := l 1 in (3.69).To obtain Θ 0 y l 1 , we put j := l 2 and l 2 := l 1 in (3.86), which yields:(3.103)Θ l 1 x − 1 2 Θ0 y l 1 = −1 2 Hl 1l 1 ,y l 1 ++ G l 1M l1 ,l 1− 1 2+ 1 2− 1 4∑k∑k∑kH k l 1L l 1l1 ,k − 1 4H l 1kL k l 1 ,l 1+∑Hl k 1L k k,k −kH k l 1Θ k + 1 4 Ll 1l1 ,l 1Θ 0 + 1 4 Θ0 Θ l 1.We may easily solve Θ 0 y l 1 and Θl 1 x thanks to this equation (3.103) and thanksto (3.91): in<strong>de</strong>ed, to obtain (3.100), it suffices to compute 4 3 · (3.91) + 2 3 ·(3.103); to obtain (3.101), it suffices to compute 2 3 · (3.91) + 4 3 · (3.103).Finally, (3.102) is a copy of (3.93). This completes the proof.3.104. Appearance of the crucial four families of first or<strong>de</strong>r partial differentialrelations (I), (II), (III) and (IV) of Theorem 1.7 (3). However,in solving Θ 0 x, Θ 0 , y l 1 Θl 1 x and Θ l 1from our six families of equations (3.69),y l 2(3.86), (3.89), (3.91), (3.93) and (3.96), only a subpart of these equations hasbeen used. We notice that the two families of equations (3.91) and (3.93)have been used completely and that the family of equations (3.96), whichdoes not involve Θ, coinci<strong>de</strong>s precisely with the system (IV) of Theorem1.7 (3). To in<strong>sur</strong>e that Θ 0 x , Θ0 , y l 1 Θl 1 x and Θ l 1as written in Proposi-y l 2tion 3.98 are true solutions, it is necessary and sufficient that they satisfythe remaining equations. Thus, we have to replace these solutions (3.99),(3.100), (3.101) and (3.102) in the three remaining families (3.69), (3.86)and (3.89).Firstly, let us insert insi<strong>de</strong> (3.69) the value of Θ 0 x given by the equation(3.99), in which the in<strong>de</strong>x l 1 is replaced in advance by an arbitrary


54in<strong>de</strong>x l 2 . We get:(3.105)0 = −2G j y + l 1 2δj l 1G l 2y + l 2 Hj l 1 ,x − δj l 1H l 2l2 ,x ++ 2 ∑ G k L j l 1 ,k − ∑2δj l 1G k L l 2l2 ,k − ∑δj l 1G k L k k,k +kkka∑+ δ j l 1G k L k k,k − 1 ∑Hl k 2 1H j k + 1 ∑2 δj l 1Hl k 2H l 2k−kak∑ ∑− δ j l 1G k Θ k + δ j l 1G k Θ k + 1 2 δj l 1Θ 0 Θ 0 − 1kbkc 2 δj l 1Θ 0 Θ 0 .cbWe simplify, which yields the family (I) of partial differential relations ofTheorem 1.7 (3):k(3.106)0 = − 2 G j + 2 y l 1 δj l 1G l 2+ y l 2 Hj l 1 ,x − δj l 1H l 2l2 ,x +G k L j l 1 ,k − 2 ∑δj l 1G k L l 2l2 ,k ++ 2 ∑ kk− 1 ∑Hl k 2 1H j k + 1 ∑2 δj l 1kkH k l 2H l 2k.Secondly, let us insert insi<strong>de</strong> (3.86) the values of Θ l 1 x , Θ l 2 x given by (3.101)and the value of Θ 0 given by (3.100). We place all the terms in the righthandsi<strong>de</strong> of the equality and we place the first or<strong>de</strong>r terms in the beginningy l 1(first three lines just below). We obtain:(3.107)0 = − 1 2 Hj l 1 ,y l 2 1+ L j l 1 ,l 2 ,x 4− 1 2 δj l 1L l 2l2 ,l 2 ,x5− 1 2 δj l 1L l 1l1 ,l 1 ,x6++ 1 3 δj l 1H l 2l 2 ,y l 2 2− 1 6 δj l 1L l 2l2 ,l 2 ,x5+ 1 3 δj l 2H l 1l 1 ,y l 1 3− 1 6 δj l 2L l 1l1 ,l 1 ,x6++ 1 3 δj l 1L l 2l2 ,l 2 ,x5− 1 6 δj l 1H l 2l 2 ,y l 2 2++ G j M l1 ,l 2 7 − 1 2− 1 4 δj l 2∑k− 2 3 δj l 1G l 2M l2 ,l 28∑kH j k Lk l 1 ,l 212+ 1 2∑Hl k 1L j l 2 ,kHl k 1Θ k + 1 4 δj l 2L l 1l1 ,l 1Θ 0 + 1c 4 δj l 2Θ 0 Θ l 1−db− 1 ∑3 δj l 1G k M l2 ,kkk1013+ 1 3 δj l 1∑k− 1 ∑4 δj l 2Hl k 1L k k,kkH l 2kL k l 2 ,l 214a−− 1 3 δj l 1∑kH k l 2L l 2l2 ,k15+


+ 1 ∑4 δj l 1Hl k 2L k k,kk− 2 3 δj l 2G l 1M l1 ,l 19+ 1 ∑4 δj l 2Hl k 1L k k,kke+ 1 4 δj l 1∑− 1 ∑3 δj l 2G k M l1 ,kakk+ 1 4 δj l 2∑+ 1 3 δj l 1G l 2M l2 ,l 2+ 2 ∑8 3 δj l 1G k M l2 ,k− 1 ∑4 δj l 1Hl k 2L k k,kkekk− 1 4 δj l 1∑k55Hl k 2Θ k − 1 4 δj l 1L l 2l2 ,l 2Θ 0 − 1g 4 δj l 1Θ 0 Θ l 2−hf11+ 1 3 δj l 2∑kH l 1kL k l 1 ,l 116− 1 3 δj l 2∑Hl k 1Θ k − 1 4 δj l 2L l 1l1 ,l 1Θ 0 − 1c 4 δj l 2Θ 0 Θ 0 d+b10− 1 6 δj l 1∑kH l 2kL k l 2 ,l 214k+ 1 6 δj l 1∑Hl k 2Θ k + 1 4 δj l 1L l 2l2 ,l 2Θ 0 + 1g 4 δj l 1Θ 0 Θ l 2.hfkH k l 1L l 1l1 ,kH k l 2L l 2l2 ,k1715+−Simplifying and or<strong>de</strong>ring, we obtain the family (II) of partial differentialrelations of Theorem 1.7 (3):(3.108)0 = − 1 2 Hj l 1 ,y l 2 + 1 6 δj l 1H l 2l 2 ,y l 2 + 1 3 δj l 2H l 1l 1 ,y l 1 ++ L j l 1 ,l 2 ,x − 1 3 δj l 1L l 2l2 ,l 2 ,x − 2 3 δj l 2L l 1l1 ,l 1 ,x ++ G j M l1 ,l 2− 1 3 δj l 1G l 2M l2 ,l 2− 2 3 δj l 2G l 1M l1 ,l 1+ 1 ∑3 δj l 1G k M l2 ,k−− 1 ∑3 δj l 2G k M l1 ,k − 1 ∑H j k2Lk l 1 ,l 2+ 1 ∑Hl k 2 1L j l 2 ,k +k+ 1 6 δj l 1∑k+ 1 3 δj l 2∑kH l 2kL k l 2 ,l 2− 1 6 δj l 1∑H l 1kL k l 1 ,l 1− 1 3 δj l 2∑kkkH k l 2L l 2l2 ,k +H k l 1L l 1l1 ,k .kkThirdly, let us insert insi<strong>de</strong> (3.89) the values of Θ l 2, of y l 3 Θl 3, of y l 2 Θl 1and y l 3of Θ l 1given by (3.102). We place all the terms in the right-hand si<strong>de</strong> of they l 2equality and we place the first or<strong>de</strong>r terms in the beginning (first four lines


56just below). We obtain:(3.109)0 = 1 2 δj l 1L l 2− δ j l 2 ,l 2 ,y l 3 l 1M l2 ,l 3 ,x + 1a b 2 δj l 2L l 1− δ j l 1 ,l 1 ,y l 3 l 2M l1 ,l 3 ,x −c4− 1 2 δj l 1L l 3+ δ j l 3 ,l 3 ,y l 2 l 1M l3 ,l 2 ,x − 1d b 3 δj l 3L l 1+ δ j l 1 ,l 1 ,y l 2 l 3M l1 ,l 2 ,x +e3+ L j − L j + 1 l 1 ,l 2 ,y l 3 l 1 1 ,l 3 ,y l 2 2 2 δj l 1L l 3− 1 l 3 ,l 3 ,y l 2d 2 δj l 1L l 2+l 2 ,l 2 ,y l 3a+ 1 3 δj l 3L l 1− 1 l 1 ,l 1 ,y l 2e 2 δj l 2L l 1+l 1 ,l 1 ,y l 3c+ 1 2 Hj l 3M l1 ,l 2− 15 2 Hj l 2M l1 ,l 3+ 16 4 δj l 2L l 3l3 ,l 3L l 1l1 ,l 1− 1f 4 δj l 3L l 2l2 ,l 2L l 1l1 ,l 1g++ ∑ kL k l 1 ,l 3L j l 2 ,k− ∑ kL k l 1 ,l 2L j l 3 ,k+11+ 1 ∑2 δj l 3L k l 1 ,l 2L k k,kk+ 1 4 δj l 2L l 1l1 ,l 1Θ l 3jh12− 1 ∑2 δj l 2L k l 1 ,l 3L k k,kk− 1 4 δj l 3L l 1l1 ,l 1Θ l 2ki++ 1 4 δj l 2L l 3l3 ,l 3Θ l 1+ 1 ∑2 δj l 3L k l 1 ,l 2Θ k − 1 ∑2 δj l 2L k l 1 ,l 3Θ kknko++ 1 2 δj l 2M l1 ,l 3Θ 0 − 1p 2 δj l 3M l1 ,l 2Θ 0 + 1q 4 δj l 2Θ l 3Θ l 1− 1 ∑2 δj l 1Hl k 2M l3 ,kk− 1 4 δj l 1L l 2l2 ,l 2Θ l 3v8rl− 1 4 δj l 3L l 2l2 ,l 2Θ l 1− 1 4 δj l 3Θ l 2Θ l 1−s− 1 4 δj l 1L l 2l2 ,l 2L l 3l3 ,l 3+ 1 ∑t 2 δj l 1L l2 ,l 3L k k,k −ku+ 1 ∑2 δj l 1− 1 4 δj l 1L l 3l3 ,l 3Θ l 2− 1 2 δj l 1M l2 ,l 3Θ 0 y− 1 4 δj l 1Θ l 2Θ l 3− 1 ∑2 δj l 2Hl k 1M l3 ,kk− 1 4 δj l 2L l 1l1 ,l 1Θ l 3j10w−zkL k l 2 ,l 3Θ k x−− 1 4 δj l 2L l 1l1 ,l 1L l 3l3 ,l 3+ 1 ∑f 2 δj l 2L k l 1 ,l 3L k k,k −ki+ 1 ∑2 δj l 2L k l 1 ,l 3Θ k o−− 1 4 δj l 2L l 3l3 ,l 3Θ l 1− 1 2 δj l 2M l1 ,l 3Θ 0 p− 1 4 δj l 2Θ l 3Θ l 1l+rk+m


+ 1 ∑2 δj l 1Hl k 3M l2 ,kk+ 1 4 δj l 1L l 3l3 ,l 3Θ l 2w7+ 1 4 δj l 1L l 3l3 ,l 3L l 2l2 ,l 2− 1 ∑t 2 δj l 1L l3 ,l 2L k k,k +ku− 1 ∑2 δj l 1L k l 3 ,l 2Θ k x++ 1 4 δj l 1L l 2l2 ,l 2Θ l 3+ 1 2 δj l 1M l3 ,l 2Θ 0 y+ 1 4 δj l 1Θ l 3Θ l 2+ 1 ∑2 δj l 3Hl k 1M l2 ,kk+ 1 4 δj l 3L l 1l1 ,l 1Θ l 2k9v+zk+ 1 4 δj l 3L l 1l1 ,l 1L l 2l2 ,l 2− 1 ∑g 2 δj l 3L k l 1 ,l 2L k k,k +kh− 1 ∑2 δj l 3L k l 1 ,l 2Θ k n++ 1 4 δj l 3L l 2l2 ,l 2Θ l 1+ 1 2 δj l 3M l1 ,l 2Θ 0 q+ 1 4 δj l 3Θ l 1Θ l 2Simplifying and or<strong>de</strong>ring, we obtain the family (III) of partial differentialrelations of Theorem 1.7 (3):sm.0 = L j l 1 ,l 2 ,y l 3 − Lj l 1 ,l 3 ,y l 2 + δj l 3M l1 ,l 2 ,x − δ j l 2M l1 ,l 3 ,x+k57(3.110)+ 1 2 Hj l 3M l1 ,l 2− 1 2 Hj l 2M l1 ,l 3++ 1 ∑2 δj l 1Hl k 3M l2 ,k − 1 ∑2 δj l 1Hl k 2M l3 ,k+k+ 1 ∑2 δj l 3Hl k 1M l2 ,k − 1 ∑2 δj l 2Hl k 1M l3 ,k+kk+ ∑ L k l 1 ,l 3L j l 2 ,k − ∑ L k l 1 ,l 2L j l 3 ,k .kkk3.111. Arguments for the proof of Theorem 1.7 (3): necessity and sufficiencyof (I), (II), (III), (IV). Let us summarize the implications that havebeen established so far, from the beginning of Section 3. Recall that m 2.• There exist functions X, Y j of (x, y) transforming the system y j xx =F j (x, y, y x ), j = 1, . . ., m, to the free particle system Y j XX = 0, j =1, . . ., m.⇓• There exist functions Π j l 1 ,l 2of (x, y), 0 j, l 1 , l 2 m, satisfying thefirst <strong>aux</strong>iliary system (3.38) of partial differential equations.⇓• There exist (principal unknowns) functions Θ 0 , Θ j satisfying the sixfamilies of partial differential equations (3.69), (3.86), (3.89), (3.91),(3.93) and (3.96).


58⇓• The functions G j , H j l 1, L j l 1 ,l 2and M l1 ,l 2satisfy the four families ofpartial differential equations (I), (II), (III) and (IV) of Theorem 1.7 (3).The four families of first or<strong>de</strong>r partial differential equations (3.99),(3.100), (3.101) and (3.102) satisfied by the principal unknowns will becalled the second <strong>aux</strong>iliary system. It is a complete system.To achieve the proof of Theorem 1.7 (3), we have to establish the reverseimplications. More precisely:• Some given functions G j , H j l 1, L j l 1 ,l 2= L j l 2 ,l 1and M l1 ,l 2= M l2 ,l 1of(x, y) satisfy the four families of partial differential equations (I), (II),(III) and (IV) of Theorem 1.7 (3), or equivalently, the partial differentialequations (3.106), (3.108), (3.110) and (3.96).⇓• There exist functions Θ 0 , Θ j satisfying the second <strong>aux</strong>iliary system(3.99), (3.100), (3.101) and (3.102).⇓• These solution functions Θ 0 , Θ j satisfy the six families of partial differentialequations (3.69), (3.86), (3.89), (3.91), (3.93) and (3.96).⇓• There exist functions Π j l 1 ,l 2of (x, y), 0 j, l 1 , l 2 m, satisfying thefirst <strong>aux</strong>iliary system (3.38) of partial differential equations.⇓• There exist functions X, Y j of (x, y) transforming the system y j xx =F j (x, y, y x ), j = 1, . . ., m, to the free particle system Y j XX = 0, j =1, . . ., m.The above last three implications have been already implicitely establishedin the preceding paragraphs, as may be checked by inspectingLemma 3.40 and the formal computations after §3.62.Thus, it remains only to establish the first implication in the above reverselist. Since the second <strong>aux</strong>iliary system (3.99), (3.100), (3.101) and (3.102)is complete and of first or<strong>de</strong>r, a necessary and sufficient condition for theexistence of solutions follows by writing out the following four families ofcross-differentiations:⎧ ( ))y − l 1(3.112)0 = ( Θ 0 x( ) (⎪⎨ 0 = Θ 0 y l 1−y l 20 = ( ) (Θ l 1− x y l 2( )⎪⎩ 0 = Θ l 1−y l 2y l 3Θ 0 y l 1Θ 0 y l 2Θ l 1y l 2,)x(Θ l 1y l 3),x)y l 1y l 2,.


In the har<strong>de</strong>st techical part of this paper (Section 4 below), we verify thatthese four families of compatibility conditions are a consequence of (I), (II),(III) and (IV). For reasons of space, we shall in fact only study the firstfamily of compatibility conditions, i.e. the first line of (3.112). In the ourmanuscript, we have treated the remaining three families of compatibilityconditions similarly and completely, up to the very end of every branch ofthe coral tree of computations. However, we would like to mention thattypesetting the remaining three cases would add at least fifty pages of Latexto Section 4. Thus, we prefer to expose thoroughly the treatment of the firstfamily of compatibility conditions, explaining implicitely how to guess thetreatment of the remaining three.§4. COMPATIBILITY CONDITIONS FOR THE SECOND AUXILIARYSYSTEMSo, we have to <strong>de</strong>velope the first line of (3.112): we replace Θ 0 x by itsexpression (3.99), we differentiate it with respect to y l 1, we replace Θ 0 by y l 1its expression (3.100), we differentiate it with respect to x and we substract.We get:(4.1)0 = ( ( )Θ 0 x)y − Θ 0 l 1 y l 1x= −2G l 1y l 1y + l 1 Hl 1l 1 ,xy + l 159+ 2 ∑ k− 1 ∑2k+ Θ 0 Θ 0 y l 1 −G k y l 1 Ll 1l1 ,k + 2 ∑ kH k l 1 ,y l 1 Hl 1k− 1 2∑kG k L l 1l 1 ,k,y l 1 − ∑ kH k l 1H l 1k,y l 1 − ∑ kG k y l 1 Lk k,k − ∑ kG k y l 1 Θk − ∑ kG k L k k,k,y l 1 −G k Θ k y l 1 +− 2 3 Ll 1l1 ,l 1 ,xx + 1 3 Hl 1l 1 ,y l 1x −− 2 3 Gl 1 x M l1 ,l 1− 2 3 Gl 1M l1 ,l 1 ,x − 4 3kk∑G k x M l 1 ,k − 4 ∑G k M l1 ,k,x+3kk∑Hl k 1 ,x Ll 1l1 ,k − 1 ∑3+ 1 ∑H l 13 k,xL k l 1 ,l 1+ 1 ∑H l 13 kL k l 1 ,l 1 ,x − 1 3kkkk+ 1 ∑Hl k 2 1 ,x Lk k,k + 1 ∑Hl k 2 1L k k,k,x + 1 ∑Hl k 2 1 ,x Θk + 1 ∑Hl k 2 1Θ k x−− 1 2 L l 1 ,l 1 ,x Θ 0 − 1 2 L l 1 ,l 1Θ 0 x − 1 2 Θ0 x Θl 1− 1 2 Θ0 Θ l 1 x .Here, we un<strong>de</strong>rline twice the second or<strong>de</strong>r terms. Also, we have un<strong>de</strong>rlinedonce the six terms: Θ k y l 1 , Θ0 y l 1 , Θk x , Θ0 x , Θ0 x and Θl 1 x . They must bekkH k l 1L l 1l1 ,k,x +


60replaced by their values given in (3.99), (3.100), (3.101) and (3.102). In thisreplacement, some double sums appear. As before, we use the first in<strong>de</strong>xk = 1, . . .,m for single summation and then the second in<strong>de</strong>x p = 1, . . .,mfor double summation. Finally, we put all the second or<strong>de</strong>r terms in the firstline, not disturbing the or<strong>de</strong>r of appearance of the 73 remaining terms. Weget:(4.2)0 = −2G l 1y l 1y l 1 + 4 3 Hl 1l 1 ,xy l 1 − 2 3 Ll 1l1 ,l 1 ,xx ++ 2 ∑ k− 1 2∑kG k y l 1 Ll 1l1 ,k4H k l 1 ,y l 1 Hl 1k10+ 2 ∑ k− 1 2G k L l 1l 1 ,k,y l 1∑k16H k l 1H l 1k,y l 111− ∑ k− ∑ kG k y l 1 Lk k,k5G k y l 1 Θk α+− ∑ kG k L k k,k,y l 1a−+ ∑ k− 1 2− 1 2G k L k k,k,y l 1∑k∑ka− 2 ∑ kG k L k k,k Ll 1l1 ,l 1+ ∑bkG k L l 1l1 ,l 1Θ k + ∑dkG k M k,l1 ,x18− ∑ k∑G k L p k,l 1L p p,pp∑G k H p k M l 1 ,p23∑G k L p k,l 1Θ p − ∑pkεp− 1 219−∑G k L k k,k Θl 1kG k M k,l1 Θ 0 e− 1 2c−∑G k Θ k Θ l 1kf++ 2 3 Ll 1l1 ,l 1 ,x Θ0 − 1g 3 Hl 1l 1 ,y l 1 Θ0 +h+ 2 3 Gl 1M l1 ,l 1Θ 0 + 4 ∑G k M l1 ,k Θ 0i 3ke− 1 ∑Hl k 2 1L k k,k Θ0 − 1 ∑2klk− 1 3∑kH l 1kL l 1l1 ,l 1Θ 0 j+ 1 3∑Hl k 1Θ k Θ 0 + 1 2 Ll 1l1 ,l 1Θ 0 Θ 0 + 1n 2 Θ0 Θ 0 Θ l 1−omkH k l 1L l 1l1 ,k Θ0 k−− 2 3 Gl 1 x M l1 ,l 11− 2 3 Gl 1M l1 ,l 1 ,x17+ 1 3+ 1 2∑k∑kH l 1k,xL k l 1 ,l 19H k l 1 ,x Lk k,k8+ 1 3+ 1 2∑k− 4 3H l 1kL k l 1 ,l 1 ,x∑Hl k 1L k k,k,xk∑G k x M l 1 ,kk1514− 1 3+ 1 2∑k2− 4 3∑G k M l1 ,k,xkH k l 1 ,x Ll 1l1 ,k∑Hl k 1 ,x Θk γ−k7− 1 3∑k18+H k l 1L l 1l1 ,k,x13+


− 1 3+ 1 3− 1 4+ 1 4∑Hl k 1H k k,y+ 1 ∑H k l k 6 1L k k,k,x + 2 ∑Hl k 3 1G k M k,k +k12k15k20∑ ∑Hl k 1G p M k,p − 1 ∑ ∑Hl k 31Hp k L p k,k+ 1 ∑ ∑Hl k 31H p k Lk k,pk pk pk p2124∑ ∑Hl k 1H p k Lp p,p − 1 ∑ ∑+ 1 ∑Hl k 44 1L k k,k Θ0 l+k∑kp26H k l 1Θ 0 Θ k m− 1 2 Ll 1l1 ,l 1 ,x Θ0 g+kpH k l 1H p k Θp ηk6125−+ G l 1y l 1 Ll 1l1 ,l 1 3− 1 2 Hl 1l1 ,x Ll 1l1 ,l 1 6−− ∑ k+ 1 2G k L l 1l1 ,l 1L l 1l1 ,k∑k22+ 1 2∑kG k L l 1l1 ,l 1L k k,kG k L l 1l1 ,l 1Θ k − 1 4 Ll 1l1 ,l 1Θ 0 Θ 0 n+db+ 1 4∑kH k l 1H l 1kL l 1l1 ,l 127++ G l 1y l 1 Θl −1β1 2 Hl 1l1 ,x Θl 1− ∑ kG k L l 1l1 ,k Θl 1− 1 4 Θ0 Θ 0 Θ l 1+oζ+ 1 2−δ∑G k L k k,k Θl 1kc+ 1 4∑kH k l 1H l 1kΘ l 1θ+ 1 2∑G k Θ k Θ l 1−kf+ 1 3 Hl 1l 1 ,y l 1 Θ0 − 1h 6 Ll 1l1 ,l 1 ,x Θ0 g−− 2 3 Gl 1M l1 ,l 1Θ 0 − 1 ∑G k M l1 ,k Θ 0i 3ke+ 1 ∑Hl k 4 1L k k,k Θ0 + 1 ∑4klk+ 1 3∑kH l 1kL k l 1 ,l 1Θ 0 j− 1 3∑Hl k 1Θ 0 Θ k − 1 4 Ll 1l1 ,l 1Θ 0 Θ 0 − 1n 4 Θ0 Θ 0 Θ l 1.omAs usual, all the terms un<strong>de</strong>rlined with the 15 roman alphabetic lettersa, b, . . ., n, o appen<strong>de</strong>d vanish evi<strong>de</strong>ntly. Furthermore, we claim that theeight terms un<strong>de</strong>rlined with the 8 Greek alphabetic letters α, β, γ, δ, ε, ζ, ηkH k l 1L l 1l1 ,k Θ0 k+


62and θ also vanish:(4.3)0 =?= − ∑ k+ ∑ kG k y l 1 Θk + G l 1y l 1 Θl 1+ 1 2∑G k L p k,l 1Θ p − ∑pk∑kH k l 1 ,x Θk − 1 2 Hl 1l1 ,x Θl 1+G k L l 1l1 ,k Θl 1− 1 4∑ ∑Hl k 1H p k Θp + 1 4kp∑kH k l 1H l 1kΘ l 1.In<strong>de</strong>ed, it suffices to observe that this i<strong>de</strong>ntity coinci<strong>de</strong>s with(4.4) 0 = 1 2∑kΘ k ( (3.106)| j:=k; l1 :=l 1 ; l 2 :=l 1).Simplifying then (4.2), we get the explicit formulation of the first family ofcompatibility conditions for the second <strong>aux</strong>iliary system:(4.5)0 =?= 2G l 1y l 1y l 1 + 4 3 Hl 1l 1 ,xy l 1 − 2 3 Ll 1l1 ,l 1 ,xx −− 2 3 Gl 1 x M l1 ,l 1− 4 3∑+ 2 ∑ G k y l 1 Ll 1l1 ,k − ∑kk− 1 2 Hl 1l1 ,x Ll 1l1 ,l 1− 1 ∑3+ 1 3− 1 3∑kkkH l 1k,xL k l 1 ,l 1− 1 2∑H k k,yH k k l 1−kG k x M l1 ,k + G l 1y l 1 Ll 1l1 ,l 1+G k y l 1 Lk k,k −H k l 1 ,x Ll 1l1 ,k + 1 2∑k∑Hl k 1 ,x Lk k,k +kH k l 1 ,y l 1 Hl 1k− 1 2∑kH l 1k,y l 1 Hk l 1−


− 1 3∑kL l 1l1 ,k,x Hk l 1+ 1 3∑kL k l 1 ,l 1 ,x Hl 1k+ 2 3∑L k k,k,x Hk l 1++ 2 ∑ L l 1l 1 ,k,y l 1 Gk −k− 2 3 M l 1 ,l 1 ,x G l 1− 10 ∑M k,l1 ,x G k −3k− ∑ ∑G k H p k M l 1 ,p + 2 ∑G k Hl k 31M k,k + 1 ∑ ∑G p Hl k 31M k,p −k pkk p− ∑ G k L l 1l1 ,k Ll 1l1 ,l 1+ ∑ ∑G k L p k,l 1L p p,p−kk p− 1 ∑ ∑Hl k 31Hp k L p k,k + 1 ∑ ∑Hl k 31H p k Lk k,p −kp− 1 ∑ ∑Hl k 41H p k Lp p,p + 1 ∑4kpkkpkH k l 1H l 1kL l 1l1 ,l 1.We can now state the main technical lemma of this section and of this paper.Lemma 4.6. The second or<strong>de</strong>r partial differential relations (4.5) hold truefor l = 1, . . .,m, and they are a consequence, by differentiations and bylinear combinations, of the fundamental first or<strong>de</strong>r partial differential equations(3.106), (3.108), (3.110) and (3.96).4.7. Reconstitution of the appropriate linear combinations. The remainingof Section 4 is entirely <strong>de</strong>voted to the proof of this statement. Fromthe manual computational point of view, the difficulty of the task is dueto the fact that one has to manipulate formal expressions having from 10to 50 terms. So the real question is: how can we reconstitute the linearcombinations and the differentiations which lead to the goal (4.5) from thedata (3.106), (3.108), (3.110) and (3.96)?.The main trick is to first neglect the first or<strong>de</strong>r and the zero or<strong>de</strong>r terms inthe goal (4.5). Using the symbol “≡” to <strong>de</strong>note “modulo first or<strong>de</strong>r and thezero or<strong>de</strong>r terms”, we formulate the following sub-goal:(4.8) 0 ≡?≡ −2 G l 1y l 1y l 1 + 4 3 Hl 1l 1 ,xy l 1 − 2 3 Ll 1l1 ,l 1 ,xx ,for l 1 = 1, . . .,m. Before estabilishing that these partial differential relationsare a consequence of the data (3.106), (3.108), (3.110) and (3.96)(written with a similar sign ≡), let us check that they are a consequenceof the existence of the change of coordinates (x, y) ↦→ (X, Y ) (however,recall that, in establishing the reverse implications of §3.111, we still donot know that such a change of coordinates really exists); this will confirmthe coherence and the validity of our computations. Importantly, we have63


64been able to achieve systematic corrections of our computations by alwayschecking them alongsi<strong>de</strong> with the existence of the change of coordinates(x, y) ↦→ (X, Y ).Coming back to the <strong>de</strong>finition (3.35) and to the approximation (3.58), wehave:(4.9)G l 1= −□ l 1xx∼ = −Yl 1xx ,H l 1l1= −2□ l 1+ xy l 1 □0 ∼ xx = −2 Y l 1+ X xy l 1 xx,L l 1l1 ,l 1= −□ l 1y l 1y l 1 + 2 □0 xy l 1∼ = −Yl 1y l 1y l 1 + 2 X xy l 1.Differentiating the first two lines with respect to y l 1and the third line withrespect to x, and replacing the sign ∼ = by the sign ≡ (in a non-rigorous way,this corresponds essentially to neglecting the <strong>de</strong>rivatives of or<strong>de</strong>r 0, 1, 2 and3 of X, Y j and to neglecting the difference between the Jacobian matrix ofthe transformation and the i<strong>de</strong>ntity matrix), we get:G l 1y l 1y l 1 ≡ −Y l 1xxy l 1y l 1 ,(4.10)H l 1l 1 ,xy l 1 ≡ −2Y l 1xy l 1xy l 1 + X xxxy l 1,L l 1l1 ,l 1 ,xx ≡ −Y l 1y l 1y l 1xx + 2X xy l 1xx .Hence the linear combination −2 · (4.10) 1 + 4 3 · (4.10) 2 − 2 3 (4.10) 3 yieldsthe <strong>de</strong>sired result:(4.11)0 ≡?≡ −2G l 1y l 1y l 1 + 4 3 Hl 1l 1 ,xy l 1 − 2 3 Ll 1l1 ,l 1 ,xx≡ 2Y l 1− 8 xxy l 1y l1 a 3 Y l 1+ 4 xy l 1xy l 1a 3 X xxxy l 1 + 2b 3 Y l 1y l 1y l1xx − 4a 3 X xy l 1xxb≡ 0, in<strong>de</strong>ed!Thanks to this straightforward computation, we guess that the approximatepartial differential relations (4.8) are a consequence of the approximate relations(3.106), (3.108), (3.110) and (3.96), namely:(4.12)(3.106) mod : 0 ≡ −2 G j + 2 y l 1 δj l 1G l 2+ y l 2 Hj l 1 ,x − δj l 1H l 2l2 ,x ,(3.108) mod : 0 ≡ − 1 2 Hj l 1 ,y l 2 + 1 6 δj l 1H l 2l 2 ,y l 2 + 1 3 δj l 2H l 1l 1 ,y l 1 ++ L j l 1 ,l 2 ,x − 1 3 δj l 1L l 2l2 ,l 2 ,x − 2 3 δj l 2L l 1l1 ,l 1 ,x ,(3.110) mod : 0 ≡ L j l 1 ,l 2 ,y l 3 − Lj l 1 ,l 3 ,y l 2 + δj l 3M l1 ,l 2 ,x − δ j l 2M l1 ,l 3 ,x,(3.96) mod : 0 ≡ M l1 ,l 2 ,y l 3 − M l1 ,l 3 ,y l 2.


Here, the sign ≡ means “modulo zero or<strong>de</strong>r terms”. Before proceding further,recall the correspon<strong>de</strong>nce between partial differential relations:(4.13)(I) = (3.106),(II) = (3.108),(III) = (3.110),(IV) = (3.96).However, these coup<strong>les</strong> of equivalent i<strong>de</strong>ntities are written slightly differently,as may be read by comparison. To fix i<strong>de</strong>as and to facilitate the eyecheckingof our subsequent computations, we shall only use and refer to theexact writing of (3.106), of (3.108), of (3.110) and of (3.96).4.14. Construction of a gui<strong>de</strong>. So we want to show that the approximate relation(4.8) is a consequence, by differentiations and by linear combinations,of the approximate i<strong>de</strong>ntities (4.12). The interest of working with approximatei<strong>de</strong>ntities is that formal computations are lightened substantially. Afterhaving discovered which linear combinations and which differentiations areappropriate, i.e. after having constructed a “gui<strong>de</strong>”, in §4.22 below, we shallwrite down the complete computations, including all zero or<strong>de</strong>r terms, followingour gui<strong>de</strong>.We shall use two indices l 1 and l 2 with 1 l 1 , l 2 m and, crucially,l 2 ≠ l 1 . Again, the assumption m 2 is used strongly.Firstly, put j := l 1 in (3.106) mod with l 2 ≠ l 1 and differentiate withrespect to y l 1:(4.15) 0 ≡ −2G l 1y l 1y l 1 + 2Gl 2y l 2y l 1 + Hl 1l 1 ,xy l 1 − Hl 2l 2 ,xy l 1 .Secondly, put j := l 2 in (3.106) mod with l 1 ≠ l 2 and differentiate withrespect to y l 2:(4.16) 0 ≡ −2G l 2y l 1y l 2 + Hl 2l 1 ,xy l 2 .Thirdly, put j := l 2 in (3.108) mod with l 1 ≠ l 2 and differentiate with respectto x:(4.17) 0 ≡ − 1 2 Hl 2l 1 ,y l 2x + 1 3 Hl 1l 1 ,y l 1x + Ll 2l1 ,l 2 ,xx − 2 3 Ll 1l1 ,l 1 ,xx .Fourthly, put j := l 1 in (3.108) mod with l 2 ≠ l 1 and differentiate with respectto x:(4.18) 0 ≡ − 1 2 Hl 1l 1 ,y l 2x + 1 6 Hl 2l 2 ,y l 2x + Ll 1l1 ,l 2 ,xx − 1 3 Ll 2l2 ,l 2 ,xx .Fithly, permute the indices (l 1 , l 2 ) ↦→ (l 2 , l 1 ):(4.19) 0 ≡ − 1 2 Hl 2l 2 ,y l 1x + 1 6 Hl 1l 1 ,y l 1x + Ll 2l2 ,l 1 ,xx − 1 3 Ll 1l1 ,l 1 ,xx .65


66Finally, compute the linear combination (4.15)+(4.16)+2·(4.17)−2·(4.19):0 ≡ −2G l 1+ 2G l y l 1y l 2+ H l 1 y l 1y l2 1− H l l 1 a 1 ,xy l 2−1 l 2 2 ,xy l1 b(4.20)− 2G l 2+ H l y l 1y l2 2−la 1 ,xy l2 c− H l 2+ 2 l 1 ,xy l2 c 3 Hl 1+ 2L l 2l 1 ,l 1 ,xy l 1 l1 ,l 2 ,xx − 4 2 d 3 Ll 1l1 ,l 1 ,xx+3+ H l 2− 1 l 2 ,xy l1 b 3 Hl 1− 2L l 2l 1 ,xy l 1 l2 ,l 1 ,xx + 2 2 d 3 Ll 1l1 ,l 1 ,xx.3We in<strong>de</strong>ed get the <strong>de</strong>sired approximate i<strong>de</strong>ntity:(4.21) 0 ≡ −2 G l 1y l 1y l 1 + 4 3 Hl 1l 1 ,xy l 1 − 2 3 Ll 1l1 ,l 1 ,xx .4.22. Complete computation. Now that the gui<strong>de</strong> is constructed, we canachieve the complete computations.Firstly, put j := l 1 in (3.106) with l 2 ≠ l 1 and differentiate with respectto y l 1:(4.23)0 ≡ −2G l 1y l 1y + l 1 2Gl 2y l 2y + l 1 Hl 1l 1 ,xy − l 1 Hl 2l 2 ,xy + l 1+ 2 ∑ k− 1 ∑2kG k y l 1 Ll 1l1 ,k + 2 ∑ kH k l 1 ,y l 1 Hl 1k− 1 2∑kG k L l 1l 1 ,k,y l 1 − 2 ∑ kH k l 1H l 1k,y l 1 + 1 2∑kG k y l 1 Ll 2l2 ,k − 2 ∑ kH k l 2 ,y l 1 Hl 2k+ 1 2G k L l 2l 2 ,k,y l 1 −∑kH k l 2H l 2k,y l 1 .Secondly, put j := l 2 in (3.106) with l 1 ≠ l 2 and differentiate with respectto y l 2:(4.24)0 ≡ −2G l 2y l 1y + l 2 Hl 2l 1 ,xy + l 22 ∑ kG k y l 2 Ll 2l1 ,k + 2 ∑ kG k L l 2l 1 ,k,y l 2 − 1 2∑kH k l 1 ,y l 2 Hl 2k− 1 2∑kH k l 1H l 2k,y l 2 .


Thirdly, put j := l 2 in (3.108) with l 1 ≠ l 2 and differentiate with respect tox:(4.25)0 ≡ − 1 2 Hl 2l 1 ,y l 2x + 1 3 Hl 1l 1 ,y l 1x + Ll 2l1 ,l 2 ,xx − 2 3 Ll 1l1 ,l 1 ,xx ++ G l 2 x M l1 ,l 2+ G l 2 x M l1 ,l 2 ,x − 2 3 Gl 1 x M l1 ,l 1− 2 3 Gl 1M l1 ,l 1 ,x−− 1 ∑G k x3M l 1 ,k − 1 ∑G k M l1 ,k,x − 1 ∑H l 232 k,xL k l 1 ,l 2− 1 2+ 1 2− 1 3k∑k∑kH k l 1 ,x Ll 2l2 ,k + 1 2H k l 1 ,x Ll 1l1 ,k − 1 3k∑k∑kH k l 1L l 2l2 ,k,x + 1 3H k l 1L l 1l1 ,k,x .k∑kH l 1k,xL k l 1 ,l 1+ 1 3∑k∑k67H l 2kL k l 1 ,l 2 ,x +H l 1kL k l 1 ,l 1 ,x −Fourthly, put j := l 1 in (3.108) with l 2 ≠ l 1 , differentiate with respect to xand permute the indices (l 1 , l 2 ) ↦→ (l 2 , l 1 ):(4.26)0 ≡ − 1 2 Hl 2l 2 ,y l 1x + 1 6 Hl 1l 1 ,y l 1x + Ll 2l2 ,l 1 ,xx − 1 3 Ll 1l1 ,l 1 ,xx ++ G l 2 x M l2 ,l 1+ G l 2M l2 ,l 1 ,x − 1 3 Gl 1 x M l1 ,l 1− 1 3 Gl 1M l1 ,l 1 ,x++ 1 ∑G k x M l1 ,k + 1 ∑G k M l1 ,k,x − 1 ∑H l 2332 k,xL k l 2 ,l 1− 1 2+ 1 2− 1 6k∑k∑kH k l 2 ,x Ll 2l1 ,k + 1 2H k l 1 ,x Ll 1l1 ,k − 1 6k∑k∑kH k l 2L l 2l1 ,k,x + 1 6H k l 1L l 1l1 ,k,x .k∑kH l 1k,xL k l 1 ,l 1+ 1 6∑k∑kH l 2kL k l 2 ,l 1 ,x +H l 1kL k l 1 ,l 1 ,x −


68Finally, compute the linear combination (4.23)+(4.24)+2·(4.25)−2·(4.26):(4.27)0 = −2G l 1y l 1y l 1 + 4 3 Hl 1l 1 ,xy l 1 − 2 3 Ll 1l1 ,l 1 ,xx −− 2 3 Gl 1 x M l1 ,l 1− 4 3+ 2 ∑ k+ ∑ k+ 1 ∑2k− 1 ∑2+ ∑ kG k y l 1 Ll 1l1 ,k − 2 ∑ kHl k 1 ,x Ll 2l2 ,k + 1 ∑3k∑G k x M l 1 ,k+kkH k l 2 ,y l 1 Hl 2k+ 1 2H k l 1H l 1k,y l 1 − 1 2L l 2l2 ,k,x Hk l 1+ 1 3∑G k y l 1 Ll 2l2 ,k + 2 ∑ kH l 1k,xL k l 1 ,l 1− 1 3∑k∑+ 2 ∑ L l 1l 1 ,k,y l 1 Gk + 2 ∑kk− 2 3 M l 1 ,l 1 ,x G l 1− 4 ∑3kkk∑kH l 2k,y l 1 Hk l 2− 1 2H k l 1 ,y l 2 Hl 1k− 1 2L k l 1 ,l 1 ,x Hl 1k− 1 3∑kG k y l 2 Ll 2l1 ,k +H k l 1 ,x Ll 1l1 ,k − ∑ k∑k∑kL l 2l 1 ,k,y l 2 Gk − 2 ∑ kM l1 ,k,x G k .H k l 1 ,y l 1 Hl 1k−H k l 1H l 2k,y l 2 +L l 1l1 ,k,x Hk l 1− ∑ kL l 2l 2 ,k,y l 1 Gk −H k l 2 ,x Ll 2l1 ,k +L l 2l1 ,k,x Hk l 2+In this partial differential relation, importantly, the second or<strong>de</strong>r terms areexactly the same as in our goal (4.5). Unfortunately, the first or<strong>de</strong>r and thezero or<strong>de</strong>r terms are not the same.4.28. Formulation of a new goal. Thus, in or<strong>de</strong>r to get rid of the second or<strong>de</strong>rexpression 2 G l 1y l 1y + 4 l 1 3 Hl 1− 2l 1 ,xy l 1 3 Ll 1l1 ,l 1 ,xx, we substract: (4.5)−(4.27).In the result, we write the first or<strong>de</strong>r terms in a certain way, adapted in advanceto our subsequent computations. For this substraction yielding (4.29)just below, we have not un<strong>de</strong>rlined the terms in (4.5) and in (4.27). However,they may be un<strong>de</strong>rlined with a pencil to check that the result (4.29) is


69correct. We get:(4.29)0 =?== − ∑ k+ 2 ∑ kG k y l 1 Lk k,k + Gl 1y l 1 Ll 1l1 ,l 1+ 1 2G k y l 1 Ll 2l2 ,k − ∑ k∑kH k l 1 ,x Ll 2l2 ,k −H k l 1 ,x Lk k,k − 1 2 Hl 1l1 ,x Ll 1l1 ,l 1+− 2 ∑ kG k y l 2 Ll 2l1 ,k + ∑ kH k l 2 ,x Ll 2l1 ,k ++ 1 2− 1 2+ 1 2+ 2 ∑ k∑k∑k∑kH l 2k,y l 2 Hk l 1− 1 3H l 2k,y l 1 Hk l 2+ ∑ kH k l 1 ,y l 2 Hl 2k− 1 2∑H k k,yH k l k 1− ∑kkL l 2l1 ,k,x Hk l 2+∑L l 2l 2 ,k,y l 1 Gk − 2 ∑ kkH k l 2 ,y l 1 Hl 2k+L l 2l 1 ,k,y l 2 Gk − 2 ∑ kL l 2l2 ,k,x Hk l 1+ 2 3M k,l1 ,x G k −∑L k k,k,x Hk l 1−− ∑ ∑G k H p k M l 1 ,p + 2 ∑G k Hl k 31M k,k + 1 ∑ ∑G p Hl k 31M k,p −k pkk p− ∑ G k L l 1l1 ,l 1L l 1l1 ,k + ∑ ∑G k L p k,l 1L p p,p − 1 ∑ ∑Hl k 31Hp k Lp k,k +kk pk p+ 1 ∑ ∑Hl k 31H p k Lk k,p − 1 ∑ ∑Hl k 41H p k Lp p,p + 1 ∑Hl k 4 1H l 1kL l 1l1 ,l 1.kpkWe have un<strong>de</strong>rlined plainly the first or<strong>de</strong>r terms appearing in lines 1, 2, 3, 4,5, 6 and 7.4.30. Reconstitution of the subgoal (4.29) from (3.106), from (3.108) andfrom (3.110). Now, it suffices to establish that the first or<strong>de</strong>r partial differentialrelations (4.29) for 1 l 1 , l 2 m and l 2 ≠ l 1 (crucial assumption)are a consequence of (3.106), of (3.108) and of (3.110) by linear combinations.The <strong>aux</strong>iliary in<strong>de</strong>x l 2 , which is absent in the goal (4.5), will disappearat the end. Differentiations will not be applied anymore. Also, the partialdifferential relations (3.96), which were not used above, will neither be usedin the sequel. However, they are strongly used in the treatment of the remainingthree compatibility conditions (3.112) 2 , (3.112) 3 and (3.112) 4 , the<strong>de</strong>tail of which we do not copy in the typesetted paper. Finally, the constructionof a gui<strong>de</strong> for the subgoal (4.29) may be guessed similarly as in §4.14above. We shall provi<strong>de</strong> the final computations directly, without any gui<strong>de</strong>:pkk


70they consists of the seven partial differential relations (4.32), (4.33), (4.35),(4.37), (4.39), (4.43) and (4.45) below. At the end, we shall make the addition(4.47) below, producing the <strong>de</strong>sired subgoal (4.29) := (4.32) + (4.33)+ (4.35) + (4.37) + (4.39) + (4.43) + (4.45), with the numerotation of termscorresponding to the or<strong>de</strong>r of appearance of the terms of (4.29), as usual.Firstly, put j := k, l 1 := l 1 and l 2 := l 1 in (3.106):(4.31)0 = −2G k y + l 1 2δk l 1G l 1y + l 1 Hk l 1 ,x − δk l 1H l 1l1 ,x ++ 2 ∑ pG p L k l 1 ,p − 2δk l 1∑pG p L l 1l1 ,p − 1 2∑H p l 1Hp k + 1 ∑2 δk l 1ppH p l 1H l 1 p .∑Apply the operator 1 2 k Lk k,k (·) to the preceding equality, namely compute∑12 k Lk k,k · (4.31). This yields:(4.32)0 = − ∑ G k y l 1 Lk k,k + Gl 1y + 1 ∑H l 1 l k 2 1 ,x Lk k,k − 1 2 Hl 1l1 ,x Ll 1l1 ,l 1+kk+ ∑ ∑G p L k k,k Lk l 1 ,p − ∑ G p L l 1l1 ,l 1L k l 1 ,p − 1 ∑ ∑H p4l 1Hp k L k k,k +k ppk p+ 1 ∑H p4l 1H l 1 p L l 1l1 ,l 1.pSecondly, apply the operator − ∑ k Ll 2l2 ,k(·) to (4.32), namely compute− ∑ k Ll 2 · (4.32). This yields:(4.33)0 = 2 ∑ kl2 ,k− 2 ∑ k− 1 ∑2G k y l 1 Ll 2l2 ,k − 2Gl 1y l 1 Ll 2l2 ,l 1− ∑ kp∑pG p L l 2l2 ,k Lk l 1 ,p + 2 ∑ pH p l 1H l 1 p L l 2l2 ,l 1.H k l 1 ,x Ll 2l2 ,k + Hl 1l1 ,x Ll 2l2 ,l 1−G p L l 2l2 ,l 1L l 1l1 ,p + 1 2∑ ∑kpH p l 1H k p L l 2l2 ,k −Thirdly, put j := k, l 1 := l 2 and l 2 := l 1 with l 2 ≠ l 1 in (3.106):(4.34)0 = −2G k y + l 2 2δk l 2G l 1y + l 1 Hk l 2 ,x − δk l 2H l 1l1 ,x ++ 2 ∑ pG p L k l 2 ,p − 2δk l 2∑pG p L l 1l1 ,p − 1 2∑H p l 2Hp k + 1 ∑2 δk l 2ppH p l 1H l 1 p .


Next, apply the operator ∑ k Ll 2l1 ,k (·) to (4.34), namely compute ∑ k Ll 2l1 ,k ·(4.34). This yields:(4.35)0 = −2 ∑ k+ 2 ∑ k+ 1 ∑2pG k y l 2 Ll 2l1 ,k + 2Gl 1y l 1 Ll 2l1 ,l 2+ ∑ k∑pG p L k l 2 ,p Ll 2l1 ,k − 2 ∑ pH p l 1H l 1 p L l 2l1 ,l 2.H k l 2 ,x Ll 2l1 ,k − Hl 1l1 ,x Ll 2l1 ,l 2+G p L l 1l1 ,p Ll 2l1 ,l 2− 1 2Fourthly, put j := l 2 , l 1 := k and l 2 := l 2 in (3.108):(4.36)0 = − 1 2 Hl 2k,y l 2 + 1 6 δl 2kH l 2l 2 ,y l 2 + 1 3 Hk k,y k + L l 2k,l2 ,x −− 1 3 δk l 2L l 2l2 ,l 2 ,x − 2 3 Lk k,k,x ++ G l 2M k,l2 − 1 3 δk l 2G l 2M l2 ,l 2− 2 3 Gk M k,k + 1 3 δl 2k∑− 1 ∑G p M k,p − 1 ∑32p− 1 6 δl 2k∑ppH p l 2L l 2l2 ,p + 1 3H l 2 p L p k,l 2+ 1 2p∑pp∑ ∑kpG p M l2 ,p−H p k Ll 2l2 ,p + 1 6 δl 2k∑∑Hp k L p k,k − 1 ∑H p3k Lk k,p .p71H p l 2H k p L l 2l1 ,k +pH l 2 p L p l 2 ,l 2−Next, apply the operator − ∑ k Hk l 1(·) to (4.36), namely compute − ∑ k Hk l 1·(4.36). This yields:(4.37)0 = 1 2∑k− ∑ k− ∑ k− 1 ∑3− 1 2H l 2k,y l 2 Hk l 1− 1 6 Hl 2l 2 ,y l 2 Hl 2l1− 1 3pL l 2k,l2 ,x Hk l 1+ 1 3 Ll 2l2 ,l 2 ,x Hl 2l1+ 2 3G l 2H k l 1M k,l2 + 1 3 Gl 2H l 2l1M l2 ,l 2+ 2 3∑ ∑kG p H l 2l1M l2 ,p + 1 3pkH k l 1H p k Ll 2l2 ,p − 1 6p∑H k k,yH k k l 1−k∑L k k,k,x Hk l 1−k∑G k Hl k 1M k,k −∑ ∑G p Hl k 1M k,p + 1 ∑ ∑2∑pkH l 2l1H l 2 p L p l 2 ,l 2+ 1 6− 1 ∑ ∑Hl k 31Hp k L p k,k + 1 ∑ ∑Hl k 31H p k Lk k,p .kpkpk∑ppH k l 1H l 2 p L p k,l 2−H l 2l1H p l 2L l 2l2 ,p −


72Fithly, put j := l 2 , l 1 := k and l 2 := l 1 in (3.108):(4.38)0 = − 1 2 Hl 2k,y l 1 + 1 6 δl 2kH l 1l 1 ,y l 1 + Ll 2k,l1 ,x − 1 3 δl 2kL l 1l1 ,l 1 ,x ++ G l 2M k,l1 − 1 3 δl 2kG l 1M l1 ,l 1+ 1 3 δl 2k∑+ 1 2∑pH p k Ll 2l1 ,p + 1 6 δl 2k∑ppG p M l1 ,p − 1 2H l 1 p L p l 1 ,l 1− 1 6 δl 2k∑p∑pH p l 1L l 1l1 ,p .H l 2 p L p k,l 1+Next, apply the operator ∑ k Hk l 2(·) to (4.38), namely compute ∑ k Hk l 2 ·(4.38). This yields:(4.39)0 = − 1 2∑kH l 2k,y l 1 Hk l 2+ 1 6 Hl 1l 1 ,y l 1 Hl 2l2+ ∑ k− 1 3 Ll 1l1 ,l 1 ,x Hl 2l2++ ∑ k− 1 ∑ ∑2− 1 6kG l 2H k l 2M k,l1 − 1 3 Gl 1H l 2l2M l1 ,l 1+ 1 3∑ppH k l 2H l 2 p L p k,l 1+ 1 2H l 2l2H p l 1L l 1l1 ,p .∑ ∑kpL l 2k,l1 ,x Hk l 2−∑pG p H l 2l2M l1 ,p−H k l 2H p k Ll 2l1 ,p + 1 6∑pH l 2l2H l 1 p L p l 1 ,l 1−Sixthly, we form the expression:(4.40) (3.108)| j:=k; l1 :=l 1 ; l 2 :=l 2− (3.108)| j:=k; l1 :=l 2 ; l 2 :=l 1.


73Writing term by term the substractions, we get:(4.41)0 = − 1 2 Hk l 1 ,y l 21+ 1 2 Hk l 2 ,y l 12+ 1 6 δk l 1H l 2l 2 ,y l 2 3− 1 6 δk l 2H l 1l 1 ,y l 1 4++ 1 3 δk l 2H l 1l 1 ,y l 1 4− 1 3 δk l 1H l 2l 2 ,y l 2 3+ L k l 1 ,l 2 ,x a − Lk l 2 ,l 1 ,x a −− 1 3 δk l 1L l 2l2 ,l 2 ,x5+ 1 3 δk l 2L l 1l1 ,l 1 ,x6− 2 3 δk l 2L l 1l1 ,l 1 ,x6+ 2 3 δk l 1L l 2l2 ,l 2 ,x5++ G k M l1 ,l 2 b − Gk M l2 ,l 1 b − 1 3 δk l 1G l 2M l2 ,l 27+ 1 3 δk l 2G l 1M l1 ,l 18−− 2 3 δk l 2G l 1M l1 ,l 1+ 28 3 δk l 1G l 2M l2 ,l 2+ 1 ∑7 3 δk l 1G p M l2 ,p− 1 ∑3 δk l 2G p M l1 ,p+ 1 2p∑H p l 1L k l 2 ,pp− 1 6 δk l 1∑p− 1 3 δk l 1∑p11H p l 2L l 2l2 ,p10− 1 215H l 2 p L p l 2 ,l 213+ 1 ∑3 δk l 1G p M l2 ,pp∑H p l 2L k l 1 ,pp+ 1 6 δk l 2∑p− 1 3 δk l 2∑p12H p l 1L l 1l1 ,pH p l 1L l 1l1 ,p9p− 1 2+ 1 6 δk l 1∑1616p∑p+ 1 3 δk l 2∑9H k p Lp l 1 ,l 2cH l 2 p L p l 2 ,l 213p+ 1 3 δk l 1∑p− 1 ∑3 δk l 2G p M l1 ,p+ 1 2p10−∑Hp k Lp l 2 ,l 1c+p− 1 6 δk l 2∑H l 1 p L p l 1 ,l 114−H p l 2L l 2l2 ,p15.pH l 1 p L p l 1 ,l 114−Simplifying, we get:(4.42)0 = − 1 2 Hk l 1 ,y l 2 + 1 2 Hk l 2 ,y l 1 − 1 6 δk l 1H l 2l 2 ,y l 2 + 1 6 δk l 2H l 1l 1 ,y l 1 ++ 1 3 δk l 1L l 2l2 ,l 2 ,x − 1 3 δk l 2L l 1l1 ,l 1 ,x ++ 1 3 δk l 1G l 2M l2 ,l 2− 1 3 δk l 2G l 1M l1 ,l 1+ 2 ∑3 δk l 1G p M l2 ,p − 2 ∑3 δk l 2G p M l1 ,p++ 1 ∑H p2l 1L k l 2 ,p − 1 ∑H p2l 2L k l 1 ,p − 1 ∑6 δk l 1p+ 1 6 δk l 1∑pH p l 2L l 2l2 ,p − 1 6 δk l 2∑ppH p l 1L l 1l1 ,p .ppH l 2 p L p l 2 ,l 2+ 1 6 δk l 2∑ppH l 1 p L p l 1 ,l 1+


74Next, apply the operator − ∑ k Hl 2k(·) to (4.42), namely compute− ∑ k Hl 2k · (4.42). This yields:(4.43)0 = 1 ∑H k2l 1 ,y l 2 Hl 2k− 1 ∑H k2l 2 ,y l 1 Hl 2k+ 1 6 Hl 2l 2 ,y l 2 Hl 2l1−kk− 1 6 Hl 1l 1 ,y l 1 Hl 2l2− 1 3 Ll 2l2 ,l 2 ,x Hl 2l1+ 1 3 Ll 1l1 ,l 1 ,x Hl 2l2−− 1 3 Gl 2H l 2l1M l2 ,l 2+ 1 3 Gl 1H l 2l2M l1 ,l 1− 2 3+ 2 3+ 1 6+ 1 6∑p∑p∑pG p H l 2l2M l1 ,p − 1 2H l 2l1H l 2 p L p l 2 ,l 2− 1 6H l 2l2H p l 1L l 1l1 ,p .∑ ∑k∑pp∑pH l 2kH p l 1L k l 2 ,p + 1 2H l 2l2H l 1 p L p l 1 ,l 1− 1 6G p H l 2l1M l2 ,p+∑p∑ ∑Seventhly, put j := l 2 , l 1 := k, l 2 := l2 and l 3 := l 1 in (3.108):(4.44)0 = L l 2k,l 2 ,y − l 1 Ll 2k,l 1 ,y − M l 2 k,l 1 ,x++ 1 2 Hl 2l1M k,l2 − 1 2 Hl 2l2M k,l1 + 1 2 δl 2k∑− 1 2∑H p k M l 1 ,p + ∑pppL p k,l 1L l 2l2 ,p − ∑ pkpH l 2kH p l 2L k l 1 ,p +H l 2l1H p l 2L l 2l2 ,p +H p l 1M l2 ,p − 1 2 δl 2k∑L p k,l 2L l 2l1 ,p ,pH p l 2M l1 ,p−and then apply the operator 2 ∑ k Gk (·):(4.45)0 = 2 ∑ L l 2k,l 2 ,y l 1 Gk − 2 ∑ L l 2k,l 1 ,y l 2 Gk − 2 ∑kkkM k,l1 ,x G k ++ ∑ k− ∑ p− 2 ∑ kG k H l 2l1M l1 ,l 2− ∑ kG l 2H p l 2M l1 ,p − ∑ k∑pG k L p k,l 2L l 2l1 ,p .Finally, achieve the additionG k H l 2l2M k,l1 + ∑ G l 2H p l 1M l2 ,p−p∑G k H p k M l 1 ,p + 2 ∑ ∑G k L p k,l 1L l 2l2 ,p −pk p(4.46) (4.32) + (4.33) + (4.35) + (4.37) + (4.39) + (4.43) + (4.45).We copy these seven formal expression, we un<strong>de</strong>rline the vanishing termsand we number the remaining terms so as to respect the or<strong>de</strong>r of appearance


of the terms of the subgoal (4.29):(4.47)0 = − ∑ k+ ∑ k+ 1 4G k y l 1 Lk k,k∑G p L k k,k Lk l 1 ,pp∑p1+ G l 1y l 1 2+ 1 224H p l 1H l 1 p L l 1l1 ,l 128+− ∑ p∑kH k l 1 ,x Lk k,k3G p L l 1l1 ,l 1L k l 1 ,p23− 1 2 Hl 1l1 ,x Ll 1l1 ,l 1 4+− 1 475∑ ∑H p l 1Hp k Lk k,kkp27++ 2 ∑ k− 2 ∑ k− 1 ∑2G k y l 1 Ll 2l2 ,kp∑p5− 2G l 1y l 1 Ll 2l2 ,l 1− ∑akG p L l 2l2 ,k Lk l 1 ,pH p l 1H l 1 p L l 2l2 ,l 1j−g+ 2 ∑ pH k l 1 ,x Ll 2l2 ,kG p L l 2l2 ,l 1L l 1l1 ,p6h+ H l 1l1 ,x Ll 2l2 ,l 1 b −+ 1 2∑ ∑kpH p l 1H k p L l 2l2 ,ki−− 2 ∑ k+ 2 ∑ k+ 1 ∑2G k y l 2 Ll 2l1 ,kp∑p7+ 2G l 1y l 1 Ll 2l1 ,l 2+ ∑akG p L k l 2 ,p Ll 2l1 ,kH p l 1H l 1 p L l 2l1 ,l 2j+k− 2 ∑ pH k l 2 ,x Ll 2l1 ,kG p L l 1l1 ,p Ll 2l1 ,l 2h− 1 28− H l 1l1 ,x Ll 2l1 ,l 2b +∑ ∑kpH p l 2H k p L l 2l1 ,kl+


76+ 1 2∑k− ∑ k− ∑ kH l 2k,y l 2 Hk l 19L l 2k,l2 ,x Hk l 111− 1 6 Hl 2l 2 ,y l 2 Hl 2l1c− 1 3+ 1 3 Ll 2l2 ,l 2 ,x Hl 2l1d+ 2 3G l 2H k l 1M k,l2m+ 1 3 Gl 2H l 2l1M l2 ,l 2n+ 2 3∑H k k,yH k k l 1−10k∑L k k,k,x Hk l 1−12k∑G k Hl k 1M k,k −21− 1 ∑G p H l 23 l1M l2 ,p + 1 ∑ ∑G p Hl k 31M k,p + 1 ∑ ∑2pk pk po22− 1 ∑ ∑Hl k 21H p k Ll 2l2 ,p− 1 ∑H l 26 l1H l 2 p L p l 2 ,l 2+ 1 ∑6k pppiq− 1 ∑ ∑Hl k 31Hp k L p k,k+ 1 ∑ ∑Hl k 31H p k Lk k,p −kp25kpk26H k l 1H l 2 p L p k,l 2p−H l 2l1H p l 2L l 2l2 ,pr−− 1 2∑kH l 2k,y l 1 Hk l 213+ 1 6 Hl 1l 1 ,y l 1 Hl 2l2e+ ∑ kL l 2k,l1 ,x Hk l 214−− 1 3 Ll 1l1 ,l 1 ,x Hl 2l2f++ ∑ k− 1 2− 1 6G l 2Hl k 2M k,l1 − 1 3 Gl 1H l 2l2M l1 ,l 1+ 1t 3s∑ ∑k∑ppHl k 2H l 2p L p k,l 1+ 1 2vH l 2l2H p l 1L l 1l1 ,px+∑ ∑kp∑pH k l 2H p k Ll 2l1 ,pG p H l 2l2M l1 ,pl+ 1 6∑pu−H l 2l2H l 1p L p l 1 ,l 1w−


77+ 1 2∑kH k l 1 ,y l 2 Hl 2k15− 1 2∑kH k l 2 ,y l 1 Hl 2k16+ 1 6 Hl 2l 2 ,y l 2 Hl 2l1c−− 1 6 Hl 1l 1 ,y l 1 Hl 2l2− 1e 3 Ll 2l2 ,l 2 ,x Hl 2l1+ 1d 3 Ll 1l1 ,l 1 ,x Hl 2l2f−∑− 1 3 Gl 2H l 2l1M l2 ,l 2+ 1n 3 Gl 1H l 2l2M l1 ,l 1− 2t 3+ 2 3+ 1 6+ 1 6∑p∑p∑pG p H l 2l2M l1 ,pu− 1 2H l 2l1H l 2 p L p l 2 ,l 2− 1 6qH l 2l2H p l 1L l 1l1 ,px+∑ ∑k∑pppH l 2kH p l 1L k l 2 ,pG p H l 2l1M l2 ,ppH l 2l2H l 1 p L p l 1 ,l 1− 1 6w+ 1 2∑po∑ ∑kp+H l 2l1H p l 2L l 2l2 ,pH l 2kH p l 2L k l 1 ,pr+v++ 2 ∑ kL l 2k,l 2 ,y l 1 Gk 17− 2 ∑ kL l 2k,l 1 ,y l 2 Gk 18− 2 ∑ kM k,l1 ,x G k 19++ ∑ k− ∑ p− 2 ∑ kG k H l 2l1M l1 ,l 2− ∑okG l 2H p l 2M l1 ,p∑ps− ∑ kG k L p k,l 2L l 2l1 ,pkG k H l 2l2M k,l1 + ∑ G l 2H p l 1M l2 ,p −pum∑G k H p k M l 1 ,p + 2 ∑ ∑G k L p k,l 1L l 2l2 ,ppk p.In conclusion, there is exact coinci<strong>de</strong>nce with the subgoal (4.29). Theproof that the first family (3.112) 1 of compatibility conditions of the second<strong>aux</strong>iliary system (3.99), (3.100), (3.101) and (3.102) are a consequence of(I), (II), (III) and (IV) of Theorem 1.7 (3) is complete. Granted that thetreatment of the other three families of compatibility conditions (3.112) 2 ,(3.112) 3 and (3.112) 4 is similar (and as well painful), we consi<strong>de</strong>r that theproof of the equivalence between (1) and (3) in Theorem 1.7 is complete,now.20g−§5. GENERAL FORM OF THE POINT TRANSFORMATIONOF THE FREE PARTICLE SYSTEMThis section is <strong>de</strong>voted to the exposition of a complete proof ofLemma 3.32. To start with, we must <strong>de</strong>velope the fundamental equations(3.10), for j = 1, . . .,m. Recalling that the total differentiation


78operator is given by D = ∂∂x + ∑ ml 1 =1 yl 1compute first(5.1) ⎧DDX = D ⎪⎨⎪⎩[X x += X xx + 2m∑l 1 =1m∑l 1 =1y l 1x · X y l 1]y l 1x · X xy l 1 +m∑x ·l 1 =1 l 2 =1∂+ ∑ m∂y l 1 l 1 =1 yl 1 xx ·m∑y l 1x y l 2x · X y l 1y l 2 +∂∂y l 1 x, wem∑l 1 =1y l 1xx · X y l 1 ,and(5.2) ⎧DDY ⎪⎨j = D⎪⎩[Y jx += Y jxx + 2m∑l 1 =1m∑l 1 =1y l 1x · Y jy l 1]y l 1x · Y jxy l 1 + m∑m∑l 1 =1 l 2 =1y l 1x y l 2x · Y jy l 1y l 2 + m∑l 1 =1y l 1xx · Y jy l 1 .Now, we can <strong>de</strong>velope the equation 0 = −DY j · DDX + DX · DDY j ,which yields(5.3)0 = −+[[Y jx ++X x ++m∑l 1 =1m∑l 1 =1 l 2 =1m∑l 1 =1m∑y l 1x · Y jy l 1m∑]·[X xx + 2y l 1x y l 2x · X y l 1y l 2 +y l 1x · X y l 1]·m∑l 1 =1 l 2 =1[m∑l 1 =1m∑l 1 =1Y jxx + 2 m∑l 1 =1y l 1x y l 2x · Y jy l 1y l 2 + m∑l 1 =1y l 1x · X xy l 1 +y l 1xx · X y l 1]+y l 1x · Y jxy l 1 +y l 1xx · Y jy l 1]=


79= − X xx Yx j + Y jm∑+++++l 1 =1m∑y l 1x ·m∑l 1 =1 l 2 =1m∑m∑l 1 =1 l 2 =1 l 3 =1m∑l 1 =1m∑y l 1xx ·m∑l 1 =1 l 2 =1xx X x +[−2 X xy l 1 Yx j + 2 Y j X xy l 1 x−]−X xx Y j + Y jy l 1 xx X y l 1 +[y l 1x y l 2x · −X y l 1y l 2 Yx j + Y jy l 1y X l 2 x−m∑]−2 X xy l 2 Y j + 2 Y j X y l 1 xy l 2 y l 1 +[y l 1x y l 2x y l 3x · −X y l 2y l 3 Y j + Y jy l 1 y l 2y X l 3 y l 1[−X y l 1 Y jx + Y jy l 1 X x]+[]y l 1xx y l 2x · −X y l 1 Y j + Y j X y l 2 y l 1 y l 2 .]+The goal is to show that after solving these m equations for j = 1, . . .,mwith respect to the yxx l , l = 1, . . .,m, one obtains the expression (3.33) ofLemma 3.32, or equivalently, using the ∆ notation instead of the squarenotation, one obtains(5.4)⎧0 = yxx j · ∆ ( x|y 1 | · · · |y m) + ∆ ( x|y 1 | · · · | j xx| · · · |y m) +m∑+ y l 1x · [2∆ ( x|y 1 | · · · | j xy l 1| · · · |y m) −⎪⎨⎪⎩++l 1 =1m∑m∑l 1 =1 l 2 =1m∑m∑l 1 =1 l 2 =1 l 3 =1−δ j l 1∆ ( xx|y 1 | · · · |y m)] +y l 1x y l 2x · [∆ ( x|y 1 | · · · | j y l 1y l 2| · · · |y m) −m∑−2 δ j l 1∆ ( xy l 2|y 1 | · · · |y m)] +y l 1x y l 2x y l 3x[−δjl 1∆ ( y l 2y l 3|y 1 | · · · |y m)] .Unfortunately, the equations (5.3) are not solved with respect to the yxx,jbecause in its last line, we notice that the y l 2 xx are mixed with the y l 1 x . Consequently,we have to solve a linear system of m equations with the unknowns


80yxx j of the form(5.5) {m∑0 = A j +l 1 =1y l 1xx ·[−X y l 1 Y jx + Y jy l 1 X x +m∑l 2 =1[]]y l 2x · −X y l 1 Y j y l 2 y l 1 y l 2 , ,for j = 1, . . .,m, where A j is an abbreviation for the terms appearing inthe lines 5, 6, 7, 8, 9 and 10 of (5.3), or even more compactly, changing thein<strong>de</strong>x j to the in<strong>de</strong>x k{(5.6)0 = A k +m∑l 1 =1y l 1xx · B k l 1,for k = 1, . . .,m, where Bl k 1is an abbreviation for the terms in the bracketsin (5.5).Thanks to the assumption that the <strong>de</strong>terminant (3.2) is the i<strong>de</strong>ntity <strong>de</strong>terminantat (x, y) = (0, 0), we <strong>de</strong>duce that the <strong>de</strong>terminant of the m × mmatrix (Bl k 1) 1km1l 1 m is also the i<strong>de</strong>ntity <strong>de</strong>terminant at (x, y, y x) = (0, 0, 0). Itfollows that the <strong>de</strong>terminant of the m × m matrix (Bl k 1) 1km1l 1 mis nonvanishingin a neighborhood of the origin in the first or<strong>de</strong>r jet space. Consequently,we can apply the rule of Cramer to solve the yxx j explicitely interms of theA k and of the Bl k 1as follows⎧ ∣ ∣∣∣∣∣ B1 1 · · · A 1 · · · B 1 m· · · · · · · · · · · · · · ·⎪⎨(5.7) yxx j = − B1 m · · · A m · · · Bmm ∣B1 1 · · · B 1 · · · B 1 m⎪⎩· · · · · · · · · · · · · · ·∣ B1 m · · · B m · · · Bmm ∣where on the numerator, the only modification of the <strong>de</strong>terminant of the matrix(Bl k 1) 1km1l 1 mis the replacement of its j-th column by the column vectorA. We have to show that after replacing the A k and the Bl k 1by their completeexpressions, one in<strong>de</strong>ed obtains the <strong>de</strong>sired equation (5.4). As in (3.43), weshall introduce a notation for the two m×m <strong>de</strong>terminants appearing in (5.6):we write this quotient un<strong>de</strong>r the form{ ∣ ∣B k(5.8) yxx j = − 1 | · · · | j A k | · · · |Bmk ∣ ∣ ∣ Bk1 | · · · | j Bj k| · · · |Bk ∣ ∣ ,mwhere it is un<strong>de</strong>rstood that B k 1, . . .,B k j , . . ., B k m and A k are column vectorswhose in<strong>de</strong>x k (for their lines) varies from 1 to m. This representation of<strong>de</strong>terminants emphasizing only its columns will be appropriate for later manipulations.


Our first task is to compute the <strong>de</strong>terminant in the <strong>de</strong>nominator of (5.8).Recalling that we make the notational i<strong>de</strong>ntification y 0 ≡ x, it will be convenientto reexpress the B k l 1in a slightly compacter form, using the totaldifferentiation operator D:(5.9) ⎧⎪⎨⎪⎩B k l 1= −X y l 1 Y kx + Y ky l 1X x +m∑l 2 =1= Y ky l 1· DX − X y l 1 · DY k .[]y l 2x · −X y l 1 Y ky l 2+ Y ky l 1X y l 2 =81Lemma 5.10. We have the following expression for the <strong>de</strong>terminant of thematrix (B k l 1) 1km1l 1 m :(5.11){ ∣ ∣ ∣ ∣Y ky 1 · DX − X y 1 · DY k | · · · |Y ky m · DX − X y m · DY k∣ ∣ ∣ ∣ == [DX] m−1 · ∆ ( x|y 1 | · · · |y m) .Proof. By multilinearity, we may <strong>de</strong>velope the <strong>de</strong>terminant written in thefirst line of (5.11). Since it contains two terms in each columns, we shouldobtain a sum of 2 m <strong>de</strong>terminants. However, since the obtained <strong>de</strong>terminantsvanish as soon as the column DY k (multiplied by various factors X y l) appearsat least two different places, it remains only (m + 1) nonvanishing<strong>de</strong>terminants, those for which the column DY k appears at most once:(5.12)⎧∣ ∣ Yk⎪⎨ y · DX − X 1 y 1 · DY k | · · · |Yy k · DX − X m y m · DY k∣ ∣ == [DX] m · ∣∣ ∣ ∣ ∣Y k ky1| · · · |Yy ∣ − [DX] m−1 X⎪⎩m y 1 · ∣∣ ∣ ∣ ∣DY k |Y k ky2| · · · |Yy − · · · −m− [DX] m−1 X y m · ∣∣ ∣ Yk ky1| · · · |Yy m−1|DY k∣ ∣ .To establish the <strong>de</strong>sired expression appearing in the second line of (5.11),we factor out by [DX] m−1 and we <strong>de</strong>velope all the remaining total differentiationoperators D. Since y 0 ≡ x, we have yx 0 = 1, and this enab<strong>les</strong> us tocontract X x + ∑ ml 1y l 1 x X y l 1 as ∑ ml 1 =0 yl 1 x X y l 1 . So, we achieve the following


82computation (further explanations and comments just afterwards):(5.13) ⎧ {∑ m= [DX] m−1 · y l 1x X y l 1 · ∣∣ ∣ ∣ ∣Y k k1| · · · |Yy ∣ − m⎪⎨⎪⎩= [DX] m−1 ·l 1 =0−{ m∑m∑l 1 =0− · · · −l 1 =0y l 1y l 1x X y 1 ·m∑l 1 =0y∣ ∣∣∣Y ky l 1|Y k k ∣∣ ∣∣y2| · · · |Yy − my l 1x X y m ·∣∣∣Y k k1| · · · |Yyy m−1|Y ky l 1x X y l 1 · ∣∣ ∣ ∣ ∣Y k k1| · · · |Yy ∣ − X m y 1 · ∣∣ ∣ ∣Y ky}∣x |Y ky∣ k2| · · · |Yy ∣ − m−yx 1 X y 1 · ∣∣ ∣ Yky 1|Y ∣ k ky2| · · · |Yy ∣ − · · · −m−X y m · ∣∣ ∣ Yk ky1| · · · |Yy m−1|Y xk ∣ ∣ − ymx X y m · ∣∣ ∣ Yk ky1| · · · |Y= [DX] m−1 · {Xx · ∣∣ ∣ ∣ Yk ky1| · · · |Y ∣y − m Xy 1 · ∣∣ ∣ ∣ Ykx |Y k ky2| · · · |Y ∣y − · · · −m−X y m · ∣∣ ∣ Yky 1| · · · |Yy k m−1|Y xk ∣ ∣ }= [DX] m−1 · {∆(x|y 1 | · · · |y m ) } .For the passage to the equality of line 4, using the fact that a <strong>de</strong>terminanthaving two i<strong>de</strong>ntical columns vanishes, we observe that in each of the msums ∑ ml 1 =0appearing in lines 2 and 3 (including the cdots), there remainsonly two non-vanishing <strong>de</strong>terminants. For the passage to the equality of line7, we just sum up all the linear combinations of <strong>de</strong>terminants appearing inlines 4, 5 and 6. Finally, for the passage to the equality of line 9, we recognizethe <strong>de</strong>velopment of the fundamental Jacobian <strong>de</strong>terminant (3.2) alongits first line (X x , X y 1, . . .,X y m), modulo some permutations of columns inthe m × m minors. The proof is complete.Our second task, similar but computationnally more heavy, is to computethe <strong>de</strong>terminant in the numerator of (5.8). First of all, we have to re-expressthe A k <strong>de</strong>fined implicitely between (5.3) and (5.5) using the total differentiationoperator to contract them as follows(5.14)⎧⎪⎨⎪⎩A k = DX · Y kxx − DY k · X xx + 2+m∑m∑l 1 =1 l 2 =1m∑l 1 =1y m−1|Y k[]y l 1x · DX · Y kxy l 1− DY k · X xy l 1 +[]y l 1x y l 2x · DX · Y ky l 1y l 2− DY k · X y l 1y l 2 .y m ∣ ∣ ∣ ∣}


Replacing this expression of A k in (5.8), taking account of the expression ofthe <strong>de</strong>nominator already obtained in the second line of (5.11) and abbreviating∆(x|y 1 | · · · |y m ) as ∆, we may write (5.8) in length and then <strong>de</strong>velope itby linearity as follows(5.15)⎧⎪⎨⎪⎩y j xx ==−1[DX] m−1 · ∆ ·−1[DX] m−1 · ∆ ·⎡⎢⎣⎡⎢⎣∣ ∣ ∣ Yky 1 · DX − X y 1 · DY k | · · ·· · · | j DX · Yxx k − DY k · Y km∑+2+l 1 =1m∑y l 1x ·m∑l 1 =1 l 2 =1∣ ∣ ∣ Yky 1 · DX − X y 1 · DY k | · · ·+ 2+xx+83[DX · Y kxy l 1− DY k · X xy l 1]+⎥· · · |Yy k · DX − X m y m · DY k∣ ∣ ∣ ⎦⎤[]y l 1x y l 2x · DX · Y ky l 1y − DY k · X l 2 y l 1y l 2 | · · ·· · · | j DX · Y kxx − DY k · X xx | · · ·m∑l 1 =1· · · |Y ky m · DX − X y m · DY k∣ ∣ ∣ ∣ +y l 1x · ∣∣ ∣ ∣ Yky 1 · DX − X y 1 · DY k | · · ·· · · | j DX · Y kxy l 1 − DY k · X xy l 1 | · · ·m∑l 1 =1 l 2 =1· · · |Yy k · DX − X m y m · DY k∣ ∣ ∣ +m∑y l 1x y l 2x · ∣∣ ∣ Yky · DX − X 1 y 1 · DY k | · · ·· · · | j DX · Y ky l 1y l 2− DY k · X y l 1y l 2 | · · ·· · · |Y ky m · DX − X y m · DY k∣ ∣ ∣ ∣As it is <strong>de</strong>licate to read, let us say that lines 2, 3 and 4 just express the j-thcolum | j A k | of the <strong>de</strong>terminant |B 1 k| · · · |j A k | · · · |Bm k |, after replacementof A k by its complete expression (5.14).In lines 6, 7, 8; in lines 9, 10, 11; and in lines 12, 13, 14, there arethree families of m×m <strong>de</strong>terminants containing a linear combination (soustraction)having exactly two terms in each column. As in the proof ofLemma 5.10, by multilinarity, we have to <strong>de</strong>velope each such <strong>de</strong>terminant.In principle, for each <strong>de</strong>velopment, we should get 2 m terms, but since theobtained <strong>de</strong>terminants vanish as soon as the column DY k (modulo a multiplicationby some factor) appears at least twice, it remains only (m+1) nonvanishing<strong>de</strong>terminants, those for which the column DY k appears at most.⎥⎦⎤


84once. In addition, for each of the obtained <strong>de</strong>terminant, the factor [DX] m−1appears (sometimes even the factor [DX] m ), so that this factor compensatesthe factor [DX] m−1 in the numerator. In sum, the continuation of the hugecomputation yields:(5.16)⎡DX · ∣∣ ∣ Yky 1| · · · |j Yxx k | · · · |Y ∣ y k∣ − myxx j = − ∆·1 ⎢⎣− X y 1 · ∣∣ ∣ ∣ DY k | · · · | j Yxx| k · · · |Yy k∣ − · · · −m− X xx · ∣∣ ∣ Yky 1| · · · ∣ |j DY k | · · · |Yy k∣ − · · · −m− X y m · ∣∣ ∣ Yky 1| · · · |j Yxx k | · · · |DY k∣ ∣ ∣ +m∑+ 2 y l 1∣ ∣x DX ·∣Y ky 1| · · · |j Y kxy | · · · |Y k ∣∣ ∣∣ l 1 y −m l 1 =1m∑∣ − 2 y l 1∣x X y 1 ·∣DY k | · · · | j Y kxy l 1| · · · |Yy k ∣∣ ∣∣ − · · · −m l 1 =1m∑− 2 y l 1x X xy l 1 · ∣∣ ∣ Yky 1| · · · ∣ |j DY k | · · · |Yy k∣ − · · · −m l 1 =1m∑∣ .− 2 y l 1∣x X y m ·∣Y ky 1| · · · |j Y kxy l 1| · · · |DY k ∣∣ ∣∣+l 1 =1m∑ m∑+ y l 1x y l 2∣ ∣x DX · ∣∣Y ky 1| · · · |j Y ky l 1y l 2| · · · |Yy k ∣∣ ∣∣ −m l 1 =1 l 2 =1m∑ m∑− y l 1x y l 2∣ ∣x X y 1 · ∣∣DY k | · · · | j Y ky l 1y | · · · |Y k ∣∣ ∣∣ l 2 y − · · · −m l 1 =1 l 2 =1m∑ m∑− y l 1x y l 2x X y l 1y l 2 · ∣∣ ∣ Yky 1| · · · ∣ |j DY k | · · · |Yy k− · · · −m l 1 =1 l 2 =1m∑ m∑− y l 1x y l 2∣ ⎥∣x X y m · ∣∣Y ky 1| · · · |j Y ky l 1y l 2| · · · |DY k ∣∣ ∣∣ ⎦l 1 =1 l 2 =1⎤To establish the <strong>de</strong>sired expression (5.4), we must <strong>de</strong>velope all the total differentiationoperators D of the terms DX placed as factor and of the termsDY k placed in various columns of <strong>de</strong>terminants. We notice that in <strong>de</strong>velopingDY k , we obtain columns Y ky(multiplied by the factor y l l x ) and for onlythree (or two) values of l = 0, 1, . . ., m, this column does not already appearin the corresponding <strong>de</strong>terminant, so that (m − 1) <strong>de</strong>terminants vanish andonly 3 (or 2) remain nonzero. Taking account of these simplifications, we


85have the continuation(5.17) −y j xx · ∆ = I + II + III,where the term I is the <strong>de</strong>velopment of lines 1, 2, 3, 4 of (5.16); the term II isthe <strong>de</strong>velopment of lines 5, 6, 7, 8 of (5.16); and the term III is the <strong>de</strong>velopmentof lines 9, 10, 11, 12 of (5.16). So we get firstly (further explanationsfollows):m∑l=0y l x X y l · ∣∣ ∣ ∣ Yky 1| · · · |j Y kxx| · · · |Y ky m ∣ ∣ ∣ ∣1−− X y 1 · ∣∣ ∣ ∣ Ykx | · · · | j Y kxx | · · · |Y ky m ∣ ∣ ∣ ∣ −− y 1 x X y 1 · ∣∣ ∣ ∣ Yky 1| · · · |j Y kxx| · · · |Y ky m ∣ ∣ ∣ ∣1 −(5.18) I :=− y j x X y j · ∣∣ ∣ ∣ Yky j| · · · |j Y kxx | · · · |Y ky m ∣ ∣∣ ∣ − · · · −− X xx · ∣∣ ∣ ∣ Yky 1| · · · | j Y kx | · · · |Y ky m ∣ ∣ ∣ ∣ −− yx j X xx · ∣∣ ∣ Yky 1| · · · ∣ |j Y k kyj| · · · |Y y − · · · −m− X y m · ∣∣ ∣ Yky 1| · · · |j Yxx| k · · · |Yxk ∣ −− y m x X y m · ∣∣ ∣ ∣ Yky 1| · · · |j Y kxx | · · · |Y ky m ∣ ∣∣ ∣1 −− y j x X y m · ∣∣ ∣ ∣ Yky 1| · · · |j Y kxx| · · · |Y ky j ∣ ∣ ∣ ∣ ,


86and secondly (we discuss afterwards the annihilation of the un<strong>de</strong>rlinedterms):(5.19) II :=2m∑l 1 =1− 2− 2− 2− 2− 2− 2− 2− 2m∑l=0m∑l 1 =1m∑l 1 =1m∑l 1 =1m∑l 1 =1m∑l 1 =1m∑l 1 =1m∑l 1 =1m∑l 1 =1y l 1x y l x X y l ·y l 1x X y 1 ·∣ ∣∣∣Y ky 1| · · · |j Y kxy l 1| · · · |Yy k ∣∣ ∣∣− m2∣ ∣∣∣Y x k | · · · |j Y kxy 1| · · · |Y k ∣∣ ∣∣ l y − my l 1x y 1 x X y 1 · ∣ ∣∣∣ ∣∣Y ky 1| · · · |j Y kxy l 1 | · · · |Y ky m ∣ ∣∣∣ ∣∣2−y l 1x y j x X y 1 ·∣ ∣∣∣Y ky j| · · · |j Y kxy l 1| · · · |Yy k ∣∣ ∣∣ − · · · −my l 1x X xy l 1 · ∣∣ ∣ ∣ Yky 1| · · · |j Y kx | · · · |Y ky m ∣ ∣ ∣ ∣ −y l 1x yx j X xy l 1 · ∣∣ ∣ Yky 1| · · · ∣ |j Y k kj| · · · |Y ∣y − · · · −my l 1x X y m ·∣∣∣Y ky 1| · · · |j Y kxy | · · · |Y kl 1 x∣ −y l 1x y m x X y m · ∣ ∣∣∣ ∣∣Y ky 1| · · · |j Y kxy l 1 | · · · |Y ky m ∣ ∣∣∣ ∣∣2−y l 1x y j x X y m ·y∣ ∣∣∣Y ky 1| · · · |j Y kxy l 1| · · · |Y k ∣∣ ∣∣y , j


87and where thirdly (we are nearly the end of the proof):(5.20)m∑ m∑ m∑ ∣ ∣ y l 1x y l 2x yx l ∣∣ ∣∣Y X y · kl y 1| · · · |j Y ky l 1y | · · · |Y k ∣∣ ∣∣ l 2 y − m3III :=l 1 =1 l 2 =1 l=0−−−−−−−m∑m∑l 1 =1 l 2 =1m∑m∑l 1 =1 l 2 =1m∑m∑l 1 =1 l 2 =1m∑m∑l 1 =1 l 2 =1m∑m∑l 1 =1 l 2 =1m∑m∑l 1 =1 l 2 =1m∑m∑l 1 =1 l 2 =1y l 1x y l 2x X y 1 ·∣ ∣∣Yx k | · · · |j Y ky l 1y | · · · |Y k ∣∣ ∣∣ l 2 y − my l 1x y l 2x y 1 x X y 1 · ∣ ∣∣∣ ∣∣Y ky 1| · · · |j Y ky l 1y l 2 | · · · |Y ky m ∣ ∣∣∣ ∣∣3−y l 1x y l 2x y j x X y 1 ·∣ ∣∣Y ky j| · · · |j Y ky l 1y l 2| · · · |Yy k ∣∣ ∣∣ − · · · −my l 1x y l 2x X y l 1y l 2 · ∣∣ ∣ ∣ Yky 1| · · · |j Y kx | · · · |Y ky m ∣ ∣∣ ∣ −y l 1x y l 2x yx j X y l 1y l 2 · ∣∣ ∣ Yky 1| · · · ∣ |j Y k kj| · · · |Y ∣y − · · · −my l 1x y l 2x X y m ·∣∣∣Y ky 1| · · · |j Y ky l 1y l 2| · · · |Yxk∣ −y l 1x y l 2x y m x X y m · ∣ ∣∣∣ ∣∣Y ky 1| · · · |j Y ky l 1y l 2 | · · · |Y ky m ∣ ∣∣∣ ∣∣3−y−m∑l 1 =1m∑l 2 =1y l 1x y l 2x y j x X y m · ∣ ∣∣∣ ∣∣Y ky 1| · · · |j Y ky l 1y l 2 | · · · |Y ky j ∣ ∣∣∣ ∣∣ .Now, we explain the annihilation of the un<strong>de</strong>rlined terms. Consi<strong>de</strong>r I: in thefirst sum ∑ ml=0, all the terms except only the two corresponding to l = 0and to l = j are annihilated by the other terms with 1 appen<strong>de</strong>d: in<strong>de</strong>ed,one must take account of the fact that in the expression of I, we have twosums represented by some cdots, the nature of which was <strong>de</strong>fined withoutambiguity in the passage from (5.15) to (5.16).


88Similar simplifications occur for II and for III. Consequently, we obtainfirstly:(5.21) I :=X x · ∣∣ ∣ ∣ Yky 1| · · · |j Y kxx | · · · |Y ky m ∣ ∣ ∣ ∣ ++ y j x X y j · ∣∣ ∣ ∣ Yky 1| · · · |j Y kxx | · · · |Y ky m ∣ ∣∣ ∣ −− X y 1 · ∣∣ ∣ ∣ Ykx | · · · | j Y kxx| · · · |Y ky m ∣ ∣ ∣ ∣ −− yx j X y j · ∣∣ ∣ Yky j| · · · |j Yxx k | · · · |Y ∣ y k∣ − · · · −m− X xx · ∣∣ ∣ ∣Y ky 1| · · · |j Yx k | · · · |Y ∣ y k− m− yx j X xx · ∣∣ ∣ Yky 1| · · · ∣ |j Y k kyj| · · · |Y y − · · · −m− X y m · ∣∣ ∣ Yky 1| · · · |j Yxx k | · · · |Y xk ∣ −− y j x X y m · ∣∣ ∣ ∣ Yky 1| · · · |j Y kxx | · · · |Y ky j ∣ ∣ ∣ ∣ ;just above, the first two lines consist of the two terms in the sum un<strong>de</strong>rlinedat the first line of (5.18) which are not annihilated; secondly we obtain:(5.22) II :=2m∑l 1 =1+ 2− 2− 2− 2− 2− 2− 2y l 1x X x ·m∑l 1 =1m∑l 1 =1m∑l 1 =1m∑l 1 =1m∑l 1 =1m∑l 1 =1m∑l 1 =1∣ ∣∣Y ky 1| · · · |j Y kxy | · · · |Y k ∣∣ ∣∣ l 1 y + my l 1x y j x X y j · ∣ ∣∣∣ ∣∣Y ky 1| · · · |j Y kxy l 1 | · · · |Y ky m ∣ ∣∣∣ ∣∣ −y l 1x X y 1 ·y l 1x y j x X y 1 ·∣ ∣∣Yx k | · · · |j Y kxy | · · · |Y k ∣∣ ∣∣ l 1 y − m∣ ∣∣Y ky j| · · · |j Y kxy l 1| · · · |Yy k ∣∣ ∣∣ − · · · −my l 1x X xy l 1 · ∣∣ ∣ ∣ Yky 1| · · · |j Y kx | · · · |Y ky m ∣ ∣ ∣ ∣ −y l 1x y j x X xy l 1 · ∣∣ ∣ ∣ Yky 1| · · · |j Y kx | · · · |Y ky m ∣ ∣∣ ∣ − · · · −y l 1x X y m ·∣∣Y ky 1| · · · |j Y kxy l 1| · · · |Yxk∣ −y l 1x y j x X y m · ∣ ∣∣∣ ∣∣Y ky 1| · · · |j Y kxy l 1 | · · · |Y ky j ∣ ∣∣∣ ∣∣;similarly, the first two lines above consist of the two terms in the sum un<strong>de</strong>rlinedat the first line of (5.19) which are not annihilated; and thirdly we


89obtain:(5.23)III :=m∑m∑l 1 =1 l 2 =1+−−−−m∑l 1 =1 l 2 =1m∑y l 1x y l 2x X x ·m∑m∑l 1 =1 l 2 =1m∑m∑l 1 =1 l 2 =1m∑m∑l 1 =1 l 2 =1m∑m∑l 1 =1 l 2 =1∣ ∣∣∣Y ky 1| · · · |j Y ky l 1y | · · · |Y k ∣∣ ∣∣+l 2 y my l 1x y l 2x y j x X y j · ∣ ∣∣∣ ∣∣Y ky 1| · · · |j Y ky l 1y l 2 | · · · |Y ky m ∣ ∣∣∣ ∣∣ −y l 1x y l 2x X y 1 ·y l 1x y l 2x y j x X y 1 ·∣ ∣∣Yx k | · · · |j Y ky l 1y | · · · |Y k ∣∣ ∣∣ l 2 y − m∣ ∣∣Y ky j| · · · |j Y ky l 1y l 2| · · · |Yy k ∣∣ ∣∣ − · · · −my l 1x y l 2x X y l 1y l 2 · ∣∣ ∣ ∣ Yky 1| · · · |j Y kx | · · · |Y ky m ∣ ∣ ∣ ∣ −y l 1x y l 2x yx j X y l 1y l 2 · ∣∣ ∣ Yky 1| · · · ∣ |j Y k kj| · · · |Y ∣y − · · · −my−−m∑m∑l 1 =1 l 2 =1m∑m∑l 1 =1 l 2 =1y l 1x y l 2x X y m ·y l 1x y l 2x y j x X y m ·∣∣∣Y ky 1| · · · |j Y ky l 1y | · · · |Y kl 2 x∣ −∣ ∣∣∣Y ky 1| · · · |j Y ky l 1y l 2| · · · |Y k ∣∣ ∣∣y . jCollecting the odd lines of (5.21), we obtain exactly (m + 1) terms whichcorrespond to the <strong>de</strong>velopment of the <strong>de</strong>terminant ∆(x| · · · | j xx| · · · |y m )along its first line, modulo permutations of columns of the associatedm × m minors; collecting the even lines of (5.21), we obtain exactly(m + 1) terms which correspond to the <strong>de</strong>velopment of the <strong>de</strong>terminant−y j x·∆(xx|y1 | · · · |y m ) along its first lines, modulo permutations of columnsof the associated m × m minors. Similar observations hold about II and III.


90In , we may rewrite the final expressions of these three terms: firstly⎧I = ∆(x| · · · | j xx| · · · |y m ) − yx j · ∆(xx|y1 | · · · |y m ),m∑II = 2 y l 1x · ∆(x| · · · | j xy l 1| · · · |y m )−(5.24)⎪⎨⎪⎩III =l 1 =1m∑− 2 y j xm∑l 1 =1 l 2 =1− y j xm∑l 1 =1y l 1x · ∆(xy l 1|y 1 | · · · |y m ),y l 1x y l 2x · ∆(x| · · · | j y l 1y l 2| · · · |y m )−m∑m∑l 1 =1 l 2 =1y l 1x y l 2x · ∆(y l 1y l 2|y 1 | · · · |y m ).Coming back to (5.17), we obtain the <strong>de</strong>sired expression (5.4).The proof of the — technical, though involving only linear algebra —Lemma 3.32 is complete.REFERENCES[BK1989] BLUMAN, G.W.; KUMEI, S.: Symmetries and differential equations,Springer-Verlag, New-York, 1989.[Ca1924] CARTAN, É.: Sur <strong>les</strong> variétés à connexion projective, Bull. Soc. Math. France52 (1924), 205–241.[Ch1939] CHERN, S.-S.: Sur la géométrie d’un système d’équations différentiel<strong>les</strong> dusecond ordre, Bull. Sci. Math. 63 (1939), 206–212.[CMS1996] CRAMPIN, M.; MARTÍNEZ, E.; SARLET, W.: Linear connections for systemsof second-or<strong>de</strong>r ordinary differential equations, Ann. Inst. H. Poincaré Phys.Théor. 65 (1996), no. 2, 223–249.[Do2000] DOUBROV, B.: Contact invariants of ordinary differential equations, RIMSKokyuroku 1150 (2000), 105–113.[DNP2005] DRIDI, R.; NEUT, S.; PETITOT, M.: Élie Cartan’s geometrical vision or howto avoid expression swell, arxiv.org/abs/math.DG/0504203.[Fe1995] FELS, M.: The equivalence problem for systems of second-or<strong>de</strong>r ordinarydifferential equations, Proc. London Math. Soc. 71 (1995), no. 2, 221–240.[G1989] GARDNER, R.B.: The method of equivalence and its applications, CBMS-NSF Regional Conference Series in Applied Mathematics 58 (SIAM,Phila<strong>de</strong>lphia, 1989), 127 pp.[GM2003] GAUSSIER, H.; MERKER, J.: Symmetries of partial differential equations, J.Korean Math. Soc. 40 (2003), no. 3, 517–561.[GG1983] GONZÁLEZ GASCÓN, F.; GONZÁLEZ LÓPEZ, A.: Symmetries of differential[GL1988]equations, IV. J. Math. Phys. 24 (1983), 2006–2021.GONZÁLEZ LÓPEZ, A.: Symmetries of linear systems of second or<strong>de</strong>r differentialequations, J. Math. Phys. 29 (1988), 1097–1105.[GKO1992] GONZÁLEZ LÓPEZ, A.; KAMRAN, N.; OLVER, P.J.: <strong>Lie</strong> algebras of vectorfields in the real plane, Proc. London Math. Soc. 64 (1992), 339–368.


[GTW1989] GRISSOM, C.; THOMPSON, G.; WILKENS, G.: Linearization of second or<strong>de</strong>rordinary differential equations via Cartan’s equivalence method, J. Diff. Eq.77 (1989), no. 1, 1–15.[Gr2000] GROSSMAN, D.A.: Torsion-free path geometries and integrable second or<strong>de</strong>rODE systems, Selecta Math. (N.S.) 6 (2000), no. 4, 399–442.[Ha1937] HACHTROUDI, M.: Les espaces d’éléments à connexion projective normale,Actualités Scientifiques et Industriel<strong>les</strong>, 565, Paris, Hermann, 1937.[H2001] HAWKINS, T.: Emergence of the theory of <strong>Lie</strong> groups, Springer-Verlag,Berlin, 2001.[HK1989] HSU, L.; KAMRAN, N.: Classification of second or<strong>de</strong>r ordinary differentialequations admitting <strong>Lie</strong> groups of fibre-preserving point symmetries, Proc.London Math. Soc. 58 (1989), no. 3, 387–416.[IB1992] IBRAGIMOV, N.H.: Group analysis of ordinary differential equations and theinvariance principle in mathematical physics, Russian Math. Surveys 47:4[IB1999](1992), 89–156.IBRAGIMOV, N.H.: Elementary <strong>Lie</strong> group analysis and ordinary differentialequations, Mathematical methods in practice, John Wiley & Sons, Chichester,1999, xviii+347 pp.[Le1980] LEACH, P.G.L.: Sl(3, R) and the repulsive oscillator, J. Phys. A 13 (1980),1991–2000.[<strong>Lie</strong>1880] LIE, S.: Theorie <strong>de</strong>r Transformationsgruppen, Math. Ann. 16 (1880), 441–528; translated in English and commented in: ACKERMAN, M.; HERMANN,R.: Sophus <strong>Lie</strong>’s 1880 Transformation Group paper, Math. Sci. Press, Brookline,Mass., 1975.[<strong>Lie</strong>1883][MS2001][Ma2003][M2004]LIE, S.: Klassifikation und Integration vo gewöhnlichen Differentialgleichungenzwischen x, y, die eine Gruppe von Transformationen gestaten I-IV. In:Gesammelte Abhandlungen, Vol. 5, B.G. Teubner, Leipzig, 1924, pp. 240–310; 362–427, 432–448.MAHOMED, F.M.; SOH, C.W.: Linearization criteria for a system of secondor<strong>de</strong>rdifferential equations, Internat. J. Non-Linear Mech. 36 (2001), no. 4,671–677.MARDARE, S.: On isometric immersions of a Riemannian space un<strong>de</strong>r aweak regularity assumption, C. R. Acad. Sci. Paris, Sér. I 337 (2003), 785–790.MERKER, J.: Explicit differential characterization of PDE systems pointwiseequivalent to Y X j 1X j 2 = 0, 1 j 1 , j 2 n 2,arxiv.org/abs/math.DG/0411637.[N2003] NEUT, S.: Implantation et nouvel<strong>les</strong> applications <strong>de</strong> la métho<strong>de</strong>d’équivalence d’Élie Cartan, Thèse, Université Lille 1, October 2003.[NS2003] NUROWSKY, P.; SPARLING, G.A.J.: 3-dimensional Cauchy-Riemannstructures and 2 nd or<strong>de</strong>r ordinary differential equations, e-printarXiv:math.DG/0306331.[Ol1986] OLVER, P.J.: Applications of <strong>Lie</strong> groups to differential equations. SpringerVerlag, New York, 1986. xxvi+497 pp.[OL1995] OLVER, P.J.: Equivalence, Invariance and Symmetries. Cambridge UniversityPress, Cambridge, 1995, xvi+525 pp.[Ste1982] STERNBERG, S.: Differential geometry. Chelsea, New York, 1982.91


92[Stk2000][TR1896]STORMARK, O.: <strong>Lie</strong>’s structural approach to PDE systems, Encyclopædia ofmathematics and its applications, vol. 80, Cambridge University Press, Cambridge,2000, xv+572 pp.TRESSE, A.: Détermination <strong>de</strong>s invariants ponctuels <strong>de</strong> l’équation différentielledu second ordre y ′′ = ω(x, y, y ′ ), Hirzel, Leipzig, 1896.


93Nonalgebraizable real analytic tubes in C n xJoël Merker (with H. Gaussier)Abstract. We give necessary conditions for certain real analytic tube generic submanifoldsin C n to be locally algebraizable. As an application, we exhibit familiesof real analytic non locally algebraizable tube generic submanifolds in C n .During the proof, we show that the local CR automorphism group of a minimal,finitely non<strong>de</strong>generate real algebraic generic submanifold is a real algebraic local<strong>Lie</strong> group. We may state one of the main results as follows. Let M be a real analytichyper<strong>sur</strong>face tube in C n passing through the origin, having a <strong>de</strong>fining equation ofthe form v = ϕ(y), where (z,w) = (x+iy,u+iv) ∈ C n−1 ×C. Assume that M isLevi non<strong>de</strong>generate at the origin and that the real <strong>Lie</strong> algebra of local infinitesimalCR automorphisms of M is of minimal possible dimension n, i.e. generated by thereal parts of the holomorphic vector fields ∂ z1 ,... ,∂ zn−1 ,∂ w . Then M is locallyalgebraizable only if every second <strong>de</strong>rivative ∂ 2 y k y lϕ is an algebraic function of thecollection of first <strong>de</strong>rivatives ∂ y1 ϕ,...,∂ ym ϕ.Table of contents :§1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.§2. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5.§3. Proof of Theorem 1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.§4. Local <strong>Lie</strong> group structure for the CR automorphism group . . . . . . . .17.§5. Minimality and finite non<strong>de</strong>generacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.§6. Algebraicity of local CR automorphism groups . . . . . . . . . . . . . . . . . . . 22.§7. Description of explicit families of strong tubes in C n . . . . . . . . . . . . . . 28.§8. Analyticity versus algebraicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34.Mathematische Zeitschrift 247 (2004), no. 2, 337–383§1. INTRODUCTIONA real analytic submanifold M in C n is called algebraic if it can be representedlocally by the vanishing of a collection of Nash algebraic real analyticfunctions. We say that M is locally algebraizable at one of its points p ifthere exist some local holomorphic coordinates centered at p in which Mis algebraic. For instance, every totally real, real analytic submanifold inC n of dimension k ≤ n is locally biholomorphic to a k-dimensional linearreal plane, hence locally algebraizable. Also, every complex manifoldis locally algebraizable. Although every real analytic submanifold M isclearly locally equivalent to its tangent plane by a real analytic (in general


94not holomorphic) equivalence, the question whether M is biholomorphicallyequivalent to a real algebraic submanifold is subtle. In this article,we study the question whether every real analytic CR submanifold is locallyalgebraizable. One of the interests of algebraizability lies in the reflectionprinciple, which is better un<strong>de</strong>rstood in the algebraic category. In<strong>de</strong>ed,in the fundamental works of Pinchuk [Pi1975], [Pi1978] and of Webster[We1977], [We1978] and in the recent works of Sharipov-Sukhov [SS1996],Huang-Ji [HJ1998], Verma [Ve1999], Coupet-Pinchuk-Sukhov [CPS2000],and Shafikov [Sha2000], [Sha2002], the extendability of germs of CR mappingswith target in a real algebraic hyper<strong>sur</strong>face is achieved. On the contrary,even if some results previously shown un<strong>de</strong>r an algebraization hypothesiswere proved recently un<strong>de</strong>r general assumptions (see the strong resultobtained by Die<strong>de</strong>rich-Pinchuk [DP2003]), most of the results cited aboveare still open in the case of a real analytic target hyper<strong>sur</strong>face.1.1. Brief history of the question. By the work of Moser and Webster[MW1983, Thm. 1], it is known that every real analytic two-dimensional<strong>sur</strong>face S ⊂ C 2 at an isolated elliptic (in the sense of Bishop) complex tangencyp ∈ S is biholomorphic to one of the <strong>sur</strong>faces S γ,δ,s := {(z 1 , z 2 ) ∈C 2 : y 2 = 0, x 2 = z 1¯z 1 + (γ + δ(x 2 ) s )(z1 2 + ¯z2 1 )}, where p corresponds tothe origin, where 0 < γ < 1/2 is Bishop’s invariant and where δ = ±1 ands ∈ N or δ = 0. The quantities γ, δ, s form a complete system of biholomorphicinvariants for the <strong>sur</strong>face S near p. In particular, every elliptic <strong>sur</strong>faceS ⊂ C 2 is locally algebraizable. To the authors’ knowledge, it is unknownwhether there exist nonalgebraizable hyperbolic <strong>sur</strong>faces in C 2 . In fact, veryfew examp<strong>les</strong> of nonalgebraizable submanifolds are known. In [Eb1996],the author constructed a nonminimal (and non Levi-flat) real analytic hyper<strong>sur</strong>faceM through the origin in C 2 which is not locally algebraizable (cf.[BER2000, p. 330]). In a recent article [HJY] the authors prove that thestrongly pseudoconvex real analytic hyper<strong>sur</strong>face Im w = e |z|2 − 1 passingthrough the origin in C 2 is not locally algebraizable at any of its points. Usingan associated projective structure bundle Y introduced by Chern, theyshow that for every rigid algebraic hyper<strong>sur</strong>face in C n , there exists an algebraic<strong>de</strong>pen<strong>de</strong>nce relation between seven explicit Cartan-type holomorphicinvariant functions on Y . However a computational approach shows thatwhen M is of the specific form Im w = e |z|2 − 1, no algebraic relation canbe satisfied by these seven invariants.1.2. Presentation of the main results. Our aim is to present a geometricalapproach of the problem, valid in arbitrary dimension and in arbitrarycodimension, and to exhibit a large class of nonalgebraizable real analyticgeneric submanifolds. We consi<strong>de</strong>r the class Tn d of generic real analyticsubmanifolds in C n passing through the origin, of codimension d ≥ 1


and of CR dimension m = n − d ≥ 1, whose local CR automorphismgroup is n-dimensional, generated by the real parts of n holomorphic vectorfields having holomorphic coefficients X 1 , . . .,X n which are linearlyin<strong>de</strong>pen<strong>de</strong>nt at the origin and which commute: [X i1 , X i2 ] = 0. We shallcall Tn d the class of strong tubes of codimension d. In<strong>de</strong>ed, since thereexists a straightened system of coordinates t = (t 1 , . . .,t n ) over C n inwhich X i = ∂ ti , we observe that every submanifold M ∈ Tn d is tubifiableat the origin. By this, we mean that there exist holomorphic coordinatest = (z, w) = (x + iy, u + iv) ∈ C m × C d vanishing at the origin in whichM is represented by d equations of the form v j = ϕ j (y). Hence M is a tube,i.e. a product of the submanifold {v j = ϕ j (y), j = 1, . . .,d} ⊂ R n y,vby the n-dimensional real space R n x,u . Since M ∈ T n d , the only infinitesimalCR automorphisms of M are the real parts of the vector fields∂ z1 , . . .,∂ zm , ∂ w1 , . . .,∂ wd , explaining the terminology. Notice that not everytube belongs to the class Tn d . For instance in codimension d = 1, theHeisenberg sphere v = ∑ n−1k=1 y2 k and more generally the Levi non<strong>de</strong>generatequadrics v = ∑ n−1k=1 ε k yk 2, where ε k = ±1, have a CR automorphismgroup of dimension (n+1) 2 −1 > n and so do not belong to Tn 1 . We assumethat M ∈ Tn d is minimal at the origin, namely the local CR orbit of 0 in Mcontains a neighborhood of 0 in M. Furthermore, we assume that M ∈ Tndis finitely non<strong>de</strong>generate at 0, namely that there exists an integer l ≥ 1 suchthat Span {L β ∇ t (r j )(0, 0) : β ∈ N m , |β| ≤ l, j = 1, . . ., d} = C n , wherer j (t, ¯t) = 0, j = 1, . . .,d are arbitrary real analytic <strong>de</strong>fining functions for Mnear 0 satisfying ∂r 1 ∧· · ·∧∂r d ≠ 0 on M, where ∇ t (r j )(t, ¯t) is the holomorphicgradient with respect to t of r j and where L β <strong>de</strong>notes (L 1 ) β1 · · ·(L m ) βmfor an arbitrary basis L 1 , . . ., L m of (0, 1)-vector fields tangent to M ina neighborhood of 0. In particular Levi non<strong>de</strong>generate hyper<strong>sur</strong>faces arefinitely non<strong>de</strong>generate. Finally, assuming only that ϕ j (0) = 0, j = 1, . . ., d,we shall observe in Lemma 3.2 below that a tube v j = ϕ j (y) of codimensiond is finitely non<strong>de</strong>generate at the origin if and only if there exist multi-indicesβ∗ 1, . . .,βm ∗ ∈ Nm with |β∗ k| ≥ 1 and integers 1 ≤ j1 ∗ , . . .,jm ∗ ≤ d such thatthe real mapping(1.1) ψ(y) :=(∂|β 1 ∗ | ϕ j 1 ∗(y)∂y β1 ∗), . . ., ∂|βm ∗ | ϕ j m ∗(y)=: y ′ ∈ R m∂y βm ∗is of rank m at the origin in R m . Our main theorem provi<strong>de</strong>s a necessarycondition for the local algebraizability of strong tubes :Theorem 1.1. Let M be a real analytic generic tube of codimension d inC n given in coordinates (z, w) = (x + iy, u + iv) ∈ C m × C d by theequations v j = ϕ j (y), where ϕ j (0) = 0, j = 1, . . ., d. Assume that Mis minimal and finitely non<strong>de</strong>generate at the origin, so the real mapping95


96ψ(y) = y ′ <strong>de</strong>fined by (1.1) is of rank m at the origin in R m y and let y = ψ ′ (y ′ )<strong>de</strong>note the local inverse in ψ(y). Assume that M ∈ Tn d , namely M is astrong tube of codimension d. If M is locally algebraizable at the origin,then all the <strong>de</strong>rivative functions ∂ y ′kψ l ′(y′ ), where 1 ≤ k, l ≤ m, are realalgebraic functions of y ′ . Equivalently, every second <strong>de</strong>rivative ∂y 2 k y lϕ j (y) isan algebraic function of the collection of first <strong>de</strong>rivatives ∂ y1 ϕ j , . . .,∂ ym ϕ j .By contraposition, every real analytic strong tube M ∈ Tn d for whichone of the <strong>de</strong>rivative functions ∂ y ′kψ l ′ is not real algebraic is not locally algebraizable.We will argue in §8 that this is generically the case in the senseof Baire. It is however natural to look for explicit examp<strong>les</strong> of nonalgebraizablereal analytic submanifolds in C n . Since the real parts of the vectorfields ∂ z1 , . . .,∂ zm , ∂ w1 , . . ., ∂ wd are infinitesimal CR automorphisms of everytube v = ϕ(y), we must provi<strong>de</strong> some sufficient conditions in<strong>sur</strong>ingthat the dimension of the <strong>Lie</strong> algebra of such a tube is exactly n. We shal<strong>les</strong>tablish in §§7-8 below:Corollary 1.2. The tube hyper<strong>sur</strong>face M χ1 ,...,χ n−1in C n of equation v =∑ n−1k=1 [ε kyk 2+y6 k +y9 k y 1 · · ·y k−1 +y n+8kχ k (y 1 , . . .,y n−1 )], where χ 1 , . . .,χ n−1are arbitrary real analytic functions, belongs to the class Tn 1 of strong tubes.Two such tubes M χ1 ,...,χ n−1and M bχ1 ,...,bχ n−1are biholomorphically equivalentif and only if χ j = ̂χ j for every j. Furthermore, for a generic choice inχ 1 , . . .,χ n−1 in the sense of Baire (to be precised in §8), M χ1 ,...,χ n−1is notlocally algebraizable at the origin.Here we annihilate some Taylor coefficients in ϕ and keep some othersto be nonzero to in<strong>sur</strong>e that M χ is a strong tube. Furthermore, the termsy 9 k y 1 · · ·y k−1 in<strong>sur</strong>e that the M χ are pairwise not biholomorphically equivalent.Using a classical direct algorithm (cf. [Bs1991], [St1991]), or the <strong>Lie</strong>theory of symmetries of differential equations, combined with Theorem 1.1we may provi<strong>de</strong> some other explicit strong tubes which are not locally algebraizable(see §§7-8 for the proof):Corollary 1.3. The following five explicit tubes belong to T2 1 and are notlocally algebraizable at the origin : v = sin(y 2 ), v = tan(y 2 ), v = e ey−1 −1,v = sinh(y 2 ) and v = tanh(y 2 ).In these five examp<strong>les</strong>, the algebraic in<strong>de</strong>pen<strong>de</strong>nce in ∂ y ϕ and in ∂ 2 yy ϕis clear; however, checking that each hyper<strong>sur</strong>face is in<strong>de</strong>ed a strong tuberequires some formal computations, see §7. One may also check by a directcomputation that in a neighborhood of every point p = (z p , w p ) withz p ≠ 0, the hyper<strong>sur</strong>face M HJY of global equation Im w = e |z|2 − 1 is astrong tube (see §7.5). Since it can be represented in a neighborhood of pun<strong>de</strong>r the tube form v ′ = e |zp|2 (e y′ −1) − 1 by means of the local change of


coordinates z ′ = 2i ln(z/z p ), w ′ = (w − w p ) e −|zp|2 , applying Theorem 1.1and inspecting the function e |zp|2 (e y′ −1) −1, we may check that it is not algebraizableat such points p with z p ≠ 0 (see §7.5). It follows trivially that thehyper<strong>sur</strong>face M HJY is also not locally algebraizable at all the points p withz p = 0, giving the result of [HJY, Theorem 1.1]. Using the same strategy asfor Theorem 1.1, we obtain more generally the following criterion:Theorem 1.4. Let M ϕ : v = ϕ(z¯z) be a Levi non<strong>de</strong>generate real analytichyper<strong>sur</strong>face in C 2 passing through the origin whose <strong>Lie</strong> algebra of localinfinitesimal CR automorphisms is generated by ∂ w and iz ∂ z . If M ϕ is locallyalgebraizable at the origin, then the first <strong>de</strong>rivative ∂ r ϕ in ϕ (r ∈ R)is algebraic. For instance, the following seven explicit examp<strong>les</strong> are not locallyalgebraizable at the origin : v = e z¯z − 1, v = sin(z¯z), v = tan(z¯z),v = sinh(z¯z), v = tanh(z¯z), v = sin(sin(z¯z)) and v = e ez¯z −1 − 1.Finally, using the same recipe as for Theorems 1.1 and 1.4, we shall provi<strong>de</strong>a very simple criterion for the local nonalgebraizability of some hyper<strong>sur</strong>faceshaving a local <strong>Lie</strong> CR automorphism group of dimension equal toone exactly. We consi<strong>de</strong>r the class R n of Levi non<strong>de</strong>generate real analytichyper<strong>sur</strong>faces passing through the origin in C n (n ≥ 2) such that the <strong>Lie</strong> algebraof infinitesimal CR automorphisms of M is generated by exactly oneholomorphic vector field X 1 with holomorphic coefficients not all vanishingat the origin. We call R n the class of strongly rigid hyper<strong>sur</strong>faces, in or<strong>de</strong>rto distinguish them from the so-called rigid ones whose local CR automorphismgroup may be of dimension larger than 1. By straightening X 1 , wemay assume that X 1 = ∂ w and that M is given by a real analytic equationof the form v = ϕ(z, ¯z) = ϕ(z 1 , . . .,z n−1 , ¯z 1 , . . ., ¯z n−1 ). By making someelementary changes of coordinates (cf. §3.3), we can furthermore assumewithout loss of generality that ϕ(z, ¯z) = ∑ n−1k=1 ε k |z k | 2 + χ(z, ¯z), whereε k = ±1 and χ(0, ¯z) ≡ ∂ zk χ(0, ¯z) ≡ 0.Theorem 1.5. Let M : v = ϕ(z, ¯z) = ∑ n−1k=1 ε k |z k | 2 +χ(z, ¯z) be a stronglyrigid hyper<strong>sur</strong>face in C n with χ(0, ¯z) ≡ ∂ zk χ(0, ¯z) ≡ 0. If M is locallyalgebraizable at the origin, then all the first <strong>de</strong>rivatives ∂ zk ϕ are algebraicfunctions of (z, ¯z).This criterion enab<strong>les</strong> us to exhibit a whole family of non locally algebraizablehyper<strong>sur</strong>faces in C n :Corollary 1.6. The rigid hyper<strong>sur</strong>faces M χ1 ,...,χ n−1in C n of equation v =∑ n−1k=1 [ε k |z k | 2 + |z k | 10 + |z k | 14 + |z k | 16 (z k + ¯z k ) + |z k | 18 |z 1 | 2 · · · |z k−1 | 2 +|z k | 2n+16 χ k (z, ¯z)], where the χ k are arbitrary real analytic functions, belongto the class R n of strongly rigid hyper<strong>sur</strong>faces. Two such tubesM χ1 ,...,χ n−1and M bχ1 ,...,bχ n−1are biholomorphically equivalent if and only if97


98χ k = ̂χ k for k = 1, . . .,n − 1. Furthermore, for a generic choice of a(n − 1)-tuple of real analytic functions (χ 1 , . . .,χ n−1 ) in the sense of Baire(to be precised in §8), M χ1 ,...,χ n−1is not locally algebraizable at the origin.Finally, by computing generators of the <strong>Lie</strong> algebra of local infinitesimalCR automorphisms of some explicit examp<strong>les</strong>, we obtain:Corollary 1.7. The following seven explicit examp<strong>les</strong> of hyper<strong>sur</strong>faces inC 2 are strongly rigid and are not locally algebraizable at the origin : v =z¯z + z 2¯z 2 sin(z + ¯z), v = z¯z + z 2¯z 2 exp(z + ¯z), v = z¯z + z 2¯z 2 cos(z + ¯z),v = z¯z+z 2¯z 2 tan(z+¯z), v = z¯z+z 2¯z 2 sinh(z+¯z), v = z¯z+z 2¯z 2 cosh(z+¯z)and v = z¯z + z 2¯z 2 tanh(z + ¯z).1.3. Content of the paper. To prove Theorem 1.1 we consi<strong>de</strong>r an algebraicequivalent M ′ of M. The main technical part of the proof consists in showingthat an arbitrary real algebraic element M ′ of Tn d can be straightened insome local complex algebraic coordinates t ′ ∈ C n in or<strong>de</strong>r that its infinitesimalCR automorphisms are the real parts of n holomorphic vector fields ofthe form X i ′ = c′ i (t′ i ) ∂ t ′ , i = 1, . . .,n, where the variab<strong>les</strong> are separated andithe functions c ′ i (t′ i ) are algebraic. For this, we need to show that the automorphismgroup of a minimal finitely non<strong>de</strong>generate real algebraic genericsubmanifold in C n is a local real algebraic <strong>Lie</strong> group, a notion <strong>de</strong>fined in§2.3. A large part of this article (§§4, 5, 6) is <strong>de</strong>voted to provi<strong>de</strong> an explicitrepresentation formula for the local biholomorphic self-transformations ofa minimal finitely non<strong>de</strong>generate generic submanifold, see especially Theorem2.1 and Theorem 4.1. Finally, using the specific simplified form ofthe vector fields X i ′ and assuming that there exists a biholomorphic equivalenceΦ : M → M ′ satisfying Φ ∗ (∂ ti ) = c ′ i (t′ i ) ∂ t ′ , we show by elementaryicomputations that all the first or<strong>de</strong>r <strong>de</strong>rivatives of the mapping ψ ′ (y ′ ) mustbe algebraic. We follow a similar strategy for the proofs of Theorems 1.4and 1.5. Finally, in §§7-8, we provi<strong>de</strong> the proofs of Corollaries 1.2, 1.3, 1.6and 1.7.1.4. Acknowledgment. We acknowledge interesting discussions withMichel Petitot François Boulier at the University of Lille 1.§2. PRELIMINARIESWe recall in this section the basic properties of the objects we will <strong>de</strong>alwith.2.1. Nash algebraic functions and manifolds. In this subsection, let K =R or C. Let (x 1 , . . .,x n ) <strong>de</strong>note coordinates over K n . Throughout thearticle, we shall use the norm |x| := max(|x 1 |, . . .,|x n |) for x ∈ K n .Let K be an open polydisc centered at the origin in K n , namely K =


{x ∈ K n : |x| < ρ} for some ρ > 0. Let f : K → K be a K-analytic function, <strong>de</strong>fined by a power series converging normally in K .We say that f is (Nash) K-algebraic if there exists a nonzero polynomialP(X 1 , . . ., X n , F) ∈ K[X 1 , . . .,X n , F] in (n + 1) variab<strong>les</strong> such that therelation P(x 1 , . . .,x n , f(x 1 , . . .,x n )) = 0 holds for all (x 1 , . . .,x n ) ∈ K .If K = R, we say that f is real algebraic. If K = C, we say that f is complexalgebraic. The category of K-algebraic functions is stable un<strong>de</strong>r elementaryalgebraic operations, un<strong>de</strong>r differentiation and un<strong>de</strong>r composition.Furthermore, implicit solutions of K-algebraic equations (for which the realanalytic implicit function theorem applies) are again K-algebraic mappings.The theory of K-algebraic manifolds is then <strong>de</strong>fined by the usual axioms ofmanifolds, for which the authorized changes of chart are K-algebraic mappingsonly (cf. [Za1995]). In this paper, we shall very often use the stabilityof algebraicity un<strong>de</strong>r differentiation.2.2. Infinitesimal CR automorphisms. Let M ⊂ C n be a generic submanifoldof codimension d ≥ 1 and CR dimension m = n − d ≥ 1. Let p ∈ M,let t = (t 1 , . . ., t n ) be some holomorphic coordinates vanishing at p and forsome ρ > 0, let ∆ n (ρ) := {t ∈ C n : |t| < ρ} be an open polydisc centeredat p. We consi<strong>de</strong>r the <strong>Lie</strong> algebra Hol(∆ n (ρ)) of holomorphic vector fieldsof the form X = ∑ nj=1 a j(t) ∂/∂t j , where the a j are holomorphic functionsin ∆ n (ρ). Here, Hol(∆ n (ρ)) is equipped with the usual Jacobi-<strong>Lie</strong> bracketoperation. We may consi<strong>de</strong>r the complex flow exp(σX)(q) of a vector fieldX ∈ Hol(∆ n (ρ)). It is a holomorphic map of the variab<strong>les</strong> (σ, q) whichis well <strong>de</strong>fined in some connected open neighborhood of {0} × ∆ n (ρ) inC × ∆ n (ρ).Let K <strong>de</strong>note the real vector field K := X + X, consi<strong>de</strong>red as a realvector field over R 2n ∼ = C n . Again, the real flow of K is <strong>de</strong>fined in someconnected open neighborhood of {0} × ∆ n (ρ) R in R × ∆ n (ρ) R . We remindthe following elementary relation between the flow of K and the flow of X.For a real time parameter σ := s ∈ R, the flow exp(sX)(q) coinci<strong>de</strong>s withthe real flow of X + X, namely exp(sX)(q) = exp(s(X + X))(q R ), wherefor q ∈ C n , we <strong>de</strong>note q R the corresponding real point in R 2n . In the sequel,we shall always i<strong>de</strong>ntify ∆ n (ρ) and its real counterpart ∆ n (ρ) R .Let now Hol(M, ∆ n (ρ)) <strong>de</strong>note the real subalgebra of the vectorfields X ∈ Hol(∆ n (ρ)) such that X + X is tangent to M ∩ ∆ n (ρ).We also <strong>de</strong>note by Aut CR (M, ∆ n (ρ)) the <strong>Lie</strong> algebra of vectorfields of the form X + X, where X belongs to Hol(M, ∆ n (ρ)), soAut CR (M, ∆ n (ρ)) = 2 ReHol(M, ∆ n (ρ)). By the above consi<strong>de</strong>rations,the local flow exp(sX)(q) of X with s ∈ R real makes a one-parameterfamily of local biholomorphic transformations of M. In the sequel, we shallalways i<strong>de</strong>ntify Hol(M, ∆ n (ρ)) and Aut CR (M, ∆ n (ρ)), namely we shall99


100i<strong>de</strong>ntify X and X + X and say by some abuse of language that X itself isan infinitesimal CR automorphism.In the algebraic category, the main drawback of infinitesimal CR automorphismis that they do not have algebraic flow. For instance, the complexdilatation vector field X = iz ∂ z has transcen<strong>de</strong>nt flow, even if it is an infinitesimalCR automorphism of every algebraic hyper<strong>sur</strong>face in C 2 whoseequation is of the form v = ϕ(z¯z), even if the coefficient of X is algebraic.Thus instead of infinitesimal CR automorphisms which generate oneparametergroups of biholomorphic transformations of M, we shall studyalgebraically <strong>de</strong>pen<strong>de</strong>nt one-parameter families of biholomorphic transformations(not necessarily making a one parameter group). To begin with, weneed to introduce some precise <strong>de</strong>finitions about local algebraic <strong>Lie</strong> transformationgroups.2.3. Local <strong>Lie</strong> group actions in the K-algebraic category. Often in real orin complex analytic geometry, the interest cannot be focalized on global <strong>Lie</strong>transformation groups, but only on local transformations which are close tothe i<strong>de</strong>ntity. For instance, the transformation group of a small piece of a realanalytic CR manifold in C n which is not contained in a global, large or compactCR manifold is almost never a true, global transformation group. Consequentlythe usual axioms of <strong>Lie</strong> transformation groups must be localized.Philosophically speaking, the local point of view is often the most a<strong>de</strong>quateand the richest one, because a given analytico-geometric object often possessesmuch more local invariant than global invariants, if any. Historicallyspeaking, the local <strong>Lie</strong> transformation groups were first studied, before theintroduction of the now classical notion of global <strong>Lie</strong> group. Especially, inhis first masterpiece work [<strong>Lie</strong>1880] on the subject, Sophus <strong>Lie</strong> essentially<strong>de</strong>alt with local “<strong>Lie</strong>” groups: he classified all continuous local transformationgroups acting on an open subset of C 2 . This general classificationprovi<strong>de</strong>d afterwards in the years 1880–1890 many applications to the localstudy of differential equations: local normal forms, local solvability, etc.In this paragraph we <strong>de</strong>fine precisely local actions of local <strong>Lie</strong> groups andwe focus especially on the K-algebraic category.Let c ∈ N ∗ , let g = (g 1 , . . .,g c ) ∈ K c and let two positive numberssatisfy 0 < δ 2 < δ 1 . We formulate the <strong>de</strong>sired <strong>de</strong>finition by means of thetwo precise polydiscs ∆ c (δ 2 ) ⊂ ∆ c (δ 1 ) ⊂ K c . A local K-algebraic <strong>Lie</strong>group of dimension c consists of the following data:(1) A K-algebraic multiplication mapping µ : ∆ c (δ 2 ) × ∆ c (δ 2 ) → ∆ c (δ 1 )which is locally associative (µ(g, µ(g ′ , g ′′ )) = µ(µ(g, g ′ ), g ′′ )), wheneverµ(g ′ , g ′′ ) ∈ ∆ c (δ 2 ), µ(g, g ′ ) ∈ ∆ c (δ 2 ) and which satisfiesµ(0, g) = µ(g, 0) = g, where the origin 0 ∈ K c corresponds to thei<strong>de</strong>ntity element in the group structure.


(2) A K-algebraic inversion mapping ι : ∆ c (δ 2 ) → ∆ c (δ 1 ) satisfyingµ(g, ι(g)) = µ(ι(g), g) = 0 and ι(0) = 0 whenever ι(g) ∈ ∆ c (δ 2 ).Here, the integer c ∈ N ∗ is the dimension of G. We shall say that compositionand inversion are <strong>de</strong>fined locally in a neighborhood of the i<strong>de</strong>ntityelement. In the K-analytic category, the corresponding <strong>de</strong>finition is similar.Now, we can <strong>de</strong>fine the notion of local K-algebraic <strong>Lie</strong> group action. Letn ∈ N ∗ , let x = (x 1 , . . ., x n ) ∈ K n and let two positive numbers satisfy 0


102In<strong>de</strong>ed, from the group property Φ(Φ(z, w; σ); σ ′ ) ≡ Φ(z, w; σ + σ ′ ), it isclassical and immediate to <strong>de</strong>duce that if we <strong>de</strong>fine the parameter in<strong>de</strong>pen<strong>de</strong>ntvector field X 0 (z, w) := ∂ σ Φ(z, w; σ)| σ=0 = z ∂ z , then it holds that∂ σ Φ(z, w; σ) = e σ z ∂ z = X 0 (Φ(z, w; σ)). So the infinitesimal generatorof the action is in<strong>de</strong>pen<strong>de</strong>nt of the parameter g. However, the main troublehere is that the algebraicity of the action is necessarily lost since the flow ofX 0 is not algebraic (the rea<strong>de</strong>r may check that each right (or left) invariantvector field on an algebraic local <strong>Lie</strong> group <strong>de</strong>fines in general a nonalgebraicone-parameter subgroup, e.g. for SO(2, R), SL(2, C)).Consequently we may allow the infinitesimal generators of an algebraiclocal <strong>Lie</strong> group action x ′ = Φ(x; g), <strong>de</strong>fined by X i (x; g i ) :=[∂ gi Φ i ](Φ −1i,g i(x); g i ) to <strong>de</strong>pend on the group parameter g i , even if the families(Φ i,gi (x)) gi ∈K do not constitute one-dimensional subgroups of transformations.2.4. Algebraicity of complex flow foliations. Suppose now that M is a realalgebraic generic submanifold in C n , for instance a hyper<strong>sur</strong>face which isLevi non<strong>de</strong>generate at a “center” point p ∈ M corresponding to the originin the coordinates t = (t 1 , . . .,t n ). Let X ∈ Hol(M) be an infinitesimalCR automorphism. Even if, for fixed real s, the biholomorphicmapping t ↦→ exp(sX)(t) is complex algebraic, i.e. the n components ofthis biholomorphism are complex algebraic functions by Webster’s theorem[We1977], we know by consi<strong>de</strong>ring the infinitesimal CR automorphismX 1 := i(z + 1)∂ z of the strong tube Im w = |z + 1| 2 + |z + 1| 6 − 2 in C 2passing through the origin, that the flow of X is not necessarily algebraicwith respect to all variab<strong>les</strong> (s, t).Neverthe<strong>les</strong>s, we shall show that the local CR automorphism group ofM is a local algebraic <strong>Lie</strong> group whose general transformations are of theform t ′ = H(t; e 1 , . . .,e c ), where t ∈ C n and (e 1 , . . ., e c ) ∈ R c and whereH is algebraic with respect to all its variab<strong>les</strong>. Thus the “time” <strong>de</strong>pen<strong>de</strong>ntvector fields <strong>de</strong>fined by X i (t; e i ) := [∂ ei H i ](H −1i,e i(t); e i ), where H i,ei (t) :=H i (t; e i ) := H(t; 0, . . ., 0, e i , 0, . . ., 0), have an algebraic flow, simply givenby (t, e i ) ↦→ H i (t; e i ). It follows that each foliation <strong>de</strong>fined by the complexintegral curves of the time <strong>de</strong>pen<strong>de</strong>nt complex vector fields X i , i = 1, . . .,c,is a complex algebraic foliation, see §3 below. Now, we can state the maintechnical theorem of this paper, whose proof is postponed to §4, §5 and §6.Theorem 2.1. Let M ⊂ C n be a real algebraic connected geometricallysmooth generic submanifold of codimension d ≥ 1 and CR dimension m =n − d ≥ 1. Let p ∈ M and assume that M is finitely non<strong>de</strong>generate andminimal at p. Then for every sufficiently small nonempty open polydisc ∆ 1centered at p, the following three properties hold:


(1) The complex <strong>Lie</strong> algebra Hol(M, ∆ 1 ) is of finite dimension c ∈ Nwhich <strong>de</strong>pends only on the local geometry of M in a neighborhood ofp.(2) There exists a nonempty open polydisc ∆ 2 ⊂ ∆ 1 also centered at pand a C n -valued mapping H(t; e) = H(t; e 1 , . . .,e c ) with H(t; 0) ≡ twhich is <strong>de</strong>fined in a neighborhood of the origin in C n × R c and whichis algebraic with respect to both its variab<strong>les</strong> t ∈ C n and e ∈ R c suchthat for every holomorphic map h : ∆ 2 → ∆ 1 with h(∆ 2 ∩ M) ⊂∆ 1 ∩ M which is sufficiently close to the i<strong>de</strong>ntity map, there exists aunique e ∈ R c such that h(t) = H(t; e).(3) The mapping (t, e) ↦→ H(t; e) constitutes a K-algebraic local <strong>Lie</strong>transformation group action. More precisely, there exist a local multiplicationmapping (e, e ′ ) ↦→ µ(e, e ′ ) and a local inversion mappinge ↦→ ι(e) such that H, µ and ι satisfy the axioms of local algebraic <strong>Lie</strong>group action as <strong>de</strong>fined in §2.3.(4) The c “time <strong>de</strong>pen<strong>de</strong>nt” holomorphic vector fields(2.1) X i (t; e i ) := [∂ ei H i ](H −1i,e i(t); e i ),103where H i,ei (t) := H i (t; e i ) := H(t; 0, . . ., 0, e i , 0, . . ., 0), have algebraiccoefficients and have an algebraic flow, given by (t, e i ) ↦→H i (t; e i ).In the case where M is real analytic, the same theorem holds true with theword “algebraic” everywhere replaced by the word “analytic”.A special case of Theorem 2.1 was proved in [BER1999b] where, apparently,the authors do not <strong>de</strong>al with the notion of local <strong>Lie</strong> groups andconsi<strong>de</strong>r the isotropy group of the point p, namely the group of holomorphicself-maps of M fixing p. The consi<strong>de</strong>ration of the complete local <strong>Lie</strong> groupof biholomorphic self-maps of a piece of M in a neighborhood of p (notonly the isotropy group of p) is crucial for our purpose, since we shall haveto <strong>de</strong>al with strong tubes M ∈ Tn d for which the isotropy group of p ∈ Mis trivial. Sections §4, §5 and §6 are <strong>de</strong>voted to the proof of Theorem 4.1, aprecise statement of Theorem 2.1. We mention that our method of proof ofTheorem 2.1 gives a non optimal bound for the dimension of Hol(M, ∆ 1 ).To our knowledge, the upper bound c ≤ (n + 1) 2 − 1 is optimal only incodimension d = 1 and in the Levi non<strong>de</strong>generate case.§3. PROOF OF THEOREM 1.1We take in this section Theorem 2.1 for granted. As explained in §1.3above, we shall conduct the proof of Theorem 1.1 in two essential steps(§§3.1 and 3.2). The strategy for the proof of Theorems 1.4 and 1.5 is similarand we prove them in §§3.3 and 3.4. Let M ∈ Tn d be a strong tube of


104codimension d passing through the origin in C n given by the equations v j =ϕ j (y), j = 1, . . .,d. Assume that M is biholomorphically equivalent to areal algebraic generic submanifold M ′ .First step. We show that an arbitrary real algebraic element M ′ ∈ Tn d can bestraightened in some local complex algebraic coordinates t ′ = (t ′ 1 , ..., t′ n ) ∈C n in or<strong>de</strong>r that its infinitesimal CR automorphisms are the n holomorphicvector fields of the specific form X i ′ = c ′ i(t ′ i) ∂ t ′i, i = 1, . . ., n, where thefunctions c ′ i (t′ i ) are algebraic.Second step. Assuming that there exists a biholomorphic equivalence Φ :M → M ′ satisfying Φ ∗ (∂ ti ) = c ′ i (t′ ) ∂ t ′i, we prove by direct computationthat all the first or<strong>de</strong>r <strong>de</strong>rivatives of the mapping ψ ′ (y ′ ) must be algebraic.3.1. Proof of the first step. Let t ′ = Φ(t) be such an equivalence, withΦ(0) = 0 and M ′ := Φ(M) real algebraic. Let X i := ∂ ti , i = 1, . . .,n,be the n infinitesimal CR automorphisms of M and set X ′ i := Φ ∗ (X i ). Ofcourse, we have [X ′ i 1, X ′ i 2] = Φ ∗ ([X i1 , X i2 ]) = 0, so the CR automorphismgroup of M ′ is also n-dimensional and commutative. Let us choose complexalgebraic coordinates t ′ in a neighborhood of 0 ∈ M ′ such that X ′ i | 0 =∂ t ′i| 0 . Let us apply Theorem 2.1 to the real algebraic submanifold M ′ , notingall the datas with dashes. There exists an algebraic mapping H ′ (t ′ ; e) =H ′ (t ′ ; e 1 , . . .,e n ) such that every local biholomorphic self-map of M ′ writesuniquely t ′ ↦→ H ′ (t ′ ; e), for some e ∈ R n . In particular, for every i =1, . . ., n and every small s ∈ R, there exists e s ∈ R n <strong>de</strong>pending on s suchthat exp(sX ′ i)(t ′ ) ≡ H ′ (t ′ ; e s ). From the commutativity of the flows of theX ′ i , i.e. from exp(s 1X ′ i 1(exp(s 2 X ′ i 2(t ′ )))) ≡ exp(s 2 X ′ i 2(exp(s 1 X ′ i 1(t ′ )))),we get(3.1) H ′ (H ′ (t ′ ; e 2 ); e 1 ) ≡ H ′ (H ′ (t ′ ; e 1 ); e 2 ).This shows that the biholomorphisms t ′ ↦→ H e ′(t′ ) := H ′ (t ′ ; e) commutepairwise. In particular, if we <strong>de</strong>fine(3.2) G ′ i (t′ ; e i ) := H ′ (t ′ ; 0, . . .,0, e i , 0, . . .,0),we have G ′ i 1(G ′ i 2(t ′ ; e 2 ); e 1 ) ≡ G ′ i 2(G ′ i 1(t ′ ; e 1 ); e 2 ).Next, after making a linear change of coordinates in the e-space, we canin<strong>sur</strong>e that ∂ ei G ′ i (0; e i)| ei =0 = ∂ t ′i| 0 = X ′ i | 0 for i = 1, . . .,n. Finally, complexifyingthe real variable e i in a complex variable ǫ i , we get mappingsG ′ i (t′ i ; ǫ i) which are complex algebraic with respect to both variab<strong>les</strong> t ′ ∈ C nand ǫ i ∈ C and which commute pairwise. We can now state and prove thefollowing crucial proposition (where we have dropped the dashes) accordingto which we can straighten commonly the n one-parameter families ofbiholomorphisms t ′ ↦→ G ′ i (t′ ; ǫ i ).


Proposition 3.1. Let t ↦→ G i (t; ǫ i ), i = 1, . . ., n, be n one complex parameterfamilies of complex algebraic biholomorphic maps from a neighborhoodof 0 in C n onto a neighborhood of 0 in C n satisfying G i (t; 0) ≡ t,∂ ǫi G i (0; ǫ i )| ǫi =0 = ∂ ti | 0 and pairwise commuting: G i1 (G i2 (t; ǫ 2 ); ǫ 1 ) ≡G i2 (G i1 (t; ǫ 1 ); ǫ 2 ). Then there exists a complex algebraic biholomorphismof the form t ′ ↦→ Φ ′ (t ′ ) =: t of C n fixing the origin with dΦ ′ (0) = Id suchthat if we set G ′ i(t ′ ; ǫ i ) := Φ ′ −1 (G i (Φ ′ (t ′ ); ǫ i )), where t ′ = Φ(t) <strong>de</strong>note theinverse of t = Φ ′ (t ′ ), then we have(3.3) G ′ i (t′ ; ǫ i ) ≡ (t ′ 1 , . . .,t′ i−1 , G′ i,i (t′ i ; ǫ i), t ′ i+1 , . . .,t′ n ),where the functions G ′ i,i are complex algebraic, <strong>de</strong>pend only on t′ i (and onǫ i ) and satisfy G ′ i,i(t ′ i; 0) ≡ t ′ i and ∂ ǫi G ′ i,i(0; ǫ i )| ǫi =0 = 1.Proof. First of all, we <strong>de</strong>fine the complex algebraic biholomorphism(3.4) Φ ′ 1 : (t′ 1 , t′ 2 , . . .,t′ n ) ↦−→ G 1(0, t ′ 2 , . . .,t′ n ; t′ 1 ) =: t.We have dΦ ′ 1(0) = Id, because G 1 (t; 0) ≡ t and ∂ ǫ1 G 1 (0; ǫ 1 )| ǫ1 =0 = ∂ t1 | 0 .Furthermore, since ∂ ǫ1 G 1 (0; ǫ 1 )| ǫ1 =0 is transversal to {(0, t 2 , . . .,t n )}, italso follows that a small neighborhood of the origin in C n t is algebraicallyfoliated by the (n − 1)-parameter family of complex curves C ′t :=′ 2 ,...,t′ n{G 1 (0, t ′ 2, . . .,t ′ n; t ′ 1) : |t ′ 1| < δ} where δ > 0 is small and t ′ 2, . . ., t ′ n arefixed. The existence of this foliation shows that the relation(3.5) t ∗ ∼ t iff there exists ǫ 1 such that t ∗ = G 1 (t; ǫ 1 )is a local equivalence relation, whose equivalence classes are the leaves(see FIGURE 1).C ′t ′ 2 ,...,t′ n105t 2, . . . , t nt ∗ ∼ tC ′ t ′ 2 ,...,t′ nG 1(G 1(0, t ′ 2 , . . . , t′ n ; t′ 1 ); ǫ1)G 1(0, t ′ G 2 , . . . , t′ n ; t′ 1 )1(0, t ′ 2 , . . . , t′ n ; 0)0t 1FIGURE 1: LOCAL ALGEBRAIC STRAIGHTENING OF THE ORBITS OF G 1(t; ǫ 1)Consequently, as we clearly have(3.6) (0, t ′ 2 , . . .,t′ n ) ∼ G 1(0, t ′ 2 , . . .,t′ n ; t′ 1 ) ∼ G 1(G 1 (0, t ′ 2 , . . ., t′ n ; t′ 1 ); ǫ 1),using the transitivity of the relation ∼, it follows that there exists a complexnumber ε t ′ ,ǫ 1<strong>de</strong>pending on t ′ and on ǫ 1 such that(3.7) G 1 (G 1 (0, t ′ 2 , . . ., t′ n ; t′ 1 ); ǫ 1) = G 1 (0, t ′ 2 , . . .,t′ n ; ε t ′ ,ǫ 1).


106By the very <strong>de</strong>finition (3.4) of Φ ′ 1, this is equivalent to(3.8) Φ 1 (G 1 (Φ ′ 1 (t′ ); ǫ 1 )) = (ε t ′ ,ǫ 1, t ′ 2 , . . .,t′ n ),where t ′ = Φ 1 (t) <strong>de</strong>notes the inverse of t = Φ ′ 1 (t′ ). Finally, since theleft hand si<strong>de</strong> of (3.8) is clearly a complex algebraic mapping of (t ′ ; ǫ 1 ), itfollows that there exists a complex algebraic function G ′ 1,1 (t′ ; ǫ 1 ) such thatwe can write(3.9) Φ 1 (G 1 (Φ ′ 1 (t′ ); ǫ 1 )) ≡ (G ′ 1,1 (t′ ; ǫ 1 ), t ′ 2 , . . .,t′ n ).So we have straightened the first family by means of Φ ′ 1.Next, we drop the dashes and we restart with G 1 (t; ǫ 1 ) =(G 1,1 (t; ǫ 1 ), t 2 , . . .,t n ). Then, similarly as above, by introducing thecomplex algebraic biholomorphism(3.10) Φ ′ 2 : (t ′ 1, t ′ 2, t ′ 3, . . ., t ′ n) ↦−→ G 2 (t ′ 1, 0, t ′ 3, . . .,t ′ n; t ′ 2),which satisfies dΦ ′ 2 (0) = Id, and by <strong>de</strong>noting by t′ = Φ 2 (t) the inverse oft = Φ ′ 2(t ′ ), we get again that if we set G ′ 2(t ′ ; ǫ 2 ) := Φ 2 (G 2 (Φ ′ 2(t ′ ); ǫ 2 )), then(3.11) G ′ 2 (t′ ; ǫ 2 ) ≡ (t ′ 1 , G′ 2,2 (t′ ; ǫ 2 ), t ′ 3 , . . .,t′ n ),where the complex algebraic function G ′ 2,2 (t′ ; ǫ 2 ) satisfies∂ ǫ2 G ′ 2,2(0; ǫ 2 )| ǫ2 =0 = 1 and G ′ 2,2(t ′ ; 0) ≡ t ′ 2.We also have to consi<strong>de</strong>r the modification of the first family of biholomorphismsG ′ 1 (t′ ; ǫ 1 ) := Φ 2 (G 1 (Φ ′ 2 (t′ ); ǫ 1 )). Using in an essential way thecommutativity, we may compute⎧Φ ′ 2(G ′ 1(t ′ ; ǫ 1 )) = G 1 (Φ ′ 2(t ′ ); ǫ 1 )(3.12)⎪⎨⎪⎩It follows that= G 1 (G 2 (t ′ 1 , 0, t′ 3 , . . .,t′ n ; t′ 2 ); ǫ 1)= G 2 (G 1 (t ′ 1, 0, t ′ 3, . . .,t ′ n; ǫ 1 ); t ′ 2)= G 2 (G 1,1 (t ′ 1 , 0, t′ 3 , . . .,t′ n ; ǫ 1), 0, t ′ 3 , . . .,t′ n ; t′ 2 )= Φ ′ 2 (G 1,1(t ′ 1 , 0, t′ 3 , . . .,t′ n ; ǫ 1), t ′ 2 , t′ 3 , . . ., t′ n ).(3.13) G ′ 1 (t′ ; ǫ 1 ) ≡ (G 1,1 (t ′ 1 , 0, t′ 3 , . . .,t′ n ; ǫ 1), t ′ 2 , t′ 3 , . . .,t′ n )whence(3.14) G ′ 1,1 (t′ ; ǫ 1 ) := G 1,1 (t ′ 1 , 0, t′ 3 , . . ., t′ n ; ǫ 1)does not <strong>de</strong>pend on t ′ 2. Finally, inserting (3.11) and (3.13) in the commutativityrelation G ′ 1 (G′ 2 (t′ ; ǫ 2 ); ǫ 1 ) ≡ G ′ 2 (G′ 1 (t′ ; ǫ 1 ); ǫ 2 ), we find{G′1,1 (t ′ 1 , G′ 2,2 (t′ ; ǫ 2 ), t ′ 3 , . . .,t′ n ; ǫ 1) ≡ G ′ 1,1 (t′ ; ǫ 1 ),(3.15)G ′ 2,2(G ′ 1,1(t ′ ; ǫ 1 ), t ′ 2, t ′ 3, . . .,t ′ n; ǫ 2 ) ≡ G ′ 2,2(t ′ ; ǫ 2 ).


The first relation gives nothing, since we already know that G ′ 1,1 is in<strong>de</strong>pen<strong>de</strong>ntof t ′ 2. By differentiating the second relation with respect to ǫ 1 at ǫ 1 = 0,we find that G ′ 2,2 is in<strong>de</strong>pen<strong>de</strong>nt of t ′ 1.In summary, after the change of coordinates Φ ′ 2 ◦ Φ′ 1 (t′ ) = t which istangent to the i<strong>de</strong>ntity map at t ′ = 0, we obtained that107(3.16){G′1 (t ′ ; ǫ 1 ) = (G ′ 1,1(t ′ 1, t ′ 3, . . .,t ′ n), t ′ 2, t ′ 3, . . .,t ′ n),G ′ 2 (t′ ; ǫ 2 ) = (t ′ 1 , G′ 2,2 (t′ 2 , t′ 3 , . . .,t′ n ), t′ 3 , . . .,t′ n ).Using these arguments, the proof of Proposition 3.1 clearly follows by induction.Now, we come back to our CR manifold M ′ having the one-parameterfamilies of algebraic biholomorphisms G ′ i(t ′ ; e i ) given by (3.2) and pairwisecommuting. Applying Proposition 3.1, after a change of complex algebraiccoordinates of the form t ′ = Ψ ′′ (t ′′ ), we may assume that the G ′′i (t′′ ; ǫ i ) arealgebraic and can be written in the specific form(3.17) G ′′i (t′′ ; ǫ i ) ≡ (t ′′1 , . . .,t′′ i−1 , G′′ i,i (t′′ i ; ǫ i), t ′′i+1 , . . .,t′′ n ),with ∂ ǫi G ′′i,i(0; ǫ i )| ǫi =0 = 1. Let t ′′ = Ψ ′ (t ′ ) <strong>de</strong>note the inverse of t ′ =Ψ ′′ (t ′′ ). We thus have t ′′ = Ψ ′ (t ′ ) = Ψ ′ (Φ(t)), where we remind that t ′ =Φ(t) provi<strong>de</strong>s the equivalence between the strong tube M and the algebraicCR generic M ′ .Since Ψ ′ is algebraic, the image M ′′ := Ψ ′ (M ′ ) is also algebraic. Letr j ′(t′ , ¯t ′ ) = 0, j = 1, . . .,d, be <strong>de</strong>fining equations for M ′ . Then r j ′′(t′′, ¯t ′′ ) :=r j(Ψ ′ ′′ (t ′′ ), Ψ ′′ (t ′′ )) = 0 are <strong>de</strong>fining equations for M ′′ . By assumption, forǫ i := e i ∈ R real, the family of algebraic biholomorphisms G ′ i (t′ ; ǫ i ) mapsa small piece of M ′ through the origin into M ′ . It follows trivially thatG ′′i (t ′′ ; ǫ i ) ≡ Ψ ′ (G ′ i(Ψ ′′ (t ′′ ); ǫ i )) maps a small piece of M ′′ through the origininto M ′′ . Furthermore, since dΨ ′′ (0) = Id, it follows that if we <strong>de</strong>noteX i ′′ := Ψ ′ ∗ (X′ i ), then X′′ i | 0 = ∂ t ′′i| 0 .Next, thanks to the specific form (3.17), by differentiating∂ ǫi G ′′i (t ′′ ; ǫ i )| ǫi =0, we get n vector fields of the form Z i ′′ = c ′′i (t ′′i ) ∂ t ′′By construction, the functions c ′′i (t ′′i ) are algebraic and satisfy c ′′i (0) = 1.Differentiating with respect to e i the i<strong>de</strong>ntity r j ′′ (G ′′i (t ′′ ; e i ), G ′′i (t′′ ; e i )) = 0for r j ′′(t′′, ¯t ′′ ) = 0, i.e. for t ′′ ∈ M ′′ , we see that Z i ′′ is tangent to M ′′ ,i.e. we see that Z i ′′ is an infinitesimal CR automorphism of M ′′ . Consequently,there exist real constants λ i,l such that Z i ′′ = ∑ nl=1 λ i,l X l ′′.SinceZ i ′′ | 0 = X i ′′ | 0 = ∂ t ′′i| 0 , we have in fact λ i,l = 1 for i = l and λ i,l = 0 fori ≠ l. So Z i ′′ = X i ′′ and we have shown that(3.18) (Ψ ′ ◦ Φ) ∗ (X i ) = X ′′i = Z ′′i = c ′′i (t′′ i ) ∂ t ′′i .i.


108We shall call a CR generic manifold M ′′ having infinitesimal CR automorphismsof the form X i ′′ = c ′′i (t′′ i ) ∂ t ′′ with c ′′i i (0) ≠ 0 a pseudotube. Sucha pseudotube is not in general a product by R n . In fact, there is no hopeto tubify all algebraic peudotubes in algebraic coordinates, as shows the elementaryexample Im w = |z + 1| 2 + |z + 1| 6 − 2 having infinitesimalCR automorphisms ∂ w and i(z + 1)∂ z , since the only change of coordinatesfor which Φ ∗ (∂ w ) = ∂ w ′ and Φ ∗ (i(z + 1)∂ z ) = ∂ z ′ is z + 1 = e iz′ ,w = w ′ , which transforms M into M ′ of nonalgebraic <strong>de</strong>fining equationIm w ′ = e −2y′ + e −6y′ .The constructions of this paragraph may be represented by the followingsymbolic picture.C n t v x, uMyΦC n v t ′′M ′x ′ , u ′y ′M strong tubeM ′ algebraicΨ ′C n t ′′ v ′′ x ′′ , u ′′′Φ ′′ := Ψ ′ ◦ ΦM ′′y ′′M ′′ algebraic pseudotubeSummary and conclusion of the first step. To conclu<strong>de</strong>, let us <strong>de</strong>note forsimplicity M ′′ again by M ′ , the coordinates t ′′ again by t ′ and t ′′ = Ψ ′ ◦Φ(t) by t ′ = Φ(t). After the above straightenings, we have shown thatthe infinitesimal CR automorphisms X i ′ := Φ ∗(X i ) of the algebraic genericmanifold M ′ are of the sympathetic form X i ′ = c′ i (t′ i ) ∂ t ′ , i = 1, . . ., n, withialgebraic coefficients c ′ i(t ′ i) satisfying c ′ i(0) = 1.3.2. Proof of the second step. We characterize first finite non<strong>de</strong>generacyfor tubes of codimension d in C n .Lemma 3.2. Let M be a tube of codimension d in C n equipped with coordinates(z, w) = (x + iy, u + iv) ∈ C m × C d given by the equationsv j = ϕ j (y), j = 1, . . ., d, where ϕ j (0) = 0. Then M is finitely non<strong>de</strong>generateat the origin if and only if there exist m multi-indices β∗ 1, . . .,βm ∗ ∈ Nm


with |β∗ k | ≥ 1 and integers j∗, 1 . . .,j∗ m with 1 ≤ j∗ k ≤ d such that the realmapping( )∂|β∗ 1| ϕ j 1(3.19) ψ(y) :=∗(y), . . ., ∂|βm ∗ | ϕ j m ∗(y)=: y ′ ∈ R m∂y β1 ∗ ∂y βm ∗is of rank m at the origin in R m .Proof. We follow the <strong>de</strong>finition of finite non<strong>de</strong>generacy given in §1.2. Letr j (t, ¯t) := v j − ϕ j (y) = 0 be the <strong>de</strong>fining equations of M. Let L k :=∂¯zk + ∑ dj=1 ϕ j,¯z k∂ ¯wj , k = 1, . . .,m, be a basis of (1, 0)-vector fields tangentto∑M. We write the first or<strong>de</strong>r terms in the Taylor series of ϕ j (y) as ϕ j (y) =nl=1 λ j,l y l + O(|y| 2 ). Then the holomorphic gradient of r j is given by(3.20) ⎧∇ ⎪⎨ t (r j ) = (∂ z1 r j , . . .,∂ zm r j , ∂ w1 r j , . . .,∂ wd r j )= i2 −1 (∂ y1 ϕ j , . . .,∂ ym ϕ j , 0, . . .,0, −1, 0, . . ., 0)⎪⎩= i2 −1 (λ j,1 , · · · , λ j,m , 0, . . ., 0, −1, 0, . . ., 0), at the origin.On the other hand, since for β = (β 1 , . . .,β m ) ∈ N m with |β| ≥ 1 theor<strong>de</strong>r |β| <strong>de</strong>rivation L β := L β 11 · · ·Lβm m acts on functions of y as the operator(2i) −|β| ∂y β , we can compute(3.21) {βL (∇t (r j )) = (L β ∂ z1 ϕ j , . . ., L β ∂ zm ϕ j , 0, . . .,0, . . ., 0)= i −|β|+1 2 −|β|−1 (∂ β y ∂ y 1ϕ j , . . .,∂ β y ∂ y mϕ j , 0, . . ., 0, . . .,0).By inspecting the expressions (3.20) and (3.21), we see thatSpan{(L β (∇ t (r j )))(0) : β ∈ N m , j = 1, . . .,d} = C n if and onlyif Span{(∂ β y ∂ y1 ϕ j (0), . . ., ∂ β y ∂ ym ϕ j (0)) : β ∈ N m , |β| ≥ 1, j =1, . . ., d} = R m . This last condition is clearly equivalent to the one statedin Lemma 3.2.We can prove now that the inverse mapping ψ ′ (y ′ ) of the mappingψ(y) <strong>de</strong>fined by (1.1) (or (3.19)) has algebraic first or<strong>de</strong>r <strong>de</strong>rivatives.By Step 1, there exists a biholomorphic transformation Φ mapping thestrong tube M onto the algebraic pseudotube M ′ with the property thatΦ ∗ (∂ ti ) = c ′ i(t ′ i) ∂ t ′∑ i. Writing Φ(t) = (h 1 (t), . . .,h n (t)), we have Φ ∗ (∂ ti ) =nl=1 h l,t i(t) ∂ t ′l= c ′ i (t′ i ) ∂ t ′ , so h ii(t) <strong>de</strong>pends only on t i which yieldsΦ(t) = (h 1 (t 1 ), . . .,h n (t n )). We shall use the convenient notation t ′ i =h i (t i ) and t i = h ′ i(t ′ i) for the inverse h ′ i := h −1i , i = 1, . . ., n. If accordingly,Φ ′ (t ′ ) = t <strong>de</strong>notes the inverse of Φ(t) = t ′ , we have Φ ′ ∗ (c′ i (t′ i ) ∂ t ′) = ic ′ i (t′ i ) h′ i,t(t ′ ′ i ) ∂ t i= ∂ ti , which shows that c ′ i (t′ i ) h′ ii,t i(t ′ ′ i ) ≡ 1. Since c′ i (0) =1, we see that h ′ i (t′ i ) = ∫ t ′ i0 1/[c′ i (σ)] dσ is the complex primitive of an algebraicfunction. This observation will be important.109


110After a permutation of the coordinates, we may assume that M ′ is givenin the coordinates t ′ = (z ′ , w ′ ) ∈ C m × C d by the real <strong>de</strong>fining equationsIm w j ′ = ϕ′ j (z′ , ¯z ′ , Re w ′ ), j = 1, . . ., d, where the functions ϕ ′ j are algebraicand vanish at the origin. Solving in terms of w ′ by means of the algebraicimplicit function theorem, we can represent M ′ by the algebraic complex<strong>de</strong>fining equations(3.22) w ′ j = Θ′ j (z′ , ¯z ′ , ¯w ′ ), j = 1, . . .,d,where Θ ′ satisfies the vectorial functional equation w ′ ≡Θ ′ (z ′ , ¯z ′ , Θ ′ (¯z ′ , z ′ , w ′ )) (which we shall not use). According to thesplitting (z ′ , w ′ ) of coordinates, it is convenient to modify our previous notationby writing z k = f k ′(z′ k ), k = 1, . . .,m and w j = g j ′(w′ j ), j = 1, . . ., dinstead of t i = h ′ i (t′ i ), i = 1, . . .,n, and also{X′k = a ′ k(3.23)(z′ k ) ∂ z k ′ , k = 1, . . .,m, a′ k (0) = 1,Y j ′ = b′ j (w′ j ) ∂ w j ′ , j = 1, . . .,d, b′ j (0) = 1,instead of X i ′ = c′ i (t′ i ) ∂ t ′ . The relation c′ i i (t′ i ) h′ i,t i(t ′ ′ i ) ≡ 1 rewrites down inthe form{ a′k (z k) ′ f ′ k,z k ′ (z′ k) ≡ 1,(3.24)b ′ j (w′ j ) g′ j,w ′ j (w′ j ) ≡ 1.We remind that the <strong>de</strong>rivatives of the f k ′ and of the g′ j are algebraic. Let nowt ′ = (z ′ , w ′ ) ∈ M ′ , thus satisfying (3.22). Then h ′ (t ′ ) = (f ′ (z ′ ), g ′ (w ′ ))belongs to M, namely we have for j = 1, . . ., d:(3.25)g ′ j (w′ j ) − ḡ′ j ( ¯w′ j )2i( f′= ϕ 1 (z 1 ′ ) − ¯f 1 ′(¯z′ 1 )j , . . ., f m ′ (z′ m ) − ¯f m ′ (¯z′ m ) ),2i2iwhere i = √ −1 here. Replacing w ′ j by Θ′ j (z′ , ¯z ′ , ¯w ′ ) in the left hand si<strong>de</strong>,we get the following i<strong>de</strong>ntity between converging power series of the 2m+dcomplex variab<strong>les</strong> (z ′ , ¯z ′ , ¯w ′ ):(3.26)g ′ j(Θ ′ j(z ′ , ¯z ′ , ¯w ′ )) − ḡ ′ j( ¯w ′ j)2i( f′≡ ϕ 1 (z 1) ′ − ¯f 1(¯z ′ 1)′j , . . ., f m(z ′ m) ′ − ¯f )m(¯z ′ m)′ .2i2iLet us differentiate this i<strong>de</strong>ntity with respect to z k ′ , for k = 1, . . ., m. Takinginto account the relations (3.24), we obtain(3.27)a ′ k (z′ k ) Θ′ j,z ′ k (z′ , ¯z ′ , ¯w ′ )b ′ j (Θ′ j (z′ , ¯z ′ , ¯w ′ ))≡ ∂ϕ (j f′1 (z 1 ′) − ¯f 1 ′(¯z′ 1 )∂y k 2i, . . ., f m ′ (z′ m ) − ¯f m ′ (¯z′ m ) ).2i


Clearly, the left hand si<strong>de</strong> is an algebraic function A j,k ′ (z′ , ¯z ′ , ¯w ′ ). Then differentiatingagain with respect to the variab<strong>les</strong> z k ′ the relations (3.27), we seethat for every multi-in<strong>de</strong>x β ∈ N m with |β| ≥ 1, and every j = 1, . . ., d,there exists an algebraic function A j,β ′ (z′ , ¯z ′ , ¯w ′ ) such that the followingi<strong>de</strong>ntity holds:(3.28)A j,β ′ (z′ , ¯z ′ , ¯w ′ ) ≡ ∂β 1+···+β mϕ j∂y β 11 · · ·∂βm( f′1 (z 1) ′ − ¯f 1(¯z ′ 1)′y m2i111, . . ., f m(z ′ m) ′ − ¯f )m(¯z ′ m)′ .2iDifferentiating (3.28) with respect to ¯w ′ , we see immediately that A j,β ′ isin fact in<strong>de</strong>pen<strong>de</strong>nt of ¯w ′ . Furthermore, we see that A j,β ′ is real, namelyA j,β ′ (z′ , ¯z ′ ) ≡ A ′ j,β(¯z ′ , z ′ ). Now we extract from (3.28) the m i<strong>de</strong>ntitieswritten for β := β∗ k, j := jk ∗ , k = 1, . . .,m and we use the invertibility ofthe mapping ψ <strong>de</strong>fined in (3.19) (recall that ψ ′ (y ′ ) = y <strong>de</strong>notes the inverseof y ′ = ψ(y)), which yields(3.29)f ′ k (z′ k ) − ¯f ′ k (¯z′ k )2i≡ ψ ′ k (A ′j 1 ∗,β 1 ∗ (z′ , ¯z ′ ), . . .,A ′j m ∗ ,β m ∗ (z′ , ¯z ′ )),for k = 1, . . .,m. For simplicity, we shall write A k ′(z′, ¯z ′ ) instead ofA ′j∗ ∗(z ′ , ¯z ′ ). Finally, we differentiate (3.29) with respect to z ′ k,βk k , whichyields, taking into account (3.24):(3.30) ⎧⎪⎨⎪⎩12i a ′ k (z′ k ) ≡0 ≡m∑l=1m∑l=1∂ψ k′ (A ′∂yl′1 (z′, ¯z ′ ), . . ., A m ′ (z′, ¯z ′ )) ∂A l′(z ′ , ¯z ′ ),∂z ′ k∂ψ k′ (A∂y1(z ′ ′ , ¯z ′ ), . . ., A m(z ′ ′ , ¯z ′ )) ∂A l′(z ′ , ¯z ′ ), ˜k ≠ k.l′ ∂ze ′ kIt follows from these relations (3.30) viewed in matrix form that the constantmatrix ( ∂A l′(0, 0))∂z k′ 1≤l,k≤m is invertible, because the diagonal matrix(δ e kk [2ia ′ k (z′ k )]−1 ) 1≤k, e k≤mis evi<strong>de</strong>ntly invertible at z k ′ = 0 (recall a′ k (0) = 1).Consequently, there exist algebraic functions B k,l ′ (z′ , ¯z ′ ) so that(3.31)∂ψ k′ (A ′∂yl′ 1 (z′ , ¯z ′ ), . . ., A m ′ (z′ , ¯z ′ )) ≡ B k,l ′ (z′ , ¯z ′ ).Next, setting ỹ k ′ = A k ′(iy′, −iy ′ ), k = 1, . . ., m we see, from the invertibilityof the matrix ( ∂A k′ (0, 0))∂z l′ 1≤k,l≤m and from the reality of A k ′(z′, ¯z ′ ), that theJacobian <strong>de</strong>terminant at the origin of the mapping y ′ ↦→ A ′ (iy ′ , −iy ′ ) = ỹ k′is nonzero. Thus there are real algebraic functions C k ′ so that we can express


112y ′ in terms of ỹ ′ as y ′ k = C ′ k (ỹ′ ). Finally, we get∂ψ k′ (3.32) (ỹ ′∂yl′ 1 , . . .,ỹ′ m ) = B′ k,l (iC ′ (ỹ ′ ), −iC ′ (ỹ ′ )),where the right hand si<strong>de</strong>s are algebraic; this shows that the partial <strong>de</strong>rivatives∂ y ′ lψ k ′ are algebraic functions of ỹ′ .To obtain the equivalent formulation of Theorem 1.1, we observe the following.Lemma 3.3. For every k, l = 1, . . .,m, the functions ∂ y ′kψ ′ l (y′ ) arealgebraic functions of y ′ if and only if for every k 1 , k 2 = 1, . . .,m,the second <strong>de</strong>rivative ∂ 2 y k1 y k2(y) is an algebraic function of ψ(y) =(∂ y1 ϕ(y), . . ., ∂ ym ϕ(y)).Proof. Differentiating the i<strong>de</strong>ntities y k ≡ ψ k ′ (ψ(y)), k = 1, . . ., m, withrespect to y l , we getm∑m∑(3.33) δk l ≡ ∂ y ′jψ k(ψ(y)) ′ ∂ yj ψ j (y) ≡ ∂ y ′jψ k(y ′ ′ ) ∂y 2 my lϕ(y).j=1Applying Cramer’s rule, we see that there exist universal rational functionsR k,l such that{ ∂2yk y lϕ(y) ≡ R k,l ({∂ y ′k2ψ k ′ 1(y ′ )} 1≤k1 ,k 2 ≤m})(3.34)j=1≡ R k,l ({∂ y ′k2ψ ′ k 1(∂ y1 ϕ(y), . . ., ∂ ym ϕ(y))} 1≤k1 ,k 2 ≤m}).This implies the equivalence of Lemma 3.3.In conclusion, taking Theorem 2.1 for granted, the proof of Theorem 1.1is now complete.3.3. Proof of Theorem 1.5. Let M : v = ϕ(z, ¯z) be a rigid Levi non<strong>de</strong>generatehyper<strong>sur</strong>face in C n passing through the origin. We may assume thatv = ∑ n−1k=1 ε k |z k | 2 +ϕ 3 (z, ¯z), where ε k = ±1 and we may write ϕ 3 (z, ¯z) =∑ n−1k=1 [¯z k ϕ 3 k (z) + z k ¯ϕ 3 k (¯z)] + ϕ4 (z, ¯z), with ϕ 4 (0, ¯z) ≡ ϕ 4 z k(0, ¯z) ≡ 0 andϕ 3 k = O(2). After making the change of coordinates z′ k := z k + ε k ϕ 3 k (z),w ′ := w, we come to the simple equation v ′ = ∑ n−1k=1 ε k |z k ′ |2 + χ ′ (z ′ , ¯z ′ ),where χ ′ (0, ¯z ′ ) ≡ χ z ′k(0, ¯z ′ ) ≡ 0, consi<strong>de</strong>red in Theorem 1.5.Assume that M is strongly rigid, locally algebraizable and let M ′ be analgebraic equivalent of M. Let t ′ = h(t) be such an equivalence, or in ourprevious notation z ′ = f(z, w) and w ′ = g(z, w). We note z = f ′ (z ′ , w ′ )and w = g ′ (z ′ , w ′ ) the inverse equivalence. Since M is strongly rigid,namely Hol(M) is generated by the single vector field X 1 := ∂ w , it followsthat Hol(M ′ ) is also one-dimensional, generated by the single vector


field X 1 ′ := h ∗ (X 1 ). Taking again Theorem 2.1 for granted and proceedingas in the first step of the proof of Proposition 3.1, we may algebraicallystraighten the complex foliation induced by X 1 ′ to the “vertical” foliationby w ′ -lines. Equivalently, we may assume that X 1 ′ = b′ (z ′ , w ′ ) ∂ w ′ with b ′algebraic and b ′ (0) = 1. The assumption h ∗ (∂ w ) = b ′ (z ′ , w ′ ) ∂ w ′ yields thatf ′ (z ′ , w ′ ) is in<strong>de</strong>pendant of w ′ and that b ′ (z ′ , w ′ ) g w ′ ′(z′ , w ′ ) ≡ 1, so that asin (3.24) above, the <strong>de</strong>rivative gw ′ is algebraic. Let ′w′ = Θ ′ (z ′ , ¯z ′ , ¯w ′ ) bethe complex <strong>de</strong>fining equation of M ′ in these coordinates. The assumptionh ′ (M ′ ) = M yields the following power series i<strong>de</strong>ntity(3.35) g ′ (z ′ , Θ ′ (z ′ , ¯z ′ , ¯w ′ )) − ḡ ′ (¯z ′ , ¯w ′ ) ≡ 2i ϕ(f ′ (z ′ ), ¯f ′ (¯z ′ )).By differentiating this i<strong>de</strong>ntity with respect to z k ′ , we get(3.36)∂ z ′kg ′ (z ′ , Θ ′ (z ′ , ¯z ′ , ¯w ′ ))+ ∂ z k ′ Θ′ (z ′ , ¯z ′ , ¯w ′ n−1)b ′ (Θ ′ (z ′ , ¯z ′ , ¯w ′ )) ≡ 2i ∑l=1113∂ zl ϕ(f ′ (z ′ ), ¯f ′ (¯z ′ )) ∂ z ′kf ′l(z ′ ).We notice that the second term in the left hand si<strong>de</strong> of (3.36) is algebraic.By differentiating in turn (3.36) with respect to ¯z k ′ and using the algebraicityof ∂ 2 zg ′ (z ′ , ¯Θ ′ (z ′ , ¯z ′ , ¯w ′ )), we obtain that there exist algebraic functionsk ′ w′A k ′1 ,k 2(z ′ , ¯z ′ ) such that(3.37)A ′k 1 ,k 2(z ′ , ¯z ′ ) ≡∑n−1l 1 ,l 2 =1∂ 2 z l1 ¯z l2ϕ(f ′ (z ′ ), ¯f ′ (¯z ′ )) ∂ z ′k1f ′l 1(z ′ ) ∂¯z ′k2¯f′l2(¯z ′ ).Without loss of generality, we may assume that h ′ is tangent to the i<strong>de</strong>ntitymap at t ′ = 0. Then setting ¯z ′ := 0 in (3.37) and using the fact that∂z 2 l1 ¯z l2ϕ(z, 0) = δ l 2l1ε l1 + ∂z 2 l1 ¯z l2χ(z, 0) ≡ δ l 2l1ε l1 by the properties of χ in′Theorem 1.5 we get, since ∂¯z ′k2¯f l2(0) = δ k 2l 2:(3.38) A ′k 1 ,k 2(z ′ , 0) ≡ ε k2 ∂ z ′k1f ′ k 2(z ′ ),which shows that all the first or<strong>de</strong>r <strong>de</strong>rivatives ∂ z ′kf l ′(z′) are algebraic.Next, since the canonical transformation to normalizing coordinates is algebraicand preserves the “horizontal” coordinates z ′ (cf. [CM1974]), hencedoes not perturb the complex foliation induced by X 1, ′ we may also assumethat M ′ is given in normal coordinates, namely that the function Θ ′ satisfiesΘ ′ (0, ¯z ′ , ¯w ′ ) ≡ Θ ′ (z ′ , 0, ¯w ′ ) ≡ ¯w ′ . Since the coordinates are normal forboth M and M ′ , it follows by setting ¯z ′ := 0 and ¯w ′ := 0 in (3.35) thatg ′ (z ′ , 0) ≡ 0. Consequently, ∂ z ′kg ′ (z ′ , 0) ≡ 0. Finally, by setting z ′ := 0 and¯w ′ := 0 in (3.36), we see that the first term in the left hand si<strong>de</strong> vanishes andthat the second term is algebraic with respect to ¯z ′ , so we obtain that there


114exist algebraic functions B ′ k (¯z′ ) such that(3.39) B ′ k (¯z′ ) ≡∑n−1l=1∂ zl ϕ(0, ¯f ′ (¯z ′ )) ∂ z ′kf ′l (0) ≡ ε k ¯f ′ k (¯z′ ).We have proved that the components f k ′(z′ ) are all algebraic.Finally, coming back to the relation (3.36), we want to prove that the<strong>de</strong>rivatives ∂ zl ϕ(f ′ (z ′ ), ¯f ′ (¯z ′ )) are all algebraic. However, the first termof (3.36) is not algebraic in general. Fortunately, using the fact thatΘ ′= ¯w ′ + O(2), we see that there exists a unique algebraic solution¯w ′ = Λ ′ (z ′ , ¯z ′ ) of the implicit equation Θ ′ (z ′ , ¯z ′ , ¯w ′ ) = 0, namely satisfyingΘ ′ (z ′ , ¯z ′ , Λ ′ (z ′ , ¯z ′ )) ≡ 0. Then by replacing ¯w ′ by Λ ′ in (3.36), we getthat there exist algebraic functions C k ′(z′ , ¯z ′ ) such that(3.40) C ′ k(z ′ , ¯z ′ ) ≡∑n−1l=1∂ zl ϕ(f ′ (z ′ ), ¯f ′ (¯z ′ )) ∂ z ′kf ′l(z ′ ).Since f ′ is tangent to the i<strong>de</strong>ntity map, we can solve by Cramer’srule this linear system for the <strong>de</strong>rivatives ∂ zl ϕ, which yields that the∂ zl ϕ(f ′ (z ′ ), ¯f ′ (¯z ′ )) are all algebraic. Since f ′ (z ′ ) is also algebraic, weobtain in sum that the <strong>de</strong>rivatives ∂ zl ϕ(z, ¯z) are all algebraic. In conclusion,taking Theorem 2.1 for granted, the proof of Theorem 1.5 is complete.3.4. Proof of Theorem 1.4. Let M : v = ϕ(z¯z) in C 2 with Hol(M) generatedby ∂ w and iz∂ z . Without loss of generality, we can assume thatϕ(r) = r + O(r 2 ). Let M ′ be an algebraic equivalent of M. Let t = h ′ (t ′ ),or z = f ′ (z ′ , w ′ ), w = g ′ (z ′ , w ′ ) be a local holomorphic equivalence satisfyingh ′ (M ′ ) = M. Let t ′ = h(t) be its inverse. Then Hol(M ′ ) istwo-dimensional and generated by h ∗ (∂ w ) and h ∗ (iz∂ z ). First of all, usingthe algebraicity of the CR automorphism group of M ′ and proceedingas in the proof of Proposition 3.1, we can prove that there exist two generatorsof Hol(M ′ ) of the form X 1 ′ = b ′ (w ′ ) ∂ w ′ and X 2 ′ = a ′ (z ′ ) ∂ z ′ whereb ′ and a ′ are algebraic and satisfy b ′ (0) = 1 and a ′ (z ′ ) = iz ′ + O(z ′2 ).Furthermore, we may assume that h ′ is tangent to the i<strong>de</strong>ntity map and thath ′ ∗ (b′ (w ′ ) ∂ w ′) = ∂ w and h ′ ∗ (a′ (z ′ ) ∂ z ′) = iz∂ z . As in (3.24), it follows thatb ′ (w ′ ) g w ′ ′(w′ ) ≡ 1 and a ′ (z ′ ) f z ′ ′(z′ ) ≡ if ′ (z ′ ). Let w ′ = Θ ′ (z ′ , ¯z ′ , ¯w ′ ) be thecomplex algebraic equation of M ′ . Then we get the following power seriesi<strong>de</strong>ntity:(3.41) g ′ (Θ ′ (z ′ , ¯z ′ , ¯w ′ )) − ḡ ′ ( ¯w ′ ) ≡ 2i ϕ(f ′ (z ′ ) ¯f ′ (¯z ′ )),


which yields after differentiating with respect to z ′ :(3.42) {Θ′z ′(z′ , ¯z ′ , ¯w ′ )/[b ′ (Θ ′ (z ′ , ¯z ′ , ¯w ′ ))] ≡ 2i ∂ z ′f(z ′ ) ¯f ′ (¯z ′ ) ∂ r ϕ(f ′ (z ′ ) ¯f ′ (¯z ′ ))115≡ − 2 f ′ (z ′ ) ¯f ′ (¯z ′ ) ∂ r ϕ(f ′ (z ′ ) ¯f ′ (¯z ′ ))/[a ′ (z ′ )].Here, we consi<strong>de</strong>r the function ϕ as a function ϕ(r) of the real variabler ∈ R. Since the left hand si<strong>de</strong> is an algebraic function and a ′ (z ′ ) is alsoalgebraic, there exists an algebraic function A ′ (z ′ , ¯z ′ ) such that we can write(3.43) A ′ (z ′ , ¯z ′ ) ≡ f ′ (z ′ ) ¯f ′ (¯z ′ ) ∂ r ϕ(f ′ (z ′ ) ¯f ′ (¯z ′ )).Next, using the property ϕ(r) = r + O(r 2 ), differentiating (3.43) withrespect to ¯z ′ at ¯z ′ = 0, we obtain that f ′ (z ′ ) is algebraic. Coming backto (3.43), this yields that ∂ r ϕ(f ′ (z ′ ) ¯f ′ (¯z ′ )) is algebraic. Since f ′ (z ′ ) is alsoalgebraic, we finally obtain that ∂ r ϕ(r) is algebraic. Excepting the examp<strong>les</strong>which will be treated in §7.5, the proof of Theorem 1.4 is complete.The next three sections are <strong>de</strong>voted to the statement of Theorem 4.1,which implies directly Theorem 2.1 (§4), and to its proof (§§5-6).§4. LOCAL LIE GROUP STRUCTURE FOR THE CR AUTOMORPHISMGROUP4.1. Local representation of a real algebraic generic submanifold. Weconsi<strong>de</strong>r a connected real algebraic (or more generally, real analytic) genericsubmanifold M in C n of codimension d ≥ 1 and CR dimension m =n − d ≥ 1. Pick a point p ∈ M and consi<strong>de</strong>r some holomorphic coordinatest = (t 1 , . . .,t n ) = (z 1 , . . .,z m , w 1 , . . .,w d ) ∈ C m × C d vanishingat p in which T 0 M = {Im w = 0}. If we <strong>de</strong>note w = u + iv, it followsthat there exists (Nash) real algebraic power series ϕ j (z, ¯z, u) withϕ j (0) = 0 and dϕ j (0) = 0 such that the <strong>de</strong>fining equations of M are ofthe form v j = ϕ j (z, ¯z, u), j = 1, . . .,d in a neighborhood of the origin.By means of the algebraic implicit function theorem, we can solve with respectto ¯w the equations w j − ¯w j = 2i ϕ j (z, ¯z, (w + ¯w)/2), j = 1, . . ., d,which yields ¯w j = Θ j (¯z, z, w) for some power series Θ j which are complexalgebraic with respect to their 2m + d variab<strong>les</strong>. Here, we haveΘ j = w j + O(2), since T 0 M = {Im w = 0}. Without loss of generality,we shall assume that the coordinates are normal, namely the functionsΘ j (¯z, z, w) satisfy Θ j (0, z, w) ≡ w j and Θ j (¯z, 0, w) ≡ w j . It may beshown that the power series Θ j = w j + O(2) satisfy the vectorial functionalequation Θ(¯z, z, Θ(z, ¯z, ¯w)) ≡ ¯w in C{z, ¯z, ¯w} d and conversely that to everysuch power series mapping satisfying this vectorial functional equation,there corresponds a unique real algebraic generic manifold M (cf. for instancethe manuscript [GM2001c] for the <strong>de</strong>tails). So we can equivalently


116take ¯w j = Θ j (¯z, z, w) or w j = Θ j (z, ¯z, ¯w) as complex <strong>de</strong>fining equationsfor M.For arbitrary ρ > 0, we shall often consi<strong>de</strong>r the open polydisc ∆ n (ρ) :={t ∈ C n : |t| < ρ} where we <strong>de</strong>note by |t| := max 1≤i≤n |t i | the usualpolydisc norm. Without loss of generality, we may assume that the powerseries Θ j converge normally in the polydic ∆ 2m+d (2ρ 1 ), where ρ 1 > 0. Infact, we shall successively introduce some other positive constants (radii)0 < ρ 5 < ρ 4 < ρ 3 < ρ 2 < ρ 1 afterwards. Finally, we <strong>de</strong>fine M as:(4.1) M = {(z, w) ∈ ∆ n (ρ 1 ) : ¯w j = Θ j (¯z, z, w), j = 1, . . .,d}.Next, let ρ 2 arbitrary with 0 < ρ 2 < ρ 1 . For h ′ , h ∈ O(∆ n (ρ 1 ), C n ), we<strong>de</strong>fine(4.2) ||h ′ − h|| ρ2 := sup {|h ′ (t) − h(t)| : t ∈ ∆ n (ρ 2 )}.For k ∈ N, we shall also consi<strong>de</strong>r the C k norms(4.3)||J k h ′ −J k h|| ρ2 := sup {|∂ α t h′ (t)−∂ α t h(t)| : t ∈ ∆ n(ρ 2 ), α ∈ N n , |α| ≤ k}.For k ∈ N and t ∈ ∆ n (ρ 1 ), we <strong>de</strong>note by J k h(t) the collection of partial<strong>de</strong>rivatives (∂t α h i (t)) 1≤i≤n, |α|≤k of length ≤ k of the components h 1 , . . .,h n ,so J k h(t) ∈ C N n,k, where N n,k := n (n+k)! . In particular, the expressionn! k!J k h(0) = (∂t αh i(0)) 1≤i≤n, |α|≤k <strong>de</strong>notes the k-jet of h at 0. So, the spaceof k-jets at the origin of holomorphic mappings h ∈ O(∆ n (ρ 1 ), C n ) maybe i<strong>de</strong>ntified with the complex linear space C N n,k . We <strong>de</strong>note the naturalcoordinates on C N n,k by (Jαi ) 1≤i≤n, |α|≤k . Sometimes, we abbreviate thiscollection of coordinates by J k ≡ (Ji α ) 1≤i≤n, |α|≤k . Finally, we <strong>de</strong>note by JIdkthe k-jet at the origin of the i<strong>de</strong>ntity mapping. We introduce the importantset of holomorphic self-mappings of M <strong>de</strong>fined by(4.4) {Hρ 2 ,ρ 1M,k,ε := {h ∈ O(∆ n(ρ 1 ), C n ) : ||J k h − JId|| k ρ2 < ε,h(M ∩ ∆ n (ρ 2 )) ⊂ M ∩ ∆ n (ρ 1 )}.Here, k ∈ N and ε > 0 is a small positive number that we shall shrink manytimes in the sequel.


117Im w∆ n(ρ 4 )∆ n(ρ 1 )∆ n(ρ 2)∆ n(ρ 3)finitenon<strong>de</strong>generacyassumptionMMRew, z, ¯z∆n(ρ 5 )FIGURE 3: NEST OF POLYDISCS CENTERED AT 0 ∈ MMinimalityassumptionρ 4 ∼ (ρ 1) NN >> 1We may now state the main theorem of §4, §5 and §6, namely Theorem4.1, which provi<strong>de</strong>s a complete parametrized <strong>de</strong>scription of the setH ρ 2,ρ 1M,k,εof local biholomorphic self-mappings of M, with k equal to an integerκ 0 <strong>de</strong>pending on M. During the course of the (rather long) proof, fortechnical reasons, we shall have to introduce first a third positive radius ρ 3with 0 < ρ 3 < ρ 2 < ρ 1 which is related to the finite non<strong>de</strong>generacy of M,and then afterwards a fourth positive radius ρ 4 with 0 < ρ 4 < ρ 3 < ρ 2 < ρ 1 ,which is related to the minimality of M. This is why the radius notation“ρ 4 ” appears after “ρ 2 ” and “ρ 1 ” without mention of “ρ 3 ” (cf. FIGURE 3).Theorem 4.1. Assume that the real algebraic generic submanifold M <strong>de</strong>finedby (4.1) is minimal and finitely non<strong>de</strong>generate at the origin. As above,fix two radii ρ 1 and ρ 2 with 0 < ρ 2 < ρ 1 . Then there exists an even integerκ 0 ∈ N ∗ which <strong>de</strong>pends only on the local geometry of M near the origin,there exists ε > 0, there exists ρ 4 > 0 with ρ 4 < ρ 2 , there exists a complexalgebraic C n -valued mapping H(t, J κ 0) which is <strong>de</strong>fined for t ∈ C n with|t| < ρ 4 and for J κ 0∈ C Nn,κ 0 (where Nn,κ0 = n (n+κ 0)!n! κ 0) with |J κ 0−J κ 0! Id | < εand which <strong>de</strong>pends only on M and there exists a geometrically smooth realalgebraic totally real submanifold E of C Nn,κ 0 passing through the i<strong>de</strong>ntityjet J κ 0Idwhich <strong>de</strong>pends only on M, which is <strong>de</strong>fined by(4.5) E = {J κ 0: |J κ 0− J κ 0Id | < ε, C l(J κ 0, J κ 0 ) = 0, l = 1, . . ., υ},where the C l (J κ 0, J κ 0 ), l = 1, . . ., υ, are real algebraic functions <strong>de</strong>fined onthe polydisc {|J κ 0− J κ 0Id| < ε}, and which can be constructed algorithmicallyby means only of the <strong>de</strong>fining equations of M, such that the followingsix statements hold:


118(1) Every local biholomorphic self-mapping h ∈ H ρ 2,ρ 1M,κ 0 ,εof M (which is<strong>de</strong>fined on the large polydisc ∆ n (ρ 1 )) is represented by(4.6) h(t) = H(t, J κ 0h(0)),on the smal<strong>les</strong>t polydisc ∆ n (ρ 4 ). In particular, each h ∈ H ρ 2,ρ 1M,κ 0 ,ε isa complex algebraic biholomorphic mapping. Furthermore, the κ 0 -jetof h at the origin belongs to the real algebraic submanifold E, namelywe have C l (J κ 0h(0), J κ 0¯h(0)) = 0, l = 1, . . ., υ.(2) Conversely, shrinking ε if necessary, given an arbitrary jet J κ 0in Ethere exists a smaller positive radius ρ 5 < ρ 4 such that the mapping<strong>de</strong>fined by h(t) := H(t, J κ 0) for |t| < ρ 5 sends M ∩ ∆ n (ρ 5 ) CRdiffeomorphicallyonto its image which is contained in M ∩ ∆ n (ρ 4 ).We may therefore say that the set H ρ 2,ρ 1M,κ 0 ,εof local biholomorphic selfmappingsof M is parametrized by the real algebraic submanifold E.(3) For every choice of two smaller positive radii ˜ρ 1 ≤ ρ 1 and ˜ρ 2 ≤ ρ 2 with˜ρ 2 < ˜ρ 1 , there exists a positive radius ˜ρ 4 ≤ ρ 4 with ˜ρ 4 < ˜ρ 2 , and a positive˜ε ≤ ε such that the same complex algebraic mapping H(t, J κ 0)as in statement (1) above represents all local biholomorphic selfmappings˜h ∈ H eρ 2,eρ 1M,κ 0 ,eε of M, namely we have ˜h(t) = H(t, J κ 0˜h(0))for all |t| < ˜ρ 4 as in (4.6). Furthermore, the corresponding real algebraictotally real submanifold Ẽ coinci<strong>de</strong>s with E in the polydisc{|J κ 0− J κ 0Id| < ˜ε} and it is <strong>de</strong>fined by the same real algebraic equationsC l (J κ 0, J κ 0 ) = 0, l = 1, . . .,υ, as in equation (4.5). In fact,the algebraic mapping H(t, J κ 0) and the real algebraic totally realsubmanifold E <strong>de</strong>pend only on the local geometry of M in a neighborhoodof the origin, namely on the germ of M at 0.(4) The set H ρ 2,ρ 1M,κ 0 ,ε, equipped with the law of composition of holomorphicmappings, is a real algebraic local <strong>Lie</strong> group. More precisely, let thepositive integer c 0 <strong>de</strong>note the real dimension of E, which is in<strong>de</strong>pen<strong>de</strong>ntof ρ 1 , ρ 2 and consi<strong>de</strong>r a parametrization(4.7) R c 0∋ e = (e 1 , . . .,e c0 ) ↦→ j κ0 (e) ∈ E ⊂ C Nn,κ 0of the real algebraic totally real submanifold E. Then there exist a realalgebraic associative local multiplication mapping (e, e ′ ) ↦→ µ(e, e ′ )and a real algebraic local inversion mapping e ↦→ ι(e) such that if we<strong>de</strong>fine H(t; e) := H(t, j κ0 (e)), then H(H(t; e); e ′ ) ≡ H(t; µ(e, e ′ ))and H(t; e) −1 ≡ H(t; ι(e)), with the local <strong>Lie</strong> transformation groupaxioms, as <strong>de</strong>fined in §2.3, being satisfied by H, µ and ι.(5) For i = 1, . . .,c 0 , consi<strong>de</strong>r the one-parameter families of transformations<strong>de</strong>fined by H(t; 0, . . ., 0, e i , 0, . . .,0) =: H i (t; e i ) =:H i,ei (t). Then for each i = 1, . . .,c 0 , the vector field X i | (t;ei ) :=


[∂ i,ei H ei (t ′ )] t ′ =He −1i(t) , is <strong>de</strong>fined for t ∈ ∆ n(ρ 5 ) and |e i | < ε, has algebraiccoefficients <strong>de</strong>pending on the “time” parameter e i , and hasan algebraic flow, since this coinci<strong>de</strong>s with the algebraic mapping(t, e i ) ↦→ H i,ei (t).(6) Let ρ 5 be as in statement (2). Then the dimension c 0 of the real <strong>Lie</strong> algebraHol(M, ∆ n (ρ 5 )) is finite, boun<strong>de</strong>d by the fixed integer N n,κ0 :=n (n+κ 0)!n! κ 0. Furthermore, each vector field X ∈ Hol(M, ∆! n (ρ 5 )) hascomplex algebraic coefficients.If M is real analytic, the same theorem holds with the word “algebraic”replaced everywhere by the word “analytic”.We shall explain below how the integer κ 0 is related to the minimalityand to the finite non<strong>de</strong>generacy of M at the origin. The next §5 and §6are <strong>de</strong>voted to the proof Theorem 4.1, namely the existence of the mappingH(t, J κ 0), the existence of the real algebraic totally real submanifold E andthe completion of the proof of properties (1-6).119§5. MINIMALITY AND FINITE NONDEGENERACY5.1. Local CR geometry of complexified real analytic generic submanifolds.Let ζ ∈ C m and ξ ∈ C d <strong>de</strong>note some in<strong>de</strong>pen<strong>de</strong>nt coordinates correspongingto the complexification of the variab<strong>les</strong> ¯z and ¯w, which we <strong>de</strong>notesymbolically by ζ := (¯z) c and ξ := ( ¯w) c , where the letter “c” stands for theword “complexified”. We also write τ := (¯t) c , so τ = (ζ, ξ) ∈ C n . Theextrinsic complexification M := (M) c of M is the complex submanifold ofcodimension d <strong>de</strong>fined by(5.1) M := {(z, w, ζ, ξ) ∈ ∆ n (ρ 1 ) × ∆ n (ρ 1 ) : ξ = Θ(ζ, z, w)}.If M is (real, Nash) algebraic, so is M . As remarked, we can choose theequivalent <strong>de</strong>fining equation w = Θ(z, ζ, ξ) for M . In the remain<strong>de</strong>r of §5,we shall essentially <strong>de</strong>al with M instead of M. In fact, M clearly imbedsin M as the intersection of M with the antiholomorphic diagonal Λ :={(t, τ) ∈ C n × C n : τ = ¯t}.Following [Me1998], [Me2001], we shall complexify a conjugatepair of generating families of CR vector fields tangent to M, namelyL 1 , . . ., L m of type (1, 0) and their conjugates L 1 , . . .,L m whichare of type (0, 1). Here, we can explicitely choose the generatorsL k = ∂/∂z k + ∑ dj=1 [∂Θ j/∂z k (z, ¯z, ¯w)] ∂/∂w j for k = 1, . . .,m. Thentheir complexification yields a pair of collections of m vector fields <strong>de</strong>fined


120over ∆ n (ρ 1 ) × ∆ n (ρ 1 ) by⎧L k := ∂ +⎪⎨ ∂z k(5.2)⎪⎩ L k := ∂ +∂ζ kd∑j=1d∑j=1∂Θ j∂z k(z, ζ, ξ)∂∂w j,∂Θ j∂ζ k(ζ, z, w) ∂∂ξ j,k = 1, . . .,m,k = 1, . . .,m.The rea<strong>de</strong>r may check directly that L k (w j − Θ j (z, ζ, ξ)) ≡ 0, whichshows that the vector fields L k are tangent to M . Similarly, L k (ξ j −Θ j (ζ, z, w)) ≡ 0, so the vector fields L k are also tangent to M . Furthemore,we may check the commutation relations [L k , L k ′] = 0 and[L k , L k ′] = 0 for all k, k ′ = 1, . . ., m. It follows from the Frobeniustheorem that the two m-dimensional distributions spanned by each of thesetwo collections of m vector fields has the integral manifold property. Thisis not <strong>sur</strong>prising since the vector fields L k are the vector fields tangent tothe intersection of M with the sets {τ = τ p = ct.}, which are clearly m-dimensional complex integral manifolds. Following [Me1998], [Me2001],we <strong>de</strong>note these manifolds by S τp := {(t, τ p ) : w = Θ(z, ζ p , ξ p )}, whereτ p is a constant, and we call them complexified Segre varieties. Similarly,the integral manifolds of the vector fields L k are the conjugate complexifiedSegre varieties S tp:= {(t p , τ) : ξ = Θ(ζ, z p , w p )}, where t p is fixed.The union of the manifolds S τp induces a local complex algebraic foliationF of M by m-dimensional leaves. Similarly, there is a second foliation Fwhose leaves are the S tp.The following symbolic picture summarizes our constructions. However,we warn the rea<strong>de</strong>r that the codimension d ≥ 1 of the union of the twofoliations F and F in M is not visible in this two-dimensional figure.Mτ pL0F{t = t p}S tpS τpFLt pΛ{τ = τ p}tThe complexification of a real analyticCR-generic manifold M carries twocomplex foliations F L and F L directedby the complefixied CR-vector fields L and Lwhose leaves coinci<strong>de</strong> with the complexifiedSegre varieties S τp and S tp .These leaves also coinci<strong>de</strong> with the intersectionof M with the horizontal slices {τ = τ p}and with the vertical slices {t = t p}.FIGURE 4: GEOMETRY OF THE COMPLEXIFICATION MNow, we introduce the “multiple” flows of the two collections of conjugatevector fields (L k ) 1≤k≤m and (L k ) 1≤k≤m . For an arbitrary point


p = (w p , z p , ζ p , ξ p ) ∈ M and for an arbitrary complex “multitime” parameterz 1 = (z 1,1 , . . .,z 1,m ) ∈ C m , we <strong>de</strong>fine(5.3) {Lz1 (z p , w p , ζ p , ξ p ) := exp(z 1 L )(p) := exp(z 1,1 L 1 (· · ·(exp(z 1,m L m (p))) · · ·)) :=:= (z p + z 1 , Θ(z p + z 1 , ζ p , ξ p ), ζ p , ξ p ).With this formal <strong>de</strong>finition, there exists a maximal connected open subset Ωof M × C m containing M × {0} such that L z1 (p) ∈ M for all (z 1 , p) ∈ Ω.Analogously, for (ζ 1 , p) running in a similar open subset Ω, we may also<strong>de</strong>fine the map(5.4) L ζ1(z p , w p , ζ p , ξ p ) := (z p , w p , ζ p + ζ 1 , Θ(ζ p + ζ 1 , z p , w p )).We notice that the two maps given by (5.3) and (5.4) are holomorphic in theirvariab<strong>les</strong>. Since M is real algebraic, they are moreover complex algebraic.5.2. Segre chains. Let us start from the point p being the origin and let usmove alternately in the direction of S or of S , namely we consi<strong>de</strong>r the twomaps Γ 1 (z 1 ) := L z1 (0) and Γ 1 (z 1 ) := L z1(0). Next, we start from theseendpoints and we move in the other direction, namely, we consi<strong>de</strong>r the twomaps(5.5) Γ 2 (z 1 , z 2 ) := L z2(L z1 (0)), Γ 2 (z 1 , z 2 ) := L z2 (L z1(0)),where z 1 , z 2 ∈ C m . Also, we <strong>de</strong>fine Γ 3 (z 1 , z 2 , z 3 ) := L z3 (L z2(L z1 (0))),etc. By induction, for every positive integer k, we obtain two mapsΓ k (z 1 , . . .,z k ) and Γ k (z 1 , . . ., z k ). In the sequel, we shall often use the notationz (k) := (z 1 , . . .,z k ) ∈ C mk . Since Γ k (0) = Γ k (0) = 0, for everyk ∈ N ∗ , there exists a sufficiently small open polydisc ∆ mk (δ k ) centered atthe origin in C mk with δ k > 0 such that Γ k (z (k) ) and Γ k (z (k) ) belong to Mfor all z (k) ∈ ∆ mk (δ k ).We also exhibit a simple link between the maps Γ k and Γ k . Let σ bethe antiholomorphic involution <strong>de</strong>fined by σ(t, τ) := (¯τ, ¯t). Since w =Θ(z, ζ, ξ) if and only if ξ = Θ(ζ, z, w), this involution maps M onto Mand it also fixes the antidiagonal Λ pointwise. Using the <strong>de</strong>finitions (5.3)and (5.4), we see readily that σ(L z1 (0)) = L ¯z1 (0). It follows generally thatσ(Γ k (z (k) )) = Γ k (z (k) ).Next, we observe that Γ k+1 (z (k) , 0) = Γ k (z (k) ), since L 0 and L 0 coinci<strong>de</strong>with the i<strong>de</strong>ntity map. So the ranks at the origin of the maps Γ k increase withk.Definition 5.1. The real analytic generic manifold M is said to be minimalat p if the maps Γ k are of (maximal possible) rank equal to 2m + d =dim C M at the origin in ∆ mk (δ k ) for all k large enough.The following fundamental properties are established in [Me1998],[Me2001].121


122Theorem 5.2. The minimality of M at 0 is a biholomorphically invariantproperty. It <strong>de</strong>pends neither on the choice of a <strong>de</strong>fining equation for Mnor on the choice of a system of generating complexified CR vector fields(L k ) 1≤k≤m and (L k ) 1≤k≤m . Also, minimality is equivalent to the fact thatthe <strong>Lie</strong> algebra generated by the complexified CR vector fields (L k ) 1≤k≤mand (L k ) 1≤k≤m spans TM in a neighborhood of 0. Furthermore, thereexists an invariant integer ν 0 , called the Segre type of M at 0 satisfyingν 0 ≤ d + 1 which is the smal<strong>les</strong>t integer such that the mappings Γ k and Γ kare of generic rank equal to 2m+d over ∆ mk (δ k ) for all k ≥ ν 0 +1. Finally,with this integer ν 0 , the odd integer µ 0 := 2ν 0 + 1, called the Segre type Mat 0 is the smal<strong>les</strong>t integer such that the mappings Γ k and Γ k are of rankequal to 2m + d at the origin in ∆ mk (δ k ).Let µ 0 := 2ν 0 + 1 be the Segre type of M at 0 (notice that this is alwaysodd). In the remain<strong>de</strong>r of this section, we assume that M is minimal at 0 andwe exploit the rank condition on Γ k . More precisely we choose a positive ηwith 0 < η ≤ δ µ0 such that Γ µ0 has rank 2m+d at every point of the polydisc∆ mµ0 (η). Without loss of generality, we can also assume that Γ µ0 (∆ mµ0 (η))contains M ∩ (∆ n (ρ 4 ) × ∆ n (ρ 4 )). Simple examp<strong>les</strong> in the hyper<strong>sur</strong>facecase show that ρ 4


Finite non<strong>de</strong>generacy is interesting for the following reason. In the sequel,we shall have to consi<strong>de</strong>r an infinite collection of equations of the form(5.7) Θ j,β (t) + ∑γ∈N m ∗γ (β + γ)!(ζ) Θ j,β+γ (t) = ω j,β ,β! γ!where N m ∗ := N m \{0}, where j runs from 1 to d, where β runs in N mand where the right hand si<strong>de</strong>s ω j,β are in<strong>de</strong>pen<strong>de</strong>nt complex variab<strong>les</strong>. Forβ = 0, the equations (5.7) write simply Θ j (ζ, t) = ω j,0 . By <strong>de</strong>finition,if M is l 0 -non<strong>de</strong>generate at 0, there exists n integers j∗, 1 . . .,j∗n with 1 ≤j∗ i ≤ d and n multi-indices β1 ∗ , . . ., βn ∗ ∈ N m with |β∗ i| ≤ l 0 such thatthe local holomorphic self-mapping t ↦→ (Θ j k ∗ ,β (t)) ∗ k 1≤k≤n of C n is of rankn at the origin. Consi<strong>de</strong>ring the equations (5.7) for j = j∗ 1, . . .,jn ∗ andβ = β∗, 1 . . ., β∗ n and applying the implicit function theorem, we observe thatwe can solve t in terms of (ζ, ω j 1 ∗ ,β∗ 1, . . ., ω j∗ n ,β∗ n ) by means of a holomorphicmapping, namely(5.8) t = Ψ(τ, ω j 1 ∗ ,β 1 ∗ , . . .,ω j n ∗ ,βn ∗ ).Without loss of generality, we may assume that Ψ is holomorphic for |ζ|


124now differentiate (6.2) by applying the vector fields L 1 , . . .,L m , whichgivesm∑ ∂Θ j(6.3) L k ḡ j (τ) = (∂ζ ¯f(τ), h(t)) L k ¯fl (τ),ll=1for k = 1, . . ., m and j = 1, . . .,d. For fixed j, we consi<strong>de</strong>r the m equations(6.3) as an affine system satisfied by the partial <strong>de</strong>rivatives ∂Θ j /∂ζ l .By Cramer’s rule, there exists universal polynomials Ω j,k in their variab<strong>les</strong>such that(6.4)∂Θ j∂ζ k( ¯f(τ), h(t)) = Ω j,k({L l ¯h(τ)}1≤l≤m )<strong>de</strong>t (L k ¯fl (τ)) 1≤k,l≤nfor all (t, τ) ∈ M with |t|, |τ| < ρ 2 and for k = 1, . . ., m, j = 1, . . .,d.Applying the <strong>de</strong>rivations L k to (6.4) we see by induction that for everymulti-in<strong>de</strong>x β ∈ N m ∗ and for every j = 1, . . .,d, there exists a universalpolynomial Ω j,β in its variab<strong>les</strong> such that(6.5)1 ∂ |β| Θ jβ! ∂ζ ( ¯f(τ), h(t)) = Ω j,β({L γ ¯h(τ)}|γ|≤|β| )β [<strong>de</strong>t (L k ¯fl (τ)) 1≤k,l≤n ] 2|β|−1,for all (t, τ) ∈ M with |t|, |τ| < ρ 2 . Here, for γ = (γ 1 , . . .,γ m ) ∈ N m ,we <strong>de</strong>note by L γ the <strong>de</strong>rivation (L 1 ) γ 1. . .(L m ) γm . Next, <strong>de</strong>noting byω j,β (t, τ) the right hand si<strong>de</strong> of (6.5) and <strong>de</strong>veloping the left hand si<strong>de</strong> inpower series using (5.7), we may write(6.6) Θ j,β (h(t)) + ∑( ¯f(τ)) γ Θ j,β+γ (h(t)) = ω j,β (t, τ).(6.7)h(t) = Ψ⎪⎨⎪⎩γ∈N m ∗Recall that M is l 0 -non<strong>de</strong>generate at 0. Using (5.8), we can solve h(t) interms of the <strong>de</strong>rivatives of ¯h(τ), namely⎧ (¯f(τ),Ω j 1 ∗ ,β 1 ∗ ({L γ ¯h(τ)}|γ|≤|β 1 ∗ |)[<strong>de</strong>t (L k ¯fl (τ)) 1≤k,l≤n ] 2|β1 ∗ |−1, . . .. . .,Ω j n ∗ ,β n ∗ ({L γ ¯h(τ)}|γ|≤|β n ∗ |)[<strong>de</strong>t (L k ¯fl (τ)) 1≤k,l≤n ] 2|βn ∗ |−1= Ψ( ¯f(τ), ω j 1 ∗ ,β∗ 1(t, τ), . . .,ω j∗ n (t, τ)). ,βn ∗)=Here, the maximal length of the multi-indices β 1 ∗ , . . .,βn ∗ is equal to l 0. Accordingto (5.8), the representation (6.7) of h(t) holds provi<strong>de</strong>d |ḡ(τ)| < ˜ρ 3and |ω j i ∗ ,β i ∗ | < ˜ρ 3. Since the coordinates are normal, we have Θ j (¯z, 0, 0) ≡0, or equivalently Θ j,β (0) = 0 for all j = 1, . . .,d and all β ∈ N m . It followsfrom (6.6) and from h(0) = 0 that ω j,β (0) = 0, for all j = 1, . . .,d and allβ ∈ N m . Consequently, there exists a radius ρ 3 ∼ ˜ρ 3 with 0 < ρ 3 < ρ 2 < ρ 1


such that |ω j i ∗ ,β∗ i(t, τ)| < ˜ρ 3, i = 1, . . .,n and such that |ḡ(τ)| < ˜ρ 3 for allh ∈ H ρ 2,ρ 1M,κ 0 ,ε and for all (t, τ) ∈ M with |t|, |τ| < ρ 3.In conclusion, the relation (6.7) holds for all h ∈ H ρ 2,ρ 1M,κ 0 ,εand for all(t, τ) ∈ M with |t|, |τ| < ρ 3 .Next, using the explicit expressions of the vector fields L k given in (5.2),we may <strong>de</strong>velop the higher or<strong>de</strong>r <strong>de</strong>rivatives L γ¯h(τ) as polynomials in the|γ|-jet (∂τ γ′ ¯h(τ)) |γ ′ |≤|γ| of ¯h(τ) with coefficients being certain holomorphicfunctions of (t, τ) obtained as certain polynomials with respect to the partial<strong>de</strong>rivatives of the functions Θ j (ζ, t).To be more explicit in this <strong>de</strong>sired new representation of (6.7), we remindfirst our jet notation. For each i = 1, . . .,n and each α ∈ N n , we introduceda new in<strong>de</strong>pen<strong>de</strong>nt coordinate Jiα corresponding to the partial <strong>de</strong>rivative∂τ α¯h i (τ) (or ∂t αh i(t)). The space of k-jets of holomorphic mappings ¯h(τ) isthen the complex space C n(n+k)! n! k! with coordinates (Ji α) 1≤i≤n, |α|≤k. It will beconvenient to use the abbreviations J k := (Ji α) 1≤i≤n, |α|≤k and J k¯h(τ) :=(∂τ α¯h i (τ)) 1≤i≤n, |α|≤k .So pursuing with (6.7), we argue that for every γ ∈ N m , there existsa polynomial in the jet J |γ|¯h(τ) with holomorphic cooeficients <strong>de</strong>pendingonly on Θ such that(6.8) L γ ¯h(τ) ≡ Pγ (t, τ, J |γ|¯h(τ)).Putting all these expressions in (6.7), we obtain an important relation betweenh and the l 0 -jet of ¯h which we may now summarize. At first, asκ 0 = l 0 (µ 0 + 1) ≥ l 0 , observe that for every h ∈ H ρ 2,ρ 1M,κ 0 ,ε, we have||J l 0h − J l 0Id || ρ 2≤ ||J κ 0h − J κ 0Id || ρ 2≤ ε. Shrinking ε if necessary, wehave proved the following lemma.Lemma 6.1. There exists a complex algebraic C n -valued mappingΠ(t, τ, J l 0) <strong>de</strong>fined for |t|, |τ| < ρ 3 and for |J l 0− J l 0Id| < ε which <strong>de</strong>pendsonly on the <strong>de</strong>fining functions ξ j − Θ j (ζ, t) of M , such that for everylocal holomorphic self-mapping h ∈ H ρ 2,ρ 1M,κ 0 ,εof M (hence satisfying||J l 0h − J l 0Id || ρ 2< ε), the relation(6.9) h(t) = Π(t, τ, J l 0¯h(τ))holds for all (t, τ) ∈ M with |t|, |τ| < ρ 3 .6.2. Reflection i<strong>de</strong>ntity for arbitrary jets. Let now Υ j and Υ j be the vectorfields tangent to M <strong>de</strong>fined by(6.10)Υ j := ∂∂w j+d∑l=1Θ l,wj (ζ, t) ∂∂ξ l,Υ j := ∂∂ξ j+d∑l=1Θ l,ξj (z, τ) ∂∂w l,125


126for j = 1, . . ., d. We observe that the collection of 2m + d vector fieldsL k , L k , Υ j span TM . The same holds for the collection L k , L k , Υ j . Wealso have the commutation relations [Υ j , L k ] = 0 and [Υ j , L k ] = 0. Weobserve that Υ γ h(t) = ∂wh(t) γ for all γ ∈ N d . Let α = (β, γ) ∈ N m × N d .By expanding L β Υ γ h(t) using the explicit expressions (5.2), we obtaina polynomial Q β,γ (t, τ, (∂t α′ h(t)) |α ′ |≤|α|), where Q β,γ is a polynomial in itslast variab<strong>les</strong> with coefficients <strong>de</strong>pending on Θ and its partial <strong>de</strong>rivatives.Conversely, since L k | 0 = ∂ zk at the origin, we can invert these formulas, sothere exist polynomials P α in their last variab<strong>les</strong> with coefficients <strong>de</strong>pendingonly on Θ such that(6.11) ∂ α t h(t) = P α (t, τ, (L β′ Υ γ′ h(t)) |β ′ |≤|β|, |γ ′ |≤|γ|).Lemma 6.2. For every l ∈ N, there exists a complex algebraic mappingΠ l with values in C N n,l <strong>de</strong>fined for |t|, |τ| < ρ3 and |J l 0− J l 0Id | < ε whichis relatively polynomial with respect to the higher or<strong>de</strong>r jets Ji α with |α| ≥l 0 + 1, i = 1, . . ., n, such that for every local holomorphic self-mappingh ∈ H ρ 2,ρ 1M,κ 0 ,ε, the two conjugate relations(6.12){J l h(t) = Π l (t, τ, J l 0+l¯h(τ)),J l¯h(τ) = Πl (τ, t, J l 0+l h(t)).hold for all (t, τ) ∈ M with |t|, |τ| < ρ 3 .Proof. Applying the <strong>de</strong>rivations L β Υ γ to (6.9), and using the chain rule,we obtain(6.13) L β Υ γ h(t) = Π β,γ (t, τ, J l 0+|β|+|γ|¯h(τ)),where the function Π β,γ (as the function Π) is holomorphic for |t|, |τ| < ρ 3and |J l 0−J l 0Id | < ε and relatively polynomial with respect to the jets Jα i with|α| ≥ l 0 + 1. Applying (6.11), we obtain the function Π l , which completesthe proof.6.3. Substitutions of reflection i<strong>de</strong>ntities. Let π t (t, τ) := t and π τ (t, τ) :=τ <strong>de</strong>note the two canonical projections. We write h c (t, τ) := (h(t), ¯h(τ)).We make the following slight abuse of notation: instead of rigorously writingh(π t (t, τ)), we write h(t, τ) = h(t) and ¯h(t, τ) = ¯h(τ).Let x ∈ C ν and let Q(x) = (Q 1 (x), . . .,Q 2n (x)) ∈ C{x} 2n . As themultiple flow of L given by (5.3) does not act on the (z, w) variab<strong>les</strong>, wehave the trivial but important property h(L z1(Q(x))) = h(Q(x)). Moregenerally, for every multi-in<strong>de</strong>x α ∈ N n , we have ∂ α t h(L z 1(Q(x))) =∂ α t h(Q(x)). Analogously, we have ∂α τ ¯h(L z1 (Q(x))) = ∂ α τ ¯h(Q(x)). Since


for k even, we have Γ k (z (k) ) = L zk(Γ k−1 (z (k−1) )), the following two propertieshold:127(6.14){J l h(Γ k (z (k) )) = J l h(Γ k−1 (z (k−1) )), if k is even;J l¯h(Γk (z (k) )) = J l¯h(Γk−1 (z (k−1) )),if k is odd.Let now κ 0 := l 0 (µ 0 + 1) be the product of the Levi type with the Segretype of M plus 1 and consi<strong>de</strong>r the open subset of the κ 0 -or<strong>de</strong>r jet spaceC Nn,κ 0 <strong>de</strong>fined by the inequality |Jκ 0− J κ 0Id | < ε. Let z (k) ∈ ∆ mk as in §5.6above. Since the maps Γ k are holomorphic and satisfy Γ k (0) = 0, we maychoose δ > 0 sufficiently small in or<strong>de</strong>r that the following two conditionsare satisfied for every k ≤ µ 0 and for and for every |z (k) | < δ:(6.15) |Γ k (z (k) )| < ρ 3 and |J κ 0h(Γ k (z (k) )) − J κ 0Id | < ε.This choice of δ is convenient to make several susbtitutions by means offormulas (6.12). The formulas (6.16) that we will obtain below stronglydiffer from the previous formulas (6.12), because they <strong>de</strong>pend on the jet ofh at the origin only.Lemma 6.3. Shrinking ε if necessary, for every integer k ≤ µ 0 + 1 andfor every integer l ≥ 0, there exists a complex algebraic mapping Π l,k withvalues in C N n,l <strong>de</strong>fined for |t|, |τ| < ρ3 and for |J kl 0− J kl 0Id| < ε, whichis relatively polynomial with respect to the higher or<strong>de</strong>r jets Ji α with |α| ≥kl 0 +1, i = 1, . . .,n, and which <strong>de</strong>pends only on the <strong>de</strong>fining functions ξ j −Θ j (ζ, t) of M , such that the following two families of conjugate i<strong>de</strong>ntitiesare satisfied(6.16){J l h(Γ k (z (k) )) = Π l,k (Γ k (z (k) ), J kl 0+l¯h(0)), if k is odd;J l¯h(Γk (z (k) )) = Π l,k (Γ k (z (k) ), J kl 0+l¯h(0)),if k is even.Proof. For k = 1, replacing (t, τ) by Γ 1 (z (1) ) in the first relation (6.12) andusing the second property (6.14), we get(6.17){J l h(Γ 1 (z (1) )) = Π l (Γ 1 (z (1) ), J l 0+l¯h(Γ1 (z (1) ))) == Π l (Γ 1 (z (1) ), J l 0+l¯h(0)),so the lemma holds true for k = 1 if we simply choose Π l,1 := Π l . Byinduction, suppose that the lemma holds true for k ≤ µ 0 . To fix the i<strong>de</strong>as,let us assume that this k is even (the odd case is completely similar). Thenreplacing the arguments (t, τ) in the first relation (6.12) by Γ k+1 (z (k+1) ),using again the second property (6.14), and using the induction assumption,namely using the conjugate of the second relation (6.16) with l replaced by


128l 0 + l, we get(6.18) ⎧J l h(Γ k+1 (z (k+1) )) = Π l (Γ k+1 (z (k+1) ), J l 0+l¯h(Γk+1 (z (k+1) ))) =⎪⎨= Π l (Γ k+1 (z (k+1) ), J l 0+l¯h(Γk (z (k) ))) =⎪⎩= Π l (Γ k+1 (z (k+1) ), Π l0 +l,k(Γ k (z (k) ), J kl 0+l 0 +l¯h(0))) =:=: Π l,k+1 (Γ k+1 (z (k+1) ), J (k+1)l 0+l¯h(0)),which yields the <strong>de</strong>sired formula at level k+1. For the above formal compositionformulas to be correct, we possibly have to shrink ε. Finally, a directinspection of relative polynomialness shows that Π l,k+1 is polynomial withrespect to the jet variab<strong>les</strong> J α i with |α| ≥ (k + 1)l 0 + 1, i = 1, . . .,n. Theproof of Lemma 6.21 is complete.6.4. Algebraic parameterization of CR mappings by their jet at the origin.Finally, as in the paragraph after Theorem 5.2, we choose ρ 4 > 0 sufficientlysmall such that Γ µ0 maps the polydisc ∆ mµ0 (η) submersively ontoan open neighborhood of the origin in M which contains the open subsetM ∩ (∆ n (ρ 4 ) × ∆ n (ρ 4 )). From the relation Γ µ0 +1(z (µ0 ), 0) ≡ Γ µ0 (z (µ0 )),it follows trivially that Γ µ0 +1 also induces a submersion from ∆ m(µ0 +1)(η)onto M ∩(∆ n (ρ 4 )×∆ n (ρ 4 )). It follows that the composition π t ◦Γ µ0 +1 alsomaps submersively the polydisc ∆ m(µ0 +1)(η) onto an open neighborhood ofthe origin in C n which contains ∆ n (ρ 4 ). Consequently, in the representationobtained in Lemma 6.21 with l = 0 and k := µ 0 + 1 = 2ν 0 + 2 (which iseven), namely in the representation(6.19) ¯h(Γµ0 +1(z (µ0 +1))) = Π 0,µ0 +1(Γ µ0 +1(z (µ0 +1)), J (µ 0+1)l 0¯h(0)),we can write an arbitrary t ∈ ∆ n (ρ 4 ) in the form Γ µ0 +1(z (µ0 +1)), and finally,conjugating (6.19), we obtain a complex algebraic mapping H withthe property that h(t) = H(t, J (µ 0+1)l 0h(0)). We may now summarize whatwe have proved so far.Theorem 6.4. Let M be a real algebraic generic submanifold in C n passingthrough the origin, of codimension d ≥ 1 and of CR dimension m = n−d ≥1. Assume that M is l 0 -non<strong>de</strong>generate at 0. Assume that M is minimal at0, let ν 0 be the Segre type of M at 0 and let µ 0 := 2ν 0 + 1 be the Segretype of M at 0. Let κ 0 := (µ 0 + 1)l 0 . Let t = (z, w) ∈ C m × C d beholomorphic coordinates vanishing at 0 with T 0 M = {Im w = 0} andlet ρ 1 > 0 be such that M is represented by the complex analytic <strong>de</strong>finingequations ξ j = Θ j (ζ, t), j = 1, . . ., d in ∆ n (ρ 1 ). Then there exist ε > 0,ρ 4 > 0 and there exists a complex algebraic C n -valued mapping H(t, J κ 0)<strong>de</strong>fined for |t| < ρ 4 and for |J κ 0− J κ 0Id | < ε which satisfies H(t, Jκ 0Id ) ≡ tand which <strong>de</strong>pends only on the <strong>de</strong>fining functions ¯w j − Θ j (¯z, t) of M , such


that for every local holomorphic self-mapping h of M belonging to H ρ 2,ρ 1M,κ 0 ,ε ,we have the representation formula(6.20) h(t) = H(t, J κ 0h(0)),for all t ∈ C n with |t| < ρ 4 . Furthermore the mapping H <strong>de</strong>pends neither onthe choice of smaller radii ˜ρ 1 ≤ ρ 1 , ˜ρ 2 ≤ ρ 2 , ˜ρ 3 ≤ ρ 3 and ˜ρ 4 ≤ ρ 4 satisfying0 < ˜ρ 4 < ˜ρ 3 < ˜ρ 2 < ˜ρ 1 nor on the choice of a smaller constant ˜ε < ε,so that the first sentence of property (3) in Theorem 4.1 holds true. Finally,if M is real analytic, the same statement holds with the word “algebraic”everywhere replaced by the word “analytic”.It remains now to construct the submanifold E whose existence is statedin Theorem 4.1 and to establish that H ρ 2,ρ 1M,κ 0 ,εmay be endowed with the structureof a local real algebraic <strong>Lie</strong> group.6.5. Local real algebraic <strong>Lie</strong> group structure. In or<strong>de</strong>r to construct thissubmanifold E, we introduce the κ 0 -th jet mapping J κ 0: H ρ 2,ρ 1M,κ 0 ,ε →C Nn,κ 0 <strong>de</strong>fined by Jκ 0(h) := (∂t α h(0)) |α|≤κ0 = J κ 0h(0). The followinglemma is crucial.Lemma 6.5. Shrinking ε if necessary, the set(6.21) E := J κ 0(H ρ 2,ρ 1M,κ 0 ,ε ) = {Jκ 0h(0) : h ∈ H ρ 2,ρ 1M,κ 0 ,ε }is a real algebraic totally real submanifold of the polydisc {J κ 0∈ C Nn,κ 0 :|J κ 0− J κ 0Id | < ε}.Proof. Let h ∈ H ρ 2,ρ 1M,κ 0 ,ε. Substituting the representation formula h(t) =H(t, J κ 0h(0)) given by Theorem 6.4 in the <strong>de</strong>fining equations of M, we get(6.22) r j (H(t, J κ 0h(0)), H(τ, J κ 0¯h(0))) = 0,for j = 1, . . .,d and (t, τ) ∈ M with |t|, |τ| < ρ 4 . As (t, τ) ∈ M , wereplace ξ by Θ(ζ, t) and we use the 2m + d coordinates (t, ζ) on M . So, byexpanding the functions (6.22) in power series with respect to (t, ζ), we canwrite(6.23)∑r j (H(t, J κ 0), H(ζ, Θ(ζ, t), J κ 0 )) = t α ζ β C j,α,β (J κ 0, J κ 0 ).α∈N n , β∈N mHere, we obtain an infinite collection of complex-valued real algebraic functionsC j,α,β <strong>de</strong>fined in {|J κ 0− J κ 0Id| < ε} with the property that a mappingH(t, J κ 0) sends M ∩ ∆ n (ρ 4 ) into M if and only if(6.24) C j,α,β (J κ 0, J κ 0 ) = 0, ∀ j, α, β.Consequently, the set E <strong>de</strong>fined by the vanishing of all the equations (6.24)is a real algebraic subset.129


130It follows from the representation formula (6.20) that the mapping J κ 0is injective and from the Cauchy integral formula that J κ 0is continuouson its domain of <strong>de</strong>finition H ρ 2,ρ 1M,κ 0 ,εendowed with the topology of uniformconvergence on compact sets.On the reverse si<strong>de</strong>, let J κ 0∈ E. Then the mapping h(t) := H(t, J κ 0)<strong>de</strong>fined for |t| < ρ 4 maps M ∩ ∆ n (ρ 4 ) into M. Applying Theorem 6.4to this mapping h(t), with ρ 1 replaced by ρ 4 , we <strong>de</strong>duce that there existsa radius ρ 6 < ρ 4 such that we can represent h(t) = H(t, J κ 0h(0)) for|t| < ρ 6 , with the same mapping H, as stated in the end of Theorem 6.4.By differentiating this representation with respect to t at t = 0, we <strong>de</strong>ducethat J κ 0h(0) = ([∂t αH(t, Jκ 0h(0))] t=0 ) |α|≤κ0 . Consequently, sinceh(t) = H(t, J κ 0) by <strong>de</strong>finition, we get J κ 0= ([∂t αH(t, Jκ 0)] t=0 ) |α|≤κ0 . Inconclusion, we proved that J κ 0(H(t, J κ 0)) = J κ 0for every J κ 0∈ E, soJ κ 0has a continuous local inverse on E, formally <strong>de</strong>fined by H(t, J κ 0).It follows from the above two paragraphs that the mapping J κ 0is a localhomeomorphism from a neighborhood of the i<strong>de</strong>ntity in H ρ 2,ρ 1M,κ 0 ,εonto itsimage E.Furthermore, we claim that the real algebraic subset E is in fact geometricallysmooth at every point, namely it is a real algebraic submanifold.In<strong>de</strong>ed, let J κ 01 be a regular point of E where E is of maximal geometricaldimension c 0 , with J κ 01 arbitrarily close to the i<strong>de</strong>ntity jet J κ 0Id . Leth 1 ∈ H ρ 2,ρ 1M,κ 0 ,ε such that Jκ 01 = J κ 0(h 1 ). Let U 1 be a small neighborhoodof J κ 01 in C Nn,κ 0 in which E ∩ U1 is a regular c 0 -dimensional real algebraicsubmanifold and consi<strong>de</strong>r the complex algebraic mapping <strong>de</strong>fined over U 1by(6.25) F 1 (J κ 0) := ([∂ α t (h −11 (H(t, J κ 0)))] t=0 ) |α|≤κ0 ∈ C Nn,κ 0 .We have F 1 (J κ 01 ) = Jκ 0Id and the restriction of F 1 to E∩U 1 induces a homeomorphismonto its image, which is a neighborhood of J κ 0Idin E. We remindthat the mapping J κ 0→ ([∂t α (H(t, J κ 0))] t=0 ) |α|≤κ0 restricted to E ∩ U 1 isthe i<strong>de</strong>ntity and consequently of constant rank equal to c 0 . As h 1 is invertible,it follows from the chain rule by <strong>de</strong>veloping (6.25) that F 1 | E∩U1 is alsoof locally constant rank equal to c 0 . This proves that E is a c 0 -dimensionalreal algebraic submanifold in C Nn,κ 0 through Jκ 0Id. More generally, this reasoningshows that E is geometrically smooth at every point.Finally, applying Lemma 6.3 with the odd integer k = µ 0 = 2ν 0 + 1(instead of k = µ 0 + 1), we get a new, different representation formulah(t) = ˜H(t, J l 0µ 0¯h(0)) (notice ¯h(0)). Accordingly, we can <strong>de</strong>fine a realalgebraic submanifold Ẽ. It is clear that we can i<strong>de</strong>ntify E and Ẽ, since theyboth parametrize the local biholomorphic self-mappings of M, so they arealgebraically equivalent by means of the natural projection from the l 0 (µ 0 +1)-th jet space onto the l 0 µ 0 -th jet space. Next, we see by differentiating


h(t) = ˜H(t, J l 0µ 0¯h(0)) with respect to t that(6.26) J l 0µ 0h(0) = ([∂tα ˜H(t, J l 0µ 0¯h(0))]t=0 ) |α|≤l0 µ 0.Consequently, if K is the holomorphic map <strong>de</strong>fined by(6.27) K(J l 0µ 0) := ([∂ α t˜H(t, J l 0µ 0] t=0 ) |α|≤l0 µ 0),we get the equality J l 0µ 0= K(J l 0µ 0) for every Jl 0 µ 0∈ Ẽ, which provesthat Ẽ is totally real. It follows that E is totally real, which completes theproof.Lemma 6.6. The submanifold E is naturally equipped with a local realalgebraic <strong>Lie</strong> group structure in a neighborhood of J κ 0Id .Proof. In<strong>de</strong>ed, let us parametrize E by a real algebraic mapping(6.28) R c 0∋ (e 1 , . . .,e c0 ) ↦−→ j κ0 (e) ∈ C Nn,κ 0 ,where c 0 is the dimension of E. Here, to avoid excessive formal complexity,we shall avoid to mention all the polydiscs of variation of the variab<strong>les</strong>. Fore ∈ E, we shall use the notation(6.29) H(t; e) := H(t, j κ0 (e)).Let e ∈ E and e ′ ∈ E, set J κ 0:= j κ0 (e) and ′ J κ 0:= j κ0 (e ′ ). Then we can<strong>de</strong>fine the <strong>Lie</strong> group multiplication µ J by(6.30) µ J ( ′ J κ 0, J κ 0) := ([∂ α t (H(H(t, Jκ 0), ′ J κ 0))] t=0 ) |α|≤κ0 .Accordingly, in terms of the coordinates (e 1 , . . .,e c0 ) on E, the <strong>Lie</strong> groupmultiplication µ is <strong>de</strong>fined by(6.31) µ(e, e ′ ) := (j κ0 ) −1 (µ J (j κ0 (e ′ ), j κ0 (e))) ∈ R c 0It follows from the algebraicity of the mappings H and j κ0 that the mappingsµ J and µ are algebraic.We must check the associativity of µ, namely µ(µ(e, e ′ ), e ′′ ) =µ(e, µ(e ′ , e ′′ )). So we set h(t) := H(t, j κ0 (e)), h ′ (t) := H(t, j κ0 (e ′ ))and h ′′ (t) := H(t, j κ0 (e ′′ )). By the <strong>de</strong>finition (6.30), we haveµ J (j κ0 (e), j κ0 (e ′ )) = J κ 0(h ◦ h ′ )(0). Applying then Theorem 6.4, weget H(t, J κ 0(h ◦ h ′ )(0)) ≡ (h ◦ h ′ )(t). Consequently, using again (6.30)and the associativity of the composition of mappings, we may compute(6.32) ⎧µ J (µ J (j κ0 (e), j κ0 (e ′ )), j κ0 (e ′′ )) = µ J (J κ 0((h ◦ h ′ )(0), j κ0 (e ′′ ))⎪⎨⎪⎩= J κ 0((h ◦ h ′ ) ◦ h ′′ )(0)= J κ 0(h ◦ (h ′ ◦ h ′′ ))(0)= µ J (j κ0 (e), J κ 0(h ′ ◦ h ′′ )(0))= µ J (j κ0 (e), µ J (j κ0 (e), j κ0 (e ′ ))),131


132which proves the associativity.Finally, we may <strong>de</strong>fine an algebraic inversion mapping ι as follows.First of all, for J κ 0close to J κ 0Id , the mapping h(t) := H(t, Jκ 0) =t + ∑ α∈Nt α H n α (J κ 0) is an invertible algebraic biholomorphic mapping.Here, the coefficients H α (J κ 0) are algebraic functions of J κ 0which vanishat J κ 0Id (since H(t, Jκ 0Id) ≡ t in Theorem 6.4). From the algebraic implicitfunction theorem, it follows that the local inverse h −1 (t) writes uniquely inthe form h −1 (t) = t+ ∑ α∈Nt α ˜Hα (J κ 0) =: ˜H(t, J κ 0), where the ˜H n α (J κ 0)are algebraic functions of J κ 0also satisfying ˜H α (J κ 0Id) = 0. Consequently,choosing e ∈ E such that J κ 0= j κ0 (e), we can <strong>de</strong>fine(6.33) ι J (J κ 0) := ([∂ α t˜H(t, J κ 0)] t=0 ) |α|≤κ0 .Accordingly, in terms of the coordinates (e 1 , . . .,e c0 ) on E, the <strong>Lie</strong> groupinverse mapping is <strong>de</strong>fined by(6.34) ι(e) := (j κ 0) −1 (i J (j κ0 (e))).Of course, with this <strong>de</strong>finition we have ι J (J κ 0Id ) = Jκ 0Id. Finally, we leave tothe rea<strong>de</strong>r to verify that µ J (j κ0 (e), i J (j κ0 (e))) = J κ 0Id. This completes theproof of property (4) of Theorem 4.1.End of proof of Theorem 4.1. We notice that statement (5) does not needto be proved. Furthermore that the dimensional inequality c 0 ≤ (n+κ 0)!n! κ 0in!(6) follows from the fact each local biholomorphic mapping in the local<strong>Lie</strong> group H ρ 2,ρ 1M,κ 0 ,ε ∼ = E writes uniquely as h(t) = H(t, J κ 0h(0)), so thecomplex dimension of the local <strong>Lie</strong> group E is ≤ (n+κ 0)!n! κ 0 !, the dimensionof the κ 0 -th jet space. As E is totally real, the real dimension of E is also≤ (n+κ 0)!n! κ 0 !. Finally, it follows that the real local <strong>Lie</strong> algebra of vector fieldsHol(M, ∆ n (ρ 5 )) is of dimension ≤ (n+κ 0)!n! κ 0 !. The proof of Theorem 4.1 iscomplete.§7. DESCRIPTION OF EXPLICIT FAMILIES OF STRONG TUBES IN C n7.1. Introduction. Theorems 1.1, 1.4 and 1.5 provi<strong>de</strong> sufficient conditionsfor some real analytic real submanifold in C n to be not locally algebraizable.For the sake of completeness, we exhibit explicit examp<strong>les</strong> of such nonalgebraizab<strong>les</strong>ubmanifolds which are effectively strong tubes and effectivelynonalgebraizable, proving corollaries 1.2, 1.3, 1.6 and 1.7. Consequently wewill <strong>de</strong>al with the two following families of nonalgebraizable real analyticLevi non<strong>de</strong>generate hyper<strong>sur</strong>faces in C n (n ≥ 2) : the Levi non<strong>de</strong>generatestrong tube hyper<strong>sur</strong>faces in C n and the strongly rigid hyper<strong>sur</strong>faces in C n .For heuristic reasons, we shall sometimes start with the case n = 2 and treatthe general case n ≥ 2 afterwards. In fact, our goal will be to construct


infinite families of pairwise non biholomorphically equivalent and non locallyalgebraizable hyper<strong>sur</strong>faces. Our computations for the construction offamilies of manifolds with a control on the structure of their automorphismgroup are all based on the <strong>Lie</strong> theory of symmetries of differential equations.For the convenience of the rea<strong>de</strong>r, we recall briefly the procedure (see[Su2001a,b], [GM2001a,b,c] for more <strong>de</strong>tails).7.2. Hyper<strong>sur</strong>faces and differential equations. Let M be a real analytichyper<strong>sur</strong>face in C n . Assume that M is Levi non<strong>de</strong>generate at one of itspoints p. Then there exist some local holomorphic coordinates (z, w) =(z, u + iv) ∈ C n−1 × C vanishing at p such that M is given by the realanalytic equation(7.1) v = ϕ(z, ¯z, u) = ε 1 |z 1 | 2 + · · · + ε n−1 |z n−1 | 2 + ψ(z, ¯z, u),where ε k = ±1, k = 1, . . ., n − 1 and where ψ = O(3). Passing to theextrinsic complexification M of M, we may consi<strong>de</strong>r the variab<strong>les</strong> ¯z and¯w as in<strong>de</strong>pen<strong>de</strong>nt complex parameters ζ ∈ C n−1 and ξ ∈ C. Then theassociated complex <strong>de</strong>fining equation is of the form(7.2) w = Θ(z, ζ, ξ) = ξ + 2i(ε 1 z 1 ζ 1 + · · · + ε n−1 z n−1 ζ n−1 + Ξ(z, ζ, ξ)),where Ξ = O(3). By [Me1998] (cf. §5.1 above), for τ p = (ζ p , ξ p ) fixed, thefamily of complexified Segre varieties S τp := {(t, τ p ) : w = Θ(z, τ p )} isinvariantly and biholomorphically attached to M.Following [Se1931] and [Su2001a,b], we may consi<strong>de</strong>r this family as afamily of graphs of the solutions of a second or<strong>de</strong>r completely integrab<strong>les</strong>ystem of partial differential equations as follows. By differentiating the leftand the right hand si<strong>de</strong>s of (7.2) with respect to z k , we get(7.3) ∂ zk w = ∂ zk Θ(z, τ) = 2i(ε k ζ k + ∂ zk Ξ(z, τ)),for k = 1, . . .,n − 1. Here, we consi<strong>de</strong>r w as a function of z. Usingthe analytic implicit function theorem to solve τ in the 1 + (n − 1) = nequations (7.2) and (7.3), we may express τ in terms of w, of z and of thefirst or<strong>de</strong>r <strong>de</strong>rivative w zl , which yields(7.4) τ = Π(z, w, (∂ zl w) 1≤l≤n−1 ),where Π is holomorphic in its variab<strong>les</strong>. If we take the second <strong>de</strong>rivativew zk1 z k2of w and replace the value of τ, we get the <strong>de</strong>sired system of partialdifferential equations:(7.5)∂ 2 z k1 z k2w = ∂ 2 z k1 z k2Θ(z, τ) = ∂ 2 z k1 z k2Θ(z, Π(z, w, (∂ zl w) 1≤l≤n−1 )) =:=: F k1 ,k 2(z, w, (∂ zl w) 1≤l≤n−1 ).133


134Here, k 1 , k 2 = 1, . . .,n − 1 and the F k1 ,k 2≡ F k2 ,k 1are holomorphic intheir variab<strong>les</strong>. We <strong>de</strong>note by E M this system of partial differential equations(here, to construct E M , we have used the Levi non<strong>de</strong>generacy of M butwe note that if M were finitely non<strong>de</strong>generate the same conclusion wouldbe true, by consi<strong>de</strong>ring some <strong>de</strong>rivatives of w of larger or<strong>de</strong>r). Since the solutionsof E M are precisely the complexified Segre varieties S τ , the systemE M is completely integrable.To study the local geometry of M, we may consi<strong>de</strong>r on one hand thereal <strong>Lie</strong> algebra of infinitesimal CR automorphisms of M (cf. §2.2), namelyAut CR (M) = 2 ReHol(M). On the other hand, following the general i<strong>de</strong>asof <strong>Lie</strong> (cf. the mo<strong>de</strong>rn restitution by Olver in [Ol1986, Ch 2]), we may consi<strong>de</strong>rthe <strong>Lie</strong> algebra of infinitesimal generators of the local symmetry groupof the system of partial differential equations E M , which we shall <strong>de</strong>note bySym(E M ). By <strong>de</strong>finition, Sym(E M ) consists of holomorphic vector fieldsin the (z, w)-space whose local flow transforms the graph of every solutionof E M (namely a complexified Segre variety) into the graph of another solutionof E M (namely into another complexified Segre variety). The linkbetween Aut CR (M) and Sym(E M ) is as follows: by [Ca1932, p. 30–32],one can prove that Aut CR (M) is a maximally real subspace of Sym(E M )(see also [Su2001a,b], [GM2001a,b,c]).The computation of explicit generators of Sym(E M ) may be performedusing the <strong>Lie</strong> theory of symmetries of differential equations. By inspectingsome examp<strong>les</strong>, it appears that <strong>de</strong>aling with Sym(E M ) generally shortensthe complexity of the computation of Aut CR (M) by at least one half.The <strong>Lie</strong> procedure to compute Sym(E M ) is as follows. Let Jn−1,1 2 (C)<strong>de</strong>note the space of second or<strong>de</strong>r jets of a function w(z 1 , . . ., z n−1 )of (n − 1) complex variab<strong>les</strong>, equipped with in<strong>de</strong>pen<strong>de</strong>nt coordinates(z, w, Wl 1,W k 2 1 ,k 2) corresponding to (z, w, w zl , w zk1 z k2), wherel = 1, . . .,n − 1, where k 1 , k 2 = 1, . . ., n − 1, and where we of coursei<strong>de</strong>ntify Wk 2 1 ,k 2with Wk 2 2 ,k 1. To the system E M , we associate the complexsubmanifold of Jn−1,1(C) 2 <strong>de</strong>fined by replacing the <strong>de</strong>rivatives of w by thein<strong>de</strong>pen<strong>de</strong>nt jet variab<strong>les</strong> in the system E M , which yields (cf. (7.5)):(7.6) W 2 k 1 ,k 2= F k1 ,k 2(z, w, (W 1l ) 1≤l≤n−1 ),for k 1 , k 2 = 1, . . .,n −1. Let ∆ M <strong>de</strong>note this submanifold. By <strong>Lie</strong>’s theory,every vector field X = ∑ n−1k=1 Qk (z, w) ∂ zk +R(z, w) ∂ w <strong>de</strong>fined in a neighborhoodof the origin in C n can be uniquely lifted to a vector field X (2) inJn−1,1 2 (C), which is called the second prolongation of X (by <strong>de</strong>finition, thelift X (2) shows how the flow of X transforms second or<strong>de</strong>r jets of graphs of


functions w(z)). The coefficients R 1 l and R 2 k 1 ,k 2of the second prolongation135(7.7) X (2) =∑n−1k=1Q k∂+R ∂n−1∂z k ∂w + ∑l=1R 1 l∂∂W 1l+∑n−1k 1 ,k 2 =1R 2 k 1 ,k 2∂∂W 2 k 1 ,k 2,are completely <strong>de</strong>termined by the following universal formulas(cf. [Ol1986], [Su2001a,b], [GM2001a]):(7.8) ⎧⎪⎨⎪⎩R 1 l = ∂ zl R + ∑ m 1[δ m 1l∂ w R − ∂ zl Q m 1] W 1 m 1+ ∑[−δ m 1l∂ w Q m 2] Wm 1 1Wm 1 2.m 1 ,m 2]R 2 k 1 ,k 2= ∂ 2 z k1 z k2R + ∑ m 1[δ m 1k 1∂ 2 z k2 w R + δm 1k 2∂ 2 z k1 w R − ∂2 z k1 z k2Q m 1W 1 m 1++ ∑ []δ m 1,m 2k 1 , k 2∂ 2 w 2R − δm 1k 1∂z 2 k2 w Qm 2− δ m 1k 2∂z 2 k1 w Qm 2Wm 1 1Wm 1 2+m 1 ,m 2+ ∑ [−δm 1 ,m 2k 1 , k 2∂ ] 2 w 2Qm 3Wm 1 1Wm 1 2Wm 1 3+m 1 ,m 2 ,m 3+ ∑ []δ m 1,m 2k 1 , k 2∂ w R − δ m 1k 1∂ zk2 Q m 2− δ m 1k 2∂ zk1 Q m 2Wm 2 1 ,m 2+m 1 ,m 2+ ∑ [−δm 1 ,m 2k 1 , k 2∂ w Q m 3− δ m 2,m 3k 1 , k 2∂ w Q m 1− δ m 3,m 1k 1 , k 2∂ w Q ] m 2Wm 1 1Wm 2 2 ,m 3.m 1 ,m 2 ,m 3In these formulas, by δl m we <strong>de</strong>note the Kronecker symbol equal to 1 if l =m and to 0 otherwise. The multiple Kronecker symbol δ m 1,m 2l 1 , l 2is <strong>de</strong>fined tobe the product δ m 1l 1·δ m 2l 2. Finally, in the sums ∑ m 1, ∑ m 1 ,m 2and ∑ m 1 ,m 2 ,m 3,the integers m 1 , m 2 , m 3 run from 1 to n − 1. We would like to mentionthat in [GM2001a], we also provi<strong>de</strong> some explicit expression of the k-thprolongation X (k) for k ≥ 3.Then the <strong>Lie</strong> criterion states that a holomorphic vector field X belongsto Sym(E M ) if and only if its second prolongation X (2) is tangent to ∆ M([Ol1986, Ch 2]). This gives the following equations:(7.9) R 2 k 1 ,k 2−∑n−1k=1Q k ∂ zk F k1 ,k 2− R ∂ w F k1 ,k 2−∑n−1l=1R 1 l ∂ W 1lF k1 ,k 2≡ 0,where 1 ≤ k 1 , k 2 ≤ n −1 and where each occurence of Wl 21 ,l 2is replaced byits value F l1 ,l 2on ∆ M . By <strong>de</strong>velopping (7.9) in power series with respect tothe variab<strong>les</strong> Wl 1 , we get an expression of the form(7.10)∑l 1 ,...,l n−1 ≥0W 1l 1 · · ·W 1l n−1Φ l1 ,...,l n−1≡ 0,


136where each term Φ l1 ,...,l n−1is a certain linear partial differential expressioninvolving the <strong>de</strong>rivatives of Q 1 , . . .,Q n−1 , R up to or<strong>de</strong>r two with coefficientsbeing holomorphic functions of (z, w). The <strong>de</strong>termination of a systemof generators X 1 , . . .,X c of Sym(E M ) is obtained by solving the infinitecollection of these linear partial differential equations Φ l1 ,...,l n−1= 0(cf. [Ol1986], [Su2001a,b], [GM2001a,b,c]). We shall apply this generalprocedure to provi<strong>de</strong> different families of nonalgebraizable real analytic hyper<strong>sur</strong>facesin C n .7.3. Hyper<strong>sur</strong>faces in C 2 with control of their CR automorphism group.The goal of this paragraph is to construct some classes of strong tubes,namely tubes having the smal<strong>les</strong>t possible CR automorphism group. Westart with the case n = 2 and study afterwards the case n ≥ 3 in the nextsubparagraph. Let M χ be the strong tube hyper<strong>sur</strong>face in C 2 <strong>de</strong>fined by theequation(7.11) M χ : v = ϕ(y) := y 2 + y 6 + y 9 + y 10 χ(y).where χ is a real analytic function <strong>de</strong>fined in a neighborhood of the originin R.Lemma 7.1. The hyper<strong>sur</strong>faces M χ are pairwise not biholomorphicallyequivalent strong tubes.Proof. To check that M χ is a strong tube, it suffices to show that every hyper<strong>sur</strong>faceof the form v = y 2 + y 6 + O(y 9 ) is a strong tube (the term y 9will be used afterwards). Writing v = (w − ¯w)/2i and y = (z − ¯z)/2i,consi<strong>de</strong>ring w as a function of z and ¯w, ¯z as constants, the differentiation ofw with respect to z in (7.11) yields:(7.12) ∂ z w = 2y + 6y 5 + O(y 8 ).The implicit function theorem yields:(7.13) y = (1/2)∂ z w − (3/2 5 )(∂ z w) 5 + O((∂ z w) 8 ).One further differentiation of equation (7.12) with respect to z gives:(7.14) ∂ 2 zz w = −i − (15i) y4 + O(y 7 ).Replacing y in this equation by its value obtained in (7.13), we obtain thefollowing second or<strong>de</strong>r ordinary equation E M satisfied by ∂ z w and ∂ 2 zzw:(7.15) ∂ 2 zzw = −i − (15i/2 4 )(∂ z w) 4 + O((∂ z w) 7 ).In the four dimensional jet space J1,1 2 (C) equipped with the coordinates(z, w, W 1 , W 2 ) the equation of the corresponding complex hyper<strong>sur</strong>face∆ M is of course:(7.16) W 2 = −i − (15i/2 4 )(W 1 ) 4 + O((W 1 ) 7 ).


Then the <strong>Lie</strong> criterion states that a holomorphic vector field X = Q ∂ z +R ∂ w belongs to Sym(E M ) if and only if its second prolongation X (2) =Q ∂ z + R ∂ w + R 1 ∂ W 1 + R 2 ∂ W 2 is tangent to ∆ M , where the coefficientsR 1 and R 2 are given by the formulas (7.8) specified for n = 2, namely:(7.17) ⎧⎪⎨R 1 = ∂ z R + [∂ w R − ∂ z Q] W 1 − ∂ w Q (W 1 ) 2 .R 2 = ∂zz 2 ⎪⎩R + [2∂2 zw R − ∂2 zz Q] W 1 + [∂ww 2 R − 2∂2 zw Q] (W 1 ) 2 − ∂ww 2 Q (W 1 ) 3 ++ [∂ w R − 2∂ z Q] W 2 − 3∂ w Q W 1 W 2 .The tangency condition yields the following equation which is satisfied on∆ M , i.e. after replacing W 2 by its value given by (7.16):(7.18) R 2 + (15i/2 2 )R 1 (W 1 ) 3 + O((W 1 ) 6 ) = 0.By expanding equation (7.18) in powers of W 1 up to or<strong>de</strong>r five, we obtainthe following system of six linear partial differential equations which mustbe satisfied by the <strong>de</strong>rivatives of Q and R up to or<strong>de</strong>r two:⎧(e 0 ) : ∂zz 2 R − i(∂ wR − 2∂ z Q) ≡ 0.(e 1 ) : 2∂ 2 zw R − ∂2 zz Q ≡ 0.137(7.19)⎪⎨(e 2 ) : ∂ 2 ww R − 2∂2 zw Q ≡ 0.(e 3 ) : −∂ 2 ww Q + 15i2 2 ∂ z R ≡ 0.⎪⎩(e 4 ) : − 15i2 4 (∂ w R − 2∂ z Q) + 15i2 2 (∂ w R − ∂ z Q) ≡ 0.(e 5 ) : − 15i2 4 (−3∂ w Q) − 15i2 2 (∂ w Q) ≡ 0.It follows from the equation (e 5 ) that ∂ w Q ≡ 0 which implies ∂ 2 ww Q ≡ 0.Then by equation (e 3 ) we obtain ∂ z R ≡ 0, implying ∂ 2 zzR ≡ 0. From equation(e 0 ) we get ∂ w R ≡ 2∂ z Q and, from equation (e 4 ), we get ∂ w R ≡ ∂ z Q.Consequently ∂ z R ≡ ∂ w R ≡ ∂ z Q ≡ ∂ w Q ≡ 0. Since the two vector fields∂ z and ∂ w evi<strong>de</strong>ntly belong to Sym(E M ), it follows that dim C Sym(E M ) =2. Finally, this implies that dim R Aut CR (M) = 2 and that Aut CR (M) isgenerated by ∂ w + ∂ ¯w and ∂ z + ∂¯z .Next, let χ(y) and χ ′ (y ′ ) be two real analytic functions, and assume thatM χ and M ′ χ ′ are biholomorphically equivalent. Let t′ = h(t) be such anequivalence. Reasoning as in §4 and taking into account that both are strongtubes, we see that h ∗ (∂ z ) and h ∗ (∂ w ) must be linear combinations of ∂ z ′ and∂ w ′ with real coefficients. It follows that h must be linear, of the form z ′ =az +bw, w ′ = cz +dw, where a, b, c and d are real. Since T 0 M χ = {v = 0}


138and T 0 M χ ′ = ′ {v′ = 0}, we have c = 0. Next, in the equation(7.20) ⎧⎪⎨d(y 2 + y 6 + y 9 + y 10 χ(y)) ≡ [ay + b(y 2 + y 6 + y 9 + y 10 χ(y))] 2 ++ [ay + b(y 2 + y 6 + y 9 + y 10 χ(y))] 6 + [ay + b(y 2 + y 6 + y 9 + y 10 χ(y))] 9 +⎪⎩+ [ay + b(y 2 + y 6 + y 9 + y 10 χ(y))] 10 χ ′ (ay + b(y 2 + y 6 + y 9 + y 10 χ(y))),we firstly see that b = 0, and then from(7.21) d(y 2 + y 6 + y 9 + y 10 χ(y)) ≡ a 2 y 2 + a 6 y 6 + a 9 y 9 + a 10 y 10 χ ′ (ay),we see that a = d = 1. In other words, h = Id, whence y ′χ ′ (y ′ ) ≡ χ(y). This proves Lemma 7.1.= y andIn the remain<strong>de</strong>r of §7, we shall exhibit other classes of hyper<strong>sur</strong>faceswith a control on their CR automorphism group. Since the computations aregenerally similar, we shall summarize them.7.4. Some classes of strong tube hyper<strong>sur</strong>faces in C n . GeneralizingLemma 7.1, we may state:Lemma 7.2. The real analytic hyper<strong>sur</strong>faces M χ1 ,...,χ n−1⊂ C n of equation∑n−1(7.22) v =k=1[ε k y 2 k + y 6 k + y 9 ky 1 · · ·y k−1 + y n+8kχ k (y 1 , . . ., y n−1 )],where ε k = ±1, are pairwise not biholomorphically equivalent strong tubes.Proof. The associated system of partial differential equations is of the form(7.23) {∂2zk z kw = − iε k − (15i/2 4 ) (∂ zk w) 4 + O((∂ z1 w) 7 ) + · · · + O((∂ zn−1 w) 7 ),∂ 2 z k1 z k2w = 0, for k 1 ≠ k 2 .Using the formulas (7.8) and inspecting the coefficients of the monomials inthe Wl 1 up to or<strong>de</strong>r five in the (n −1) equations extracted from the set of <strong>Lie</strong>equations(7.24) {R2k,k + (15i/2 2 )(Wk 2 ) Rk 1 + O((W1 1 ) 6 ) + · · · + O((Wn−1) 1 6 ) = 0,R 2 k 1 ,k 2= 0, for k 1 ≠ k 2 ,we get ∂ zl R ≡ ∂ w R ≡ ∂ zl Q k ≡ ∂ w Q k ≡ 0 for l, k = 1, . . .,n − 1. Thus,M χ1 ,...,χ n−1is a strong tube.Next, reasoning as in the end of the proof of Lemma 7.1, we see firstthat an equivalence between M χ1 ,...,χ n−1and M ′ χ ′ 1 ,...,χ′ n−1must be of the formz k ′ = ∑ n−1l=1 λl k z l, w ′ = µ w, where λ l k , 1 ≤ l, k ≤ n − 1 and µ are real.Inspecting the terms of <strong>de</strong>gree 9, 10, . . ., n + 7, we get λ l k = 0 if k ≠ l, i.e.


y k ′ = λk k y k and w ′ = µ w. Finally, λ k k = 1 and µ = 1, which completes theproof.7.5. Families of strongly rigid hyper<strong>sur</strong>faces. Alongsi<strong>de</strong> the same recipe,we can study some classes of hyper<strong>sur</strong>faces of the form v = ϕ(z¯z).Lemma 7.3. The <strong>Lie</strong> algebra Hol(M χ ) of the rigid real analytic hyper<strong>sur</strong>facesM χ in C 2 of equation v = ϕ(z¯z) = z¯z + z 5¯z 5 + z 7¯z 7 + z 8¯z 8 χ(z¯z)is two-dimensional and generated by ∂ w and iz∂ z . Furthermore, M χ is biholomorphicallyequivalent to M ′ χ ′ if and only if χ = χ′ .Proof. The associated differential equation is of the form(7.25) ∂ 2 zz w = [5z3 /4](∂ z w) 5 − [21z 5 /32](∂ z w) 7 + O((∂ z w) 9 ).Extracting from the associated <strong>Lie</strong> equations (7.10) the coefficients of themonomials (W 1 ) 4 , (W 1 ) 5 , (W 1 ) 6 and (W 1 ) 7 , we obtain four equationswhich are solved by z∂ z Q−Q ≡ 0, ∂ w Q ≡ 0, ∂ z R ≡ 0 and ∂ w R ≡ 0. Next,if M χ and M χ ′ ′ are biholomorphically equivalent, reasoning as in §4, takinginto account that h ∗ (iz∂ z ) and h ∗ (∂ w ) are linear combinations of iz ′ ∂ z ′ and∂ w ′ with real coefficients, we see first that z ′ = λ z e γw/2i and w ′ = µ w forsome three real constants γ, λ ≠ 0 and µ ≠ 0. Replacing z ′ and w ′ in theequation of M χ ′ ′, we get γ = 0, µ = 1 and λ ± 1. In other words, z′ = ±zand w ′ = w, which entails χ ′ (z ′¯z ′ ) ≡ χ(z¯z), as claimed.Perturbing this family we may exhibit other strongly rigid hyper<strong>sur</strong>faces :Lemma 7.4. The <strong>Lie</strong> algebra Hol(M χ ) of the real analytic hyper<strong>sur</strong>facesM χ in C 2 of equation v = ϕ(z, ¯z) = z¯z + z 5¯z 5 + z 7¯z 7 + z 8¯z 8 (z + ¯z) +z 10¯z 10 χ(z, ¯z) is one-dimensional and generated by ∂ w . Furthermore, M χ isbiholomorphically equivalent to M ′ χ ′ if and only if χ = χ′ .Proof. We already know that z∂ z Q − Q ≡ ∂ w Q ≡ ∂ z R ≡ ∂ w R ≡ 0.Extracting from the associated <strong>Lie</strong> equations (7.10) the coefficient of themonomials (W 1 ) 8 , we also get Q ≡ 0. Next, let M χ and M χ ′ ′ be biholomorphicallyequivalent. Let t ′ = h(t) be such an equivalence. Usingh ∗ (∂ w ) = µ ∂ w ′, where µ ∈ R is nonzero, we get z ′ = f(z) andw ′ = µw + g(z). Next from the equation(7.26) {µ(z¯z + z5¯z 5 + z 7¯z 7 + z 8¯z 8 (z + ¯z) + O(z 9¯z 9 )) + [g(z) − ḡ(¯z)]/2i ≡≡ f(z) ¯f(¯z) + f(z) 5 ¯f(¯z) 5 + f(z) 7 ¯f(¯z) 7 + f(z) 8 ¯f(¯z) 8 (f(z) + ¯f(¯z)) + O(z 9¯z 9 ),we get firstly f(z) = √ |µ|e iθ z by differentiating with respect to ¯z at ¯z = 0and secondly µ = e iθ = 1, which completes the proof.We provi<strong>de</strong> a second family of strongly rigid hyper<strong>sur</strong>faces in C 2 with aone-dimensional <strong>Lie</strong> algebra :139


140Lemma 7.5. The <strong>Lie</strong> algebra Hol(M χ ) of the real analytic hyper<strong>sur</strong>facesM χ ⊂ C 2 of equation v = z¯z + z 5¯z 5 (z + ¯z) + z 10¯z 10 χ(z, ¯z) is onedimensionaland generated by ∂ w . Furthermore M χ is biholomorphicallyequivalent to M ′ χ ′ if and only if χ = χ′ .Proof. The <strong>de</strong>rivatives ∂ z w and ∂ 2 zw of w with respect to z are given by :{ 2 ∂z w = 2i¯z + 12iz 5¯z 5 + 10iz 4¯z 6 + O(¯z 10 )),(7.27)∂ 2 zz w = 60iz4¯z 5 + 40iz 3¯z 6 + O(¯z 10 ).Replacing ¯z in the second equation by its expression given by the first equationwe obtain the following second or<strong>de</strong>r differential equation, interpretedin the jet space :(7.28)W 2 = [15z 4 /8] (W 1 ) 5 − [5iz 3 /8] (W 1 ) 6 − [225z 9 /64] (W 1 ) 9 + O((W 1 ) 10 ).Solving the partial differential equations involving Q, ∂ z Q, ∂ w Q, ∂ z R and∂ w R given in the coefficients of (W 1 ) 4 , (W 1 ) 5 , (W 1 ) 6 , (W 1 ) 7 and (W 1 ) 9we obtain Q ≡ ∂ z Q ≡ ∂ w Q ≡ ∂ z R ≡ ∂ w R ≡ 0 which is the <strong>de</strong>sired information.Finally, proceeding exactly as in the end of the proof of Lemma 7.4,we see that the M χ are pairwise biholomorphically not equivalent.The dimension of Hol(M) for the five examp<strong>les</strong> of Corollary 1.3, for theseven examp<strong>les</strong> of Theorem 1.4, for the seven examp<strong>les</strong> of Corollary 1.7and for the hyper<strong>sur</strong>face v = e z¯z − 1 at a point p with z p ≠ 0 was computedwith the package diffalg of Maple Release 6. Since at a pointp with z p ≠ 0 the hyper<strong>sur</strong>face v = e z¯z − 1 is biholomorphically equivalentto the hyper<strong>sur</strong>face M a of equation v = ϕ a (y) := e a(ey−1) − 1with a = |z p | 2 , this <strong>de</strong>fines a strong tube. Applying Theorem 1.1 andLemma 3.3, we see that M a is not locally algebraizable at the origin, becauseϕ a yy (y) = aey e a(ey−1) + a 2 e 2y e a(ey−1) and ϕ a y (y) = aey e a(ey−1) arealgebraically in<strong>de</strong>pen<strong>de</strong>nt. Finally all the examp<strong>les</strong> of Corollary 1.3, Theorem1.4 and Corollary 1.6 are not locally algebraic since they satisfy therequired transcen<strong>de</strong>nce conditions.§8. ANALYTICITY VERSUS ALGEBRAICITYIntuitively there seems to be much more analytic mappings, manifoldsand varieties than algebraic ones. Our goal is to elaborate a precise statementabout this. By complexification, every local real analytic object yields a localcomplex analytic object, so we shall only work in the holomorphic category.Let ∆ n be the complex polydisc of radius one in C n and ∆ n its clo<strong>sur</strong>e.Let k ∈ N. We consi<strong>de</strong>r the space O k (∆ n ) := O(∆ n ) ∩ C k (∆ n ) of holomorphicfunctions extending up to the boundary as a function of class C k. This is a Banach space for the C k norm ||ϕ|| k := ∑ kl=0 sup z∈∆ n|ϕ z l(z)|.


The last statements of Corollaries 1.2 and 1.6 are a direct consequence ofthe following lemma.Lemma 8.1. The set of holomorphic functions ϕ ∈ O k (∆ n ) such that thereexists a polynomial P such that(8.1) P(z, j k ϕ(z)) ≡ 0,is of first category, namely it can be represented as the countable union ofnowhere <strong>de</strong>nse closed subsets. Conversely, the set of functions ϕ ∈ O k (∆ n )such that there is no algebraic <strong>de</strong>pen<strong>de</strong>nce relation like (8.1) is generic inthe sense of Baire, namely it can be represented as the countable intersectionof everywhere <strong>de</strong>nse open subsets.Proof. Let N ∈ N. Consi<strong>de</strong>r the set F N of functions ϕ such that there existsa polynomial of <strong>de</strong>gree N satisfying (8.1). It suffices to show that F Nis closed and that its complement is everywhere <strong>de</strong>nse. Suppose that a sequence(ϕ (m) ) m∈N converges to ϕ ∈ O k (∆ n ). Let the zero-set of a <strong>de</strong>greeN polynomial P (m)N(z, J k) contain the graph of the k-jet of ϕ (m) . The coefficientsof P (m)Nbelong to a certain complex projective space P A(C), wherethe integer A = A(n, k) is in<strong>de</strong>pen<strong>de</strong>nt of m. By compactness of P A (C),passing to a subsequence if necessary, the P (m)Nconverge to a nonzero polynomialP N . By continuity, P N (z, j k ϕ(z)) = 0 for all z ∈ O(∆ n ). We claimthat the complement of the union of the F N is <strong>de</strong>nse in O k (∆ n ). In<strong>de</strong>ed,let ϕ(z) be such that there exists a <strong>de</strong>gree N polynomial P satisfying (8.1).Fix z 0 ∈ ∆ n having rational real and imaginary parts. Then the complexnumbers z 0 , ∂z αϕ(z 0), |α| ≤ k, are algebraically <strong>de</strong>pen<strong>de</strong>nt. By a Cantorianargument, there exists complex numbers χ α 0 arbitrarily close to ∂α z ϕ(z 0)such that z 0 , χ α 0 are algebraically in<strong>de</strong>pen<strong>de</strong>nt. Let χ(z) be a polynomialwith ∂z α (z 0 ) = χ α 0 − ∂t α ϕ(z 0 ). We can choose χ to be arbitrarily close tozero in the C k (∆ n ) norm. Then the function ϕ(z) + χ(z) is not Nash algebraic.REFERENCES141[Ar1974][BER1999][BER2000]ARNOLD, V.I.: Équations différentiel<strong>les</strong> ordinaires. Champs <strong>de</strong> vecteurs,groupes à un paramètre, difféomorphismes, flots, systèmes linéaires, stabilité<strong>de</strong>s positions d’équilibre, théorie <strong>de</strong>s oscillations, équations différentiel<strong>les</strong><strong>sur</strong> <strong>les</strong> variétés. Traduit du russe par Djilali Embarek, Éditions Mir, Moscou,1974. 267pp.BAOUENDI, M.S.; EBENFELT, P.; ROTHSCHILD, L.P.: Rational <strong>de</strong>pen<strong>de</strong>nceof smooth and analytic CR mappings on their jets. Math. Ann. 315 (1999),205–249.BAOUENDI, M.S.; EBENFELT, P.; ROTHSCHILD, L.P.: Local geometric propertiesof real submanifolds in complex space, Bull. Amer. Math. Soc. 37(2000), no.3, 309–336.


142[Be1996] BELLAÏCHE, A.: SubRiemannian Geometry, Progress in Mathematics 144,Birkhäuser Verlag, Basel/Switzerland, 1996, 1–78.[Bs1991] BELOSHAPKA, V.K.: On holomorphic transformations of a quadric, Mat.Sb. 182 (1991), no.2, 203–219; English transl. in Math. USSR Sb. 72 (1992),no.1, 189–205.[Ca1932] CARTAN, É.: Sur la géométrie pseudo-conforme <strong>de</strong>s hyper<strong>sur</strong>faces <strong>de</strong>l’espace <strong>de</strong> <strong>de</strong>ux variab<strong>les</strong> complexes, I, Ann. Math. Pura Appl. 11 (1932),17–90.[CM1974] CHERN, S.S.; MOSER, J.K.: Real hyper<strong>sur</strong>faces in complex manifolds, ActaMath. 133 (1974), no.2, 219–271.[CPS2000] COUPET, B.; PINCHUK, S.; SUKHOV, A.: On partial analyticity of CR mappings,Math. Z. 235 (2000), 541–557.[DP2003] DIEDERICH, D.; PINCHUK, S.: Regularity of continuous CR-maps in arbitrarydimension, to appear in Michigan Math. J. (2003).[Eb1996] EBENFELT, P.: On the unique continuation problem for CR mappings intononminimal hyper<strong>sur</strong>faces, J. Geom. Anal. 6 (1996), no.3, 385–405.[GM2001a] GAUSSIER, H.; MERKER, J.: Estimates on the dimension of the symmetrygroup of a system of k-or<strong>de</strong>r partial differential equations, Université <strong>de</strong>Provence, Prépublication LATP, 12, 2001, 27 pp.[GM2001b] GAUSSIER, H.; MERKER, J.: A new example of uniformly Levi <strong>de</strong>generatehyper<strong>sur</strong>face in C 3 , Ark. Mat. (to appear).[GM2001c] GAUSSIER, H.; MERKER, J.: Symmetries of differential equations and infinitesimalCR automorphisms of real analytic CR submanifolds of C n , manuscript,34 pp.[HJ1998] HUANG, X.; JI, S.: Global holomorphic extension of a local map and a Riemannmapping theorem for algebraic domains, Math. Res. Lett. 5 (1998),[HJY2001]no.1-2, 247–260.HUANG, X.; JI, S.; YAU, S.T.: An example of a real analytic strongly pseudoconvexhyper<strong>sur</strong>face which is not holomorphically equivalent to any algebraichyper<strong>sur</strong>face, Ark. Mat. 39 (2001), no.1, 75–93.[<strong>Lie</strong>1880] LIE, S.: Theorie <strong>de</strong>r Transformationsgruppen, Math. Ann. 16 (1880), 441–528.[Me1998] MERKER, J.: Vector field construction of Segre sets,Preprint 1998, augmented in 2000. Downloadable atarXiv.org/abs/math.CV/9901010.[Me2001][MW1983][Ol1986][Pi1975][Pi1978][Se1931]MERKER, J.: On the partial algebraicity of holomorphic mappings betweentwo real algebraic sets, Bull. Soc. Math. France 129 (2001), no.3, 547–591.MOSER, J.K.; Webster S.M.: Normal forms for real <strong>sur</strong>faces in C 2 near complextangents and hyperbolic <strong>sur</strong>face transformations, Acta Math. 150 (1983),no.3-4, 255–296.OLVER, P.J.: Applications of <strong>Lie</strong> groups to differential equations. SpringerVerlag, Hei<strong>de</strong>lberg, 1986.PINCHUK, S.: On the analytic continuation of holomorphic mappings (Russian),Mat. Sb. (N.S.) 98(140) (1975) no.3(11), 375–392, 416–435, 495–496.PINCHUK, S.: Holomorphic mappings of real-analytic hyper<strong>sur</strong>faces (Russian),Mat. Sb. (N.S.) 105(147) (1978), no. 4, 574–593, 640.SEGRE, B.: Intorno al problema di Poincaré <strong>de</strong>lla rappresentazione pseudoconforme,Rend. Acc. Lincei, VI, Ser. 13 (1931), 676–683.


[Sha2000] SHAFIKOV, R.: Analytic continuation of germs of holomorphic mappings betweenreal hype<strong>sur</strong>faces in C n , Michigan Math. J. 47 (2000), no.1, 133–149.[Sha2002] SHAFIKOV, R.: Analytic continuation of holomorphic correspon<strong>de</strong>nces an<strong>de</strong>quivalence of domains in C n , to appear in Inventiones Math.[SS1996] SHARIPOV, R.; SUKHOV, A.: On CR mappings between algebraic Cauchy-Riemann manifolds and separate algebraicity for holomorphic functions,Trans. Amer. Math. Soc. 348 (1996), no.2, 767–780.[St1991] STANTON, N.: Infinitesimal CR automorphisms of rigid hyper<strong>sur</strong>faces in C 2 ,J. Geom. Anal. 1 (1991), no.3, 231–267.[Sto2000] STORMARK, O.: <strong>Lie</strong>’s structural approach to PDE systems, Encyclopædiaof mathematics and its applications, vol. 80, Cambridge University Press,Cambridge, 2000, xv+572 pp.s[Su2001a] SUKHOV, A.: Segre varieties and <strong>Lie</strong> symmetries, Math. Z. 238 (2001), no.3,483–492.[Su2001b] SUKHOV, A.: On transformations of analytic CR structures, Pub. Irma, Lille2001, Vol. 56, no. II.[Ve1999] VERMA, K: Boundary regularity of correspon<strong>de</strong>nces in C 2 , Math. Z. 231(1999), no.2, 253–299.[We1977] WEBSTER, S.M.: On the mapping problem for algebraic real hyper<strong>sur</strong>faces,Invent. Math. 43 (1977), no.1, 53–68.[We1978] WEBSTER, S.M.: On the reflection principle in several complex variab<strong>les</strong>,Proc. Amer. Math. Soc. 71 (1978), no.1, 26–28.[Za1995] ZAITSEV, D.: On the automorphism groups of algebraic boun<strong>de</strong>d domains,Math. Ann. 302 (1995), no.1, 105–129.143


144Symmetries of partial differential equationsJoël Merker (with Hervé Gaussier)Abstract. We establish a link between the study of completely integrable systemsof partial differential equations and the study of generic submanifolds in C n . Usingthe recent <strong>de</strong>velopments of Cauchy-Riemann geometry we provi<strong>de</strong> the set ofsymmetries of such a system with a <strong>Lie</strong> group structure. Finally we <strong>de</strong>termine theprecise upper bound of the dimension of this <strong>Lie</strong> group for some specific systemsof partial differential equations.Table of contents1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144.2. Submanifold of solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147.3. <strong>Lie</strong> theory for partial differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159.4. Optimal upper bound on dim K Sym(E ) when n = m = 1 . . . . . . . . . . . . . . . . . . . .166.5. Optimal upper bound on dim K Sym(E ) in the general dimensional case. . . . . . .170.J. Korean Math. Soc. 40 (2003), no. 3, 517–5611. INTRODUCTIONTo study the geometry of a real analytic Levi non<strong>de</strong>generate hyper<strong>sur</strong>faceM in C 2 , one of the principal i<strong>de</strong>as of H. Poincaré, of B. Segre andof É. Cartan in the fundamental memoirs [20], [Se1931], [Se1932], [3] wasto associate to M a system (E M ) of (partial) differential equations, in or<strong>de</strong>rto solve the so-called equivalence problem. Establishing a natural correspon<strong>de</strong>ncebetween the local holomorphic automorphisms of M and the <strong>Lie</strong>symmetries of (E M ) they could use the classification results on differentialequations achieved by S. <strong>Lie</strong> in [5] and pursued by A. Tresse in [Tr1896].Starting with such a correspon<strong>de</strong>nce, we shall establish a general link betweenthe study of a real analytic generic submanifold of codimension min C n+m and the study of completely integrable systems of analytic partialdifferential equations. We shall observe that the recent theories in Cauchy-Riemann (CR) geometry may be transposed to the setting of partial differentialequations, providing some new information on their <strong>Lie</strong> symmetries.In<strong>de</strong>ed consi<strong>de</strong>r for K = R or C a K-analytic system (E ) of the followinggeneral form:()(E ) u j x α(x) = F αj x, u(x), (u j(q) (x))x β(q) 1≤q≤p .


Here x = (x 1 , . . ., x n ) ∈ K n , u = (u 1 , . . ., u m ) ∈ K m , the integersj(1), . . ., j(p) satisfy 1 ≤ j(q) ≤ m for q = 1, . . ., p, and α and the multiindicesβ(1), . . ., β(p) ∈ N n satisfy |α|, |β(q)| ≥ 1. We also require(j, α) ≠ (j(1), β(1)), . . ., (j(p), β(p)). For j = 1, . . ., m and α ∈ N n , we<strong>de</strong>note by u j x the partial <strong>de</strong>rivative α ∂|α| u j /∂x α . We assume that the system(E ) is completely integrable, namely that the Pfaffian system naturallyassociated in the jet space is involutive in the sense of Frobenius. We notethat in that case (E ) is locally solvable, meaning that through every point(x ∗ , u ∗ , u ∗ β , u∗ α) in the jet space, satisfying u ∗ α = F α (x ∗ , u ∗ , u ∗ β ) (written ina con<strong>de</strong>nsed form), there exists a local K-analytic solution u = u(x) of(E ) satisfying u(x ∗ ) = u ∗ and u x β(x ∗ ) = u ∗ β . Consequently the <strong>Lie</strong> theory([Ol1986]) may be applied to such systems. We shall associate with (E ) thesubmanifold of solutions M in K n+2m+p given by K-analytic equations ofthe form(7.28) u j = Ω j (x, ν, χ), j = 1, . . ., m,where ν ∈ K m and where χ ∈ K p . Moreover the integer m + p is the numberof initial conditions for the general solution u(x) := Ω(x, ν, χ) of (E ),whose existence and uniqueness follow from complete integrability. Precisely,the parameters ν, χ correspond to the data u(0), (u j(q)x β(q) (0)) 1≤q≤p . Inthe special case where the system (E ) is constructed from a generic submanifoldM as in [Se1931], [24] (see also Subsection 2.2 below), the correspondingsubmanifold of solutions is exactly the extrinsic complexificationof M.A pointwise K-analytic transformation (x ′ , u ′ ) = Φ(x, u) <strong>de</strong>fined in aneighbourhood of the origin and sufficiently close to the iedntity mappingis called a <strong>Lie</strong> symmetry of (E ) if it transforms the graph of every∑solution to the graph of an other local solution. A vector field X =nl=1 Ql (x, u) ∂/∂x l + ∑ mj=1 Rj (x, u) ∂/∂u j is called an infinitesimal symmetryof (E ) if for every s close to zero in K the local diffeomorphism(x, u) ↦→ exp(sX)(x, u) associated to the flow of X is a <strong>Lie</strong> symmetry ofE . According to [Ol1986] (Chapter 2) the infinitesimal symmetries of (E )form a <strong>Lie</strong> algebra of vector fields <strong>de</strong>fined in a neighbourhood of the originin K n × K m , <strong>de</strong>noted by Sym(E ). Inspired by recent <strong>de</strong>velopments in CRgeometry we shall provi<strong>de</strong> in Section 2 non<strong>de</strong>generacy conditions on M in<strong>sur</strong>ingfirstly that Sym(E ) may be i<strong>de</strong>ntified with the <strong>Lie</strong> algebra Sym(M )of vector fields of the form(7.28)n∑l=1Q l (x, u) ∂∂x l+m∑j=1R j (x, u) ∂∂u j + m∑j=1Π j (ν, χ) ∂∂ν j + p∑q=1Λ q (ν, χ)145∂∂χ q,


146which are tangent to M , and secondly that Sym(M ) ∼ = Sym(E ) is finitedimensional. The strength of this i<strong>de</strong>ntification is to provi<strong>de</strong> some (non optimal)bound on the dimension of Sym(E ) for arbitrary systems of partial differentialequations with an arbitrary number of variab<strong>les</strong>, see Theorem 6.4.In the second part of the paper (Sections 3, 4 and 5), using the classical <strong>Lie</strong>theory (cf. [5], [Ol1986], [Ol1995] and [BK1989]), we provi<strong>de</strong> an optimalupper bound on the dimension of Sym(E ) for a completely integrable K-analytic system (E ) of the following form:(E ) u j x = F j α α (x, u(x), (u x β(x)) 1≤|β|≤κ−1), α ∈ N n , |α| = κ, j = 1, . . .,m.This system is a special case of the system studied in Section 2. Forinstance the homogeneous system (E 0 ) : u j x k1···x kκ(x) = 0 is completelyintegrable. The solutions of (E 0 ) are the polynomials of the formu j (x) = ∑ β∈N n , |β|≤κ−1 λj β xβ , j = 1, . . ., m, where λ j β∈ K and a <strong>Lie</strong> symmetryof (E 0 ) is a transformation stabilizing the graphs of polynomials of<strong>de</strong>gree ≤ κ − 1. We prove the following Theorem:Theorem 6.4. Let (E ) be the K-analytic system of partial differential equationsof or<strong>de</strong>r κ ≥ 2, with n in<strong>de</strong>pen<strong>de</strong>nt variab<strong>les</strong> and m <strong>de</strong>pen<strong>de</strong>nt variab<strong>les</strong>,<strong>de</strong>fined just above. Assume that (E ) is completely integrable. Thenthe <strong>Lie</strong> algebra Sym(E ) of its infinitesimal symmetries satisfies the followingestimates:(7.28) {dim K (Sym(E )) ≤ (n + m + 2)(n + m), if κ = 2,dim K (Sym(E )) ≤ n 2 + 2n + m 2 + m Cn+κ−1, if κ ≥ 3,where we <strong>de</strong>note C κ−1. Moreover the inequalities (7.28) becomeequalities for the homogeneous system (E 0n! (κ−1)!).n+κ−1 := (n+κ−1)!We remark that there is no combinatorial formula interpolating these twoestimates. Theorem 6.4 is a generalization of the following results. Forn = m = 1, S. <strong>Lie</strong> proved that the dimension of the <strong>Lie</strong> algebra Sym(E )is <strong>les</strong>s than or equal to 8 if κ = 2 and is <strong>les</strong>s than or equal to κ + 4 ifκ ≥ 3, these bounds being reached for the homogeneous system (cf. [5]).For n = 1, m ≥ 1 and κ = 2, F. González-Gascón and A. González-López proved in [11] that the dimension of Sym (E ) is <strong>les</strong>s than or equalto (m + 3)(m + 1). For n = 1, m ≥ 1 and κ = 2, using the equivalencemethod due to É. Cartan, M. Fels [Fe1995] proved that the dimension ofSym(E ) is <strong>les</strong>s than or equal to m 2 + 4m + 3, with equality if and only ifthe system (E ) is equivalent to the system u j x 2 = 0, j = 1, . . .,m. He alsogeneralized this result to the case n = 1, m ≥ 1, κ = 3. For n ≥ 1, m ≥ 1and κ = 2, A. Sukhov proved in [24] that the dimension of Sym(E ) is <strong>les</strong>sthan or equal to (n + m + 2)(n + m) (the first inequality in Theorem 6.4),with equality for the homogeneous system u j x k1 x k2= 0.


Consequently, for the case κ = 2, we will only give the general form ofthe <strong>Lie</strong> symmetries of the homogeneous system (E 0 ) (see Subsection 5.2).We will prove Theorem 6.4 for the case κ ≥ 3. The formulas obtained inSections 3, 4 and 5 were checked with the help of MAPLE release 6.Acknowledgment. This article was written while the first author had a sixmonths <strong>de</strong>legation position at the CNRS. He thanks this institution for providinghim this research opportunity. The authors are in<strong>de</strong>bted to GérardHenry, the computer ingénieur (LATP, UMR 6632 CNRS), for his technicalsupport.2. SUBMANIFOLD OF SOLUTIONS2.1. Preliminary. Let K = R or C. Let n ≥ 1 and let x = (x 1 , . . ., x n ) ∈N. We <strong>de</strong>note by K{x} the local ring of K-analytic functions ϕ = ϕ(x)<strong>de</strong>fined in some neighbourhood of the origin in K n . If ϕ ∈ K{x} we <strong>de</strong>noteby ¯ϕ the function in K{x} satisfying ϕ(x) ≡ ¯ϕ(¯x). Recall that a K-analyticfunction ϕ <strong>de</strong>fined in a domain U ⊂ K n is called K-algebraic (in the senseof Nash) if there exists a nonzero polynomial P = P(X 1 , . . .,X n , Φ) ∈K[X 1 , . . .,X n , Φ] such that P(x, ϕ(x)) ≡ 0 on U. All the consi<strong>de</strong>rations inthis paper will be local: functions, submanifolds and mappings will alwaysbe <strong>de</strong>fined in a small connected neighbourhood of some point (most oftenthe origin) in K n .2.2. System of partial differential equations associated to a generic submanifoldof C n+m . Let M be a real algebraic or analytic local submanifoldof codimension m in C n+m , passing through the origin. We assume that Mis generic, namely T 0 M + iT 0 M = T 0 C n+m . Classically (cf. [BER1999])there exists a choice of complex linear coordinates t = (z, w) ∈ C n × C mcentered at the origin such that T 0 M = {Im w = 0} and such that thereexist m complex algebraic or analytic <strong>de</strong>fining equations representing M asthe set of (z, w) in a neighbourhood of the origin in C n+m which satisfy(7.28) w 1 = Θ 1 (z, ¯z, ¯w), . . ....,w m = Θ m (z, ¯z, ¯w).Furthermore, the mapping Θ = (Θ 1 , . . .,Θ m ) satisfies the functional equation(7.28) w ≡ Θ(z, ¯z, Θ(¯z, z, w)),which reflects the reality of the generic submanifold M. It follows inparticular from (7.28) that the local holomorphic mapping C m ∋ ¯w ↦→(Θ j (0, 0, ¯w)) 1≤j≤m ∈ C m is of rank m at ¯w = 0.Generalizing an i<strong>de</strong>a due to B. Segre in [Se1931] and [Se1932], exploitedby É. Cartan in [3] and more recently by A. Sukhov in [24], [25], [Su2002],we shall associate to M a system of partial differential equations. For this,we need some general non<strong>de</strong>generacy condition, which generalizes Levi147


148non<strong>de</strong>generacy. Let l 0 ∈ N with l 0 ≥ 1. We shall assume that M is l 0 -finitely non<strong>de</strong>generate at the origin, cf. [BER1999], [Me2003], [8]. Thismeans that there exist multiindices β(1), . . ., β(n) ∈ N n with |β(k)| ≥ 1for k = 1, . . .,n and max 1≤k≤n |β(k)| = l 0 , and integers j(1), . . .,j(n)with 1 ≤ j(k) ≤ m for k = 1, . . .,n such that the local holomorphic mapping(7.28) (C n+m ∋ (¯z, ¯w) ↦−→ (Θ j (0, ¯z, ¯w)) 1≤j≤m , ( Θ j(k),z β(k)(0, ¯z, ¯w) ) )∈ C m+n1≤k≤nis of rank equal to n + m at (¯z, ¯w) = (0, 0). Here, we <strong>de</strong>note the partial<strong>de</strong>rivative ∂ |β| Θ j (0, ¯z, ¯w)/∂z β simply by Θ j,z β(0, ¯z, ¯w). Then M is Levinon<strong>de</strong>generate at the origin if and only if l 0 = 1. By complexifying thevariab<strong>les</strong> ¯z and ¯w, we get new in<strong>de</strong>pen<strong>de</strong>nt variab<strong>les</strong> ζ ∈ C n and ξ ∈ C mtogether with a complex algebraic or analytic m-codimensional submanifoldM in C 2(n+m) of equations(7.28) w j = Θ j (z, ζ, ξ), j = 1, . . ., m,called the extrinsic complexification of M. In the <strong>de</strong>fining equations (7.28)of M , following [Se1931] and [24], we may consi<strong>de</strong>r the “<strong>de</strong>pen<strong>de</strong>ntvariab<strong>les</strong>” w 1 , . . .,w m as algebraic or analytic functions of the “in<strong>de</strong>pen<strong>de</strong>ntvariab<strong>les</strong>” z = (z 1 , . . ., z n ), with additional <strong>de</strong>pen<strong>de</strong>nce on the extra“parameters” (ζ, ξ) ∈ C n+m . Then by applying the differential operator∂ |α| /∂z α to (7.28), we obtain w j,z α(z) = Θ j,z α(z, ζ, ξ). Writing these equationsfor (j, α) = (j(k), β(k)) with k = 1, . . .,n, we obtain a system ofm + n equations{w j (z) = Θ j (z, ζ, ξ), j = 1, . . ., m,(7.28)w j(k),z β(k)(z) = Θ j(k),z β(k)(z, ζ, ξ), k = 1, . . ., n.In this system (7.28), by the assumption of l 0 -finite non<strong>de</strong>generacy (7.28),the algebraic or analytic implicit function theorem allows to solve the parameters(ζ, ξ) in terms of the variab<strong>les</strong> (z k , w j (z), w j(k),z β(k)(z)), providinga local algebraic or analytic C n+m -valued mapping R such that (ζ, ξ) =R ( z k , w j (z), w j(k),z β(k)(z) ) . Finally, for every pair (j, α) different from(1, 0), . . ., (m, 0), (j(1), β(1)), . . ., (j(n), β(n)), we may replace (ζ, ξ) byR in the differentiated expression w j,z α(z) = Θ j,z α(z, ζ, ξ). This yields(w j,z α(z) = Θ j,z α z, R(zk , w j (z), w j(k),z β(k)(z)) )(7.28)(=: F j,α zk , w j (z), w j(k),z β(k)(z) ) .This is the system of partial differential equations associated with M . Asargued by B. Segre in [Se1931], the geometric study of generic submanifoldsof C n may gain much information from the study of their associatedsystems of partial differential equations (cf. [24], [25]). The next paragraphs


are <strong>de</strong>voted to provi<strong>de</strong> a general one-to-one correspon<strong>de</strong>nce between completelyintegrable systems of analytic partial differential equations and theirassociated “submanifolds of solutions” (to be <strong>de</strong>fined precisely below) likeM above. Afterwards, we shall observe that conversely, the study of systemsof analytic partial differential equations also gains much informationfrom the direct study of their associated submanifolds of solutions.1492.3. Completely integrable systems of partial differential equations.Let now n, m, p ∈ N with n, m, p ≥ 1, let κ ∈ N with κ ≥ 2and let u = (u 1 , . . .,u m ) ∈ K m . Consi<strong>de</strong>r a collection of p multiindicesβ(1), . . ., β(p) ∈ N n with |β(q)| ≥ 1 for q = 1, . . .,p andmax 1≤q≤p |β(q)| = κ − 1. Consi<strong>de</strong>r also p integers j(1), . . ., j(p) with1 ≤ j(q) ≤ m for q = 1, . . ., p. Inspired by (7.28), we consi<strong>de</strong>r ageneral system of partial differential equations of n in<strong>de</strong>pen<strong>de</strong>nt variab<strong>les</strong>(x 1 , . . ., x n ) and m <strong>de</strong>pen<strong>de</strong>nt variab<strong>les</strong> (u 1 , . . .,u m ) which is of the followingform:()(E ) u j x α(x) = F αj x, u(x), (u j(q) (x))x β(q) 1≤q≤p ,where (j, α) ≠ (j(1), β(1)), . . ., (j(p), β(p)) and j = 1, . . .,m, |α| ≤ κ.Here, we assume that u = 0 is a local solution of the system (E ) and thatthe functions Fα j are K-algebraic or K-analytic in a neighbourhood of theorigin in K n+m+p . Among such systems are inclu<strong>de</strong>d ordinary differentialequations of any or<strong>de</strong>r κ ≥ 2, systems of second or<strong>de</strong>r partial differentialequation as studied in [24], etc.Throughout this article, we shall assume the system (E ) completely integrable.By analyzing the application of the Frobenius theorem in jet spaces,one can show (we will not <strong>de</strong>velop this) that the general solution of the system(E ) is given by u(x) := Ω(x, ν, χ), where the parameters ν ∈ K nand χ ∈ K n essentially correspond to the “initial conditions” u(0) and(u j(q) (0))x β(q) 1≤q≤p , and Ω is a K-analytic K n -valued mapping. In the case ofa generic submanifold as in Subsection 2.2 above, we recover the mappingΘ. In the sequel, we shall use the following terminology: the coordinates(x, u) will be called the variab<strong>les</strong> and the coordinates (ν, χ) will be calledthe parameters or the initial conditions. In Subsection 2.5 below, we shallintroduce a certain duality where the rô<strong>les</strong> between variab<strong>les</strong> and parametersare exchanged.2.4. Associated submanifold of solutions. The existence of the functionΩ and the analogy with Subsection 2.2 leads us to introduce the submanifoldof solutions associated to the completely integrable system (E ), whichby <strong>de</strong>finition is the m-codimensional K-analytic submanifold of K n+2m+p ,


150equipped with the coordinates (x, u, ν, χ), <strong>de</strong>fined by the Cartesian equations(7.28) u j = Ω j (x, ν, χ), j = 1, . . .,m.Let us <strong>de</strong>note this submanifold by M . We stress that in general such a submanifoldcannot coinci<strong>de</strong> with the complexification of a generic submanifoldof C m+n , for instance because K may be equal to R or, if K = C,because the integer p is not necessarily equal to n. Also, even if K = C andn = p, the mapping Ω does not satisfy a functional equation like (7.28). Infact, it may be easily established that the submanifold of solutions of a completelyintegrable system of partial differential equations like (E ) coinci<strong>de</strong>swith the complexification of a generic submanifold if and only if K = C,p = n and the mapping Ω satisfies a functional equation like (7.28).Let now M be a submanifold of K n+2n+p of the form (7.28), but notnecessarily constructed as the submanifold of solutions of a system (E ). Weshall always assume that Ω j (0, ν, χ) ≡ ν j . We say that M is solvable withrespect to the parameters if there exist multiindices β(1), . . ., β(p) ∈ N nwith |β(q)| ≥ 1 for q = 1, . . .,p and integers j(1), . . ., j(p) with 1 ≤j(q) ≤ m for q = 1, . . ., p such that the local K-analytic mapping(7.28) (K m+p ∋ (ν, χ) ↦−→ (Ω j (0, ν, χ) 1≤j≤m , ( Ω j(q),x β(q)(0, ν, χ) ) )∈ K m+p1≤q≤pis of rank equal to m+p at (ζ, χ) = (0, 0) (notice that since Ω j (0, ν, χ) ≡ ν j ,then the m first components of the mapping (7.28) are already of rank m).We remark that the submanifold of solutions of a system (E ) is automaticallysolvable with respect to the variab<strong>les</strong>, the multiindices β(q) and theintegers j(q) being the same as in the arguments of the right hand si<strong>de</strong> termsF j α in (E ).2.5. Dual system of <strong>de</strong>fining equations. Since Ω j (0, ν, χ) ≡ ν j , we maysolve the equations (7.28) with respect to ν by means of the analytic implicitfunction theorem, getting an equivalent system of equations for M :(7.28) ν j = Ω ∗ j(χ, x, u), j = 1, . . ., m.We call this the dual system of <strong>de</strong>fining equations for M . By construction,we have the functional equation(7.28) u ≡ Ω(x, Ω ∗ (χ, x, u), χ),implying the i<strong>de</strong>ntity Ω ∗ j (0, x, u) ≡ uj . We say that M is solvable withrespect to the variab<strong>les</strong> if there exist multiindices δ(1), . . ., δ(n) ∈ N p with|δ(l)| ≥ 1 for l = 1, . . .,n and integers j(1), . . ., j(n) with 1 ≤ j(l) ≤ m


for l = 1, . . .,m such that the local K-analytic mapping(7.28) (() )K n+m ∋ (x, u) ↦−→ (Ω ∗ j(0, x, u)) 1≤j≤m , Ω ∗ j(l), χ(0, x, u) ∈ K m+nδ(l)1≤l≤nis of rank equal to n+m at (x, u) = (0, 0) (notice that since Ω ∗ j(0, x, u) ≡ u j ,the m fisrt components of the mapping (7.28) are already of rank m).In the case where M is the complexification of a generic submanifoldthen the solvability with respect to the parameters is equivalent to the solvabilitywith respect to the variab<strong>les</strong> since Ω ∗ ≡ Ω. However we notice thata submanifold M of solutions of a system (E ) is not automatically solvablewith respect to the variab<strong>les</strong>, as shows the following trivial example.Example 1. Let n = 2, m = 1 and let (E ) <strong>de</strong>note the system u x2 = 0,u x1 x 1= 0, whose general solutions are u(x) = ν + x 1 χ =: Ω(x 1 , x 2 , ν, χ).Notice that the variable x 2 is absent from the dual equation ν = u −x 1 χ 1 =:Ω ∗ (χ, x 1 , x 2 , u). It follows that M is not solvable with respect to the variab<strong>les</strong>.2.6. Symmetries of (E ), their lift to the jet space and their lift to theparameter space. We <strong>de</strong>note by Jn,m κ the space of jets of or<strong>de</strong>r κ of K-analytic mappings u = u(x) from K n to K m . Let(7.28) (x l , u j , U i 1l 1, U i 1l 1 ,l 2, . . .,U i 1l 1 ,...,l κ) ∈ K n+m Cκ κ+n<strong>de</strong>note the natural coordinates on Jn,m κ . Here, the superscripts j, i 1 andthe subscripts l, l 1 , l 2 , . . .,l κ satisfy j, i 1 = 1, . . .,m and l, l 1 , l 2 , . . .,l κ =1, . . ., n. The in<strong>de</strong>pen<strong>de</strong>nt coordinate U i 1l 1 ,...,l λcorresponds to the partial <strong>de</strong>rivativeu i 1xl1 ...x lλ. Finally, by symmetry of partial differentiation, we i<strong>de</strong>ntityevery coordinate U i 1l 1 ,...,l λwith the coordinates U i 1σ(l 1 ),...,σ(l λ ), where σ is an arbitrarypermutation of the set {1, . . ., λ}. With these i<strong>de</strong>ntifications, the κ-thor<strong>de</strong>r jet space Jn,m κ is of dimension n + m Cκ+n, κ where Cp q := p! <strong>de</strong>notesthe binomial coefficient. Also, we shall sometimes use an equivalentq! (p−q)!notation for coordinates on Jn,m:κ(7.28) (x l , u j , U i β ) ∈ Kn+m Cn κ+n ,where β ∈ N n satisfies |β| ≤ κ and where the in<strong>de</strong>pen<strong>de</strong>nt coordinate Uβicorresponds to the partial <strong>de</strong>rivative u i x. βassociated to the system (E ) is the so-called skeleton ∆ E , which is theK-analytic submanifold of dimension n+m+p in Jn,m κ simply <strong>de</strong>fined byreplacing the partial <strong>de</strong>rivatives of the <strong>de</strong>pen<strong>de</strong>nt variab<strong>les</strong> u j by the in<strong>de</strong>pen<strong>de</strong>ntjet variab<strong>les</strong> in (E ):()(7.28) Uα j = Fαj x, u, (U j(q)β(q) ) 1≤q≤p ,151


152for (j, α) ≠ (j(1), β(1)), . . ., (j(p), β(p)) and j = 1, . . .,m, |α| ≤ κ.Clearly, the natural coordinates on the submanifold ∆ E of Jn,m κ are then + m + p coordinates()(7.28)x, u, (U j(q)β(q) ) 1≤q≤p .Let h = h(x, u) be a local K-analytic diffeomorphism of K n+m close to thei<strong>de</strong>ntity mapping and let π κ : J κ n,m → Kn+m be the canonical projection.According to [Ol1986] (Chapter 2) there exists a unique lift h (κ) of h toJ κ n,m such that π κ ◦h (κ) = h◦π κ . The components of h (κ) may be computedby means of universal combinatorial formulas and they are rational functionsof the jet variab<strong>les</strong> (7.28), their coefficients being partial <strong>de</strong>rivatives of thecomponents of h, see for instance §3.3.5 of [BK1989]. By <strong>de</strong>finition, h is alocal symmetry of (E ) if h transforms the graph of every local solution of(E ) into the graph of another local solution of (E ). This <strong>de</strong>finition seems tobe rather uneasy to handle, because of the abstract quantification of “everylocal solution”, but we have the following concrete characterization for h tobe a local symmetry of (E ), cf. Chapter 2 in [Ol1986].Lemma 8.1. The following conditions are equivalent:(1) The local transformation h is a local symmetry of (E ).(2) Its κ-th prolongation h (κ) is a local self-transformation of the skeleton∆ E of (E ).These consi<strong>de</strong>rations have an infinitesimal version. In<strong>de</strong>ed, let X =∑ nl=1 Ql (x, u) ∂/∂x l + ∑ mj=1 Rj (x, u) ∂/∂u j be a local vector field withK-analytic coefficients which is <strong>de</strong>fined in a neighbourhood of the origin inK n+m . Let s ∈ K and consi<strong>de</strong>r the flow of L as the one-parameter familyh s (x, u) := exp(s X)(x, u) of local transformations. We recall that X isan infinitesimal symmetry of (E ) if for every small s ∈ K, the mappingh s (x, u) := exp(s X)(x, u) is a local symmetry of (E ). By differentiatingwith respect to s the κ-th prolongation (h s ) (κ) of h s at s = 0, we obtaina unique vector field X (κ) on the κ-th jet space, called the κ-th prolongationof X and which satisfies (π k ) ∗ (X (κ) ) = X. In Subsections 3.1 and 3.2below, we shall analyze the combinatorial formulas for the coefficients ofX (κ) , since they will be nee<strong>de</strong>d to prove Theorem 6.4.Let X E be the projection to the restricted jet space K m+n+p , equippedwith the coordinates (7.28), of the restriction of X (κ) to ∆ E , namely(7.28) X E := (π κ,p ) ∗ (X (κ) | ∆E ).The following Lemma, called the <strong>Lie</strong> criterion, is the concrete characterizationfor X to be an infinitesimal symmetry of (E ) and is a direct corollaryof Lemma 8.1, cf. Chapter 2 in [Ol1986]. This criterion will be central inthe next Sections 3, 4 and 5.


Lemma 8.1. The following conditions are equivalent:(1) The vector field X is an infinitesimal symmetry of (E ).(2) Its κ-th prolongation X (κ) is tangent to the skeleton ∆ E .We <strong>de</strong>note by Sym(E ) the set of infinitesimal symmetries of (E ). Sinceit may be easily checked that (cX + dY ) (κ) = cX (κ) + dY (κ) and that[X (κ) , Y (κ) ] = ([X, Y ]) (κ) , see Theorem 2.39 in [Ol1986], it follows fromLemma 8.1 (2) that Sym(E ) is a <strong>Lie</strong> algebra of locally <strong>de</strong>fined vector fields.Our main question in this section is the following: un<strong>de</strong>r which naturalconditions is Sym(E ) finite-dimensional ?Example 2. We observe that the <strong>Lie</strong> algebra Sym(E ) of the system (E )presented in Example 1 is infinite-dimensional, since it inclu<strong>de</strong>s all vectorfields of the form X = Q 2 (x 1 , x 2 , u) ∂/∂x 2 , as may be verified. As we willargue in Proposition 3.1 below, this phenomenon is typical, the main reasonlying in the first or<strong>de</strong>r relation u x2 = 0.By analyzing the construction of the submanifold of solutions M associatedto the system (E ), we may establish the following correspon<strong>de</strong>nce (weshall not <strong>de</strong>velop its proof).Proposition∑3.1. To every infinitesimal symmetry X =nl=1 Ql (x, u) ∂/∂x l + ∑ mj=1 Rj (x, u) ∂/∂u j of (E ), there corresponds aunique vector field of the form(7.28) X =m∑j=1Π j (ν, χ) ∂∂ν j + p∑q=1Λ q (ν, χ) ∂∂χ q,whose coefficients <strong>de</strong>pend only on the parameters (ν, χ), such that X + Xis tangent to the submanifold of solutions M .This leads us to <strong>de</strong>fine the <strong>Lie</strong> algebra Sym(M ) of vector fields of theform(7.28)n∑l=1Q l (x, u) ∂∂x l+m∑j=1R j (x, u) ∂∂u j + m∑j=1Π j (ν, χ) ∂∂ν j + p∑q=1153Λ q ∂(ν, χ)∂χ qwhich are tangent to M . We shall say that the submanifold M is <strong>de</strong>generateif there exists a nonzero vector field of the form X = ∑ n∑ l=1 Ql (x, u) ∂/∂x l +mj=1 Rj (x, u) ∂/∂u j which is tangent to M , which means that the correspondingX part is zero. In this case, we claim that Sym(M ) isinfinite dimensional. In<strong>de</strong>ed there exists then a nonzero vector fieldT = ∑ nl=1 Ql (x, u)∂/∂x l + ∑ mj=1 Rj (x, u)∂/∂u j tangent to M . Consequently,for every K-analytic function A(x, u), the vector field A(x, u) Tbelongs to Sym(M ), hence Sym(M ) is infinite dimensional.


154By <strong>de</strong>veloping the dual <strong>de</strong>fining functions of M with respect to the powersof χ, we may write(7.28) ν j = Ω ∗ j(χ, x, u) = ∑ γ∈N p χ γ Ω ∗ j,γ(x, u),where the functions Ω ∗ j,γ(x, u) are K-analytic in a neighbourhood of the origin,we may formulate a criterion for M to be non <strong>de</strong>generate with respectto the variab<strong>les</strong> (whose proof is skipped).Proposition 3.1. The submanifold M is not <strong>de</strong>generate with respect to thevariab<strong>les</strong> if and only if there exists an integer k such that the generic rank ofthe local K-analytic mapping(7.28) (x, u) ↦−→ ( Ω ∗ j,γ (x, u)) 1≤j≤m, γ∈N p , |γ|≤kis equal to n + m.Seeking for conditions which in<strong>sur</strong>e that Sym(M ) is finite-dimensional,it is therefore natural to assume that the generic rank of the mapping (7.28)is equal to n + m. Furthermore, to simplify the presentation, we shall assumethat the rank at (x, u) = (0, 0) (not only the generic rank) of themapping (7.28) is equal to n + m for k large enough. This is a “Zariskigeneric”assumption. Coming back to (7.28), we observe that this meansexactly that M is solvable with respect to the variab<strong>les</strong>. Then we <strong>de</strong>note byl ∗ 0 the smal<strong>les</strong>t integer k such that the rank at (x, u) = (0, 0) of the mapping(7.28) is equal to n + m and we say that M is l ∗ 0-solvable with respectto the variab<strong>les</strong>. Also, we <strong>de</strong>note by l 0 the integer max 1≤q≤p |β(q)| and wesay that M is l 0 -solvable with respect to the parameters.2.7. Fundamental isomorphism between Sym(E ) and Sym(M ). In theremain<strong>de</strong>r of this Section 2, we shall assume that M is l 0 -solvable withrespect to the parameters and l ∗ 0-solvable with respect to the variabes. Inthis case, viewing the variab<strong>les</strong> (ν 1 , . . .,ν m ) in the dual equations ν j =Ω ∗ j(χ, x, u) of M as a mapping of χ with (dual) “parameters” (x, u) andproceeding as in Subsection 2.2, we may construct a dual system of completelyintegrable partial differential equations of the form()(E ∗ ) ν j χ γ(χ) = Gj γ χ, ν(χ), (ν j(l) (χ))χ δ(l) 1≤l≤n ,where (j, γ) ≠ (j(1), δ(1)), . . ., (j(n), δ(n)). This system has its own infinitesimalsymmetry <strong>Lie</strong> algebra Sym(E ∗ ).Theorem 6.4. If M is both solvable with respect to the parameters andsolvable with respect to the variab<strong>les</strong>, we have the following two isomorphisms:(7.28) Sym(E ) ∼ = Sym(M ) ∼ = Sym(E ∗ ),


155namely X ←→ X + X ←→ X .In Subsection 2.10 below, we shall introduce a second geometric conditionwhich is in general necessary for Sym(M ) to be finite-dimensional.2.8. Local (pseudo)group Sym(M ) of point transformations of M . Weshall study the geometry of a local K-analytic submanifold M of K n+2m+pwhose equations and dual equations are of the form{u j = Ω j (x, ν, χ), j = 1, . . .,m,(7.28)ν j = Ω ∗ j (χ, x, u), j = 1, . . ., m.Let t := (x, u) ∈ K n+m and τ := (ν, χ) ∈ K n+m . We are interested in<strong>de</strong>scribing the set of local K-analytic transformations of the space K n+2m+pwhich are of the specific form(7.28) (t, τ) ↦−→ (h(t), φ(τ)),and which stabilize M , in a neighborhood of the origin. We <strong>de</strong>note the local<strong>Lie</strong> pseudogroup of such transformations (possibly infinite-dimensional) bySym(M ). Importantly, each transformation of Sym(M ) stabilize both thesets {t = ct.} and the sets {τ = ct.}. Of course, the <strong>Lie</strong> algebra of Sym(M )coinci<strong>de</strong>s with Sym(M ) <strong>de</strong>fined above.2.9. Fundamental pair of foliations on M . Let p 0 ∈ K n+2m+p be a fixedpoint of coordinates (t p0 , τ p0 ). Firstly, we observe that the intersection M ∩{τ = τ p0 } consists of the n-dimensional K-analytic submanifold of equationu = Ω(x, τ p0 ). As τ p0 varies, we obtain a local K-analytic foliation of M byn-dimensional submanifolds. Let us <strong>de</strong>note this first foliation by F p and callit the foliation of M with respect to parameters. Secondly, and dually, weobserve that the intersection M ∩{t = t p0 } consists of the p-dimensional K-analytic submanifold of equation ν = Ω ∗ (χ, t p0 ). As t p0 varies, we obtaina local K-analytic foliation of M by p-dimensional submanifolds. Let us<strong>de</strong>note this second foliation by F v and call it the foliation of M with respectto the variab<strong>les</strong>. We call (F p , F v ) the fundamental pair of foliations on M .2.10. Covering property of the fundamental pair of foliations. We wishto formulate a geometric condition which says that starting from the originin M and following alternately the leaves of F p and the leaves of F v , wecover a neighborhood of the origin in M . Let us introduce two collections


156(L k ) 1≤k≤n and (Lq ∗ ) 1≤q≤p of vector fields whose integral manifolds coinci<strong>de</strong>with the leaves of F p and F v :(7.28)⎧⎪⎨⎪⎩L k := ∂∂x k+L ∗q := ∂∂χ q+m∑j=1m∑j=1∂Ω j(x, ν, χ) ∂∂x k ∂u , j∂Ω ∗ j∂χ q(χ, x, u) ∂∂ν j ,k = 1, . . .,n,k = 1, . . .,n.Let p 0 be a fixed point in M of coordinates (x p0 , u p0 , ν p0 , χ p0 ) ∈ K n+2m+p ,let x 1 := (x 1,1 , . . .,x 1,n ) ∈ K n be a “multitime” parameter and <strong>de</strong>fine themultiple flow map(7.28){Lx1 (x p0 , u p0 , ν p0 , χ p0 ) := exp(x 1 L )(p 0 ) := exp(x 1,n L n (· · ·(exp(x 1,1 L 1 (p 0 ))) · · ·)) :=:= (x p0 + x 1 , Ω(x p0 + x 1 , ν p0 , χ p0 ), ν p0 , χ p0 ).Similarly, for χ = (χ 1,1 , . . .,χ 1,p ) ∈ K p , <strong>de</strong>fine the multiple flow map(7.28)L ∗ χ 1(x p0 , u p0 , ν p0 , χ p0 ) := (x p0 , u p0 , Ω ∗ (χ p0 + χ 1 , x p0 , u p0 ), χ p0 + χ 1 ).We may <strong>de</strong>fine now the mappings which correspond to start from the originand to move alternately along the two foliations F p and F v . If the firstmovement consists in moving along the foliation F v , we <strong>de</strong>fine⎧Γ 1 (x 1 ) := L x1 (0),⎪⎨ Γ 1 (x 1 , χ 1 ) := Lχ ∗(7.28)1(L x1 (0)),Γ 3 (x 1 , χ 1 , x 2 ) := L x2 (Lχ ⎪⎩∗ 1(L x1 (0))),Γ 4 (x 1 , χ 1 , x 2 , χ 2 ) := Lχ ∗ 2(L x2 (Lχ ∗ 1(L x1 (0)))).Generally, we may <strong>de</strong>fine the maps Γ k ([xχ] k ), where [xχ] k =(x 1 , χ 1 , x 2 , χ 2 , . . .) with exactly k terms and where each x l belongsto K n and each χ l belongs to K p . On the other hand, if the first movementconsists in moving along the foliation F p , we start with Γ ∗ 1 (χ 1) := Lχ ∗ 1(0),Γ ∗ 2(χ 1 , x 1 ) := L x1 (Lχ ∗ 1(0)), etc., and generally we may <strong>de</strong>fine the mapsΓ ∗ k ([χx] k), where [χx] k = (χ 1 , x 1 , χ 2 , x 2 , . . .), with exactly k terms. Therange of both maps Γ k and Γ ∗ k is contained in M . We call Γ k the k-th chainand Γ ∗ k the k-th dual chain.Definition 5.3. The pair of foliations (F p , F v ) is called covering at the originif there exists an integer k such that the generic rank of Γ k is (maximalpossible) equal to dim K M . Since the dual (k +1)-th chain Γ ∗ k+1 for χ 1 = 0i<strong>de</strong>ntifies with the k-th chain Γ k , it follows that the same property holds forthe dual chains.


In terms of Sussmann’s approach [27], this means that the local orbit ofthe two systems of vector fields (L k ) 1≤k≤n and (Lq ∗)1≤q≤p is of maximal dimension.Reasoning as in [27] (using the so-called backward trick in ControlTheory, see also [Me2003]), it may be shown that there exists the smal<strong>les</strong>teven integer 2µ 0 such that the ranks of the two maps Γ 2µ0 and Γ ∗ 2µ 0at theorigin (not only their generic rank) in K nµ 0+pµ 0are both equal to dim K M .This means that Γ 2µ0 and Γ ∗ 2µ 0are submersive onto a neighborhood of theorigin in M . We call µ 0 the type of the pair of foliations (F p , F v ). It mayalso be established that µ 0 ≤ m + 2.Example 2.46. We give an example of a submanifold which is both 1-solvable with respect to the parameters and with respect to the variab<strong>les</strong>but whose pair of foliations is not covering: with n = 1, m = 2 andp = 1, this is given by the two equations u 1 = ν 1 , u 2 = ν 2 + xχ 1 .Then Sym(M ) is infinite-dimensional since it contains the vector fieldsa(u 1 ) ∂/∂u 1 +a(ν 1 ) ∂/∂ν 1 , where a is an arbitrary K-analytic function. Forthis reason, we shall assume in the sequel that the pair of foliations (F p , F v )is covering at the origin.2.11. Estimate on the dimension of the local symmetry group of thesubmanifold of solutions. We may now formulate the main theorem ofthis section, which shows that, un<strong>de</strong>r suitable non<strong>de</strong>generacy conditions,Sym(M ) is a finite dimensional local <strong>Lie</strong> group of local transformations. Ift ∈ K n+m , we <strong>de</strong>note by |t| := max 1≤k≤n+m |t k |. If (h, φ) ∈ Sym(M )we <strong>de</strong>note by J k t h(0) the k-th or<strong>de</strong>r jet of h at the origin and by J k τ φ(0) thek-th or<strong>de</strong>r jet of φ at the origin. Also, we shall assume that M is eitherK-algebraic or K-analytic. Of course, the K-algebraicity of the submanifoldof solutions does not follow from the K-algebraicity of the right hand si<strong>de</strong>sF j α of the system of partial differential equations (E ).Theorem 6.4. Assume that the K-algebraic or K-analytic submanifold ofsolutions M of the completely integrable system of partial differential equations(E ) is both l 0 -sovable with respect to the parameters and l ∗ 0 -solvablewith respect to the variab<strong>les</strong>. Assume that the fundamental pair of foliations(F p , F v ) is covering at the origin and let µ 0 be its type at the origin. Thenthere exists ε 0 > 0 such that for every ε with 0 < ε < ε 0 , the following fourproperties hold:(a) The (pseudo)group Sym(M ) of local K-analytic diffeomorphisms <strong>de</strong>finedfor {(t, τ) ∈ K n+2m+p : |t| < ε, |τ| < ε} which are of theform (t, τ) ↦→ (h(t), φ(τ)) and which stabilize M is a local <strong>Lie</strong> pseudogroupof transformations of finite dimension d ∈ N.(b) Let κ 0 := µ 0 (l 0 + l ∗ 0). Then there exist two K-algebraic or K-analyticmappings H κ0 and Φ κ0 which <strong>de</strong>pend only on M and which may beconstructed algorithmically by means of the <strong>de</strong>fining equations of M157


158such that every element (h, φ) ∈ Sym(M ), sufficiently close to thei<strong>de</strong>ntity mapping, may be represented by{ h(t) = Hκ0 (t, J κ 0t h(0)),(7.28)φ(τ) = Φ κ0 (τ, J κ 0τ φ(0)).Consequently, every element of Sym(M ) is uniquely <strong>de</strong>termined byits κ 0 -th jet at the origin and the dimension d of the <strong>Lie</strong> algebraSym(M ) is boun<strong>de</strong>d by the number of components of the vector(J κ 0t h(0), J κ 0τ φ(0)), namely we have(7.28)dim K Sym(E ) = dim K Sym(M ) ≤ (n+m) C κ 0n+m+κ 0+(m+p) C κ 0m+p+κ 0.(c) There exists ε ′ with 0 < ε ′ < ε and a K-algebraic or K-analytic mapping(H M , Φ M ) which may be constructed algorithmically by meansof the <strong>de</strong>fining equations of M , <strong>de</strong>fined in a neighbourhood of theorigin in K n+2m+p × K d with values in K n+2m+p and which satifies(H M (t, 0), Φ M (τ, 0)) ≡ (t, τ), such that every element (h, φ) ∈Sym(M ) <strong>de</strong>fined on the set {(t, τ) ∈ K n+2m+p : |t| < ε ′ , |τ| < ε ′ },sufficiently close to the i<strong>de</strong>ntity mapping and stabilizing M may berepresented as (h(t), φ(τ)) ≡ (H M (t, s h,φ ), Φ M (τ, s h,φ )) for a uniqueelement s h,φ ∈ K d <strong>de</strong>pending on the mapping (h, φ).(d) The mapping (t, τ, s) ↦−→ (H M (t, s), Φ M (τ, s)) <strong>de</strong>fines a local K-algebraic or K-analytic <strong>Lie</strong> group of local K-algebraic or K-analytictransformations stabilizing M .2.12. Applications. The proof of Theorem 6.4, which possesses strongsimilarities with the proof of Theorem 4.1 in [8], will not be presented.It seems that Theorem 6.4, together with the argumentation on the necessityof assumptions that M be solvable with respect to the variab<strong>les</strong> andthat its fundamental pair of foliations be covering, is a new result aboutthe finite-dimensionality of a completely integrable system of partial differentialequations having an arbitrary number of in<strong>de</strong>pen<strong>de</strong>nt and <strong>de</strong>pen<strong>de</strong>ntvariab<strong>les</strong>. The main interest lies in the fact that we obtain the algorithmicallyconstructible representation formula (7.28) together with the local <strong>Lie</strong> groupstructure mapping (H M , Φ M ). In particular, we get as a corollary that everytransformation (h(t), φ(τ)) given by a formal power series (not necessarilyconvergent) is as smooth as the applications (H κ0 , Φ κ0 ) are, namely everyformal element of Sym(M ) is necessarily K-algebraic or K-analytic. As acounterpart of its generality, Theorem 3 does not provi<strong>de</strong> optimal bounds,as shows the following illustration.Example 2.46. Let n = m = 1, let κ ≥ 3 and let (E ) <strong>de</strong>note the ordinarydifferential equation u x κ(x) = F(x, u(x), u x (x), . . .,u x κ−1(x)). Thenthe submanifold of solutions M is of the form u = ν + xχ 1 + · · · +


x κ−1 χ κ−1 + O(|x| κ ) + O(|χ| 2 ). It may be checked that l 0 = κ − 1, l ∗ 0 = 1and µ 0 = 3, hence κ 0 = 3κ. Then the dimension estimate in (7.28) is:dim K Sym(E ) ≤ 2 C2+3κ + κ C3κ 4κ . This bound is much larger than the optimalbound dim K Sym(E ) ≤ κ + 4 due to S. <strong>Lie</strong> (cf. [5]; see also the casen = m = 1 of Theorem 6.4).Untill now we focused on providing the set of <strong>Lie</strong> symmetries of a generalsystem of partial differential equations with a local <strong>Lie</strong> group structure. Asa byproduct we obtained the (non optimal) dimensional upper bound (7.28)of Theorem 6.4. In the next Sections 3, 4 and 5, using the classical <strong>Lie</strong>algorithm based on the <strong>Lie</strong> criterion (see Lemma 8.1), we provi<strong>de</strong> an optimalbound for some specific systems of partial differential equations, answeringan open problem raised in [Ol1995] page 206.1593. LIE THEORY FOR PARTIAL DIFFERENTIAL EQUATIONS3.1. Prolongation of vector fields to the jet spaces. Consi<strong>de</strong>r the followingK-analytic system (E ) of non linear partial differential equations:)(7.28) u j x k1···x kκ(x) = F j k 1 ,...,k κ(x, u(x), u i 1xl1(x), . . .,u i 1xl1···x lκ−1(x) ,where 1 ≤ k 1 ≤ · · · ≤ k κ ≤ n, 1 ≤ j ≤ m, and F j k 1 ,...,k κare analyticfunctions of n + m Cn+κ−1 variab<strong>les</strong>, <strong>de</strong>fined in a neighbourhood of theorigin. We assume that (E ) is completely integrable. The <strong>Lie</strong> theory consistsin studying the infinitesimal symmetries X = ∑ n∑ l=1 Ql (x, u) ∂/∂x l +mj=1 Rj (x, u) ∂/∂u j of (E ). Consi<strong>de</strong>r the skeleton of (E ), namely thecomplex subvariety ∆ E of codimension m Cκ+n−1 κ in the jet space Jn,m,κ<strong>de</strong>fined by)(7.28) U j k 1 ,...,k κ= F j k 1 ,...,k κ(x, u, U i 1l 1, . . ., U i 1l 1 ,...,l κ−1,where j, i 1 = 1, . . ., m and k 1 , . . .,k κ , l 1 , . . .,l κ−1 = 1, . . ., n. For k =1, . . ., n let D k be the k-th operator of total differentiation, characterized bythe property that for every integer λ ≥ 2 and for every analytic functionP = P(x, u, U i 1l 1, . . ., U i 1l 1 ,...,l λ−1) <strong>de</strong>fined in the jet space Jn,m λ−1 , the operatorD k is the unique formal infinite differential operator satisfying the relation(7.28)⎧⎪⎨⎪⎩([D k P]x, u(x), u i 1xl1(x), . . . , u i 1∂[P∂x k)xl1···x lλ−1(x) ≡(x, u(x), u i 1xl1(x), . . .,u i 1xl1···x lλ−1(x))].


160Note that this i<strong>de</strong>ntity involves only the troncature of D k to or<strong>de</strong>r λ, <strong>de</strong>notedby Dk λ , and <strong>de</strong>fined by⎧Dk ⎪⎨λ := ∂ m∑+ U i ∂1k∂x k ∂u + ∑ m n∑U i ∂1i 1 k,l 1i 1 =1i 1∂U i + · · ·+1=1 l 1 =1 l 1(7.28)m∑ n∑+ U ⎪⎩i ∂1k,l 1 ,...,l λ−1∂U i .1l 1 ,...,l λ−1i 1 =1 l 1 ,...,l λ−1 =1According to Theorem 2.36 of [Ol1986], the prolongation of or<strong>de</strong>r κ of avector field X = ∑ nl=1 Ql (x, u) ∂/∂x l + ∑ mj=1 Rj (x, u) ∂/∂u j , <strong>de</strong>noted byX (κ) , is the unique vector field on the space Jn,m κ of the form(7.28) ⎧X ⎪⎨(κ) = X +⎪⎩m∑j=1+n∑k 1 =1m∑j=1R j k 1∂∂U j +k 1n∑k 1 ,...,k κ=1m∑j=1R j k 1 ,...,k κn∑k 1 ,k 2 =1R j k 1 ,k 2∂∂U j k 1 ,k 2 ,...,k κ,∂∂U j k 1 ,k 2+ · · ·+corresponding to the infinitesimal action of the flow of X on the jets of or<strong>de</strong>rκ of the graphs of maps u = u(x), and whose coefficients are computedrecursively by the formulas⎧n∑R j k 1:= Dk 1 1(R j ) − Dk 1 1(Q l 1) U j l 1,(7.28)⎪⎨R j k 1 ,k 2:= D 2 k 2(R j k 1) −l 1 =1n∑Dk 1 2(Q l 1) U j k 1 ,l 1,l 1 =1· · · · · · · · · · · · · · · · · · · · · · · · · · ·n∑R ⎪⎩j k 1 ,k 2 ,...,k λ:= Dk λ λ(R j k 1 ,...,k λ−1) − Dk 1 λ(Q l 1) U j k 1 ,...,k λ−1 ,l 1.For a better comprehension of the general computation, let us start by computingR κ in the case n = m = 1.3.2. Computation of R κ when n = m = 1. A direct application of thepreceding formulas leads to the following classical expressions:(7.28) ⎧⎪⎨R 1 = R x + [R u − Q x ] U 1 + [−Q u ] (U 1 ) 2 .R 2 = R x 2 + [2R xu − Q x 2] U 1 + [R u 2 − 2Q xu ] (U 1 ) 2 + [−Q u 2] (U 1 ) 3 +⎪⎩+ [R u − 2Q x ] U 2 + [−3Q u ] U 1 U 2 .l 1 =1


Observe that these expressions are polynomial in the jet variab<strong>les</strong>, their coefficientsbeing differential expressions involving a partial <strong>de</strong>rivative of R(with a positive integer coefficient) and a partial <strong>de</strong>rivative of Q (with a negativeinteger coefficient). We have also:(7.28) ⎧R 3 = R x 3 + [3R x 2 u − Q x 3] U 1 + [3R xu 2 − 3Q x 2 u] (U 1 ) 2 +⎪⎨R 4 = R x 4 + [4R x 3 u − Q x 4] U 1 + [6R x 2 u 2 − 4Q x 3 u] (U 1 ) 2 ++ [4R xu 3 − 6Q x 2 u 2] (U1 ) 3 + [R u 4 − 4Q xu 3] (U 1 ) 4 + [−Q u 4] (U 1 ) 5 +⎪⎩161+ [R u 3 − 3Q xu 2] (U 1 ) 3 + [−Q u 3] (U 1 ) 4 + [3R xu − 3Q x 2] U 2 ++ [3R u 2 − 9Q xu ] U 1 U 2 + [−6Q u 2] (U 1 ) 2 U 2 + [−3Q u ] (U 2 ) 2 ++ [R u − 3Q x ] U 3 + [−4Q u ] U 1 U 3 .+ [6R x 2 u − 4Q x 3] U 2 + [12R xu 2 − 18Q x 2 u] U 1 U 2 ++ [6R u 3 − 24Q xu 2] (U 1 ) 2 U 2 + [−10Q u 3] (U 1 ) 3 U 2 ++ [3R u 2 − 12Q xu ] (U 2 ) 2 + [−15Q u 2] U 1 (U 2 ) 2 + [4R xu − 6Q x 2] U 3 ++ [4R u 2 − 16Q xu ] U 1 U 3 + [−10Q u 2] (U 1 ) 2 U 3 + [−10Q u ] U 2 U 3 ++ [R u − 4Q x ] U 4 + [−5Q u ] U 1 U 4 .Remark that all the brackets involved in equations (7.28) are of the form[λ R x a u − µ Q b+1 x a+1 ub], where λ, µ ∈ N and a, b ∈ N.In what follows we will not need the complete form of R κ but only thefollowing partial form:Lemma 8.1. For κ ≥ 4:(7.28)⎧R κ = R x κ + [ Cκ 1 R x κ−1 u − Q x κ]U 1 + [ Cκ 2 R x κ−2 u − Cκ 1 Q ]x κ−1 U 2 +⎪⎨⎪⎩+ [ C 2 κ R x 2 u − C 3 κ Q x 3 ]U κ−2 + [ C 1 κ R xu − C 2 κ Q x 2 ]U κ−1 ++ [ C 1 κ R u 2 − κ2 Q xu]U 1 U κ−1 + [ −C 2 κ+1 Q u]U 2 U κ−1 ++ [ R u − C 1 κ Q x]U κ + [ −C 1 κ+1 Q u]U 1 U κ ++ Remain<strong>de</strong>r,where the term Remain<strong>de</strong>r <strong>de</strong>notes the remaining terms in the expansion ofR κ .We note that the formula (7.28) is valid for κ = 3, comparing with (7.28),with the convention that the terms U κ−2 and U κ−1 vanish (they coinci<strong>de</strong> withU 1 and U 2 ), and replacing the coefficient −C 2 κ+1 Q u = −C 2 4 Q u = −6 Q uof the monomial U 2 U κ−1 by −3 Q u , as it appears in (7.28). The proof goesby a straightforward computation, applying the recursive <strong>de</strong>finition of thispartial formula.


1623.3. Computation of R κ in the general case. Following the exact samescheme as in the case n = 1 we give the general partial formula forR κ . We start with the first three families of coefficients R j k 1, R j k 1 ,k 2andR j k 1 ,k 2 ,k 3. Let δp q be the Kronecker symbol, equal to 1 if p = q and to 0 ifp ≠ q. More generally, the generalized Kronecker symbols are <strong>de</strong>fined byδ q 1,...,q kp 1 ,...,p k:= δ q 1p 1δ q 2p 2 · · ·δ q kp k.By convention, the indices j, i 1 , i 2 , . . . , i λ run in the set {1, . . ., m}, theindices k, k 1 , k 2 , . . . , k λ and l, l 1 , l 2 , . . . , l λ running in {1, . . ., n}. Hence wewill write ∑ m ∑ mi 1 =1 i 2 =1 · · ·∑mi λ =1 as ∑ i 1 ,...,i λand ∑ n ∑ nl 1 =1 l 2 =1 · · ·∑nl λ =1as ∑ l 1 ,...,l λ. The letters i 1 , i 2 , . . .,i λ and l 1 , l 2 , . . .,l λ will always be used forthe summations in the <strong>de</strong>velopment of R j k 1 ,k 2 ,...,k λ. We will always use theindices j and k 1 , k 2 , . . ., k λ to write the coefficient R j k 1 ,k 2 ,...,k λ.We have:(7.28)⎧R ⎪⎨j k 1= Rx j k1+ ∑ i 1⎪⎩∑ []δ l 1k1R j − u i 1 δj i 1Q l 1xk1U i 1l 1+l 1+ ∑ ∑i 1 ,i 2l 1 ,l 2[−δji 2δ l 1k1Q l 2u i 1]Ui 1l 1U i 2l 2.For R j k 1 ,k 2we have:(7.28) ⎧R j k 1 ,k 2= Rx j k1 x k2+ ∑ i 1+ ∑ ∑ [(δ l 1,l 2k 1 ,k 2R j u i 1u − i 2 δj i 2δ l 1k1Q l 2+ x k2 u i 1 δl 1k2Q l 2x k1 u i 1i 1 ,i 2 l 1 ,l 2⎪⎨+ ∑⎪⎩i 1 ,i 2 ,i 3∑ [−δ j i 3δ l 1,l 2k 1 ,k 2Q l 3u i 1u i 2l 1 ,l 2 ,l 3∑l 1[δ l 1k2R j x k1 u i 1 + δl 1k1R j x k2 u i 1 − δj i 1Q l 1xk1 x k2]U i 1l 1+]U i 1l 1U i 2l 2U i 3l 3++ ∑ ∑ []δ l 1,l 2k 1 ,k 2R j − u i 1 δj i 1δ l 1k2Q l 2xk1− δ j i 1δ l 1k1Q l 2xk2U i 1l 1 ,l 2+i 1 l 1 ,l 2+ ∑ i 1 ,i 2∑l 1 ,l 2 ,l 3[−δ j i 2δ l 1,l 2k 1 ,k 2Q l 3u i 1 − δj i 2δ l 3,l 1k 1 ,k 2Q l 2u i 1 − δj i 1δ l 2,l 3k 1 ,k 2Q l 1u i 2)]U i 1l 1U i 2l 2+]U i 1l 1U i 2l 2 ,l 3.Since we also treat systems of or<strong>de</strong>r κ ≥ 3, it is necessary to computeR j k 1 ,k 2 ,k 3. We write this as follows:(7.28) R j k 1 ,k 2 ,k 3= I + II + III,


where the first term I involves only polynomials in U i 1(7.28) ⎧I = Rx j k1 x k2 x k3+ ∑ ∑ [δ l 1k1R j + x k2 x k3 u i 1 δl 1k2R j + x k1 x k3 u i 1 δl 1k3R j − x k1 x k2 u i 1i 1 l 1]−δ j i 1Q l 1xk1 x k2 x k3U i 1l 1+ ∑ ∑ [δ l 1,l 2k 1 ,k 2R j x k3 u i 1u + i 2 δl 1,l 2k 3 ,k 1R j x k2 u i 1u + i 2i 1 ,i 2 l 1 ,l 2⎪⎨⎪⎩+δ l 1,l 2k 2 ,k 3R j x k1 u i 1u − i 2 δj i 2δ l 1k1Q l 2]−δ j i 2δ l 1k3Q l 2x k1 x k2U i u i 11 l 1U i 2l 2+ ∑−δ j i 3δ l 1,l 2k 1 ,k 2Q l 3−δ j i 3δ l 1,l 2k 1 ,k 3Q l 3+ ∑i 1 ,i 2 ,i 3 ,i 4x k3 u i 1u i 2 − δj i 3δ l 1,l 2x k2 u i 1u i 2x k2 x k3 u i 1 − δj i 2δ l 1i 1 ,i 2 ,i 3k 2 ,k 3Q l 3x k1 u i 1u − i 2]U i 1l 1U i 2l 2U i 3l 3+∑ [−δ j i 4δ l 1,l 2 ,l 3k 1 ,k 2 ,k 3Q l 4u i 1u i 2u i 3l 1 ,l 2 ,l 3 ,l 4l 1:k2Q l 2− x k1 x k3 u i 1∑ [δ l 1,l 2 ,l 3k 1 ,k 2 ,k 3R j u i 1u i 2u − i 3l 1 ,l 2 ,l 3]U i 1l 1U i 2l 2U i 3l 3U i 4l 4,163the second term II involves at least once the monomial U i 1l 1 ,l 2:(7.28)⎧II = ∑ i 1⎪⎨⎪⎩∑ [δ l 1,l 2k 1 ,k 2R j + x k3 u i 1 δl 1,l 2k 3 ,k 1R j + x k2 u i 1 δl 1,l 2k 2 ,k 3R j − x k1 u i 1l 1 ,l 2)]−δ j i 1(δ l 1k1Q l 2xk2 x k3+ δ l 1k2Q l 2xk1 x k3+ δ l 1k3Q l 2xk1 x k2U i 1l 1 ,l 2++ ∑ ∑ [δ l 1,l 2 ,l 3k 1 ,k 2 ,k 3R j u i 1u + i 2 δl 3,l 1 ,l 2k 1 ,k 2 ,k 3R j u i 1u + i 2 δl 2,l 3 ,l 1k 1 ,k 2 ,k 3R j u i 1u − i 2i 1 ,i 2 l 1 ,l 2 ,l 3−δ j i 1(δ l 2,l 3k 1 ,k 2Q l 1x k3 u i 2 + δl 2,l 3k 3 ,k 1Q l 1x k2 u i 2 + δl 2,l 3k 2 ,k 3Q l 1x k1 u i 2−δ j i 2(δ l 1,l 2k 1 ,k 2Q l 3x k3 u i 1 + δl 1,l 2k 3 ,k 1Q l 3x k2 u i 1 + δl 1,l 2k 2 ,k 3Q l 3+δ l 3,l 1k 1 ,k 2Q l 2+ ∑i 1 ,i 2 ,i 3+ x k3 u i 1 δl 3,l 1k 3 ,k 1Q l 2+ x k2 u i 1 δl 3,l 1k 2 ,k 3Q l 2x k1 u i 1x k1 u i 1 +)−)]U i 1l 1U i 2l 2 ,l 3+∑ [−δ j i 3(δ l 1,l 2 ,l 3k 1 ,k 2 ,k 3Q l 4u i 1u + i 2 δl 1,l 4 ,l 2k 1 ,k 2 ,k 3Q l 3u i 1u + i 2l 1 ,l 2 ,l 3 ,l 4) (− δ j i 1δ l 3,l 1 ,l 2k 1 ,k 2 ,k 3Q l 4u i 1u i 2+δ l 2,l 3 ,l 4k 1 ,k 2 ,k 3Q l 1u i 1u i 2δ l 3,l 2 ,l 4k 1 ,k 2 ,k 3Q l 1u i 2u i 3 + δl 4,l 3 ,l 2k 1 ,k 2 ,k 3Q l 1)]U i 1l 1U i 2l 2U i 3l 3 ,l 4+ ∑ i 1 ,i 2+δ l 3,l 1 ,l 2k 1 ,k 2 ,k 3Q l 4u i 1 + δl 2,l 3 ,l 1k 1 ,k 2 ,k 3Q l 4u i 1)]U i 1l 1 ,l 2U i 2l 3 ,l 4u i 2u i 3 +∑ [−δ j i 2(δ l 1,l 2 ,l 3k 1 ,k 2 ,k 3Q l 4+ u i 1l 1 ,l 2 ,l 3 ,l 4


164and the third term III involves at least once the monomial U i 1l 1 ,l 2 ,l 3(note thatthere is no term involving simultaneously U i 1l 1 ,l 2and U i 1l 1 ,l 2 ,l 3):(7.28) ⎧III = ∑ ∑ [(δ l 1,l 2 ,l 3k 1 ,k 2 ,k 3R j − u i 1 δj i 1δ l 1,l 2k 2 ,k 3Q l 3xk1+ δ l 1,l 2k 3 ,k 1Q l 3xk2+i 1 l 1 ,l 2 ,l 3⎪⎨)]+δ l 1,l 2k 1 ,k 2Q l 3xk3U i 1l 1 ,l 2 ,l 3+ ∑ ∑ [−δ j i 1δ l 2,l 3 ,l 4k 1 ,k 2 ,k 3Q l 1− u i 2i 1 ,i 2 l 1 ,l 2 ,l 3 ,l 4⎪⎩−δ j i 2(δ l 1,l 2 ,l 3k 1 ,k 2 ,k 3Q l 4u i 1 + δl 4,l 1 ,l 2k 1 ,k 2 ,k 3Q l 3u i 1 + δl 3,l 4 ,l 1k 1 ,k 2 ,k 3Q l 2u i 1)]U i 1l 1U i 2l 2 ,l 3 ,l 4.Before giving the partial expression of R κ we introduce some notations. Forp ∈ N with p ≥ 1, let S p be the group of permutations of {1, 2, . . ., p}. Forq ∈ N with 1 ≤ q ≤ p − 1, let S q p be the set of permutations σ ∈ S p suchthat σ(1) < σ(2) < · · · < σ(q) and σ(q + 1) < σ(q + 2) < · · · < σ(p). Itscardinal is C q p . Let C p be the group of cyclic permutations of {1, 2, . . ., p}.Reasoning recursively from the formula of R j k 1 ,k 2 ,k 3given by (7.28), we maygeneralize Lemma 8.1:Lemma 8.1. For every κ ≥ 4 and for every j = 1, . . ., m, k 1 , . . .,k κ =1, . . ., n, we have:(7.28) R j k 1 ,k 2 ,...,k κ= I 1 + · · · + I 9 + Remain<strong>de</strong>rwhere I 1 = Rx j k1 x k2 ...x kκ,⎡I 2 = ∑ ∑⎣ ∑i 1 l 1 σ∈S 1 κ⎡∑⎣ ∑l 1 ,l 2I 3 = ∑ i 1I 4 = ∑ i 1σ∈S 2 κ−δ j i 1⎛⎝ ∑δ l 1kσ(1)R j x kσ(2)···x kσ(κ) u i 1 − δj i 1Q l 1xk1 ...x kκ⎤⎦U i 1l 1,δ l 1,l 2k σ(1) ,k σ(2)R j x kσ(3)···x kσ(κ) u i 1 −σ∈S 1 κ⎡∑⎣ ∑l 1 ,...,l κ−2σ∈S κ−2κ⎛−δ j ⎝ ∑i 1σ∈S κ−3κδ l 1kσ(1)Q l 2⎞xkσ(2)···x⎠kσ(κ)⎤⎦U i 1l 1 ,l 2,δ l 1,......,l κ−2k σ(1) ,...,k σ(κ−2)R j x kσ(κ−1) x kσ(κ) u i 1 −δ l 1,......,l κ−3k σ(1) ,...,k σ(κ−3)Q l κ−2⎞⎠x kσ(κ−2) x kσ(κ−1) x kσ(κ)⎤⎦U i 1l 1 ,...,l κ−2,


I 5 = ∑ i 1I 6 = ∑ i 1 ,i 2I 7 = ∑ i 1 ,i 2⎡∑⎣ ∑l 1 ,...,l κ−1σ∈S κ−1κδ l 1,......,l κ−1k σ(1) ,...,k σ(κ−1)R j x kσ(κ) u i 1 −⎛−δ j ⎝ ∑i 1σ∈S κ−2κ⎡∑⎣ ∑ δ l τ(1),...,l τ(κ)k 1 ,......,k κl 1 ,...,l κ τ∈C κ−δ j i 2⎛⎝ ∑σ∈S κ−1κ⎞δ l 1,......,l κ−2 l κ−1 ⎠k σ(1) ,...,k σ(κ−2) x kσ(κ−1) x kσ(κ)⎛R j u i 1u − i 2 δj ⎝ ∑i 1σ∈S κ−1κ⎤⎦U i 1165l 1 ,...,l κ−1,δ l 1,......,l κk σ(1) ,...,k σ(κ−1)Q l 1x kσ(κ) u i 2(δ l 1,......,l κ−1k σ(1) ,...,k σ(κ−1)Q lκx kσ(κ) u i 1 + · · · + δl 3,......,l 1k σ(1) ,...,k σ(κ−1)Q l 2x kσ(κ) u i 2× U i 1l 1U i 2l 2 ,...,l κ,∑ [ (−δ j i 1δ l 2,...,l κ+1k 1 ,...,k κQ l 1+ · · · + u i 2 δl κ+1,...,l 2k 1 ,...,k κQ l 1u i 2l 3 ,...,l κ+1⎛⎞⎤−δ j ⎝ ∑i 2δ l τ(1),...,l τ(κ)⎠⎦U i 1τ∈S 2 κk 1 ,......,k κQ l κ+1u i 1)−l 1 ,l 2U i 2l 3 ,...,l κ+1,⎡⎛⎞⎤I 8 = ∑ ∑⎣δ l 1,...,l κk 1 ,...,k κR j − u i 1 δj ⎝ ∑i 1δ l 1,......,l κ−1k σ(1) ,...,k σ(κ−1)Q lκ ⎠x kσ(κ)⎦U i 1i 1 l 1 ,...,l κ σ∈Sκκ−1I 9 = ∑ ∑ [(−δ j i 1δ l 2,...,l κ+1k 1 ,...,k κQ l 1− u i 2 δj i 2δ l 1,...,l κk 1 ,...,k κQ l κ+1+ · · · + δ l 3,...,l 1u i 1i 1 ,i 2 l 1 ,...,l κ+1l 1 ,...,l κ,k 1 ,...,k κQ l 2u i 1× U i 1l 1U i 2l 2 ,...,l κ+1and where the term Remain<strong>de</strong>r <strong>de</strong>notes the remaining terms in the expansionof R j k 1 ,k 2 ,...,k κ.In I 6 the summation on the upper indices (l 1 , . . .,l κ ) gets on all the circularpermutations of {1, 2, . . ., κ} except the i<strong>de</strong>ntity. In I 7 the summationgets on all the circular permutations of {2, 3, . . ., κ + 1}. In I 9 the summationgets on all the circular permutations of {1, 2, . . ., κ + 1} except theone transforming (l 1 , l 2 , . . .,l κ+1 ) into (l 2 , l 3 , . . .,l 1 ). For κ = 3, comparingwith (7.28), we see that the formula remains valid, with the same conventionsas in the case n = 1.3.4. <strong>Lie</strong> criterion and <strong>de</strong>fining equations of Sym(E ). We recall the <strong>Lie</strong>criterion, presented in Subsection 2.6 (see Theorem 2.71 of [Ol1986]):A vector field X is an infinitesimal symmetry of the completely integrab<strong>les</strong>ystem (E ) if and only if its prolongation X (κ) of or<strong>de</strong>r κ is tangent to theskeleton ∆ E in the jet space J κ n,m .⎞⎠ −) ⎞ ⎤⎠⎦ ×)]×


166The set of infinitesimal symmetries of (E ) forms a <strong>Lie</strong> algebra, since wehave the relation [X, X ′ ] (κ) = [X (κ) , X ′ (κ) ] (cf. [Ol1986]). We will <strong>de</strong>noteby Sym(E ) this <strong>Lie</strong> algebra. The aim of the forecoming Section is to obtainprecise bounds on the dimension of the <strong>Lie</strong> algebra Sym(E ) of infinitesimalsymmetries of (E ). For simplicity we start with the case n = m = 1.4. OPTIMAL UPPER BOUND ON DIM K Sym(E ) WHEN n = m = 1.4.1. Defining equations for Sym(E ). Applying the <strong>Lie</strong> criterion, the tangencycondition of X (κ) to ∆ E is equivalent to the i<strong>de</strong>ntity:(7.28)R κ −[Q ∂F∂x + R ∂F∂u∂F ∂F+ R1 + R2∂U1 ∂U + · · · + 2 Rκ−1]∂F≡ 0,∂U κ−1on the subvariety ∆ E , that is to a formal i<strong>de</strong>ntity in K{x, u, U 1 , . . ., U κ−1 },in which we replace the variable U κ by F(x, u, U 1 , . . .,U κ−1 ) in the twomonomials U κ and U 1 U κ of R κ , cf. Lemma 8.1. Expanding F and its partial<strong>de</strong>rivatives in power series of the variab<strong>les</strong> (U 1 , . . .,U κ−1 ) with analyticcoefficients in (x, u), we may rewrite (7.28) as follows:⎧ ∑ [⎪⎨ Φµ1 ,...,µ κ−1(x, u, (Q x k u l) k+l≤κ, (R x k u l) k+l≤κ) ] ×(7.28) µ 1 ,...,µ κ−1 ≥0⎪⎩×(U 1 ) µ 1. . .(U κ−1 ) µ κ−1≡ 0,where the expressions(7.28) Φ µ1 ,...,µ κ−1(x, u, (Q x k u l) k+l≤κ, (R x k u l) k+l≤κ)are linear with respect to the partial <strong>de</strong>rivatives ((Q x k u l) k+l≤κ, (R x k u l) k+l≤κ),with analytic coefficients in (x, u). By construction these coefficients essentially<strong>de</strong>pend on the expansion of F . The tangency condition (7.28)is equivalent to the following infinite linear system of partial differentialequations, called <strong>de</strong>fining equations of Sym(E ):(7.28) Φ µ1 ,...,µ κ−1(x, u, (Q x k u l(x, u)) k+l≤κ, (R x k u l(x, u)) k+l≤κ) = 0,satisfied by (Q(x, u), R(x, u)). The <strong>Lie</strong> method consists in studying thesolutions of this linear system of partial differential equations.4.2. Homogeneous system. As mentioned in the introduction, we focusour attention on the case κ ≥ 3. Denote by (E 0 ) the homogeneous equationu x κ = 0 of or<strong>de</strong>r κ. The general solution u = ∑ κ−1l=0 λ l x l consists ofpolynomials of <strong>de</strong>gree ≤ κ − 1 and the <strong>de</strong>fining equation (7.28) reduces toR κ = 0. Using the expression (7.28), expanding (7.28), (7.28) and consi<strong>de</strong>ringonly the coefficients of the five monomials ct., U κ−2 , U κ−1 , U 1 U κ−1 and


U 2 U κ−1 , we obtain the five following partial differential equations, whichare sufficient to <strong>de</strong>termine Sym(E 0 ):⎧R x κ = 0,(κ − 2)R x ⎪⎨2 u − Q x 3 = 0,3(7.28)(κ − 1)R xu − Q x 2 = 0,2R u 2 − κ Q xu = 0,⎪⎩Q u = 0.The general solution of this system is evi<strong>de</strong>ntly:167(7.28){Q = A + B x + C x 2 ,R = (κ − 1) C xu + D u + E 0 + E 1 x + · · · + E κ−1 x κ−1 ,where the (κ + 4) constants A, B, C, D, E 0 , E 1 , . . ., E κ−1 are arbitrary.Computing explicitely the flows of the (κ + 4) generators ∂/∂x, x∂/∂x,x 2 ∂/∂x + (κ − 1) xu ∂/∂u, u ∂/∂u, ∂/∂u, x∂/∂u, . . . , x κ−1 ∂/∂u, wecheck easily that they stabilize the graphs of polynomials of <strong>de</strong>gree ≤ κ −1.Moreover they span a <strong>Lie</strong> algebra of dimension (κ+4) and the general formof a <strong>Lie</strong> symmetry is:( )α0 + α 1 x(7.28) (x, u) ↦−→1 + εx , βu + γ 0 + γ 1 x + · · · + γ κ−1 x κ−1.(1 + εx) κ−14.3. Nonhomogeneous system. Consi<strong>de</strong>r for κ ≥ 3 the equation (7.28) afterreplacing the variable U κ by F . Let Φ(U λ ) <strong>de</strong>note an arbitrary termof the form φ(x, u) U λ , where φ(x, u) is an analytic function. We consi<strong>de</strong>rthe five following terms Φ(ct.), Φ(U κ−2 ), Φ(U κ−1 ), Φ(U 1 U κ−1 )and Φ(U 2 U κ−1 ). Since some multiplications of monomials appear inthe expression (7.28), we must be aware of the fact that Φ(U 1 U κ−1 ) ≡Φ(U 1 ) Φ(U κ−1 ) and Φ(U 2 U κ−1 ) ≡ Φ(U 2 ) Φ(U κ−1 ). Consequently in theexpansion of (7.28) we must take into account the seven types of monomialsΦ(ct.), Φ(U 1 ), Φ(U 2 ), Φ(U κ−2 ), Φ(U κ−1 ), Φ(U 1 U κ−1 ) and Φ(U 2 U κ−1 ).The (κ + 1) <strong>de</strong>rivatives ∂F/∂x, ∂F/∂u, ∂F/∂U 1 , . . .,∂F/∂U κ−1 appearingin the brackets of (7.28), and the term F appearing in the expressionof R κ after replacing U κ by F (cf. the last two monomials U κ and U 1 U κin (7.28)) may all contain the seven monomials ct., U 1 , U 2 , U κ−2 , U κ−1 ,U 1 U κ−1 and U 2 U κ−1 . For F and its (κ + 1) first <strong>de</strong>rivatives we use thegeneric simplified notation(7.28)Φ(ct.)+Φ(U 1 )+Φ(U 2 )+Φ(U κ−2 )+Φ(U κ−1 )+Φ(U 1 U κ−1 )+Φ(U 2 U κ−1 ),


168to name the seven monomials appearing a priori. Hence, expanding (7.28),picking up the only terms which may contain the five monomials we areinterested in, and using the formula of Lemma 8.1 for R λ (1 ≤ λ ≤ κ), weobtain the following expression:(7.28)⎧R x κ + [ Cκ 2 R x 2 u − Cκ 3 Q ]x 3 U κ−2 + [ Cκ 1 R xu − Cκ 2 Q ]x 2 U κ−1 +⎪⎨⎪⎩+ [ C 1 κ R u 2 − κ 2 Q xu]U 1 U κ−1 + [ −C 2 κ+1 Q u]U 2 U κ−1 ++ { R u − C 1 κ Q x + [ −C 1 κ+1 Q u]U1 } ×× { Φ(ct.) + Φ(U 1 ) + Φ(U 2 ) + Φ(U κ−2 ) + Φ(U κ−1 ) + Φ(U 1 U κ−1 ) + Φ(U 2 U κ−1 ) } −− { Q + R + R x + [R u − Q x ] U 1 + R x 2 + [2R xu − Q x 2] U 1 ++ [R u − 2Q x ] U 2 + · · · + R x κ−3 + [ C 1 κ−3 R x κ−4 u − Q x κ−3]U 1 ++ [ C 2 κ−3 R x κ−5 u − C 1 κ−3 Q x κ−4]U 2 + R x κ−2++ [ C 1 κ−2 R x κ−3 u − Q x κ−2]U 1 + [ C 2 κ−2 R x κ−4 u − C 1 κ−2 Q x κ−3 ]U 2 ++ [ R u − C 1 κ−2 Q x]U κ−2 + [ −C 1 κ−1 Q u]U 1 U κ−2 ++R x κ−1 + [ C 1 κ−1 R x κ−2 u − Q x κ−1]U 1 ++ [ C 2 κ−1 R x κ−3 u − C 1 κ−1 Q x κ−2 ]U 2 + [ C 1 κ−1 R xu − C 2 κ−1 Q x 2 ]U κ−2 ++ [ C 1 κ−1 R u 2 − (κ − 1)2 Q xu]U 1 U κ−2 + [ R u − C 1 κ−1 Q x]U κ−1 ++ [ −C 1 κ Q u]U 1 U κ−1} ×× { Φ(ct.) + Φ(U 1 ) + Φ(U 2 ) + Φ(U κ−2 ) + Φ(U κ−1 ) + Φ(U 1 U κ−1 ) + Φ(U 2 U κ−1 ) }+ Remain<strong>de</strong>r ≡ 0.Here the term Remain<strong>de</strong>r consists of the monomials, in the jet variab<strong>les</strong>,different from the five ones we are concerned with. The first four lines beforethe sign “−” <strong>de</strong>velop R κ and the third line consists of the factor F replacedby (7.28). In the last line (note that this is multiplied by the nine precedinglines) we replaced the (κ+1) first partial <strong>de</strong>rivatives of F appearing in (7.28)by the term (7.28) which we factorized.By expanding the product appearing in this expression (7.28), and equalingto zero the coefficients of the five monomials ct., U κ−2 , U κ−1 , U 1 U κ−1


and U 2 U κ−1 , we obtain the five following partial differential equations(7.28)⎧R x κ = Π(x, u, Q, Q x , R, R x , . . .,R x κ−1, R u ),⎪⎨⎪⎩C 2 κ R x 2 u − C 3 κ Q x 3 = Π(x, u, Q, Q x, Q x 2, R, R x , . . .,R x κ−1, R u , R xu ),C 1 κ R xu − C 2 κ Q x 2 = Π(x, u, Q, Q x, R, R x , . . .,R x κ−1, R u ),C 1 κ R u 2 − κ 2 Q xu = Π(x, u, Q, Q x , . . .,Q x κ−1, Q u , R, R x , . . .R x κ−1,169R u , R xu , . . .,R x κ−2 u),−C 2 κ+2 Q u = Π(x, u, Q, Q x , . . .,Q x κ−2, R, R x , . . .R x κ−1,R u , R xu , . . .,R x κ−3 u).Here by convention Π <strong>de</strong>notes any linear quantity in Q, R and some of their<strong>de</strong>rivatives, of the form⎧Π(x, u, Q ⎪⎨ x a 1u b 1 , . . ., Q x ap u bp, R x c 1u 1, . . ., R d x cq u dq) =(7.28)p∑q∑⎪⎩ = φ i (x, u) Q x a iu b i (x, u) + ψ j (x, u) R xc j u j(x, u), di=1where φ i and ψ j are analytic in (x, u). For instance, the differentiationof Π(x, u, Q, R, R u ) with respect to x gives the expressionΠ(x, u, Q, Q x , R, R x , R xu ). Let us introduce the followingcollection of (κ + 4) partial <strong>de</strong>rivatives of (Q, R) <strong>de</strong>fined byJ := (Q, Q x , Q x 2, R, R x , . . ., R x κ−1, R u ). The aim is now to makelinear substitutions on the system (7.28) to obtain the system (7.28) wherethe five second members <strong>de</strong>pend only on the collection J. The <strong>de</strong>sire<strong>de</strong>stimate dim K Sym(E ) ≤ κ + 4 will follow from (7.28).Let us differentiate the third equation of (7.28) with respect to x. Dividingby Cκ 1 we obtain:(7.28)(κ − 1)R x 2 u − Q x 3 = Π(x, u, Q, Q x , Q x 2, R, R x , . . .,R x κ, R u , R xu ).2Solving R x 2 u and Q x 3 by the second equality in (7.28) and by (4.3) we find{Qx 3 = Π(x, u, Q, Q x , Q x 2, R, R x , . . ., R x κ, R u , R xu ),(7.28)R x 2 u = Π(x, u, Q, Q x , Q x 2, R, R x , . . ., R x κ, R u , R xu ).Replacing R x κ by its value given by the first equality in (7.28) we obtain forQ x 3:(7.28) Q x 3 = Π(x, u, Q, Q x , Q x 2, R, R x , . . .,R x κ−1, R u , R xu ).If we write the third equality in (7.28) as(7.28) R xu = Π(x, u, Q, Q x , Q x 2, R, R x , . . .,R x κ−1, R u ),j=1


170we may replace R xu in (7.28). This gives the <strong>de</strong>sired <strong>de</strong>pen<strong>de</strong>nce of Q x 3 onthe collection J:(7.28) Q x 3 = Π(x, u, Q, Q x , Q x 2, R, R x , . . .,R x κ−1, R u ).We may now differentiate the equalities (7.28) and (7.28) with respect to xup to the or<strong>de</strong>r l. At each differentiation we replace Q x 3, R xu and R x κ bytheir values in (7.28), in (7.28) and in the first equality in (7.28) respectively.We obtain for l ∈ N:{Qx l+3 = Π(x, u, Q, Q x , Q x 2, R, R x , . . .,R x κ−1, R u ),(7.28)R x l+1 u = Π(x, u, Q, Q x , Q x 2, R, R x , . . .,R x κ−1, R u ).Replacing these values in the fifth equality of (7.28), we obtain(7.28) Q u = Π(x, u, Q, Q x , Q x 2, R, R x , . . ., R x κ−1, R u ).By replacing the fourth equality of (7.28) we obtain finally(7.28) R u 2 = Π(x, u, Q, Q x , Q x 2, R, R x , . . .,R x κ−1, R u ).To summarize, using the first equality of (7.28), using (7.28), (7.28), (7.28)and (7.28), we obtained the <strong>de</strong>sired system:⎧R x κ = Π(x, u, Q, Q x , Q x 2, R, R x , . . .,R x κ−1, R u ),(7.28)⎪⎨Q u = Π(x, u, Q, Q x , Q x 2, R, R x , . . .,R x κ−1, R u ),R u 2 = Π(x, u, Q, Q x , Q x 2, R, R x , . . .,R x κ−1, R u ),R xu = Π(x, u, Q, Q x , Q x 2, R, R x , . . .,R x κ−1, R u ),⎪⎩Q x 3 = Π(x, u, Q, Q x , Q x 2, R, R x , . . .,R x κ−1, R u ).We recall that the terms Π are linear expressions of the form (7.28). Let usdifferentiate every equation of system (7.28) with respect to x at an arbitraryor<strong>de</strong>r and let us replace in the right hand si<strong>de</strong> the terms R x κ, R xu and Q x 3 thatmay appear at each step by their value in (7.28), and then differentiate withrespect to u at an arbitrary or<strong>de</strong>r. We <strong>de</strong>duce that all the partial <strong>de</strong>rivativesof the five functions R x κ, Q u , R u 2, R xu and Q x 3 are also linear functionsof the (κ + 4) partial <strong>de</strong>rivatives (Q, Q x , Q x 2, R, R x , . . .,R x κ−1, R u ). Thusthe analytic functions Q and R are <strong>de</strong>termined uniquely by the value at theorigin of the (κ + 4) partial <strong>de</strong>rivatives (Q, Q x , Q x 2, R, R x , . . .,R x κ−1, R u ).This ends the proof of the inequality dim K Sym(E ) ≤ κ + 4.5. OPTIMAL UPPER BOUND ON DIM K Sym(E ) IN THE GENERALDIMENSIONAL CASE5.1. Defining equations for Sym(E ). In the general dimensional case, thetangency condition of the prolongation X κ of X to the skeleton gives the


following equations for j = 1, . . ., m and k 1 , . . .,k κ = 1, . . .,n:(7.28)⎧ [ n∑R j k⎪⎨1 ,...,k κ− Q ∂F j m∑l k 1 ,...,k κ+ R ∂F j i k 1 ,...,k κ+∂x l ∂u i l=1i=1⎤⎪⎩+ ∑ ∑ ∂F jR i 1 k 1 ,...,k κl1i 1∂U i + · · · + ∑ ∑ ∂F jR i 1 k 1 ,...,k κ1l1⎦,...,l κ−1l 1 l 1 i 1∂U i ≡ 0,1l 1 ,...,l κ−1 l 1 ,...,l κ−1on ∆ E , by replacing the variab<strong>les</strong> U i 1l 1 ,...,l κby F i 1l 1 ,...,l κwherever they appear.Let us expand F j k 1 ,...,k κand their partial <strong>de</strong>rivatives and use the fact thatR j k 1 ,...,k λare polynomials expressions of the jets variab<strong>les</strong> (U i 1l 1, . . .,U i 1l 1 ,...,l λ),with coefficients being linear expressions of the partial <strong>de</strong>rivatives of or<strong>de</strong>r≤ λ+1 of Q l and R j . We obtain for j = 1, . . ., m and k 1 , . . .,k κ = 1, . . .,nsome i<strong>de</strong>ntities of the form(7.28) ⎧ ∑⎪⎨⎪⎩i 1 , ...,l 1 ,...)Φ j;i 1,......k 1 ,...,k κ; l 1 ,......(x,u,(Q l x α u) β 1≤l≤n, |α|+|β|≤κ+1 ,(R j )x α u β 1≤j≤m, |α|+|β|≤κ+1 ×171×U i 1l 1... U iµ 1l µ1× U iµ 1 +1l µ1 +1,l µ1 +2 · · · Ui µ 1 +µ 2 −1l µ1 +2µ 2 −1 Ui µ 1 +µ 2l µ1 +2µ 2× · · · · · · ≡ 0,satisfied if and only if the functions Q l and R j are solutions of the followingsystem of partial differential equations(7.28)Φ j,i (1,......k 1 ,...,k κ; l 1 ,...... x, u, (Qlx α u) β 1≤l≤n, |α|+|β|≤κ+1 , (R j ))x α u β 1≤j≤m, |α|+|β|≤κ+1 = 0.5.2. Homogeneous system. We start by giving the general form of thesymmetries of the homogeneous system in the case κ = 2. Then we provethe equality dim K (Sym(E 0 )) = n 2 +2n+m 2 +m Cn+κ−1 in the case κ ≥ 3.In the case κ = 2 we obtain:⎧n∑m∑Q l (x, u) = A l + Bk l 1x k1 + Ci l 1u i 1+(7.28)⎪⎨⎪⎩R j (x, u) = F j +k 1 =1n∑k 1 =1+n∑k 1 =1G j k 1x k1 ++n∑k 1 =1i 1 =1D k1 x l x k1 +m∑E i1 x l u i 1,i 1 =1m∑H j i 1u i 1+i 1 =1D k1 x k1 u j +m∑E i1 u i 1u j .i 1 =1


172Here the (n+m)(n+m+2) constants A l , B l k 1, C l i 1, D k1 , E i1 , F j , G j k 1, H j i 1∈K are arbitrary. Moreover one can check that the vector space spanned bythe (n + m)(n + m + 2) vector fields(7.28)⎧(⎪⎨ x k1⎪⎩∂∂x k1, x k1u i 1x 1(x 1∂∂u i 1 , x k 1∂∂x k1,∂, u i 1∂x k2∂+ · · · + x n∂x 1∂∂x 1+ · · · + x n∂∂u i 1 , ui 1∂∂x n+ u 1∂+ u 1∂x n∂∂u i 2∂∂u 1 + · · · + um∂∂u 1 + · · · + um∂ ),∂u m∂ ),∂u mis stable un<strong>de</strong>r the <strong>Lie</strong> bracket action and that the flow of each of thesegenerators is a <strong>Lie</strong> symmetry of the system (E 0 ). This proves that Sym(E 0 )is in<strong>de</strong>ed a <strong>Lie</strong> algebra with dimension (n + m)(n + m + 2). Finally thecorresponding transformations close to the i<strong>de</strong>ntity mapping are projective,represented by the formula:(7.28)⎧(x, u) ↦−→ ⎪⎨⎪⎩( (αl,0+ ∑ nk=1 α l,k x k + ∑ mi=1 α l,n+i u ii=1 γ ,n+i u)1≤l≤ni )1 + ∑ nk=1 γ k x k + ∑ m(βj,0 + ∑ nk=1 β j,k x k + ∑ mi=1 β j,n+i u i1 + ∑ nk=1 γ k x k + ∑ mi=1 γ n+i u i )1≤j≤m.It is clear that these transformations preserve all the solutions of (E 0 ) :u j x k1 x k2= 0, the graphs of affine maps from K n to K m .In the case κ ≥ 3 we consi<strong>de</strong>r the homogeneous system (E 0 ) in which thesecond members F j k 1 ,...,k κvanish i<strong>de</strong>ntically. Its solutions are the graphs ofpolynomial maps of <strong>de</strong>gree ≤ (κ − 1) from K n to K m . The <strong>de</strong>fining equationsof its <strong>Lie</strong> algebra of infinitesimal symmetries are R j k 1 ,...,k κ= 0, afterhaving replaced the variab<strong>les</strong> U i 1l 1 ,...,l κby 0 = F i 1l 1 ,...,l κin I 8 and I 9 in (7.28).We will keep in this system the only equations coming from the vanishingof the coefficients of the five families of monomials ct., U i 1l 1 ,...,l κ−2, U i 1l 1 ,...,l κ−1,U i 1l 1U i 2l 2 ,...,l κand U i 1l 1 ,l 2U i 2Subsection 4.2). The coefficients of these five monomials families alreadyl 3 ,...,l κ+1(this is inspired from the computations inappear in the expression (7.28). Moreover we fix l 1 = l 2 = · · · = l κ+1 = land i 1 = i 2 , except for the coefficient of the monomial U i 1lU i 2l,...,l, where wefix first i 1 = i 2 and then i 1 ≠ i 2 . This provi<strong>de</strong>s the six partial differential


linear equations:(7.28) ⎧0 = Rx j k1 x k2···x kκ,0 = ∑δ l,.........,lk σ(1) ,...,k σ(κ−2)R j −x kσ(κ−1) x kσ(κ) u i 1⎪⎨⎪⎩σ∈S κ−2κ0 = ∑σ∈S κ−1κ− δ j i 1⎛⎝ ∑σ∈S κ−3κδ l,.........,lk σ(1) ,...,k σ(κ−1)R j x kσ(κ) u i 1 −− δ j i 1⎛⎝ ∑σ∈S κ−2κ0 = κ δ l,......,lk 1 ,...,k κR j u i 1u i 1 − κ δj i 1⎛⎝ ∑0 = 2κ δ l,......,lk 1 ,...,k κR j u i 1u i 2 − κ δj i 1⎛σ∈S κ−1κ⎝ ∑− κ δ j i 2⎛⎝ ∑0 = − C 2 κ+1 δ j i 1δ l,......,lk 1 ,...,k κQ l u i 1.173δ l,.........,lk σ(1) ,...,k σ(κ−3)Q l x kσ(κ−2) x kσ(κ−1) x kσ(k)⎞⎠,δ l,.........,lk σ(1) ,...,k σ(κ−2)Q l x kσ(κ−1) x kσ(κ)⎞⎠ ,σ∈S κ−1κσ∈S κ−1κδ l,.........,lk σ(1) ,...,k σ(κ−1)Q l x kσ(κ) u i 1⎞δ l,.........,lk σ(1) ,...,k σ(κ−1)Q l x kσ(κ) u i 2δ l,.........,lk σ(1) ,...,k σ(κ−1)Q l x kσ(κ) u i 1⎞⎠ ,⎞⎠ −⎠ , i 1 ≠ i 2 ,To solve the system (7.28) we fix the indices k 1 = · · · = k κ = l and j = i 1 inthe sixth equation, implying Q l = 0. Hence the terms following u i 1 δj i 1and δ j i 2in the fourth and in the fifth equations vanish i<strong>de</strong>ntically. Let us choose theindices k 1 = · · · = k κ in the fourth and the fifth equations (this last equationis satisfied only for i 1 ≠ i 2 ). We obtain first three simple equations, withoutany restriction on the indices:⎧0 = Rx ⎪⎨j k1 x k2 ···x kκ,(7.28)0 = Q l u 1,⎪⎩i 0 = R j u i 1u . i 2Finally we specify the indices in the third equation of (7.28) as follows:l = k κ = · · · = k 3 = k 2 = k 1 ; then l = k κ = · · · = k 3 = k 2 ≠ k 1 ;finally l = k κ = · · · = k 3 , k 3 ≠ k 2 , k 3 ≠ k 1 . This gives the three following


174equations:(7.28)⎧⎪⎨⎪⎩0 = C 1 κ Rj x k1 u i 1 − C2 κ δj i 1Q k 1x k1 x k1,0 = R j x k1 u i 1 − C1 κ−1 δ j i 1Q k 2x k1 x k2, k 2 ≠ k 1 ,0 = − δ j i 1Q k 3x k1 x k2, k 3 ≠ k 1 , k 3 ≠ k 2 .We specify the indices in the second equation of (7.28) as follows: l =k κ = · · · = k 3 = k 2 = k 1 ; then l = k κ = · · · = k 3 = k 2 ≠ k 1 ; thenl = k κ = · · · = k 3 , k 3 ≠ k 2 , k 3 ≠ k 1 ; finally l = k κ = · · · = k 4 , l ≠ k 1 ,l ≠ k 2 , l ≠ k 3 . This gives the four following equalities:(7.28)⎧⎪⎨0 = C 2 κ R j x k1 x k1 u i 1 − C3 κ δ j i 1Q k 1x k1 x k1 x k1,0 = C 1 κ−1 R j x k1 x k2 u i 1 − C2 κ−1 δ j i 1Q k 2x k1 x k2 x k2, k 2 ≠ k 1 ,0 = R j − x k1 x k2 u i 1 C1 κ−2 δj i 1Q k 3x k1 x k2 x k3, k 3 ≠ k 1 , k 3 ≠ k 2 ,⎪⎩ 0 = − δ j i 1Q l x k1 x k2 x k3, l ≠ k 1 , l ≠ k 2 , l ≠ k 3 .Let us differentiate now the equations (7.28) with respect to the variab<strong>les</strong> x las follows: we differentiate (7.28) 1 with respect to x k1 ; then we differentiate(7.28) 2 with respect to x k2 ; finally we differentiate (7.28) 3 with respect tox k3 . This gives the three following equations:(7.28)⎧⎪⎨⎪⎩0 = C 1 κ Rj x k1 x k1 u i 1 − C2 κ δj i 1Q k 1x k1 x k1 x k1,0 = R j x k1 x k2 u i 1 − C1 κ−1 δj i 1Q k 2x k1 x k2 x k2, k 2 ≠ k 1 ,0 = − δ j i 1Q k 3x k1 x k2 x k3, k 3 ≠ k 1 , k 3 ≠ k 2 .The seven equations given by the systems (7.28) and (7.28) may be consi<strong>de</strong>redas three systems of two equations (of two variab<strong>les</strong>) with a nonzero<strong>de</strong>terminant, to which we add the last equation (7.28) 4 . We get immediately:(7.28)⎧⎪⎨0 = R j x k1 x k1 u i 1 = δj i 1Q k 1x k1 x k1 x k1,0 = R j x k1 x k2 u i 1 = δj i 1Q k 2x k1 x k2 x k2, k 2 ≠ k 1 ,0 = R j = x k1 x k2 u i 1 δj i 1Q k 3x k1 x k2 x k3, k 3 ≠ k 1 , k 3 ≠ k 2 ,⎪⎩ 0 = δ j i 1Q l x k1 x k2 x k3, l ≠ k 1 , l ≠ k 2 , l ≠ k 3 .It follows from these relations and from the relations Q l u i 1 = Rj u i 1u i 2 = 0obtained in (7.28) that all the third or<strong>de</strong>r partial <strong>de</strong>rivatives of Q l vanishi<strong>de</strong>ntically, this being also satisfied by the third or<strong>de</strong>r partial <strong>de</strong>rivatives of


175R j containing at least one partial <strong>de</strong>rivative with respect to u i 1:⎧⎨ 0 = Q l x k1 x k2 x k3= Q l x k1 x k2 u(7.28)i 1= Q l x k1 u i 1u i 2= Q l u i 1u i 2u 3, i⎩ 0 = R j = x k1 x k2 u i 1 Rj x k1 u i 1u = i 2 Rj u i 1u i 2u . i 3It follows from the equations (7.28) and (7.28) that all the functions Q l arepolynomials of <strong>de</strong>gree ≤ 2 with respect to the variab<strong>les</strong> x k1 and all the functionsR j are a sum of a polynomial of <strong>de</strong>gree ≤ (κ − 1) in the variab<strong>les</strong> x k1and of monomials of the form u i 1and x k1 u i 1. Let us <strong>de</strong>velop now the relations(7.28) separately for j = i 1 and j ≠ i 1 . We obtain the five equations:(7.28)⎧0 = Cκ ⎪⎨1 Rj , j ≠ i x k1 u i 1 1,0 = R i 1− x k1 u i 1 C1 κ−1 Q k 2x k1 x k2, k 2 ≠ k 1 ,⎪⎩0 = C 1 κ R i 1x k1 u i 1 − C2 κ Q k 1x k1 x k1,0 = R j x k1 u i 1 , j ≠ i 1,0 = − Q k 3x k1 x k2, k 3 ≠ k 1 , k 3 ≠ k 2 .According to the equations (7.28), (7.28), (7.28), we have the followingform of the general solution:(7.28) ⎧n∑n∑Q l (x, u) = A l + Bk l 1x k1 + C k1 x k1 x l ,⎪⎨R j (x, u) =⎪⎩k 1 =1k 1 =1n∑(κ − 1) C k1 x k1 u j +k 1 =1+ · · · +∑1≤k 1 ≤···≤k κ−1 ≤nm∑D j i 1u i 1+ E j,0 +i 1 =1E j,κ−1k 1 ,...,k κ−1x k1 · · ·x kκ−1 .n∑k 1 =1E j,1k 1x k1 +Here the n+n 2 +n+m 2 +m Cn+κ−1 constants A l , Bk l 1, C k1 , D j i 1, E j,0 , E j,1k 1,. . . , E j,κ−1k 1 ,...,k κ−1∈ K are arbitrary. Moreover one can check that the vectorspace spanned by the vector fields(7.28)⎧⎪⎨∂∂x k1, x k1∂,∂x k2∂+ · · · + x n∂x 1((∂x k1 x 1+ (κ − 1) u 1 ∂∂x n ∂u + · · · + ∂ ))1 um ,∂u m⎪⎩ u i ∂1∂u , ∂i 2 ∂u , x ∂i k 11 ∂u , . . ...., x ∂i k 1· · ·x kκ−11 ∂u , i 1is stable un<strong>de</strong>r the <strong>Lie</strong> bracket action and that the flow of each of thesegenerators is in<strong>de</strong>ed a <strong>Lie</strong> symmetry of the system (E 0 ). Finally the <strong>Lie</strong>


176symmetries of (E 0 ) have the following form:(7.28) ( (αl,0+ ∑ nk=1(x, u) ↦−→α l,k x k1 + ∑ nk=1 ε ,k x k)1≤l≤n(∑ mi 1=1 βj i 1u i1 + γ 0,j + ∑ nk 1=1 γ1,j k 1x k1 + · · · + ∑ ⎞k 1≤···≤k κ−1γ κ−1,jk 1,...,k κ−1x k1 · · · x kκ−1[1 + ∑ nk=1 ε ⎠.k x k ])1≤j≤mκ−1We note again that these transformations preserve the solutions of (E 0 ) :u j x k1···x kκ= 0, namely the graphs of polynomial maps of <strong>de</strong>gree ≤ (κ − 1)from K n to K m .5.3. Nonhomogeneous system. Let κ ≥ 3. Let us expand the <strong>de</strong>finingequations (7.28) as done in (7.28). We will write only the coefficientsof the five monomial families ct., U i 1l 1 ,...,l κ−2, U i 1l 1 ,...,l κ−1, U i 1l 1U i 2l 2 ,...,l κandU i 1l 1 ,l 2U i 2l 3 ,...,l κ+1. Moreover, we fix always l 1 = l 2 = · · · = l κ = l κ+1 = land i 1 = i 2 , except for the fourth family of monomials where we distinguishthe two cases i 1 = i 2 and i 1 ≠ i 2 . Thus we obtain six linear equations ofpartial <strong>de</strong>rivatives, the members on the left si<strong>de</strong> (coming from the expressionof R j 1k1 ,...,k κgiven by Lemma 8.1) coinci<strong>de</strong> with the members on theright hand si<strong>de</strong> of (7.28). Furthermore, the members on the right hand si<strong>de</strong>are exactly the same as those obtained in (7.28), with more indices! We usethe letters l ′ , k 1 ′ , . . ., k′ κ = 1, . . .,n and j′ , i ′ 1 = 1, . . ., m for the indices ofthe arguments of the expressions Π, obtaining the six following equations,which generalize the equations (7.28):(7.28)[1] : R j x k1 x k2 ···x kκ= Π(x, u, Q l′ , Q l′x k ′1, R j′ , R j′x k ′1, . . .,R j′x k ′ 1···x k ′κ−1, R j′u i′ 1),([1] : Rx j k1 x k2···x kκ= Π x, u, Q l′ , Q l′x k, R j′ , R′ x j′k, . . .,R′ x j′k ′1 1 1···x k, R j′′κ−1∑[2] : δ l,.........,lk σ(1) ,...,k σ(κ−2)R j −x kσ(κ−1) x kσ(κ) u i 1σ∈S κ−2κ− δ j i 1⎛⎝ ∑(= Π x, u, Q l′ , Q l′x k, Q l′′1σ∈S κ−3κδ l,.........,lk σ(1) ,...,k σ(κ−3)Q l x kσ(κ−2) x kσ(κ−1) x kσ(k)⎞⎠ =x k ′ x k, R j′ , R′ x j′k, . . .,R′ x j′k ′1 2 1 1···x k, R j′′κ−1u i′ 1u i′ 1), R j′.x k ′ u i′ 11).


177[3] :∑σ∈S κ−1κδ l,.........,lk σ(1) ,...,k σ(κ−1)R j x kσ(κ) u i 1 −(= Π x, u, Q l′ , Q l′x k, R j′ , R j′′1− δ j i 1⎛⎝ ∑σ∈S κ−2κ[4] : κ δ l,......,lk 1 ,...,k κR j u i 1u i 1 − κ δj i 1⎛⎝ ∑(= Π x, u, Q l′ , Q l′x k, . . .,Q l′′1δ l,.........,lk σ(1) ,...,k σ(κ−2)Q l x kσ(κ−1) x kσ(κ)⎞⎠ =x k, . . .,R′ x j′k ′1 1···x k, R j′′κ−1σ∈S κ−1κu i′ 1).δ l,.........,lk σ(1) ,...,k σ(κ−1)Q l x kσ(κ) u i 1x k ′ ···x 1 k, Q l′, , R′κ−1 u i′ 1 Rj′ x j′k, . . .,R j′′1, R j′, R j′, . . ., R j′u i′ 1 x k ′ u i′ 1 x 1 k ′ ···x 1 k ′ u i′ 1κ−2[5] : 2κ δ l,......,lk 1 ,...,k κR j u i 1u i 2 − κ δj i 1⎛⎝ ∑− κ δ j i 2⎛⎝ ∑(= Π x, u, Q l′ , Q l′x k, . . .,Q l′′1σ∈S κ−1κσ∈S κ−1κ)δ l,.........,lk σ(1) ,...,k σ(κ−1)Q l x kσ(κ) u i 2δ l,.........,lk σ(1) ,...,k σ(κ−1)Q l x kσ(κ) u i 1.⎞x k ′ 1···x k, Q l′, , R′κ−1 u i′ 1 Rj′ x j′k, . . .,R j′′1, R j′, R j′, . . .,R j′u i′ 1 x k ′ u i′ 1 x k ′1 1···x k ′ u i′ 1κ−2).⎞⎠ =x k ′ 1···x k ′κ−1,⎞⎠ −⎠ , i 1 ≠ i 2 .x k ′1 ···x k ′κ−1,[6] : −Cκ+1 2 δj i 1δ l,......,lk 1 ,...,k κQ l u i 1=(= Π x, u, Q l′ , Q l′x k, . . .,Q l′′ x 1 k ′ 1···x k, R j′ , R′ x j′κ−2k, . . ., R j′′1)Then we get the following Lemma:, R j′, R j′, . . .,R j′u i′ 1 x k ′ u i′ 1 x k ′1 1···x k ′ u i′ 1κ−3.x k ′1 ···x k ′κ−1,


178Lemma 8.1. Let J <strong>de</strong>note the collection of n + n 2 + n + m Cn+κ−1 + m 2partial <strong>de</strong>rivatives(7.28) J :=(Q l′ , Q l′x k ′1, Q k′ 1x k ′1x k ′1, R j′ , R j′x k ′1, . . .,R j′x k ′ 1···x k ′κ−1, R j′u i′ 1After linear combinations on the system (7.28) we obtain the following equations:⎧Π(x, u, J) = Rx j k1···x kκ,(7.28)Π(x, u, J) = Q l u i 1,Π(x, u, J) = R⎪⎨j u i 1u , i 2Π(x, u, J) = Q l x k1 x k2 x k3,Π(x, u, J) = R j x k1 u i 1 ,Π(x, u, J) = Q k 1x k1 x k2, k 1 ≠ k 2 ,⎪⎩ Π(x, u, J) = Q l x k1 x k2, l ≠ k 1 , l ≠ k 2 .Moreover all the partial <strong>de</strong>rivatives (with respect to x l and u i ) up to or<strong>de</strong>rthree of the coefficients Q l and R j of the vector field X ∈ Sym(E ) are ofthe form Π(x, u, J). Hence every function Q l and R j is uniquely <strong>de</strong>terminedby the values at the origin of the n + n 2 + n + m Cn+κ−1 + m 2 partial<strong>de</strong>rivatives (7.28). This implies that dim K Sym(E ) ≤ n 2 + 2n + m 2 +m Cn+κ−1.Proof. Since the second part of Lemma 8.1 is immediate let us establish onlythe i<strong>de</strong>ntities (7.28). We first specify the indices in the equation (7.28) [3] asfollows: l = k κ = · · · = k 3 = k 2 = k 1 ; then l = k κ = · · · = k 3 = k 2 ≠k 1 ; and finally l = k κ = · · · = k 3 , k 3 ≠ k 2 , k 3 ≠ k 1 . This gives threeequations whose members on the right hand si<strong>de</strong> are the same as those inthe equation (7.28) and whose members on the left hand si<strong>de</strong> are the sameas those in the equation (7.28) [3] :(7.28) ⎧ ()Π⎪⎨ (Π⎪⎩ Πx,u,Q l′ ,Q l′x k ′1,R j′ ,R j′x k ′1,... ,R j′x k ′ 1···x k ′κ−1,R j′x,u,Q l′ ,Q l′x k ′1,R j′ ,R j′x k ′1,... ,R j′x k ′ 1···x k ′κ−1,R j′(x,u,Q l′ ,Q l′x k ′1,R j′ ,R j′x k ′1,... ,R j′x k ′ 1···x k ′κ−1,R j′u i′ 1u i′ 1u i′ 1))).= C 1 κ R j x k1 u i 1 − C2 κ δ j i 1Q k 1x k1 x k1,= R j x k1 u i 1 − C1 κ−1 δj i 1Q k 2x k1 x k2, k 2 ≠ k 1 ,= −δ j i 1Q k 3x k1 x k2, k 3 ≠ k 1 , k 3 ≠ k 2 .We remark that these three equations (after specialization of j = i 1 orof j ≠ i 1 and after some easy linear combinations) provi<strong>de</strong> directly thefifth, sixth and seventh equations of (7.28). In particular we may replace


the values of the partial <strong>de</strong>rivatives R j′x j ′1u i′ 1179and Q l′x k ′1x k ′2with k ′ 1 ≠ k′ 2 orl ′ ≠ k 1 ′ , l′ ≠ k 2 ′ appearing in the expressions Π of the second memberof (7.28) [1] by their values just obtained from the fifth, the sixth and theseventh equations of (7.28). This gives the first equation of (7.28).Then we specify the indices in (7.28) [2] as follows: l = k κ = · · · = k 3 =k 2 = k 1 ; then l = k κ = · · · = k 3 = k 2 ≠ k 1 ; then l = k κ = · · · = k 3 ,k 3 ≠ k 2 , k 3 ≠ k 1 ; and finally l = k κ = · · · = k 4 , l ≠ k 1 , l ≠ k 2 , l ≠ k 3 .This gives four equations, whose members on the right hand si<strong>de</strong> are thesame as those in (7.28) and the members on the left hand si<strong>de</strong> are the sameas those in (7.28) [2] :(7.28) ⎧⎪⎨⎪⎩ΠΠΠΠ((((x,u,Q l′ ,Q l′x k ′1,Q l′x k ′1x k ′2,R j′ ,R j′x k ′1,... ,R j′x k ′1 ···x k ′κ−1,R j′= C 2 κ R j x k1 x k1 u i 1 − C3 κ δ j i 1Q k 1x k1 x k1 x k1,x,u,Q l′ ,Q l′x k ′1,Q l′x k ′1x k ′2,R j′ ,R j′x k ′1,... ,R j′x k ′1 ···x k ′κ−1,R j′u i′ 1u i′ 1,R j′x k ′1u i′ 1,R j′x k ′1u i′ 1= C 1 κ−1 Rj x k1 x k2 u i 1 − C2 κ−1 δj i 1Q k 2x k1 x k2 x k2, k 2 ≠ k 1 ,x,u,Q l′ ,Q l′x k ′1,Q l′x k ′1x k ′2,R j′ ,R j′x k ′1,... ,R j′x k ′1 ···x k ′κ−1,R j′u i′ 1,R j′x k ′1u i′ 1= R j x k1 x k2 u − i 1 C1 κ−2 δ j i 1Q k 3x k1 x k2 x k3, k 3 ≠ k 1 , k 3 ≠ k 2 ,)x,u,Q l′ ,Q l′x k ′1,Q l′x k ′1x k ′2,R j′ ,R j′x k ′1,... ,R j′x k ′1 ···x k ′κ−1,R j′= −δ j i 1Q l x k1 x k2 x k3, l ≠ k 1 , l ≠ k 2 , l ≠ k 3 .u i′ 1,R j′x k ′1u i′ 1Using the fifth, the sixth and the seventh equations of (7.28) just obtained,we may replace the partial <strong>de</strong>rivatives R j′and Q l′x k ′ x kwith k′ 1 ′ ≠ k′ 2 or1 2x j ′1u i′ 1l ′ ≠ k 1, ′ l ′ ≠ k 2 ′ appearing in the expressions Π of (7.28), providing four newequations in which the arguments of Π are the <strong>de</strong>sired ones: (x, u, J), whereJ is <strong>de</strong>fined in (7.28):(7.28) ⎧Π(x, u, J) = Cκ 2 R j − x k1 x k1 u i 1 C3 κ δ j i 1Q k 1⎪⎨x k1 x k1 x k1,Π(x, u, J) = C 1 κ−1 Rj x k1 x k2 u i 1 − C2 κ−1 δj i 1Q k 2x k1 x k2 x k2, k 2 ≠ k 1 ,Π(x, u, J) = R j − x k1 x k2 u i 1 C1 κ−2 δj i 1Q k 3x k1 x k2 x k3, k 3 ≠ k 1 , k 3 ≠ k 2 ,⎪⎩ Π(x, u, J) = − δ j i 1Q l x k1 x k2 x k3, l ≠ k 1 , l ≠ k 2 , l ≠ k 3 .)))====


180Let us differentiate now the equations (7.28) with respect to the variab<strong>les</strong>x l as follows: first we differentiate (7.28) 1 with respect to x k1 ; then wedifferentiate (7.28) 2 with respect to x k2 ; finally we differentiate (7.28) 3 withrespect to x k3 . The arguments in the expressions Π in the equation (7.28)contain now the terms Rx j′k ′ ···x 1 k; we replace them by their value given in′ κthe first equation of (7.28) already obtained. The arguments also contain theterms R j′and Q l′x k ′ x kwith k′ 1 ′ ≠ k′ 2 or l′ ≠ k 1 ′ , l′ ≠ k 2 ′ . We replace1 2x j ′1u i′ 1them by their value given by the fifth, the sixth and the seventh equationsof (7.28). We obtain three new equations in which the arguments of theexpressions Π are the <strong>de</strong>sired ones: (x, u, J), where J is <strong>de</strong>fined in (7.28):(7.28)⎧⎪⎨⎪⎩Π (x, u, J) = C 1 κ Rj x k1 x k1 u i 1 − C2 κ δj i 1Q k 1x k1 x k1 x k1,Π (x, u, J) = R j x k1 x k2 u i 1 − C1 κ−1 δj i 1Q k 2x k1 x k2 x k2, k 2 ≠ k 1 ,Π (x, u, J) = −δ j i 1Q k 3x k1 x k2 x k3, k 3 ≠ k 1 , k 3 ≠ k 2 .The seven equations (7.28) and (7.28) may be consi<strong>de</strong>red as three systemsof two linear equations of two variab<strong>les</strong> with a nonzero <strong>de</strong>terminant, theseventh equation being the last equation in (7.28). We immediately obtain:(7.28) ⎧Π(x, u, J) = R j = x k1 x k1 u i 1 δj i 1Q k 1x k1 x k1 x k1,⎪⎨Π(x, u, J) = R j x k1 x k2 u i 1 = δj i 1Q k 2x k1 x k2 x k2, k 2 ≠ k 1 ,Π(x, u, J) = R j = x k1 x k2 u i 1 δj i 1Q k 3x k1 x k2 x k3, k 3 ≠ k 1 , k 3 ≠ k 2 ,⎪⎩ Π(x, u, J) = δ j i 1Q l x k1 x k2 x k3, k 3 ≠ k 1 , k 3 ≠ k 2 ,giving the fourth equation in (7.28).It remains now to obtain the second and the third equations in (7.28).Let us write firstly equation (7.28) [6] with the choice of the indices j = i 1 ,l = k 1 = · · · = k κ . This gives the equation:(7.28)⎧ (Q ⎪⎨l u i 1= Π x, u, Q l′ , Q l′x k, . . .,Q l′′ x 1 k ′ 1···x k, R j′ , R′ x j′κ−2k, . . ., R′ x j′1k ′ ···x 1 k,′κ−1)⎪⎩, R j′, R j′, . . .,R j′u i′ 1 x k ′ u i′ 1 x 1 k ′ 1···x k ′ u i′ 1κ−3We observe first that the differentiation with respect to the variab<strong>les</strong> x l ofone of the expressions Π(x, u, J) remains an expression Π(x, u, J). In<strong>de</strong>edwe see from (7.28) that there appears, in the partial <strong>de</strong>rivative J xl , <strong>de</strong>rivativesQ l′x k ′ x 1 kwith k′ 1 ′ ≠ k′ 2 or l′ ≠ k 1 ′ , l′ ≠ k 2 ′ . We may replace them2by their value obtained in the sixth and the seventh equations of (7.28). It.


also appears some <strong>de</strong>rivatives Q l′x k ′1x k ′2x k ′3(we replace them by their valueobtained in the fourth equation of (7.28)), some <strong>de</strong>rivatives Rx j′k ′ ···x k(we′1 κreplace them by their value obtained in the first equation of (7.28)) andsome <strong>de</strong>rivatives R j′(we replace them by their value obtained in thex k ′1u i′ 1fifth equation of (7.28)). Consequently we may write:181(7.28) [Π(x, u, J)] xl = Π(x, u, J).It follows that any <strong>de</strong>rivative with respect to x l (to any or<strong>de</strong>r) of the fourthand the fifth equations of (7.28) provi<strong>de</strong>s expressions of the form Π(x, u, J).In other words for any integer λ ≥ 3 and any integer µ ≥ 1 we have(7.28)⎧⎨ Π(x, u, J) = Q l x k1 x k2 x k3 ···x kλ,⎩ Π(x, u, J) = R j . x k1 ···x kµ u i 1We may replace then these values in the equation (7.28), replacing also the<strong>de</strong>rivatives Q l′x k ′ x 1 kwith k′ 1 ′ ≠ k′ 2 or l′ ≠ k 1 ′ , l′ ≠ k 2 ′ by their values obtainedin the sixth and the seventh equations of (7.28). This gives the second2equation of (7.28).We also remark that by a differentiation with respect to the variab<strong>les</strong> x l ,the second equation Q l = Π(x, u, J) just obtained implies, using (7.28):u i 1(7.28) Π(x, u, J) = Q l x k1 u i 1.It remains finally to write (7.28) [4] first with the choice of indices l = k 1 =· · · = k κ , j = i 1 then with the choice of indices l = k 1 = · · · = k κ , j ≠ i 1 .We also write (7.28) [5] first with the choice of indices l = k 1 = · · · = k κ ,j = i 2 then with the choice of indices l = k 1 = · · · = k κ , j ≠ i 1 , j ≠ i 2 .We obtain four new equations:


182(7.28) ⎧(R i 1u i 1u − i 1 κQk 1x k1 u = Π x,u,Q l′ ,Q l′i 1 x k,... ,Q l′′ x 1 k ′ ···x 1 k,Q l′′κ−1 u i′ 1 ,Rj′ ,Rx j′k,... ,R j′′1⎪⎨⎪⎩,R j′,R j′,... ,R j′,u i′ 1 x k ′ u i′ 1 x k ′ ···x k ′ u i′ 11 1 κ−2(R j u i 1u = Π x,u,Q l′ ,Q l′i 1 x k,... ,Q l′′ x k ′ ···x k,Q l′′1 1 κ−1 u i′ 1 ,Rj′ ,Rx j′k,... ,R j′′1)x k ′1 ···x k ′κ−1,x k ′1 ···x k ′κ−1,,R j′,R j′,... ,R j′, j ≠ iu i′ 1 x k ′ u i′ 1 x k ′ ···x k ′ u i′ 1 ,11 1 κ−2(2R i 2u i 1u − i 2 κQk 1x k1 u = Π x,u,Q l′ ,Q l′i 1 x k,... ,Q l′′ x 1 k ′ ···x 1 k,Q l′′κ−1 u i′ 1 ,Rj′ ,Rx j′k,... ,R′ x j′1k ′ ···x 1 k,′κ−1),R j′,R j′,... ,R j′, iu i′ 1 x k ′ u i′ 1 x k ′ ···x k ′ u i′ 1 ≠ i 2 ,11 1 κ−2(R j u i 1u = Π x,u,Q l′ ,Q l′i 2 x k,... ,Q l′′ x k ′ ···x k,Q l′′1 1 κ−1 u i′ 1 ,Rj′ ,Rx j′k,... ,R′ x j′k ′ ···x k,′1 1 κ−1),R j′,R j′,...,R j′u i′ 1 x k ′ u i′ 1 x k ′ ···x k ′ u i′ 11 1 κ−2Using the equations of (7.28) we already obtained (namely all except thesecond equation), using (7.28) and (7.28), we may simplify these four equations:⎧Π(x, u, J) = R i 1u⎪⎨i 1u , i 1Π(x, u, J) = R j u(7.28)i 1u , j ≠ i i 1 1,Π(x, u, J) = R i 1u⎪⎩i 1u , i i 2 1 ≠ i 2 ,Π(x, u, J) = R j u i 1u , i i 2 1 ≠ i 2 , j ≠ i 1 , j ≠ i 2 .This gives the second equation of (7.28), completing the proof of Lemma 8.1and consequently the proof of Theorem 6.4.REFERENCES[1] BAOUENDI, M.S.; EBENFELT, P.; ROTHSCHILD, L.P.: Real submanifolds in complexspace and their mappings. Princeton Mathematical Series, 47, Princeton UniversityPress Princeton, NJ, 1999, xii+404 pp.[2] BLUMAN, G.W.; KUMEI, S.: Symmetries and differential equations, Springer Verlag,Berlin, 1989.[3] CARTAN, É.: Sur la géométrie pseudo-conforme <strong>de</strong>s hyper<strong>sur</strong>faces <strong>de</strong> l’espace <strong>de</strong><strong>de</strong>ux variab<strong>les</strong> complexes, I, Annali di Mat. 11 (1932), 17–90.[4] CHERN, S.S.; MOSER, J.K.: Real hyper<strong>sur</strong>faces in complex manifolds, Acta Math.133 (1974), no.2, 219–271.), i 1 ≠ i 2 , j ≠ i 2 , j ≠ i 2 .


[5] F. ENGEL; LIE, S.: Theorie <strong>de</strong>r Transformationsgruppen, I, II, II, Teubner, Leipzig,1889, 1891, 1893.[6] FELS, M.: The equivalence problem for systems of second-or<strong>de</strong>r ordinary differentialequations, Proc. London Math. Soc. 71 (1995), 221–240.[7] GAUSSIER, H.; MERKER, J.: A new example of uniformly Levi <strong>de</strong>generate hyper<strong>sur</strong>facein C 3 , Ark. Mat., to appear.[8] GAUSSIER, H.; MERKER, J.: Nonalgebraizable real analytic tubes in C n , Math. Z.,to appear.[9] GAUSSIER, H.; MERKER, J.: Sur l’algébrisabilité locale <strong>de</strong> sous-variétés analytiquesréel<strong>les</strong> génériques <strong>de</strong> C n , C. R. Acad. Sci. Paris Sér. I Math., to appear.[10] GAUSSIER, H.; MERKER, J.: Géométrie <strong>de</strong>s sous-variétés analytiques réel<strong>les</strong> <strong>de</strong> C net symétries <strong>de</strong> <strong>Lie</strong> <strong>de</strong>s équations <strong>aux</strong> dérivées partiel<strong>les</strong>, Bull. Soc. Math. Tunisie, toappear.[11] GONZÁLEZ-GASCÓN, F.; GONZÁLEZ-LÓPEZ, A.: Symmetries of differential equations,IV. J. Math. Phys. 24 (1983), 2006–2021.[12] GONZÁLEZ-LÓPEZ, A.: Symmetries of linear systems of second or<strong>de</strong>r differentialequations, J. Math. Phys. 29 (1988), 1097–1105.[13] IBRAGIMOV, N.H.: Group analysis of ordinary differential equations and the invarianceprinciple in mathematical physics, Russian Math. Surveys 47:4 (1992), 89–156.[14] LIE, S.: Theorie <strong>de</strong>r Transformationsgruppen, Math. Ann. 16 (1880), 441–528.[15] MERKER, J.: Vector field construction of Segre sets, Preprint 1998, augmented in2000. Downloadable at arXiv.org/abs/math.CV/9901010.[16] MERKER, J.: On the partial algebraicity of holomorphic mappings between two realalgebraic sets, Bull. Soc. Math. France 129 (2001), no.3, 547–591.[17] MERKER, J.: On the local geometry of generic submanifolds of C n and the analyticreflection principle, Viniti, to appear.[18] OLVER, P.J.: Applications of <strong>Lie</strong> groups to differential equations. Springer Verlag,Hei<strong>de</strong>lberg, 1986.[19] OLVER, P.J.: Equivalence, Invariance and Symmetries. Cambridge, Cambridge UniversityPress, 1995, xvi+525 pp.[20] POINCARÉ, H.: Les fonctions analytiques <strong>de</strong> <strong>de</strong>ux variab<strong>les</strong> et la représentation conforme,Rend. Circ. Mat. Palermo, II, Ser. 23, 185–220.[21] SEGRE, B.: Intorno al problema di Poincaré <strong>de</strong>lla rappresentazione pseudoconforme,Rend. Acc. Lincei, VI, Ser. 13 (1931), 676–683.[22] SEGRE, B.: Questioni geometriche legate colla teoria <strong>de</strong>lle funzioni di due variabilicomp<strong>les</strong>se, Rendiconti <strong>de</strong>l Seminario di Matematici di Roma, II, Ser. 7 (1932), no. 2,59–107.[23] STORMARK, O.: <strong>Lie</strong>’s structural approach to PDE systems. Encyclopædia of mathematicsand its applications, vol. 80, Cambridge University Press, Cambridge, 2000,xv+572 pp.[24] SUKHOV, A.: Segre varieties and <strong>Lie</strong> symmetries, Math. Z. 238 (2001), no.3, 483–492.[25] SUKHOV, A.: On transformations of analytic CR structures, Pub. Irma, Lille 2001,Vol. 56, no. II.[26] SUKHOV, A.: CR maps and point <strong>Lie</strong> transformations, Michigan Math. J. 50 (2002),369–379.[27] SUSSMANN, H.J.: Orbits of families of vector fields and integrability of distributions,Trans. Amer. Math. Soc. 180 (1973), 171-188.183


184[28] TRESSE, A.: Détermination <strong>de</strong>s invariants ponctuels <strong>de</strong> l’équation différentielle dusecond ordre y ′′ = ω(x, y, y ′ ), Hirzel, Leipzig, 1896.


185Nonrigid sphericalreal analytic hyper<strong>sur</strong>faces in C 2Joël MerkerAbstract. A Levi non<strong>de</strong>generate real analytic hyper<strong>sur</strong>face M of C 2 representedin local coordinates (z,w) ∈ C 2 by a complex <strong>de</strong>fining equation of the formw = Θ(z,z,w) which satisfies an appropriate reality condition, is spherical if andonly if its complex graphing function Θ satisfies an explicitly written sixth-or<strong>de</strong>rpolynomial complex partial differential equation. In the rigid case (known before),this system simplifies consi<strong>de</strong>rably, but in the general nonrigid case, its combinatorialcomplexity shows well why the two fundamental curvature tensors constructedby Élie Cartan in 1932 in his classification of hyper<strong>sur</strong>faces have, since then, neverbeen reached in parametric representation.arxiv.org/abs/0910.1694/Table of contents1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215.2. Segre varieties and partial differential equations . . . . . . . . . . . . . . . . . . . . . . . . . 220.3. Geometry of associated submanifolds of solutions. . . . . . . . . . . . . . . . . . . . . . . . .224.4. Effective differential characterization of sphericality in C 2 . . . . . . . . . . . . . . . . 226.5. Some complete expansions: examp<strong>les</strong> of expression swellings. . . . . . . . . . . . . .210.§1. INTRODUCTIONA real analytic hyper<strong>sur</strong>face M in C 2 is called spherical at one of itspoints p if there exists a nonempty open neighborhood U p of p in C 2such that M ∩ U p is biholomorphic to a piece of the unit sphere S 3 ={(z, w): |z| 2 + |w| 2 = 1 } . When M is connected, sphericality at onepoint is known to propagate all over M, for it is equivalent to the vanishingof two certain real analytic curvature tensors that were constructed byÉlie Cartan in [3]. However, the intrinsic computational complexity, in theCauchy-Riemann (CR for short) context, of Élie Cartan’s algorithm to <strong>de</strong>rivean absolute parallelism on some suitable eight-dimensional principalbundle P → M prevents from controlling explicitly all the appearing differentialforms. As a matter of fact, the effective computation, in terms of a<strong>de</strong>fining equation for M, of the two fundamental differential invariants thevanishing of which characterizes sphericality, appears nowhere in the literature(see e.g. [23, 5, 11] and the references therein as well), except notablywhen one makes the assumption that, in some suitable local holomorphic


186coordinates (z, w) = (x + iy, u + iv) vanishing at the point p, the <strong>de</strong>finingequation is of the so-called rigid form u = ϕ(x, y) with the variable vmissing, or even of the so-called (simpler) tube form u = ϕ(x), with thetwo variab<strong>les</strong> y and v missing, see [11] which showed recently a renewedinterest, in CR geometry, for explicit characterizations of sphericality. Butin general, a real analytic hyper<strong>sur</strong>face M ⊂ C 2 is represented at p by a realequation u = ϕ(x, y, v) whose graphing function ϕ <strong>de</strong>pends entirely arbitrarilyupon v also, and then apparently, the characterization of sphericalityis still unknown.On the other hand, in the studies [12, 13, 14, Me2005a, Me2005b] <strong>de</strong>votedto the CR reflection principle, it was emphasized that all the a<strong>de</strong>quateinvariants of CR mappings between CR manifolds: Pair of Segre foliations,Segre chains, Complexified CR orbits, Jets of complexified Segre varietes,Rigidity of formal CR mappings, Non<strong>de</strong>generacy conditions, CR-reflectionfunction 5 , can be viewed correctly only when M is represented by a socalledcomplex <strong>de</strong>fining equation of the form:w = Θ ( z, z, w ) ,where the function Θ ∈ C { z, z, w } , vanishing at the origin, is the uniquew+wfunction obtained by solving with respect to w the equation: =2ϕ ( z+z, z−z,) w−w2 2i 2i ; then the fact that ϕ was real is reflected, in terms of thisnew function Θ(z, z, w), by the constraint that, together with its complexconjugate Θ ( z, z, w ) , it satisfies the functional equation 6 :w ≡ Θ ( z, z, Θ(z, z, w) ) .Accordingly, the author suspected since a few years — cf. the Open Question2.35 in [19] — that sphericality of M at p should and could be expresseda<strong>de</strong>quately in terms of Θ. The classical assumption that M be Levinon<strong>de</strong>generate at the point p (see e.g. [11]) — which is the origin of ourpresent system of coordinates (z, w) — may then be expressed here (cf.[Me2005a, Me2005b]) by requiring that Θ z Θ zw −Θ w Θ zz does not vanish atthe origin. In particular, this guarantees that the following explicit rationalexpression whose numerator is a polynomial in the fourth-or<strong>de</strong>r jet J 4 z,z,w Θ,is well <strong>de</strong>fined and analytic in some sufficiently small neighborhood of the5 For a presentation of these concepts, the rea<strong>de</strong>r is referred to the extensive introductionsof [14, Me2005b] and also to [19] for more about why <strong>de</strong>aling only with complex<strong>de</strong>fining equations is natural and unavoidable when one wants to insert CR geometry in thewi<strong>de</strong>r universe of completely integrable systems of real or complex analytic partial differentialequations.6 More will be said shortly in Section 2 below.


origin:{ ( ∣ ∣ )AJ 4 1∣∣∣ Θ(Θ) :=[Θ z Θ zw − Θ w Θ zz ] 3 Θ zzzz Θ w Θ z Θ w ∣∣∣w −Θ zz Θ zw( ∣ ∣ ) ( ∣ ∣)∣∣∣ Θ− 2Θ zzzw Θ z Θ z Θ w ∣∣∣ ∣∣∣ Θw + ΘΘ zz Θ zzww Θ z Θ z Θ w ∣∣∣z +zw Θ zz Θ zw( ∣ ∣ ∣ ∣ ∣ ∣ )∣∣∣ Θ+ Θ zzz Θ z Θ w Θ ww ∣∣∣ ∣∣∣ Θz − 2ΘΘ zw Θ z Θ w Θ zw ∣∣∣ ∣∣∣ Θw + Θzww Θ zw Θ w Θ w Θ zz ∣∣∣w +zzw Θ zw Θ zzz( ∣ ∣ ∣ ∣ ∣ ∣)}∣∣∣ Θ+ Θ zzw − Θ z Θ z Θ ww ∣∣∣ ∣∣∣ Θz + 2ΘΘ zz Θ z Θ z Θ zw ∣∣∣ ∣∣∣ Θw − Θzww Θ zz Θ w Θ z Θ zz ∣∣∣w .zzw Θ zz Θ zzzWe hope, then, that the following precise statement will fill a gap in ourun<strong>de</strong>rstanding of the vanishing of CR curvature tensors.Main (and unique) theorem. An arbitrary, not necessarily rigid, real analytichyper<strong>sur</strong>face M ⊂ C 2 which is Levi non<strong>de</strong>generate at one of its pointsp and has a complex <strong>de</strong>fining equation of the form:w = Θ ( z, z, w )in some system of local holomorphic coordinates (z, w) ∈ C 2 centered at p,is spherical at p if and only if its graphing complex function Θ satisfies thefollowing explicit sixth-or<strong>de</strong>r algebraic partial differential equation:(0 ≡− Θ w ∂Θ z Θ zw − Θ w Θ zz ∂z +i<strong>de</strong>ntically in C { z, z, w } .Θ zΘ z Θ zw − Θ w Θ zz∂∂w) 2[AJ 4 (Θ) ]Here, it is un<strong>de</strong>rstood that the first-or<strong>de</strong>r <strong>de</strong>rivation in parentheses is appliedtwice to the fourth-or<strong>de</strong>r rational differential expression AJ 4 (Θ). The1factor[Θ z Θ zw −Θ w Θ zzthen appears, and after clearing out this <strong>de</strong>nominator,] 7one obtains a universal polynomial differential expression AJ 6 (Θ) <strong>de</strong>pendingupon the sixth-or<strong>de</strong>r jet Jz,z,w 6 Θ and having integer coefficients. A partialexpansion is provi<strong>de</strong>d in Section 5, and the already formidable incompressiblelength of this expansion perhaps explains the reason why no referencein the literature provi<strong>de</strong>s the explicit expressions, in terms of some <strong>de</strong>finingfunction for M, of Élie Cartan’s two fundamental differential invariants 7which can (in principle) be used to classify real analytic hyper<strong>sur</strong>faces ofC 2 up to biholomorphisms, and to at least characterize sphericality.Suppose in particular for instance that M is rigid, given by a complexequation of the form w = −w + Ξ(z, z), that is to say with Θ(z, z, w)of the form −w + Ξ(z, z), so that the reality condition simply reads here:Ξ(z, z) ≡ Ξ(z, z). Then as a corollary-exercise, sphericality is explicitly7 See [3] and also [23], where the tight analogy with second-or<strong>de</strong>r ordinary differentialequations is well explained.187


188characterized by a much simpler partial differential equation that we canwrite down in expan<strong>de</strong>d form:0 ≡ Ξ z 2 z 4(Ξzz) 4− 6 Ξ z 2 z 3 Ξ zz 2(Ξzz) 5− 4 Ξ z 2 z 2 Ξ zz 3(Ξzz) 5− Ξ z 2 z Ξ zz 4(Ξzz) 5++ 15 Ξ ( ) 2z 2 z 2 Ξzz 2( ) 6+ 10 Ξ zz 3 Ξ z 2 z Ξ zz 2( ) 6− 15 Ξ ( 3z 2 z Ξzz 2)( ) 7,Ξzz Ξzz Ξzzand this equation should of course hold i<strong>de</strong>ntically in C { z, z } .Now, here is a summarized <strong>de</strong>scription of our arguments of proof. BeniaminoSegre ([23]) in 1931 and in fact much earlier Sophus <strong>Lie</strong> himself inthe 1880’s (see e.g. Chapter 10 of Volume I of the Theorie <strong>de</strong>r Transformationsgruppen[8]) showed how to elementarily associate a unique secondor<strong>de</strong>rordinary differential equation:w zz (z) = Φ ( z, w(z), w z (z) )to the Levi non<strong>de</strong>generate equation w = Θ(z, z, w) by eliminating the twovariab<strong>les</strong> z and w, viewed as parameters, from the two equations w = Θand w z = Θ z . We check in great <strong>de</strong>tails the semi-known result that M isspherical at the origin if and only if its associated differential equation isequivalent, un<strong>de</strong>r some appropriate local holomorphic point transformation(z, w) ↦−→ (z ′ , w ′ ) = ( z ′ (z, w), w ′ (z, w) ) fixing the origin, to the simp<strong>les</strong>tpossible equation w z ′ ′ z ′(z′ ) = 0 having null right-hand si<strong>de</strong>, whose obvioussolutions are just the affine complex lines. But since the doctoral dissertationof Arthur Tresse (<strong>de</strong>fen<strong>de</strong>d in 1895 un<strong>de</strong>r the direction of <strong>Lie</strong> in Leipzig),it is known that, attached to any such differential equation are two explicitdifferential invariants:I 1 := Φ wzw zw zw zand:I 2 := DD ( Φ wzw z)− Φwz D ( Φ wzw z)− 4 D(Φwwz)++ 6 Φ ww − 3 Φ w Φ wzw z+ 4 Φ wz Φ wwz ,where D :=∂ z + w z ∂ w + Φ(z, w, w z ) ∂ wz ,<strong>de</strong>pending both upon the fourth-or<strong>de</strong>r jet of Φ, which, together with all theircovariant differentiations, enable one (in principle 8 ) to completely <strong>de</strong>terminewhen two arbitrarily given differential equations are equivalent one toanother 9 . A very well-known application is: the vanishing of both I 1 and8 To our knowledge, the only existing reference where this strategy is seriously en<strong>de</strong>avouredin or<strong>de</strong>r to classify second-or<strong>de</strong>r ordinary differential equations y xx (x) =F ( x, y(x), y x (x) ) is [HK1989], but only for certain point transformations — called there“fiber-preserwing” — of the special form (x, y) ↦→ (x ′ , y ′ ) = ( x ′ (x), y ′ (x, y) ) , the firstcomponent of which is in<strong>de</strong>pen<strong>de</strong>nt of y.9 Three <strong>de</strong>ca<strong>de</strong>s earlier, Christoffel in his famous memoir [4] of 1869 <strong>de</strong>voted to theequivalence problem for Riemannian metrics discovered that the covariant differentiations


I 2 characterizes equivalence to w ′ z ′ z ′(z′ ) = 0. So in or<strong>de</strong>r to characterizesphericality, one only has to reexpress the vanishing of I 1 and of I 2 in termsof the complex <strong>de</strong>fining function Θ(z, z, w). For this, we apply the techniquesof computational differential algebra <strong>de</strong>veloped in [19] which enableus here to explicitly execute the two-ways transfer between algebraic expressionsin the jet of Φ and algebraic expressions in the jet of Θ. It thenturns out that the two equations which one obtains by transferring to Θ thevanishing of I 1 and of I 2 are conjugate one to another, so that a single equationsuffices, and it is precisely the one enunciated in the theorem. In fact,this coinci<strong>de</strong>nce is caused by the famous projective duality, explained e.g.by <strong>Lie</strong> and Scheffers in Chapter 10 of [12] and restituted in mo<strong>de</strong>rn languagein [1, 5]. It is in<strong>de</strong>ed well known that to any second-or<strong>de</strong>r ordinarydifferential equation (E ): y xx (x) = F ( x, y(x), y x (x) ) is canonically associateda certain dual second-or<strong>de</strong>r ordinary differential equation, call it (E ∗ ):b aa (a) = F ∗( a, b a (a), b aa (a) ) , which has the crucial property that:I 1 (E ) is a nonzero multiple of I 2 (E ∗ )and symmetrically also: I 2 (E ) is a nonzero multiple of I 1 (E ∗ ).The doctoral dissertation [10] of Koppisch (Leipzig 1905) cited only passimby Élie Cartan in [Ca1924] contains the analytical <strong>de</strong>tails of this correspon<strong>de</strong>nce,which was well reconstituted recently in [5] within the context ofprojective Cartan connections. But the differential equation which is dual tothe one w zz (z) = Φ ( z, w(z), w z (z) ) associated to w = Θ(z, z, w) is easilyseen to be just its complex conjugate (E ): w zz (z) = Φ ( )z, w(z), w z , andthen as a consequence, I 1 = (E) I1 (E ) is the conjugate of I1 (E), and similarly alsoI 2 = (E) I2 (E ) is the conjugate of I2 (E ). So it is no mystery that, as said, thesphericality of M at the origin:0 ≡ I 1 (E) and 0 ≡ I 2 (E ) = nonzero · I 1 (E ) = nonzero · I1 (E ) ,can in a simpler way be characterized by the vanishing of the two mutuallyconjugate (complex) equations:0 ≡ I 1 (E) and 0 ≡ I 1 (E ) ,which of course amount to just one (complex) equation.To conclu<strong>de</strong> this introduction, we would like to mention firstly that noneof our computations — especially those of Sections 4 and 5 — was performedwith the help of any computer, and secondly that the effective characterizationof sphericality in higher complex dimension n 3 will appearsoon [21].of the curvature provi<strong>de</strong> a full list of differential invariants for positive <strong>de</strong>finite quadraticinfinitesimal metrics.189


190§2. SEGRE VARIETIES AND DIFFERENTIAL EQUATIONSReal analytic hyper<strong>sur</strong>faces in C 2 . Let us consi<strong>de</strong>r an arbitrary real analytichyper<strong>sur</strong>face M in C 2 and let us localize it around one of its points, sayp ∈ M. Then there exist complex affine coordinates:(z, w) = ( x + iy, u + iv )vanishing at p in which T p M = {u = 0}, so that M is represented in aneighborhood of p by a graphed <strong>de</strong>fining equation of the form:where the real-valued function:ϕ = ϕ(x, y, v) =∑u = ϕ(x, y, v),k,l,m∈Nk+l+m2ϕ k,l,m x k y l v m ∈ R { x, y, u } ,which possesses entirely arbitrary real coefficients ϕ k,l,m , vanishes at theorigin: ϕ(0) = 0, together with all its first or<strong>de</strong>r <strong>de</strong>rivatives: 0 = ∂ x ϕ(0) =∂ y ϕ(0) = ∂ v ϕ(0). All studies in the analytic reflection principle 10 showwithout doubt that the a<strong>de</strong>quate geometric concepts: Pair of Segre foliations,Segre chains, Complexified CR orbits, Jets of complexified Segre varietes,Rigidity of formal CR mappings, Non<strong>de</strong>generacy conditions, CR-reflectionfunction, can be viewed correctly only when M is represented by a so-calledcomplex <strong>de</strong>fining equation. Such an equation may be constructed by simplyrewriting the initial real equation of M as:w+w= ϕ ( z+z, z−z,w−w2 2 2i 2iand then by solving 11 the so written equation with respect to w, which yieldsan equation of the shape 12 :w = Θ ( z, z, w ) =∑Θ α,β,γ z α z β w γ ∈ C { z, z, w } ,α, β, γ ∈ Nα+β+γ1whose right-hand si<strong>de</strong> converges of course near the origin (0, 0, 0) ∈ C ×C × C and has complex coefficients Θ α,β,γ ∈ C. The paradox that anysuch complex equation provi<strong>de</strong>s in fact two real <strong>de</strong>fining equations for thereal hyper<strong>sur</strong>face M which is one-codimensional, and also in addition thefact that one could as well have chosen to solve the above equation withrespect to w, instead of w, these two apparent “contradictions” are corrected10 The rea<strong>de</strong>r might for instance consult the <strong>sur</strong>vey [18], pp. 5–44 or the memoirs[Me2005a, Me2005b], and look also at some of the concerned references therein.11 Thanks to dϕ(0) = 0, the holomorphic implicit function theorem readily applies.12 Notice that since dϕ(0) = 0, one has Θ = −w + or<strong>de</strong>r 2 terms.),


y means of a fundamental, elementary statement that transfers to Θ (in anatural way) the condition of reality:ϕ(x, y, u) =∑ϕ k,l,m x k y l v m =∑ϕ k,l,m x k y l v m = ϕ(x, y, v)k+l+m1k+l+m1enjoyed by the initial <strong>de</strong>finining function ϕ.Theorem. ([18], p. 19 13 ) The complex analytic function Θ = Θ(z, z, w)with Θ = −w + O(2) together with its complex conjugate 14 :Θ = Θ ( z, z, w) =∑Θ α,β,γ z α z β w γ ∈ C { z, z, w }α, β, γ∈Nsatisfy the two (equivalent by conjugation) functional equations:(7.28)w ≡ Θ ( z, z, Θ(z, z, w) ) ,w ≡ Θ ( z, z, Θ(z, z, w) ) .Conversely, given a local holomorphic function Θ(z, z, w) ∈ C{z, z, w},Θ = −w + O(2) which, in conjunction with its conjugate Θ(z, z, w), satisfiesthis pair of equivalent i<strong>de</strong>ntities, then the two zero-sets:{ ( )} { ( )}0 = −w + Θ z, z, w and 0 = −w + Θ z, z, wcoinci<strong>de</strong> and <strong>de</strong>fine a local one-codimensional real analytic hyper<strong>sur</strong>faceM passing through the origin in C 2 .As before, let M be an arbitrary real analytic hyper<strong>sur</strong>face passingthrough the origin in C 2 equipped with coordinates (z, w), and assume thatT 0 M = {u = 0}. Without loss of generality, we can and we shall assumethat the coordinates are chosen in such a way that a certain standard convenientnormalization condition holds.Theorem. ([Me2005a], p. 12) There exists a local complex analytic changeof holomorphic coordinates h: (z, w) ↦−→ (z ′ , w ′ ) = h(z, w) fixing theorigin and tangent to the i<strong>de</strong>ntity at the origin of the specific form:z ′ = z,w ′ = g(z, w),such that the image M ′ := h(M) has a new complex <strong>de</strong>fining equationw ′ = Θ ′( z ′ , z ′ , w ′) satisfying:Θ ′( 0, z ′ , w ′) ≡ Θ ′( z ′ , 0, w ′) ≡ −w ′ ,13 Compared to [18], we <strong>de</strong>note here by Θ the function <strong>de</strong>noted there by Θ.14 According to a general, common convention, given a power series Φ(t) =∑γ∈N n Φ γ t γ , t ∈ C n , Φ γ ∈ C, one <strong>de</strong>fines the series Φ(t) := ∑ γ∈N n Φ γ t γ by conjugatingonly its complex coefficients. Then the complex conjugation operator distributesoneself simultaneously on functions and on variab<strong>les</strong>: Φ(t) ≡ Φ(¯t), a trivial property whichis nonethe<strong>les</strong>s frequently used in the formal CR reflection principle ([Me2005a, Me2005b]).191


192or equivalently, which has a power series expansion of the form:Θ ′( z ′ ,z ′ ,w ′) = − w ′ +∑∑ ∑Θ ′ α,β,0 z′ α z′β + w ′ γΘ ′ α,β,γ z′ α z′β .α1, β1γ1α1, β1Levi non<strong>de</strong>generate hyper<strong>sur</strong>faces. Leaving asi<strong>de</strong> the real <strong>de</strong>fining equationof M, let us now rename the complex <strong>de</strong>fining equation of M in suchnormalized coordinates simply as before: w = Θ(z, z, w), dropping all theprime signs. Quite concretely, the real analytic hyper<strong>sur</strong>face M is said to beLevi non<strong>de</strong>generate at the origin if the coefficient Θ 1,1,0 of zz, which may bechecked to always be real because of the reality condition (7.28), is nonzero.In fact, it is well known that Levi non<strong>de</strong>generacy is a biholomorphically invariantproperty, see for instance [18], p. 158, but in more conceptual terms,the following general characterization, which may be taken as a <strong>de</strong>finitionhere, holds true. One then readily checks that it is equivalent to Θ 1,1,0 ≠ 0in normalized coordinates.Lemma. ([Me2005a, Me2005b, 19]) The real analytic hyper<strong>sur</strong>face M ⊂C 2 with 0 ∈ M represented in coordinates (z, w) by a complex <strong>de</strong>finingequation of the form w = Θ(z, z, w) is Levi non<strong>de</strong>generate at the origin ifand only if the map:(z,w)↦−→(Θ(0, z, w), Θz (0, z, w) )has nonvanishing 2 × 2 Jacobian <strong>de</strong>terminant at (z, w) = (0, 0).After a possible real dilation of the z-coordinate, we can therefore assumethat Θ 1,1,0 = 1, and then we are provi<strong>de</strong>d with the following normalization:(7.28) w = −w + zz + zz O ( |z| + |w| ) ,that will be useful shortly. Another, even more convincing argument forconsigning to oblivion the real <strong>de</strong>fining equation u = ϕ(x, y, v) dates backto Beniamino Segre [23], who observed that to any real analytic M are associatedtwo <strong>de</strong>eply linked objects.1) The nowadays so-called Segre varieties 15 S q associated to any pointq ∈ C 2 near the origin of coordinates (z q , w q ) that are the complexcurves <strong>de</strong>fined by the equation:S q := { 0 = −w + Θ ( z, z q , w q)},quite appropriately in terms of the fundamental complex <strong>de</strong>fining functionΘ; this equation is holomorphic just because its antiholomorphicterms are set fixed.15 A presentation of the general theory, valuable for generic CR manifolds of arbitrarycodimension d 1 and of arbitrary CR dimension m 1 in C m+d enjoying no specificnon<strong>de</strong>generacy condition, may be found in [Me2005a, Me2005b, 18].


2) When M is Levi non<strong>de</strong>generate at the origin, a second-or<strong>de</strong>r complexordinary differential equation 16 of the form:w zz (z) = Φ ( z, w(z), w z (z) ) ,193whose solutions are exactly the Segre varieties of M, parametrized bythe two initial conditions w(0) and w z (0) which correspond bijectivelyto the antiholomorphic variab<strong>les</strong> z q and w q .In fact, the recipe for <strong>de</strong>riving the second-or<strong>de</strong>r differential equation associatedto a local Levi-non<strong>de</strong>generate M ⊂ C 2 with 0 ∈ M represented bya normalized 17 equation of the form (7.28) is very simple. Consi<strong>de</strong>ring thatw = w(z) is given in the equation:w(z) = Θ ( z, z, w )as a function of z with two supplementary (antiholomorphic) parameters zand w that one would like to eliminate, we solve with respect to z and w,just by means of the implicit function theorem 18 , the pair of equations:[w(z) = Θ(z, z, w)= −w + zz + zz O(|z| + |w|)w z (z) = Θ z(z, z, w)= z + z O(|z| + |w|)the second one being obtained by differentiating the first one with respect toz, and this yields a representation:z = ζ ( z, w(z), w z (z) ) and w = ξ ( z, w(z), w z (z) )for certain two uniquely <strong>de</strong>fined local complex analytic functionsζ(z, w, w z ) and ξ(z, w, w z ) of three complex variab<strong>les</strong>. By means ofthese functions, we may then replace z and w in the second <strong>de</strong>rivative:( )w zz (z) = Θ zz z, z, w= Θ zz(z, ζ(z, w(z), wz (z) ) , ξ ( z, w(z), w z (z) ))=: Φ ( z, w(z), w z (z) ) ,and this <strong>de</strong>fines without ambiguity the associated differential equation.More about differential equations will be said in §3 below.16 This i<strong>de</strong>a, usually attributed by contemporary CR geometers to B. Segre, dates in factback (at least) to Chapter 10 of Volume 1 of the 2 100 pages long Theorie <strong>de</strong>r Transformationsgruppenwritten by Sophus <strong>Lie</strong> and Friedrich Engel between 1884 and 1893, where itis even presented in the uppermost general context.17 In fact, such a normalization was ma<strong>de</strong> in advance just in or<strong>de</strong>r to make things concreteand clear, but thanks to what the Lemma on p. 192 expresses in a biholomorphicallyinvariant way, everything which follows next holds in an arbitrary system of coordinates.18 Justification: by our preliminary normalization, the 2 × 2 Jacobian <strong>de</strong>terminant∂(Θ, Θ z)∂(z, w)computed at the origin equals˛ 0 −1˛1 0 ˛, hence is nonzero. Without the preliminarynormalization, the condition of the Lemma on p. 192 also applies in any case.


194Of course, any spherical real analytic M ⊂ C 2 must be Levi non<strong>de</strong>generateat every point, for the unit 3-sphere S 3 ⊂ C 2 is. It is well known thatS 3 minus one of its points, for instance: S 3 \ {p ∞ } with p ∞ := (0, −1), isbiholomorphic, through the so-called Cayley transform:(z, w) ↦−→ ( iz1+w , 1−w2+2 wto the so-called Heisenberg sphere of equation:)=: (z ′ , w ′ ) having inverse: (z ′ , w ′ ) ↦−→ ( −2iz ′1+2w ′ ,1−2w ′1+2 w ′ )w ′ = −w ′ + z ′ z ′ ,in the target coordinate-space (z ′ , w ′ ), and this mo<strong>de</strong>l will be more convenientto <strong>de</strong>al with for our purposes.Proposition. A Levi non<strong>de</strong>generate local real analytic hyper<strong>sur</strong>face M inC 2 is locally biholomorphic to a piece of the Heisenberg sphere (hencespherical) if and only if its associated second-or<strong>de</strong>r ordinary complex differentialequation is locally equivalent to the Newtonian free particle equation:w ′ z ′ z ′(z′ ) = 0, with i<strong>de</strong>ntically vanishing right-hand si<strong>de</strong>.Proof. In<strong>de</strong>ed, any local equivalence of M to the Heisenberg sphere transformsits differential equation to the one associated with the Heisenbergsphere, and then trivially: w ′ z ′(z′ ) = z ′ , whence w ′ z ′ z ′(z′ ) = 0.Conversely, if the Segre varieties of M are mapped to the solutions ofw ′ z ′ z ′(z′ ) = 0, namely to the complex affine lines of C 2 , the complex <strong>de</strong>finingequation of the transformed M ′ must necessarily be affine:(7.28) w ′ = λ ′ (z ′ , w ′) + z ′ µ ′( z ′ , w ′) =: Θ ′( z ′ , z ′ , w ′) ,with certain coefficients that are holomorphic with respect to (z ′ , w ′ ). Thenλ ′ (0) = 0 since the origin is fixed, and if µ ′ (0) is nonzero, one performsthe linear transformation z ′ ↦→ z ′ , w ′ ↦→ w ′ − µ ′ (0) z ′ , which stabilizes bothw ′ z ′ z ′(z′ ) = 0 and the form of (7.28), to in<strong>sur</strong>e then that µ ′ (0) = 0.Next, the second reality condition (7.28) now reads:w ′ ≡ λ ′ (z ′ , Θ ′ (z ′ , z ′ , w ′)) + z ′ µ ′( z ′ , Θ ′ (z ′ , z ′ , w ′)) ,and by differentiating it with respect to z ′ , we get, without writing the argumentsfor brevity:0 ≡ λ ′ z + ′ Θ′ z ′ λ′ w + ′ z′ µ ′ z + ′ z′ Θ ′ z ′ µ′ w ′≡ λ ′ z + ′ µ′ λ ′ w + ′ z′ µ ′ z + ′ z′ µ ′ µ ′ w ′,where we replace Θ ′ z in the second line by its value ′µ′ (z ′ , w ′ ). But withall the arguments, this i<strong>de</strong>ntity reads in full length as the following i<strong>de</strong>ntity


195holding in C { z ′ , z ′ , w ′} :− λ ′ z ′ (z ′ , Θ ′ (z ′ , z ′ , w ′)) − z ′ µ ′ z ′ (z ′ , Θ ′ (z ′ , z ′ , w ′)) ≡≡ µ ′ (z ′ , w ′ ) λ ′ w ′ (z ′ , Θ ′ (z ′ , z ′ , w ′)) + z ′ µ ′ (z ′ , w ′ ) µ ′ w ′ (z ′ , Θ ′ (z ′ , z ′ , w ′)) .For convenience, it is better to take (z ′ , z ′ , w ′ ) as arguments of this i<strong>de</strong>ntityinstead of (z ′ , z ′ , w ′ ), so we simply replace w ′ in it by:Θ ′( z ′ , z ′ , w ′) ,we apply the first reality condition (7.28) and we get what we wanted topursue the reasonings:(7.28)−λ ′ (z z ′ , w ′) (− z ′ µ ′ ′ z z ′ , w ′) ≡ µ ′( z ′ , λ ′ (z ′ , w ′ ) + z ′ µ ′ (z ′ , w ′ ) )·′[· λ ′ (w z ′ , w ′) (+ z ′ µ ′ ′ w z ′ , w ′)] ,′i.e. an i<strong>de</strong>ntity holding now in C { z ′ , z ′ , w ′} . The left-hand si<strong>de</strong> being affinewith respect to z ′ , the same must be true of each one of the two factors of theright-hand si<strong>de</strong>. In particular, the second or<strong>de</strong>r <strong>de</strong>rivative of the first factorwith respect to z ′ must vanish i<strong>de</strong>ntically:{0 ≡ ∂ z ′∂ ( z ′ µ′z ′ , λ ′ + z ′ µ ′)}≡ µ ′ z ′ z ′ + 2 µ′ µ ′ z ′ w ′ + µ′ µ ′ µ ′ w ′ w ′.Because M ′ is Levi non<strong>de</strong>generate at the origin, the lemma on p. 192 togetherwith the affine form (7.28) of the <strong>de</strong>fining equation entails that themap:((7.28) z ′ , w ′) ↦−→ ( λ ′ (z ′ , w ′ ), µ ′ (z ′ , w ′ ) )has nonvanishing Jacobian <strong>de</strong>terminant at (z ′ , w ′ ) = (0, 0). Consequently,in the above i<strong>de</strong>ntity (rewritten with some of the arguments):0 ≡ µ ′ z ′ z ′ (z ′ , λ ′ +z ′ µ ′) +2 µ ′ µ ′ z ′ w ′ (z ′ , λ ′ +z ′ µ ′) +µ ′ µ ′ µ ′ w ′ w ′ (z ′ , λ ′ +z ′ µ ′) ,we can consi<strong>de</strong>r z ′ , λ ′ and µ ′ as being just three in<strong>de</strong>pen<strong>de</strong>nt variab<strong>les</strong>. Settingµ ′ = 0, we get 0 ≡ µ ′ z ′ z ′ (z ′ , λ ′ ), that is to say: µz ′ z ′(z′ , w ′ ) ≡ 0 andthen after division of µ ′ , we are left with only two terms:0 ≡ 2 µ ′ z ′ w ′ (z ′ , λ ′ + z ′ µ ′) + µ ′ µ ′ w ′ w ′ (z ′ , λ ′ + z ′ µ ′) .Then again 0 ≡ 2 µ z ′ w ′(z′ , w ′ ) and finally also 0 ≡ µ w ′ w ′(z′ , w ′ ). This meansthat the function:µ ′ (z ′ , w ′ ) = c ′ 1 z′ + c ′ 2 w′ ,with some two constants c ′ 1 , c′ 2 ∈ C, is linear.


196Now, we claim that c ′ 2 = 0 in fact. In<strong>de</strong>ed, setting z ′ = 0 in (7.28), weget:−λ ′ z ′ (0, w′ ) −z ′ c ′ 1 ≡ { c ′ 1 z ′ +c ′ 2(λ′(0, w ′ )+z ′ c ′ 2w ′)} ·[λ ′ w ′(0, w′ )+z ′ c ′ 2].The coefficient c ′ 2c ′ 2c ′ 2 of (z ′ ) 2 w ′ in the right-hand si<strong>de</strong> must vanish, so c ′ 2 =0. Since the rank at the origin of the map (7.28) equals 2, necessarily µ ′ ≢ 0,so c ′ 1 ≠ 0, and then c′ 1 = 1 after a suitable dilation of the z′ -axis. Next,rewriting the i<strong>de</strong>ntity (7.28):−λ ′ z ′ (z ′ , w ′) − z ′ ≡ z ′[ λ ′ w ′ (z ′ , w ′)] ,we finally get λ ′ z ≡ 0 and ′ λ′ w ′ ≡ −1, which means in conclusion that:λ ′ (z ′ , w ′ ) ≡ −w ′ and µ ′ (z ′ , w ′ ) ≡ z ′ ,so that the equation of M ′ is the one: w ′ = −w ′ + z ′ z ′ of the Heisenbergsphere in the target coordinates (z ′ , w ′ ).Thanks to this proposition, in or<strong>de</strong>r to characterize the sphericality of alocal real analytic hyper<strong>sur</strong>face M ⊂ C 2 explicitly in terms of its complex<strong>de</strong>fining function Θ, our strategy 19 will be to:□ characterize the local equivalence to w ′ z ′ z ′(z′ ) = 0 of the associateddifferential equation:(7.28) w zz (z) = Θ zz(z, ζ(z, w(z), wz (z) ) , ξ ( z, w(z), w z (z) )) ,explicitly in terms of the three functions Θ zz , ζ and ξ;□ eliminate any occurence of the two <strong>aux</strong>iliary functions ζ and ξ so asto re-express the obtained result only in terms of the sixth-or<strong>de</strong>r jet J 6 z,z,w Θ.§3. GEOMETRY OF ASSOCIATED SUBMANIFOLDS OF SOLUTIONSThe characterization we will obtain holds in fact insi<strong>de</strong> a broa<strong>de</strong>r contextthan just CR geometry, in terms of what we called in [19] the submanifold ofsolutions associated to any second-or<strong>de</strong>r ordinary differential equation, nomatter whether it comes or not from a Levi non<strong>de</strong>generate M ⊂ C 2 . In fact,the elementary foundations towards a general theory embracing all systemsof completely integrable partial differential equations was laid down [19],especially by producing explicit prolongation formulas for infinitesimal <strong>Lie</strong>symmetries, with many interesting problems that are still wi<strong>de</strong> open as soonas the number of (in<strong>de</strong>pen<strong>de</strong>nt or <strong>de</strong>pen<strong>de</strong>nt) variab<strong>les</strong> increases: constructionof Cartan connections; production of differential invariants; full classificationaccording to the <strong>Lie</strong> symmetry group.19 — indicated already as the accessible Open Question 2.35 in [19] —


Fortunately for our present purposes here, the geometry, the classification,and the <strong>Lie</strong> transformation group features of second or<strong>de</strong>r ordinary differentialequations are essentially completely un<strong>de</strong>rstood since the groundbreakingworks of <strong>Lie</strong> [<strong>Lie</strong>1883], followed by a prized thesis by Tresse [Tr1896]and later by a celebrated memoir of Élie Cartan, see also [GTW1989] andthe references therein.Accordingly, letting x ∈ K and y ∈ K be two real or complex variab<strong>les</strong>(with hence K = R or C throughout), consi<strong>de</strong>r any second-or<strong>de</strong>r ordinarydifferential equation:y xx (x) = F ( x, y(x), y x (x) )having local K-analytic right-hand si<strong>de</strong> F , and <strong>de</strong>note it by (E ) for short. Inthe space of first-or<strong>de</strong>r jets of arbitrary graphing functions y = y(x) that weequip with three in<strong>de</strong>pen<strong>de</strong>nt coordinates <strong>de</strong>noted (x, y, y x ), let us introducethe vector field:D := ∂∂x + y ∂x∂y + F(x, y, y x) ∂ ,∂y xwhose integral curves insi<strong>de</strong> the three-dimensional space (x, y, y x ) correspond,classically, to solving the equation y xx (x) = F(x, y(x), y x (x)) bytransforming it into a system of two first-or<strong>de</strong>r differential equations withthe two unknown functions y(x) and y x (x).Theorem. ([<strong>Lie</strong>1883, Tr1896, Ca1924, GTW1989, 17]) A second-or<strong>de</strong>r ordinarydifferential equation y xx = F(x, y, y x ) <strong>de</strong>noted (E ) with K-analyticright-hand si<strong>de</strong> possesses two fundamental differential invariants, namely:I 1 (E) := F y xy xy xy xand:I 2 (E) := DD( F yxy x)− Fyx D ( F yxy x)− 4 D(Fyyx)++ 6 F yy − 3 F y F yxy x+ 4 F yx F yyx ,while all other differential invariants are <strong>de</strong>duced from I 1 (E ) and I2 (E)by covariant(in the sense of Tresse) or coframe (in the sense of Cartan) diffentiations.Moreover, local equivalence to y x ′ ′ x ′(x′ ) = 0 holds un<strong>de</strong>r someinvertible local K-analytic point transformation:(x, y) ↦−→ (x ′ , y ′ ) = ( x ′ (x, y), y ′ (x, y) )if and only if both invariants vanish:0 = I 1 (E ) = I 2 (E).In or<strong>de</strong>r to characterize sphericality of an M ⊂ C 2 , it is then natural andadvisable to study what the vanishing of the above two differential invariantsgives when applied to the second or<strong>de</strong>r ordinary differential equation (7.28)enjoyed by the <strong>de</strong>fining function Θ. This goal will be pursued in §4 below.197


198For the time being, with the aim of extending such a kind of characterizationto a broa<strong>de</strong>r scope, following §2 of [19], let us now recall how one mayin a natural way construct a sumanifold of solutions M E associated to thedifferential equation (E ) which, when (E ) comes from a Levi non<strong>de</strong>generatelocal real analytic hyper<strong>sur</strong>face M ⊂ C 2 , regives without any modificationits complex <strong>de</strong>fining equation w = Θ ( z, z, w).To begin with, in the first-or<strong>de</strong>r jet space (x, y, y x ) that we simply drawas a common three-dimensional space:y xyD0abxyDM (E)0a, bxDDDexp(xD)(0,a, b)we duplicate the two <strong>de</strong>pen<strong>de</strong>nt coordinates (y, y x ) by introducing a newsubspace of coordinates (a, b) ∈ K × K, and we draw a vertical plane containingthe two new axes that are just parallel copies (for the moment, justlook at the left-hand si<strong>de</strong>). Then the leaves of the local foliation associatedto the integral curves of the vector field D are uniquely <strong>de</strong>termined by theirintersection with this plane, because thanks to the presence of ∂ in D, all∂xthese curves are approximately directed by the x-axis in a neighborhood ofthe origin: no tangent vector can be vertical. But we claim that all such intersectionpoints of coordinates (0, b, a) ∈ K×K×K correspond bijectivelyto the two initial conditions y(0) ≡ b and y x (0) = a for solving uniquely thedifferential equation. In fact, the flow of D at time x starting from all suchpoints (0, b, a) of the duplicated vertical plane:exp(x D)(0, b, a) =: ( x, Q(x, a, b), S(x, a, b) )(see again the diagram) expresses itself in terms of two certain local K-analytic functions Q and S that satisfy, by the very <strong>de</strong>finition of the flow ofour vector field ∂ x + y x ∂ y + F ∂ yx , the following two differential equations:ddx Q(x, a, b) = S(x, a, b) and: ddx S(x, a, b) = F( x, Q(x, a, b), S(x, a, b) )together with the (obious) initial condition for x = 0:(0, b, a) = exp(0 D)(0, b, a) = ( 0, Q(0, a, b), S(0, a, b) ) .


We notice passim that S ≡ Q x (no two symbols were in fact nee<strong>de</strong>d), andmost importantly, we emphasize that in this way, we have viewed in a somewhatgeometric-min<strong>de</strong>d way of thinking that the general solution:y = y(x) = Q ( x, y x (0), y(0) ) = Q(x, a, b)to the original differential equation arises naturally as the first (amongst two)graphing function for the integral curves of D in the first or<strong>de</strong>r jet space,these curves being parametrized by (a, b).Definition. The sumanifold of solutions 20 M (E) associated with the secondor<strong>de</strong>rordinary differential equation (E ): y xx (x) = F ( x, y(x), y x (x) ) isthe local K-analytic submanifold of the four-dimensional Eucli<strong>de</strong>an spaceK x × K y × K a × K b represented as the zero-set:0 = −y + Q(x, a, b),where Q(x, a, b) is the general local K-analytic solution of (E ), satisfyingtherefore:Q xx(x, a, b) ≡ F(x, Q(x, a, b), Qx (x, a, b) ) ,and Q(0, a, b) = b, Q x (0, a, b) = a.Conversely, let us assume we are given a submanifold M of K x × K y ×K a × K b of the specific equation y = Q(x, a, b), for a certain local K-analytic function Q of the three variab<strong>les</strong> (x, a, b). Call (x, y) the variab<strong>les</strong>,(a, b) the parameters, and call M solvable with respect to the parameters (atthe origin) if the map:(a, b) ↦−→ ( Q(0, a, b), Q x (0, a, b) )has rank two at the central point (a, b) = (0, 0). Of course, the submanifoldof solutions associated to any second-or<strong>de</strong>r ordinary differential equationis solvable with respect to parameters, for in this case Q(0, a, b) ≡ b andQ x (0, a, b) ≡ a.Similarly as what we did for <strong>de</strong>riving 2) on p. 193, if an arbitrarily givensubmanifold M of K x × K y × K a × K b is assumed to be solvable withrespect to parameters, then viewing y in y = Q(x, a, b) as a parametrizedfunction of x, the implicit function theorem enab<strong>les</strong> one to solve (a, b) in thetwo equations:[ y(x) = Q(x, a, b)y x (x) = Q x (x, a, b),19920 At this point, the rea<strong>de</strong>r is referred to [19] for more about how one can <strong>de</strong>velope thewhole theory of <strong>Lie</strong> symmetries of partial differential equations intrinsically within submanifoldsof solutions only; the theory of Cartan connections associated to certain exteriordifferential systems could (and should also) be transferred to submanifolds of solutions.


200to yield both a representation for a and and a representation for b of the form:[ (a = A x, y(x), yx (x) )(7.28)b = B ( x, y(x), y x (x) ) ,for certain two local K-analytic functions A and B of three in<strong>de</strong>pen<strong>de</strong>ntvariab<strong>les</strong> (x, y, y x ), that one may insert afterwards in the second or<strong>de</strong>r <strong>de</strong>rivative:y xx (x) = Q xx(x, a, b)= Q xx(x, A(x, y(x), yx (x)), B(x, y(x), y x (x)) )=: F ( x, y(x), y x (x) ) ,which yields the differential equation (E M ) associated to the submanifoldM solvable with respect to the parameters. In summary:Proposition. ([19]) There is a one-to-one correspon<strong>de</strong>nce:(E M ) = (E ) ←→ M = M (E )between second-or<strong>de</strong>r ordinary differential equations (E ) of the generalform:y xx (x) = F ( x, y(x), y x (x) )and submanifolds (of solutions) M of equation:y = Q(x, a, b)that are solvable with respect to the parameters, and this correspon<strong>de</strong>ncesatisfies:(EM(E))= (E ) and M(EM ) = M.We now claim that solvability with respect to the parameters is an invariantcondition, in<strong>de</strong>pen<strong>de</strong>ntly of the choice of coordinates. In<strong>de</strong>ed, lety = Q(x, a, b) be any submanifold of solutions, call it M , and let:(x, y, a, b)↦−→(x ′ (x, y), y ′ (x, y), a, b )be an arbitrary local K-analytic diffeomorphism fixing the origin( which leaves untouched the parameters. The vector of coordinates1, Qx (x, a, b), 0, 0 ) based at the point ( x, Q(x, a, b), a, b ) of M is sent,through such a diffeomorphism, to a vector whose x ′ -coordinate equals:ddx[x ′ (x, Q) ] = x ′ x +Q x x ′ y . Therefore the implicit function theorem in<strong>sur</strong>esthat, provi<strong>de</strong>d the expression:x ′ x(x, y) + Q x (x, a, b) x ′ y(x, y) ≠ 0does not vanish, the image M ′ of M through such a diffeomorphism canstill be represented, locally in a neighborhood of the origin, as a graph of asimilar form:y ′ = Q ′( x ′ , a, b ) ,


for a certain local K-analytic new function Q ′ = Q ′ (x ′ , a, b). Since M : y =Q(x, a, b) is sent to M ′ : y ′ = Q ′ (x ′ , a, b), it follows that x ′ (x, y), y ′ (x, y),Q(x, a, b) and Q ′ (x ′ , a, b) are all linked by the following fundamental i<strong>de</strong>ntity:(7.28) y ′( x, Q(x, a, b) ) ≡ Q ′( x ′ (x, Q(x, a, b)), a, b ) ,which holds in C { x, a, b } .Claim. If M is solvable with respect to the parameters (at the origin), thenM ′ is also solvable with respect to the parameters (at the origin too), andconversely.Proof. The assumption that M is solvable with respect to the parameters isequivalent to the fact that its first or<strong>de</strong>r x-jet map:(x, a, b)↦−→(x, Q(x, a, b), Qx (x, a, b) ))is (locally) of rank three. One should therefore look at the same first or<strong>de</strong>r jetmap attached to M ′ , represented in the right part of the following diagram:((x, a, b)x ′ (x, Q(x, a, b)), a, b )(x ′ , a, b),(x, Q(x, a, b), Qx (x, a, b) ) X ? ( x ′ , Q ′ (x ′ , a, b), Q ′ x ′(x′ , a, b) ) ( x ′ , Q ′ (x ′ , a, b), Q ′ x ′(x′ , a, b) )and ask how these two x- and x ′ -jet maps can be related to each other,namely search for a map:( ) (X ?: x, Q, Qx ↦−→ x, Q ′ , Q x)′which would close up the diagram and make it commutative.The answer for the second component of the sought map is simply:( )X 2 :( x, Q, Qx ↦−→ y′x, Q ) ,since (9) in<strong>de</strong>ed shows that composing the right vertical arrow with the upperhorizontal one gives the same result, concerning a second component, ascomposing the bottom horizontal arrow with the left vertical one.The answer for the third component of the sought map then proceeds bydifferentiating with respect to x the fundamental i<strong>de</strong>ntity (9), which yields,without writing the arguments:y ′ x + Q x y ′ y ≡ [ x ′ x + Q x x ′ y]Q′x ′,and since x ′ x + Q x x ′ y ≠ 0 by assumption, it suffices to set:X 3 :( ) y x ′ (x, Q) + Q x y y ′ (x, Q)x, Q, Qx ↦−→x ′ x (x, Q) + Q x x ′ y (x, Q),201


202in or<strong>de</strong>r to complete the commutativity of the diagram, namely to get:( ) yQ ′ x ′ (x, Q(x, a, b)) + Q x(x, a, b) y y ′ (x, Q(x, a, b))x f(x, Q(x, a, b)), a, b ≡ ′ x ′ x (x, Q(x, a, b)) + Q x(x, a, b) x ′ y (x, Q(x, a, b)),as was required. But now consi<strong>de</strong>ring instead the inverse diffeomorphismechanges nothing to the reasonings, hence we have at the same time a rightinverse:((x, a, b)x ′ (x, Q(x, a, b)), a, b ) (x, a, b)x-jet(x, Q(x, a, b), Qx (x, a, b) ) X ( x ′ , Q ′ (x ′ , a, b), Q ′ x ′(x′ , a, b) ) X −1 ( ) x, Q(x, a, b), Q(x, a, b)x ′ -jetx-jetof our commutative diagram, so that the x-jet map and the x ′ -jet map havecoinciding ranks at pairs of points which correspond one to another.We are now in a position to generalize the characterization of sphericality<strong>de</strong>rived earlier on p. 223.Proposition. A second-or<strong>de</strong>r ordinary differential equation y xx (x) =F(x, y(x), y x (x)) with K-analytic right-hand si<strong>de</strong> is equivalent, un<strong>de</strong>r someinvertible local K-analytic point transformation (x, y) ↦→ (x ′ , y ′ ), to thefree particle Newtonian equation y ′ x ′ x ′(x′ ) = 0 if and only if its associatedsubmanifold of solutions y = Q(x, a, b) is equivalent, un<strong>de</strong>r some local K-analytic map in which variab<strong>les</strong> are separated from parameters:(x, y, a, b) ↦−→ ( x ′ (x, y), y ′ (x, y), a ′ (a, b), b ′ (a, b) )to the affine submanifold of solutions of equation y ′ = b ′ + x ′ a ′ .Before proceeding to the proof, let us observe that when one looks at areal analytic hyper<strong>sur</strong>face M ⊂ C 2 , the corresponding transformation inthe parameter space is constrained to be the conjugate transformation of thelocal biholomorphism:(z, w, z, w)↦−→(z ′ (z, w), w ′ (z, w), z ′ (z, w), w ′ (z, w) ) ,while one has more freedom for general differential equations, in the sensethat transformations of variab<strong>les</strong> and transformations of parameters are entirely<strong>de</strong>coupled.Proof. One direction is clear: if y = Q(x, a, b) is equivalent to:(7.28) y ′ = b ′ + x ′ a ′ = b ′ (a, b) + x ′ a ′ (a, b),then its associated differential equation y xx (x) = F ( x, y(x), y x (x) ) isequivalent, through the same diffeomorphism (x, y) ↦→ (x ′ , y ′ ) of the variab<strong>les</strong>,to the differential equation associated with (7.28), which trivially is:y ′ x ′ x ′(x′ ) = 0.


Conversely, if y xx (x) = F ( x, y(x), y x (x) ) is equivalent, through a diffeomorphism(x, y) ↦→ (x ′ , y ′ ), to yx ′ ′ x ′(x′ ) = 0, then its submanifoldof solutions y = Q(x, a, b) is transformed to y ′ = Q ′ (x ′ , a, b) and sincey x ′ ′ x ′(x′ ) = 0, the function Q ′ is necessarily of the form:y ′ = b ′ (a, b) + x ′ a ′ (a, b).Because the condition of solvability with respect to the parameters is invariant,the rank of (a, b) ↦→ ( a ′ (a, b), b ′ (a, b) ) is again equal to 2, whichconclu<strong>de</strong>s the proof.Coming now back to the wanted characterization of sphericality, our moregeneral goal now amounts to characterize, directly in terms of its fundamentalsolution function Q(x, a, b), the local equivalence to y ′ x ′ x ′(x′ ) = 0 of asecond-or<strong>de</strong>r ordinary differential equation y xx (x) = F ( x, y(x), y x (x) ) .Afterwards at the end, it will suffice to replace Q(x, a, b) simply byΘ(z, z, w) in the obtained equations.But before going further, let us explain how a certain generalized projectiveduality will simplify our task, as already said in the Introduction. Thus,let (E ): y xx (x) = F ( x, y(x), y x (x) ) be a differential equation as abovehaving general solution y = Q(x, a, b) = −b+xa+O(x 2 ), with initial conditionsb = −y(0) and a = y x (0). The implicit function theorem enab<strong>les</strong> usto solve b in the equation y = Q(x, a, b) of the associated submanifold ofsolutions M (E) in terms of the other quantities, which yields an equation ofthe shape:b = Q ∗ (a, x, y) = −y + ax + O(x 2 ),for some new local K-analytic function Q ∗ = Q ∗ (a, x, y). Then similarly aspreviously, we may eliminate x and y from the two equations:b(a) = Q ∗ (a, x, y) = −y + ax + O(x 2 )b a (a) = Q ∗ a (a, x, y) = x + O(x2 ),that is to say: x = X ( a, b(a), b a (a) ) and y = Y ( a, b(a), b a (a) ) , and we theninsert these two solutions in:b aa (a) = Q ∗ aa (a, x, y)(= Q ∗ aa a, X(a, b(a), ba (a)), Y (a, b(a), b a (a)) )=: F ∗( a, b(a), b a (a) ) .We shall call the so obtained second-or<strong>de</strong>r ordinary differential equation thedual of y xx (x) = F ( x, y(x), y x (x) ) .In the case of a hyper<strong>sur</strong>face M ⊂ C 2 , solving w in the equation w =Θ(z, z, w) gives nothing else but the conjugate equation w = Θ(z, z, w),203


204just by virtue of the reality i<strong>de</strong>ntities (7.28). It also follows rather triviallythat the dual differential equation:w zz (z) = Θ zz(z, ζ(z, w(z), wz (z)), ξ(z, w(z), w z (z)) )= Φ ( z, w(z), w z (z) )is also just the conjugate differential equation.To the differential equation y xx = F and to its dual b aa = F ∗ are associatedtwo submanifolds of solutions:M = M (E ) := {( x, y, a, b ) ∈ K × K × K × K: y = Q(x, a, b) } ,together with:M ∗ = M (E ∗ ) := {( a, b, x, y ) ∈ K × K × K × K: b = Q ∗ (a, x, y) } ,and as one obviously guesses, the duality, when viewed within submanifoldsof solutions, just amounts to permute variab<strong>les</strong> and parameters:M ∋ (x, y, a, b) ←→ (a, b, x, y) ∈ M ∗ .In the CR case, if we <strong>de</strong>note by ˜z and ˜w two in<strong>de</strong>pen<strong>de</strong>nt complex variab<strong>les</strong>which correspond to the complexifications of z and w (respectively ofcourse), the duality takes place between the so-called extrinsic complexification([13, 14, Me2005a, Me2005b, 18, 19]):M = M c := {( z, w, ˜z, ˜w ) ∈ C × C × C × C: w = Θ ( z, ˜z, ˜w )}of M in one hand, and in the other hand, its own transformation 21 :M ∗ = ∗ c (M c ) := {(˜z, ˜w, z, w ) ∈ C × C × C × C: ˜w = Θ (˜z, z, w )}un<strong>de</strong>r the involution:∗ c( z, w, ˜z, ˜w ) := (˜z, ˜w, z, w )which clearly is the complexification of the natural antiholomorphic involution:∗ ( z, w, z, w ) := ( z, w, z, w )that fixes M pointwise, as it fixes any other real analytic subset of C 2 . Here,one has M ∗ = ∗(M ) — which is ≠ M in general — and of course also(M∗ )∗ = M .So in terms of the coordinates (x, a, b) on M and of the coordinates(a, x, y) on M ∗ , the duality is the map:(x, a, b) ↦−→ ( a, x, Q(x, a, b) )with inverse:(a, x, y) ↦−→ ( x, a, Q ∗ (a, x, y) ) .21 Be careful not to write {( z, w, ˜z, ˜w ) : ˜w = Θ (˜z, z, w )} , because this would regivethe same subset M of C 2 × C 2 , due to the reality i<strong>de</strong>ntities (7.28).


205But we may also express the duality from the first jet (x, y, y x )-space to thefirst jet (a, b, b a )-space by simply composing the following three maps, thecentral one being the duality M → M ∗ :⎛⎝⎞(a, x, y) (( ↓a, Q ∗ (a, x, y), Q ∗ a(a, x, y) ) ⎠ ◦⎛(x, a, b) → ( a, x, Q(x, a, b) )) ◦ ⎝(x, A(x, y, yx ), B(x, y, y x ) )↑(x, y, y x )which in sum gives us the map:(A(x, y, yx ), Q(x, y, y x ) ↦−→∗( A(x, y, y x ), x, Q ( x, A(x, y, y x ), B(x, y, y x ) )) )( ,A(x, y, yx ), x, Q ( x, A(x, y, y x ), B(x, y, y x ) )) .Q ∗ aWith the approximations, one checks that:(x, y, y x ) ↦−→ ( y x + · · · , −y + xy x + · · · , x + · · ·),where the remain<strong>de</strong>r terms “+ · · · ” are all O(x 2 ). For the differential equationy xx (x) = 0 of affine lines, these remain<strong>de</strong>rs disappear completely andwe recover the classical projective duality written in inhomogeneous coordinates([5], pp. 156–157). Furthermore, one shows (see e.g. [5]) that theabove duality map within first or<strong>de</strong>r jet spaces is a contact transformation,namely through it, the pullback of the standard contact form db−b a da in thetarget space is a nonzero multiple of the standard contact form dy − y x dx inthe source space.But what matters more for us is the following. The two fundamentaldifferential invariants of b aa (a) = F ∗( a, b(a), b a (a) ) are functions exactlysimilar to the ones written on p. 197, namely:⎞⎠,I 1 (E ∗ ) := F ∗ b ab ab ab aI 2 (E ∗ ) := D ∗ D ∗( F ∗ b ab a)− F∗baD ∗( F ∗ b ab a)− 4 D∗ ( F ∗ bb a)++ 6 F ∗ bb − 3 F ∗ b F ∗ b ab a+ 4 F ∗ b aF ∗ bb a,where D ∗ := ∂ a + b a ∂ b + F ∗ (a, b, b a ) ∂ ba . Then according to Koppisch([10]), through the duality map, I 1 (E)is transformed to a nonzero multiple ofI 2 (E ∗ ) , and simultaneously also, I2 (E ) is transformed to a nonzero multiple22 ofI 1 (E ∗ ) , so that: 0 = I 1 (E) ⇐⇒ I 2 (E ∗ ) = 00 = I 2 (E) ⇐⇒ I 1 (E ∗ ) = 0.Consequently, the differential equation (E ): y xx (x) = F ( x, y(x), y x (x) ) isequivalent to y ′ x ′ x ′(x′ ) = 0 if and only if:F yxy xy xy x= 0 and F ∗ b ab ab ab a= 0 .22 To be precise, both factors of multiplicity ([5], p. 165) are nonvanishing in a neighboroodof the origin, but for our purposes, it suffices just that they are not i<strong>de</strong>ntically zeropower series.


206This observation has essentially no practical interest, because the computationof F ∗ in terms of F relies upon the composition of three maps . . .except notably in the CR case, since the duality in this case is complex conjugation:Φ ∗ = Φ. In summary, we have established the following.Proposition. An arbitrary, not necessarily rigid, real analytic hyper<strong>sur</strong>faceM ⊂ C 2 which is Levi non<strong>de</strong>generate at one of its points p and has a complex<strong>de</strong>finining equation of the form:w = Θ ( z, z, w )in some system of local holomorphic coordinates (z, w) ∈ C 2 centered at p,is spherical at p if and only if the right-hand si<strong>de</strong> Φ of its uniquely associatedsecond-or<strong>de</strong>r ordinary complex differential equation:w zz (z) = Φ ( z, w(z), w z (w) )satisfies the single fourth-or<strong>de</strong>r partial differential equation:0 ≡ Φ wzw zw zw z(z, w, wz).It now only remains to re-express this fourth-or<strong>de</strong>r partial differentialequation in terms of the complex graphing function Θ(z, z, w) for M. Wewill achieve this more generally for F yxy xy xy x.§4. EFFECTIVE DIFFERENTIAL CHARACTERIZATIONOF SPHERICALITY IN C 2Reminding the reasonings and notations introduced in a neighborhood ofequation (7.28), the transformation:(x, y, yx)↦−→(x, a, b)and its inverse are given by the two trip<strong>les</strong> of functions:⎡⎡x = xx = x⎢⎣ a = A(x, y, y x )b = B(x, y, y x )and⎢⎣ y = Q(x, a, b)y x = Q x (x, a, b).Equivalently, one has the two pairs of i<strong>de</strong>ntically satisfied equations:a ≡ A ( x, Q(x,a,b), Q x (x,a,b) )b ≡ B ( x, Q(x,a,b), Q x (x,a,b) ) and y ≡ Q ( x, A(x,y,y x ), B(x,y,y x ) )y x ≡ Q x(x, A(x,y,yx ), B(x,y,y x ) ) .Differentiating the second column of equations with respect to x, to y and toy x yields:0 = Q x + Q a A x + Q b B x 0 = Q xx + Q xa A x + Q xb B x1 = Q a A y + Q b B y 0 = Q xa A y + Q xb B y0 = Q a A yx + Q b B yx 1 = Q xa A yx + Q xb B yx .


Then thanks to a straightforward application of the rule of Cramer for 2 × 2linear systems, we <strong>de</strong>rive six useful formulas.Lemma. ([19], p. 9) All the six first or<strong>de</strong>r <strong>de</strong>rivatives A x , A y , A yx , B x ,B y , B yx of the two functions A and B with respect to their three arguments(x, y, y x ) may be expressed as follows in terms of the second jet J 2 (Q) ofthe <strong>de</strong>fining function Q:A x = Q b Q xx − Q x Q xbQ a Q xb − Q b Q xa,Q xbA y =,Q a Q xb − Q b Q xaB y =−Q bA yx =,Q a Q xb − Q b Q xaB yx =B x = Q x Q xa − Q a Q xx,Q a Q xb − Q b Q xa−Q xa,Q a Q xb − Q b Q xaQ aQ a Q xb − Q b Q xa.For future abbreviation, we shall <strong>de</strong>note the single appearing <strong>de</strong>nominator— which evi<strong>de</strong>ntly is the common <strong>de</strong>terminant of all the three 2 × 2linear systems involved above — simply by a square symbol:∆ := Q a Q xb − Q b Q xa .The two-ways transfer between functions G <strong>de</strong>fined in the (x, y, y x )-spaceand functions T <strong>de</strong>fined in the (x, a, b)-space, namely the one-to-one correspon<strong>de</strong>nce:G(x, y, y x ) ←→ T(x, a, b)may be read very concretely as the following two equivalent i<strong>de</strong>ntities:G(x, y, y x ) ≡ T ( x, A(x, y, y x ), B(x, y, y x ) )G ( x, Q(x, a, b), Q x (x, a, b) ) ≡ T(x, a, b),holding in K{x, y, y x } and in K{x, a, b} respectively. By differentiatingthe first i<strong>de</strong>ntity, the chain rule shows how the three first-or<strong>de</strong>r <strong>de</strong>rivationoperators (basic vector fields) ∂ x , ∂ y and ∂ yx living in the (x, y, y x )-spaceare transformed into the (x, a, b)-space:∂∂x = ∂ ( ) ( )∂x + Qb Q xx − Q x Q xb ∂∆ ∂a + Qx Q xa − Q a Q xx ∂∆ ∂b( ) (Qxb ∂∂a + −Qxa∂∂y =∂∂y x=) ∂∆∆ ∂b( ) ( ) −Qb ∂∆ ∂a + Qa ∂∆ ∂b .Lemma. The total differentiation operator D = ∂ x +y x ∂ y +F ∂ yx associatedto y xx = F(x, y, y x ) simply transfers to the basic <strong>de</strong>rivation operator alongthe x-direction:D ←→ ∂ x .207


208Proof. Reading the three formulas just preceding, by adding the first one tothe second one multiplied by y x = Q x together with the third one multipliedby F = Q xx , one visibly sees that the coefficients of both ∂ ∂a and ∂ ∂b dovanish in the obtained sum, as announced.Keeping in mind — so as to avoid any confusion — that the same letter xis used to <strong>de</strong>note simultaneously the in<strong>de</strong>pen<strong>de</strong>nt variable of the differentialequation y xx = F(x, y, y x ) and the non-parameter variable of the associatedsubmanifold of solutions y = Q(x, a, b), we may now write this two-waystransfer D ←→ ∂ x exactly as we did in the above three equations, namelysimply as an equality between two <strong>de</strong>rivations living in the (x, y, y x )-spaceand in the (x, a, b)-space:D = ∂ x .Lemma. With G = G(x, y, y x ) being any local K-analytic function in the(x, y, y x )-space, the three second-or<strong>de</strong>r <strong>de</strong>rivatives G yxy x, G yyx and G yy expressas follows in terms of the second-or<strong>de</strong>r jet Jx,a,b 2 (T) of the <strong>de</strong>finingfunction T :G yxy x= Q b Q b∆ 2+ T a∆ 3 (+ T b∆ 3 (G yyx = − Q b Q xb∆ 2+ T (a∆ 3+ T b∆ 3 (G yy = Q xb Q xb∆ 2+ T (a∆ 3+ T b∆ 3 (T aa − 2 Q a Q b∆ 2 T ab + Q a Q a∆ 2 T bb +∣ ∣ ∣ ∣ ∣ ∣)∣∣∣ QQ a Q b Q bb ∣∣∣ ∣∣∣ Qa − 2 QQ xb Q a Q b Q ab ∣∣∣ ∣∣∣ Qb + Qxbb Q xb Q b Q b Q aa ∣∣∣b +xab Q xb Q xaa∣ ∣ ∣ ∣ ∣ ∣)∣∣∣ Q− Q a Q a Q bb ∣∣∣ ∣∣∣ Qa + 2 QQ xa Q a Q a Q ab ∣∣∣ ∣∣∣ Qb − Qxbb Q xa Q b Q a Q aa ∣∣∣bxab Q xa Q xaaT aa + Q a Q xb + Q b Q xa∆ 2T ab − Q a Q xa∆ 2 T bb +∣ ∣ ∣∣∣ Q− Q a Q b Q bb ∣∣∣xa + ( ) ∣ ∣ ∣ ∣)QQ xb Q a Q xb + Q b Q xa ∣∣ Q b Q ab ∣∣∣ ∣∣∣ Q− Qxbb Q xb Q b Q b Q aa ∣∣∣xb +xab Q xb Q xaa∣ ∣ ∣∣∣ QQ a Q a Q bb ∣∣∣xa − ( ) ∣ ∣ ∣ ∣)QQ xa Q a Q xb + Q b Q xa ∣∣ Q a Q ab ∣∣∣ ∣∣∣ Q+ Qxbb Q xa Q b Q a Q aa ∣∣∣xbxab Q xa Q xaaT aa − 2 Q xa Q xb∆ 2T ab + Q xa Q xa∆ 2 T bb +∣ ∣ ∣ ∣ ∣ ∣)∣∣∣ QQ xa Q b Q bb ∣∣∣ ∣∣∣ Qxa − 2 QQ xb Q xa Q b Q ab ∣∣∣ ∣∣∣ Qxb + Qxbb Q xb Q xb Q b Q aa ∣∣∣xb +xab Q xb Q xaa∣ ∣ ∣ ∣ ∣ ∣)∣∣∣ Q− Q xa Q a Q bb ∣∣∣ ∣∣∣ Qxa + 2 QQ xa Q xa Q a Q ab ∣∣∣ ∣∣∣ Qxb − Qxbb Q xa Q xb Q a Q aa ∣∣∣xb .xab Q xa Q xaaProof. We apply the operatoror<strong>de</strong>r <strong>de</strong>rivative G yx , namely we consi<strong>de</strong>r:∂∂y x, wiewed in the (x, a, b)-space, to the first∂ yx(Gyx)=∂∂y x[− Q b∆ T a + Q a∆ T b],


and we then expand carefully the result by collecting somewhat in advancethe obtained terms with respect to the <strong>de</strong>rivatives of T :(G yxy x= − Q b ∂∆ ∂a + Q )[a ∂− Q b∆ ∂b ∆ T a + Q ]a∆ T b(Qb Q ab∆ − Q )b Q b ∆ a∆ ∆ 2 T a + Q b Q b∆ ∆ T aa+=∆(+ − Q b∆(+ − Q a∆(Qa+∆Q aa∆ + Q )b Q a ∆ a∆ ∆ 2 T b − Q b∆Q bb∆ + Q )a Q b ∆ b∆ ∆ 2 T a − Q a∆Q ab∆ − Q a∆)Q a ∆ b∆ 2 T b + Q a∆Q a∆ T ab+Q b∆ T ab+Q a∆ T bb.The terms involving T aa , T ab , T bb are exactly the ones exhibited by the lemmafor the expression of G yxy x. In the four large parentheses which are coefficientsof T a , T b , T a , T b , we replace the occurences of ∆ a , ∆ a , ∆ b , ∆ b simplyby:∆ a = Q xb Q aa + Q a Q xab − Q xa Q ab − Q b Q xaa∆ b = Q xb Q ab + Q a Q xbb − Q xa Q bb − Q b Q xab ,and the total sum of terms coefficiented by T a in our expression now becomes:T(a [ ] [ ]∆ 3 Q b Q ab Qa Q xb − Q b Q xa − Qb Q b Qxb Q aa + Q a Q xab − Q xa Q ab − Q b Q xaa −[ ] [ ] )− Q a Q bb Qa Q xb − Q b Q xa + Qa Q b Qxb Q ab + Q a Q xbb − Q xa Q bb − Q b Q xab == T (a∆ 3 Q a Q b Q xb Q ab − Q b Q b Q xa Q ab1 − Q b Q b Q xb Q aa − Q a Q b Q b Q xab ++ Q b Q b Q xa Q ab1 + Q b Q b Q b Q xaa −− Q a Q a Q xb Q bb + Q a Q b Q xa Q bb2 + Q a Q b Q xb Q ab + Q a Q a Q b Q xbb −)− Q a Q b Q xa Q bb − Q 2a Q b Q b Q xab == T (a [ ] [ ]∆ 3 Q a Q a Qb Q xbb − Q xb Q bb − 2 Qa Q b Qb Q xab − Q xb Q ab ++ Q b Q b[Qb Q xaa − Q xb Q aa] ) ,so that we now have effectively reconstituted the three 2 × 2 <strong>de</strong>terminantsappearing in the second line of the expression claimed by the lemma forthe transfer of G yxy xto the (x, a, b)-space. The treatment of the coefficientof T bmakes only a few differences, hence will be skipped here (but not∆ 3in the manuscript). Finally, the two remaining expressions for G yyx andfor G yy are obtained by performing entirely analogous algebrico-differentialcomputations.End of the proof of the Main Theorem. Applying the above formula forG yxy xwith x := z, with a := z, with b := w, with ∆ := Θ z Θ zw − Θ w Θ zz ,209


210with G := Φ and with T := Θ zz , we exactly get the expression [ ] AJ 4 (Θ) ofthe Introduction, and then its further <strong>de</strong>rivative ∂ yx ∂ yx Gyxyx = Gyxyxy xy xis exactly:(− Θ w0 ≡Θ z Θ zw − Θ w Θ zz=:AJ 6 (Θ)[Θ z Θ zw − Θ w Θ zz ] 7 .∂∂z +Θ zΘ z Θ zw − Θ w Θ zz) 2∂ [AJ 4 (Θ) ]∂wAs we have said, the vanishing of the second invariant of w zz (z) =Φ ( z, w(z), w z (z) ) amounts to the complex conjugation of the above equation,which is then obviously redundant. Thus, the proof of the Main Theoremis now complete, but we will neverthe<strong>les</strong>s discuss in a specific finalsection what AJ 6 (Θ) would look like in purely expan<strong>de</strong>d form.§5. SOME COMPLETE EXPANSIONS:EXAMPLES OF EXPRESSION SWELLINGSComing back to the non-CR context with the submanifold of solutionsM (E) = { y = Q(x, a, b) } , let us therefore figure out how to expand theexpression differentiated twice:G yxy xy xy x =„− Q b∆+ Ta∆ 3 „+ T b∆ 3 „∂∂a + Qa∆« 2 j∂ Qb Q bT∂b ∆ 2 aa − 2 Qa Q b Qa QaT∆ 2 ab + T∆ 2 bb +Q bbQQ a Q bQa˛˛˛˛ Q xb Q xbb˛˛˛˛ − 2 Q a Q b Q ab Qb˛˛˛˛ Q xb Q xab˛˛˛˛ + Q b Q b Q aab˛˛˛˛ Q xaa˛˛˛˛Q bbQ xbQ aQ a Q− Q a Q a˛˛˛˛ Q xa Q xbb˛˛˛˛ + 2 Q a Q ab Q a Q aab˛˛˛˛ Q xa Q xab˛˛˛˛ − Q b Q b˛˛˛˛ Q xaa˛˛˛˛which would make the Main Theorem a bit more precise and explicit.First of all, we notice that, in the formulas for G yxy x, for G yyx , for G yy ,all the appearing 2 × 2 <strong>de</strong>terminants happen to be modifications of the basicJacobian-like ∆-<strong>de</strong>terminant:∆ ( a|b ) := ∆ =∣ Q ∣a Q b ∣∣∣,Q xa Q xband we will <strong>de</strong>note them accordingly by employing the following (formallyand intuitively clear) notations:∆ ( b|bb ) :=∣ Q ∣b Q bb ∣∣∣∆ ( b|ab ) :=Q xb Q xbb∣ Q ∣b Q ab ∣∣∣∆ ( b|aa ) :=Q xb Q xab∣ Q ∣b Q aa ∣∣∣Q xb Q xaa∆ ( a|bb ) :=∣ Q ∣a Q bb ∣∣∣∆ ( a|ab ) :=Q xa Q xbb∣ Q ∣a Q ab ∣∣∣∆ ( a|aa ) :=Q xa Q xab∣ Q ∣a Q aa ∣∣∣,Q xa Q xaathe bottom line always coinciding with the differentiation with respect tox of the top line. These abbreviations will be very appropriate for the nextQ xa«+«ff,


explicit computation, so let us rewrite the formula for G yxy xusing this newlyintroduced formalism:{1 [G yxy x=∆(a|b) 3 T aa Qb Q b ∆(a|b) ] [+ T ab − 2Qa Q b ∆(a|b) ] [+ T bb Qa Q a ∆(a|b) ] +211+ T a[Qa Q a ∆(b|bb) − 2Q a Q b ∆(b|ab) + Q b Q b ∆(b|aa) ] ++ T b[− Qa Q a ∆(a|bb) + 2Q a Q b ∆(a|ab) − Q b Q b ∆(a|aa) ]} .Then the twelve partial <strong>de</strong>rivatives with respect to a and with respect to b ofall the six <strong>de</strong>terminants ∆ ( ∗|∗ ) appearing in the the second line are easy towrite down:[ ( ) ( )∂∂b ∆ b|bb ] = ∆ bb|bb + ∆( b|bbb ) [ ( ) ( ) ( )∂0 ∂a ∆ b|bb ] = ∆ ab|bb + ∆ b|abb∂∂b∂∂b∂∂b∂∂b∂∂b[∆(b|ab)] = ∆(bb|ab)+ ∆(b|abb)[∆(b|aa)] = ∆(bb|aa)+ ∆(b|aab)[∆(a|bb)] = ∆(ab|bb)+ ∆(a|bbb)∂∂a∂∂a∂∂a[∆(b|ab)] = ∆(ab|ab)0 + ∆( b|aab )[∆(b|aa)] = ∆(ab|aa)+ ∆(b|aaa)[∆(a|bb)] = ∆(aa|bb)+ ∆(a|abb)[ ( ) ( )∆ a|ab ] = ∆ ab|ab + ∆( a|abb ) [ ( ) ( ) ( )∂0 ∂a ∆ a|ab ] = ∆ aa|ab + ∆ a|aab[ ( ) ( ) ( ) [ ( ) ( )∆ a|aa ] = ∆ ab|aa + ∆ a|aab∂∂a ∆ a|aa ] = ∆ aa|aa + ∆( a|aaa ) ,0and the un<strong>de</strong>rlined terms vanish for the trivial reason that any 2 ×2 <strong>de</strong>terminant,two columns of which coinci<strong>de</strong>, vanishes. Consequently, we may nowen<strong>de</strong>avour the computation of the third or<strong>de</strong>r <strong>de</strong>rivative:(G yxy xy x=− Q b∆∂∂a + Q a∆∂∂bWhen applying the two <strong>de</strong>rivations in parentheses to:G yxy x= 1 ∆ 3 {expression}) [Gyxyx].we start out by differentiating1 multiplied by expression, and then we∆ 3differentiate expression. Before any contraction, the full expansion of:∆ 5 G yxy xy x=(we in<strong>de</strong>ed clear out the <strong>de</strong>nominator ∆ 5 ) is then:= T aaˆ3Qb Q b Q b ∆(a|b)∆(aa|b) + 3Q b Q b Q b ∆(a|b)∆(a|ab) − 3Q aQ b Q b ∆(a|b)∆(ab|b) − 3Q aQ b Q b ∆(a|b)∆(a|bb)˜++ T abˆ− 6QaQ b Q b ∆(a|b)∆(aa|b) − 6Q aQ b Q b ∆(a|b)∆(a|ab) + 6Q aQ aQ b ∆(a|b)∆(ab|a) + 6Q aQ aQ b ∆(a|b)∆(a|bb)˜++ T bbˆ3QaQ aQ b ∆(a|b)∆(aa|b) + 3Q aQ aQ b ∆(a|b)∆(a|ab) − 3Q aQ aQ a∆(a|b)∆(ab|b) − 3Q aQ aQ a∆(a|b)∆(a|bb)˜++T ah3Q aQ aQ b ∆(b|bb)∆(aa|b) + 3Q aQ aQ b ∆(b|bb)∆(a|ab) − 3Q aQ aQ a∆(b|bb)∆(ab|b) − 3Q aQ aQ a∆(b|bb)∆(a|bb)−− 6Q aQ b Q b ∆(b|ab)∆(aa|b) − 6Q aQ b Q b ∆(b|ab)∆(a|ab) + 6Q aQ aQ b ∆(b|ab)∆(ab|b) + 6Q aQ aQ b ∆(b|ab)∆(a|bb)+i+ 3Q b Q b Q b ∆(b|aa)∆(aa|b) + 3Q b Q b Q b ∆(b|aa)∆(a|ab) − 3Q aQ b Q b ∆(b|aa)∆(ab|b) − 3Q aQ b Q b ∆(b|aa)∆(a|bb) +


212+T bh3Q aQ aQ b ∆(a|bb)∆(aa|b) + 3Q aQ aQ b ∆(a|bb)∆(a|ab) − 3Q aQ aQ a∆(a|bb)∆(ab|b) − 3Q aQ aQ a∆(a|bb)∆(a|bb)−− 6Q aQ b Q b ∆(a|ab)∆(aa|b) − 6Q aQ b Q b ∆(a|ab)∆(a|ab) + 6Q aQ aQ b ∆(a|ab)∆(ab|b) + 6Q aQ aQ b ∆(a|ab)∆(a|bb)+i+ 3Q b Q b Q b ∆(a|aa)∆(aa|b) + 3Q b Q b Q b ∆(a|aa)∆(a|ab) − 3Q aQ b Q b ∆(a|aa)∆(ab|b) − 3Q aQ b Q b ∆(a|aa)∆(a|bb) ++∆(a|b)T aaaˆ− Qb Q b Q b ∆(a|b)˜ + T aabˆ3QaQ b Q b ∆(a|b)˜ + T abbˆ− 3QaQ aQ b ∆(a|b)˜ + T bbbˆQaQ aQ a∆(a|b)˜++∆(a|b)T aaˆ− 2Qb Q b Q ab ∆(a|b) − Q b Q b Q b ∆(aa|b) − Q b Q b Q b ∆(a|ab)++ 2Q aQ b Q b ∆(a|b) + Q aQ b Q b Q b ∆(ab|b) + Q aQ b Q b ∆(a|bb)˜++∆(a|b)T abˆ2Qb Q b Q aa∆(a|b) + 2Q aQ b Q ab ∆(a|b) + 2Q aQ b Q b ∆(aa|b) + 2Q aQ b Q b ∆(a|ab)−− 2Q aQ b Q ab ∆(a|b) − 2Q aQ aQ bb ∆(a|b) − 2Q aQ aQ b ∆(ab|b) − 2Q aQ aQ b ∆(a|bb)˜++∆(a|b)T bbˆ − 2QaQ b Q aa∆(a|b) − Q aQ aQ b ∆(aa|b) − Q aQ aQ b ∆(a|ab)++ 2Q aQ aQ ab ∆(a|b) + Q aQ aQ a∆(ab|b) + Q aQ aQ a∆(a|bb)˜++∆(a|b)T aaˆ− QaQ aQ b ∆(b|bb) + 2Q aQ b Q b ∆(b|ab) − Q b Q b Q b ∆(b|aa)˜++∆(a|b)T abˆQaQ aQ a∆(b|bb) − 2Q aQ aQ b ∆(b|ab) + Q aQ b Q b ∆(b|aa)˜++∆(a|b)T baˆQaQ aQ b ∆(a|bb) − 2Q aQ b Q b ∆(a|ab) + Q b Q b Q b ∆(a|aa)˜++∆(a|b)T bbˆ− QaQ aQ a∆(a|bb) + 2Q aQ aQ b ∆(a|ab) − Q aQ b Q b ∆(a|aa)˜++∆(a|b)T ah− 2Q aQ b Q aa∆(b|bb) − Q aQ aQ b ∆(ab|bb) − Q aQ aQ b ∆(b|abb)++ 2Q b Q b Q aa∆(b|ab) + 2Q aQ b Q ab ∆(b|ab) + 2Q aQ b Q b ∆(ab|ab) 0+ 2Q aQ b Q b ∆(b|aab)−− 2Q b Q b Q ab ∆(b|aa) − Q b Q b Q b ∆(ab|aa) − Q b Q b Q b ∆(b|aaa)++ 2Q aQ aQ ab ∆(b|bb) + Q aQ aQ a∆(bb|bb) 0+ Q aQ aQ a∆(b|bbb)−− 2Q aQ b Q ab ∆(b|ab) − 2Q aQ aQ bb ∆(b|ab) − 2Q aQ aQ b ∆(bb|ab) − 2Q aQ aQ b ∆(b|abb)+i+ 2Q aQ b Q bb ∆(b|aa) + Q aQ b Q b ∆(bb|aa) + Q aQ b Q b ∆(b|aab) ++∆(a|b)T bh2Q aQ b Q aa∆(a|bb) + Q aQ aQ b ∆(aa|bb) + Q aQ aQ b ∆(a|abb)−− 2Q b Q b Q aa∆(a|ab) − 2Q aQ b Q ab ∆(a|ab) − 2Q aQ b Q b ∆(aa|ab) 0− 2Q aQ b Q b ∆(a|aab)++ 2Q b Q b Q ab ∆(a|aa) + Q b Q b Q b ∆(aa|aa) + Q b Q b Q b ∆(a|aaa)−− 2Q aQ aQ ab ∆(a|bb) − Q aQ aQ a∆(ab|bb) 0− Q aQ aQ a∆(a|bbb)++ 2Q aQ b Q ab ∆(a|ab) + 2Q aQ aQ bb ∆(a|ab) + 2Q aQ aQ b ∆(ab|ab) + 2Q aQ aQ b ∆(a|abb)−i− 2Q aQ b Q bb ∆(a|aa) − Q aQ b Q b ∆(ab|aa) − Q aQ b Q b ∆(a|aab) .The simplification (collecting all terms) gives:G yxy xy x =j1 Taaaˆ− Q3b ∆(a|b) 2˜ + T aabˆ3QaQ 2 b∆(a|b) 2˜+[∆(a|b)] 5 + T abbˆ− 3Q2a Q b ∆(a|b) 2˜ + T bbbˆQ3 a ∆(a|b) 2˜+h+T aa − 2Q 2 bQ ab ∆(a|b) 2 + 2Q aQ b Q bb ∆(a|b) 2 + 3Q 3 b∆(a|b)∆(aa|b) + 2Q 3 b∆(a|b)∆(a|ab)−i− 4Q aQ 2 b∆(a|b)∆(ab|b) − 2Q aQ 2 b∆(a|b)∆(a|bb) − Q 2 aQ b ∆(a|b)∆(b|bb) +h+T ab − 2Q 2 aQ bb ∆(a|b) 2 + 2Q b Q b Q aa∆(a|b) 2 + Q 3 a∆(a|b)∆(b|bb) + 6Q 2 aQ b ∆(a|b)∆(ab|b)+i+ Q 3 b∆(a|b)∆(a|aa) − 6Q aQ 2 b∆(a|b)∆(a|ab) + 5Q 2 aQ b ∆(a|b)∆(a|bb) − 5Q aQ 2 b∆(a|b)∆(aa|b) +h+T bb − 2Q aQ b Q aa∆(a|b) 2 + 2Q 2 aQ ab ∆(a|b) 2 − 3Q 3 a∆(a|b)∆(a|bb) − 2Q 3 a∆(a|b)∆(ab|b)+i+ 4Q 2 aQ b ∆(a|b)∆(a|ab) + 2Q 2 aQ b ∆(a|b)∆(aa|b) − Q aQ 2 b∆(a|b)∆(a|aa) +


213+T ah3Q 2 a Q b∆(aa|b)∆(b|bb) + 3Q 2 a Q b∆(a|ab)∆(b|bb) − 3Q 3 a ∆(ab|b)∆(b|bb) − 3Q3 a ∆(a|bb)∆(b|bb)−− 6Q aQ 2 b ∆(aa|b)∆(b|ab) − 6QaQ2 b ∆(a|ab)∆(b|ab) + 6Q2 a Q b∆(ab|b)∆(b|ab) + 6Q 2 a Q b∆(a|bb)∆(b|ab)−− 3Q 3 b ∆(aa|b)∆(b|aa) − 3Q3 b ∆(a|ab)∆(b|aa) + 3QaQ2 b ∆(ab|b)∆(b|aa) + 3QaQ2 b ∆(a|bb)∆(b|aa)−− 2Q aQ b Q aa∆(a|b)∆(b|bb) + 2Q 2 b Qaa∆(a|b)∆(b|ab) + 2QaQ bQ ab ∆(a|b)∆(b|ab) − 2Q 2 b Q ab∆(a|b)∆(b|aa)−− Q 2 aQ b ∆(a|b)∆(ab|bb) − Q 2 aQ b ∆(a|b)∆(b|abb) + 2Q aQ 2 b ∆(a|b)∆(b|aab) − Q3 b ∆(a|b)∆(ab|aa) − Q3 b ∆(a|b)∆(b|aaa)++ 2Q 2 aQ ab ∆(a|b)∆(b|bb) − 2Q aQ b Q ab ∆(a|b)∆(b|ab) − 2Q 2 aQ bb ∆(a|b)∆(b|ab) + 2Q aQ b Q bb ∆(a|b)∆(b|aa)++ Q 3 a∆(a|b)∆(b|bbb) − 2Q 2 aQ b ∆(a|b)∆(bb|ab) − 2Q 2 aQ b ∆(a|b)∆(b|abb) + Q aQ 2 b ∆(a|b)∆(bb|aa) + QaQ2 bi+∆(a|b)∆(b|aab)+T bh3Q 2 a Q b∆(a|bb)∆(aa|b) + 3Q 2 a Q b∆(a|bb)∆(a|ab) − 3Q 3 a ∆(a|bb)∆(ab|b) − 3Q3 a ∆(a|bb)∆(a|bb)−− 6Q aQ 2 b ∆(a|ab)∆(aa|b) − 6QaQ2 b ∆(a|ab)∆(a|ab) + 6Q2 a Q b∆(a|ab)∆(ab|b) + 6Q aQ aQ b ∆(a|ab)∆(a|bb)++ 3Q 2 b ∆(a|aa)∆(aa|b) + 3Q2 b ∆(a|aa)∆(a|ab) − 3QaQ2 b ∆(a|aa)∆(ab|b) − 3QaQ2 b ∆(a|aa)∆(a|bb)++ 2Q aQ b Q aa∆(a|b)∆(a|bb) − 2Q 2 b Qaa∆(a|b)∆(a|ab) − 2QaQ bQ ab ∆(a|b)∆(a|ab) + 2Q 2 b Q ab∆(a|b)∆(a|aa)++ Q 2 aQ b ∆(a|b)∆(aa|bb) + Q 2 aQ b ∆(a|b)∆(a|abb) − 2Q aQ 2 b ∆(a|b)∆(a|aab) + Q3 b ∆(a|b)∆(aa|aa) + Q3 b ∆(a|b)∆(a|aaa)−− 2Q 2 aQ ab ∆(a|b)∆(a|bb) + 2Q aQ b Q ab ∆(a|b)∆(a|ab) + 2Q 2 aQ bb ∆(a|b)∆(a|ab) − 2Q aQ b Q bb ∆(a|b)∆(a|aa)−− Q 3 a∆(a|b)∆(a|bbb) + 2Q 2 aQ b ∆(a|b)∆(ab|ab) + 2Q 2 aQ b ∆(a|b)∆(a|abb) − Q aQ 2 b ∆(a|b)∆(ab|aa) − QaQ2 bi.∆(a|b)∆(a|aab)The full expansion of G yxy xy xy xwill not be presented here.REFERENCES[1] Bryant, R.L.: Élie Cartan and geometric duality, Journées Élie Cartan 1998 & 1999, Inst. É.Cartan 16 (2000), 5–20.[2] Cartan, É.: Sur <strong>les</strong> variétés à connexion projective, Bull. Soc. Math. France 52 (1924), 205–241.[3] Cartan, É.: Sur la géométrie pseudo-conforme <strong>de</strong>s hyper<strong>sur</strong>faces <strong>de</strong> l’espace <strong>de</strong> <strong>de</strong>ux variab<strong>les</strong>complexes, II, Ann. Scuola Norm. Sup. Pisa 1 (1932), 333–354.[4] Christoffel, E.B.: Über die Transformation <strong>de</strong>r homogenen Differentialausdrücke zweitenGra<strong>de</strong>s, J. reine angew. Math. 70 (1869), 46–70.[5] Crampin, M.; Saun<strong>de</strong>rs, D.J.: Cartan’s concept of duality for second-or<strong>de</strong>r ordinary differentialequations, J. Geom. Phys. 54 (2005), 146–172.[6] Engel, F.; <strong>Lie</strong>, S.: Theorie <strong>de</strong>r transformationsgruppen. Erster Abschnitt. Unter Mitwirkungvon Dr. Friedrich Engel, bearbeitet von Sophus <strong>Lie</strong>, B.G. Teubner, Leipzig, 1888. Reprintedby Chelsea Publishing Co. (New York, N.Y., 1970).[7] Grissom, C.; Thompson, G.; Wilkens, G.: Linearization of second-or<strong>de</strong>r ordinary differentialequations via Cartan’s equivalence method, J. Diff. Eq. 77 (1989), no. 1, 1–15.[8] Hsu, L.; Kamran, N.: Classification of second or<strong>de</strong>r ordinary differential equations admitting<strong>Lie</strong> groups of fibre-preserving point symmetries, Proc. London Math. Soc. 58 (1989), no. 3,387–416.[9] Isaev, A.V.: Zero CR-curvature equations for rigid and tube hyper<strong>sur</strong>faces, Complex Variab<strong>les</strong>and Elliptic Equations, 54 (2009), no. 3-4, 317–344.[10] Koppisch, M.A.: Zur Invariantentheorie <strong>de</strong>r gewöhlichen Differentialgleichungen zweiterOrdnung, Inaugural Dissertation, Leipzig, B.-G. Teubner, 1905.[11] <strong>Lie</strong>, S.: Klassifikation und Integration von gewöhnlichen Differentialgleichungen zwischenx, y, die eine Gruppe von Transformationen gestaten I-IV. In: Gesammelte Abhandlungen,Vol. 5, B.G. Teubner, Leipzig, 1924, pp. 240–310; 362–427, 432–448.[12] <strong>Lie</strong>, S.; Scheffers, G.: Vor<strong>les</strong>ungen über continuirlichen gruppen, mit geometrischen undan<strong>de</strong>ren anwendungen, B.-G. Teubner, Leipzig, 1893. Reprinted by Chelsea Publishing Co.(New York, N.Y., 1971).[13] Merker, J.: Convergence of formal biholomorphisms between minimal holomorphically non<strong>de</strong>generatereal analytic hyper<strong>sur</strong>faces, Int. J. Math. Math. Sci. 26 (2001), no. 5, 281–302.[14] Merker, J.: On the partial algebraicity of holomorphic mappings between real algebraic sets,Bull. Soc. Math. France 129 (2001), no. 3, 547–591.


214[15] Merker, J.: On envelopes of holomorphy of domains covered by Levi-flat hats and the reflectionprinciple, Ann. Inst. Fourier (Grenoble) 52 (2002), no. 5, 1443–1523.[16] Merker, J.: On the local geometry of generic submanifolds of C n and the analytic reflectionprinciple, Journal of Mathematical Sciences (N. Y.) 125 (2005), no. 6, 751–824.[17] Merker, J.: Étu<strong>de</strong> <strong>de</strong> la régularité analytique <strong>de</strong> l’application <strong>de</strong> réflexion CR formelle, Anna<strong>les</strong>Fac. Sci. Toulouse, XIV (2005), no. 2, 215–330.[18] Merker, J.: Explicit differential characterization of the Newtonian free particle system in m 2 <strong>de</strong>pen<strong>de</strong>nt variab<strong>les</strong>, Acta Mathematicæ Applicandæ, 92 (2006), no. 2, 125–207.[19] Merker, J.; Porten, E.: Holomorphic extension of CR functions, envelopes of holomorphy andremovable singularities, International Mathematics Research Surveys, Volume 2006, ArticleID 28295, 287 pages.[20] Merker, J.: <strong>Lie</strong> symmetries of partial differential equations and CR geometry, Journal of MathematicalSciences (N.Y.), to appear (2009), arxiv.org/abs/math/0703130[21] Merker, J.: Sophus <strong>Lie</strong>, Friedrich Engel et le problème <strong>de</strong> Riemann-Helmholtz, HermannÉditeurs, Paris, 2010, à paraître, 307 pp., arxiv.org/abs/0910.0801[22] Merker, J.: Vanishing Hachtroudi curvature and spherical real analytic hyper<strong>sur</strong>faces,arxiv.org, to appear.[23] Nurowski, P.; Sparling, G.A.J.: 3-dimensional Cauchy-Riemann structures and 2 nd or<strong>de</strong>rordinary differential equations, Class. Quant. Gravity, 20 (2003), 4995–5016.[24] Segre, B.: Intorno al problema di Poincaré <strong>de</strong>lla rappresentazione pseudoconforme, Rend.Acc. Lincei, VI, Ser. 13 (1931), 676–683.[25] Tresse, A.: Détermination <strong>de</strong>s invariants ponctuels <strong>de</strong> l’équation différentielle du secondordre y ′′ = ω(x,y,y ′ ), Hirzel, Leipzig, 1896.


215Vanishing Hachtroudi curvatureand local equivalenceto the Heisenberg pseudosphereJoël MerkerAbstract. To any completely integrable second-or<strong>de</strong>r system of real or complexpartial differential equations:(y x k 1x k 2 = F k1 ,k 2 x 1 ,... ,x n ), y, y x 1,... ,y x nwith 1 k 1 , k 2 n and with F k1 ,k 2= F k2 ,k 1in n 2 in<strong>de</strong>pen<strong>de</strong>nt variab<strong>les</strong>(x 1 ,...,x n ) and in one <strong>de</strong>pen<strong>de</strong>nt variable y, Mohsen Hachtroudi associated in1937 a normal projective (Cartan) connection, and he computed its curvature. Bymeans of a natural transfer of jet polynomials to the associated submanifold ofsolutions, what the vanishing of the Hachtroudi curvature gives can be preciselytranslated in or<strong>de</strong>r to characterize when both families of Segre varieties and of conjugateSegre varieties associated to a Levi non<strong>de</strong>generate real analytic hyper<strong>sur</strong>faceM in C n (n 3) can be straightened to be affine complex (conjugate) lines. Incontinuation to a previous paper <strong>de</strong>voted to the quite distinct C 2 -case, this thencharacterizes in an effective way those hyper<strong>sur</strong>faces of C n+1 in higher complexdimension n + 1 3 that are locally biholomorphic to a piece of the (2n + 1)-dimensional Heisenberg quadric, without any special assumption on their <strong>de</strong>finingequations.arxiv.org/abs/0910.2861/Table of contents1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215.2. Segre varieties and differential equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .220.3. Geometry of associated submanifolds of solutions. . . . . . . . . . . . . . . . . . . . . . . . .224.4. Effective differential characterization of pseudosphericality in C n+1 . . . . . . 226.§1. INTRODUCTIONThe explicit characterization of pseudosphericality of an arbitrary real analyticlocal hyper<strong>sur</strong>face sitting in the complex Eucli<strong>de</strong>an space has been(re)studied recently by Isaev in [11], who employed the famous Chern(-Moser) tensorial approach [CM1974, Ch1975] to the concerned equivalenceproblem. But in the growing literature <strong>de</strong>voted to <strong>Lie</strong>-group symmetriesof Cauchy-Riemann manifolds, only a very few artic<strong>les</strong> un<strong>de</strong>rline that, alreadyin his 1937 Ph.D. thesis [Ha1937] un<strong>de</strong>r the direction of his Élie Cartan— who was around the same period also the master of Chern —, the


216Iranian mathematician Mohsen Hachtroudi (cited briefly only in [Ch1975])constructed directly an explicit normal projective Cartan connection canonicallyassociated to any completely integrable system of real or complexpartial differential equations:( )(7.28) y x k 1x k 2 (x) = F k1 ,k 2 x 1 , . . .,x n , y, y x 1, . . ., y x nin n 2 in<strong>de</strong>pen<strong>de</strong>nt variab<strong>les</strong> x 1 , . . .,x n and in one <strong>de</strong>pen<strong>de</strong>nt variabley, by en<strong>de</strong>avouring in a successful way to generalize the celebratedpaper [Ca1924]. Chern’s clever observation in 1974 that Hachtroudi’s37 years-old approach was intrinsically related to the nascent higherdimensionalCR geometry was followed, in his two papers in question, byhis technical contribution of redoing (only) parts of Hachtroudi’s effectivecomputations, following the alternative (heavier, though essentially equivalent)strategy of constructing a posteriori the projective connection, afterhaving reinterpreted at the beginning the problem in terms of the wi<strong>de</strong> andpowerful Cartan Method of Equivalence. Thus, one should be aware, historicallyspeaking, that in the original reference [Ha1937], much more completegeometric and computational aspects were published long before, thoughthey were expressed in a purely analytic and somewhat elliptic languagewhich, unfortunately for us at present times, does not transmit in words andwith figures all the un<strong>de</strong>rlying geometric meanings which were clear then toÉlie Cartan.Because Hachtroudi was able to write down explicitly his curvature tensors,he <strong>de</strong>duced the second-or<strong>de</strong>r system (7.28) — below — of partialdifferential equations that the functions F k1 ,k 2should satisfy in or<strong>de</strong>r thatthe system (7.28) be equivalent, through a point transformation (x, y) ↦→(x ′ , y ′ ) = ( x ′ (x, y), y ′ (x, y) ) to the simp<strong>les</strong>t system: y ′ x ′k 1x ′k 2 (x′ ) = 0, withall right-hand si<strong>de</strong>s being zero. In the present article, a companion and afollower of a preceding one [22] <strong>de</strong>voted to the quite different C 2 -case, wewill apply, to the higher-dimensional characterization of pseudosphericality,this effective necessary and sufficient condition (7.28) due to Hachtroudiwhich, however and inexplicably, is totally inextant in the two contributionsof Chern. We hope in this way to complete the explicit characterization ofpseudosphericality for rigid or even tube hyper<strong>sur</strong>faces that was obtained recentlyby Isaev in [11], because apparently, the general (nonrigid) case wasstill open in the specialized field.We now start the exposition. Let M be a local real analytic in C n+1 .Though the basic <strong>de</strong>finitions, lemmas and propositions of the theory arevalid in any complex dimension n + 1 2, there is a strong computationaldifference between the two characterizations of sphericality for n = 1 (compare[21]) and of pseudosphericality for n 2 (presently), so that, in or<strong>de</strong>r


to fix the i<strong>de</strong>as, it will be assumed throughout the paper — and recalledwhen necessary — that the CR dimension n is always 2.Locally in a neighborhood of one of its points p, the hyper<strong>sur</strong>face M maybe represented, in any system of local holomorphic coordinates:t = (w, z) ∈ C n × Cvanishing at p for which the w-axis is not complex-tangent to M at p, by aso-called complex <strong>de</strong>fining equation — Section 2 provi<strong>de</strong>s further informations— of the form:(7.28) w = Θ ( z, z, w) = Θ ( z, t ) ,or equivalently in a more expan<strong>de</strong>d form which exhibits all the indices:w = Θ ( z 1 , . . .,z n , z 1 , . . ., z n , w ) = Θ ( z 1 , . . ., z n , t 1 , . . .,t n , t n+1).Then M localized at p is called pseudospherical (at p) if it is biholomorphicto a piece of one Heisenberg pseudosphere:(7.28) Im w ′ = |z ′ 1 |2 + · · · + |z ′ q |2 − |z ′ q+1 |2 − · · · − |z ′ n |2 ,for some q with 0 q n, the number of positive eigenvalues of thenon<strong>de</strong>generate Levi form. Next, let us introduce the following Jacobian-like<strong>de</strong>terminant:∆ :=∣Θ z1 · · · Θ zn Θ wΘ z1 z 1· · · Θ z1 z nΘ z1 w·· · · · ·· ··Θ znz 1· · · Θ znz nΘ znw=∣ ∣217∣Θ t1· · · Θ tnΘ tn+1∣∣∣∣∣∣∣Θ z1 t 1· · · Θ z1 t nΘ z1 t n+1.·· · · · ·· ··Θ znt 1· · · Θ znt nΘ zntn+1 For any in<strong>de</strong>x µ ∈ {1, . . ., n, n + 1} and for any in<strong>de</strong>x l ∈ {1, . . ., n}, letalso ∆ µ [0 1+l ]<strong>de</strong>note the same <strong>de</strong>terminant, but with its µ-th column replacedby the transpose of the line (0 · · ·1 · · ·0) with 1 at the (1+l)-th place, and 0elsewhere, its other columns being untouched. One easily convinces oneself(but see also Section 2) that M is Levi-non<strong>de</strong>generate at p — which is theorigin of our system of coordinates — if and only if ∆ does not vanish at theorigin, whence ∆ is nowhere zero in some sufficiently small neighborhoodof the origin. Similarly, for any indices µ, ν, τ ∈ {1, . . .,n, n + 1}, <strong>de</strong>noteby ∆ τ the same <strong>de</strong>terminant as ∆, but with only its τ-th column replaced[t µ t ν ]by the transpose of the line:( )Θt µ ν t Θ z1 t µ t ν · · · Θ znt µ t ν ,other columns being again untouched. All these <strong>de</strong>terminants ∆, ∆ µ [0 1+l ] ,∆ τ [t µ t ν ]are visibly universal differential expressions <strong>de</strong>pending upon thesecond-or<strong>de</strong>r jet J 2 z,z,w Θ and upon the third-or<strong>de</strong>r jet J3 z,z,w Θ.Main Theorem. An arbitrary, not necessarily rigid, real analytic hyper<strong>sur</strong>faceM ⊂ C n+1 with n 2 which is Levi non<strong>de</strong>generate at one of its points


218p and has a complex <strong>de</strong>fining equation of the form (7.28) in some systemof local holomorphic coordinates t = (z, w) ∈ C n × C vanishing at p, ispseudospherical at p if and only if its complex graphing function Θ satisfiesthe following explicit nonlinear fourth-or<strong>de</strong>r system of partial differentialequations:0 ≡n+1Xn+1Xµ=1 ν=1− δ k 1 ,l 1n+2− δ k 1 ,l 2n+2− δ k 2 ,l 1n+2− δ k 2 ,l 2n+2»j∆ µ [0 1+l1 ] · ∆ν [0 1+l2 ] ∆ ·nX∆ µ [0 1+l ′] · ∆ν [0 1+l2 ]l ′ =1nX∆ µ [0 1+l1 ] · ∆ν [0 1+l ′]l ′ =1nX∆ µ [0 1+l ′] · ∆ν [0 1+l2 ]l ′ =1nX∆ µ [0 1+l1 ] · ∆ν [0 1+l ′]l ′ =11j∆ ·j∆ ·j∆ ·j∆ ·+· ˆδ (n+1)(n+2) k1 ,l 1δ k2 ,l 2+ δ k2 ,l 1δ k1 ,l 2˜·nX nXj· ∆ µ [0 1+l ′] · ∆ν [0 1+l ′′] ∆ ·l ′ =1 l ′′ =1∂ 4 n+1Θ X− ∆ τ [t∂z k1 ∂z k2 ∂t µ∂t µ t ν ] ·ντ=1∂ 4 n+1Θ X− ∆ τ [t∂z l ′∂z k2 ∂t µ∂t µ t ν ] ·ντ=1∂ 4 n+1Θ X− ∆ τ [t∂z l ′∂z k2 ∂t µ∂t µ t ν ] ·ντ=1∂ 4 n+1Θ X− ∆ τ [t∂z k1 ∂z l ′∂t µ∂t µ t ν ] ·ντ=1∂ 4 n+1Θ X− ∆ τ [t∂z k1 ∂z l ′∂t µ∂t µ t ν ] ·ντ=1∂ 4 n+1Θ X− ∆ τ [t∂z l ′∂z l ′′∂t µ∂t µ t ν ] ·ντ=1ff∂ 3 Θ∂z k1 ∂z k2 ∂t τ −ff∂ 3 Θ∂z l ′∂z k2 ∂t τ −ff∂ 3 Θ∂z l ′∂z k2 ∂t τ −ff∂ 3 Θ∂z k1 ∂z l ′∂t τ −ff∂ 3 Θ∂z k1 ∂z l ′∂t τ +ff∂ 3 Θ∂z l ′∂z l ′′∂t τ ,for all pairs of indices (k 1 , k 2 ) with 1 k 1 , k 2 n, and for all pairs ofindices (l 1 , l 2 ) with 1 l 1 , l 2 n.The written system is effective: no implicit formal expression is involvedand pseudosphericality is characterized directly and only in terms of Θ.Now, here is a summarized <strong>de</strong>scription of our arguments of proof. Abit similarly as for the C 2 -case — but with major differences afterwards —which was already studied in [21], we may associate to any such Levinon<strong>de</strong>generate real analytic local hyper<strong>sur</strong>face M ⊂ C n+1 of equationw = Θ(z, z, w) a uniquely <strong>de</strong>fined system of second-or<strong>de</strong>r partial differentialequations:(7.28) w zk1 z k2(z) = Φ k1 ,k 2(z, w(z), wz (w) ) (1 k 1 , k 2 n)with Φ k1 ,k 2= Φ k2 ,k 1, simply by eliminating the two variab<strong>les</strong> z and w,viewed as parameters, from the set of n + 1 equations 23 :w(z) = Θ ( z, z, w ) ( ) ( ), w z1 (z) = ∂Θ∂z 1z, z, w , . . ...., wzn (z) = ∂Θ∂z nz, z, w ,— the assumption that the Jacobian <strong>de</strong>terminant ∆ is nonvanishing atthe origin being precisely the one which guarantees, technically speaking,that the classical (holomorphic) implicit function theorem applies — and23 This process appears for instance in the references [8, Ha1937, Ch1975, Su2001,Su2002, 1, 19].


then by replacing the(so obtained)values for z and w in all second or<strong>de</strong>r<strong>de</strong>rivatives2 Θ ∂∂z k1 z k2z, z, w , see (7.28) below. Trivially, this systemis completely integrable, for we just <strong>de</strong>rived it from its general solutionw(z) := Θ ( z, z, w ) , where (z, w) are un<strong>de</strong>rstood as parameters.As we said, Hachtroudi showed that the curvature of the projective normal(Cartan) connection he associated with the system (7.28) vanishes if andonly if the right-hand si<strong>de</strong> functions F k1 ,k 2satisfy the following explicit differentialsystem, which is linear in terms of their second-or<strong>de</strong>r <strong>de</strong>rivatives(all of which, notably, appear only with respect to the y x l):(7.28)0 ≡ ∂2 F k1,k 2∂y x l 1 y x l 2−− 1n+2n∑l ′ =1(δ k1,l 1∂ 2 F l′ ,k 2∂y x l ′∂y x l 2[ ] ∑n 1+(n+1)(n+2) δk1,l 1δ k2,l 2+ δ k2,l 1δ k1,l 2l ′ =1∂ 2 F l′ ,k+ δ2∂ 2 F k1,lk1,l 2+ δ ′k2,l∂y x l 1 ∂y1x l ′ ∂y ′∂y x l x l 2n∑l ′′ =1219∂ 2 )F k1,l+ δ ′k2,l 2+∂y x l 1 ∂y x l ′∂ 2 F l ′ ,l ′′∂y x l ′∂y x l′′ (1 k 1, k 2 n)(1 l 1, l 2 n) .Hachtroudi also showed that this latter condition, better known nowadaysamongst the Several Complex Variab<strong>les</strong> community as vanishing ofChern(-Moser) curvature to which it in<strong>de</strong>ed amounts, characterizes thelocal equivalence, through a point transformation (x, y) ↦→ (x ′ , y ′ ) =(x ′ (x, y), y ′ (x, y) ) , to the simp<strong>les</strong>t system: y ′ x ′k 1x ′k 2 (x′ ) = 0. We thenremind the semi-known fact that M is pseudospherical if and only if itsassociated second-or<strong>de</strong>r system (7.28) is equivalent, through a local biholomorphism(z, w) ↦→ (z ′ , w ′ ) = ( z ′ (z, w), w ′ (z, w) ) fixing the origin, to thesimp<strong>les</strong>t system w ′ z ′ k 1z ′ k 2(z ′ ) = 0. So we may apply to the functions Φ k1 ,k 2Hachtroudi’s vanishing curvature equations (7.28), but still, the Φ k1 ,k 2arenot expressed in terms of Θ, for they were constructed by employing someunpleasant implicit functions when solving above for z and w. Fortunately,here similarly as in [21], we may apply the techniques of computational differentialalgebra sketched in [19] in or<strong>de</strong>r to explicitly express any algebraicexpressions in the second-or<strong>de</strong>r jet of the Φ k1 ,k 2in terms of the fourth-or<strong>de</strong>rjet of Θ, and the appropriate general equation which we shall need:∂ 2 Φ k1,k 2= 1 n+1∑∂w zl1 ∂w zl2 ∆ 3n+1∑µ=1 ν=1∆ µ [0 1+l1 ]· ∆ν [0 1+l2 ]{∆ ·∂ 4 n+1Θ ∑∂z k1 ∂z k2 ∂t µ ∂t ν −τ=1∆ τ [t µ t ν ] ·will be obtained in Section 4 below, after rather lengthy but elementary calculations,parts of which are inspired from [17]. It is now essentially clearhow one obtains the (boxed) long fourth-or<strong>de</strong>r differential equations statedin the theorem, but in any case, some complete <strong>de</strong>tails will be provi<strong>de</strong>d atthe very end of the paper.}∂ 3 Θ∂z k1 ∂z k2 ∂t τ


220To conclu<strong>de</strong> this extensive introduction which was <strong>de</strong>signed for rea<strong>de</strong>rswanting to quickly embrace the contents, we would like to draw theattention on the work [22], whose manual calculations where finalized inmanuscript form already in 2003 24 , and which will soon confirm the abovetheorem by following another route, viz. by calculating explicitly the socalledChern(-Moser) tensor differential forms, which might interest somecontemporary CR geometers better than the (essentially equivalent) originalCartan-Hachtroudi(-Tanaka) approach.§2. SEGRE VARIETIES AND DIFFERENTIAL EQUATIONSReal analytic hyper<strong>sur</strong>faces in C n+1 . Let us therefore consi<strong>de</strong>r an arbitraryreal analytic hyper<strong>sur</strong>face M in C n+1 with n 2, and let us localizeit around one of its points, say p ∈ M. Then there exist complex affinecoordinates:(z, w) = (z 1 , . . .,z n , w) = ( x 1 + √ −1y 1 , . . .,x n + √ −1 y n , u+iv ) = ( x+ √ −1y, u+ √ −1 v )vanishing at p in which T p M = {u = 0}, so that M is represented in aneighborhood of p by a graphed <strong>de</strong>fining equation of the form:u = ϕ(x, y, v) = ϕ ( x 1 , . . .,x n , y 1 , . . .,y n , v ) ,where the real-valued function:∑ϕ = ϕ(x, y, v) =k∈N n , l∈N n , m∈N|k|+|l|+m2ϕ k,l,m x k y l v m ∈ R { x, y, u } ,which possesses entirely arbitrary real coefficients ϕ k,l,m , vanishes at theorigin: ϕ(0) = 0, together with all its first or<strong>de</strong>r <strong>de</strong>rivatives: 0 = ∂ x kϕ(0) =∂ y lϕ(0) = ∂ v ϕ(0). By simply rewriting this initial real equation of M as:w+w= ϕ ( z+z, z−z2 2 2 √ , w−w−1 2 −1) √ ,and then by solving the so written equation with respect to w, one obtainsan equation of the shape:w = Θ ( z, z, w ) ∑= Θ k,l,m z k z l w m ∈ C { z, z, w } ,k∈N n , l∈N n , m ∈ N|k|+|l|+m1whose right-hand si<strong>de</strong> converges of course near the origin (0, 0, 0) ∈ C n ×C n × C and whose coefficients Θ k,l,m ∈ C are complex. Since dϕ(0) = 0,one has Θ = −w + or<strong>de</strong>r 2 terms.The paradox that any such complex equation provi<strong>de</strong>s in fact two real<strong>de</strong>fining equations for the real hyper<strong>sur</strong>face M which is one-codimensional,24 At the conference Cauchy-Riemann Analysis and Geometry organized by Ingo <strong>Lie</strong>band Gerd Schmalz at the Max-Planck Institut of Bonn, 22–27 September 2003, the authorgave a talk the title of which was “Explicit Chern-Moser tensors”.


and also in addition the fact that one could as well have chosen to solve theabove equation with respect to w, instead of w, these two apparent “contradictions”are corrected by means of a fundamental, elementary statementthat transfers to Θ (in a natural way) the condition of reality:∑∑ϕ(x, y, u) = ϕ k,l,m x k y l v m = ϕ k,l,m x k y l v m = ϕ(x, y, v)|k|+|l|+m1|k|+|l|+m1enjoyed by the initial <strong>de</strong>finining function ϕ. In the sequel, we shall workexclusively with Θ; the rea<strong>de</strong>r is referred to [21] for justifications and motivations.Theorem. ([18], p. 19) The complex analytic function Θ = Θ(z, z, w) withΘ = −w + O(2) together with its complex conjugate:Θ = Θ ( ∑z, z, w) = Θ k,l,m z k z l w m ∈ C { z, z, w }k∈N n , l∈N n , m∈Nsatisfy the two (equivalent by conjugation) functional equations:(7.28)w ≡ Θ ( z, z, Θ(z, z, w) ) ,w ≡ Θ ( z, z, Θ(z, z, w) ) .Conversely, given a local holomorphic function Θ(z, z, w) ∈ C{z, z, w},Θ = −w + O(2) which, in conjunction with its conjugate Θ(z, z, w), satisfiesthis pair of equivalent i<strong>de</strong>ntities, then the two zero-sets:{ ( )} { ( )}0 = −w + Θ z, z, w and 0 = −w + Θ z, z, wcoinci<strong>de</strong> and <strong>de</strong>fine a local one-codimensional real analytic hyper<strong>sur</strong>faceM passing through the origin in C n+1 .Levi non<strong>de</strong>generacy. Within the hierarchy of non<strong>de</strong>generacy conditionsfor real hyper<strong>sur</strong>faces initiated by Die<strong>de</strong>rich and Webster ([DW1980], seealso [Me2005a, Me2005b] for generalizations and a unification), Levi non<strong>de</strong>generacyis the most studied. The classical <strong>de</strong>finition may be foundin [Bo1991] and in the <strong>sur</strong>vey of Chirka [Ch1991], but the following basicequivalent characterization can also be un<strong>de</strong>rstood as a <strong>de</strong>finition in thepresent paper. One may show ([Me2005a, Me2005b, 18]) that it is biholomorphicallyinvariant.Lemma. ([18], p. 28) The real analytic hyper<strong>sur</strong>face M ⊂ C n+1 with0 ∈ M represented in coordinates (z 1 , . . .,z n , w) by a complex <strong>de</strong>finingequation of the form w = Θ(z, z, w) is Levi non<strong>de</strong>generate at the origin ifand only if the map:(z1 , . . ., z n , w ) ↦−→(Θ ( 0, z, w ) ,∂Θ∂z 1(0, z, w), . . .,∂Θ∂z n(0, z, w) )221


222has nonvanishing (n+1) ×(n+1) Jacobian <strong>de</strong>terminant at (z, w) = (0, 0).It follows then that this Jacobian <strong>de</strong>terminant, not restricted to the origin:(7.28) ∆ = ∆ ( z, z, w ) Θ z1 · · · Θ zn Θ w:=Θ z1 z 1· · · Θ z1 z nΘ z1 w·· · · · ·· ··∣ Θ znz 1· · · Θ znz nΘ znw∣does not vanish in some small neighborhood of the origin in C n × C n × C.Levi non<strong>de</strong>generacy at the central point, i.e. ∆ ≠ 0 locally, will be assumedthroughout the present paper.Associated system of partial differential equations. At least since thepublication in 1888 by <strong>Lie</strong> and Engel in Leipzig of the Theorie <strong>de</strong>r Transformationsguppen,it is known in a very general context — see Chapter 10of [8] and also [23, Ha1937, Ch1975, Fa1980, 19, 1, 21] — that, to thewhole family of Segre varieties:S z,w := { (z, w) ∈ C n × C: w = Θ ( z, z, w )}parametrized by the n + 1 antiholomorphic variab<strong>les</strong> ( z 1 , . . ., z n , w ) , onemay canonically associate a completely integrable second-or<strong>de</strong>r system ofpartial differential equations whose general solution is precisely the functionΘ ( z, z, w ) . In<strong>de</strong>ed, consi<strong>de</strong>ring w as a function w = w(z) of (z 1 , . . .,z n )in the <strong>de</strong>fining equation of M, one differentiates it once with respect to eachvariable z 1 , . . .,z n so that one gets the n + 1 equations:w(z) = Θ ( z, z, w ) ,w z1 (z) = ∂Θ∂z 1(z, z, w), . . ...., wzn (z) = ∂Θ∂z n(z, z, w).Then by means of the implicit function theorem — which applies preciselythanks to the nonvanishing of ∆ —, one may clearly solve for the n + 1antiholomorphic “parameters” (z, w), and this procedure provi<strong>de</strong>s a representation:z 1 = ζ 1(z, w(z), wz (z) ) , . . ., z n = ζ n(z, w(z), wz (z) ) , w = ξ ( z, w(z), w z (z) )with certain n + 1 uniquely <strong>de</strong>fined local complex analytic functionsζ i (z, w, w z ) and ξ(z, w, w z ) of 2n + 1 complex variab<strong>les</strong>. Utilizing thesefunctions, one is then pushed to replace z and w in all possible second-or<strong>de</strong>r<strong>de</strong>rivative:( )w zk1 z k2(z) =∂2 Θ∂z k1 ∂z k2z, z, w( ((7.28) = ∂2 Θ∂z k1 ∂z k2z, ζ z, w(z), wz (z) ) , ξ ( z, w(z), w z (z) ))=: Φ k1 ,k 2(z, w(z), wz (z) ) (k 1 , k 2 =1··· n),


and this <strong>de</strong>fines without ambiguity the associated system of partial differentialequations. It is of second or<strong>de</strong>r. It is complete: all second-or<strong>de</strong>r<strong>de</strong>rivatives are functions of <strong>de</strong>rivatives of lower or<strong>de</strong>r 1. In a sense to beprecised right now, it is also completely integrable because by construction,its general solution is Θ ( z, z, w ) .Geometric characterization of pseudosphericality. It is well known thatthe unit sphere:S 2n+1 = { (z 1 , . . ., z n , w) ∈ C n × C: |z 1 | 2 + · · · + |z n | 2 + |w| 2 = 1 }in C n minus one of its points, for instance: S 2n+1 \ {p ∞ } with p ∞ :=(0, . . ., 0, −1), is biholomorphic, through the so-called Cayley transform:(z 1 , . . .,z n , w) ↦−→ ( i z 11+w , . . ., i z n1+w , 1−w2+2 w)=: (z′1 , . . ., z ′ n , w′ )having inverse:(z ′ 1, . . ., z ′ n, w ′ ) ↦−→ ( −2iz ′ 11+2w ′ , . . ., −2iz′ n1+2w ′ ,1−2w ′1+2 w ′ )= (z1 , . . ., z n , w)to the so-called standard Heisenberg sphere of equation:w ′ = −w ′ + z ′ 1 z′ 1 + · · · + z′ n z′ nwhich sits in the target space (z ′ , w ′ ). Hence in the particular case when theLevi form of M has only positive eigenvalues, namely when q = n in (7.28),it follows clearly that M is spherical in the sense given in the Introduction ifand only if there exists a nonempty open neighborhood U 0 of 0 in C n+1 suchthat M ∩ U 0 is biholomorphic to a piece of the unit sphere. In general, thereare n − q negative eigenvalues in the Levi form, and this justifies adding a“pseudo”.Proposition. A Levi non<strong>de</strong>generate local real analytic hyper<strong>sur</strong>face M inC n+1 is locally biholomorphic to a piece of the Heisenberg pseudosphere(hence pseudospherical) if and only if its associated second-or<strong>de</strong>r ordinarycomplex differential equation is locally equivalent to the second-or<strong>de</strong>r system:w z ′ k ′ z (z ′ ) = 0′ (1 k 1 , k 2 n),1 k 2with i<strong>de</strong>ntically vanishing right-hand si<strong>de</strong>.Proof. The n = 1 case, treated in great <strong>de</strong>tails by a previous reference [21],generalizes here with rather evi<strong>de</strong>nt adaptations, hence will be skipped. Asn 2 throughout the present paper, one may also argue by slicing C n+1 byall possible copies of C 2 which pass through the origin and which containthe w-axis, so as to be able to apply the alreaday <strong>de</strong>tailed n = 1 case.Geometrically, the local equivalence of M to the Heisenberg pseudospheremeans that, through some suitable local biholomorphism (z, w) ↦→223


224(z ′ , w ′ ) fixing the origin, both its Segre varieties and its conjugate Segrevarieties ([Me2005a, Me2005b, 18]):S z,w := { (z, w): w = Θ ( z, z, w )} and S z,w := { (z, w): w = Θ ( z, z, w )}are mapped to the Segre and conjugate Segre varieties of the Heisenbergpseudosphere:S ′ z ′ ,w = { w ′ = −w ′ + z ′ z ′} {and w ′ = −w ′ + z ′ z ′}′which, visibly, are plain complex affine lines.§3. GEOMETRY OF ASSOCIATED SUBMANIFOLDS OF SOLUTIONSCompletely integrable systems of partial differential equations. Thecharacterization of pseudosphericality we are <strong>de</strong>aling with holds in a contextmore general than just CR geometry 25 . Accordingly, let K <strong>de</strong>note eitherthe field C of complex numbers or the field R of real numbers, letx = (x 1 , . . ., x n ) ∈ K n with again n 2 — since the case n = 1 was alreadystudied in [21] —, let y ∈ K, and consi<strong>de</strong>r a system of the form (7.28).We will assume that it is completely integrable in the sense that the naturalcommutativity of partial <strong>de</strong>rivatives enjoyed trivially by the left-hand si<strong>de</strong>s:∂ 2 y x k 1x k 2/∂yx k 3 = ∂ 2 y x k 1x k 3/∂yx k 2(1 k 1 , k 2 , k 3 n)imposes immediately to the right-hand si<strong>de</strong> functions F k1 ,k 2that they satisfythe so-called compatibility conditions:D k3(Fk1 ,k 2)= Dk2(Fk1 ,k 3),where we have introduced the following n total differentiation operators:D k := ∂∂x k + y x kn∑∂ + ∂y(1 k n)l=1F k,l∂∂y x lliving on the first-or<strong>de</strong>r jet space (x 1 , . . .,x n , y, y x 1, . . .,y x n). One verifiesthat these compatibility conditions amount to the fact that the n-dimensionaltangential distribution spanned by D 1 , . . .,D n in the (2n + 1)-dimensionalfirst-or<strong>de</strong>r [ ] jet space satisfies the classical Frobenius integrability conditionDk ′, D k ′′ = 0, and then the Clebsch-Frobenius theorem tells us thatthis distribution comes from a local foliation by n-dimensional manifoldsgraphed over the x-space that are naturally parametrized by n + 1 <strong>aux</strong>iliaryconstants (transversal directions) — call them a 1 , . . ., a n , b ∈ K —, namely25 We will be very brief here, the rea<strong>de</strong>r being referred to [19, 21] for the general theoreticalconsi<strong>de</strong>rations.


the leaves of this local foliation may be explicitly represented as sets of theshape:{ (x 1 , . . .,x n , Q ( x 1 , . . .,x n , a 1 , . . ., a n , b ) ,225S 1( x 1 , . . ., x n , a 1 , . . ., a n , b ) , . . .,S n( x 1 , . . .,x n , a 1 , . . .,a n , b ))} ,where x 1 , . . .,x n vary freely and where Q, S 1 , . . ., S n are certain graphingfunctions. In fact, the functions S k are the first-or<strong>de</strong>r <strong>de</strong>rivatives:S 1 = Q x 1, . . ...., S n = Q x nof the function Q, because by <strong>de</strong>finition the integral curves of every vectorfield D k must be contained in such leaves, so that one has:∂Q= y∂x k x∣k any leaf= S kand furthermore also:∂S l= F k,l∣ ∣∂x k any leaf,whence we see that the fundamental graphing function Q = Q(x, a, b) happensto be the general solution to the initially given system of partial differentialequations:(Q x k 1x k 2 (x, a, b) ≡ F k1 ,k 2 x, Q(x, a, b), Qx 1(x, a, b), . . .,Q x n(x, a, b) )(1 k 1 , k 2 n).In the CR case, the fundamental function which is the general solution tothe associated system of partial diffential equations (7.28) is obviously thecomplex <strong>de</strong>fining function Θ ( z, z, w ) , where the n + 1 quantities (z, w),viewed as in<strong>de</strong>pen<strong>de</strong>nt variab<strong>les</strong>, play the role of the constants (a, b).As in the n = 1 case, the constants (a 1 , . . .,a n , b) are best interpreted asa set of n + 1 initial conditions ( y x 1(0), . . .,y x n(0), −y(0) ) or integrationconstants, so that we can assume without loss of generality that the firstor<strong>de</strong>rterms in the fundamental function Q are 26 :Q(x, a, b) = −b + x 1 a 1 + · · · + x n a n + O(|x| 2 ).It is then clear that the map:(a 1 , . . .,a n , b ) ↦−→ ( Q(0, a, b), Q x 1(0, a, b), . . .,Q x n(0, a, b) )(7.28)= ( − b, a 1 , . . .,a n)is of rank n + 1 at the origin, and this property remains also true whateverone chooses as a fundamental function Q(x, a, b), that is to say, withoutnecessarily assuming it to be normalized as above, which amounts to saying26 We put a minus sign in front of y(0) so as to match up with our choice of complex<strong>de</strong>fining equation w = − w + O(2).


226that 27 , in the parameter (a, b)-space, everything holds invariantly up to anylocal K-analytic transformation (a, b) ↦→ (a ′ , b ′ ) which does not involve thevariab<strong>les</strong> (x, y).The way how one recovers the system of partial differential equations isvery similar to what we did in the CR case (7.28). Suppose in<strong>de</strong>ed a bit moregenerally that we are given any local K-analytic function Q = Q(x, a, b)having the property that its first-or<strong>de</strong>r x-jet map (7.28) is of rank n + 1 at(a, b) = (0, 0). Then in the n + 1 equations:y(x) = Q(x, a, b), y x 1 = Q x 1(x, a, b), . . ...., Q x n(x, a, b),we can solve, by means of the implicit function theorem, for the n + 1constants (a 1 , . . .,a n , b), and this yields a representation:a k = A k( )x 1 , . . .,x n , y, y x 1, . . .,y x nb = B ( )x 1 , . . .,x n , y, y x 1, . . .,y x nfor certain functions A 1 , . . .,A n , B of (2n+1) variab<strong>les</strong>. Then by replacingthese obtained values for the a k and for b in all the possible second-or<strong>de</strong>r<strong>de</strong>rivatives:y x k 1x k 2 = Q x k 1x k 2 (x, a, b)= Q x k 1x k 2(x, A(x, y, yx ), B(x, y, y x ) )= F k1 ,k 2(x, y, yx)it is rigorously clear that one may only recover the functions F k1 ,k 2westarted with.§4. EFFECTIVE DIFFERENTIAL CHARACTERIZATIONOF PSEUDOSPHERICALITY IN C n+1The 2n + 1 coordinates of the transformation consi<strong>de</strong>red at the moment:( ((7.28) x 1 , . . .,x n , y, y x 1, . . .,y x n)↦−→ x 1 , . . .,x n , a 1 , . . .,a n , b )and those of its inverse are given by the collection of functions:⎡⎡x j = x jx j = x j⎢⎣ a k = A k( x 1 ,...,x n ) ⎢,y,y x 1,... ,y x nb = B ( and ⎣ y = Q ( x 1 ,...,x n ,a 1 ,...,a n ,b )x 1 ,... ,x n ),y,y x 1,... ,y x n y x k = Q x k(x 1 ,... ,x n ,a 1 ,... ,a n ,b ) .For uniformity and harmony, we shall admit by convention the equivalencesof notation:b ≡ a n+1 and B ≡ A n+1 .27 Much more theoretical information is provi<strong>de</strong>d in [19].


Then by differentiating with respect to y x l each one of the following n + 1i<strong>de</strong>ntically satisfied equations:y ≡ Q ( x 1 ,... ,x n , A 1( x 1 ,... ,x n ,y,y x 1,... ,y x n),...,A n( x 1 ,... ,x n ,y,y x 1,...,y x n),An+1 ( x 1 ,... ,x n )),y,y x 1,...,y x ny x k ≡ Q x k(x 1 ,... ,x n , A 1( x 1 ,... ,x n ,y,y x 1,...,y x n),... ,227A n( x 1 ,... ,x n ,y,y x 1,... ,y x n),An+1 ( x 1 ,... ,x n ,y,y x 1,... ,y x n)),we get the following n + n 2 equations:0 ≡ Q a 1 ∂A1 + · · · + Q ∂y a n ∂An + Q ∂An+1x l ∂y an+1 x l ∂y x lδ k,l = Q x k a 1 ∂A1 + · · · + Q ∂y x x l k a n ∂An + Q ∂y x x l k ∂An+1an+1 ∂y x l(k, l =1··· n).Fixing any l ∈ {1, . . ., n}, thanks to the assumption (Levi non<strong>de</strong>generacy)that the Jacobian <strong>de</strong>terminant:∣ Q□ = □ ( a 1 · · · Q a n Q a n+1 ∣∣∣∣∣∣∣a 1 | · · · |a n |a n+1) Q:=x 1 a 1 · · · Q x 1 a n Q x 1 a n+1. . ..,. .∣Q x n a 1 · · · Q x n a n Q x n a n+1does not vanish, we may solve — just by means of Cramer’s rule — for then + 1 unknowns ∂Aµ , the above system of n + 1 equations, and this gives∂y x lus:(7.28)∂A µ∂y x l= □ [0 µ 1+l ]□ := □(a 1| · · · |a µ−1 |0 1+l |a µ+1 | · · · |a n+1 )□(a 1 | · · · |a µ−1 |a µ |a µ+1 | · · · |a n+1 ) ,where 0 1+l is a specific notation to <strong>de</strong>note the column consisting of n + 1zeros piled up, except at the (1 + l)-th level from its top, where instead of 0,one reads 1, and where, as our notation with vertical bars helps to guess::=∣□ µ [0 1+l ] = □(a 1| · · · |a µ−1 | µ 0 1+l |a µ+1 | · · · |a n+1 ) :=∣Q a 1 · · · Q a µ−1 0 Q a µ+1 · · · Q a n+1 ∣∣∣∣∣∣∣∣∣∣∣Q x 1 a 1 · · · Q x 1 a µ−1 0 Q x 1 a µ+1 · · · Q x 1 a n+1·· · · · ·· ·· ·· · · · ··Q x k a 1 · · · Q x k a µ−1 1 Q x k a µ+1 · · · Q .x k a n+1·· · · · ·· ·· ·· · · · ··Q x n a 1 · · · Q x n a µ−1 0 Q x n a µ+1 · · · Q x n a n+1To avoid any ambiguity, we shall sometimes put the integer µ in the upperin<strong>de</strong>x position of the vertical bar to indicate precisely which column is concerned.As is clear, this notation allows one to view and to remember what


228are the involved partial <strong>de</strong>rivatives of the fundamental function Q that appearinsi<strong>de</strong> each column. In summary, □ µ [0 1+l ]comes from □ by changingjust its µ-th column, as Cramer’s rule classically says.Next, the two-ways transfer between local functions G <strong>de</strong>fined in the(x, y, y x )-space and local functions T <strong>de</strong>fined in the (x, a, b)-space, namelythe one-to-one correspon<strong>de</strong>nce:G ( ) (x 1 , . . ., x n , y, y x 1, . . .,y x n ←→ T x 1 , . . .,x n , a 1 , . . ., a n , b )through the diffeomorphism (7.28), may be viewed concretely, in the directionwe are interested in, as the following i<strong>de</strong>ntity:G ( x 1 , . . .,x n , y, y x 1, . . .,y x n)≡≡ T ( x 1 , . . .,x n ,A 1( x 1 , . . ., x n , y, y x 1, . . .,y x n) ( , . . .,Anx 1 , . . .,x n , y, y x 1, . . .,y x n),A n+1( ))x 1 , . . .,x n , y, y x 1, . . .,y x nholding of course in C { x 1 , . . .,x n , y, y x 1, . . ., y x n}. We therefore readily<strong>de</strong>duce how the <strong>de</strong>rivation is transferred to the (x, a, b)-space:∂G∂y x l∂∂y x l= ∂A1 · ∂T∂y x l∂a + · · · + ∂An · ∂T1 ∂y x l∂a + ∂T∂An+1 ·n ∂y x l∂a n+1.By applying twice any two such <strong>de</strong>rivations ∂ / ∂y x l 1 and ∂ / ∂y x l 2 to an arbitraryfunction G, we may see, after a few computations, what such a composeddifferentiation corresponds to, in terms of the function T <strong>de</strong>fined inthe (x, a, b)-space:∂ 2 G∂y x l 1 ∂y x l 2==( n+1 ∑µ=1∑n+1µ=1∑n+1ν=1∂A µ∂y xl 1∂A µ∂y xl 1)[∂ ∑n+1∂a µ ν=1∂A ν∂y xl 2]∂A∂T ν∂y xl 2 ∂a ν∂ 2 T∂a µ ∂a + ∑n+1νµ=1∑n+1ν=1∂A µ∂y xl 1[∂ ∂A ν ] ∂T∂a µ ∂y xl 2 ∂a . νHere, by a helpful formal convention, the three Greek letters µ, ν and τ willbe used as summation indices in the total set {1, . . ., n, n+1}, while the fourLatin letters i, j, k, l will always run in the restricted set {1, . . ., n}. Replacingthen the partial <strong>de</strong>rivatives of the A µ by their values (7.28) obtainedpreviously, we thus get:∂ 2 n+1G ∑=∂y x l 1 ∂y x l 2µ=1n+1∑ν=1n+1∑+n+1∑µ=1 ν=1□ µ [0 1+l1 ]□ ν [0 1+l2 ]∂ 2 T∂a µ ∂a ν +□ □{ □µ[0 1+l1 ]· □ · (∂∂a □ν µ [01+l2 ]□)− □ν[01+l2 ] · ( )∂}∂a □ µ□ · □∂T∂a ν


∂Here, the coefficients of the2 Twill not be touched anymore, but the∂a µ ∂a νcoefficients of the ∂T must be subjected to further transformations towards∂a νformal harmony, especially the numerator involving a subtraction.First of all, let us rewrite in length the concerned partial <strong>de</strong>rivative of theappearing modified Jacobian <strong>de</strong>terminant 28 :( ) [∂∂a □ν µ [01+l2 ] =∂□ ( a 1 | · · · |a ν−1 |0∂a µ [1+l2 ]|a ν+1 | · · · |a n+1)]= □ ( a 1 a µ | · · · |a ν−1 |0 [1+l2 ]|a ν+1 | · · · |a n+1) + · · ·++ □ ( a 1 | · · · |a ν−1 a µ |0 [1+l2 ]|a ν+1 | · · · |a n+1)+ 0++ □ ( a 1 | · · · |a ν−1 |0 [1+l2 ]|a ν+1 a µ | · · · |a n+1) + · · ·++ □ ( a 1 | · · · |a ν−1 |0 [1+l2 ]|a ν+1 | · · · |a n+1 a µ) ,and also at the same time the partial <strong>de</strong>rivative of the plain Jacobiant <strong>de</strong>terminant:( ) [∂∂a □ =∂□ ( a 1 | · · · |a ν−1 |a ν |a ν+1 | · · · |a n+1)]µ ∂a µ= □ ( a 1 a µ | · · · |a ν−1 |a ν |a ν+1 | · · · |a n+1) + · · ·++ □ ( a 1 | · · · |a ν−1 a µ |a ν |a ν+1 | · · · |a n+1) ++ □ ( a 1 | · · · |a ν−1 |a ν a µ |a ν+1 | · · · |a n+1) ++ □ ( a 1 | · · · |a ν−1 |a ν |a ν+1 a µ | · · · |a n+1) + · · ·++ □ ( a 1 | · · · |a ν−1 |a ν |a ν+1 | · · · |a n+1 a µ) .Consequently, the numerator with a subtraction that we want to simplifymay be rewritten in length as follows:( )∂(7.28) □ ·∂a □ν µ [01+l2 ] − □ν[01+l2 ] · ( )∂∂a □ =µ229= □ ( a 1 | · · · |a ν−1 |a ν |a ν+1 | · · · |a n+1) · □ ( a 1 a µ | · · · |a ν−1 |0 [1+l2]|a ν+1 | · · · |a n+1) + · · · +a+ □ ( a 1 | · · · |a ν−1 |a ν |a ν+1 | · · · |a n+1) · □ ( a 1 | · · · |a ν−1 a µ |0 [1+l2]|a ν+1 | · · · |a n+1) +b+ 0++ □ ( a 1 | · · · |a ν−1 |a ν |a ν+1 | · · · |a n+1) · □ ( a 1 | · · · |a ν−1 |0 [1+l2]|a ν+1 a µ | · · · |a n+1) + · · ·+c+ □ ( a 1 | · · · |a ν−1 |a ν |a ν+1 | · · · |a n+1) · □ ( a 1 | · · · |a ν−1 |0 [1+l2]|a ν+1 | · · · |a n+1 a µ) −d28 Remind that, in or<strong>de</strong>r to differentiate a <strong>de</strong>terminant, one should differentiate separatelyeach column once and then sum all the obtained terms.


230− □ ( a 1 | · · · |a ν−1 |0 [1+l2]|a ν+1 | · · · |a n+1) · □ ( a 1 a µ | · · · |a ν−1 |a ν |a ν+1 | · · · |a n+1) a − · · · −− □ ( a 1 | · · · |a ν−1 |0 [1+l2]|a ν+1 | · · · |a n+1) · □ ( a 1 | · · · |a ν−1 a µ |a ν |a ν+1 | · · · |a n+1) b −− □ ( a 1 | · · · |a ν−1 |0 [1+l2]|a ν+1 | · · · |a n+1) · □ ( a 1 | · · · |a ν−1 |a ν a µ |a ν+1 | · · · |a n+1) OK −− □ ( a 1 | · · · |a ν−1 |0 [1+l2]|a ν+1 | · · · |a n+1) · □ ( a 1 | · · · |a ν−1 |a ν |a ν+1 a µ | · · · |a n+1) c − · · · −− □ ( a 1 | · · · |a ν−1 |0 [1+l2]|a ν+1 | · · · |a n+1) · □ ( a 1 | · · · |a ν−1 |a ν |a ν+1 | · · · |a n+1 a µ) d .The ante-penultimate un<strong>de</strong>rlined term “OK” will be kept untouched. To thepairs of (subtracted) □-binomials that are un<strong>de</strong>rlined with a, b, c, d appen<strong>de</strong>d(including of course all terms present in the four “· · · ”), we need anelementary instance of the Plücker i<strong>de</strong>ntities.To state it generally, let m 2, let C 1 , C 2 , . . ., C m , D, E be (m + 2)column vectors in K m and introduce the following notation for the m ×(m + 2) matrix consisting of these vectors:[C 1 |C 2 | · · · |C m |D|E].Extracting columns from this matrix, we shall construct m×m <strong>de</strong>terminantsthat are modification of the following “ground” <strong>de</strong>terminant:|C 1 | · · · |C m || ≡ ∣ ∣ ∣ ∣C 1 | · · · | j 1C j1 | · · · | j 2C j2 | · · · |C m∣ ∣∣ ∣ .We use a double vertical line in the beginning and in the end to <strong>de</strong>note a<strong>de</strong>terminant. Also, we emphasize two distinct columns, the j 1 -th and thej 2 -th, where j 2 > j 1 , since we will modify them. For instance in this matrix,let us replace these two columns by the column D and by the column E,which yields the <strong>de</strong>terminant:∣ ∣ ∣ C1 | · · · | j 1D| · · · | j 2E| · · · |C m∣ ∣∣ ∣.In this notation, one should un<strong>de</strong>rstand that only the j 1 -th and the j 2 -thcolumns are distinct from the columns of the fundamental m × m “ground”<strong>de</strong>terminant.Lemma. ([17], p. 155) The following quadratic i<strong>de</strong>ntity between <strong>de</strong>terminantsholds true:∣ ∣ ∣ C1 | · · · | j 1D| · · · | j 2E| · · · |C n∣ ∣∣ ∣ ·∣ ∣∣ ∣C1 | · · · | j 1C j1 | · · · | j 2C j2 | · · · |C n∣ ∣∣ ∣ == ∣ ∣ ∣ ∣C 1 | · · · | j 1D| · · · | j 2C j2 | · · · |C n∣ ∣∣ ∣ · ∣∣ ∣ ∣C 1 | · · · | j 1C j1 | · · · | j 2E| · · · |C n∣ ∣ ∣ ∣ −− ∣ ∣ ∣ ∣ C1 | · · · | j 1E| · · · | j 2C j 2| · · · |C n∣ ∣∣ ∣ ·∣ ∣ ∣ ∣C1 | · · · | j 1C j1 | · · · | j 2D| · · · |C n∣ ∣∣ ∣ .Admitting this elementary statement without redoing its proof and applyingit to all the above un<strong>de</strong>rlined pairs of (subtracted) monomials, afterchecking that all final signs are “−”, we obtain the following neat expression


231for (7.28):( )∂□ ·∂a □ν µ [01+l2 ] − □ν[01+l2 ] · ( )∂∂a □ = µ= −□ ( 0 [1+l2 ]| · · · | ν a ν | · · · |a n+1) · □ ( a 1 | · · · | ν a 1 a µ | · · · |a n+1) − · · · −− □ ( a 1 | · · · | ν 0 [1+l2 ]| · · · |a n+1) · □ ( a 1 | · · · | ν a ν a µ | · · · |a n+1) − · · · −− □ ( a 1 | · · · | ν a ν | · · · |0 [1+l2 ])· □(a 1 | · · · | ν a n+1 a µ | · · · |a n+1) ,or equivalently, in contracted form:( )∂□ ·∂a □ν µ [01+l2 ] − □ν[01+l2 ] · ( ) ∑n+1∂∂a □ = − µτ=1□ τ [0 1+l2 ] · □ν [a τ a µ ] .∂Thanks to this si<strong>de</strong>work, coming back to the expression for2 Gwe left∂y xl 1∂y xl 2pending above, we obtain:∂ 2 G= 1 ∑n+1∂y x l 1 ∂y x l 2 □ 2µ=1∑n+1ν=1− 1 ∑n+1□ 3µ=1{} ∂□ µ 2 T[0 1+l1 ]· □ν [0 1+l2 ]∂a µ ∂a − ν∑n+1ν=1∑n+1τ=1{} ∂T□ µ [0 1+l1 ] · □τ [0 1+l2 ] · □ ν [a µ a τ ]∂a . νTo really finalize this expression, we factor everything by1 and we exchangethe two summation indices ν and τ in the second line:□ 3{}∂ 2 G= 1 ∑n+1∑n+1□ µ ∂ 2 n+1T∂y x l 1 ∂y x l 2 □ 3 [0 1+l1 ]· □ν [0 1+l2 ] □ ·∂a µ ∂a − ∑□ τ ν [a µ a ν ] · ∂T∂a τµ=1ν=1τ=1.End of proof of the Main Theorem. As already explained in the Introduction,one applies to the system (7.28) Hachtroudi’s characterization (7.28)of equivalence to the system w ′ z ′ k 1z ′ k 2(z ′ ) = 0 with x := z, with y := w, witha := z, with b := w, with (a, b) := t, with Q := Θ, with □ := ∆, withG := Φ k1 ,k 2and with T :=∂2 Θ1∂z k1 ∂z k2. The <strong>de</strong>nominator can be cleared∆ 3out, and we simply get the explicit fourth-or<strong>de</strong>r partial differential equationsatisfied by Θ. This completes the proof of our Main Theorem and the papermay end up now.REFERENCES[1] Bièche, C.: Le problème d’équivalence locale pour un système scalaire complet d’équations<strong>aux</strong> dérivées partiel<strong>les</strong> d’ordre <strong>de</strong>ux à n variab<strong>les</strong> indépendantes, Anna<strong>les</strong> <strong>de</strong> la Faculté <strong>de</strong>sSciences <strong>de</strong> Toulouse, XVI (2007), no. 1, 1–36.[2] Boggess, A.: CR manifolds and the tangential Cauchy-Riemann complex. Studies in AdvancedMathematics. CRC Press, Boca Raton, FL, 1991, xviii+364 pp.[3] Cartan, É.: Sur <strong>les</strong> variétés à connexion projective, Bull. Soc. Math. France 52 (1924), 205–241.


232[4] Chern, S.-S.: On the projective structure of a real hyper<strong>sur</strong>face in C n+1 , Math. Scand. 36(1975), 74–82.[5] Chern, S.S.; Moser, J.K.: Real hyper<strong>sur</strong>faces in complex manifolds, Acta Math. 133 (1974),no. 2, 219–271.[6] Chirka, E.M.: An introduction to the geometry of CR manifolds (Russian), Uspekhi Mat. Nauk46 (1991), no. 1(277), 81–164, 240; translation in Russian Math. Surveys 46 (1991), no. 1, 95–197[7] Die<strong>de</strong>rich, K.; Webster, S.M.: A reflection principle for <strong>de</strong>generate real hyper<strong>sur</strong>faces, DukeMath. J. 47 (1980), no. 4, 835–843.[8] Engel, F.; <strong>Lie</strong>, S.: Theorie <strong>de</strong>r transformationsgruppen. Erster Abschnitt. Unter Mitwirkungvon Dr. Friedrich Engel, bearbeitet von Sophus <strong>Lie</strong>, B.G. Teubner, Leipzig, 1888. Reprintedby Chelsea Publishing Co. (New York, N.Y., 1970).[9] Faran, J.: Segre families and real hyper<strong>sur</strong>faces, Invent. Math. 60 (1980), no. 2, 135–172.[10] Hachtroudi, M.: Les espaces d’éléments à connexion projective normale, Actualités Scientifiqueset Industriel<strong>les</strong>, vol. 565, Paris, Hermann, 1937.[11] Isaev, A.V.: Zero CR-curvature equations for rigid and tube hyper<strong>sur</strong>faces, Complex Variab<strong>les</strong>and Elliptic Equations, 54 (2009), no. 3-4, 317–344.[12] Merker, J.: Convergence of formal biholomorphisms between minimal holomorphically non<strong>de</strong>generatereal analytic hyper<strong>sur</strong>faces, Int. J. Math. Math. Sci. 26 (2001), no. 5, 281–302.[13] Merker, J.: On the partial algebraicity of holomorphic mappings between real algebraic sets,Bull. Soc. Math. France 129 (2001), no. 3, 547–591.[14] Merker, J.: On envelopes of holomorphy of domains covered by Levi-flat hats and the reflectionprinciple, Ann. Inst. Fourier (Grenoble) 52 (2002), no. 5, 1443–1523.[15] Merker, J.: On the local geometry of generic submanifolds of C n and the analytic reflectionprinciple, Journal of Mathematical Sciences (N. Y.) 125 (2005), no. 6, 751–824.[16] Merker, J.: Étu<strong>de</strong> <strong>de</strong> la régularité analytique <strong>de</strong> l’application <strong>de</strong> réflexion CR formelle, Anna<strong>les</strong>Fac. Sci. Toulouse, XIV (2005), no. 2, 215–330.[17] Merker, J.: Explicit differential characterization of the Newtonian free particle system in m 2 <strong>de</strong>pen<strong>de</strong>nt variab<strong>les</strong>, Acta Mathematicæ Applicandæ, 92 (2006), no. 2, 125–207.[18] Merker, J.; Porten, E.: Holomorphic extension of CR functions, envelopes of holomorphy andremovable singularities, International Mathematics Research Surveys, Volume 2006, ArticleID 28295, 287 pages.[19] Merker, J.: <strong>Lie</strong> symmetries of partial differential equations and CR geometry, Journal of MathematicalSciences (N.Y.), to appear (2009), arxiv.org/abs/math/0703130[20] Merker, J.: Sophus <strong>Lie</strong>, Friedrich Engel et le problème <strong>de</strong> Riemann-Helmholtz, HermannÉditeurs, Paris, 2010, à paraître, 307 pp., arxiv.org/abs/0910.0801[21] Merker, J.: Nonrigid spherical real analytic hyper<strong>sur</strong>faces in C 2 , arxiv.org/abs/0910.1694[22] Merker, J.: Explicit Chern-Moser tensors, arxiv.org, to appear.[23] Segre, B.: Intorno al problema di Poincaré <strong>de</strong>lla rappresentazione pseudoconforme, Rend.Acc. Lincei, VI, Ser. 13 (1931), 676–683.[24] Sukhov, A.: Segre varieties and <strong>Lie</strong> symmetries, Math. Z. 238 (2001), no. 3, 483–492.[25] Sukhov, A.: CR maps and point <strong>Lie</strong> transformations, Michigan Math. J. 50 (2002), no. 2,369–379.


233<strong>Lie</strong> symmetriesof partial differential equationsJoël MerkerTable of contents1. Completely integrable systems of partial differential equations . . . . . . . . . . . . . . . . . . . .??.2. Submanifold of solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ??.3. Classification problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ??.4. Punctual and infinitesimal <strong>Lie</strong> symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ??.5. Examp<strong>les</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .??.6. Transfer of <strong>Lie</strong> symmetries to the parameter space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ??.7. Equivalence problems and normal forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .??.8. Study of two specific examp<strong>les</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ??.9. Dual system of partial differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ??.10. Fundamental pair of foliations and covering property . . . . . . . . . . . . . . . . . . . . . . . . . . . ??.11. Formal and smooth equivalences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ??.Journal of Mathematical Sciences (N. Y.), to appearThis memoir is divi<strong>de</strong>d in three parts 29 . Part I en<strong>de</strong>avours a general, new theory(inspired by mo<strong>de</strong>rn CR geometry) of <strong>Lie</strong> symmetries of completely integrablePDE systems, viewed from their associated submanifold of solutions. Part II buildsgeneral combinatorial formulas for the prolongations of vector fields to jet spaces.Part III characterizes explicitly flatness of some systems of second or<strong>de</strong>r. The resultspresented here are original and did not appear in print elsewhere; most formulasof Parts II and III were checked by means of Maple Release 7.§1. COMPLETELY INTEGRABLE SYSTEMS OF PARTIAL DIFFERENTIALEQUATIONS1.1. General systems. Let K = R or C. Let n ∈ N with n 1 andlet x = (x 1 , . . .,x n ) ∈ K n . Also, let m ∈ N with m 1 and let y =(y 1 , . . .,y m ) ∈ K m . For α ∈ N n , we <strong>de</strong>note by a subscript y x α the partial<strong>de</strong>rivative ∂ |α| y/∂x α of a local map K n ∋ x ↦→ y(x) ∈ K m .Let κ ∈ N with κ 1, let p ∈ N with p 1, choose a collection ofp multiindices β(1), . . ., β(p) ∈ N n with |β(q)| 1 for q = 1, . . .,p andmax 1qp |β(q)| = κ, and choose integers j(1), . . .,j(p) with 1 j(q) 29 Part II of [Me2005a] already appeared as [Me2005b].


234m for q = 1, . . ., p. In the present Part I, we study the <strong>Lie</strong> symmetries of ageneral system of analytic partial differential equations of the form:((E ) y j x α(x) = F αj x, y(x), ( y j(q) (x) ) ),x β(q) 1qpwhere j with 1 j m and α ∈ N n satisfy( ) ( ) ( )(1.2) j, α ≠ (j, 0) and j, α ≠ j(q), β(q) .In particular, all (κ + 1)-th partial <strong>de</strong>rivatives of the unknown y = y(x)<strong>de</strong>pend on a certain precise set of <strong>de</strong>rivatives of or<strong>de</strong>r κ: the system iscomplete. In addition, all the other partial <strong>de</strong>rivatives of or<strong>de</strong>r κ do also<strong>de</strong>pend on the same precise set of <strong>de</strong>rivatives.Here, we assume that u = 0 is a local solution of the system (E ) and thatthe functions Fα j are K-algebraic (in the sense of Nash) or K-analytic, in aneighborhood of the origin in K n+m+p . Even if our concern will be localthroughout, we will not introduce any special notation to speak of open subsetsand simply refer to various K µ . We will study five concrete instances,the first three ones being classical.Example 1.3. With n = m = κ = 1, a second or<strong>de</strong>r ordinary differentialequation(E 1 ) y xx = F(x, y, y x ),and more generally y x κ+1 = F(x, y, y x , . . .,y x κ), where x, y ∈ K,see [<strong>Lie</strong>1883, EL1890, Tr1896, Ca1924, Se1931, Ca1932a, Ol1986,Ar1988, BK1989, GTW1989, HK1989, Ib1992, Ol1995, N2003].Example 1.4. With n 2, m = 1 and κ = 1, a complete system of secondor<strong>de</strong>r equations(E 2 ) y x i 1x i 2 = F i1 ,i 2(x i , y, y x k), 1 i1 , i 2 n,see [Ha1937, Ch1975, Su2001] and Part III below.Example 1.5. Dually, with n = 1, m 2 and κ = 1, an ordinary system ofsecond or<strong>de</strong>r(E 3 ) yxx j = F j( x, y j 1), y j 1x , j = 1, . . ., m,see [Fe1995, Me2004] and the references therein.Example 1.6. With n = 1, m = 2 and κ = 1, a system of the form{y2x = F ( x, y 1 , y 2 , yx)1(E 4 )y 1 xx = G( x, y 1 , y 2 , y 1 x).


Differentiating the first equation with respect to x and substituting, we getthe missing equation:(1.7)y 2 xx = F x + y 1 x F y 1 + y 2 x F y 2 + y 1 xx F y 1 x= F x + y 1 x F y 1 + y2 x F y 2 + G F y 1 x=: H ( x, y 1 , y 2 , y 1 x).Example 1.8. With n = 2, m = 1 and κ = 2, a system of the form{y x 2 = F ( )x 1 , x 2 , y, y x 1, y x(E 5 )1 x 1y x 1 x 1 x 1 = G( )x 1 , x 2 , y, y x 1, y x 1 x 1 .Here, five equations are missing. Differentiating the first equation with respectto x 1 and substituting:(1.9)y x 1 x 2 = F x 1 + y x 1 F y + y x 1 x 1 F y x 1 + y x 1 x 1 x 1 F y x 1 x 1= F x 1 + y x 1 F y + y x 1 x 1 F y x 1 + G F y x 1 x 1=: H ( x 1 , x 2 , y, y x 1, y x 1 x 1 ),and then similarly for y x 2 x 2, y x 1 x 1 x 2, y x 1 x 2 x 2, y x 2 x 2 x 2.1.10. Finitely non<strong>de</strong>generate generic submanifolds of C n+m . Examp<strong>les</strong>1.3, 1.4, 1.6 and 1.8 (but not 1.5) are intrinsically linked to real submanifoldsof complex submanifolds.Let M be a real algebraic or analytic local generic CR 30 submanifoldof C n+m of codimension m 1 and of CR dimension n 1, and letp ∈ M. Classically, there exists local holomorphic coordinates t = (z, w) ∈C n × C m centered at p in which M is represented by(1.11) w j = Θ j (z, ¯z, ¯w), j = 1, . . .,m,for some local C-analytic map Θ = (Θ 1 , . . .,Θ m ) satisfying the i<strong>de</strong>ntity(1.12) w ≡ Θ ( z, ¯z, Θ(¯z, z, w) ) ,reflecting the fact that M is real.Definition 1.13. ([BER1999, Me2005a, Me2005b, MP2005]) M is finitelynon<strong>de</strong>generate if there exists an integer κ 1 such that the local holomorphicmap(1.14) (¯z, ¯w) ↦−→ ( Θ j z β(0, ¯z, ¯w)) 1jm|β|κis of rank n + m at (¯z, ¯w) = (0, 0).30 Fundamentals about Cauchy-Riemann geometry may be found in [Bo1991, BER1999,Me2005a, Me2005b, MP2005].235


236From (1.12), the map ¯w ↦→ Θ(0, 0, ¯w) is already of rank m at ¯w = 0.One then verifies ([BER1999, Me2005a, Me2005b, MP2005]) that there existmultiindices β(1), . . ., β(n) ∈ N n with |β(k)| 1 for k = 1, . . .,nand max 1kn |β(k)| = κ together with integers j(1), . . ., j(n) with 1 j(k) m such that the local holomorphic map(1.15) ( (ΘC n+m j ) ( ) )1jm,∋ (¯z, ¯w) ↦−→ (0, ¯z, ¯w) Θ j(k)z β(k)(0, ¯z, ¯w) ∈ C m+n1knis of rank n + m at (¯z, ¯w) = (0, 0).1.16. Associated system of partial differential equations. Generalizingan i<strong>de</strong>a which goes back to B. Segre in [Se1931, Se1932] (n = m = 1),applied by É. Cartan in [Ca1932a] and studied more recently in [Su2001,GM2003a], we may associate to M a system of partial differential equationsof the form (E ) as follows. Complexifying the variab<strong>les</strong> ¯z and ¯w, weintroduce new in<strong>de</strong>pen<strong>de</strong>nt variab<strong>les</strong> ζ ∈ C n and ξ ∈ C m together with thecomplex algebraic or analytic m-codimensional submanifold M of C 2(n+m)<strong>de</strong>fined by(1.17) w j = Θ j (z, ζ, ξ), j = 1, . . ., m.We then consi<strong>de</strong>r the “<strong>de</strong>pen<strong>de</strong>nt variab<strong>les</strong>” w j as algebraic or analytic functionsof the “in<strong>de</strong>pen<strong>de</strong>nt variab<strong>les</strong>” z k , with additional <strong>de</strong>pen<strong>de</strong>nce on theextra “parameters” (ζ, ξ). Then by applying the differentiation ∂ |α| /∂z αto (1.17), we get w j z α(z) = Θj zα(z, ζ, ξ). Assuming finite non<strong>de</strong>generacyand writing these equations for (j, α) = (j(k), β(k)), we obtain a system ofm + n equations:⎧⎨ w j (z) = Θ j (z, ζ, ξ), j = 1, . . ., m,(1.18)⎩w j(k)(z) = Θ j(k)z β(k) zβ(k)(z, ζ, ξ),k = 1, . . .,n.By means of the implicit function theorem we can solve:(1.19) (ζ, ξ) = R ( z k , w j (z), w j(k)z β(k) (z) ) .Finally, for every pair (j, α) different from (j, 0) and from (j(k), β(k)),we may replace (ζ, ξ) by R in the differentiated expression w j z α(z) =Θ j zα(z, ζ, ξ), which yields(w j z α(z) = Θj z z, R ( z k , w j (z), w j(k) (z) ))α z(1.20)(β(k) )=: Fαj z k , w j (z), w j(k) (z) .z β(k)This is the system of partial differential equations associated to M.


Example 1.21. (Continued) With n = m = 1, i.e. M ⊂ C 2 and κ = 1, i.e.M is Levi non<strong>de</strong>generate of equation(1.22) w = ¯w + i z¯z + O 3 ,where z, ¯z are assigned weight 1 and w, ¯w weight 2, B. Segre [Se1931]obtained w zz = F(z, w, w z ). J. Faran [Fa1980] found some examp<strong>les</strong> ofsuch equations that cannot come from a M ⊂ C 2 . But the following wasleft unsolved.Open problem 1.23. Characterize equations y xx = F(x, y, y x ) associated toa real analytic, Levi non<strong>de</strong>generate (i.e. κ = 1) hyper<strong>sur</strong>face M ⊂ C 2 . Canon read the reality condition (1.12) on F ? In case of success, generalize toarbitrary M ⊂ C n+m .Example 1.24. (Continued) Similarly, the system (E 2 ) comes from a Levinon<strong>de</strong>generate hyper<strong>sur</strong>face M ⊂ C n+1 ([Ha1937, CM1974, Ch1975,Su2001]. Exercise: why (E 3 ) cannot come from any M ⊂ C ν ?Example 1.25. (Continued) With n = 1, m = 2 and κ = 1, the system (E 4 )comes from a M ⊂ C 3 which is Levi non<strong>de</strong>generate and satisfies(1.26) T c M + [T c M, T c M] + [ T c M, [T c M, T c M] ] = TMat the origin, namely which has equations of the following form, after someelementary transformations ([Be1997, BES2005]):(1.27)w 1 = ¯w 1 + i z¯z + O 4 ,w 2 = ¯w 2 + i z¯z(z + ¯z) + O 4 ,where z, ¯z are assigned weight 1 and w 1 , w 2 , ¯w 1 , ¯w 2 weight 2.Example 1.28. (Continued) With n = 2, m = 1 and κ = 2, the system (E 5 )comes from a hyper<strong>sur</strong>face M ⊂ C 3 of equation ([Eb1998, GM2003b,FK2005a, FK2005b, Eb2006, GM2006]):(1.29) w = ¯w + i 2 z1¯z 1 + z 1 z 1¯z 2 + ¯z 1¯z 1 z 21 − z 2¯z 2 + O 4 ,where z 1 , ¯z 1 , z 2 , ¯z 2 are assigned weight 1 and w, ¯w weight 2, with theassumption that the Levi form has rank exactly one at every point, and withthe assumption that M is 2-non<strong>de</strong>generate at 0.1.30. Jet spaces, contact forms and Frobenius integrability. Throughoutthe present Part I, we assume that the system (E ) is completely integrable,namely that the Pfaffian system naturally associated to (E ) in the appropriatejet space is involutive in the sense of Frobenius. This holds automatically incase (E ) comes from a generic submanifold M ⊂ C n+m . In general, we willconstruct a submanifold of solutions associated to (E ). So, we must explaincomplete integrability.237


238We <strong>de</strong>note by Jn,m κ the space of κ-th jets of maps K n ∋ x ↦→ y(x) ∈ K m .Let(1.31)(x i , y j , y j i 1, y j i 1 ,i 2, . . .. . .,y j i 1 ,i 2 ,...,i κ)∈ Kn+m+mn+mn 2 +···+mn κ ,<strong>de</strong>note the natural coordinates on Jn,m κ ≃ Kn+m(1+n+···+nκ) . For instance,(x, y, y 1 ) ∈ J1,1 1 . We shall sometimes write them shortly:(1.32)(x i , y j , y j )β ∈ Kn+m+m(n+···+n κ) ,where β ∈ N n varies and satisfies |β| κ. Sometimes also, weconsi<strong>de</strong>r these jet coordinates only up to their symmetries y j i 1 ,i 2 ,...,i λ=y j i σ(1) ,i σ(2) ,...,i σ(λ), where σ is a permutation of {1, 2, . . ., λ}, so that J κ n,m ≃K n+m Cκ n+κ , with Cκn+κ := (n+κ)! .κ! n!Having these notations at hand, we may <strong>de</strong>velope the canonical system ofcontact forms on Jn,m κ ([Ol1995], [Stk2000]):⎧n∑θ j := dy j − y j k dxk ,(1.33)⎪⎨θ j i 1:= dy j i 1−k=1n∑y j i 1 ,k dxk ,k=1· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·n∑⎪⎩ θ j i 1 ,...,i κ−1:= dy j i 1 ,...,i κ−1− y j i 1 ,...,i κ−1 ,k dxk .For instance, with n = m = 1 and κ = 2, we have θ 1 = dy −y 1 dx and θ1 1 =dy 1 − y 2 dx. These (linearly in<strong>de</strong>pen<strong>de</strong>nt) one-forms generate a subspaceC T κ n,m of the cotangent T ∗ Jn,m κ whose dimension equals m Cκ−1 n+κ−1. Forthe duality between forms and vectors, the orthogonal (C T κ n,m )⊥ in TJn,mκis spanned by the n + m Cn+κ−1 κ vector fields:(1.34) ⎧⎪⎨⎪⎩D i := ∂∂x i + m∑T j 1i 1 ,...,i κ:=j 1 =1∂∂y j ,1i 1 ,...,i κy j 1ik=1∂∂y + · · · + ∑ m j 1n∑j 1 =1 k 1 ,...,k κ−1 =1y j 1i,k 1 ,...,k κ−1∂∂y j ,1k 1 ,...,k κ−1the first n ones being the total differentiation operators, consi<strong>de</strong>red in Part II.For n = m = 1, κ = 2, we get ∂ + y ∂x 1 ∂ + y ∂y 2 ∂∂y 1and ∂∂y 2.Classically ([Ol1986, BK1989, Ol1995]), one associates to (E ) its skeleton∆ E , namely the (n + m + p)-dimensional submanifold of Jn,m κ+1 simply


<strong>de</strong>fined by the graphed equations:((1.35) yα j = Fαj x, y, ( y j(q) )β(q)1qpfor ( j, α ) ≠ (j, 0) and ≠ ( j(q), β(q) ) with |α| κ + 1. Clearly, the naturalcoordinates on ∆ E are:(1.36) (x, y, ( y j(q)β(q))1qp)≡),(x, y, ( y j(q) ) )l 1 (q),...,l λq (q)∈ K n × K m × K p ,1qpwhere λ q := |β(q)| and ( l 1 (q), . . ., l λq (q) ) := β(q).Next, in view of the form (1.34) of the generators of (C T κ+1n,m )⊥ and inview of the equations of ∆ E , the intersection(1.37) (C T κ+1n,m )⊥ ∩ T∆ Eis a vector subbundle of T∆ E that is generated by n linearly in<strong>de</strong>pen<strong>de</strong>ntvector fields obtained by restricting the D i to ∆ E , which yields:⎧D i = ∂ ∑ m ( )⎪⎨ ∂x i+ A j i x i 1, y j 1, y j(q 1) ∂β(q 1 )∂y + j j=1(1.38)⎪⎩+p∑q=1B q i(x i 1, y j 1, y j(q 1)β(q 1 )) ∂∂y j(q)β(q)i = 1, . . .,n, where the coefficients A j i and Bq i are given by:(1.39) {yjA j i := i if the variable yj i appears among the p variab<strong>les</strong> yj(q 1)β(q 1 ) ;F ji otherwise;B q i := ⎧⎨⎩,239y j(q)i,l 1 (q),...,l λq (q)if yj(q)l 1 (q),...,l λq(q)appears among the p variab<strong>les</strong> y j(q 1)β(q 1 ) ;F j(q)i,l 1 (q),...,l λq (q) otherwise.Example 1.40. For (E 1 ), we get D = ∂ + y ∂x 1 ∂ + F(x, y, y ∂x 1) ∂∂y 2; exercise:treat (E 2 ) and (E 3 ). For (E 4 ), we get D = ∂ + ∂x y1 1 ∂ + F ∂ + G ∂ . For∂y 1 ∂y 2 ∂y11(E 5 ), whose skeleton is written y 2 = F , y 1,1,1 = G, y 1,2 = H, y 1,1,2 = K,with F , G, H, K being functions of ( )x 1 , x 2 , y, y 1 , y 1,1 , we get(1.41)D 1 = ∂∂x 1 + y 1∂∂y + y 1,1∂+ G ∂ ,∂y 1 ∂y 1,1D 2 = ∂∂x 2 + F ∂ ∂y + H ∂∂y 1+ K∂∂y 1,1.Definition 1.42. The system (E ) is completely integrable if the n vectorfields (1.38) satisfy the Frobenius integrability condition, namely every <strong>Lie</strong>


240bracket [D i1 , D i2 ], 1 i 1 , i 2 n, is a linear combination of the vector fieldsD 1 , . . .,D n .Because of their specific form (1.38), we must then have in fact[D i1 , D i2 ] = 0. For n = 1, the condition is of course void.§2. SUBMANIFOLD OF SOLUTIONS2.1. Fundamental foliation of the skeleton. As the vector fields D i commute,they equip the skeleton ∆ E ≃ K n+m+p with a foliation F ∆E by n-dimensional integral manifolds which are (approximately) directed alongthe x-axis. We draw a diagram (see only the left si<strong>de</strong>).y xyD0abxyDM (E)0a, bxDDDexp(xD)(0,a, b)The (abstract, not numerical) integration of (E ) is thus straightforwardlycompleted: the set of solutions coinci<strong>de</strong>s with the set of leaves of F ∆E . Thisis the true geometric content, viewed in the appropriate jet space, of theassumption of complete integrability.2.2. General solution and submanifold of solutions. To construct the submanifoldof solutions M (E ) associated to (E ) (sketched in the right handsi<strong>de</strong>), we execute some elementary analytico-geometric constructions.At first, we duplicate the coordinates ( y j(q)β(q) , yj) ∈ K p × K m by introducinga new subspace of coordinates (a, b) ∈ K p × K m ; thus, on the leftdiagram, we draw a vertical plane together with a- and b-axes. The leavesof the foliation F ∆E are uniquely <strong>de</strong>termined by their intersections with thisplane, consisting of points of coordinates (0, a, b) ∈ K n × K p × K m .Such points (0, a, b) correspond to the initial conditions ( y j(q)x β(q) (0), y(0) )for the general solution of (E ). In fact, the (concatenated, multiple) flow of{D 1 , . . .,D n } is given by(2.3)exp ( x n D n(· · ·(exp(x 1 D 1 (0, a, b))) · · ·)) = ( x, Π(x, a, b), Ω(x, a, b) ) ∈ K n ×K m ×K p ,


for some two local analytic maps Π = (Π 1 , . . .,Π m ) and Ω = (Ω 1 , . . .,Ω p )and the next lemma is straightforward.Lemma 2.4. The general solution of (E ) is(2.5) y(x) := Π(x, a, b),where (a, b) varies in K p × K m . Furthermore, for q = 1, . . .,p:(2.6) Ω q (x, a, b) ≡ Π j(q)x β(q) (x, a, b).This leads to introducing a fundamental geometric object.Definition 2.7. The submanifold of solutions V S (E ) associated to (E ) isthe analytic submanifold of K n x × K m y × K p a × K m b <strong>de</strong>fined by the Cartesianequations:(2.8) 0 = −y j + Π j (x, a, b), j = 1, . . .,m.There is a strong interplay between the study of (E ) and the geometry ofV S (E ). By construction, the diffeomorphism:(2.9)⎧(⎨ A : K n+p+m [coordinates (x i , a q , b j )] −→ K[coordinatesn+m+p()⎩A (x i , a q , b j ) := x i , Π j (x, a, b), Π j(q) (x, a, b), ,x β(q)sends the foliation F v by the variab<strong>les</strong> x whose leaves are {a = cst., b =cst.} (see the diagram), to the previous foliation F ∆E .2.10. PDE system associated to a submanifold. Inversely, let M be a submanifoldof K n x × Km y × Kp a × Km b of the form(2.11) y j = Π j (x, a, b), j = 1, . . ., m.A necessary condition for it to be the complexification of a generic M ⊂C n+m is that p = n (answer to an exercise above).241x i , y j , y j(q)β(q)Definition 2.12. M is solvable with respect to the parameters ifb ↦→ Π(0, 0, b) of rank m at b = 0 and if there exist κ 1, multiindicesβ(1), . . ., β(p) ∈ N n with |β(q)| 1 for q = 1, . . .,pand max 1qp |β(q)| = κ, together with integers j(1), . . ., j(p) with1 j(q) m such that the local K-analytic map(2.13) ( (ΠK m+p ∋ (a, b) ↦−→ j (0, a, b) ) ( ) )1jm, Π j(q) (0, a, b) ∈ K m+px β(q) 1qpis of rank equal to m + p at (a, b) = (0, 0))]


242When M is the submanifold of solutions of a system (E ), it is automaticallysolvable with respect to the variab<strong>les</strong>, the pairs (j(q), β(q)) being thesame as in the arguments of the right hand si<strong>de</strong>s Fα j in (E ). Proceeding asin §1.16, we may associate to M a system of the form (E ). Since we needintroduce some new notation, let us repeat the argument.Consi<strong>de</strong>ring y = y(x) = Π(x, a, b) as a function of x with extra parameters(a, b) and applying ∂ |α|/ ∂x α , we get y j x α(x) = Πj xα(x, a, b). Writingonly the relevant (m + p) equations:{y j (x) = Π j (x, a, b),(2.14)y j(q) = Π j(q) (x, a, b),x β(q) x β(q)the assumption of solvability with respect to parameters enab<strong>les</strong> to get(2.15)⎧⎨⎩a q = A q( x i , y j , y j(q 1)β(q 1 )),b j = B j( x i , y j 1, y j(q)β(q)).For every (j, α) ≠ (j, 0) and ≠ (j(q), β(q)), we then replace (a, b) in y j x = αΠ j x α:(y j x(2.16)α(x) = Πj x x, A ( x i , y j 1(x), y j(q)α β(q) (x)) , B ( x i , y j 1(x), y j(q)β(q) (x)))(=: Fαj x i , y j 1(x), y j(q) (x) ) .x β(q)Proposition 2.17. There is a one-to-one correspon<strong>de</strong>nce(2.18) (E M ) = (E ) ←→ M = M (E ) ,between completely integrable systems of partial differential equations ofthe general form (E ) and submanifolds (of solutions) M of the form (2.11)which are solvable with respect to the parameters. Of course( )(2.19) EM(E) = (E ) and M(EM ) = M.2.20. Transfer of total differentiations. We notice that the <strong>aux</strong>iliary functionsA q and B j enable to express the inverse of A:(2.21)A −1 :(xi 1, y j 1, y j(q )1)β(q 1 ) ↦−→(x i , A q( x i 1, y j 1, y j(q )1)(β(q 1 ) , Bjx i 1, y j 1, y j(q 1)β(q 1 )) ) .More importantly, the total differentiation operator consi<strong>de</strong>rably simplifieswhen viewed on M . This observation is useful for translating differentialinvariants of (E ) as differential invariants of M .Lemma 2.22. Through A, for i = 1, . . .,n, the pull-back of the total differentiationoperator D i is simply ∂ , or equivalently:∂x( i ∂)(2.23) A ∗ = D∂x i i .


Proof. Let l = l ( x i , y j , yβ(q)) j(q) be any function <strong>de</strong>fined on ∆E . Composingwith A yields the function Λ := l ◦ A, i.e.((2.24) Λ(x, a, b) ≡ lx i , Π j (x, a, b), Π j(q)x β(q) (x, a, b)Differentiating with respect to x i , we get, dropping the arguments:(2.25)∂Λ∂x = ∂li ∂x + ∑ m ij=1Π j x i∂lp∑∂y + jq=1Π j(q)x i x β(q)).∂l.∂y j(q)x β(q)Replacing the appearing Π j xα for which (j, α) ≠ (j, 0) and ≠ (j(q), β(q))by Fα j, we recover D i as <strong>de</strong>fined by (1.38), whence ∂Λ = D∂x i i l.2.26. Transfer of algebrico-differential expressions. The diffeomorphismA may be used to translate algebrico-differential expressions from M to (E )and vice-versa:(2.27) I M(Jλ+κ+1x,a,bΠ ) ←→ I (E )(Jλx,y,y1 F ) .Here, λ ∈ N, the letter J is used to <strong>de</strong>note jets, and I = I M or = I (E) is apolynomial or more generally, a quotient of polynomials with respect to itsjet arguments. Notice the shift by κ + 1 of the jet or<strong>de</strong>rs.Example 2.28. Suppose n = m = 1 and κ = 1. Then F = Π xx . As anexercise, let us compute F x , F y , F y1 in terms of Jx,a,b 3 Π. We start with thei<strong>de</strong>ntity(2.29) F(x, y, y 1 ) ≡ Π xx(x, A(x, y, y1 ), B(x, y, y 1 ) ) ,that we differentiate with respect to x, to y and to y 1 :F x = Π xxx + Π xxa A x + Π xxb B x ,(2.30)F y = Π xxa A y + Π xxb B y ,F y1 = Π xxa A y1 + Π xxb B y1 .Thus, we need to compute A x , A y , A y1 , B x , B y , B y1 . This is easy: it sufficesto differentiate the two i<strong>de</strong>ntities that <strong>de</strong>fine A and B as implicit functions,namely:y ≡ Π ( x, A(x, y, y 1 ), B(x, y, y 1 ) )and(2.31)(y 1 ≡ Π x x, A(x, y, y1 ), B(x, y, y 1 ) )with respect to x, to y and to y 1 , which gives six new i<strong>de</strong>ntities:0 = Π x + Π a A x + Π b B x , 0 = Π xx + Π xa A x + Π xb B x ,(2.32)1 = Π a A y + Π b B y , 0 = Π xa A y + Π xb B y0 = Π a A y1 + Π b B y1 , 1 = Π xa A y1 + Π xb B y1 ,and to solve each of the three linear systems of two equations located ina line, noticing that their common <strong>de</strong>terminant Π b Π xa − Π a Π xb does not243


244vanish at the origin, since Π = b+xa+O 3 . By elementary Cramer formulas,we get:⎧A x = −Π b Π xx + Π x Π xb, B x = −Π x Π xa + Π a Π xx,Π b Π xa − Π a Π xb Π b Π xa − Π a Π xb(2.33)⎪⎨⎪⎩ A y1 =−Π xbA y =,Π b Π xa − Π a Π xbB y =Π b,Π b Π xa − Π a Π xbB y1 =Π xaΠ b Π xa − Π a Π xb,−Π aΠ b Π xa − Π a Π xb.Replacing in (2.30), no simplification occurs and we get what we wanted:(2.34)⎧F x = Π xxx + Π [ ] [ ]xxa − Πb Π xx + Π x Π xb + Πxxb − Πx Π xa + Π a Π xx,Π ⎪⎨b Π xa − Π a Π xbF y = −Π xxa Π xb + Π xxb Π xa,Π b Π xa − Π a Π xb⎪⎩ F y1 = Π xxa Π b − Π xxb Π a,Π b Π xa − Π a Π xbOne sees D F = F x + Π x F y + Π xx F y1 = Π xxx simply, as predicted byLemma 2.22.Second or<strong>de</strong>r <strong>de</strong>rivatives F xx , F xy , F xy1 , F yy , F yy1 , F y1 y 1have still reasonablecomplexity, when expressed in terms of Jx,a,b 4 Π. Beyond, the computationsexplo<strong>de</strong>.Open question 2.35. A second or<strong>de</strong>r ordinary differential equation y xx =F(x, y, y x ) has two fundamental differential invariants, namely ([Tr1896,Ca1924, GTW1989, Ol1995]):(2.36)I 1 (E 1 ) := ∂4 Fand∂y14I 2 (E 1 ) := DD ( )F y1 y 1 − Fy1 D ( ) ( )F y1 y 1 − 4 D Fyy1 + 6 Fyy − 3 F y F y1 y 1+ 4 F y1 F yy1 .Compute I 1 M 1and I 2 M 1.Although the notion of diffeomorphism is clear and apparently obviousfrom the intuitive, geometric and conceptual viewpoints, in concrete applicationsand in explicit computations, it almost never straightforward totransfer algebrico-differential objects.Open problem 2.37. For general (E ) and M , build closed combinatorialformulas executing the double translation (2.27).2.38. Plan for the sequel. We will en<strong>de</strong>avour a general theory showing thatthe study of systems (E ) and the study of submanifolds of solutions M gives


complementary views on the same object. In fact, <strong>Lie</strong> symmetries, equivalenceproblems, Cartan connections, normal forms and classification listsmay be en<strong>de</strong>avoured on both si<strong>de</strong>s, yielding essentially equivalent results,though the translation is seldom straightforward. In Section 3, 4 and 5, wereview some features from the si<strong>de</strong> (E ), before studying some aspects fromthe si<strong>de</strong> of M . A more systematic and complete approach shall appear as amonography.245§3. CLASSIFICATION PROBLEMS3.1. Transformations of PDE systems. Through a local K-analytic changeof variab<strong>les</strong> close to the i<strong>de</strong>ntity (x, y) ↦→ ϕ(x, y) =: (x ′ , y ′ ), the system (E )transforms to a similar system, with primes:((E ′ ) y ′ jx ′α(x′ ) = F ′ jα x ′ , y ′ (x ′ ), ( y ′ j(q)(x ′ ) ) ).x ′β(q) 1qpExample 3.2. Coming back temporarily to the notations of §1.12(II), withn = m = κ = 1, assume that y xx = f(x, y, y x ) transforms to( Y XX = F(X, Y, Y) X ) through a local diffeomorphism (x, y) ↦→ (X, Y ) =X(x, y), Y (x, y) . How F is related to f ? By symmetry, it suffices tocompute f in terms of F , X, Y . The prolongation to J1,1 2 of the diffeomorphismhas components ([BK1989, Me2004]):(3.3) Y X = Y x + y x Y yX x + y x X y,and(3.4)1Y XX = [ ] 3(y xx ·∣ X ∣ x X y ∣∣∣ +Xx + y x X yY x Y y∣ X ∣x X xx ∣∣∣+Y x Y xx{+y x · 2∣ X ∣ x X xy ∣∣∣ −Y x Y xy∣ X ∣}xx X y ∣∣∣+Y xx Y y{∣ ∣ ∣∣∣ X+y x y x · x X yy ∣∣∣ − 2Y x Y yy∣ X ∣}xy X y ∣∣∣+Y xy Y y{+y x y x y x · −∣ X ∣})yy X y ∣∣∣.Y yy Y y


246It then suffices to replace Y XX above by F(X, Y, Y X ) and to solve y xx :(3.5) ( (1 [Xx ]y xx =∣ X ∣ 3x X y ∣∣∣+ y x X y F X, Y, Y )x + y x Y y−X x + y x X y∣ X ∣x X xx ∣∣∣+Y x Y xxY x Y y{+y x · −2∣ X ∣ x X xy ∣∣∣ +Y x Y xy∣ X ∣}xx X y ∣∣∣+Y xx Y y{+y x y x · −∣ X ∣ x X yy ∣∣∣ + 2Y x Y yy∣ X ∣}xy X y ∣∣∣+Y xy Y y{∣ ∣})∣∣∣ X+y x y x y x · yy X y ∣∣∣Y yy Y y=: f(x, y, y x ).Open problem 3.6. Find general formulas expressing the F j α in terms of F ′ jα,x ′i , y ′j .Conversely, given two such systems (E ) and (E ′ ), when do they transformto each other ? Let π κ,p ′ <strong>de</strong>note the projection from J ′ κ+1n,m to ∆ E ′ <strong>de</strong>finedby((3.7) π κ,p′ x ′i , y ′j , y ′ ji 1, . . .,y ′ j) ( )i 1 ,...,i κ+1 := x ′i , y ′j , y ′ j(q).β(q)Let ϕ (κ+1) be the (κ + 1)-th prolongation of ϕ (Section 1(II)).Lemma 3.8. ([Ol1986, BK1989, Ol1995]) The following three conditionsare equivalent:(1) ϕ transforms (E ) to (E ′ );(2) its (κ+1)-th prolongation ϕ (κ+1) : Jn,m κ+1 → J ′ κ+1n,m maps ∆ E to ∆ E ′;(3) ϕ (κ+1) : Jn,m κ+1 → J ′ κ+1n,m maps ∆ E to ∆ E ′ and the associated map(3.9) Φ E ,E ′ := π κ,p ′ ◦ ( ϕ (κ+1)∣ )∣∆Esends every leaf of F ∆E to some leaf of F ∆E ′.Equivalence problem 3.10. Find an algorithm to <strong>de</strong>ci<strong>de</strong> whether two given(E ) and (E ′ ) are equivalent.Élie Cartan’s wi<strong>de</strong>ly applicable method (not reviewed here; [Ca1937,Ste1983, G1989, HK1989, Fe1995, Ol1995]) provi<strong>de</strong>s an answer “in principle”to this question by reducing to an {e}-structure an initial G-structureassociated to (E ). Due to the incredible size-length-complexity of the un<strong>de</strong>rlyingcomputations, this approach almost never abutes: it is forced toincompleteness. But in fact, the main question is to classify.


Classification problem 3.11. Classify systems (E ), namely provi<strong>de</strong> completelists of all possible such equations written in simplified “normal”, easilyrecognizable forms.Both problems are <strong>de</strong>eply linked to the classification of <strong>Lie</strong> algebras oflocal vector fields. For n = 1, m = 1 and κ = 1, namely (E 1 ): y xx =F(x, y, y x ), <strong>Lie</strong> and Tresse solved the two problems 31 . Table 7 of [Ol1986],below reproduced, <strong>de</strong>scribes the results.247Symmetry group Dimension Invariant equation(1) 0 y xx = F(x, y, y x )(2) ∂ y 1 y xx = F(x, y x )(3) ∂ x , ∂ y 2 y xx = F(y x )(4) ∂ x , e x ∂ y 2 y xx − y x = F(y x − y)(5) ∂ x , ∂ x − y∂ y , x 2 ∂ x − 2xy∂ y 3 y xx = 3y2 x2y cy3(6) ∂ x , x∂ x − y∂ y , 3 y xx = 6yy x − 4y 3 +x 2 ∂ x − (2xy + 1)∂ y +c(y x − y 2 ) 3/2(7) ∂ x , ∂ y , x∂ x + αy∂ y , 3 y xx = c(y x ) α−2α−1α ≠ 0, 1, 1, 2 2(8) ∂ x , ∂ y , x∂ x + (x + y)∂ y 3 y xx = ce −yx(9) ∂ x , ∂ y , y∂ x , x∂ y , y∂ y , 8 y xx = 0x 2 ∂ x + xy∂ y , xy∂ x + y 2 ∂ yTable 1.However, the author knows no mo<strong>de</strong>rn reference offering a completeproof of this classification, with precise insight on the assumptions (somenormal forms hold true only at a generic point). In addition, the above <strong>Lie</strong>-Tresse list is still slightly incomplete in the sense that it does not precisewhich are the conditions satisfied by F (Table 7 in [Ol1986]) in<strong>sur</strong>ing in thefirst four lines that SYM(E 1 ) is in<strong>de</strong>ed of small dimension 0, 1 or 2.Open question 3.12. Specify some precise non<strong>de</strong>generacy conditions uponF in the first four lines of Table 1.§4. PUNCTUAL AND INFINITESIMAL LIE SYMMETRIES4.1. <strong>Lie</strong> symmetries of (E ). Let ϕ = (φ, ψ) be a diffeomorphism of K n x ×K n y as in (1.7)(II).31 The author knows no complete confirmation of the <strong>Lie</strong>-Tresse classification by meansof É. Cartan’s method of equivalence.


248Definition 4.2. ([Ol1986, Ol1995, BK1989]) ϕ is a (local) <strong>Lie</strong> symmetryof (E ) if it transforms the graph of every solution of (E ) into the graph ofanother solution.To explain, we must pass to jet spaces. Denote the components of the(κ + 1)-th prolongation ϕ (κ+1) : Jn,m κ+1 → Jn,m κ+1 by(4.3) ϕ (κ+1) = ( φ i 1, ψ j 1, Φ j i 1, Φ j i 1 ,i 2, . . .. . . , Φ j i 1 ,i 2 ,...,i κ+1).The restriction ϕ (κ+1)∣ ∣∆Eis obtained by replacing each jet variable yα j byFα j , whenever (j, α) ≠ (j, 0) and ≠ (j(q), β(q)), and wherever it appears32in the Φ j i 1 ,...,i λ.Let π κ,p <strong>de</strong>note the projection from Jn,m κ+1 to ∆ E ≃ K m+n+p <strong>de</strong>fined by((4.4) π κ,p x i , y j , y j i 1, . . .,y j ) ( )i 1 ,...,i κ+1 := x i , y j , y j(q) ,and introduce the map(4.5) ϕ ∆E := π κ,p ◦ ( ϕ (κ+1)∣ ∣∆E)≡(ϕ(x i , y j ), Φ j(q)β(q)β(q)(x i , y j , y j(q 1)β(q 1 )) ) .Lemma 4.6. ([Ol1986, Ol1995, BK1989], [∗]) The following three conditionsare equivalent:(1) the diffeomorphism ϕ is a <strong>Lie</strong> symmetry of (E );(2) ϕ (κ+1)∣ ∣∆Esends ∆ E to ∆ E ;(3) ϕ (κ+1)∣ ∣∆Esends ∆ E to ∆ E and ϕ ∆E = π κ,p(ϕ(κ+1) ∣ ∣∆E)is a symmetryof the foliation F ∆E , namely it sends every leaf to some other leaf.Then the set of <strong>Lie</strong> symmetries of (E ) constitutes a local <strong>Lie</strong>(pseudo)group.4.7. Infinitesimal <strong>Lie</strong> symmetries of (E ). Letn∑(4.8) L = X i (x, y) ∂∂x + ∑ mY j (x, y) ∂i ∂y , ji=1be a (local) vector field on K n+m having analytic coefficients. Denote itsflow by ϕ t (x, y) := exp(t L )(x, y), t ∈ K. As in Section 1(II), by differentiatingthe prolongation (ϕ t ) (κ+1) with respect to t at t = 0, we get theprolonged vector field L (κ+1) on Jn,m κ+1 , having the general form (Part II):(4.9)L (κ+1) = L +m∑j=1n∑i 1 =1Y j i 1∂∂y j i 1+· · ·+j=1m∑j=1with known explicit expressions for the Y j i 1 ,...,i λ.n∑i 1 ,...,i κ+1 =1Y j i 1 ,...,i κ+1∂∂y j i 1 ,...,i κ+1,32 Remind from Section 1(II) that we have not (open problem) provi<strong>de</strong>d a complete explicitexpression of Φ j i 1,...,i λfor general n 1, m 1 and λ 1.


Definition 4.10. L is an infinitesimal symmetry of (E ) if for every small t,its time-t flow map ϕ t is a <strong>Lie</strong> symmetry of (E ).The restriction L (κ+1)∣ ∣∆Eis obtained by replacing every yα j by F α j in allcoefficients Y j i 1, . . .,Y j i 1 ,...,i κ+1. Then the coefficients become functions of(xi 1, y j 1, y j(q 1)β(q 1 ))only.Lemma 4.11. ([Ol1986, Ol1995, BK1989], [∗]) The following three conditionsare equivalent:(1) the vector field L is an infinitesimal <strong>Lie</strong> symmetry of (E );(2) its (κ + 1)-th prolongation L (κ+1) is tangent to the skeleton ∆ E ;(3) L (κ+1) is tangent to ∆ E and the push-forward(4.12) L ∆E := (π κ,p ) ∗(L(κ+1) ∣ ∣∆E)249is an infinitesimal symmetry of the foliation F ∆E , namely for everyi = 1, . . ., n, the <strong>Lie</strong> bracket [ L ∆E , D i]is a linear combination of{D 1 , . . .,D n }.According to [Ol1986, BK1989, Ol1995], the set of infinitesimal <strong>Lie</strong> symmetriesconstitutes a <strong>Lie</strong> algebra, with the property [ L (κ+1) , L ′ (κ+1) ] =[L , L′ ] (κ+1) . We summarize by a diagram.ϕ (κ+1)Jn,m κ+1Jn,mκ+1L (κ+1)∆ Eπ κ,pϕ ∆Eπ κ,p∆ Eπ κL ∆Eπ κπ pπ pK n x × K m yϕK n x × K m yL4.13. Sophus <strong>Lie</strong>’s algorithm. We <strong>de</strong>scribe the general process. Its complexitywill be exemplified in Section 5 (to be read simultaneously).The tangency of L (κ+1) to ∆ E is expressed by applying L (κ+1) to theequations 0 = −yα j + F α j , which yields:(4.14) 0 = −Y j α +n∑i=1X i ∂F j α∂x i +n∑l=1Y l ∂F j α∂y l +p∑q=1Y j(q)β(q)∂Fαj ,∂y j(q)β(q)for (j, α) ≠ (j, 0) and ≠ (j(q), β(q)). Restricting a coefficient Y j i 1 ,...,i λto∆ E , namely replacing everywhere in it each yα j by F α j , provi<strong>de</strong>s a specialized


250coefficient(4.15) Ŷ j i 1 ,...,i λ= Ŷj i 1 ,...,i λ(xi 1, y j 1, y j(q 1)β(q 1 ) , Jλ x,yX i 1, J λ x,yY j 1 ) ,that <strong>de</strong>pends linearly on the λ-th jet of the coefficients of L , as confirmedby an inspection of Part II’s formulas. Here, we use the jet notationJx,y λ Z := ( ∂ α 1x ∂β 1y Z ) |α 1 |+|β 1. We thus get equations|λn∑(4.16) 0 ≡ −Ŷj α + X i ∂F αj n∑+ Y l ∂F j p∑α+ Ŷ j(q) ∂Fαj∂x i ∂y l β(q),i=1l=1q=1∂y j(q)β(q)involving only the variab<strong>les</strong> ( x i 1, y j 1, y j(q 1)β(q 1 )).Next, we <strong>de</strong>velope every such equation with respect to the powers ofy j(q 1)β(q 1 ) :(4.17)0 ≡ ∑µ 1 ,...,µ p0(y j(1)β(1) )µ1 · · ·(y j(p)β(p) )µp Ψ j α,µ 1 ,...,µ p(xi 1, y j 1, J κ+1x,y X i 1, J κ+1x,y Y j 1 ) .The Ψ j α,µ 1 ,...,µ pare linear with respect to ( J κ+1x,y X i 1, J κ+1x,y Y j 1), with certaincoefficients analytic with respect to (x, y), which <strong>de</strong>pend intrinsically (butin a complex manner) on the right hand si<strong>de</strong>s F j α.Proposition 4.18. The vector field L is an infinitesimal <strong>Lie</strong> symmetry of(E ) if and only if its coefficients X i 1, Y j 1satisfy the linear PDE system:((4.19) 0 = Ψ j α,µ 1 ,...,µ p xi 1, y j 1, Jx,y κ+1 X i 1, Jx,y κ+1 Y ) j 1for all (j, α) ≠ (j, 0) and ≠ (j(q), β(q)) and for all (µ 1 , . . .,µ p ) ∈ N p .In all known instances, a finite number of these equations suffices.Example 4.20. With n = m = κ = 1, a second prolongation L (2) =X ∂ + Y ∂ + Y ∂x ∂y 1 ∂ ∂∂y 1+ Y 2 ∂y 2is tangent to the skeleton 0 = −y 2 +F(x, y, y 1 ) of (E 1 ) if and only if 0 = −Y 2 + X F x + Y F y + Y 1 F y1 , or,<strong>de</strong>veloping:(4.21) ⎧⎪⎨0 = −Y xx + [ ]− 2 Y xy + X xx y1 + [ ]− Y yy + 2 X xy (y1 ) 2 + [ ]X yy (y1 ) 3 ++ [ ] [ ]− Y y + 2 X x F + 3 Xy y1 F + [ X ] F x + [ Y ] F y +⎪⎩+ [ ]Y x Fy1 + [ ]Y y − X x y1 F y1 + [ ]− X y (y1 ) 2 F y1 .Developing F = ∑ k0 (y 1) k F k (x, y), we may obtain equations (4.19).§5. EXAMPLES5.1. Second or<strong>de</strong>r ordinary differential equation. Pursuing the study of(E 1 ), according to Section 7 below, we may assume that F = O(y x ), orequivalently F(x, y, 0) ≡ 0.


Convention 5.2. The letters R will <strong>de</strong>note various functions of (x, y, y 1 ),changing with the context. Similarly, r = r(x, y), excluding the pure jetvariable y 1 . Hence, symbolically:(5.3) R = r + y 1 r + (y 1 ) 2 r + (y 1 ) 3 r + · · · .So the skeleton is(5.4) y 2 = F(x, y, y 1 ) = y 1 R = y 1 r + (y 1 ) 2 r + (y 1 ) 3 r + · · · .Applying L (2) , see (2.3)(II) for its expression, we get:(5.5) 0 = −Y 2 + X F x + Y F y + Y 1 F y1 .Observe that F x = (y 1 R) x = r y 1 +r (y 1 ) 2 +· · · and similarly for F y , but that(y 1 R) y1 = r +r y 1 +r (y 1 ) 2 + · · · . Inserting above Y 1 , Y 2 given by (2.6)(II),replacing y 2 by y 1 R and computing mod (y 1 ) 4 , we get:(5.6)0 ≡ − Y xx + [ − 2 Y xy + X xx]y1 + [ − Y yy + 2 X xy](y1 ) 2 + [ X yy](y1 ) 3 ++ [ − Y y + 2 X x](y1 r + (y 1 ) 2 r + (y 1 ) 3 r ) + [ 3 X y] ((y1 ) 2 r + (y 1 ) 3 r ) ++ [ X ]( y 1 r + (y 1 ) 2 r + (y 1 ) 3 r ) + [ Y ]( y 1 r + (y 1 ) 2 r + (y 1 ) 3 r ) ++ [ Y x] (r + y1 r + (y 1 ) 2 r + (y 1 ) 3 r ) ++ [ Y y − X x](y1 r + (y 1 ) 2 r + (y 1 ) 3 r ) + [ − X y]((y1 ) 2 r + (y 1 ) 3 r ) .We gather the powers cst., y 1 , (y 1 ) 2 and (y 1 ) 3 , equating their coefficients to0:(5.7)0 = −Y xx + P ( Y x),0 = −2 Y xy + X xx + P ( Y y , X x , X , Y , Y x),0 = −Y yy + 2 X xy + P ( Y y , X x , X y , X , Y , Y x),0 = X yy + P ( Y y , X x , X y , X , Y , Y x)Convention 5.8. The letter P will <strong>de</strong>note various linear combinations ofsome precise partial <strong>de</strong>rivatives of X , Y which have analytic coefficientsin (x, y).By cross-differentiations and substitutions in the above system, allthird, fourth, fifth, etc. or<strong>de</strong>r <strong>de</strong>rivatives of X , Y may be expressed asP ( X , Y , X x , X y , Y x , Y y , Y xy , Y yy).Proposition 5.9. An infinitesimal <strong>Lie</strong> symmetry X ∂∂x + Y ∂∂y of (E 1) isuniquely <strong>de</strong>termined by the eight initial Taylor coefficients:(5.10) X (0), Y (0), X x (0), X y (0), Y x (0), Y y (0), Y xy (0), Y yy (0).251


252The bound dim SYM(E 1 ) 8 is attained with F = 0, whence all P = 0and⎧A := ∂ y , E := y ∂ y ,⎪⎨ B := ∂ x , F := y ∂ x ,(5.11)C := x∂ y , G := xx∂ x + xy ∂ y ,⎪⎩D := x∂ x , H := xy ∂ x + yy ∂ y .are infinitesimal generators of the group PGL 3 (K) = Aut(P 2 (K)) of projectivetransformations(5.12) (x, y) ↦→( )αx + βy + γλx + µy + ν , δx + ηy + ǫλx + µy + ν ,stabilizing the collections of all affine lines of K 2 , namely the solutions ofthe mo<strong>de</strong>l equation y xx = 0. The mo<strong>de</strong>l <strong>Lie</strong> algebra pgl 3 (K) ≃ sl 3 (K) issimple.Theorem 5.13. The bound dim SYM(E 1 ) 8 is attained if and only if(E 1 ) is equivalent, through a diffeomorphism (x, y) ↦→ (X, Y ), to Y XX = 0.Proof. The statement is well known ([<strong>Lie</strong>1883, EL1890, Tr1896, Se1931,Ca1932a, Ol1986, HK1989, Ib1992, Ol1995, Sh1997, Su2001, N2003,Me2004]). We provi<strong>de</strong> a (new?) proof which has the advantage to enjoydirect generalizations to all PDE systems whose mo<strong>de</strong>l <strong>Lie</strong> algebras aresemisimple, for instance (E 2 ), (E 3 ) and (E 5 ).The <strong>Lie</strong> brackets between the eight generators (5.11) are:A B C D E F G HA 0 0 0 0 A B C D + 2EB 0 0 A B 0 0 E + 2D FC 0 −A 0 −C C D − E 0 GD 0 −B C 0 0 −F G 0E −A 0 −C 0 0 F 0 HF −B 0 −D + E F −F 0 H 0G −C −E − 2D 0 −G 0 H 0 0H −D − 2E −F −G 0 −H 0 0 0Table 2.


Assuming that dimSYM(E 1 ) = 8, taking account of (5.7), after makingsome linear combinations, there must exist eight generators of the form⎧A ′ := ∂ y + O(1), E ′ := y ∂ y + O(2),⎪⎨ B ′ := ∂ x + O(1), F ′ := y ∂ x + O(2),(5.14)C ′ := x∂ y + O(2), G ′ := xx∂ x + xy ∂ y + O(3),⎪⎩D ′ := x∂ x + O(2), H ′ := xy ∂ x + yy ∂ y + O(3).To in<strong>sur</strong>e that the <strong>Lie</strong> brackets between these vector fields are small perturbationsof the mo<strong>de</strong>l ones, we can in advance replace (x, y) by (εx, εy), sothat y xx = ε F ( εx, εy, y x)is an O(ε), hence all the remain<strong>de</strong>rs O(1), O(2)and O(3) above are also O(ε). It follows that the structure constants forA ′ , . . .,H ′ are ε-close to those of Table 2.Theorem 5.15. ([OV1994]) Every semisimple <strong>Lie</strong> algebra over R or C isrigid: small <strong>de</strong>formations of the structure constants just give isomorphic <strong>Lie</strong>algebras.Consequently, there exists a change of basis close to the i<strong>de</strong>ntity leadingto new generators A ′′ , B ′′ , . . .,G ′′ , H ′′ having exactly the same structureconstants as in Table 2. Then A ′′ (0) and B ′′ (0) are still linearly in<strong>de</strong>pen<strong>de</strong>nt.Since [ A ′′ , B ′′] = [A, B] = 0, there exist local coordinates (X, Y ) centeredat 0 in which A ′′ = ∂ X and B ′′ = ∂ Y . Since [ A ′′ , C ′′] = [A, C] = 0and [ B ′′ , C ′′] = [B, C] = A, it follows that C ′′ = X∂ Y . The tangency to0 = −Y 2 + F(X, Y, Y 1 ) (with F(0) = 0) of ( ∂ X) (2)= ∂ X , of ( ∂ Y) (2)= ∂ Yand of ( X∂ Y) (2)= X∂ Y + ∂ Y1 yields F = 0.Open question 5.16. Does this proof generalize to y x κ+1 =F ( x, y, y x , . . ., y x κ)?5.17. Complete system of second or<strong>de</strong>r. We now summarize a generalizationto (E 2 ). According to Section 7 below, one may assume that thesubmanifold of solutions is y = b + ∑ ni=1 ai[ x i + O(|x| 2 ) + O(a) + O(b) ] (,whence y x i 1x i 2 = F i1 ,i 2 x i , y,(y x k)with) F(x, y, 0) ≡ 0. Applying to theskeleton 0 = −y i1 ,i 2+ F i1 ,i 2 x i , y, y k a second prolongation L (2) havingcoefficients Y i1 given by (3.9)(II) and Y i1 ,i 2given by (3.20)(II), we get(5.18) 0 = −Y i1 ,i 2+n∑k=1[ ] Xk∂F i1 ,i 2+ [ Y ] ∂F i1 ,i 2∂x k ∂y+n∑k=1253[Yk]∂F i1 ,i 2∂y k.Replacing y i1 ,i 2everywhere by F i1 ,i 2= y 1 R + · · · + y n R, <strong>de</strong>velopping inpowers of the pure jet variab<strong>les</strong> y l and picking the coefficients of cst., of y k ,


254of (y k ) 2 and of (y k ) 3 , we get the linear system(5.19)⎧Y x i 1x i 2 = P ( )Y x l⎪⎨ δi k 1Y x i 2y + δi k 2Y x i 1y − X kx i 1x i 2= P ( Y y , X l 2, X )l , Y , Yx l 1 x lδ k,ki 1 ,i 2Y yy − δi k 1X kx⎪⎩i 2y − δk i 2X kx i 1y = P( Y y , X l 2, X )lx l 1 y , X l , Y , Y x lδ k,ki 1 ,i 2Xyy k = P( Y y , X l 2, X lx l 1 y , X l , Y , Y x l),upon which obvious linear combinations yield a known generalization ofProposition 5.9.∑Proposition 5.20. ([Su2001, GM2003a]) An infinitesimal <strong>Lie</strong> symmetrynk=1 X k ∂ + Y ∂ is uniquely <strong>de</strong>termined by the ∂x k ∂y n2 + 4n + 3 initialTaylor coefficients:(5.21) X l (0), Y (0), X l 2(0), X lx l 1 y (0), Y x l(0), Y y(0), Y x y(0), Y l yy (0).The bound dimSYM(E 2 ) n 2 + 4n + 3 is attained with F i1 ,i 2= 0,whence all P = 0 and(5.22)⎧A := ∂ y , E := y ∂ y ,⎪⎨ B i := ∂ x i, F i := y ∂ x i,C i := x i ∂ y , G i := x i( )x 1 ∂ x 1 + · · · + x n ∂ x n + y ∂ y + xy ∂y ,⎪⎩D i,k := x i ∂ x k, H := y ( )x 1 ∂ x 1 + · · · + x n ∂ x n + y ∂ y .are infinitesimal generators of the group PGL n+2 (K) = Aut(P n+1 (K)) ofprojective transformations(5.23)(x, y) ↦→(α1 x 1 + · · · + α n x n + βy + γλ 1 x 1 + · · · + λ n x n + µy + ν ,)δ 1 x 1 + · · · + δ n x n + ηy + ǫλ 1 x 1 + · · · + λ n x n + µy + ν ,stabilizing the collections of all affine planes of K n+1 , namely the solutionsof the mo<strong>de</strong>l equation y x i 1x i 2 = 0. The mo<strong>de</strong>l <strong>Lie</strong> algebra pgl n+2 (K) ≃sl n+2 (K) is simple, hence rigid.Theorem 5.24. The bound dim SYM(E 2 ) n 2 +4n+3 is attained if andonly if (E 2 ) is equivalent, through a diffeomorphism (x i , y) ↦→ (X k , Y ), toY X k 1X k 2 = 0.The proof, similar to that of Theorem 5.13, is skipped.The study of (E 3 ) also leads to the mo<strong>de</strong>l algebra pgl n+2 (K) ≃ sl n+2 (K)and an analog to Theorem 5.13 holds. Details are similar.§6. TRANSFER OF LIE SYMMETRIES TO THE PARAMETER SPACE6.1. Stabilization of foliations. As announced in §2.38, we now transferthe theory of <strong>Lie</strong> symmetries to submanifolds of solutions.


Restarting from §4.1, let ϕ a <strong>Lie</strong> symmetry of (E ), namely ϕ ∆E stabilizesF ∆E . The diffeomorphism A <strong>de</strong>fined by (2.9) transforms F v to F ∆E . Conjugating,we get the self-transformation A −1 ◦ϕ ∆E ◦A of the (x, a, b)-space thatmust stabilize also the foliation F v . Equivalently, it must have expression:(6.2) [A −1 ◦ ϕ ∆E ◦ A ] (x, a, b) = ( θ(x, a, b), f(a, b), g(a, b) ) ∈ K n × K p × K m ,where, importantly, the last two components are in<strong>de</strong>pen<strong>de</strong>nt of the coordinatex, because the leaves of F v are just {a = cst., b = cst}.Lemma 6.3. To every <strong>Lie</strong> symmetry ϕ of (E ), there corresponds a transformationof the parameters(6.4) (a, b) ↦−→ ( f(a, b), g(a, b) ) =: h(a, b)meaning that ϕ transforms the local solution y a,b (x) := Π(x, a, b) to thelocal solution y h(a,b) (x) = Π(x, h(a, b)).Unfortunately, the expression of A −1 ◦ϕ ∆E ◦A does not clearly show thatf and g are in<strong>de</strong>pen<strong>de</strong>nt of x. In<strong>de</strong>ed, reminding the expressions of A andof Φ, we have:(6.5) (ϕ ∆E ◦A(x, a, b) =ϕ(x, Π(x, a, b)), Φ j(q)β(q)255(xi 1, Π j 1(x, a, b), Π j(q 1)x β(q 1 ) (x, a, b) )) .To compose with A −1 whose expression is given by (2.21), it is useful tosplit ϕ = (φ, ψ) ∈ K n × K m , so above we write(6.6) ϕ(x, Π(x, a, b)) = ( φ(x, Π(x, a, b)), ψ(x, Π(x, a, b)) ) ,and finally, droping the arguments:(6.7)[A −1 ◦ ϕ ∆E ◦ A ] (x, a, b) =(φ i , A q( φ i 1, ψ j 1, Φ j(q 1)β(q 1 )), Bj ( φ i 1, ψ j 1, Φ j(q 1)β(q 1 )) ) .In case (E ) = (E 1 ), is an exercise to verify by computations that the A q (·)and B j (·) are in<strong>de</strong>pen<strong>de</strong>nt of x. In general however, the explicit expressionof Φ j i 1 ,...,i λis unknown. Unfortunately also, nothing shows how( )f(a, b), g(a, b) is uniquely associated to ϕ(x, y). Further explanations arenee<strong>de</strong>d.6.8. Determination of parameter transformations. At first, we state ageometric reformulation of the preceding lemma.Lemma 6.9. Every <strong>Lie</strong> symmetry (x, y) ↦→ ϕ(x, y) of (E ) induces a localK-analytic diffeomorphism(6.10) (x, y, a, b) ↦−→ ( ϕ(x, y), h(a, b) )


256of K n x × K m y × K p a × K m bsolutionsthat maps to itself the associated submanifold of(6.11) M E = { (x, y, a, b) : y = Π(x, a, b) } .Proof. In fact, we know that the n-dimensional leaf {( x, Π(x, a, b) ) : x ∈K n} is sent {( x, Π(x, h(a, b)) ) : x ∈ K n} .Equivalently, setting c := (a, b) and writing (ϕ, h) = (φ, ψ, h), we haveψ = Π(φ, h) when y = Π(x, c), namely(6.12) ψ(x, Π(x, c)) ≡ Π ( φ(x, Π(x, c)), h(c) )Proposition 6.13. There exists a universal rational map Ĥ such that()(6.14) h(c) ≡ Ĥ J κ+1x,a,b Π(x, c), Jκ x,y ϕ(x, Π(x, c))This shows unique <strong>de</strong>termination of h from ϕ, given (E ) or equivalently,given Π.Proof. Differentiating a function χ(x, Π(x, c)) with respect to x k , k =1, . . ., n, corresponds to applying to χ the vector field(6.15) L k := ∂∂x k+m∑j=1∂Π j(x, c) ∂ , k = 1, . . ., n.∂x k ∂yj Thus, applying L k to the m scalar equations (6.12), we get(6.16) L k ψ j =n∑l=1∂Π j∂x l L k φ l ,for 1 k n and 1 j m. It follows from the assumption that ϕ is alocal diffeomorphism that <strong>de</strong>t ( L k φ l (0) ) 1ln≠ 0 also. So we may solve1knthe first <strong>de</strong>rivatives Π x above: there exist universal polynomials S j lsuch that(∂Π j S j {Lk } ) 1i′lϕ i′ ′ n+m1k(6.17)=′ n∂x l <strong>de</strong>t ( L k ′ φ l′) .1l ′ n1k ′ nAgain, we apply the L k to these equations, getting, thanks to the chain rule:( {Lk } )n∑R j 1i′l 1 ,k 1L k ′2ϕ i′ ′ n+m1k 1(6.18)′ ,k′ 2] n 2.l 2 =1∂ 2 Π j∂x l 1 xl 2L k φ l 2=[<strong>de</strong>t ( L k ′ φ l′) 1l ′ n1k ′ n


Here, R j l 1 ,kare universal polynomials.Π j , we getx l 1x l 2(6.19)∂ 2 Π j∂x l 1 xl 2=By induction, for every β ∈ N n :(6.20)∂ |β| Π j∂x β =257Solving the second <strong>de</strong>rivatives( {Lk } )S j 1i′l 1 ,l 2 1L k ′2ϕ i′ ′ n+m1k 1 ′ ,k′ 2[n <strong>de</strong>t ( L k ′ φ l′) ]1l ′ n 3.1k ′ n[S j β( {L } )β ′ 1iϕ i′ ′ n+m|β ′ ||β|<strong>de</strong>t ( L k ′ φ l′) ]1l ′ n 2|β|+1,1k ′ nwhere S j β are universal polynomials. Here, for β′ ∈ N n , we <strong>de</strong>note by L β′the <strong>de</strong>rivation of or<strong>de</strong>r |β ′ | <strong>de</strong>fined by (L 1 ) β′ 1 · · ·(Ln ) β′ n .Next, thanks to the assumption that M is solvable with respect to theparameters, there exist integers j(1), . . ., j(p) with 1 j(q) m and multiindicesβ(1), . . ., β(p) ∈ N n with |β(q)| 1 and max 1qp |β(q)| = κsuch that the local K-analytic map(6.21) ((ΠK p+m ∋ c ↦−→ j (0, c) ) ( ) )1jm ∂ |β(q)| Π j(q), (0, c) ∈ K p+m∂x β(q) 1qphas rank p + m at c = 0. We then consi<strong>de</strong>r in (6.20) only the (p + m)equations written for (j, 0), (j(q), β(q)) and we solve h(c) by means of theanalytic implicit function theorem:(6.22)h = Ĥ⎛⎜⎝φ,( {LS j(1) } ) (β ′ 1iβ(1)ϕ i′ ′ n+m{LS j(p) } ) ⎞β ′ 1i|β ′ ||β(1)|β(p)ϕ i′ ′ n+m|β[ (Lk<strong>de</strong>t ′ φ l′) ]1l ′ n 2|β(1)|+1, . . .,′ ||β(p)| ⎟[ (Lk<strong>de</strong>t ′ φ l′) ]1l ′ n 2|β(p)|+1⎠ .1k ′ n1k ′ nFinally, by <strong>de</strong>velopping every <strong>de</strong>rivative L β′ ϕ i′ (including L k ′φ l′ as a specialcase), taking account of the fact that the coefficients of the L k ′ <strong>de</strong>pend(|βdirectly on Π, we get some universal polynomial P β ′ J ′ |+1x Π, J |β′ |)x,y ϕ i′ .Inserting above, we get the map Ĥ.6.23. Pseudogroup of twin transformations. The previous consi<strong>de</strong>rationslead to introducing the following.Definition 6.24. By G v,p , we <strong>de</strong>note the infinite-dimensional (pseudo)groupof local K-analytic diffeomorphisms(6.25) (x, y, a, b) ↦−→ ( ϕ(x, y), h(a, b) )that respect the separation between the variab<strong>les</strong> and the parameters.


258A converse to Lemma 6.3 holds.Lemma 6.26. Let M be a submanifold y = Π(x, a, b) that is solvablewith respect to the parameters (a, b). If a local K-analytic diffeomorphism(x, y, a, b) ↦−→ ( ϕ(x, y), h(a, b) ) of K n x × K m y × K p a × K m b belonging to G v,psends M to M , then (x, y) ↦→ ϕ(x, y) is a <strong>Lie</strong> symmetry of the PDE systemE M associated to M .Proof. In fact, since (ϕ, h) respects the separation of variab<strong>les</strong> and stabilizesM , it respects the fundamental pair of foliations ( F v , F p), namely {(a, b) =(a 0 , b 0 )} ∩M is sent to {(a, b) = h(a 0 , b 0 )} ∩ M and {(x, y) = (x 0 , y 0 )} ∩M is sent to {(x, y) = ϕ(x 0 , y 0 )} ∩ M . Hence ϕ ∆EM also stabilizes F ∆E .Corollary 6.27. Through the one-to-one correspon<strong>de</strong>nce (E ) ←→ M ofProposition 2.17, <strong>Lie</strong> symmetries of (E ) correspond to elements of G v,pwhich stabilize M .Definition 6.28. Let Aut v,p (M ) <strong>de</strong>note the local (pseudo)group of (ϕ, h) ∈G v,p stabilizing M . Let <strong>Lie</strong>(E ) <strong>de</strong>note the local (pseudo)group of <strong>Lie</strong> symmetriesof (E ).In summary:(6.29) <strong>Lie</strong>(E ) ≃ Aut v,p(M(E))and Aut v,p (M ) ≃ <strong>Lie</strong> ( E M).6.30. Transfer of infinitesimal <strong>Lie</strong> symmetries. Let L ∈ SYM(E ), i.e.L ∆E is tangent to ∆ E . Through the diffeomorphism A, the push-forward ofL ∆E must be of the form(6.31)A −1∗ (L ∆ E) =n∑k=1Θ i (x, a, b) ∂∂x i + p∑q=1F q (a, b) ∂∂a q + m∑j=1G j (a, b) ∂∂b j ,where the last two families of K-analytic coefficients F q and G j <strong>de</strong>pendonly on (a, b).Lemma 6.32. To every infinitesimal symmetry L of (E ), we can associatean infinitesimal symmetryp∑(6.33) L ∗ := F q (a, b) ∂∂a + ∑ mG j (a, b) ∂q ∂b jq=1of the space of parameters which tells how the flow of L acts infinitesimallyon the leaves of F ∆E . Furthermore, L + L ∗ is tangent to the submanifoldof solutions M (E ) .Consi<strong>de</strong>ring the flow of L + L ∗ reduces these assertions and the next tothe arguments of the preceding paragraphs. So we summarize.j=1


Lemma 6.34. Let M be a submanifold y = Π(x, a, b) that is solvable withrespect to the parameters (a, b). If a vector field that respects the separationbetween variab<strong>les</strong> and parameters, namely of the form(6.35)L +L ∗ =n∑i=1X i (x, y) ∂∂x i+ m∑j=1Y j (x, y) ∂∂y j + p∑q=1259F q (a, b) ∂∂a q + m∑is tangent to M , then L is an infinitesimal <strong>Lie</strong> symmetry of ( E M)Corollary 6.36. Through the one-to-one correspon<strong>de</strong>nce (E ) ←→ M ofProposition 2.17, infinitesimal <strong>Lie</strong> symmetries of (E ) correspond to vectorfields L + L ∗ tangent to M .Definition 6.37. Let SYM(M ) <strong>de</strong>note the <strong>Lie</strong> algebra of vector fields L +L ∗ tangent to M . Let SYM(E ) <strong>de</strong>note the <strong>Lie</strong> algebra of infinitesimal <strong>Lie</strong>symmetries of (E ).In summary:(6.38)SYM(E ) ≃ SYM ( M (E ))j=1and SYM ( M ) ≃ SYM ( E M).G j (a, b) ∂∂b j6.39. Dual <strong>de</strong>fining equations. As in §2.10, let M ⊂ K n x ×Km y ×Kp a ×Km bgiven by 0 = −y j + Π j (x, a, b) and assume if to be solvable with respectto the parameters. In particular, we can solve the b j , obtaining dual <strong>de</strong>finingequations(6.40) b j = Π ∗j (a, x, y), j = 1, . . .,m,for some local K-analytic map map Π ∗ = (Π ∗1 , . . .,Π ∗m ) satisfying(6.41) b ≡ Π ∗( a, x, Π(x, a, b) ) and y ≡ Π ( x, a, Π ∗ (a, x, y) ) .6.42. An algorithm for the computation of SYM(M ). The tangency toM is expressed by applying the vector field (6.35) to 0 = −y j +Π j (x, a, b),which yields:(6.43)0 = −Y j (x, y) +n∑X i (x, y) Π j (x, a, b) +x ii=1+p∑q=1F q (a, b) Π j aq(x, a, b)m∑G l (a, b) Π j (x, a, b),b lfor j = 1, . . ., m and for (x, y, a, b) ∈ M . In fact, after replacing the variabley by Π(x, a, b), these equations should be interpreted as power seriesi<strong>de</strong>ntities in K{x, a, b}.l=1


260(Denote by ∆(x, a, b) the <strong>de</strong>terminant of the (invertible) matrixΠj(x, a, b) ) and by D(x, a, b) its matrix of cofactors, so thatb l 1l,jmΠ −1b= [∆] −1 D. Hence we can solve G from (6.43):(6.44) ⎧[D(x, a, b)G (a, b) ≡ Y ( x, Π(x, a, b) ) n∑− X ⎪⎨i( x, Π(x, a, b) ) Π x i(x, a, b)−∆(x, a, b)i=1]p∑− F ⎪⎩q (a, b) Π a q(x, a, b) .q=1Next, we aim to solve the ( F q (a, b). Consequently, we gather all the otherterms in the brackets as Ψ 0 J1x,a,b Π, X , Y ) :(6.45)G (a, b) ≡[D(x, a, b)−∆(x, a, b)]p∑F q (a, b) Π a q(x, a, b)q=1+ Ψ (0 J1x,a,b Π, X , Y ).∆(x, a, b)Here, Ψ 0 is linear with respect to (X , Y ), with polynomial coefficients of<strong>de</strong>gree one in Jx,a,b 1 Π.Next, for k = 1, . . ., n, we differentiate this i<strong>de</strong>ntity with respect to x k .Then G (a, b) disappears and we chase the <strong>de</strong>nominator ∆ 2 :(6.46) ⎧ []p∑0 ≡ [∆ D] − F q (a, b) Π a q x k(x, a, b) +⎪⎨q=1[]p∑+ [∆ D xk − ∆ xk D] − F q (a, b) Π a q(x, a, b) +⎪⎩q=1+ Ψ k(J2x,a,b Π, J 1 x,y X , J1 x,y Y ) .The Ψ k are linear with respect to (Jx,y 1 X , J1 x,yY ), with polynomial coefficientsin Jx,a,b 2 Π. Then we further differentiate with respect to x and byinduction, for every β ∈ N n , we get:(6.47) ⎧ []p∑0 ≡ [∆ D] − F q (a, b) Π a q x β(x, a, b) +q=1⎪⎨+ ∑ (D β,β1 J|β 1 |+1 Π )[ ]p∑− F q (a, b) Π a q x 1(x, a, b) +β⎪⎩|β 1 |


where the expressions D β,β1 are certain m × m matrices withpolynomial coefficients in the jet J |β 1|+1x,a,bΠ, and where the terms(|β|+1 |β|Ψ β Jx,a,bΠ, J x,yX , J x,yY |β| ) are linear with respect to ( J x,yX |β| , J x,yY |β| ) ,with polynomial coefficients in J |β|+1x,a,b Π.Writing these i<strong>de</strong>ntity for (j, β) = (j(q), β(q)), q = 1, . . .,p, remindingmax 1qp |β(q)| = κ, it follows from the assumption of solvability withrespect to the parameters (a boring technical check is nee<strong>de</strong>d) that we maysolve(6.48)F q (a, b) ≡ Φ q( J κ+1x,a,b Π(x, a, b), Jκ x,yX (x, Π(x, a, b)), Jx,yY κ (x, Π(x, a, b)) ) ,for q = 1, . . .,p, where each local K-analytic function Φ q is linear with respectto (J κ X , J κ Y ) and rational with respect to J κ+1 Π, with <strong>de</strong>nominatornot vanishing at (x, a, b) := (0, 0, 0).Pursuing, we differentiate (6.48) with respect to x l for l = 1, . . .,n. ThenF q (a, b) disappears and we get:(6.49) (0 ≡ Φ q,l Jκ+2x,a,bΠ(x, a, b), Jκ+1 x,y X (x, Π(x, a, b)), Jκ+1 x,y Y (x, Π(x, a, b))) ,for 1 q p and 1 l n. In (6.46), we then replace the functions F qby their values Φ q :(6.50)0 ≡ Ψ k,j(Jκ+1x,a,b Π(x, a, b), Jκ x,y X (x, Π(x, a, b)), Jκ x,y Y (x, Π(x, a, b))) ,for 1 k n and 1 j m. Then we replace the variable b by Π ∗ (a, x, y)in the two obtained systems (6.49) and (6.50); taking account of the functionali<strong>de</strong>ntity y ≡ Π ( x, a, Π ∗ (a, x, y) ) written in (6.41), we get(6.51) {0 ≡ Φq,l(Jκ+2x,a,b Π(x, a, Π∗ (a, x, y)), Jx,y κ+1X (x, y), Jκ+1 x,y Y (x, y)) ,(0 ≡ Ψ k,j Jκ+1x,a,b Π(x, a, Π∗ (a, x, y)), Jx,y κ X (x, y), Jκ x,y Y (x, y)) .Finally, we <strong>de</strong>velope these equations in power series with respect to a:(6.52)⎧⎪⎨0 ≡ ∑ (a γ Φ q,l,γ x, y, Jκ+1x,y X (x, y), Jκ+1 x,y Y (x, y)) ,γ∈N p0 ≡ ∑ (a ⎪⎩γ Ψ k,j,γ x, y, Jκx,y X (x, y), Jx,y κ Y (x, y)) ,γ∈N pwhere the terms Φ q,l,γ and Ψ k,j,γ are linear with respect to the jets of X , Y .Proposition 6.53. A vector field (6.35) belongs to SYM(M ) if and only ifX i , Y j satisfy the linear PDE system{ (0 ≡ Φq,l,γ x, y, Jκ+1x,y X (x, y), Jκ+1 x,y(6.54)Y (x, y)) ,(0 ≡ Π k,j,γ x, y, Jκx,y X (x, y), Jx,y κ Y (x, y)) ,261


262where 1 q p, 1 l n, 1 k n and γ ∈ N p . Then F q <strong>de</strong>finedby (6.48) and G j <strong>de</strong>fined by (6.45) are in<strong>de</strong>pen<strong>de</strong>nt of x.This provi<strong>de</strong>s a second algorithm, essentially equivalent to Sophus <strong>Lie</strong>’s.Example 6.55. For y xx (x) = F(x, y(x), y x (x)), the first line of (6.54) is (thesecond one is redundant):(6.56) ⎧0 ≡ X [−Π xa Π xxx Π b + Π a Π xb Π xxx − Π x Π xxa Π xb + Π xa Π x Π xxb +⎪⎨⎪⎩+ Y [−Π xa Π xxb + Π xxa Π xb ] ++Π xxa Π xx Π b − Π a Π xxb Π xx ] ++ X x [−2Π xx Π xa Π b + 2Π xx Π a Π xb + Π x Π b Π xxa − Π x Π a Π xxb ] ++ Y x [−Π b Π xxa + Π a Π xxb ] ++ X y[−3Πx Π xx Π xa Π b + 3Π x Π a Π xx Π xb + (Π x ) 2 Π b Π xxa − (Π x ) 2 Π a Π xxb]++ Y y [Π xx Π b Π xa − Π xx Π a Π xb − Π x Π b Π xxa + Π x Π a Π xxb ] ++ X xx [−Π x Π b Π xa + Π x Π a Π xb ] +[ ]+ X xy −2(Πx ) 2 Π b Π xa + 2(Π x ) 2 Π a Π xb +[ ]+ X y 2 −(Πx ) 3 Π b Π xa + (Π x ) 3 Π a Π xb ++ Y xx [Π b Π xa − Π a Π xb ]++ Y xy [2Π x Π b Π xa − 2Π x Π a Π xb ]+[ ]+ Y y 2 (Πx ) 2 Π b Π xa − (Π x ) 2 Π a Π xb .We observe the similarity with (4.19): the expression is linear in the partial<strong>de</strong>rivatives of X , Y of or<strong>de</strong>r 2, but the coefficients in the equation aboveare more complicated. In fact, after dividing by −Π b Π xa + Π a Π xb , thisequation coinci<strong>de</strong>s with (4.21), thanks to Π x = y 1 and to the formulas (2.34)for F x , F y , F y1 .6.57. Infinitesimal CR automorphisms of generic submanifolds. If thesystem (E ) is associated to the complexification M = (M) c of a genericM ⊂ C n+m as in §1.16, then a = (¯z) c = ζ, b = ( ¯w) c = ξ, and the vectorfield L ∗ associated to an infinitesimal <strong>Lie</strong> symmetry(6.58) L =n∑i=1X i (z, w) ∂∂z i + m∑i=1j=1Y j (z, w)∂∂w jof (E ) is simply the complexification L of its conjugate L , namelyn∑(6.59) L ∗ = L = X i (ζ, ξ) ∂∂ζ + ∑ mY j (ζ, ξ) ∂i ∂ξ . jj=1


Then the sum L + L is tangent to M and its flow stabilizes the two invariantfoliations, obtained by intersecting M by {(z, w) = cst.} or by{(ζ, ξ) = cst.}. In [Me2005a, Me2005b], these two foliations, <strong>de</strong>notedF , F , are called (conjugate) Segre foliations, since its leaves are the complexificationsof the (conjugate) classical Segre varieties ([Se1931, Pi1975,Pi1978, We1977, DW1980, BJT1985, DF1988, BER1999, Su2001, Su2002,Su2003, GM2003a]) associated to M, viewed in its ambient space C n+m .The next <strong>de</strong>finition is also classical ([Be1979, Lo1981, EKV1985, Kr1987,KV1987, Be1988, Vi1990, St1996, Be1997, BER1999, Lo2002, FK2005a,FK2005b]):Definition 6.60. By hol(M) is meant the <strong>Lie</strong> algebra of local holomorphicvector fields L = ∑ ni=1 X i (z, w) ∂ + ∑ m∂z i j=1 Y j (z, w) ∂ whose real∂w jflow exp ( tL ) (z, w) induces one-parameter families of local biholomorphictransformations of C n+m stabilizing M. Equivalently,(6.61) 2 ReL = L + Lis tangent to M. Again equivalently, L + L is tangent to M = M c .Then obviously hol(M) is a real <strong>Lie</strong> algebra.Theorem 6.62. ([Ca1932a, BER1999, GM2004]) The complexificationhol(M) ⊗ C i<strong>de</strong>ntifies with SYM ( E (M c ) ) . Furthermore, if M is finitelynon<strong>de</strong>generate and minimal at the origin, both are finite-dimensional andhol(M) is totally real in SYM ( E (M c ) ) .The minimality assumption is sometimes presented by saying that the <strong>Lie</strong>algebra generated by T c M generates TM at the origin ([BER1999]). However,it is more natural to proceed with the fundamental pair of foliationsassociated to M ([Me2001, GM2004, Me2005a, Me2005b]). AnticipatingSections 10 and 11 to which the rea<strong>de</strong>r is referred, we set.Definition 6.63. A real analytic generic submanifold M ⊂ C n+m is minimalat one of its points p if the fundamental pair of foliations of its complexificationM is covering at p (Definition 10.17).Further informations may be found in Section 10. We conclu<strong>de</strong> by formulatingapplications of Theorems 5.13 and 5.24.Corollary 6.64. The bound dim hol(M) 8 for a Levi non<strong>de</strong>generate hyper<strong>sur</strong>faceM ⊂ C 2 is attained if and only if it is locally biholomorphic tothe sphere S 3 ⊂ C 2 .Corollary 6.65. The bound dim hol(M) n 2 + 4n + 3 for a Levi non<strong>de</strong>generatehyper<strong>sur</strong>face M ⊂ C n+1 is attained if and only if it is locallybiholomorphic to the sphere S 2n+1 ⊂ C n+1 .263


264§7. EQUIVALENCE PROBLEMS AND NORMAL FORMS7.1. Equivalences of submanifolds of solutions. As in §3.1, let (E ) and(E ′ ) be two PDE systems and assume that ϕ transforms (E ) to (E ′ ). DefiningA ′ similarly as A, it follows that(7.2) A ′ −1 ◦ Φ E ,E ′ ◦ A(x, a, b) ≡ ( θ(x, a, b), f(a, b), g(a, b) ) =: (x ′ , a ′ , b ′ )transforms F v to F ′ v, hence induces a map (a, b) ↦→ (a ′ , b ′ ). The arguments ofSection 6 apply here with minor modifications to provi<strong>de</strong> two fundamentallemmas.Lemma 7.3. Every equivalence (x, y) ↦→ (x ′ , y ′ ) between to PDE systems(E ) and (E ′ ) comes with an associated transformation (a, b) ↦→ (a ′ , b ′ ) ofthe parameter spaces such that(7.4) (x, y, a, b) ↦−→ (x ′ , y ′ , a ′ , b ′ )is an equivalence between the associated submanifolds of solutions M (E ) →M ′(E ′ ) .Conversely, let M and M ′ be two submanifolds of K n x × K m y × K p a × K m band of K n x ′ × Km y ′ × Kp a ′ × K m b ′ represented by y = Π(x, a, b) and by y′ =Π ′ (x ′ , a ′ , b ′ ), in the same dimensions. Assume both are solvable with respectto the parameters.Lemma 7.5. Every equivalence(7.6) (x, y, a, b) ↦−→ ( ϕ(x, y), h(a, b) )between M and M ′ belonging to G v,p induces by projection the equivalence(x, y) ↦→ ϕ(x, y) between the associated PDE systems ( E M)and(E′M ′).7.7. Classification problems. Consequently, classifying PDE systems un<strong>de</strong>rpoint transformations (Section 3) is equivalent to the following.Equivalence problem 7.8. Find an algorithm to <strong>de</strong>ci<strong>de</strong> whether two givensubmanifolds (of solutions) M and M ′ are equivalent through an elementof G v,p .Classification problem 7.9. Classify submanifolds (of solutions) M ,namely provi<strong>de</strong> a complete list of all possible such equations, including theirautomorphism group Aut v,p (M ) ⊂ G v,p .7.10. Partial normal forms. Both problems above are of high complexity.At least as a preliminary step, it is useful to try to simplify somehowthe <strong>de</strong>fining equations of M , by appropriate changes of coordinates belongingto G v,p . To begin with, the next lemma holds for M <strong>de</strong>fined byy = Π(x, a, b) with the only assumption that b ↦→ Π(0, 0, b) has rank m atb = 0.


Lemma 7.11. ([CM1974, BER1999, Me2005a], [∗]) In coordinates x ′ =(x ′1 , . . .,x ′n ) and y ′ = (y ′1 , . . .,y ′m ) an arbitrary submanifold M ′ <strong>de</strong>finedby y ′ = Π ′ (x ′ , a ′ , b ′ ) or dually by b ′ = Π ′∗ (a ′ , x ′ , y ′ ) is equivalent to(7.12) y = Π(x, a, b) or dually to b = Π ∗ (a, x, y)with(7.13)Π(0, a, b) ≡ Π(x, 0, b) ≡ b or dually Π ∗ (0, x, y) ≡ Π ∗ (a, 0, y) ≡ y,namely Π = b + O(xa) and Π ∗ = y + O(ax).Proof. We <strong>de</strong>velope(7.14) y ′ = Π ′ (0, a ′ , b ′ ) + Λ ′ (x ′ ) + O(x ′ a ′ ).Since b ′ ↦→ Π ′ (0, a ′ , b ′ ) has rank m at b ′ = 0, the coordinate change(7.15) b ′′ := Π ′ (0, a ′ , b ′ ), a ′′ := a ′ , x ′′ := x ′ , y ′′ := y ′ ,transforms M ′ to M ′′ <strong>de</strong>fined by(7.16) y ′′ = Π ′′ (x ′′ , a ′′ , b ′′ ) := b ′′ + Λ ′ (x ′′ ) + O(x ′′ a ′′ ).Solving b ′′ by means of the implicit function theorem, we get(7.17) b ′′ = Π ′′∗ (a ′′ , x ′′ , y ′′ ) = y ′′ − Λ ′ (x ′′ ) + O(a ′′ x ′′ ),and it suffices to set y := y ′′ − Λ ′ (x ′′ ), x := x ′′ and a := a ′′ , b := b ′′ .Taking account of solvability with respect to the parameters, finer normalizationsholds.Lemma 7.18. With n = m = κ = 1, every submanifold of solutions y ′ =b ′ + x ′ a ′[ ]1 + O 1 of y′x ′ x = F ′ (x ′ , y ′ , y ′ ′ x ′) is equivalent to(7.19) y xx = b + xa + O(x 2 a 2 ).Proof. Writing y ′ = b ′ +x ′[ a ′ +a ′ Λ ′ (a ′ , b ′ )+O(x ′ a ′ ) ] , where Λ ′ = O 1 , weset a ′′ := a ′ + a ′ Λ ′ (a ′ , b ′ ), b ′′ := b ′ , x ′′ := x ′ , y ′′ := y ′ , whence y ′′ = b ′′ +x ′′[ a ′′ +O(x ′′ a ′′ ) ] . Dually b ′′ = y ′′ −a ′′[ x ′′ +x ′′ x ′′ Λ ′′ (x ′′ , y ′′ )+O(x ′′ x ′′ a ′′ ) ] ,so we set x := x ′′ + x ′′ x ′′ Λ ′′ (x ′′ , y ′′ ), y := y ′′ , a := a ′′ , b := b ′′ .Corollary 7.20. Every second or<strong>de</strong>r ordinary differential equation y x ′ ′ x = ′F ′ (x ′ , y ′ , yx ′ ′) is equivalent to(7.21) y xx = (y x ) 2 R(x, y, y x ).265


2667.22. Complete normal forms. The Moser theory of normal forms may betransferred with minor modifications to submanifolds of solutions associatedto (E 1 ) and to (E 2 ).Theorem 7.23. ([CM1974, Ja1990], [∗]) A local K-analytic submanifold ofsolutions associated to (E 1 ):(7.24) y ′ = b ′ + x ′ a ′ + O 3 = ∑ ∑Π ′ k ′ ,l ′(b′ ) x ′ k ′ a ′ l ′k ′ 0 l ′ 0can be mapped, by a transformation (x ′ , y ′ , a ′ , b ′ ) ↦→ (x, y, a, b) belongingto G v,p , to a submanifold of solutions of the specific form(7.25)y = b + xa + Π 2,4 (b) x 2 a 4 + Π 4,2 (b) a 2 x 4 + ∑ ∑ ∑Π k,l (b) x k a l .k2 l2 k+l7Solving (a, b) from y = Π and y x = Π x with Π as above, we <strong>de</strong>duce thefollowing.Corollary 7.26. Every y x ′ ′ x = F ′ (x ′ , y ′ , y ′ ′ x ′) is equivalent to(7.27)y xx = (y x ) [ 2 x 2 F 2,2 (y) + x 3 r(x, y) ] + (y x ) [ 4 F 0,4 (y) + x r(x, y) ] ++ ∑ ∑ ∑F k,l (y) x k (y x ) l .k0 l0 k+l5For the completely integrable system (E 2 ) having several <strong>de</strong>pen<strong>de</strong>nt variab<strong>les</strong>(x 1 , . . .,x n ), n 2, we have the following.Theorem 7.28. ([CM1974], [∗]) A local K-analytic submanifold of solutionsassociated to (E 2 ):(7.29) y ′ = b ′ + ∑x ′k a ′k + O 31kncan be mapped, by a transformation (x ′ , y ′ , a ′ , b ′ ) ↦→ (x, y, a, b) belongingto G v,p , to a submanifold of solutions of the specific form:(7.30) y = b + ∑x k a k + ∑ ∑Π k,l (x, a, b)1kn k2 l2where(7.31)Π k,l (x, a, b) :=∑∑k 1 +···+k n=k l 1 +···+l n=lwith the terms Π 2,2 , Π 2,3 and Π 3,3 satisfying:Π k1 ,...,k n,l 1 ,...,l n(b) (x 1 ) k1 · · ·(x n ) kn (a 1 ) l1 · · ·(a n ) ln(7.32) 0 = ∆ Π 2,2 = ∆∆ Π 2,3 = ∆∆ Π 3,2 = ∆∆∆ Π 3,3 ,


where(7.33) ∆ := ∑1kn∂ 2∂x k ∂a k .Exercise: solving (a k , b) from y = Π and y x l = Π x l, with Π as above,<strong>de</strong>duce a complete normal form for (E 2 ).Open problem 7.34. Find complete normal forms for submanifolds of solutionsassociated to (E 4 ) and to (E 5 ).§8. STUDY OF TWO SPECIFIC EXAMPLES8.1. Study of the <strong>Lie</strong> symmetries of (E 4 ). Its submanifold of solutions possessestwo equations:(8.2) y 1 = Π 1 (x, a, b 1 , b 2 ) y 2 = Π 2 (x, a, b 1 , b 2 ).For instance, a generic submanifold M ⊂ C 3 of CR dimension 1 and ofcodimension 3 has equations of such a form.Assuming V S (E 4 ) to be twin solvable and having covering submanifoldof solutions (see Definition 10.17), it may be verified (for M ⊂ C 3 , see[Be1997]) that at a Zariski-generic point, its equations are of the form:(8.3)y 1 = b 1 + xa + O(x 2 ) + O(b 1 ) + O(b 2 ),y 2 = b 2 + xa(x + a) + O(x 3 ) + O(b 1 ) + O(b 2 ).The mo<strong>de</strong>l has zero remain<strong>de</strong>rs with associated system(8.4) y 2 1 = 2xy1 1 + (y1 1 )2 , y 1 2 = 0,the third equation y2 2 = 2 y1 1 being obtained by differentiating the first.We may put the submanifold in partial normal form. Proceeding asin [BES2005], some partial normalizations belonging to G v,p yield:(8.5)y 1 = b 1 + ax + a 2[ Π 1 3,2(b) x 3 + Π 1 4,2(b) x 4 + · · ·] + O(a 3 x 2 ),y 2 = b 2 + a [ x 2 + Π 2 4,1(b) x 4 + · · ·] + a 2[ x + Π 2 3,2(b) x 3 + · · ·] + O(a 3 x 2 ).Redifferentiating, we get an appropriate, partially normalized system (E 4 ):(8.6) ⎧⎪⎨y1 2 = y1( ) 1 2x + g1+ (y1) 1 2( 1 + g 2) + (y1) 1 3 s + (y1) 1 4 s + (y1) 1 5 s + (y1) 1 6 R,y2 1 ⎪⎩= (y1 1 )2 h + (y1 1 )3 R,y2 2 = )1( y1 2 + g1x + (y11 ) 2( gx 2 + (2x + g1 )h ) + (y1 1 )3 r + (y1 1 )4 r + (y1 1 )5 r + (y1 1 )6 R,where, precisely:• g 1 , g 2 and h are functions of (x, y 1 , y 2 ) satisfying g j = O(xx) +O(y 1 ) + O(y 2 ), j = 1, 2 and h = O(x) + O(y 1 ) + O(y 2 );267


268• r and s are unspecified functions, varying in the context, of (x, y 1 , y 2 )with s = O(x) + O(y 1 ) + O(y 2 ), but possibly r(0) ≠ 0;• R is a remain<strong>de</strong>r function of all the variab<strong>les</strong> (x, y 1 , y 2 , y 1 1) parametrizing∆ E4 .Letting L = X ∂ + Y 1 ∂ + Y 2 ∂ be a candidate infinitesimal <strong>Lie</strong>∂x ∂y 1 ∂y 2symmetry and applying L (2) = L + Y1 1 ∂ + Y 2 ∂y11 1 ∂ + Y 1 ∂y12 2 ∂ + Y 2 ∂y21 2 ∂∂y22to ∆ E4 , we obtain firstly, computing mod (y1) 1 5 :(8.7)0 ≡ −Y1 2 + [ X ]( y1(2 1 + gx) 1 + (y1) 1 2 gx 2 + (y1) 1 3 r + (y1) 1 4 r ) ++ [ Y 1]( y1 1 r + (y1) 1 2 r + (y1) 1 3 r + (y1) 1 4 r ) ++ [ Y 2]( y1 1 r + (y1) 1 2 r + (y1) 1 3 r + (y1) 1 4 r ) ++ Y1( 1 2x + g 1 + y1 1 (2 + 2g2 ) + (y1 1 )2 s + (y1 1 )3 s + (y1 1 )4 s ) ,and secondly, computing mod (y 1 1 )2 :(8.8) 0 ≡ −Y 1 2 + 2 y1 1 Y1 1 h.The third <strong>Lie</strong> equation involving Y2 2 will be superfluous. Specializing(4.6)(II) to m = 2, we get Y1 1 and Y1:2(8.9)Y1 1 = Y x 1 + [ Y 1y − X ] 1 x y11 + [ ]Y 1y y2 2 1 + [ − X y 1](y11 ) 2 + [ − X y 2]y11 y12Y1 2 = Y x 2 + [ ]Y 2y y1 1 1 + [ Y 2y − X x]y2 2 1 + [ − X y 1]y21 y1 1 + [ − X y 2](y21 ) 2 .and also Y2 1 and Y2 2 (in fact superfluous):(8.10)Y2 1 = Y xx 1 + [ 2 Y 1xy − X ] 1 xx y11 + [ ]2 Y 1xy y2 2 1 + [ Y 1y 1 y − 2 X ] 1 xy 1 (y11 ) 2 ++ [ 2 Y 1y 1 y − 2 X ] 2 xy 2 y11 y1 2 + [ ]Y 1y 2 y (y2 2 1 ) 2 + [ ]− X y 1 y 1 (y11 ) 3 ++ [ ]− 2 X y 1 y 2 (y11 ) 2 y1 2 + [ ]− X y 2 y 2 y11 (y1 2 )2 + [ Y 1y − 2 X x]y1 1 2 ++ [ ]Y 1y y2 2 2 + [ − 3 X y 1]y11 y2 1 + [ − X y 2]y11 y2 2 + [ − 2 X y 2]y21 y2 1 ,Y2 2 = Yxx 2 + [ ]2 Y 2xy y1 1 1 + [ 2 Y 2xy − X ] 2 xx y21 + [ ]Y 2y 1 y (y1 1 1 ) 2 ++ [ 2 Y 2y 1 y − 2 X ] 2 xy 1 y11 y1 2 + [ Y 2y 2 y − 2 X ] 2 xy 2 (y21 ) 2 + [ ]− X y 1 y 1 (y11 ) 2 y1+2+ [ ]− 2 X y 1 y 2 y11 (y1) 2 2 + [ ]− X y 2 y 2 (y21 ) 3 + [ ]Yy 2 y1 1 2 ++ [ Y 2y − 2 X x]y2 2 2 + [ − 2 X y 1]y11 y2 2 + [ − X y 1]y21 y2 1 + [ − 3 X y 2]y21 y2.2Inserting Y1 2 and Y1 1 in the first <strong>Lie</strong> equation (8.7) in which y2 1 is replaced bythe value (8.6) 1 it has on ∆ E4 and still computing mod(y1 1)5 , we get, again


with r, s being unspecified functions of (x, y 1 , y 2 ) with s(0) = 0:(8.11)0 ≡ − Yx 2 + [ ]− Y 2y y1 1 1 ++ [ − Y 2y + X x](y1 2 1 (2x + g 1 ) + (y1) 1 2 (1 + g 2 ) + (y1) 1 3 s + (y1) 1 4 s ) ++ [ X y 1]((y11 ) 2 (2x + g 1 ) + (y1 1 )3 (1 + g 2 ) + (y1 1 )4 s ) +269+ [ X y 2]((y11 ) 2 [2x + g 1 ] 2 + (y 1 1 )3 (4x + 2g 1 )(1 + g 2 ) + (y 1 1 )4 (1 + s) ) ++ [ X ]( y 1 1 (2 + g1 x ) + (y1 1 )2 g 2 x + (y1 1 )3 r + (y 1 1 )4 r ) ++ [ Y 1]( y 1 1 r + (y1 1 )2 r + (y 1 1 )3 r + (y 1 1 )4 r ) ++ [ Y 2]( y1 1 r + (y1 1 )2 r + (y1 1 )3 r + (y1 1 )4 r ) ++ [ ](Yx1 2x + g 1 + y1 1 (2 + 2g2 ) + (y1 1 )2 s + (y1 1 )3 s + (y1 1 )4 s ) ++ [ Y 1y − X (x]y1 1 1 (2x + g 1 ) + (y1 1 )2 (2 + 2g 2 ) + (y1 1 )3 s + (y1 1 )4 s ) ++ [ ](Y 1y y1 2 1 [2x + g 1 ] 2 + (y1 1 )2 (2x + g 1 )(3 + 3g 2 ) + (y1 1 )3 (2 + s) + (y1 1 )4 s ) ++ [ − X y 1]((y11 ) 2 (2x + g 1 ) + (y1 1 )3 (2 + 2g 2 ) + (y1 1 )4 s ) ++ [ − X y 2]((y11 ) 2 [2x + g 1 ] 2 + (y 1 1 )3 (2x + g 1 )(3 + 3g 2 ) + (y 1 1 )4 (2 + s) ) .Collecting the coefficients of the monomials cst., y1, 1 (y1) 1 2 , (y1) 1 3 , (y1) 1 4 , weget, after slight simplification (in the coefficient of (y1) 1 2 , the term (2x +g 1 )X x annihilates with its opposite; in the coefficient of (y1 1)3 , two pairsannihilate and then, we divi<strong>de</strong> by [1 + g 2 ]) a system of five linear PDE’s:(8.12)0 = −Yx 2 + (2x + g 1 )Yx 1 ,0 = −Y 2y − (2x + 1 g1 )Y 2y + (2 + 2 g1 x )X + r Y 1 + r Y 2 ++ (2 + 2g 2 )Yx 1 + (2x + g1 )Y 1y + [2x + 1 g1 ] 2 Y 1y 2,0 = −Y 2y + X 2 x + gx[1 2 + g 2 ] −1 X + r Y 1 + r Y 2 ++ s Yx 1 + 2 Y 1y − 2 X 1 x + (6x + 3g 2 )Y 1y 2,0 = s Y 2y + s X 2 x + (1 + g 2 )X y 1 + (2x + g 1 )(2 + 2g 2 )X y 2++ r X + r Y 1 + r Y 2 + s Yx 1 + s Y 1y + s X 1 x + (2 + s) Y 1y 2−− (2 + 2g 2 )X y 1 − (2x + g 1 )(3 + 3g 2 )X y 2,0 = s Y 2y 2 + s X x + s X y 1 + (1 + s)X y 2 + r X + r Y 1 + r Y 2 + s Y 1x + s Y 1y 1++ s X x + s Y 1y 2 + s X y 1 − (2 + s)X y 2.We then simplify the remain<strong>de</strong>rs using s + s = s, r + s = r and r + r = r; wedivi<strong>de</strong> (8.12) 5 by (1 + s); we replace X y 2 obtained from (8.12) 5 in (8.12) 4 ;we divi<strong>de</strong> (8.12) 4 by (1 + g 2 ); we then solve X y 1 from (8.12) 4 and finally


270we insert it in (8.12) 5 ; we get:(8.13)0 = −Yx 2 + (2x + g1 )Yx 1 ,0 = −Y 2y − (2x + 1 g1 )Y 2y + (2 + 2 g1 x )X + (2 + 2g2 )Yx 1 + (2x + g1 )Y 1y 1++ [2x + g 1 ] 2 Yy 1 + r Y 1 + r Y 2 ,20 = −Y 2y − X 2 x + 2 Y 1y + (6x + 1 3g2 )Y 1y + r Y 1 + r Y 2 + s Y 12 x ++ g 2 x [1 + g2 ] −1 X ,0 = −X y 1 + (2 + s)Y 1y + r X + r Y 1 + r Y 2 + s X 2 x + s Yx 1 + s Y 1y + s Y 2 1 y 2,0 = −X y 2 + r X + r Y 1 + r Y 2 + s X x + s Yx 1 + s Y 1y + s Y 1 1 y + s Y 2 2 y 2.Similarly, <strong>de</strong>veloping the second equation (8.8) and computing mod (y 1 1 )2 ,we get:(8.14)0 ≡ −Y 1xx + [ − 2 Y 1xy + X 1 xx+ [ ]2h Yx1 y11 .]y11 + [ − (4x + 2g 1 )Y xy 2 − (2 + h)Y 1y 2 ]+Collecting the coefficients of the monomials cst., y1 1 , we get two more linearPDE’s:(8.15)0 = −Yxx,10 = −2 Y 1xy + X 1 xx − (4x + 2g 1 )Y 11xy2 − (2 + h)Yy + 2h Y 12Proposition 8.16. Setting as initial conditions the five specific differentialcoefficients(8.17) P := P ( X , Y 1 , Y 2 , Yx 1 , X )x = r X +r Y 1 +r Y 2 +r Yx 1 +r X x,it follows by cross differentiations and by linear substitutions from the sevenequations (8.13) i , i = 1, 2, 3, 4, 5, (8.15) j , j = 1, 2, that X y 1, X y 2, Y 1y, 1Y 1y, Y 2 2 x , Y 2y, Y 2 1 yand X 2 xx , X xy 1, X xy 2, Yxx, 1 Y 1xy, Y 1 1 xyare uniquely2<strong>de</strong>termined as linear combinations of (X , Y 1 , Y 2 , Yx 1 , X x ), namely:⎧Yx⎪⎨2 1= P, X 2 xx = P, Yxx1 3= P,(8.18)⎪⎩X y 1X y 24= P, Y 1y 1 5 = P, Y 2y 1 6 = P, X xy 19= P, Y 1y 2 10= P, Y 2y 2 11= P, X xy 2Then the expressions P are stable un<strong>de</strong>r differentiation:(8.19)x .7= P, Y 1xy 1 8 = P,12= P, Y 1xy 2 13= P.P x = P + r Yx 2 + r Yxx 1 + r X xx = P,P y 1 = P + r X y 1 + r Y 1y + r Y 2 1 y + r Y 1 1 xy + r X 1 xy 1 = P,P y 2 = P + r X y 2 + r Y 1y + r Y 2 2 y + r Y 1 2 xy + r X 2 xy 2 = P,


and moreover, all other, higher or<strong>de</strong>r partial <strong>de</strong>rivatives of X , of Y 1 and ofY 2 may be expressed as P ( X , Y 1 , Y 2 , Y 1x , X x).Corollary 8.20. An infinitesimal <strong>Lie</strong> symmetry of (E 4 ) is uniquely <strong>de</strong>terminedby the five initial Taylor coefficients271(8.21) X (0), Y 1 (0), Y 2 (0), Y 1x (0), X x(0).Proof of the proposition. We notice that (8.18) 1 and (8.18) 3 are given forfree by (8.13) 1 and by (8.15) 1 . Differentiating (8.13) 3 with respect to x, weget:(8.22)0 = −Y xy 2 − X xx + 2 Y 1xy + (6 + 1 3g1 x)Y 1y + (6x + 2 3g1 )Y 1xy + r Y 1 +2+ r Yx 1 + r Y 2 + r Yx 2 + r Y x 1 + s Y xx 1 + r X + g2 x [1 + g2 ] −1 X x .By (8.15) 1 , s Yxx 1 vanishes. We replace Yx 2 thanks to (8.13) 1 . Differentiating(8.13) 1 with respect to y 2 , we may substract 0 = −Y xy 2 + (2x + g 1 )Y 1xy+ 2r Yx 1 . We get:(8.23)0 = −X xx + 2 Y 1xy + (4x + 1 2g1 )Y 1xy 2++ (6 + 3gx)Y 1 1y + r X + r Y 1 + r Y 2 + r Y 12 x + gx[1 2 + g 2 ] −1 X x .By means of (8.15) 2 , we replace the first three terms and then solve Y 1y 2 :(8.24) Y 1y 2 = r X + r Y 1 + r Y 2 + r Y 1x + k ∗ X x ,introducing a notation for a new function that should be recor<strong>de</strong>d:(8.25) k ∗ := g 2 x [1 + g2 ] −1 [4 + 3g 1 x − h]−1 .This is (8.18) 10 . Next, we differentiate the obtained equation with respect tox, getting:(8.26) Y 1xy 2 = r X + r Y 1 + r Y 2 + r Y 1x + r X x + k ∗ X xx .This is (8.18) 13 . We replace the obtained value of Y 1yin (8.13) 2 2 , (8.13) 3 ,(8.15) 2 and the obtained value of Y 1xyin (8.15) 2 2 . This yields a new, simpler


272system of seven equations:(8.27)0 = −Yx 2 + (2x + g1 )Yx 1 ,0 = −Y 2y − (2x + 1 g1 )Y 2y + (2 + 2 g1 x )X + (2 + 2g2 )Yx 1 + (2x + g1 )Y 1y 1++ s X + r Y 1 + r Y 2 + s Yx 1 + k ∗ [2x + g 1 ] 2 X x ,0 = −Y 2y − X 2 x + 2 Y 1y + s X + r Y 1 + r Y 2 + s Y 11 x + k∗ (6x + 3g 1 )X x ,0 = −X y 1 + r X + r Y 1 + r Y 2 + s Yx 1 + s X x + s Y 1y + s Y 2 1 y 2,0 = −X y 2 + r X + r Y 1 + r Y 2 + s Yx 1 + s X x + s Y 1y + s Y 2 1 y 2,0 = −Yxx 1 ,0 = −2 Y 1xy + X ( 1 xx 1 − k ∗ (4x + 2g 1 ) ) + r X + r Y 1 + r Y 2 + r Yx 1 . + s X x.Restarting from this system, we differentiate (8.27) 3 with respect to x:(8.28)0 = −Y 2xy − X 2 xx + 2 Y 1xy + r X + r Y 1 + r Y 2 +1+ r X x + r Yx 1 + r Yx 2 + s Yxx 1 + k ∗ (6x + 3g 1 )X xx .We replace Yx 21, we erase Yxx and we add (8.27) 7:(8.29) 0 = −Y 2xy 2 +k∗ (2x+g 1 )X xx +r X +r Y 1 +r Y 2 +r Yx 1 +r X x.We differentiate (8.27) 2 with respect to x:(8.30)0 = −Y 2xy − (2 + 1 g1 x )Y 2y − (2x + 2 g1 )Y 2xy + r X + (2 + 2 g1 x )X x++ s Yx 1 + (2 + 2g2 )Yxx 1 + (2 + g1 x )Y 1y + (2x + 1 g1 )Y 1xy + r X x+1+ s X x + r Y 1 + r Yx 1 + r Y 2 + r Yx 2 + r Yx 1 + s Yxx 1 + k ∗ [2x + g 1 ] 2 X xx .Differentiating (8.27) 1 with respect to y 1 , we may substract 0 = −Y 2xy+ 1(2x + g 1 )Y 1xy+ r Y 1 1 x ; we replace Yx 2 and erase Yxx; 1 we substract (8.29)multiplied by (2x + g 1 ); we get:(8.31) 0 = −Y 2y 2 + (1 + s)X x + Y 1y 1 + r X + r Y 1 + r Y 2 + r Y 1x .Comparing with (8.27) 3 yields:Y 1y(8.32)= (2 + s)X 1 x + r X + r Y 1 + r Y 2 + r Yx 1 ,Y 2y = (3 + s)X 2 x + r X + r Y 1 + r Y 2 + r Yx 1 .These are (8.18) 5 and (8.18) 11 . Differentiating these two equations withrespect to x, replacing Yx 21and erasing Yxx , we get:Y 1xy(8.33)= (2 + s)X 1 xx + r X + r Y 1 + r Y 2 + r Yx 1 + r X x,Y 2xy = (3 + s)X 2 xx + r X + r Y 1 + r Y 2 + r Yx 1 + r X x .We then replace this value of Y 2xy 2 in (8.29) and solve X xx : this yields(8.18) 2 .


To conclu<strong>de</strong>, we replace X xx so obtained in (8.27) 7 : this yields (8.18) 8 .We replace Y 1yand Y 2 1 yfrom (8.32) in (8.27) 2 4 and in (8.27) 5 : this yields(8.18) 4 and this yields (8.18) 9 . Thanks to (8.18) 2 (got) we observe that(8.34) P x = P + r Y 1xx + r Y 2x + r X xx = P.Differentiating (8.18) 4 (got) and (8.18) 9 (got) with respect to x then yields(8.18) 7 and (8.18) 12 . We replace Y 1yand Y 2 1 yfrom (8.18) 2 5 (got) and (8.18) 11(got) in (8.27) 2 : this yields (8.18) 6 . Finally, to obtain the very last (8.18) 13 ,we differentiate (8.18) 10 (got) with respect to x.The proof of Proposition 8.16 is complete.We claim that the bound dimSYM(E 4 ) 5 is attained for themo<strong>de</strong>l (8.4). In<strong>de</strong>ed, with 0 = r = s and 0 = g 1 = g 2 = h (whencek ∗ = 0) (8.24) is Y 1y= 0 and then the seven equations (8.27) are:2⎧0 = −Yx 2 + 2x Yx 1 ,0 = −Y 2y − 2x Y 21 y + 2 X + 2 Y 2 x 1 + 2x Y 1y 1,⎪⎨ 0 = −Y 2y − X 2 x + 2 Y 1y 1,(8.35) 0 = −X y 1,0 = −X y 2,⎪⎩0 = −Yxx,10 = −2 Y 1xy + X xx, 1having the general solution⎧X = a − d + e x,⎪⎨(8.36)Y 1 = b + d x + 2e y 1 ,⎪⎩Y 2 = c + 2a y 1 + 3e y 2 + d xx.<strong>de</strong>pending on five parameters a, b, c, d, e ∈ K. Five generators of SYM(E 4 )are:⎧D := x∂ x + 2y 1 ∂ y 1 + 3y 2 ∂ y 2,(8.37)The commutator table⎪⎨L 1 := −∂ x + x∂ y 1 + xx∂ y 2,L 1 ′ := ∂ x + 2y 1 ∂ y 2,L 2 := ∂ y 1,⎪⎩L 3 := ∂ y 2.273


274D L 1 L 1 ′ L 2 L 3D 0 −L 1 −L 1 ′ −2 L 2 −3 L 3L 1 L 1 0 −L 2 0 0L 1 ′ L 1 ′ L 2 0 −2 L 3 0L 2 2 L 2 0 2 L 3 0 0L 3 3 L 3 0 0 0 0Table 3.shows that the subalgebra spanned by L 1 , L ′1 , L 2, L 3 is isomorphic tothe unique irreducible 4-dimensional nilpotent <strong>Lie</strong> algebra n 1 4 ([OV1994,BES2005]). Then SYM(E 4 ) is a semidirect product of K with n 1 4 . Theauthor ignores whether it is rigid. The following accessible research will bepursued in a subsequent publication.Open problem 8.38. Classify systems (E 4 ) up to point transformations. Deducea complete classification, up to local biholomorphisms, of all real analyticgeneric submanifolds of codimension 2 in C 3 , valid at a Zariski-genericpoint.8.39. Almost everywhere rigid hyper<strong>sur</strong>faces. When studying and classifyingdifferential objects, it is essentially no restriction to assume their <strong>Lie</strong>symmetry groups to be of dimension 1, the study of objects having no infinitesimalsymmetries being an in<strong>de</strong>pen<strong>de</strong>nt field of research. In particular,if M ⊂ C n+1 (n 1) is a connected real analytic hyper<strong>sur</strong>face, we maysuppose that dimhol(M) 1, at least. So let L be a nonzero holomorphicvector field with L + L tangent to M.Lemma 8.40. ([Ca1932a, St1996, BER1999]) If in addition M is finitelynon<strong>de</strong>generate, then(8.41) Σ := { p ∈ M : L (p) ∈ T c pM }is a proper real analytic subset of M.In other words, at every point p belonging to the Zariski-<strong>de</strong>nse subsetM\Σ, the real nonzero vector L (p) + L (p) ∈ T p M supplements Tp cM.Straightening L in a neighborhood of p, there exist local coordinates t =(z 1 , . . .,z n , w) with T0 cM = {w = 0}, T 0M = {Im w = 0}, whence Mis given by Im w = h(z, ¯z, Re w), and with L = ∂ . The tangency of∂w∂+ ∂ = ∂ to M entails that h is in<strong>de</strong>n<strong>de</strong>pent of u. Then the complex∂w ∂ ¯w ∂uequation of M is of the precise form(8.42) w = ¯w + i Θ(z, ¯z),with Θ = 2h simply. The reality of h reads Θ(z, ¯z) ≡ Θ(¯z, z).


Definition 8.43. A real analytic hyper<strong>sur</strong>face M ⊂ C n+1 is called rigid atone of its points p if there exists L ∈ hol(M) with(8.44) T p M = T c pM ⊕ R ( L (p) + L (p) ) .Similar elementary facts hold for general submanifolds of solutions.Lemma 8.45. With n 1 and m = 1, let M be a (connected) submanifoldof solutions that is solvable with respect to the parameters. If there exists anonzero L + L ∗ ∈ SYM(M ), then at Zariski-generic points p ∈ M , wehave L (p) ∉ F v (p) and there exist local coordinates centered at p in whichL = ∂ , L ∗ = ∂ , whence M has equation of the form∂y ∂b(8.46) y = b + Π(x, a),with Π in<strong>de</strong>pen<strong>de</strong>nt of b.The associated system (E M ) has then equations F α that are all in<strong>de</strong>pen<strong>de</strong>ntof y.8.47. Study of the <strong>Lie</strong> symmetries of (E 5 ). In Example 1.28, it is thusessentially no restriction to assume the hyper<strong>sur</strong>face M ⊂ C 3 to be rigid.Theorem 8.48. ([GM2003b, FK2005a, FK2005b]) The mo<strong>de</strong>l hyper<strong>sur</strong>faceM 0 of equation(8.49) w = ¯w + i 2 z1¯z 1 + z 1 z 1¯z 2 + ¯z 1¯z 1 z 21 − z 2¯z 2has transitive <strong>Lie</strong> symmetry algebra hol(M 0 ) isomorphic to so(3, 2) andis locally biholomorphic to a neighborhood of every geometrically smoothpoint of the tube(8.50) (Rew ′ ) 2 = (Rez ′ 1) 2 + (Rez ′ 1) 3over the standard cone of R 3 . Both are Levi-<strong>de</strong>generate with Levi form ofrank 1 at every point and are 2-non<strong>de</strong>generate. The associated PDE system(E M0 )(8.51) y x 2 = 1 4 (y x 1)2 , y x 1 x 1 x 1 = 0(plus other equations obtained by cross differentiation) has infinitesimal <strong>Lie</strong>symmetry algebra isomorphic to so(5, C), the complexification so(3, 2)⊗C.Through tentative issues ([Eb2006, GM2006]), it has been suspected thatM 0 is the right mo<strong>de</strong>l in the category of real analytic hyper<strong>sur</strong>faces M ⊂ C 3having Levi form of rank 1 that are 2-non<strong>de</strong>generate everywhere. Basedon the rigidity of the simple <strong>Lie</strong> algebra so(5, C) (Theorem 5.15), Theorem8.105 below will confirm this expectation.275


2768.52. Preparation. Thus, translating the consi<strong>de</strong>rations to the PDE language,with n = 2 and m = 1, consi<strong>de</strong>r a submanifold of solutions ofthe form(8.53)y = b + Π(x, a)= b + 2 x1 a 1 + x 1 x 1 a 2 + a 1 a 1 x 21 − x 2 a 2 + O 4 ,where O 4 is a function of (x, a) only. The term 2 x 1 a 1 corresponds to a Leviform of rank 1 at every point. The term x 1 x 1 a 2 guarantees solvabilitywith respect to the parameters (compare Definition 2.12). Let us <strong>de</strong>velope(8.54) Π(x, a) = ∑ ∑Π k1 ,k 2 ,l 1 ,l 2(x 1 ) k 1(x 2 ) k 2(a 1 ) l 1(a 2 ) l 2,k 1 ,k 2 0 l 1 ,l 2 0with Π k1 ,k 2 ,l 1 ,l 2∈ K. Of course, Π 1,0,1,0 = 2, Π 2,0,0,1 = 1 and Π 0,1,2,0 = 1.Lemma 8.55. A transformation belonging to G v,p in<strong>sur</strong>es(8.56)Π k1 ,k 2 ,0,0 = 0, k 1 + k 2 0, Π 0,0,l1 ,l 2= 0, l 1 + l 2 0,Π k1 ,k 2 ,1,0 = 0, k 1 + k 2 2, Π 1,0,l1 ,l 2= 0, l 1 + l 2 2,Π k1 ,k 2 ,2,0 = 0, k 1 + k 2 2, Π 2,0,l1 ,l 2= 0, l 1 + l 2 2.Proof. Lemma 7.11 achieves the first line. The monomial x 1 being factoredby [a 1 +O 2 (a)], we set a 1 := a 1 +O 2 (a) to achieve Π 1,0,l1 ,l 2= 0, l 1 +l 2 2.As in the proof of Lemma 7.18, we pass to the dual equation b = y −Π(x, a)to complete Π k1 ,k 2 ,1,0 = 0, k 1 + k 2 2. Finally, x 1 x 1 is factored by [a 2 +O 2 (a)], so we proceed similarly to achieve the third line.Since Π(x, a) is assumed to be in<strong>de</strong>pen<strong>de</strong>nt of b, the assumption that theLevi form of M ⊂ C 3 has exactly rank 1 at every point translates to:(8.57) 0 ≡∣ Π x 1 a 1 Π ∣x 1 a ∣∣∣ 2Π x 2 a 1 Π .x 2 a 2For later use, it is convenient to <strong>de</strong>velope somehow Π with respect to thepowers of (a 1 , a 2 ):(8.58)y = b + 2 x1 a 1 + x 1 x 1 a 2 + a 1 a 1 x 21 − x 2 a 2 ++ a 2 b(x) + a 1 a 2 d(x) + a 2 a 2 e(x) + a 1 a 1 a 1 f(x) + a 1 a 1 a 2 g(x)++ (a 1 ) 4 R + (a 1 ) 3 a 2 R + a 1 (a 2 ) 2 R + (a 2 ) 3 R,with R = R(x, a) being an unspecified remain<strong>de</strong>r. Thanks to the previouslemma, the coefficients a of a 1 and c of a 1 a 1 must vanish. The function b isan O 3 .


Lemma 8.59. The function b <strong>de</strong>pends only on x 1 , is an O 3 (x 1 ) and thefunction g satisfies g x 2 x2(0) = 0.Proof. Developing [1 −x 2 a 2 ] −1 = 1+x 2 a 2 +(x 2 a 2 ) 2 +O 3 (x 2 a 2 ), insertingthe right hand si<strong>de</strong> of(8.60)y − b = a 1[ 2x 1] + a 2[ x 1 x 1 + b(x) ] + a 1 a 1[ x 2] + a 1 a 2[ 2x 1 x 2 + d(x) ] +277+ a 2 a 2[ x 1 x 1 x 2 + e(x) ] + a 1 a 1 a 1[ f(x) ] + a 1 a 1 a 2[ x 2 x 2 + g(x) ] ++ (a 1 ) 4 R + (a 1 ) 3 a 2 R + a 1 (a 2 ) 2 R + (a 2 ) 3 Rin the <strong>de</strong>terminant (8.57) and selecting the coefficients of cst., of a 1 , of a 2and of a 1 a 1 , we get four PDEs:(8.61)0 = 2b x 2,0 = 2d x 2 − 2b x 1,0 = 4e x 2 − 2x 1 d x 2 − 2x 1 b x 1 − d x 2 b x 1,0 = 2g x 2 − 2d x 1 − [ 6x 1 + 3b x 1]fx 2.The first one yields b = b(x 1 ), which must be an O 3 (x 1 ), because thewhole remain<strong>de</strong>r is an O 4 . Differentiating the fourth with respect to x 2 , itthen follows that g x 2 x2(0) = 0.8.62. Associated PDE system (E 5 ). Next, differentiating (8.60) with respectto x 1 , to x 1 x 1 and to x 1 x 1 x 1 , we compute y x 1 and y x 1 x 1, we substitute y 1 andy 1,1 and we push the monomials a 2 a 2 , a 1 a 1 a 1 and a 1 a 1 a 2 in the remain<strong>de</strong>r:(8.63)y 1 = 2a 1 + a 2 [2x 1 + b x 1] + a 1 a 2 [2x 2 + d x 1] + (a 2 ) 2 R + (a 1 ) 3 R + (a 1 ) 2 a 2 R,y 1,1 = a 2 [2 + b x 1 x 1] + a1 a 2 [d x 1 x 1] + (a2 ) 2 R + (a 1 ) 3 R + (a 1 ) 2 a 2 R,y 1,1,1 = a 2 [b x 1 x 1 x 1] + a1 a 2 [d x 1 x 1 x 1] + (a2 ) 2 R + (a 1 ) 3 R + (a 1 ) 2 a 2 R.Here, the written remain<strong>de</strong>r cannot incorporate a 1 a 1 , so it is said that thecoefficient of a 1 a 1 does vanish in each equation above. Solving for a 1 anda 2 from the first two equations, we get(8.64)⎧a 1 = 1 [ 2x 1 ] [⎪⎨ 2 y + b1 − y x 1 2x 2 ]+ d1,1 − y 1 y x 11,1 +4 + 2b x 1 x 1 8 + 4b x 1 x 1+ (y 1,1 ) 2 R + (y 1 ) 3 R + (y 1 ) 2 y 1,1 R,[ ] [ ]⎪⎩ a 2 1d= y 1,1 − y 1 y x 1 x 11,1 + (y 1,1 ) 2 R + (y 1 ) 3 R + (y 1 ) 2 y 1,1 R.2 + b x 1 x 1 2(2 + b x 1 x 1)2


278We then get (notice the change of remain<strong>de</strong>r):(8.65)a 1 a 1 = 1 [ 2x4 (y 1) 2 1 ] [+ b− y 1 y x 12x1,1 − (y 1 ) 2 2 ]+ dy x 11,1 + (y 1 ) 3 R + (y 1,1 ) 2 R,4 + 2b x 1 x 1 8 + 4b x 1 x[ ] [ ]1a 1 a 2 1= y 1 y 1,1 − (y 1 ) 2 dy x 1 x 11,1 + (y 1 ) 3 R + (y 1,1 ) 2 R,4 + 2b x 1 x 1 (4 + 2b x 1 x 1)2a 2 a 2 = (y 1 ) 3 R + (y 1,1 ) 2 R,[ 6xa 1 a 1 a 1 = −(y 1 ) 2 1 ]+ 3by x 11,1 (y 1 ) 3 R + (y 1,1 ) 2 R,16 + 8b x 1 x[ ]1a 1 a 1 a 2 = (y 1 ) 2 1y 1,1 + (y 1 ) 3 R + (y 1,1 ) 2 R.8 + 4b x 1 x 1Differentiating (8.60) with respect to x 2 , substituting y 2 for y x 2 and replacingd x 2 by b x 1 thanks to (8.61) 2 , we get(8.66)y 2 = a 1 a 1 + a 1 a 2 [2x 1 + b x 1] + a 2 a 2 [x 1 x 1 + e x 2] + a 1 a 1 a 1 [f x 2] + a 1 a 1 a 2 [2x 2 + g x 2]++ (a 1 ) 4 R + (a 1 ) 3 a 2 R + a 1 (a 2 ) 2 R + (a 2 ) 3 R.Replacing the monomials (8.65), we finally obtain:(8.67)y 2 = 1 [ ]4 (y 1) 2 + (y 1 ) 2 2gx 2 − 2d x 1 − (6x 1 + 3b x 1)f x 2y 1,1 − (2x1 + b x 1)d x 1 x 1+16 + 8b x 1 x 1 (4 + 2b x 1 x 1)2+ (y 1 ) 3 R + (y 1,1 ) 2 R.Thanks to (8.61) 4 , the first (big) coefficient of (y 1 ) 2 y 1,1 is zero; then theremain<strong>de</strong>r coefficient is an O(x 1 ), hence vanishes at x = 0, together with itspartial first <strong>de</strong>rivative with respect to x 2 . Accordingly, by s ∗ = s ∗ (x 1 , x 2 ),we will <strong>de</strong>note an unspecified function satisfying(8.68) s ∗ (0) = 0 and s ∗ x 2(0) = 0 .Lemma 8.69. The skeleton of the PDE system (E 5 ) associated to the submanifold(8.58) possesses three main equations of the form(∆ ⎧ E5 )y 2 = 1 4 (y 1) 2 + (y 1 ) 3 r + (y 1 ) 4 r + (y 1 ) 5 r + (y 1 ) 6 R+⎪⎨+ y 1,1[(y1 ) 2 s ∗ + (y 1 ) 3 r + (y 1 ) 4 r + (y 1 ) 5 r ] + (y 1,1 ) 2 R,y 1,2 = 1 2 y 1y 1,1 + (y 1 ) 3 r + (y 1 ) 4 r + (y 1 ) 5 r + (y 1 ) 6 R+[+ y 1,1 (y1 ) 2 r + (y 1 ) 3 r + (y 1 ) 4 r + (y 1 ) 5 r ] + (y 1 ) 6 R,[y 1,1,1 = (y 1 ) 3 r + (y 1 ) 4 r + y 1,1 r + y1 r + (y 1 ) 2 r + (y 1 ) 3 r ] +⎪⎩+ (y 1,1 ) 2[ r + y 1 r + (y 1 ) 2 r + (y 1 ) 3 r ] + (y 1,1 ) 3 R,


where the letter r <strong>de</strong>notes an unspecified function of (x 1 , x 2 ), and where thecoefficient s ∗ of (y 1 ) 2 y 1,1 in the first equation satisfies (8.68).Proof. To get the second equation, we compute:279(8.70)y 1,2 = a 1 a 2 [2 + b x 1 x 1] + a1 a 1 a 2 [g x 1 x 2] + (a1 ) 3 R + (a 2 ) 2 R= 1 2 y 1y 1,1 + (y 1 ) 2 y 1,1 r + (y 1 ) 3 R + (y 1,1 ) 2 R.The third equation is got similarly from (8.63) 3 . To conclu<strong>de</strong>, we <strong>de</strong>velopethe first two equations mod [ (y 1 ) 6 , (y 1,1 ) 2] and the third onemod [ (y 1 ) 4 , (y 1,1 ) 3] .This precise skeleton will be referred to as ∆ E5 in the sequel. With theletter r, the computation ru<strong>les</strong> are cst.r = r + r = r + s ∗ = r · r = r;sometimes, s ∗ may be replaced plainly by r.8.71. Infinitesimal <strong>Lie</strong> symmetries of (E 5 ). Letting L = X 1 ∂X 2 ∂ + Y ∂ be a candidate infinitesimal <strong>Lie</strong> symmetry and applying∂x 2 ∂y(8.72)L (3) = X 1∂∂x + X 2 ∂1 ∂x + Y ∂2 ∂y + Y 1+ Y 1,1∂∂y 1,1+ Y 1,2∂∂y 1,2+ Y 2,1+ Y 1,1,1∂∂y 1,1,1+ · · · + Y 2,2,2∂+ Y 2∂y 1∂+ Y 2,2∂y 2,1∂∂y 2,2,2to the skeleton ∆ E5 , we obtain firstly, computing mod [ (y 1 ) 5 , y 1,1]:0 ≡ −Y 2 + 1 2 y 1 Y 1 +∂∂y 2+∂x 1 +∂∂y 2,2+(8.73)+ (y 1 ) 3 r X 1 + (y 1 ) 4 r X 1 + (y 1 ) 3 r X 2 + (y 1 ) 4 r X 2 ++ Y 1[(y1 ) 2 r + (y 1 ) 3 r + (y 1 ) 4 r ] ++ Y 1,1[(y1 ) 2 s ∗ + (y 1 ) 3 r + (y 1 ) 4 r ] ,secondly, computing mod [ (y 1 ) 5 , y 1,1]:0 ≡ −Y 1,2 + 1 2 y 1 Y 1,1 +(8.74)+ (y 1 ) 3 r X 1 + (y 1 ) 4 r X 1 + (y 1 ) 3 r X 2 + (y 1 ) 4 r X 2 ++ Y 1[(y1 ) 2 r + (y 1 ) 3 r + (y 1 ) 4 r ] ++ Y 1,1[(y1 ) 2 r + (y 1 ) 3 r + (y 1 ) 4 r ] ,


280and thirdly, computing mod [ (y 1 ) 3 , (y 1,1 ) 2] :(8.75)0 ≡ −Y 1,1,1 + y 1,1 X 1 + y 1,1 X 2 ++ y 1,1 y 1 X 1 + y 1,1 y 1 X 2 + y 1,1 (y 1 ) 2 X 1 + y 1,1 (y 1 ) 2 X 2 ++ Y 1[(y1 ) 2 r ] + Y 1,1[r + y1 r + (y 1 ) 2 r ] + y 1,1 Y 1[r + y1 r + (y 1 ) 2 r ] ++ y 1,1 Y 1,1[r + y1 r + (y 1 ) 2 r ] .Specializing to n = 2 the formulas (3.9)(II), (3.20)(II) and (3.24)(II), we getY 1 , Y 2 , Y 1,1 , Y 1,2 and Y 1,1,1 :(8.76)Y 1 = Y x 1 + [ ]Y y −X 1x 1 y1 + [ ]−X 2x 1 y2 + [ ]−Xy1 (y1 ) 2 + [ ]−Xy2 y1 y 2 .(8.77)Y 2 = Y x 2 + [ ]− Xx 1 2 y1 + [ ]Y y − Xx 2 2 y2 + [ ]−Xy1 y1 y 2 + [ ]−Xy2 y2 y 2 .(8.78) ⎧Y 1,1 = Y x 1 x 1⎪⎨+ [ ]2 Y x 1 y − X 1x 1 x 1 y1 + [ ]− X 2x 1 x 1 y2 + [ Y yy − 2 X 1x y] 1 (y1 ) 2 ++ [ ]− 2 X 2x 1 y y1 y 2 + [ ]− Xyy1 (y1 ) 3 + [ − Xyy] 2 (y1 ) 2 y 2 ++ [ ]Y y − 2 X 1x⎪⎩1 y1,1 + [ ]− 2 X 2x 1 y1,2 + [ ]− 3 Xy1 y1 y 1,1 ++ [ ]− Xy2 y2 y 1,1 + [ ]− 2 X 2 y1 y 1,2 .y(8.79) ⎧Y 1,2 = Y x 1 x 2 + [ ]Y x 2 y − X 1x 1 x 2 y1 + [ ]Y x 1 y − X 2x 1 x 2 y2 +⎪⎨+ [ ]− X 1x 2 y (y1 ) 2 + [ Y yy − X 2x 2 y − X ] 1x 1 y y1 y 2 + [ − X 2x y] 1 y2 y 2 ++ [ ]− Xyy1 (y1 ) 2 y 2 + [ − Xyy] 2 y1 (y 2 ) 2 ++ [ ]− X 1x⎪⎩2 y1,1 + [ Y y − X 2x − X ] 1 2 x 1 y1,2 + [ ]− X 2x 1 y2,2 ++ [ ]− 2 Xy1 y1 y 1,2 + [ ]− 2 Xy2 y2 y 1,2 .


(8.80) ⎧Y 1,1,1 = Y x 1 x 1 x 1 + [ ]3 Y x 1 x 1 y − X 1x 1 x 1 x 1 y1 + [ ]− X 2x 1 x 1 x 1 y2 ++ [ ]3 Y x 1 yy − 3 X 1x 1 x 1 y (y1 ) 2 + [ − 3 X 2x 1 x y] 1 y1 y 2 ++ [ ]Y yyy − 3 Xx 1 1 yy (y1 ) 3 + [ − 3 Xx yy] 2 1 (y1 ) 2 y 2 ++ [ ]− Xyyy1 (y1 ) 4 + [ − Xyyy] 2 (y1 ) 3 y 2 +⎪⎨ + [ ]3 Y x 1 y − 3 X 1x 1 x 1 y1,1 + [ ]− 3 X 2x 1 x 1 y1,2 ++ [ ]3 Y yy − 9 X 1x 1 y y1 y 1,1 + [ − 3 X 2x y] 1 y2 y 1,1 ++ [ ]− 6 X 2x 1 y y1 y 1,2 + [ ]− 6 Xyy1 (y1 ) 2 y 1,1 + [ − 3 Xyy] 2 y1 y 2 y 1,1 ++ [ ]− 3 Xyy2 (y1 ) 2 y 1,2 + [ ]− 3 Xy1 (y1,1 ) 2 + [ ]− 3 Xy2 y1,1 y 1,2 ++ [ ]Y y − 3 X 1x⎪⎩1 y1,1,1 + [ ]− 3 X 2x 1 y1,1,2 + [ ]− 4 Xy1 y1 y 1,1,1 ++ [ ]− Xy2 y2 y 1,1,1 + [ ]− 3 X 2 y1 y 1,1,2 .y281Inserting Y 2 , Y 1,2 , Y 1,1,1 , Y 1 , Y 1,1 in the three <strong>Lie</strong> equations (8.73), (8.74),(8.75), replacing y 2 , y 1,2 , y 1,1,1 by the values they have on ∆ E5 , we get firstlyfive linear PDEs by picking the coefficients of cst., of y 1 , of (y 1 ) 2 , of (y 1 ) 3 ,of (y 1 ) 4 in (8.73):(8.81) ⎧0 = Y x 2,⎪⎩0 = X 1x 2 + 1 2 Y x 1,⎪⎨ 0 = Y y + X 2x − 2 X 1 2 x + r Y 1 x 1 + s∗ Y x 1 x 1,0 = 2 Xy 1 + X 2x + r X 1 + r X 2 + r Y 1 x 1 + r Y y + r X 1x 1++ r Y x 1 x 1 + s∗ Y x 1 y + s ∗ X 1x 1 x 1,0 = Xy 2 + r X 1 + r X 2 + r Y x 1 + r Y y + r X 1x + r X 2 1 x + r X 1 1 y ++ r Y x 1 x 1 + r Y x 1 y + r X 1x 1 x 1 + s∗ X 2x 1 x 1 + s∗ Y yy + s ∗ X 1x 1 y ,secondly, we get three more linear PDEs by picking the coefficients of (y 1 ) 2 ,of (y 1 ) 3 , of (y 1 ) 4 in (8.74):(8.82) ⎧0 = 3 Y x 1 y + X 2x 1 x + 4 X 1 2 x 2 y − 2 X 1x 1 x + r X 1 + r X 2 + r Y 1 x 1 + r Y x 1 x 1,⎪⎨0 = 2 Y yy + 2 X 2x 2 y − 6 X 1x 1 y − X 2x 1 x + r X 1 + r X 2 + r Y 1 x 1 + r Y y + r X 1x 1++ r Y x 1 x 1 + r Y x 1 y + r X 1x 1 x 1,0 = 4 Xyy 1 + 3 X 2x 1 y + r X 1 + r X 2 + r Y x 1 + r Y y + r X 1x + r X 2 1 x + r X 1 1 y +⎪⎩+ r Y x 1 x 1 + r Y x 1 y + r X 1x 1 x 1 + r X 2x 1 x 1 + r Y yy + r X 1x 1 y .


282and thirdly, we get five more linear PDEs by picking the coefficients of cst.,of y 1 , of y 1,1 , of y 1 y 1,1 , of (y 1 ) 2 y 1,1 in (8.75)(8.83)⎧0 = Y x 1 x 1 x 1 + r Y x 1 x 1,⎪⎨⎪⎩0 = −3 Y x 1 x 1 y + X 1x 1 x 1 x + r Y 1 x 1 x 1 + r Y x 1 y + r X 1x 1 x 1,0 = Y x 1 y − Xx 1 1 x + r X 1 + r X 2 + r Y 1 x 1 + r Y y + r Xx 1 + r Y 1 x 1 x 10 = − 3 2 X 2x 1 x 1 + 3 Y yy − 9 X 1x 1 y + r X 1 + r X 2 + r X 1x 1 + r Y x 1 + r Y y++ r X 2x 1 + r X 1y + r Y x 1 x 1 + r Y x 1 y + r X 1x 1 x 1,0 = 6 X 1yy + 15 4 X 2x 1 y + r X 1 + r X 2 + r X 1x 1 + r Y x 1 + r Y y + r X 2x 1 + r X 1y + r X 2y ++ r Y x 1 x 1 + r Y x 1 y + r X 1x 1 x 1 + r X 2x 1 x 1 + r Y yy + r X 1x 1 y .Proposition 8.84. Setting as initial conditions the ten specific differentialcoefficients(8.85)P := P ( X 1 , X 2 , Y , Xy 1 , X 2x 2, Y x 1, Y y, X 2x 1 x 2, Y x 1 x 1, Y )yy= r X 1 + r X 2 + r Y + r Xy 1 + r X 2x + r Y 2 x 1 + r Y y + r X 2x 1 x + r Y 2 x 1 x 1 + r Y yy,it follows by cross differentiations and by linear substitutions from the<strong>Lie</strong> equations (8.81) i , i = 1, 2, 3, 4, 5, (8.82) j , j = 1, 2, 3, (8.83) i , i =1, 2, 3, 4, 5, that X 1x, X 2 1 x, Y 1 x 2, X 1x, X 2 2 y , X 1x 1 y , X 2x 2 x, Y 2 x 1 x 2, X 1x 2 y ,X 2x 2 y , Y x 1 y, Xyy, 1 Y x 2 y, X 2x 1 x 1 x, Y 2 x 1 x 1 x 1, X 2x 1 x 2 xY 2 x 1 x 1 x 2, X 2x 1 x 2 y , Y x 1 x 1 y,Y x 1 yy, Y x 2 yy, Y yyy are uniquely <strong>de</strong>termined as linear combinations of


(X 1 , X 2 , Y , Xy 1,X 2x, Y 2 x 1, Y y , X 2x 1 x, Y 1 x 1 x 1, Y yy), namely:⎧X 1x = 1 P, X 2 2 31 x = P, Y 1 x 2 = P,(8.86)⎪⎨⎪⎩X 1x = 4 P, X 2 52 y = P,X 1x 1 yX 1x 2 y6= P, X 2x 2 x 2 7 = P, Y x 1 x 2 8 = P,9= P, X 2 1011x 2 y = P, Y x 1 y = P,Xyy1 1213= P, Y x 2 y = P,X 2x 1 x 1 x 2 14= P, Y x 1 x 1 x 1 15= P,X 2x 1 x 2 x 2 16= P, Y x 1 x 1 x 2 17= P,X 2 1819x 1 x 2 y = P, Y x 1 x 1 y = P,Y x 1 yyY x 2 yy20= P,21= P,Y yyy22= P.Then the expressions P are stable un<strong>de</strong>r differentiation with respectto x 1 , to x 2 , to y and moreover, all other, higher or<strong>de</strong>rpartial <strong>de</strong>rivatives of X 1 , of X 2 , of Y may be expressed asP ( X 1 , X 2 , Y , Xy 1,X 2x, Y 2 x 1, Y y , X 2x 1 x, Y 2 x 1 x 1, Y yy).Corollary 8.87. Every infinitesimal <strong>Lie</strong> symmetry of the PDE system (E 5 ) isuniquely <strong>de</strong>termined by the ten initial Taylor coefficients(8.88)X 1 (0), X 2 (0), Y (0), Xy 1 (0), X 2x 2(0), Y x 1(0), Y y(0), X 2x 1 x 2(0), Y x 1 x 1(0), Y yy(0).Proof of the proposition. At first, (8.83) 1 yields (8.86) 15 ; (8.81) 1 yields(8.86) 3 ; differentiating (8.81) 1 with respect to x 1 yields (8.86) 8 ; differentiating(8.81) 1 with respect to y yields (8.86) 13 ; differentiating (8.81) 1 withrespect to x 1 x 1 yields (8.86) 17 ; and differentiating (8.81) 1 with respect to yyyields (8.86) 21 . Also, rewriting (8.81) 2 as(8.89) X 1x 2 = −1 2 Y x 1,we get (8.86) 4 ; and rewriting (8.81) 3 as(8.90) X 1x 1 = 1 2 X 2x 2 + 1 2 Y y + r Y x 1 + s ∗ Y x 1 x 1,we get (8.86) 1 .Next, differentiating (8.81) 2 with respect to x 1 and (8.81) 3 with respect tox 2 , we get, taking account of 0 = Y x 2 y = Y x 1 x 2 = Y x 1 x 1 x 2, replacing X x 1 x 2283


284by − 1 Y 2 x 1 2x1 and solving for Xx 2 x: 2(8.91)0 = X 1x 1 x 2 + 1 2 Y x 1 x 1,X 2x 2 x 2 = −(1 + s∗ x 2) Y x 1 x 1 + r Y x 1.This is (8.86) 7 . Differentiating (8.91) 2 with respect to x 1 , taking account of(8.83) 1 , we get (8.86) 16 :(8.92) X 2x 1 x 2 x 2 = r Y x 1 + r Y x 1 x 1.We then replace X 1x 1 from (8.90) in (8.81) 4 :(8.93)0 = X 2x 1 + 2 X 1y + r X 1 + r X 2 + r X 2x 2 + r Y x 1 + r Y y++ r Y x 1 x 1 + s∗ Y x 1 y + s ∗ X 1x 1 x 1.We differentiate this equation with respect to x 2 , knowing Y x 2 = 0:(8.94)0 = Xx 2 1 x + 2 X 1 2 x 2 y + r X 1 + r Xx 1 + r X 2 + r X 22 x + r X 2 2 x 2 x + r Y 2 x 1 + r Y y++ r Y x 1 x 1 + s∗ x 2 Y x 1 y + s ∗ x 2 X 1x 1 x 1 + s∗ X x 1 x 1 x 2.We replace: X 1xfrom (8.89); X 22 x 2 xfrom (8.91) 2 2 ; we differentiate (8.81) 2with respect to x 1 x 1 to replace X 1x 1 x 1 xby r Y 2 x 1 x 1, thanks to (8.83) 1; and wereorganize:(8.95)2 X 1x 2 y +s∗ x Y 2 x 1 y+s ∗ x X 1 2 x 1 x = −X 2 1 x 1 x 2+r X 1 +r X 2 +r X 2x 2+r Y x 1+r Y y+r Y x 1 x 1.We differentiate (8.81) 2 with respect to y and (8.81) 3 with respect to x 1 :(8.96)X 1x 2 y + 1 2 Y x 1 y = 0,Y x 1 y − 2 X 1x 1 x 1 = −X 2x 1 x 2 + r Y x 1 + r Y x 1 x 1.For the three unknowns X 1x 1 x, Y 1 x 1 y, X 1x 2 y, we solve the three equations(8.95), (8.96) 1 , (8.96) 2 , reminding s ∗ x(0) = 0: 2(8.97)X 1x 1 x = r X 1 + r X 2 + r X 21 x + r Y 2 x 1 + r Y y + r Y x 1 x 1 + r X 2x 1 x 2,Y x 1 y = r X 1 + r X 2 + r X 2x + r Y 2 x 1 + r Y y + r Y x 1 x 1 + r X 2x 1 x 2,X 1x 2 y = r X 1 + r X 2 + r X 2x 2 + r Y x 1 + r Y y + r Y x 1 x 1 + r X 2x 1 x 2.We get (8.86) 11 and (8.86) 9 .Thus, we may replace X 1x 1 x 1 and Y x 1 y in (8.81) 4 to get (8.86) 2 :(8.98)X 2x 1 = −2 X 1y + r X 1 + r X 2 + r X 2x 2 + r Y x 1 + r Y y + r Y x 1 x 1 + r X 2x 1 x 2.Next, we differentiate (8.83) 3 with respect to x 1 and we replace: X 1xfrom 1(8.90); X 2xfrom (8.98); Y 1 x 1 y from (8.97) 2 ; X 1x 1 xfrom (8.97) 1 1 ; Y x 1 x 1 x 1from (8.83) 1 ; and we compare with (8.83) 2 ; we differentiate (8.96) 1 with


espect to x 1 and (8.96) 2 with respect to x 1 ; solving, we obtain four newrelations:(8.99)X 1x 1 x 1 x = r X 1 + r X 2 + r X 21 x + r Y 2 x 1 + r Y y + r Y x 1 x 1 + r X 2x 1 x 2,Y x 1 x 1 y = r X 1 + r X 2 + r X 2x + r Y 2 x 1 + r Y y + r Y x 1 x 1 + r X 2x 1 x 2,X 2x 1 x 2 y = r X 1 + r X 2 + r X 2x + r Y 2 x 1 + r Y y + r Y x 1 x 1 + r X 2x 1 x 2,X 2x 1 x 1 x = r X 1 + r X 2 + r X 22 x + r Y 2 x 1 + r Y y + r Y x 1 x 1 + r X 2x 1 x 2.We get (8.86) 19 and (8.86) 14 .Next, in (8.81) 5 , we replace: X 1xfrom (8.90); X 21 xfrom (8.98); Y 1 x 1 yfrom (8.97) 2 ; we get:(8.100)Xy 2 = r X 1 + r X 2 + r Xy 1 + r X 2x + r Y 2 x 1 + r Y y + r Y x 1 x 1++ s ∗ X 2x 1 x + 1 s∗ Y yy + s ∗ X 1x 1 y .We differentiate (8.98) with respect to x 1 and we replace: X 1xfrom (8.90);1X 2xfrom (8.98); Y 1 x 1 y from (8.97) 2 ; Y x 1 x 1 x 1 from (8.83) 1; X 2x 1 x 1 xfrom 2(8.99) 4 ; we get:(8.101)X 2x 1 x 1+2 X 1x 1 y = r X 1 +r X 2 +r Xy 1 +r X 2x 2+r Y x 1+r Y y+r Y x 1 x 1+r X 2x 1 x 2.In (8.82) 2 , we replace: X 1xfrom (8.90); X 11 x 1 xfrom (8.97) 1 1 ; Y x 1 y from(8.97) 2 ; and we reorganize:(8.102)2 Xx 2 2 y −6 X x 1 1 y −X x 2 1 x = −2 Y yy+r X 1 +r X 2 +r X 21 x 2+r Y x 1+r Y y+r Y x 1 x 1+r X x 2 1 x 2.Differentiating (8.81) 3 with respect to y, we replace: Y x 1 y from (8.97) 2 ;Y x 1 x 1 y from (8.99) 2 ; and we reorganize:(8.103)X 2x 2 y −2 X 1x 1 y = −Y yy+r X 1 +r X 2 +r X 2x 2+r Y x 1+r Y y+r Y x 1 x 1+r X 2x 1 x 2.For the three unknowns X 2x 1 x, X 1 1 x 1 y , X 2x 2 y, we then solve the four equations(8.101), (8.102), (8.103), (8.83) 4 (in which we replace: X 1xfrom (8.90);1X 2xfrom (8.98); Y 1 x 1 y from (8.97) 2 ; X 1x 1 xfrom (8.97) 1 1 ):(8.104)X 2x 1 x = r X 1 + r X 2 + r X 11 y + r X 2x + r Y 2 x 1 + r Y y + r Y x 1 x 1 + r X 2x 1 x + r Y yy, 2X 1x 1 y = r X 1 + r X 2 + r Xy 1 + r X 2x + r Y 2 x 1 + r Y y + r Y x 1 x 1 + r X 2x 1 x + r Y yy, 2X 2x 2 y = r X 1 + r X 2 + r Xy 1 + r X 2x + r Y 2 x 1 + r Y y + r Y x 1 x 1 + r X 2x 1 x + r Y yy. 2We get (8.86) 6 and (8.86) 10 . Replacing then X 2x 1 x, X 1 1 x 1 yin (8.100) gives(8.105)Xy 2 = r X 1 +r X 2 +r Xy 1 +r X 2x 2+r Y x 1+r Y y+r Y x 1 x 1+r X 2x 1 x 2+r Y yy.This is (8.86) 5 .285


286Next, we differentiate (8.103) with respect to x 1 and we replace: X 1x 1from (8.90); X 2xfrom (8.98); Y 1 x 1 y from (8.97) 2 ; Y x 1 x 1 x 1 from (8.83) 1;X 2x 1 x 1 xfrom (8.99) 2 4 ; we get:(8.106)Y x 1 yy+X 2x 1 x 2 y −2 X 1x 1 x 1 y = r X 1 +r X 2 +r X 2x 2+r Y x 1+r Y y+r Y x 1 x 1+r X 2x 1 x 2.Also, we differentiate (8.83) 3 with respect to y and we replace: Xy 2 from(8.105); Y x 1 y from (8.97) 2 ; X 1x 1 y from (8.104) 2; Y x 1 x 1 y from (8.99) 2 ; weget:(8.107)Y x 1 yy−X 1x 1 x 1 y = r X 1 +r X 2 +r Xy 1 +r X 2x 2+r Y x 1+r Y y+r Y x 1 x 1+r X 2x 1 x 2+r Y yy.Also, we replace in (8.82) 3 : X 1xfrom (8.90); X 21 xfrom (8.98); Y 1 x 1 y from(8.97) 2 ; X 1x 1 xfrom (8.97) 1 1 ; X 2x 1 xfrom (8.104) 1 1 ; X 1x 1 y from (8.104) 2; weget:(8.108)4 Xyy 1 +3 X 2x 1 y = r X 1 +r X 2 +r Xy 1 +r X 2x 2+r Y x 1+r Y y+r Y x 1 x 1+r X 2x 1 x 2+r Y yy.We differentiate this equation with respect to x 2 and we replace: 4 X 1x 2 yyby −2 Y x 1 yy from (8.89); X 1xfrom (8.98); X 12 x 2 y from (8.97) 3; (notice 0 =Y x 1 x 2 = Y x 2 y); X 2x 2 xfrom (8.91) 2 2 ; X 2x 1 x 2 xfrom (8.92); we get:2(8.109)−2 Y x 1 yy+3 X 2x 1 x 2 y = r X 1 +r X 2 +r Xy 1 +r X 2x 2+r Y x 1+r Y y+r Y x 1 x 1+r X 2x 1 x 2+r Y yy.For the three unknowns X 1x 1 x 1 y , Y x 1 yy, X 2x 1 x 2 y, we solve the three equations(8.106), (8.107), (8.108); we get:(8.110)X 1x 1 x 1 y = r X 1 + r X 2 + r Xy 1 + r X 2x + r Y 2 x 1 + r Y y + r Y x 1 x 1 + r X 2x 1 x + r Y yy, 2Y x 1 yy = r X 1 + r X 2 + r Xy 1 + r X 2x + r Y 2 x 1 + r Y y + r Y x 1 x 1 + r X 2x 1 x + r Y yy, 2X 2x 1 x 2 y = r X 1 + r X 2 + r Xy 1 + r X 2x + r Y 2 x 1 + r Y y + r Y x 1 x 1 + r X 2x 1 x + r Y yy. 2We get (8.86) 20 and (8.86) 18 .Next, in (8.93), we replace: Y x 1 y from (8.97) 2 ; X 1x 1 xfrom (8.97) 1 1 ; weget:(8.111)X 2x + 2 X 1 1 y = r X 1 + r X 2 + r X 2x + r Y 2 x 1 + r Y y + r Y x 1 x 1 + r X 2x 1 x 2.We differentiate this equation with respect to y and we replace: Xy 2 from(8.105); X 2x 2 y from (8.104) 3; Y x 1 y from (8.97) 2 ; Y x 1 x 1 y from (8.99) 2 ; X 2x 1 x 2 yfrom (8.99) 3 ; we get:(8.112)X 2x 1 y +2 X yy 1 = r X 1 +r X 2 +r Xy 1 +r X 2x 2+r Y x 1+r Y y+r Y x 1 x 1+r X 2x 1 x 2+r Y yy.


For the two unknowns Xyy 1 and X 2x 1 y, we solve the two equations (8.108)and (8.112); we get:(8.113)Xyy 1 = r X 1 + r X 2 + r Xy 1 + r X 2x + r Y 2 x 1 + r Y y + r Y x 1 x 1 + r X 2x 1 x + r Y yy, 2X 2x 1 y = r X 1 + r X 2 + r Xy 1 + r X 2x + r Y 2 x 1 + r Y y + r Y x 1 x 1 + r X 2x 1 x + r Y yy. 2287We get (8.86) 12 .Next, we differentiate (8.113) 1 with respect to x 1 and we replace: X 1x, 1X 2x, X 1 1 x 1 y , Y x 1 y, Y x 1 x 1 x 1, X 2x 1 x 1 x, Y 2 x 1 yy; we get:(8.114)X 1x 1 yy = r X 1 +r X 2 +r Xy 1 +r X 2x 2+r Y x 1+r Y y+r Y x 1 x 1+r X 2x 1 x 2+r Y yy.Also, we differentiate (8.113) 2 with respect to x 1 and we replace:(8.115)X 2x 1 x 1 y = r X 1 +r X 2 +r Xy 1 +r X 2x 2+r Y x 1+r Y y+r Y x 1 x 1+r X 2x 1 x 2+r Y yy.Also, we differentiate (8.83) 4 with respect to y; we replace X 1x 1 yy from(8.114), we replace X 2x 1 x 1 yfrom (8.115); and we achieve other evi<strong>de</strong>nt replacements;we get:(8.116)Y yyy = r X 1 +r X 2 +r Xy 1 +r X 2x 2+r Y x 1+r Y y+r Y x 1 x 1+r X 2x 1 x 2+r Y yy.This is (8.96) 22 , which completes the proof.Theorem 8.117. The bound dimSYM(E 5 ) 10 is attained if and only if(E 5 ) is equivalent, through a diffeomorphism (x 1 , x 2 , y) ↦−→ (X 1 , X 2 , Y ),to the mo<strong>de</strong>l system(8.118) Y X 2 = 0, Y X 1 X 1 X 1 = 0.Proof. Firstly, setting r = s ∗ = 0 everywhere, the solution to (8.81), (8.82),(8.83) is(8.119)X 1 = k + (c + j) x 1 − bx 2 − h y + e x 1 x 1 − d x 1 x 2 + f x 1 y − e x 2 y,X 2 = g + 2h x 1 + 2j x 2 − d x 2 x 2 + 2e x 1 x 2 − f x 1 x 1 ,Y = a + 2bx 1 + 2c y + d x 1 x 1 + 2e x 1 y + f yy,


288where a, b, c, d, e, f, g, h, j, k ∈ K are arbitrary. Computing the third prolongationsof the ten vector fields(8.120)∂∂x 1,∂ ∂∂x 2, ∂y ,− x 2 ∂∂x 1 + ∂ 2x1 ∂y , ∂x1− x 1 x 2 ∂∂x 1 − x2 x 2x 1 y ∂∂x 1 − x1 x 1 ∂∂x 2 + yy ∂ ∂y∂x 1 + 2y ∂ ∂y , ∂x1∂x 1 + 2x2∂∂x 2 + x1 x 1 ∂ ∂y ,∂∂x 2,−y ∂∂x 1 + ∂2x1 ∂x 2,(x1 x 1 − x 2 y) ∂∂x 1 + 2x1 x 2 ∂∂x 2 + 2x1 y ∂ ∂y ,one verifies that they all are tangent to the skeleton y 2 = 1 4 (y 1) 2 , y 1,1,1 = 0.Thus the bound is attained. One then verifies ([FK2005a]) that the spanned<strong>Lie</strong> algebra is isomorphic to so(5, C).Lemma 8.121. Assuming the normalizations of Lemma 8.54, the remain<strong>de</strong>rO 4 in (8.53) is an O 3 (x 1 , a 1 ):(8.122)y = b+ 2 x1 a 1 + x 1 x 1 a 2 + a 1 a 1 x 21 − x 2 a 2 +(x 1 ) 3 R+(x 1 ) 2 a 1 R+x 1 (a 1 ) 2 R+(a 1 ) 3 R.Proof. In<strong>de</strong>ed, writing(8.123)y = b + x 1 Λ 1,0 + a 1 Λ 0,1 + x 1 x 1 Λ 2,0 + x 1 a 1 Λ 1,1 + a 1 a 1 Λ 0,2 + O 3 (x 1 , a 1 ),with Λ i,j = Λ i,j (x 2 , a 2 ), and <strong>de</strong>veloping the <strong>de</strong>terminant (8.54) with respectto the powers of (x 1 , a 1 ), the vanishing of the coefficients of cst., of x 1 , ofa 1 yields the system(8.124)⎧⎪⎨⎪⎩0 ≡ Λ 1,0a 2 Λ 0,1x 2 ,0 ≡ Λ 1,1 Λ 1,0x 2 a 2 − 2 Λ 2,0a 2 Λ 0,1x 2 − Λ 1,1x 2 Λ 1,0a 2 ,0 ≡ Λ 1,1 Λ 0,1x 2 a 2 − Λ 1,1a 2 Λ 0,1x 2 − 2 Λ 0,2x 2 Λ 1,0a 2 .If the first equation yields Λ 1,0a≡ 0, replacing in the second, using Λ 2,0 =2a 2 +O 2 , we <strong>de</strong>duce that Λ 0,1x≡ 0 also. Similarly, Λ 0,12 x≡ 0 implies Λ 1,02 a≡ 0. 2Since the coordinate system satisfies the normalization Π(0, a) ≡ Π(x, 0) ≡0, necessarily Λ 1,0 = O(a 2 ) and Λ 0,1 = O(x 2 ). We <strong>de</strong>duce:(8.125) 0 ≡ Λ 1,0 ≡ Λ 0,1 .


Re<strong>de</strong>veloping the <strong>de</strong>terminant, the vanishing of the coefficients of x 1 x 1 , ofx 1 a 1 , of a 1 a 1 yields the system⎧0 ≡ Λ ⎪⎨1,1 Λ 2,0x 2 a− 2 Λ 2,02 aΛ 1,12 x, 2(8.126) 0 ≡ Λ 1,1 Λ 1,1x⎪⎩2 a− Λ 1,12 aΛ 1,12 x− 4 Λ 2,02 aΛ 0,22 x, 20 ≡ Λ 1,1 Λ 0,2x 2 a− 2 Λ 0,22 xΛ 1,12 a. 2Since Λ 1,1 (0) = 2 ≠ 0, we may divi<strong>de</strong> by Λ 1,1 , obtaining a PDE system withthe three functions Λ 2,0x 2 a, Λ 1,12 x 2 a, Λ 0,22 x 2 ain the left hand si<strong>de</strong>. We observe that2the normalizations of Lemma 8.55 entail(8.127)Λ 2,0 = a 2 +O(x 2 a 2 ), Λ 1,1 = 2+O(x 2 a 2 ), Λ 0,2 = x 2 +O(x 2 a 2 ).By cross differentiations in the mentioned PDE system, it follows that all theTaylor coefficients of Λ 2,0 , Λ 1,1 , Λ 0,2 are uniquely <strong>de</strong>termined. As alreadydiscovered in [GM2003b], the unique solution(8.128) Λ 2,0 a 22x 2=1 − x 2 a 2, Λ1,1 =1 − x 2 a 2, Λ0,2 =1 − x 2 a 2,guarantees, when the remain<strong>de</strong>r O 3 (x 1 , a 1 ) vanishes, that the <strong>de</strong>terminant(8.45) in<strong>de</strong>ed vanishes i<strong>de</strong>ntically.Conversely, suppose that dim SYM(E 5 ) = 10 is maximal.With ε ≠ 0 small, replacing (x 1 , x 2 , y, a 1 , a 2 , b) by(εx 1 , x 2 , ε 2 y, εa 1 , a 2 , εεb) in (8.122) and dividing by εε, the remain<strong>de</strong>rterms become small:(8.129) y = b + 2 x1 a 1 + x 1 x 1 a 2 + a 1 a 1 x 21 − x 2 a 2 + O(ε).Then all the remain<strong>de</strong>rs in the equations ∆ E5 of the skeleton are O(ε). Weget ten generators similar to (8.120), plus an O(ε) perturbation. Thanks tothe rigidity of so(5, C), Theorem 5.15 provi<strong>de</strong>s a change of generators, closeto the 10×10 i<strong>de</strong>ntity matrix, leading to the same structure constants as thoseof the ten vector fields (8.120). As in the end of the proof of Theorem 5.13,we may then straighten some relevant vector fields (exercise) and finallycheck that their tangency to the skeleton implies that it is the mo<strong>de</strong>l one.Theorem 8.117 is proved.Corollary 8.130. Let M ⊂ C 3 be a connected real analytic hyper<strong>sur</strong>facewhose Levi form has uniform rank 1 that is 2-non<strong>de</strong>generate at every point.Then(8.131) dimhol(M) 10,and the bound is attained if and only if M is locally, in a neighborhood ofZariski-generic points, biholomorphic to the mo<strong>de</strong>l M 0 .289


290§9. DUAL SYSTEM OF PARTIAL DIFFERENTIAL EQUATIONS9.1. Solvability with respect to the variab<strong>les</strong>. Let M be as in §2.10 <strong>de</strong>finedby y = Π(x, a, b) or dually by b = Π ∗ (a, x, y).Definition 9.2. M is solvable with respect to the variab<strong>les</strong> if there exist aninteger κ ∗ 1 and multiindices δ(1), . . .,δ(n) ∈ N p with |δ(l)| 1 for l =1, . . ., n and max 1ln |δ(l)| = κ ∗ , together with integers j(1), . . .,j(n)with 1 j(l) m such that the local K-analytic map(9.3) ( (ΠK n+m ∋ (x, y) ↦−→ ∗j (0, x, y) ) ( ) )1jm, Π ∗ j(l)(0, x, y) ∈ K m+na δ(l) 1lnis of rank equal to n + m at (x, y) = (0, 0)If M is a complexified generic submanifold, solvability with respect tothe parameters is equivalent to solvability with respect to the variab<strong>les</strong>, becauseΠ ∗ = Π. This is untrue in general: with n = 2, m = 1, consi<strong>de</strong>r thesystem y x 2 = 0, y x 1 x 1 = 0, whose general solutions is y(x) = b + x 1a withx 2 absent.To characterize generally such a <strong>de</strong>generation property, we <strong>de</strong>velope both(9.4)y j = Π j (x, a, b) = ∑ x β Π j β(a, b) andβ∈N nb j = Π ∗j (a, x, y) = ∑ a δ Π ∗j δ(x, y),δ∈N pwith analytic functions Π j β (a, b), Π∗ jδ (x, y) and we introduce two K∞ -valuedmaps(9.5)Q ∞ :Q ∗ ∞ :(a, b) ↦−→ ( Π j β (a, b)) 1jmβ∈N n(x, y) ↦−→ (Π ∗j δ (x, y)) 1jmδ∈N p .Since b ↦→ ( Π j 0(0, b) ) 1jmand y ↦→(Π∗j0(0, y) ) 1jmare already both ofrank m at the origin, the generic ranks of these two maps, <strong>de</strong>fined by testingthe nonvanishing of minors of their infinite Jacobian matrices, satisfy(9.6)genrkQ ∞ = m + p MgenrkQ ∗ ∞ = m + n Mfor some two integers 0 p M p and 0 n M n. So at a Zariski-genericpoint, the ranks are equal to m + p M and to m + n M .Proposition 9.7. There exists a local proper K-analytic subset Σ M of K n x ×K m y × K p a × K m b whose equations, of the specific form{}(9.8) Σ M = r ν (a, b) = 0, ν ∈ N, rµ(x, ∗ y) = 0 µ ∈ N ,andand


291are obtained by equating to zero all (m+p M )×(m+p M ) minors of Jac Q ∞and all (m + n M ) × (m + n M ) minors of Jac Q∞ ∗ , such that for everypoint p = (x p , y p , a p , b p ) ∉ Σ M , there exists a local change of coordinatesrespecting the separation of the variab<strong>les</strong> (x, y) and (a, b)(9.9) (x, y, a, b) ↦→ ( ϕ(x, y), h(a, b) ) =: (x ′ , y ′ , a ′ , b ′ )by which M is transformed to a submanifold M ′ centered and localized atp ′ = p having equations(9.10) y ′ = Π ′ (x ′ , a ′ , b ′ ) and dually b ′ = Π ′∗ (a ′ , x ′ , y ′ )with Π ′ and Π ′∗ in<strong>de</strong>pen<strong>de</strong>nt of((9.11) x′nM +1 , . . ., n)x′and of(a′pM +1 , . . ) .,a′ p .So M ′ , may be consi<strong>de</strong>red to be living in K n Mx ′ × K m y ′ × Kp Ma ′ × K m b ′ andin such a smaller space, at p ′ = p, it is solvable both with respect to theparameters and to the variab<strong>les</strong>.Interpretation: by forgetting some innocuous variab<strong>les</strong>, at a Zariskigenericpoint, any M is both solvable with respect to the parameters andto the variab<strong>les</strong>. These two assumptions will be held up to the end of thisPart I.9.12. Dual system (E ∗ ) and isomorphisms SYM(E ) ≃SYM ( V S (E ) ) = SYM ( V S (E ∗ ) ) ≃ SYM(E ∗ ). To a system(E ), we associate its submanifold of solutions M := V S (E ). Assumingit to be solvable with respect to the variab<strong>les</strong> and proceeding as in §2.10,we can <strong>de</strong>rive a dual system of completely integrable partial differentialequations of the form((E ∗ ) b j a γ(a) = Gj γ a, b(a), ( b j(l) (a) ) ),a δ(l) 1lnwhere (j, γ) ≠ (j, 0) and ≠ (j(l), δ(l)). Its submanifold of solutionsV S (E ∗ ) ≡ V S (E ) has equations dual to those of V S (E ).Theorem 9.13. Un<strong>de</strong>r the assumption of twin solvability, we have:(9.14) SYM(E ) ≃ SYM ( V S (E ) ) = SYM ( V S (E ∗ ) ) ≃ SYM(E ∗ ),through L ←→ L + L ∗ = L ∗ + L ←→ L ∗ .§10. FUNDAMENTAL PAIR OF FOLIATIONS AND COVERING PROPERTY10.1. Fundamental pair of foliations on M . As in §2, let (E ) and M =V S (E ) be <strong>de</strong>fined by y = Π(x, a, b) or dually by b = Π ∗ (a, x, y). Abbreviate(10.2) z := (x, y) and c := (a, b).


292Every transformation (z, c) ↦→ ( ϕ(z), h(c) ) belonging to G v,p stabilizes both{z = cst.} and {c = cst.}. Accordingly, the two foliations of M(10.3) F v := ⋃ M ∩ { }c = c 0 and F p := ⋃ M ∩ { }z = z 0c 0 z 0are invariant un<strong>de</strong>r changes of coordinates. We call (F v , F p ) the fundamentalpair of foliations on M . The leaves of the foliation by variab<strong>les</strong> F v are n-dimensional:(10.4) F v (c 0 ) = { (z, c 0 ) : y = Π(x, c 0 ) }The leaves of the foliation by parameters F p are p-dimensional:(10.5) F p (c 0 ) = { (z 0 , c) : b = Π ∗ (a, z 0 ) }We draw a diagram. In it, the positive codimension is invisible:(10.6) m = dimM − dimF v − dim F p 1cL ∗ 0F vF pzLMM10.7. Chains Γ k and dual chains Γ ∗ k . Similarly as in [GM2004, Me2005a,Me2005b, MP2005] (in a CR context), we introduce two collections(L k ) 1kn and (L ∗ q ) 1qp of vector fields whose integral manifolds coinci<strong>de</strong>with the leaves of F v and of F p :(10.8)⎧⎪⎨⎪⎩L k := ∂∂x k+m∑j=1L ∗ q := ∂∂a q + m∑j=1∂Π j∂x k(x, a, b) ∂∂y j ,k = 1, . . .,n,∂Π ∗j ∂(a, x, y) , q = 1, . . ., p.∂aq ∂bj


Let (z 0 , c 0 ) = (x 0 , y 0 , a 0 , b 0 ) ∈ M be a fixed point, let x 1 := (x 1 1, . . ., x n 1) ∈K n and <strong>de</strong>fine the multiple flow map(10.9) {Lx1 (x 0 , y 0 , a 0 , b 0 ) := exp(x 1 L)(p 0 ) := exp ( x n 1 L n(· · ·(exp(x11 L 1 (z 0 , c 0 ))) · · ·) ):= ( x 0 + x 1 , Π(x 0 + x 1 , a 0 , b 0 ), a 0 , b 0).Similarly, for a 1 = (a 1 1, . . ., a p 1) ∈ K p , <strong>de</strong>fine the multiple flow map(10.10) L ∗ a 1(x 0 , y 0 , a 0 , b 0 ) := ( x 0 , y 0 , a 0 + a 1 , Π ∗ (a 0 + a 1 , x 0 , y 0 ) ) .Starting from the (z 0 , c 0 ) = (0, 0) and moving alternately along F v , F p , F v ,etc., we obtain⎧Γ 1 (x 1 ) := L x1 (0),⎪⎨ Γ 2 (x 1 , a 1 ) := L ∗ a(10.11)1(L x1 (0)),Γ 3 (x 1 , a 1 , x 2 ) := L x2 (L⎪⎩∗ a 1(L x1 (0))),Γ 4 (x 1 , a 1 , x 2 , a 2 ) := L ∗ a 2(L x2 (L ∗ a 1(L x1 (0)))),and so on. Generally, we get chains Γ k := Γ k ([xa] k ), where [xa] k :=(x 1 , a 1 , x 2 , a 2 , . . .) with exactly k terms, where each x l ∈ K n and eacha l ∈ K p .If, instead, the first movement consists in moving along F p , we start withΓ ∗ 1 (a 1) := L ∗ a 1(0), Γ ∗ 2 (a 1, x 1 ) := L x1 (L ∗ a 1(0)), etc., and generally we get dualchains Γ ∗ k ([ax] k), where [ax] k := (a 1 , x 1 , a 2 , x 2 , . . .), with exactly k terms.Both Γ k and Γ ∗ k have range in M .For k = 1, 2, 3, · · · , integers e k and e ∗ k are <strong>de</strong>fined inductively by{e1 + e 2 + e 3 + · · · + e k = genrk K (Γ k ),(10.12)e ∗ 1 + e∗ 2 + e∗ 3 + · · · + e∗ k = genrk K(Γ ∗ k ).By (10.9) and (10.10), it is clear that e 1 = n, e 2 = p, e ∗ 1 = p, and e∗ 2 = n.Example 10.13. For y xx = 0, the submanifold of solutions M is simplyy = b + xa, whence⎧⎪⎨Γ 1 (x 1 ) = (x 1 , 0, 0, 0),(10.14)Γ 2 (x 1 , a 1 ) = (x 1 , 0, a 1 , −x 1 a 1 ),⎪⎩Γ 3 (x 1 , a 1 , x 2 ) = (x 1 + x 2 , x 2 a 1 , a 1 , −x 1 a 1 ).The rank at (0, 0, 0) of Γ 3 is equal to two, not more. However, its genericrank is equal to three. Similar observations hold for the two submanifoldsof solutions y = b + xxa + xaa and y = b + xa 1 + xxa 2 (in K 5 ).Lemma 10.15. If genrk K (Γ k+1 ) = genrk K (Γ k ), then for each positive integerl 1, we have genrk K (Γ k+l ) = genrk K (Γ k ). The same stabilizationproperty holds for Γ ∗ k .293


29410.16. Covering property. We now formulate a central concept.Definition 10.17. The pair of foliations (F v , F p ) is covering at the originif there exists an integer k such that the generic rank of Γ k is (maximalpossible) equal to dim K M . Since for a 1 = 0, the dual (k + 1)-th chainΓ ∗ k+1 i<strong>de</strong>ntifies with the k-th chain Γ k, the same property holds for the dualchains.Example 10.18. With n = 1, m = 2 and p = 1 the submanifold <strong>de</strong>fined byy 1 = b 1 and y 2 = b 2 + xa is twin solvable, but its pair of foliations is notcovering at the origin. Then SYM(M ) is infinite-dimensional, since fora = a(y 1 ) an arbitrary function, it contains a(y 1 ) ∂ + a(b 1 ) ∂ .∂y 1 ∂b 1Because we aim only to study finite-dimensional <strong>Lie</strong> symmetry groups ofpartial differential equations, in the remain<strong>de</strong>r of this Part I, we will constantlyassume the covering property to hold.By Lemma 10.15, there exist two well <strong>de</strong>fined integers µ and µ ∗ suchthat e 3 , e 4 , . . .,e µ+1 > 0, but e µ+l = 0 for all l 2 and similarly,e ∗ 3 , e∗ 4 , . . .,e∗ µ ∗ +1 > 0, but e∗ µ ∗ +l = 0 for all l 2. Since the pair of foliationsis covering, we have the two dimension equalities{ n + p + e3 + · · · + e µ+1 = dim K M = n + m + p,(10.19)p + n + e ∗ 3 + · · · + e∗ µ ∗ +1 = dim K M = n + m + p.By <strong>de</strong>finition, the ranges of Γ µ+1 and of Γ ∗ µ ∗ +1 cover (at least; more is true,see: Theorem 10.28) an open subset of M . Also, it is elementary to verifythe four inequalitiesµ 1 + m, µ ∗ 1 + m,(10.20)µ µ ∗ + 1, µ ∗ µ + 1.In fact, since Γ k+1 with x 1 = 0 i<strong>de</strong>ntifies with Γ ∗ k , the second line follows.Definition 10.21. The type of the covering pair of foliations (F v , F p ) is thepair of integers(10.22) (µ, µ ∗ ), with max(µ, µ ∗ ) 1 + m.Example 10.23. (Continued) We write down the explicit expressions of Γ 4and of Γ 5 :(10.24)⎧⎪⎨Γ 4 (x 1 , a 1 , x 2 , a 2 ; 0) = ( x 1 + x 2 , x 2 a 1 , a 1 + a 2 , −x 1 a 1 − x 1 a 2 − x 2 a 2 , ) ,Γ 5 (x 1 , a 1 , x 2 , a 2 , x 3 ; 0) = ( x 1 + x 2 + x 3 , x 2 a 1 + x 3 a 1 + x 3 a 2 , a 1 + a 2⎪⎩)− x 1 a 1 − x 1 a 2 − x 2 a 2 .Here, dimM = 3. By computing its Jacobian matrix, Γ 5 is of rank 3 atevery point (x 1 , a 1 , 0, −a 1 , −x 1 ) ∈ K 5 with a 1 ≠ 0. Since (obviously)(10.25) Γ 5(x1 , a 1 , 0, −a 1 , −x 1)= 0 ∈ M,


we <strong>de</strong>duce that Γ 5 is submersive (“covering”) from a small neighborhood of(x1 , a 1 , 0, −a 1 , −x 1)in K 5 onto a neighborhood of the origin in M .10.26. Covering a neighborhood of the origin in( M . For (z 0 , c 0 ) ∈ Mfixed and close to the origin, we <strong>de</strong>note by Γ k [xa]k ; (z 0 , c 0 ) ) and byΓk( ∗ [ax]k ; (z 0 , c 0 ) ) the (dual) chains issued from (z 0 , c 0 ). For given parameters[xa] k = (x 1 , a 1 , x 2 , . . .), we <strong>de</strong>note by [−xa] k the collection(· · · , −x 2 , −a 1 , −x 2 ) with minus signs and reverse or<strong>de</strong>r; similarly, we introduce[−ax] k . Notably, we have L −x1 (L x1 (0)) = 0 (because L −x1 +x 1(·) =L 0 (·) = Id), and also L −x1 (L ∗ −a 1(L ∗ a 1(L x1 (0)))) = 0 and generally:(10.27) Γ k([−xa]k ; Γ k ([xa] k ; 0) ) ≡ 0.Geometrically speaking, by following backward the k-th chain Γ k , we comeback to 0.Theorem 10.28. ([Me2005a, Me2005b], [∗]) The two maps Γ 2µ+1 andΓ ∗ 2µ ∗ +1 are submersive onto a neighborhood of the origin in M . Precisely,there exist two points [xa] 0 2µ+1 ∈ K (µ+1)n+µp and [ax] 0 2µ ∗ +1 ∈K µ∗ n+(µ ∗ +1)p arbitrarily close to the origin with Γ 2µ+1 ([xa] 0 2µ+1) = 0 andΓ ∗ 2µ ∗ +1 ([ax]0 2µ ∗ +1 ) = 0 such that the two maps{ ( )K (µ+1)n+µp ∋ [xa] 2µ+1 ↦−→ Γ 2µ+1 [xa]2µ+1 ∈ M and(10.29)K µ∗ n+(µ ∗ +1)p ∋ [ax] 2µ ∗ +1 ↦−→ Γ ∗ 2µ ∗ +1([ax]2µ ∗ +1)∈ M295are of rank n + m + p = dim K M at the points [xa] 0 2µ and [ax] 0 2µ ∗ respectively.In particular, the ranges of the two maps Γ 2µ+1 and Γ ∗ 2µ ∗ +1 cover aneighborhood of the origin in M .Let π z (z, c) := z and π c (z, c) := c be the two canonical projections. Thenext corollary will be useful in Section 12. In the example above, it alsofollows that the map(10.30) [xa] 4 ↦→ π c(Γ4 ([xa 4 ]) ) = ( a 1 + a 2 , −x 1 a 1 − x 1 a 2 − x 2 a 2)∈ K2is of rank two at all points [xa] 0 4 := ( x 0 1 , a0 1 , 0, −a0 1)with a01 ≠ 0.Corollary 10.31. ([Me2005a, Me2005b], [∗]) There exist two points[xa] 0 2µ ∈ Kµ(n+p) and [ax] 0 2µ ∈ (n+p) arbitrarily close to the origin with( ∗ Kµ∗π c (Γ 2µ ([xa] 0 2µ)) = 0 and π z Γ∗2µ ∗([ax] 0 2µ ∗)) = 0 such that the two maps{ (K µ(n+p) ∋ [xa] 2µ ↦−→ π c Γ2µ ([xa] 2µ ) ) ∈ K m+p and(10.32)K µ∗ (n+p) ∋ [ax] 2µ ∗ ↦−→ π z(Γ∗2µ ∗([ax] 2µ ∗) ) ∈ K n+mare of rank m + p at the point [xa] 0 2µ ∈ Kµ(n+p) and of rank n + m at thepoint [ax] 0 2µ ∗ ∈ Kµ∗ (n+p) .


296In the case m = 1 (single <strong>de</strong>pen<strong>de</strong>nt variable y ∈ K), the covering propertyalways hold with µ = µ ∗ = 2.§11. FORMAL AND SMOOTH EQUIVALENCES BETWEEN SUBMANIFOLDSOF SOLUTIONS11.1. Transformations of submanifolds of solutions. Lemma 7.3 showsthat every equivalence ϕ between two PDE systems (E ) and (E ′ ) lifts as atransformation which respects the separation between variab<strong>les</strong> and parametersof the form(11.2)(x, y, a, b) ↦−→ ( φ(x, y), ψ(x, y), f(a, b), g(a, b) ) = ( ϕ(x, y), h(a, b) ) =: (x ′ , y ′ , a ′ , b ′ )from the source submanifolds of solutions M := V S (E ) to the targetM ′ := V S (E ′ ), whose equations are(11.3)y = Π(x, c) or dually b = Π ∗ (a, z) andy ′ = Π ′ (x ′ , c ′ ) or dually b ′ = Π ′∗ (a ′ , z ′ ).The study of transformations between submanifolds of solutions possessesstrong similarities with the study of CR mappings between CR manifolds([Pi1975, We1977, DW1980, BJT1985, DF1988, BER1999, Me2005a,Me2005b]). In fact, one may transfer the whole theory of the analytic reflectionprinciple to this more general context. In the present §10 and in the next§11, we select and establish some of the results that are useful to the <strong>Lie</strong> theory.Some accessible open questions will also be formulated.Maps of the form (11.2) send leaves of F v and of F p to leaves of F ′ v, andof F ′ p , respectively.MK n+2m+p 0F pK n+2m+pF ′ pcΓ ∗ ([ax] 3 )(ϕ, h)M ′(ϕ(z), h(c))F vΓ ∗ (a 1 )Γ ∗ ([ax] 2 )zF ′ vc ′ z ′0 ′


11.4. Regularity and jet parametrization. Some strong rigidity propertiesun<strong>de</strong>rly ( ) the above ( diagram. ) Especially, the smoothness of the two pairsFv , F p and F′v , F ′ p governs the smoothness of (ϕ, h).(We shall)study the regularity of a purely formal map (z ′ , c ′ ) =ϕ(z), h(c) , namely ϕ(z) ∈ K[z] n+m and h(c) ∈ K[c] p+m , assuming (E )and (E ′ ) to be analytic. Concretely, the assumption that (ϕ, h) maps M toM ′ reads as one of the four equivalent i<strong>de</strong>ntities:⎧ψ ( x, Π(x, c) ) ≡ Π ′( φ(x, Π(x, c)), h(c) ) ,⎪⎨ ψ(z) ≡ Π ′( φ(z), h(a, Π ∗ (a, z) ) ,(11.5)g ( a, Π ∗ (a, z) ) ≡ Π ′ ∗ ( f(a, Π ∗ (a, z)), ϕ(z) ) ,⎪⎩g(c) ≡ Π ′ ∗ ( f(c), ϕ(x, Π(x, c)) ) ,in K[x, c] m and in K[a, z] m .Theorem 11.6. Let (ϕ, h) := M → M ′ be a purely formal equivalencebetween two local K-analytic submanifolds of solutions. Assume that thefundamental pair of foliations (F v , F p ) is covering at the origin, with type(µ, µ ∗ ) at the origin. Assume that M ′ is both κ-solvable with respect to theparameters and κ ∗ -solvable with respect to the variab<strong>les</strong>. Set l := µ ∗ (κ +κ ∗ ) and l ∗ := µ(κ ∗ + κ). Then there exist two K n+m -valued and K p+m -valued local K-analytic maps Φ l and H l ∗, constructible only by means ofΠ, Π ∗ , Π ′ , Π ′∗ , such that the following two formal power series i<strong>de</strong>ntitieshold:{ (ϕ(z) ≡ Φl z, Jlz ϕ(0) ) ,(11.7)(h(c) ≡ H l ∗ c, Jl ∗c h(0) ) ,in K[z] n+m and in K[c] p+m , where Jz l ϕ(0) <strong>de</strong>notes the l-th jet of h at theorigin and similarly for Jc l∗ h(0). In particular, as a corollary, we have thefollowing two automatic regularity properties:• ϕ(z) ∈ K{z} n+m and h(c) ∈ K{c} p+m are in fact convergent;• if in addition M and M ′ are K-algebraic in the sense of Nash, thenΦ l and H l ∗ are also K-algebraic, whence ϕ(z) ∈ A K {z} n+m andh(c) ∈ A K {c} p+m are in fact K-algebraic.Proof. We remind the explicit expressions of the two collections of vectorfields spanning the leaves of the two foliations F v and F p :⎧L k := ∂ m∑ ∂Π j+ (x, c) ∂⎪⎨ ∂x k ∂x k ∂y , k = 1, . . .,n,j(11.8)⎪⎩j=1L ∗ q := ∂∂a q + m∑j=1∂Π ∗j ∂(a, z)∂aq ∂b , jq = 1, . . .,p.297


298Observe that differentiating the first line of (11.5) with respect to x k amountsto applying the <strong>de</strong>rivation L k . Similarly, differentiating the third lineof (11.5) with respect to a q amounts to applying L ∗ q . We thus get for(z, c) ∈ M(11.9)⎧L ⎪⎨ k ψ(z) =⎪⎩n∑l=1L ∗ q g(c) = p∑r=1∂Π ′ ( )∂x ′ l φ(z), h(c) Lk φ l (z) and∂Π ′ ∗∂a ′ r(f(c), ϕ(z))L∗q f r (c),It follows from <strong>de</strong>t ( ) (∂ϕ k∂z (0) ≠ 0 and <strong>de</strong>t ∂h k) l ∂c (0) ≠ 0 that the two formall<strong>de</strong>terminants(11.10) <strong>de</strong>t ( L k φ l (z) ) 1ln1knand <strong>de</strong>t ( L ∗ q fr (c) ) 1rp1qphave nonvanishing constant term. Consequently, these two matrices are invertiblein K[z] and in K[c]. So there exist universal polynomials S j landS ∗j r such that⎧(∂Π ′ j( ) S j {Lk′lϕ i′ (z) } )1i ′ n+m1k⎪⎨ ∂x ′ l ϕ(z), h(c) = ′ n<strong>de</strong>t ( L k ′ φ l′ (z) ) and1l ′ n1k(11.11)′ n( {L∂Π ′ ∗j( ) S ∗j ∗r q ′ h i′ (c) } )1i ′ p+m1q⎪⎩ ∂a ′ r f(c), ϕ(z) = ′ p<strong>de</strong>t ( L ∗ qf ′ r′ (c) ) ,1r ′ p1q ′ pfor 1 j m, for 1 l n, for 1 r p and for (z, c) ∈ M .Again, we apply the vector fields L k to the obtained first line and thevector fields L ∗ q to the obtained second line, getting, thanks to the chain rule:(11.12) ⎧( {Lkn∑ ∂ 2 Π ′ j( ) R j ′⎪⎨∂x ′ l 1x ′ l 2φ(z), h(c) Lk φ l l 1 ,k 1L k ′2ϕ i′ (z) } )1i ′ n+m21k 1(z) =′ ,k′ 2[nl 2 =1<strong>de</strong>t ( L k ′ φ l′ (z) ) ]1l ′ n 2and1k ′ n⎪⎩p∑r 2 =1∂ 2 Π ′ ∗j∂a ′ r 1a ′ r 2(f(c), ϕ(z))L∗q f r 2(c) =( {LR ∗j ∗r 1 ,q q 1L ∗ ′ qh2′ i′ (c) } 1i ′ p+m[<strong>de</strong>t ( L ∗ qf ′ r′ (c) ) ]1r ′ p 2,1q ′ p1q ′ 1 ,q′ 2 p )for 1 j m, for 1 l 1 , l 2 n, for 1 r 1 , r 2 p and for (z, c) ∈ M .Here, R j l 1 ,k and R∗j r 1 ,q are universal polynomials. Then applying once more


Cramer’s rule, we get(11.13) ⎧∂ 2 Π ′ j⎪⎨(∂ 2 Π ′ ∗j( ) S ∗j r 1 ,r 2⎪⎩ ∂a ′ r 1a ′ r 2 f(c), ϕ(z) = [1k ′ 1 ,k′ 2 n )(( ) S j {Lk′l 1 ,l 2 1L k ′2ϕ i′ (z) } 1i ′ n+m∂x ′ l 1x ′ l 2φ(z), h(c) = [<strong>de</strong>t ( L k ′ φ l′ (z) ) ]1l ′ n 3and1k ′ n{L ∗ qL ∗ 1′ q 2′h i′ (c)} 1i′ p+m<strong>de</strong>t ( L ∗ q ′ f r′ (c) ) 1r ′ p1q ′ p1q ′ 1 ,q′ 2 p )] 3.By induction, for every j with 1 j m and every two multiindicesβ ∈ N n and δ ∈ N p , there exists two universal polynomials S j β and S∗ jδ suchthat⎧( {L∂ |β| Π ′ j( ) S j β ′βϕ i′ (z) } )1i ′ n+m|β⎪⎨∂x ′ β φ(z), h(c) = ′ ||β|[<strong>de</strong>t ( L k ′ φ l′ (z) ) ]1l ′ n 2|β|+1and1k(11.14)′ n(∂ |γ| Π ′ ∗j( ) S ∗ j {L∗δ ′δh i′ (c) } )1i ′ p+m|δ⎪⎩ ∂a ′ δ f(c), ϕ(z) = ′ ||δ|[<strong>de</strong>t ( L ∗ qf ′ r′ (c) ) ]1r ′ p 2|δ|+1.1q ′ pHere, for β ′ ∈ N n , we <strong>de</strong>note by L β′ the <strong>de</strong>rivation of or<strong>de</strong>r |β ′ | <strong>de</strong>fined by(L 1 ) β′ 1 · · ·(Ln ) β′ n . Similarly, for δ ′ ∈ N p , L ∗δ′ <strong>de</strong>notes the <strong>de</strong>rivation of or<strong>de</strong>r|δ ′ | <strong>de</strong>fined by (L ∗ 1) δ′ 1 · · ·(L∗p ) δ′ p .Next, by the assumption that M ′ is solvable with respect to the parameters,there exist integers j(1), . . .,j(p) with 1 j(q) m and multiindicesβ(1), . . ., β(p) ∈ N n with |β(q)| 1 and max 1qp |β(q)| = κ such thatthe local K-analytic map(11.15) ⎛K p+m ∋ c ′ ↦−→ ⎝ ( Π ′j (0, c ′ ) ) () ⎞1jm ∂ |β(q)| Π ′ j(q), (0, c ′ ) ⎠ ∈ K p+m∂x ′ β(q)1qpis of rank p + m at c ′ = 0. Similarly, by the assumption that M ′ is solvablewith respect to the variab<strong>les</strong>, there exist integers j ∼ (1), . . .,j ∼ (n) with1 j ∼ (l) m and multiindices δ(1), . . ., δ(p) ∈ N n with |δ(q)| 1 andmax 1qp |δ(q)| = κ ∗ such that the local K-analytic map(11.16) ((ΠK n+m ∋ z ′ ↦−→′∗j (0, z ′ ) ) ()1jm ∂ |δ(l)| Π ′ ∗j ∼ (l), ∈ K n+m∂a ′ δ(l)(0, z′ )) 1lnis of rank n + m at z ′ = 0. We then consi<strong>de</strong>r from the first line of (11.14)only the (p + m) equations written for (j, 0), (j(q), β(q)) and we solve h(c)299


300by means of the analytic implicit function theorem; also, in the second lineof (11.14), we consi<strong>de</strong>r the (n+m) equations written for (j, 0), (j ∼ (l), δ(l))and we solve ϕ(z). We get:(11.17)⎧⎪⎨⎪⎩h(c) = Ĥ⎛⎜⎝φ(z),⎛ϕ(z) = ̂Φ ⎜⎝f(c),S j(1)β(1)( {Lβ ′ ϕ i′ (z) } )1i ′ n+m|β ′ ||β(1)|[ (Lk<strong>de</strong>t ′ φ l′ (z) ) ]1l ′ n 2|β(1)|+1, . . .1k ′ n( {LS j(p) β ′β(p)ϕ i′ (z) } ) ⎞1i ′ n+m|β. . .,′ ||β(p)| ⎟[ (Lk<strong>de</strong>t ′ φ l′ (z) ) ]1l ′ n 2|β(p)|+1⎠,1k ′ n( {L∗δ ′ h i′ (c) } )1i ′ p+mS ∗ j ∼ (1)δ(1)|δ ′ ||δ(1)|[<strong>de</strong>t ( L ∗ qf ′ r′ (c) ) ]1r ′ p 2|δ(1)|+1, . . .. . .,S ∗ j ∼ (n)δ(n)[1q ′ p( {L∗δ ′ h i′ (c) } ) ⎞1i ′ p+m|δ ′ ||δ(n)| ⎟] 2|δ(n)|+1⎠ ,<strong>de</strong>t ( L ∗ q ′ f r′ (c) ) 1r ′ p1q ′ pfor (z, c) ∈ M . The maps Ĥ and ̂Φ <strong>de</strong>pend only on Π ′ , Π ′∗ .Lemma 11.18. For every β ′ ∈ N n , there exists a universal polynomial P β ′ inthe jet variab<strong>les</strong> J |β′ |z having K-analytic coefficients in (z, c) which <strong>de</strong>pendsonly on Π, Π ∗ such that, for i ′ = 1, . . .,n + m:( )(11.19) L β′ ϕ i′ (z) ≡ P β ′ z, c, J |β′ |z ϕ i′ (z) .A similar property holds for L ∗δ′ h i′ (c).We <strong>de</strong>duce that there exist two local K-analytic mappings Φ 0 0 and H0 0 suchthat we can write{ (ϕ(z) = Φ00 z, c, Jκ ∗c(11.20)h(c)) ,h(c) = H0( 0 z, c, Jκz ϕ(z) ) ,for (z, c) ∈ M . Concretely, this means that we have two equivalent pairs offormal i<strong>de</strong>ntities(ϕ(z) ≡ Φ 0 0 z, a, Π ∗ (a, z), Jc κ∗h(a, Π∗ (a, z)) )ϕ ( x, Π(x, c) ) (≡ Φ 0 0 x, Π(x, c), c, Jκ ∗c(11.21)( h(c))h(c) ≡ H00 x, Π(x, c), c, Jκz ϕ(x, Π(x, c)) )h ( a, Π ∗ (a, z) ) (≡ H00 z, a, Π ∗ (a, z), Jz κ ϕ(z))


in K[a, z] n+m and in K[x, c] p+m . We notice that, whereas ϕ and h are apriori ( only purely formal, by construction, Φ 0 0 and H0 0 are K-analytic near0, 0, Jκ ∗c h(0)) and near ( 0, 0, Jz κϕ(0)) .Next, we introduce the following vector fields with K-analytic coefficientstangent to M :⎧V ⎪⎨ j := ∂∂y + ∑ m∂Π ∗l ∂(a, z) j ∂yj ∂bl, j = 1, . . .,m and(11.22)⎪⎩l=1V ∗ j := ∂∂b j + m∑l=1∂Π l ∂(x, c)∂bj ∂y l,In<strong>de</strong>ed, we check that V j1 [b j 2− Π ∗j 2(a, z)] ≡Π j 2(x, c)] ≡ 0.j = 1, . . .,m.3010 and that V ∗ j 1[y j 2−For δ ′ ∈ N m , we observe that V δ′ ϕ = ∂|δ′| ϕ. Applying then L β′ with∂y δ′β ′ ∈ N n , we get for i = 1, . . .,n + m:((11.23) L β′ V δ′ ϕ i (z) = Q β ′ ,δ ′ z, c, J|β ′ |+|δ ′ |z ϕ i (z) ) ,with Q β ′ ,δ ′ universal. Since the n + m vector fields L k and V j , having coefficients<strong>de</strong>pending on (z, c), span the tangent space to K n x × Km y , the changeof basis of <strong>de</strong>rivations yields, by induction, the following.Lemma 11.24. For every α ∈ N n+m , there exists a universal polynomial P αin its last variab<strong>les</strong> with coefficients being K-analytic in (z, c) and <strong>de</strong>pendingonly on Π, Π ∗ such that, for i = 1, . . ., n + m:(11.25) ∂z α ϕi (z) ≡ P α(z, c, ( L β′ V δ′ ϕ i (z) ) ).|β ′ |+|δ ′ ||α|We are now in position to state and to prove the first fundamental technicallemma which generalizes the two formulas (11.20) to arbitrary jets.Lemma 11.26. For every λ ∈ N, there exist two local K-analytic maps, Φ λ 0valued in K (n+m)Cλ n+m+λ , and Hλ0 valued in K (p+m)Cλ p+m+λ , such that:{ (Jλz ϕ(z) ≡ Φ λ 0 z, c, Jκ ∗ +λc h(c) ) ,(11.27)Jc λ h(c) ≡ ( Hλ 0 z, c, Jκ+λz ϕ(z) ) .Proof. Consi<strong>de</strong>r for instance the first line. To obtain it, it suffices to applythe <strong>de</strong>rivations L β′ V δ′ with |β ′ | + |δ ′ | λ to the first line of (11.20), to usethe chain rule and to apply Lemma 11.24.Let θ ∈ K l , l ∈ N, let Q(θ) = ( Q 1 (θ), . . .,Q n+2m+p (θ) ) ∈ K[θ] n+2m+pand let a 1 ∈ K p . As the multiple flow of L ∗ given by (10.10) does not act onthe variab<strong>les</strong> (x, y), we have the trivial but crucial property:(11.28)ϕ ( L ∗ a 1(Q(θ)) ) ≡ ϕ ( π z (L ∗ a 1(Q(θ))) ) ≡ ϕ (π z (Q(θ))) ≡ ϕ (Q(θ)) .


302At the end, we allow to suppress the projection π z : this slight abuse of notationwill lighten slightly the writting of further formulas. More generally,for λ ∈ N, a 1 ∈ K p , x 1 ∈ K n :(11.29)J λ z ϕ( L ∗ a 1(Q(θ)) ) ≡ J λ z ϕ( Q(θ) )J λ c h ( L x1 (Q(θ)) ) ≡ J λ c h ( Q(θ) ) .As a consequence, for 2k even and for 2k + 1 odd, we have the followingfour cancellation relations, useful below (we drop π z and π c after J λ z ϕ andafter J λ c h):and(11.30)⎧Jz λ ϕ( Γ 2k ([xa] 2k ) ) ≡ Jz λ ϕ( Γ 2k−1 ([xa] 2k−1 ) ) ,⎪⎨ Jc λ h ( Γ ∗ 2k([ax] 2k ) ) ≡ Jc λ h ( Γ ∗ 2k−1([ax] 2k−1 ) ) ,Jz λ ⎪⎩ϕ( Γ ∗ 2k+1 ([ax] 2k+1) ) ≡ Jz λ ϕ( Γ ∗ 2k ([ax] 2k) ) ,Jc λ h( Γ 2k+1 ([xa] 2k+1 ) ) ≡ Jc λ h( Γ 2k ([xa] 2k ) ) .We are now in position to state and to prove the second main technicalproposition.Proposition 11.31. For every even chain-length 2k and for every jet-heightλ, there exist two local K-analytic maps, Φ λ 2k valued in K(n+m)Cλ n+m+λ , andH λ 2k valued in K(p+m)Cλ p+m+λ such that:(11.32){Jλz ϕ ( ( )) (Γ ∗ 2k [ax]2k ≡ Φλ2k [ax]2k , J k(κ+κ∗ )+λz ϕ(0) ) andJ λ c h ( Γ 2k([xa]2k))≡ Hλ2k([xa]2k , J k(κ+κ∗ )+λc ϕ(0) ) .Similarly, for every odd chain length 2k + 1 and for every jet eight λ, thereexist two local K-analytic maps, Φ λ 2k+1 valued in K(n+m)Cλ n+m+λ and Hλ2k+1valued in K (p+m)Cλ p+m+λ , such that:(11.33) {Jλz ϕ ( ( )) (Γ 2k+1 [xa]2k+1 ≡ Φλ2k+1 [xa]2k+1 , J kκ+(k+1)κ∗ +λc h(0) ) ,Jc λ h ( ( )) (Γ ∗ 2k+1 [ax]2k+1 ≡ Hλ2k+1 [ax]2k+1 , J (k+1)κ+kκ∗ +λz ϕ(0) ) .These maps <strong>de</strong>pend only on Π, Π ∗ , Π ′ , Π ′∗ .Proof. For 2k + 1 = 1, we replace (z, c) by Γ 1 ([xa] 1 ) in the first lineof (11.27) and by Γ ∗ 1 ([ax] 1) in the second line. Taking crucially account


of the cancellation properties (11.29), we get:⎧Jz λ ϕ( Γ 1 ([xa] 1 ) ) (≡ Φ λ 0 Γ1 ([xa] 1 ), J κ∗ +λc h ( Γ 1 ([xa] 1 ) ))(≡ Φ λ 0 Γ1 ([xa] 1 ), J κ∗ +λc h(0)) )⎪⎨(=: Φ λ 1 [xa]1 , J κ∗ +λc h(0) ) ,(11.34)Jc λ h( Γ ∗ 1 ([ax] 1) ) (≡ H0λ Γ∗1 ([ax] 1 ), Jz κ+λ ϕ ( Γ ∗ 1 ([ax] 1) ))(≡ H0λ Γ∗1 ([ax] 1 ), Jz κ+λ ϕ(0) )⎪⎩(=: H1λ [ax]1 , Jz κ+λ ϕ(0) ) .Here, the third line <strong>de</strong>fines Φ λ 1 and the sixth line <strong>de</strong>fines Hλ 1 . Thus, theproposition holds for 2k + 1 = 1.The rest of the proof proceeds by induction. We treat only the inductionstep from an odd chain-length 2k + 1 to an even chain-length 2k + 2, theother induction step being similar.To this aim, we replace the variab<strong>les</strong> (z, c) in the first line of (11.27)by Γ ∗ 2k+2 ([ax] 2k+2). Taking account of the cancellation property and of theinduction assumption:(11.35)Jz λ ϕ ( Γ ∗ ( ))2k+2 [ax]2k+2 ≡ Φλ0(Γ ∗ 2k+2 ([ax] 2k+2), J κ∗ +λc h ( Γ ∗ 2k+2 ([ax] 2k+2) ))(≡ Φ λ 0 Γ ∗ 2k+2 ([ax] 2k+2), J κ∗ +λc h ( Γ ∗ 2k+1 ([ax] 2k+1) ))(())≡ Φ λ 0 Γ ∗ 2k+2 ([ax] 2k+2), H κ∗ +λ[ax] 2k+1 , J (k+1)(κ+κ∗ )+λc ϕ(0)=: Φ λ 2k+2(2k+1[ax] 2k+2 , J (k+1)(κ+κ∗ )+λc2k+1)ϕ(0) ,The last line <strong>de</strong>fines Φ λ 2k+2 . Similarly, we replace (z, c) in the second lineof (11.27) by Γ 2k+2 ([xa] 2k+2 ). Taking account of the cancellation propertyand of the induction assumption:(11.36)Jc λ h ( Γ 2k+2 ([xa] 2k+2 ) ) (≡ H0λ Γ 2k+2 ([xa] 2k+2 ), Jc κ+λ ϕ ( Γ 2k+2 ([xa] 2k+2 ) ))(≡ H0λ Γ 2k+2 ([xa] 2k+2 ), Jc κ+λ ϕ ( Γ 2k+1 ([xa] 2k+1 ) ))(())≡ H0λ Γ 2k+2 ([xa] 2k+2 ), Φ κ+λ [xa] 2k+1 , J (k+1)(κ+κ∗ )+λc h(0)This completes the proof.=: H λ 2k+2([xa] 2k+2 , J (k+1)(κ+κ∗ )+λc)h(0) .End of the proof of Theorem 11.6. With (µ, µ ∗ ) being the type of (F v , F p )and with [ax] 0 2µ ∗ given by Corollary 10.31, the rank property (10.32) in<strong>sur</strong>esthe existence of an affine (n+m)-dimensional space H ⊂ K µ∗ (p+n) passing303


304through [ax] 0 2µ ∗ and equipped with a local parametrization(11.37) K n+m ∋ s ↦→ [ax] 2µ ∗(s) ∈ Hsatisfying [ax] 2µ ∗(0) = [ax] 0 2µ ∗, such that the map(11.38) K n+m ∋ s ↦−→ π z(Γ∗2µ ∗([ax] 2µ ∗(s)) ) =: z(s) ∈ K n+mis a local diffeomorphism fixing 0 ∈ K n+m . Replacing z by z(s) in ϕ(z)and applying the formula in the first line of (11.32) with λ = 0 and withk = 2µ ∗ , we obtainϕ(z(s)) = ϕ ( (π z Γ∗2µ ∗([ax] 2µ ∗(s) ))(11.39)= ϕ ( (Γ ∗ 2µ ∗ [ax]2µ ∗(s) ))≡ Φ 0 2µ ∗ ([ax]2µ ∗(s), J µ∗ (κ+κ ∗ )z ϕ(0) ) .Inverting s ↦→ z = z(s) as z ↦→ s = s(z), we finally get(ϕ(z) = ϕ(z(s(z))) ≡ Φ 0 2µ(11.40)∗ [ax]2µ ∗(s(z)), J µ∗ (κ+κ ∗ )z ϕ(0) )(=: Φ l z, Jµ ∗ (κ+κ ∗ )z ϕ(0) ) ,with l := µ ∗ (κ + κ ∗ ), where the last line <strong>de</strong>fines Φ l . In conclusion, we have<strong>de</strong>rived the first line of (11.7). The second one is obtained similarly.If Π, Π ∗ , Π ′ , Π ′∗ are algebraic, so are Γ k , Γ ∗ k , Ĥ, ̂Φ, Φ λ 0 , Hλ 0 , Φλ k , Hλ k andΦ l , H l ∗.The proof of Theorem 11.6 is complete.


305II: Explicit prolongations of infinitesimal <strong>Lie</strong> symmetriesTable of contents1. Jet spaces and prolongations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305.2. One in<strong>de</strong>pen<strong>de</strong>nt variable and one <strong>de</strong>pen<strong>de</strong>nt variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311.3. Several in<strong>de</strong>pen<strong>de</strong>nt variab<strong>les</strong> and one <strong>de</strong>pen<strong>de</strong>nt variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320.4. One in<strong>de</strong>pen<strong>de</strong>nt variable and several <strong>de</strong>pen<strong>de</strong>nt variab<strong>les</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339.5. Several in<strong>de</strong>pen<strong>de</strong>nt variab<strong>les</strong> and several <strong>de</strong>pen<strong>de</strong>nt variab<strong>les</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348.§1. JET SPACES AND PROLONGATIONS1.1. Choice of notations for the jet space variab<strong>les</strong>. Let K = R or C. Letn 1 and m 1 be two positive integers and consi<strong>de</strong>r two sets of variab<strong>les</strong>x = (x 1 , . . .,x n ) ∈ K n and y = (y 1 , . . .,y m ). In the classical theoryof <strong>Lie</strong> symmetries of partial differential equations, one consi<strong>de</strong>rs certaindifferential systems whose (local) solutions should be mappings of the formy = y(x). We refer to [Ol1986] and to [BK1989] for an exposition of thefundamentals of the theory. Accordingly, the variab<strong>les</strong> x are usually calledin<strong>de</strong>pen<strong>de</strong>nt, whereas the variab<strong>les</strong> y are called <strong>de</strong>pen<strong>de</strong>nt. Not to enter insubtle regularity consi<strong>de</strong>rations (as in [Me2005b]), we shall assume C ∞ -smoothness of all functions throughout this paper.Let κ 1 be a positive integer. For us, in a very concrete way (withoutfiber bund<strong>les</strong>), the κ-th jet space Jn,m κ consists of the space Kn+m+m(n+m)! n! m!equipped with the affine coordinates((1.2) x i , y j , y j i 1, y j i 1 ,i 2, . . ....,y j )i 1 ,i 2 ,...,i κ ,having the symmetries(1.3) y j i 1 ,i 2 ,...,i λ= y j i σ(1) ,i σ(2) ,...,i σ(λ),for every λ with 1 λ κ and for every permutation σ of the set{1, . . ., λ}. The variable y j i 1 ,i 2 ,...,i λis an in<strong>de</strong>pen<strong>de</strong>nt coordinate correspondingto the λ-th partial <strong>de</strong>rivativeλ y j. So the symmetries (1.3) are∂∂x i 1∂x i 2···∂x i λnatural.In the classical <strong>Lie</strong> theory ([OL1979], [Ol1986], [BK1989]), all the geometricobjects: point transformations, vector fields, etc., are local, <strong>de</strong>fined ina neighborhood of some point lying in some affine space K N . However, inthis paper, the original geometric motivations are rapidly forgotten in or<strong>de</strong>rto focus on combinatorial consi<strong>de</strong>rations. Thus, to simplify the presentation,we shall not introduce any special notation to speak of certain local


306open subsets of K n+m , or of the jet space Jn,m κ = Kn+m+m(n+m)! n! m! , etc.: wewill always work in global affine spaces K N .1.4. Prolongation ϕ (κ) of a local diffeomorphism ϕ to the κ-th jet space.In this paragraph, we recall how the prolongation of a diffeomorphism to theκ-th jet space is <strong>de</strong>fined ([OL1979], [Ol1986], [BK1989]).Let x ∗ ∈ K n be a central fixed point and let ϕ : K n+m → K n+m bea diffeomorphism whose Jacobian matrix is close to the i<strong>de</strong>ntity matrix, atleast in a small neighborhood of x ∗ . Let(1.5) Jx κ ∗:= ( x i ∗ , ) ∣ yj ∗i 1, y j ∗i 1 ,i 2, . . ....,y j ∗i 1 ,i 2 ,...,iκ ∈ Jκ n,m x ∗be an arbitrary κ-jet based at x ∗ . The goal is to <strong>de</strong>fined its transformationϕ (κ) (Jx κ ∗) by ϕ.To this aim, choose an arbitrary mapping K n ∋ x ↦→ g(x) ∈ K m <strong>de</strong>finedat least in a neighborhood of x ∗ and representing this κ-th jet, i.e. satisfying(1.6) y j ∂ λ g j∗i 1 ,...,i λ= (x∂x i 1 · · ·∂xi ∗ ),λfor every λ ∈ N with 0 λ κ, for all indices i 1 , . . .,i λ with 1 i 1 , . . .,i λ n and for every j ∈ N with 1 j m. In accordance withthe splitting (x, y) ∈ K n × K m of coordinates, split the components of thediffeomorphism ϕ as ϕ = (φ, ψ) ∈ K n × K m . Write (x, y) the coordinatesin the target space, so that the diffeomorphism ϕ is:(1.7) K n+m ∋ (x, y) ↦−→ (x, y) = ( φ(x, y), ψ(x, y) ) ∈ K n+m .Restrict the variab<strong>les</strong> (x, y) to belong to the graph of g, namely put y := g(x)above, which yields{ x = φ(x, g(x)),(1.8)y = ψ(x, g(x)).As the differential of ϕ at x ∗ is close to the i<strong>de</strong>ntity, the first family of nscalar equations may be solved with respect to x, by means of the implicitfunction theorem. Denote x = χ(x) the resulting mapping, satisfying by<strong>de</strong>finition(1.9) x ≡ φ (χ(x), g(χ(x))).Replace x by χ(x) in the second family of m scalar equations (1.8) above,which yields:(1.10) y = ψ (χ(x), g(χ(x))) .Denote simply by y = g(x) this last relation, where g(·) :=ψ (χ(·), g(χ(·))).In summary, the graph y = g(x) has been transformed to the graph y =g(x) by the diffeomorphism ϕ.


Define then the transformed jet ϕ ( ) (κ) Jx κ ∗ to be the κ-th jet of g at thepoint x ∗ := φ(x ∗ ), namely:(1.11) ϕ ( ()) (κ) Jx κ ∂ λ g j 1jm∗:=∂x i1 · · ·∂x i (x ∗)∈ J κ ∣λ n,m x∗.1i 1 ,...,i λ n, 0λκIt may be shown that this jet does not <strong>de</strong>pend on the choice of a localgraph y = g(x) representing the κ-th jet Jx κ ∗at x ∗ . Furthermore, ifπ κ := Jn,m κ → Km <strong>de</strong>notes the canonical projection onto the first factor,the following diagram commutes:Jn,mκ ϕ (κ) Jn,mκπ κ π κ.K n+m ϕ K n+m1.12. Inductive formulas for the κ-th prolongation ϕ (κ) . To present them,we change our notations. Instead of (x, y), as coordinates in the target spaceK n × K m , we shall use capital letters:((1.13)X 1 , . . .,X n , Y 1 , . . .,Y m) .In the source space K n+m equipped with the coordinates (x, y), we use thejet coordinates (1.2) on the associated κ-th jet space. In the target spaceK n+m equipped with the coordinates (X, Y ), we use the coordinates((1.14) X i , Y j , Y j , Y j X i 1 X i 1X , . . ....,Y )ji 2 X i 1X i 2...X iκon the associated κ-th jet space; to avoid confusion with y i1 , y i1 ,i 2, . . . insubsequent formulas, we do not write Y i1 , Y i1 ,i 2, . . . . In these notations, thediffeomorphism ϕ whose first or<strong>de</strong>r approximation is close to the i<strong>de</strong>ntitymapping in a neighborhood of x ∗ may be written un<strong>de</strong>r the form:(1.15) ϕ : ( ) (x i′ , y j′ ↦→ X i , Y j) ()= X i (x i′ , y j′ ), Y j (x i′ , y j′ ) ,for some C ∞ -smooth functions X i (x i′ , y j′ ), i = 1, . . .,n, and Y j (x i′ , y j′ ),j = 1, . . ., m. The first prolongation ϕ (1) of ϕ may be written un<strong>de</strong>r theform:(1.16) ( ) (( ))ϕ (1) : x i′ , y j′ , y j′i↦−→ X i (x i′ , y j′ ), Y j (x i′ , y j′ ), Y j x i′ , y j′ , y j′′1X i 1 i, ′1( )for some functions Y j x i′ , y j′ , y j′X i 1 iwhich <strong>de</strong>pend on the pure first jet′1variab<strong>les</strong> y j′iThe way how these functions <strong>de</strong>pend on the first or<strong>de</strong>r partial<strong>de</strong>rivatives functions X i , x i′ Xi , Y j , Y j and on the pure first jet1. ′ y j′ x i′ y j′307


308variab<strong>les</strong> y j′iis provi<strong>de</strong>d (in principle) by the following compact formulas′1([BK1989]):⎛ ⎛(1.17)⎜⎝⎞Y j XD1X 1 1 · · · D1X 1 n ⎞1⎟. ⎠ = ⎝. · · · .⎠Y j D 1 X n n X1 · · · Dn 1Xn −1 ⎛⎝D1Y 1 j ⎞.⎠ ,Dn 1Y jwhere, for i ′ = 1, . . ., n, the symbol Di 1 <strong>de</strong>notes the ′ i′ -th first or<strong>de</strong>r totaldifferentiation operator:(1.18) Di 1 := ∂ m∑ ∂+ y j′′∂x i′ i.′∂y j′Striclty speaking, these formulas (1.17) are not explicit, because an inversematrix is involved and because the terms Di 1 ′Xi , Di 1 ′Y j are not <strong>de</strong>veloped.However, it would be feasible and elementary to write down thecorresponding totally explicit complete formulas for the functions Y j = X i 1Y j X i 1().j ′ =1x i′ , y j′ , y j′i ′ 1Next, the second prolongation ϕ (2) is of the form(1.19)ϕ (2) :)(x i′ , y j′ , y j′i, y j′′1 i ′ 1 ,i′ 2for some functions Y j X i 1X i 2↦−→()(ϕ(x (1) i′ , y j′ , y j′i ′ 1)x i′ , y j′ , y j′i ′ 1, y j′i ′ 1 ,i′ 2, Y j X i 1X i 2))(x i′ , y j′ , y j′i, y j′′1 i,′1 ,i′ 2which <strong>de</strong>pend on the purefirst and second jet variab<strong>les</strong>. For i = 1, . . .,n, the expressions of Y j X i 1Xare given by the following compact formulas (again [BK1989]):i⎛ ⎞Y j ⎛DX⎜i 1X 11 1⎟X1 · · · D 1 ⎞ ⎛ ⎞1 Xn−1D1Y 2 j X(1.20) ⎝ . ⎠ = ⎝. · · · .⎠ ⎜ i 1⎟ ⎝ . ⎠ ,Y j D 1 X i 1X nn X1 · · · Dn 1Xn DnY 2 j X i 1where, for i ′ = 1, . . .,n, the symbol Di 2 <strong>de</strong>notes the ′ i′ -th second or<strong>de</strong>r totaldifferentiation operator:(1.21) Di 2 := ∂ m∑ ∂m∑ n∑ ∂+ y j′′∂x i′ i+.′∂y j′j ′ =1j ′ =1i ′ 1 =1 y j′i ′ ,i ′ 1∂y j′i ′ 1Again, these formulas (1.20) are not explicit in the sense that an inversematrix is involved and that the terms Di 1 ′Xi , Di 2 ′Y j are not <strong>de</strong>veloped. ItX i 1would already be a nontrivial computational task to <strong>de</strong>velope these expressionsand to find out some nice satisfying combinatorial formulas.In or<strong>de</strong>r to present the general inductive non-explicit formulas for thecomputation of the κ-th prolongation ϕ (κ) , we need some more notation.


Let λ ∈ N be an arbitrary integer. For i ′ = 1, . . ., n, let D λ i ′ <strong>de</strong>notes the i′ -thλ-th or<strong>de</strong>r total differentiation operators, <strong>de</strong>fined precisely by:(1.22) ⎧⎪⎨⎪⎩D λ i ′ := ∂∂x i′ ++ · · · +m∑j ′ =1m∑j ′ =1y j′i ′∂∂y j′ +n∑m∑j ′ =1n∑i ′ 1 =1 y j′i ′ ,i ′ 1i ′ 1 ,i′ 2 ,...,i′ λ−1 =1 y j′i ′ ,i ′ 1 ,i′ 2 ,...,i′ λ−1∂∂y j′i ′ 1+m∑j ′ =1∂∂y j′i ′ 1 ,i′ 2 ,...,i′ λ−1n∑i ′ 1 ,i′ 2 =1 y j′i ′ ,i ′ 1 ,i′ 2.309∂∂y j′i ′ 1 ,i′ 2Then, for i = 1, . . .,n, the expressions of Y j are given by theX i 1 ···X i λ−1Xi following compact formulas (again [BK1989]):(1.23) ⎛⎛⎞⎜⎝Y j ⎞DX i 1 ···X i λ−1X 11 1⎟X1 · · · D 1 ⎞ ⎛1 Xn−1D1 λ. ⎠ = ⎝. · · · .⎠ ⎜ Y j X i 1 ···X i λ−1⎝ .Y j D 1X i 1 ···X i λ−1XnX 1 · · · DnX 1 n D λ n n Y j X i 1 ···X i λ−1Again, these inductive formulas are incomplete and unsatisfactory.Problem 1.24. Find totally explicit complete formulas for the κ-th prolongationϕ (κ) .⎟⎠ .Except in the cases κ = 1, 2, we have not been able to solve this problem.The case κ = 1 is elementary. Complete formulas in the particularcases κ = 2, n = 1, m 1 and n 1, m = 1 are implicitely provi<strong>de</strong>din [Me2004] and in Section ?(?), where one observes the appearance of somemodifications of the Jacobian <strong>de</strong>terminant of the diffeomorphism ϕ, insertedin a clearly un<strong>de</strong>rstandable combinatorics. In fact, there is a nice dictionarybetween the formulas for ϕ (2) and the formulas for the second prolongationL (2) of a vector field L which were written in equation (43) of [GM2003a](see also equations (2.6), (3.20), (4.6) and (5.3) in the next paragraphs). Inthe passage from ϕ (2) to L (2) , a sort of formal first or<strong>de</strong>r linearization maybe observed and the reverse passage may be easily guessed. However, forκ 3, the formulas for ϕ (κ) explo<strong>de</strong> faster than the formulas for the κ-thprolongation L (κ) of a vector field L . Also, the dictionary between ϕ (κ)and L (κ) disappears. In fact, to elaborate an appropriate dictionary, webelieve that one should introduce before a sort of formal (κ − 1)-th or<strong>de</strong>rlinearizations of ϕ (κ) , finer than the first or<strong>de</strong>r linearization L (κ) . To be optimistic,we believe that the final answer to Problem 1.24 is, neverthe<strong>les</strong>s,accessible after hard work.The present article is <strong>de</strong>voted to present totally explicit complete formulasfor the κ-th prolongation L (κ) of a vector field L to J κ n,m , for n 1arbitrary, for m 1 arbitrary and for κ 1 arbitrary.+


3101.25. Prolongation of a vector field to the κ-th jet space. Consi<strong>de</strong>r a vectorfield(1.26) L =n∑i=1X i (x, y) ∂∂x i + m∑j=1Y j (x, y) ∂∂y j ,<strong>de</strong>fined in K n+m . Its flow:(1.27) ϕ t (x, y) := exp (tL )(x, y)constitutes a one-parameter family of diffeomorphisms of K n+m close tothe i<strong>de</strong>ntity. The lift (ϕ t ) (κ) to the κ-th jet space constitutes a one-parameterfamily of diffeomorphisms of J κ n,m. By <strong>de</strong>finition, the κ-th prolongationL (κ) of L to the jet space J κ n,m is the infinitesimal generator of (ϕ t) (κ) ,namely:(1.28) L (κ) := d [ dt∣ (ϕt ) (κ)] .t=01.29. Inductive formulas for the κ-th prolongation L (κ) . As a vector field<strong>de</strong>fined in K n+m+m(n+m)! n! m! , the κ-th prolongation L (κ) may be written un<strong>de</strong>rthe general form:(1.30) ⎧ n∑L (κ) = X i ∂∂x + ∑ mY j ∂i ∂y + j⎪⎨⎪⎩i=1++m∑j=1m∑j=1n∑i 1 =1n∑Y j i 1i 1 ,...,i κ=1j=1∂∂y j i 1+Y j i 1 ,...,i κm∑j=1n∑i 1 ,i 2 =1∂∂y j i 1 ,...,i κ.Y j i 1 ,i 2∂∂y j i 1 ,i 2+ · · ·+Here, the coefficients Y j i 1, Y j i 1 ,i 2, . . . , Y j i 1 ,i 2 ,...,i κare uniquely <strong>de</strong>terminedin terms of partial <strong>de</strong>rivatives of the coefficients X i and Y j of the originalvector field L , together with the pure jet variab<strong>les</strong> ( y j i 1, . . .,y j i 1 ,...,i κ),by means of the following fundamental inductive formulas ([OL1979],


311[Ol1986], [BK1989]):(Y(1.31)⎧⎪ j i 1:= D ) n∑ (i 1 1 Yj− D ) i 1 1 Xky j k ,k=1⎨( )n∑ (Y j i 1 ,i 2:= Di 2 2 Yji 1 − D ) i 1 2 Xky j i 1 ,k ,k=1· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·( ) n∑⎪ ⎩ Y j i 1 ,i 2 ,...,i κ:= Di κ κY j (i 1 ,i 2 ,...,i κ−1− D ) i 1 κ Xky j i 1 ,i 2 ,...,i κ−1 ,k ,where, for every λ ∈ N with 0 λ κ, and for every i ∈ N with 1 i ′ n, the i ′ -th λ-th or<strong>de</strong>r total differentiation operator Di λ ′ was <strong>de</strong>fined in (1.22)above.Problem 1.32. Applying these inductive formulas, find totally explicit completeformulas for the κ-th prolongation L (κ) .The present article is <strong>de</strong>voted to provi<strong>de</strong> all the <strong>de</strong>sired formulas.1.33. Methodology of induction. We have the intention of presenting ourresults in a purely inductive style, based on several thorough visual comparisonsbetween massive formulas which will be written and commented infour different cases:k=1(i) n = 1 and m = 1; κ 1 arbitrary;(ii) n 1 and m = 1; κ 1 arbitrary;(iii) n = 1 and m 1; κ 1 arbitrary;(iv) general case: n 1 and m 1; κ 1 arbitrary.Accordingly, we shall particularize and slightly lighten our notations ineach of the three (preliminary) cases (i) [Section 2], (ii) [Section 3] and (iii)[Section 4].§2. ONE INDEPENDENT VARIABLE AND ONE DEPENDENT VARIABLE2.1. Simplified adapted notations. Assume n = 1 and m = 1, let κ ∈ Nwith κ 1 and simply <strong>de</strong>note the jet variab<strong>les</strong> by:(2.2) (x, y, y 1 , y 2 , . . .,y κ ) ∈ J κ1,1 .The κ-th prolongation of a vector field L = X ∂ + Y ∂ will be <strong>de</strong>noted∂x ∂yby:(2.3) L (κ) = X ∂∂x + Y ∂∂y + Y 1∂∂y 1+ Y 2∂∂y 2+ · · · + Y κ∂∂y κ.


312The coefficients Y 1 , Y 2 , . . . , Y κ are computed by means of the inductiveformulas:⎧Y 1 := D 1 (Y ) − D 1 (X ) y 1 ,⎪⎨Y 2 := D 2 (Y 1 ) − D 1 (X ) y 2 ,(2.4)· · · · · · · · · · · · · · · · · · · · · · · · · · ·⎪⎩Y κ := D κ (Y κ−1 ) − D 1 (X ) y κ ,where, for 1 λ κ:(2.5) D λ := ∂∂x + y 1∂∂y + y 2∂∂y 1+ · · · + y λ∂∂y λ−1.By direct elementary computations, for κ = 1 and for κ = 2, we obtain thefollowing two very classical formulas :(2.6) ⎧⎪⎨Y 1 = Y x + [Y y − X x ] y 1 + [−X y ] (y 1 ) 2 ,Y 2 = Y x 2 + [2 Y xy − X x 2] y 1 + [Y y 2 − 2 X xy ] (y 1 ) 2 + [−X y 2] (y 1 ) 3 +⎪⎩+ [Y y − 2 X x ] y 2 + [−3 X y ] y 1 y 2 .Our main objective is to <strong>de</strong>vise the general combinatorics. Thus, to attainthis aim, we have to achieve patiently formal computations of the next coefficientsY 3 , Y 4 and Y 5 . We systematically use parentheses [·] to single outevery coefficient of the polynomials Y 3 , Y 4 and Y 5 in the pure jet variab<strong>les</strong>y 1 , y 2 , y 3 , y 4 and y 5 , putting every sign insi<strong>de</strong> these parentheses. We alwaysput the monomials in the pure jet variab<strong>les</strong> y 1 , y 2 , y 3 , y 4 and y 5 after theparentheses. For completeness, let us provi<strong>de</strong> the intermediate computationof the third coefficient Y 3 . In <strong>de</strong>tail:Y 3 = D 3 (Y 2 ) − D 1 (X ) y 3( ∂=∂x + y ∂1∂y + y 2∂∂y 1+ y 3+ [Y y 2 − 2 X xy ] (y 1 ) 2 + [−X y 2](y 1 ) 3 ++ [Y y − 2 X x ]y 2 + [−3 X y ] y 1 y 2)∂∂y 2) (Y x 2 + [2 Y xy − X x 2] y 1 +(2.7)= Y x 3 1+ [2 Y x 2 y − X x 3] y 1 2+ [Y xy 2 − 2 X x 2 y] (y 1 ) 2 3 + [−X xy 2] (y 1) 3 4 ++ [Y xy − 2 X x 2]y 2 6+ [−3 X xy ] y 1 y 2 7+ [Y x 2 y]y 1 2++ [2 Y xy 2 − X x 2 y] (y 1 ) 2 3 + [Y y 3 − 2 X xy 2] (y 1) 3 4 + [−X y 3] (y 1) 4 5 +


+ [Y y 2 − 2 X xy ] y 1 y 2 + [−3 X y 2](y 1 ) 2 y 2 + [2 Y xy − X x 2] y 2 +7 8 6+ [Y y 2 − 2 X xy ] 2 y 1 y 2 + [−X y 2]3(y 1 ) 2 y 2 + [−3 X y ] (y 2 ) 2 +7 8 9+ [Y y − 2 X x ] y 3 + [−3 X y ] y 1 y 3 −10 11− [X x ] y 3 10− [X y ]y 1 y 3 . 11313We have un<strong>de</strong>rlined all the terms with a number appen<strong>de</strong>d. Each numberrefers to the or<strong>de</strong>r of appearance of the terms in the final simplified expressionof Y 3 , also written in [BK1989] with different notations:(2.8) ⎧Y 3 = Y x 3 + [3 Y x⎪⎨2 y − X x 3] y 1 + [3 Y xy 2 − 3 X x 2 y] (y 1 ) 2 ++ [Y y 3 − 3 X xy 2](y 1 ) 3 + [−X y 3](y 1 ) 4 + [3 Y xy − 3 X x 2]y 2 +⎪⎩+ [3 Y y 2 − 9 X xy ] y 1 y 2 + [−6 X y 2] (y 1 ) 2 y 2 + [−3 X y ] (y 2 ) 2 ++ [Y y − 3 X x ] y 3 + [−4 X y ]y 1 y 3 .After similar manual computations, the intermediate <strong>de</strong>tails of which wewill not copy in this Latex file, we get the <strong>de</strong>sired expressions of Y 4 and ofY 5 . Firstly:(2.9)⎧Y 4 = Y x 4 + [ 4Y x 3 y − X x 4]y1 + [ 6Y x 2 y 2 − 4X x y] 3 (y1 ) 2 +⎪⎨⎪⎩+ [ 4Y xy 3 − 6X x 2 y 2 ](y1 ) 3 + [ Y y 4 − 4X xy 3](y1 ) 4 + [ −X y 4](y1 ) 5 ++ [ 6Y x 2 y − 4X x 3]y2 + [ 12Y xy 2 − 18X x 2 y]y1 y 2 ++ [ 6Y y 3 − 24X xy 2](y1 ) 2 y 2 + [ −10X y 3](y1 ) 3 y 2 ++ [ 3Y y 2 − 12X xy](y2 ) 2 + [ −15X y 2]y1 (y 2 ) 2 ++ [4Y xy − 6X x 2] y 3 + [ 4Y y 2 − 16X xy]y1 y 3 + [ −10X y 2](y1 ) 2 y 3 ++ [−10X y ]y 2 y 3 + [Y y − 4X x ] y 4 + [−5X y ] y 1 y 4 .


314Secondly:(2.10)⎧Y 5 = Y x 5 + [ 5Y x 4 y − X x 5]y1 + [ 10Y x 3 y 2 − 5X x y] 4 (y1 ) 2 +⎪⎨⎪⎩+ [ 10Y x 2 y 3 − 10X x 3 y 2 ](y1 ) 3 + [ 5Y xy 4 − 10X x 2 y 3 ](y1 ) 4 ++ [ Y y 5 − 5X xy 4](y1 ) 5 + [ −X y 5](y1 ) 6 + [ 10Y x 3 y − 5X x 4]y2 ++ [ 30Y x 2 y 2 − 30X x 3 y]y1 y 2 + [ 30Y xy 3 − 60X x 2 y 2 ](y1 ) 2 y 2 ++ [ 10Y y 4 − 50X xy 3](y1 ) 3 y 2 + [ −15X y 4](y1 ) 4 y 2 ++ [ 15Y xy 2 − 30X x 2 y](y2 ) 2 + [ 15Y y 3 − 75X xy 2]y1 (y 2 ) 2 ++ [ −45X y 3](y1 ) 2 (y 2 ) 2 + [ −15X y 2](y2 ) 3 ++ [ 10Y x 2 y − 10X x 3]y3 + [ 20Y xy 2 − 40X x 2 y]y1 y 3 ++ [ 10Y y 3 − 50X xy 2](y1 ) 2 y 3 + [ −20X y 3](y1 ) 3 y 3 ++ [ 10Y y 2 − 50X xy]y2 y 3 + [ −60X y 2]y1 y 2 y 3 + [−10X y ] (y 3 ) 2 ++ [5Y xy − 10X x 2]y 4 + [ 5Y y 2 − 25X xy]y1 y 4 + [ −15X y 2](y1 ) 2 y 4 ++ [−15X y ]y 2 y 4 + [Y y − 5X y ]y 5 + [−6X y ]y 1 y 5 .2.11. Formal inspection, formal intuition and formal induction. Now,we have to comment these formulas. We have written in length the fivepolynomials Y 1 , Y 2 , Y 3 , Y 4 and Y 5 in the pure jet variab<strong>les</strong> y 1 , y 2 , y 3 , y 4and y 5 . Except the first “constant” term Y x κ, all the monomials in the expressionof Y κ are of the general form(2.12) (y λ1 ) µ 1(y λ2 ) µ2 · · ·(y λd ) µ d,for some positive integer d 1, for some collection of strictly increasing jetindices:(2.13) 1 λ 1 < λ 2 < · · · < λ d κ,and for some positive integers µ 1 , . . .,µ d 1. This and the next combinatorialfacts may be confirmed by reading the formulas giving Y 1 , Y 2 , Y 3 ,Y 4 and Y 5 . It follows that the integer d satisfies the inequality d κ + 1.To inclu<strong>de</strong> the first “constant” term Y x κ, we shall make the convention thatputting d = 0 in the monomial (2.12) yields the constant term 1.Furthermore, by inspecting the formulas giving Y 1 , Y 2 , Y 3 , Y 4 and Y 5 ,we see that the following inequality should be satisfied:(2.14) µ 1 λ 1 + µ 2 λ 2 + · · · + µ d λ d κ + 1.For instance, in the expression of Y 4 , the two monomials (y 1 ) 3 y 2 and y 1 (y 2 ) 2do appear, but the two monomials (y 1 ) 4 y 2 and (y 1 ) 2 (y 2 ) 2 cannot appear. Allcoefficients of the pure jet monomials are of the general form:[(2.15)A Yx α y − B X ] β+1 x α+1 y , β


for some nonnegative integers A, B, α, β ∈ N. Sometimes A is zero, butB is zero only for the (constant, with respect to pure jet variab<strong>les</strong>) termY x κ. Importantly, X is differentiated once more with respect to x and Y isdifferentiated once more with respect to y. Again, this may be confirmed byreading all the terms in the formulas for Y 1 , Y 2 , Y 3 , Y 4 and Y 5 .In addition, we claim that there is a link between the couple (α, β) andthe collection {µ 1 , λ 1 , . . .,µ d , λ d }. To discover it, let us write some of themonomials appearing in the expressions of Y 4 (first column) and of Y 5(second column), for instance:(2.16)⎧[6 Y x 2 y 2 − 4 X x 3 y](y 1 ) 2 , [5 Y xy 4 − 10 X x 2 y 3] (y 1) 4 ,⎪⎨[12 Y xy 2 − 18 X x 2 y]y 1 y 2 , [30 Y xy 3 − 60 X x 2 y 2] (y 1) 2 y 2 ,[−10 X y 3] (y 1 ) 3 y 2 , [−15 X y 4] (y 1 ) 4 y 2 ,[4 Y y 2 − 16 X xy ] y 1 y 3 , [10 Y y 2 − 50 X xy ] y 2 y 3 ,⎪⎩[−10 X y 2] (y 1 ) 2 y 3 , [−60 X y 2] y 1 y 2 y 3 .After some reflection, we discover the hid<strong>de</strong>n intuitive rule: the partial<strong>de</strong>rivatives of Y and of X associated with the monomial (y λ1 ) µ1 · · ·(y λd ) µ dare, respectively:{Yx κ−µ 1 λ 1 −···−µ d λ d y µ 1 +···+µ d ,(2.17)X x κ−µ 1 λ 1 −···−µ d λ d +1 y µ 1 +···+µ d −1.This may be checked on each of the 10 examp<strong>les</strong> (2.16) above.Now that we have explored and discovered the combinatorics of the purejet monomials, of the partial <strong>de</strong>rivatives and of the complete sum giving Y κ ,we may express that it is of the following general form:(2.18)⎧Y κ = Y x κ +⎪⎨⎪⎩∑κ+1d=1[A(µ 1 ,λ 1 ),...,(µ d ,λ d )κ∑1λ 1


316(y 1 ) 5 are simple. In<strong>de</strong>ed, by inspecting the first terms in the expressions ofY 1 , Y 2 , Y 3 , Y 4 and Y 5 , we of course recognize the binomial coefficients.In general:Lemma 2.19. For κ 1,(2.20) ⎧κ∑[( ( ) ]⎪⎨κ κY κ = Y x κ + Yλ)x κ−λ y − X λλ − 1 x κ−λ+1 y (y λ−1 1 ) λ +λ=1⎪⎩+ [−X y κ] (y 1 ) κ + remain<strong>de</strong>r,where the term remain<strong>de</strong>r collects all remaining monomials in the pure jetvariab<strong>les</strong>.In addition, let us remind what we have observed and used in a previousco-signed work.Lemma 2.21. ([GM2003a], p. 536) For κ 4, nine among the monomialsof Y κ are of the following general form:(2.22) ⎧Y κ = Y x κ + [ Cκ 1 Y x κ−1 y − X x κ]y1 + [ Cκ 2 Y x κ−2 y − Cκ 1 X ]x κ−1 y2 +⎪⎨ + [ Cκ 2 Y x 2 y − Cκ 3 X x 3]yκ−2 + [ Cκ 1 Y xy − Cκ 2 X x 2]yκ−1 +⎪⎩+ [ C 1 κ Y y 2 − κ 2 X xy]y1 y κ−1 + [ −C 2 κ X y]y2 y κ−1 ++ [ Y y − C 1 κ X x]+[−C1κ+1 X y]y1 y κ + remain<strong>de</strong>r,where the term remain<strong>de</strong>r <strong>de</strong>notes all the remaining monomials, and whereCκ λ := κ!is a notation for the binomial coefficient which occupies <strong>les</strong>s(κ−λ)! λ!space in Latex “equation mo<strong>de</strong>” than the classical notation( κ(2.23).λ)Now, we state directly the final theorem, without further inductive or intuitiveinformation.Theorem 2.24. For κ 1, we have:(2.25)∑κ+1∑Y κ = Y x κ +d=11λ 1


Once the correct theorem is formulated, its proof follows by accessibleinduction arguments which will not be <strong>de</strong>veloped here. It is better to continuethrough and to examine thorougly the case of several variab<strong>les</strong>, sinceit will help us consi<strong>de</strong>rably to explain how we discovered the exact valuesof the integer coefficients A (µ 1,λ 1 ),...,(µ d ,λ d )κ and B (µ 1,λ 1 ),...,(µ d ,λ d )κ .3172.26. Verification and application. Before proceeding further, let usrapidly verify that the above general formula (2.25) is correct by inspectingtwo instances extracted from Y 5 .Firstly, the coefficient of (y 1 ) 3 y 3 in Y 5 is obtained by putting κ = 5,d = 2, λ 1 = 1, µ 1 = 3, λ 2 = 3 and µ 2 = 1 in the general formula (2.25),which yields:(2.27)[0 − 5 · 4 · 3 · 2 · 1 · 6 ](1!) 3 3! (3!) 1 1! X y 3 = [−20 X y 3].This value is the same as in the original formula (2.10): confirmation.Secondly, the coefficient of y 1 (y 2 ) 2 in Y 5 is obtained by κ = 5, d = 2,λ 1 = 1, µ 1 = 1, λ 2 = 2 and µ 2 = 2 in the general formula (2.25), whichyields:(2.28) [ 5 · 4 · 3 · 2 · 1(1!) 1 1! (2!) 2 2! Y y 3 − 5 · 4 · 3 · 2 · 5 ](1!) 1 1! (2!) 2 2! X xy 2 = [15 Y y 3 − 75 X xy 2].This value is the same as in the original formula (2.10); again: confirmation.Finally, applying our general formula (2.25), we <strong>de</strong>duce the value of Y 6without having to use Y 5 and the induction formulas (2.4), which shortenssubstantially the computations.


318For the plea<strong>sur</strong>e, we obtain:(2.29)⎧Y 6 = Y x 6 + [ 6Y x 5 y − X x 6]y1 + [ 15Y x 4 y 2 − 6X x y] 5 (y1 ) 2 ++ [ 20Y x 3 y 3 − 15X ]x 4 y 2 (y1 ) 3 + [ 15Y x 2 y 4 − 20X ]x 3 y 3 (y1 ) 4 ++ [ ]6Y xy 5 − 15X x 2 y 4 (y1 ) 5 + [ Y y 6 − 6X xy 5](y1 ) 6 + [ −X y 6](y1 ) 7 ++ [ 15Y x 4 y − 6X x 5]y2 + [ 60Y x 3 y 2 − 45X x y] 4 y1 y 2 ++ [ 90Y x 2 y 3 − 120X ]x 3 y 2 (y1 ) 2 y 2 + [ ]60Y xy 4 − 150X x 2 y 3 (y1 ) 3 y 2 ++ [ 15Y y 5 − 90X xy 4](y1 ) 4 y 2 + [ −21X y 5](y1 ) 5 y 2 ++ [ 45Y x 2 y 2 − 60X x y] 3 (y2 ) 2 + [ ]90Y xy 3 − 225X x 2 y 2 y1 (y 2 ) 2 ++ [ 45Y y 4 − 270X xy 3](y1 ) 2 (y 2 ) 2 + [ −210X y 4](y1 ) 3 (y 2 ) 2 ++ [ 15Y y 3 − 90X xy 2](y2 ) 3 + [ −105X y 3]y1 (y 2 ) 3 +⎪⎨ + [ 20Y x 3 y − 15X x 4]y3 + [ 60Y x 2 y 2 − 80X x y] 3 y1 y 3 ++ [ ]60Y xy 3 − 150X x 2 y 2 (y1 ) 2 y 3 + [ 20Y y 4 − 120X xy 3](y1 ) 3 y 3 ++ [ −35X y 4](y1 ) 4 y 3 + [ 60Y xy 2 − 150X x y] 2 y2 y 3 ++ [ 60Y y 3 − 360X xy 2]y1 y 2 y 3 + [ −210X y 3](y1 ) 2 y 2 y 3 ++ [ −105X y 2](y2 ) 2 y 3 + [ ]10Y y 2 − 60X xy (y3 ) 2 ++ [ −70X y 2]y1 (y 3 ) 2 + [ 15Y x 2 y − 20X x 3]y4 ++ [ 30Y xy 2 − 75X x y] 2 y1 y 4 + [ 15Y y 3 − 90X xy 2](y1 ) 2 y 4 ++ [ −35X y 3](y1 ) 3 y 4 + [ ]15Y y 2 − 90X xy y2 y 4 ++ [ −105X y 2]y1 y 2 y 4 + [−35X y ]y 3 y 4 + [6Y xy − 15X x 2]y 5 ++ [ ]6Y y 2 − 36X xy y1 y 5 + [ −21X y 2](y1 )⎪⎩2 y 5 + [−21X y ]y 2 y 5 ++ [Y y − 6X y ]y 6 + [−7X y ] y 1 y 6 .2.30. Deduction of the classical Faà di Bruno formula. Let x, y ∈ K andlet g = g(x), f = f(y) be two C ∞ -smooth functions K → K. Consi<strong>de</strong>rthe composition h := f ◦ g, namely h(x) = f(g(x)). For λ ∈ N withλ 1, simply <strong>de</strong>note by g λ the λ-th <strong>de</strong>rivative dλ gdx λ and similarly for h λ .Also, abbreviate f λ := dλ fdy λ .


By the classical formula for the <strong>de</strong>rivative of a composite function, wehave h 1 = f 1 g 1 . Further computations provi<strong>de</strong> the following list of subsequent<strong>de</strong>rivatives of h:(2.31) ⎧h 1 = f 1 g 1 ,⎪⎨h 4 = f 4 (g 1 ) 4 + 6 f 3 (g 1 ) 2 g 2 + 3 f 2 (g 2 ) 2 + 4 f 2 g 1 g 3 + f 1 g 4 ,h 5 = f 5 (g 1 ) 5 + 10 f 4 (g 1 ) 3 g 2 + 15 f 3 (g 1 ) 2 g 3 + 10 f 3 g 1 (g 2 ) 2 +⎪⎩h 2 = f 2 (g 1 ) 2 + f 1 g 2 ,h 3 = f 3 (g 1 ) 3 + 3 f 2 g 1 g 2 + f 1 g 3 ,+ 10 f 2 g 2 g 3 + 5 f 2 g 1 g 4 + f 1 g 5 ,h 6 = f 6 (g 1 ) 6 + 15 f 5 (g 1 ) 4 g 2 + 45 f 4 (g 1 ) 2 (g 2 ) 2 + 15 f 3 (g 2 ) 3 ++ 20 f 4 (g 1 ) 3 g 3 + 60 f 3 g 1 g 2 g 3 + 10 f 2 (g 3 ) 2 + 15 f 3 (g 1 ) 2 g 4 ++ 15 f 2 g 2 g 4 + 6 f 2 g 1 g 5 + f 1 g 6 .Theorem 2.32. For every integer κ 1, the κ-th <strong>de</strong>rivative of the compositefunction h = f ◦ g may be expressed as an explicit polynomial in the partial<strong>de</strong>rivatives of f and of g having integer coefficients:(2.33)d κ hκ∑dx = ∑ ∑ ∑κd=11λ 1


320Define the differential operators(2.35) ( )∂ ∂F 2 := g 2 + g 1 f 2 ,∂g 1 ∂f 1(∂ ∂ ∂F 3 := g 2 + g 3 + g 1 f 2 + f 3∂g 1 ∂g 2 ∂f 1)∂,∂f 2· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·(∂ ∂ ∂F λ := g 2 + g 3 + · · · + g λ + g 1 f 2∂g 1 ∂g 2 ∂g λ−1Then we have∂∂f 1+ f 3∂∂f 2+ · · · + f λ)∂.∂f λ−1(2.36)h 2 = F 2 (h 1 ),h 3 = F 3 (h 2 ),· · · · · · · · · · · · · · ·h λ = F λ (h λ−1 ).§3. SEVERAL INDEPENDENT VARIABLES AND ONE DEPENDENTVARIABLE3.1. Simplified adapted notations. As announced after the statement ofTheorem 2.24, it is only after we have treated the case of several in<strong>de</strong>pen<strong>de</strong>ntvariab<strong>les</strong> that we will un<strong>de</strong>rstand perfectly the general formula (2.25), validin the case of one in<strong>de</strong>pen<strong>de</strong>nt variable and one <strong>de</strong>pen<strong>de</strong>nt variable. We willdiscover massive formal computations, exciting our computational intuition.Thus, assume n 1 and m = 1, let κ ∈ N with κ 1 and simply <strong>de</strong>note(instead of (1.2)) the jet variab<strong>les</strong> by:(3.2)(x i , y, y i1 , y i1 ,i 2, . . .,y i1 ,i 2 ,...,i κ).Also, instead of (1.30), <strong>de</strong>note the κ-th prolongation of a vector field by:(3.3) ⎧L ⎪⎨(κ) =⎪⎩n∑i=1X i+ · · · +∂∂x + Y ∂ n∑i ∂y +n∑i 1 ,i 2 ,...,i κ=1i 1 =1Y i1 ,i 2 ,...,i κY i1∂∂y i1+∂∂y i1 ,i 2 ,...,i κ.n∑i 1 ,i 2 =1Y i1 ,i 2∂∂y i1 ,i 2+


The induction formulas are⎧(3.4)⎪⎨Y i1 := D 1 i 1(Y ) −Y i1 ,i 2:= D 2 i 2(Y i1 ) −n∑ (D ) i 1 1 Xky k ,k=1n∑ (D ) i 1 2 Xky i1 ,k,k=1· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·( )n∑ (⎪⎩ Y i1 ,i 2 ,...,i κ:= Di κ Yi1 κ ,i 2 ,...,i κ−1 − D ) i 1 κ Xky i1 ,i 2 ,...,i κ−1 ,k,are <strong>de</strong>fined as in (1.22), drop-where the total differentiation operators Di λ ′ping the sums ∑ mj ′ =1 and the indices j′ .k=13213.5. Two instructing explicit computations. To begin with, let us computeY i1 . With Di 1 1= ∂ + y ∂∂x i 1 i 1, we have:∂yn∑ (Y i1 = D i1 (Y ) − Di 1 1 Xk 1)yk1(3.6)k 1 =1= Y x i 1 + Y y y i1 −n∑k 1 =1X k 1x i 1 y k 1−n∑k 1 =1X k 1y y i1 y k1 .Searching for formal harmony and for coherence with the formula (2.6) 1 ,we must inclu<strong>de</strong> the term Y y y i1 insi<strong>de</strong> the sum ∑ nk 1 =1 [·]y k 1. Using theKronecker symbol, we may write:n∑ [(3.7) Y y y i1 ≡ δk 1]i 1Y y yk1 .k 1 =1k 1 =1Also, we may rewrite the last term of (3.6) with a double sum:n∑n∑ [(3.8) − X k 1y y i1 y k1 ≡ −δk 1]i 1X k 2y yk1 y k2 .k 1 ,k 2 =1From now on and up to equation (3.39), we shall abbreviate any sum ∑ nk=1from 1 to n as ∑ k. Putting everything together, we get the final <strong>de</strong>siredperfect expression of Y i1 :(3.9) Y i1 = Y x i 1 + ∑ [δk 1]i 1Y y − X k 1x i yk1 + ∑ [1−δk 1]i 1X k 2y yk1 y k2 .k 1 k 1 ,k 2This completes the first explicit computation.The second one is about Y i1 ,i 2. It becomes more <strong>de</strong>licate, because severalalgebraic transformations must be achieved until the final satisfying formulais obtained. Our goal is to present each step very carefully, explaining every


322tiny <strong>de</strong>tail. Without such a care, it would be impossible to claim that some ofour subsequent computations, for which we will not provi<strong>de</strong> the intermediatesteps, may be redone and verified. Consequently, we will expose our ru<strong>les</strong>of formal computation thoroughly.Replacing the value of Y 1 just obtained in the induction formula (3.4) 2and <strong>de</strong>veloping, we may conduct the very first steps of the computation:Y i1 ,i 2= Di 2 2(Y i1 ) − ∑ )Di 1 2(X k 1y i1 ,k 1k 1=⎛⎝ ∂∂x i 2 + y i 2∂∂y + ∑ k 1y i2 ,k 1∂⎞ ⎛⎠∂y k1⎝Y x i 1 + ∑ k 1[δ k 1i 1Y y − X k 1x i 1]y k1 +⎞+ ∑ ] [−δ k 1i 1X k 2y y k1 y k2⎠ − ∑ ][X k 1x + y i 2 i 2X k 1y y i1 ,k 1k 1 ,k 2 k 1(3.10)( ∂=∂x i 2) ⎛ ⎞⎝Y x i 1 + ∑ [δ k 1i 1Y y − X k 1]yx i 1 k1 + ∑ [ ]−δ k 1i 1X k 2y y k1 y k2⎠ +k 1 k 1 ,k 2( ) ⎛ ⎞∂+ y i2⎝Y∂y x i 1 + ∑ [δ k 1i 1Y y − X k 1]yx i 1 k1 + ∑ [ ]−δ k 1i 1X k 2y y k1 y k2⎠+k 1 k 1 ,k 2⎛ ⎞ ⎛+ ⎝ ∑ ∂y i2 ,k 1⎠∂y k1k 1+ ∑ k 1[−X k 1x i 2⎝Y x i 1 + ∑ k 1[δ k 1i 1Y y − X k 1x i 1]y k1 ,i 1+ ∑ k 1[−X k 1y]y i2 y i1 ,k 1⎞]y k1 + ∑ [ ]−δ k 1i 1X k 2y y k1 y k2⎠ +k 1 ,k 2= Y x i 1x i 2 + ∑ [δ k 1i 1Y x i 2y − X k 1]yx i 1x i 2 k1 + ∑ [ ]−δ k 1i 1X k 2yx i 2y k1 y k2 +k 1 k 1 ,k 2+ Y x i 1y y i2 + ∑ [δ k 1i 1Y yy − X k 1]yx i 1y k1 y i2 + ∑ [ ]−δ k 1i 1X k 2yy y k1 y k2 y i2 +k 1 k 1 ,k 2+ ∑ [δ k 1i 1Y y − X k 1]yx i 1 i2 ,k 1+ ∑ [−δ k 1i 1X k 2y]y k2 y i2 ,k 1+ ∑ [ ]−δ k 1i 1X k 2y y k1 y i2 ,k 2+k 1 k 1 ,k 2 k 1 ,k 2+ ∑ [−X k 1]yx i 2 k1 ,i 1+ ∑ [k 1 k 1−X k 1y]y i2 y i1 ,k 1.Some explanations are nee<strong>de</strong>d about the computation of the last two termsof line 11, i.e. about the passage from line 7 of (3.10) just above to line 11.


We have to compute:( ) ⎛ ⎞∑ ∂(3.11)y i2,k 1⎝ ∑ [ ]−δ k1i∂y 1Xyk2y k1 y k2⎠ .k1k 1 k 1,k 2This term is of the form( ) ⎛ ⎞∑ ∂(3.12)A k1⎝ ∑[B k1,k∂y2] y k1 y k2⎠ ,k1k 1 k 1,k 2where the terms B k1 ,k 2are in<strong>de</strong>pen<strong>de</strong>nt of the pure first jet variab<strong>les</strong> y x k. Bythe rule of Leibniz for the differentiation of a product, we may write(3.13)( ) ⎛ ⎞∑ ∂A k1⎝ ∑[B k1,k∂y2]y k1 y k2⎠ =k1k 1 k 1,k 2⎛⎞⎛⎞= ∑ [B k1,k 2] y k2⎝ ∑ ∂A k ′1(y k1 ) ⎠ + ∑ [B k1,k∂y2] y k1⎝ ∑ ∂A k ′k 1,k 2 k 1′ k ′ 2(y k2 ) ⎠1∂yk 1,k 2 k 2′ k ′2= ∑ k 1,k 2[B k1,k 2] y k2 A k1 + ∑ k 1,k 2[B k1,k 2] y k1 A k2 .This is how we have written line 11 of (3.10).Next, the first term Y x i 1y y i2 in line 10 of (3.10) is not in a suitable shape.For reasons of harmony and coherence, we must insert it insi<strong>de</strong> a sum of theform ∑ k 1[·] y k1 . Hence, using the Kronecker symbol, we transform:(3.14) Y x i 1y y i2 ≡ ∑ k 1[δk 1i 2Y x i 1y]yk1 .Also, we must “summify” the seven other terms, remaining in lines 10, 11and 12 of (3.10). Sometimes, we use the symmetry y i2 ,k 1≡ y k1 ,i 2withoutmention. Similarly, we get:∑(3.15)[δk 1]i 1Y yy − X k 1x i 1 y yk1 y i2 ≡ ∑ [k 1 k 1 ,k 2∑ ]yk1 y k2 y i2 ≡ ∑[−δk 1i 1X k 2yyk 1 ,k 2∑[ δk 1i 1Y y − X k 1x i 1k 1δ k 1i 1δ k 2i 2Y yy − δ k 2[−δk 1i 1δ k 3i 2X k 2yyk 1 ,k 2 ,k 3i 2X k 1x i 1y]yk1 y k2 y k3 ,]y k1 y k2 ,]yk1 ,i 2≡ ∑ k 1 ,k 2[δk 1i 1δ k 2i 2Y y − δ k 2i 2X k 1x i 1]yk1 ,k 2,∑ [−δk 1]i 1X k 2y yk2 y k1 ,i 2= ∑ [−δk 2]i 1X k 1y yk1 y k2 ,i 2k 1 ,k 2 k 1 ,k 2≡∑ [−δk 2]i 1δ k 3i 2X k 1y yk1 y k2 ,k 3,k 1 ,k 2 ,k 3323


324∑[−δk 1i 1X k 2yk 1 ,k 2∑ [−Xk 1x i 2k 1∑[−Xk 1yk 1]yk1 y k2 ,i 2≡ ∑[−δk 1i 1δ k 3i 2X k 2yk 1 ,k 2 ,k 3]yk1 ,i 1≡ ∑ k 1 ,k 2[−δk 2i 1X k 1x i 2]yk1 ,k 2,]yi2 y k1 ,i 1= ∑ [−Xk 2]y yi2 y k2 ,i 1k 2≡]yk1 y k2 ,k 3,∑ [−δk 1]i 2δ k 3i 1X k 2y yk1 y k2 ,k 3.k 1 ,k 2 ,k 3In the sequel, for products of Kronecker symbols, it will be convenient toadopt the following self-evi<strong>de</strong>nt contracted notation:(3.16) δ k 1i 1δ k 2i 2≡ δ k 1,k 2i 1 , i 2; generally : δ k 1i 1δ k 2i 2 · · ·δ k λi λ≡ δ k 1,k 2 ,···,k λi 1 , i 2 , ···,i λ.Re-inserting plainly these eight summified terms (3.14), (3.15) in the lastexpression (3.10) of Y i1 ,i 2(lines 10, 11 and 12), we get:(3.17)Y i1 ,i 2= Y x i 1x i + ∑ ]2[δ k 11 i 1Y x i 2y − X k 1yx i 1x i 2 k1k 12+ ∑ ] [−δ k 1i 1X k 2yx i 2y k1 y k2 +k 1 ,k 23+ ∑ k 1[δ k 1i 2Y x i 1y]y k12+ ∑ ][δ k 1,k 2i 1 , i 2Y yy − δ k 2i 2X k 1yx i 1y k1 y k2 +k 1 ,k 23+ ∑ [ ]−δ k 1,k 3i 1 , i 2X k 2yy y k1 y k2 y k3k 1 ,k 2 ,k 34+ ∑ [−δ k 2,k 3i 1 , i 2X k 1yk 1 ,k 2 ,k 3+ ∑ ] [−δ k 2i 1X k 1yx i 2 k1 ,k 2k 1 ,k 25]y k1 y k2 ,k 36+ ∑ ][δ k 1,k 2i 1 , i 2Y y − δ k 2i 2X k 1yx i 1 k1 ,k 2+k 1 ,k 25+ ∑ [ ]−δ k 1,k 3i 1 , i 2X k 2y y k1 y k2 ,k 3+k 1 ,k 2 ,k 36+ ∑ [−δ k 1,k 3i 2 , i 1X k 2yk 1 ,k 2 ,k 3]y k1 y k2 ,k 3.6


Next, we gather the un<strong>de</strong>rlined terms, or<strong>de</strong>ring them according to their number.This yields 6 collections of sums of monomials in the pure jet variab<strong>les</strong>:(3.18)Y i1 ,i 2= Y x i 1x i 2 + ∑ ][δ k 1i 1Y x i 2y + δ k 1i 2Y x i 1y − X k 1yx i 1x i 2 k1 +k 1+ ∑ ][δ k 1,k 2i 1 , i 2Y yy − δ k 1i 1X k 2x i 2y − δk 2i 2X k 1yx i 1y k1 y k2 +k 1 ,k 2+ ∑ [ ]−δ k 1,k 3i 1 , i 2X k 2yy y k1 y k2 y k3 +k 1 ,k 2 ,k 3+ ∑ k 1 ,k 2[δ k 1,k 2i 1 , i 2Y y − δ k 2i 2X k 1x i 1 − δk 2i 1X k 1x i 2]y k1 ,k 2++ ∑ []−δ k 2,k 3i 1 , i 2X k 1y − δ k 1,k 3i 1 , i 2X k 2y − δ k 1,k 3i 2 , i 1X k 2y y k1 y k2 ,k 3.k 1 ,k 2 ,k 3To attain the real perfect harmony, this last expression has still to be workedout a little bit.Lemma 3.19. The final expression of Y i1 ,i 2is as follows:(3.20)⎧Y i1 ,i 2= Y x i 1x i 2 + ∑ [δk 1i 1Y x i 2y + δ k 1i 2Y x i 1y − X k 1x i 1x 2] i yk1 +k 1⎪⎨⎪⎩+ ∑ ][δ k 1,k 2i 1 , i 2Y yy − δ k 1i 1X k 2x i 2y − δk 1i 2X k 2yx i 1y k1 y k2 +k 1 ,k 2+ ∑ [ ]−δ k 1,k 2i 1 , i 2X k 3yy y k1 y k2 y k3 +k 1 ,k 2 ,k 3+ ∑ k 1 ,k 2[δ k 1,k 2i 1 , i 2Y y − δ k 1i 1X k 2x i 2 − δk 1i 2X k 2x i 1]y k1 ,k 2++ ∑ []−δ k 1,k 2i 1 , i 2X k 3y − δ k 3,k 1i 1 , i 2X k 2y − δ k 2,k 3i 1 , i 2X k 1y y k1 y k2 ,k 3.k 1 ,k 2 ,k 3Proof. As promised, we explain every tiny <strong>de</strong>tail.The first lines of (3.18) and of (3.20) are exactly the same. For the transformationsof terms in the second, in the third and in the fourth lines, weuse the following <strong>de</strong>vice. Let Υ k1 ,k 2be an in<strong>de</strong>xed quantity which is symmetric:Υ k1 ,k 2= Υ k2 ,k 1. Let A k1 ,k 2be an arbitrary in<strong>de</strong>xed quantity. Thenobviously:∑(3.21)A k1 ,k 2Υ k1 ,k 2= ∑ A k2 ,k 1Υ k1 ,k 2.k 1 ,k 2 k 1 ,k 2Similar relations hold with a quantity Υ i1 ,i 2 ,...,i λwhich is symmetric withrespect to its λ indices. Consequently, in the second, in the third and in325


326the fourth lines of (3.18), we may permute freely certain indices in some ofthe terms insi<strong>de</strong> the brackets. This yields the passage from lines 2, 3 and 4of (3.18) to lines 2, 3 and 4 of (3.20).It remains to explain how we pass from the fifth (last) line of (3.18) to thefifth (last) line of (3.20). The bracket in the fifth line of (3.18) contains threeterms: [−T 1 − T 2 − T 3 ]. The term T 3 involves the product δ k 1,k 3i 2 , i 1, which werewrite as δ k 3,k 1i 1 , i 2, in or<strong>de</strong>r that i 1 appears before i 2 . Then, we rewrite the threeterms in the new or<strong>de</strong>r [−T 2 − T 3 − T 1 ], which yields:(3.22)∑ [−δ k 1,k 3i 1 , i 2X k 2y − δ k 3,k 1i 1 , i 2X k 2y − δ k 2,k 3i 1 , i 2X k 1yk 1 ,k 2 ,k 3]y k1 y k2 ,k 3.It remains to observe that we can permute k 2 and k 3 in the first term −T 2 ,which yields the last line of (3.20). The <strong>de</strong>tailed proof is complete.3.23. Final perfect expression of Y i1 ,i 2 ,i 3. Thanks to similar (longer) computations,we have obtained an expression of Y i1 ,i 2 ,i 3which we consi<strong>de</strong>r tobe in final harmonious shape. Without copying the intermediate steps, let uswrite down the result. The comments which are necessary to read it and tointerpret it start just below.Y i1 ,i 2 ,i 3= Y x i 1x i 2x i 3 + ∑ k 1[δ k 1i 1Y x i 2x i 3y + δ k 1i 2Y x i 1x i 3y + δ k 1i 3Y x i 1x i 2y − X k 1x i 1x i 2x i 3]y k1 +(3.24)+ ∑ k 1 ,k 2[δ k 1,k 2i 1 , i 2Y x i 3y 2 + δ k 1,k 2i 3 , i 1Y x i 2y 2 + δ k 1,k 2i 2 , i 3Y x i 1y 2−]−δ k 1i 1X k 2x i 2x i 3y − δk 1i 2X k 2x i 1x i 3y − δk 1i 3X k 2yx i 1x i 2y k1 y k2 ++ ∑ []δ k 1,k 2 ,k 3i 1 , i 2 , i 3Y y 3 − δ k 1,k 2i 1 , i 2X k 3− δ k 1,k 2x i 3y 2 i 1 , i 3X k 3− δ k 1,k 2x i 2y 2 i 2 , i 3X k 3yx i 1y 2 k1 y k2 y k3 +k 1 ,k 2 ,k 3+ ∑ [−δ k 1,k 2 ,k 3i 1 , i 2 , i 3X k 4]yy 3 k1 y k2 y k3 y k4 +k 1 ,k 2 ,k 3 ,k 4+ ∑ k 1 ,k 2[δ k 1,k 2i 1 , i 2Y x i 3y + δ k 1,k 2i 3 , i 1Y x i 2y + δ k 1,k 2i 2 , i 3Y x i 1y −]−δ k 1i 1X k 2x i 2x − i 3 δk 1i 2X k 2x i 1x − i 3 δk 1i 3X k 2yx i 1x i 2 k1 ,k 2++ ∑ [δ k 1,k 2 ,k 3i 1 , i 2 , i 3Y y 2 + δ k 3,k 1 ,k 2i 1 , i 2 , i 3Y y 2 + δ k 2,k 3 ,k 1i 1 , i 2 , i 3Y y 2−k 1 ,k 2 ,k 3−δ k 1,k 2i 1 , i 2X k 3x i 3y − δk 3,k 1i 1 , i 2X k 2x i 3y − δk 2,k 3i 1 , i 2X k 1x i 3y −−δ k 1,k 2i 1 , i 3X k 3x i 2y − δk 3,k 1i 1 , i 3X k 2x i 2y − δk 2,k 3i 1 , i 3X k 1x i 2y −−δ k 1,k 2i 2 , i 3X k 3x i 1y − δk 3,k 1i 2 , i 3X k 2x i 1y − δk 2,k 3i 2 , i 3X k 1x i 1y]y k1 y k2 ,k 3+


+ ∑k 1 ,k 2 ,k 3 ,k 4[−δ k 1,k 2 ,k 3i 1 , i 2 , i 3X k 4y 2 − δ k 2,k 3 ,k 1i 1 , i 2 , i 3X k 4y 2 − δ k 3,k 2 ,k 1i 1 , i 2 , i 3X k 4y 2 −−δ k 3,k 4 ,k 1i 1 , i 2 , i 3X k 2y 2 − δ k 3,k 1 ,k 4i 1 , i 2 , i 3X k 2y 2 − δ k 1,k 3 ,k 4i 1 , i 2 , i 3X k 2+ ∑ [−δ k 1,k 2 ,k 3i 1 , i 2 , i 3X k 4y − δ k 2,k 3 ,k 1i 1 , i 2 , i 3X k 4y − δ k 3,k 1 ,k 2i 1 , i 2 , i 3X k 4yk 1 ,k 2 ,k 3 ,k 4+ ∑k 1 ,k 2 ,k 3[δ k 1,k 2 ,k 3i 1 , i 2 , i 3Y y − δ k 1,k 2i 1 , i 2X k 3x i 3 − δk 1,k 2i 1 , i 3X k 3x i 2 − δk 1,k 2i 2 , i 3X k 3x i 1327]yy 2 k1 y k2 y k3 ,k 4+]y k1 ,k 2y k3 ,k 4+]y k1 ,k 2 ,k 3++ ∑ [−δ k 1,k 2 ,k 3i 1 , i 2 , i 3X k 4y − δ k 4,k 1 ,k 2i 1 , i 2 , i 3X k 3y − δ k 3,k 4 ,k 1i 1 , i 2 , i 3X k 2y − δ k 2,k 3 ,k 4i 1 , i 2 , i 3X k 1yk 1 ,k 2 ,k 3 ,k 43.25. Comments, analysis and induction. First of all, by comparing thisexpression of Y i1 ,i 2 ,i 3with the expression (2.8) of Y 3 , we easily guess a partof the (inductional) dictionary beween the cases n = 1 and the case n 1.For instance, the three monomials [·](y 1 ) 3 , [·] y 1 y 2 and [·] (y 1 ) 2 y 2 in Y 3 arereplaced in Y i1 ,i 2 ,i 3by the following three sums:(3.26) ∑∑∑[·]y k1 y k2 y k3 , [·] y k1 y k2 ,k 3, and [·]y k1 y k2 y k3 ,k 4.k 1 ,k 2 ,k 3 k 1 ,k 2 ,k 3 k 1 ,k 2 ,k 3 ,k 4Similar formal correspon<strong>de</strong>nces may be observed for all the monomials ofY 1 , Y i1 , of Y 2 , Y i1 ,i 2and of Y 3 , Y i1 ,i 2 ,i 3. Generally and inductively speaking,the monomial(3.27) [·](y λ1 ) µ1 · · ·(y λd ) µ dappearing in the expression (2.25) of Y κ should be replaced by a certainmultiple sum generalizing (3.26). However, it is necessary to think, to pauseand to search for an appropriate formalism before writing down the <strong>de</strong>siredmultiple sum.The jet variable y λ1 should be replaced by a jet variable corresponding toa λ 1 -th partial <strong>de</strong>rivative, say y k1 ,...,k λ1, where k 1 , . . ., k λ1 = 1, . . .,n. Forthe moment, to simplify the discussion, we leave out the presence of a sumof the form ∑ k 1 ,...,k λ1. The µ 1 -th power (y λ1 ) µ 1should be replaced not by(y k1 ,...,k λ1) µ1,but by a product of µ1 different jet variab<strong>les</strong> y k1 ,...,k λ1of lengthλ, with all indices k α = 1, . . .,n being distinct. This rule may be confirmedby inspecting the expressions of Y i1 , of Y i1 ,i 2and of Y i1 ,i 2 ,i 3. So y k1 ,...,k λ1should be <strong>de</strong>veloped as a product of the form(3.28) y k1 ,...,k λ1y kλ1 +1,...,k 2λ1 · · · y k(µ1 −1)λ 1 +1,...,k µ1 λ 1,where(3.29) k 1 , . . .,k λ1 , . . .,k µ1 λ 1= 1, . . ., n.]y k1 y k2 ,k 3 ,k 4.


328Consi<strong>de</strong>r now the product (y λ1 ) µ 1(y λ2 ) µ 2. How should it <strong>de</strong>velope in thecase of several in<strong>de</strong>pen<strong>de</strong>nt variab<strong>les</strong>? For instance, in the expression ofY i1 ,i 2 ,i 3, we have <strong>de</strong>veloped the product (y 1 ) 2 y 2 as y k1 y k2 y k3 ,k 4. Thus, areasonable proposal of formalism would be that the product (y λ1 ) µ 1(y λ2 ) µ 2should be <strong>de</strong>veloped as a product of the form(3.30)wherey k1 ,...,k λ1y kλ1 +1,...,k 2λ1 · · · y k(µ1 −1)λ 1 +1,...,k µ1 λ 1y kµ1 λ 1 +1,...,k µ1 λ 1 +λ 2· · · y kµ1 λ 1 +(µ 2 −1)λ 2 +1,...,k µ1 λ 1 +µ 2 λ 2,(3.31) k 1 , . . .,k λ1 , . . .,k µ1 λ 1, . . ., k µ1 λ 1 +µ 2 λ 2= 1, . . ., n.However, when trying to write down the <strong>de</strong>velopment of the general monomial(y λ1 ) µ 1(y λ2 ) µ2 · · ·(y λd ) µ d, we would obtain the complicated product(3.32)y k1 ,...,k λ1y kλ1 +1,...,k 2λ1 · · · y k(µ1 −1)λ 1 +1,...,k µ1 λ 1y kµ1 λ 1 +1,...,k µ1 λ 1 +λ 2...y kµ1 λ 1 +(µ 2 −1)λ 2 +1,...,k µ1 λ 1 +µ 2 λ 2......... ............... ............... ...............y kµ1 λ 1 +···+µ d−1 λ d−1 +1,...,k µ1 λ 1 +···+µ d−1 λ d−1 +λ d· · ·· · · y kµ1 λ 1 +···+µ d−1 λ d−1 +(µ d −1)λ d +1,...,k µ1 λ 1 +···+µ d λ d.Essentially, this product is still readable. However, in it, some of the integersk α have a too long in<strong>de</strong>x α, often involving a sum. Such a lengthof α would be very inconvenient in writing down and in reading the generalKronecker symbols δ kα 1 ,...,kα λi 1 ,......,i λwhich should appear in the final expressionof Y i1 ,...,i κ. One should read in advance Theorem 3.73 below to observethe presence of such multiple Kronecker symbols. Consequently, forα = 1, . . ., µ 1 λ 1 , . . .,µ 1 λ 1 + · · · + µ d λ d , we have to <strong>de</strong>note the indicesk α differently.Notational convention 3.33. We <strong>de</strong>note d collection of µ d groups of λ d (apriori distinct) integers k α = 1, . . ., n by(3.34)k 1:1:1 , . . .,k} {{ 1:1:λ1 , . . .,k} 1:µ1 :1, . . .,k 1:µ1 :λ} {{ }1λ 1 λ} {{1}µ 1,k 2:1:1 , . . .,k} {{ 2:1:λ2 , . . .,k} 2:µ2 :1, . . .,k 2:µ2 :λ} {{ }2λ 2 λ} {{2}µ 2,. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .k d:1:1 , . . .,k} {{ d:1:λd , . . ., k} d:µd :1, . . .,k d:µd :λ} {{ } dλ d.λ dµ d} {{ }


Correspondingly, we i<strong>de</strong>ntify the set(3.35){1,... ,λ 1 ,... ,µ 1 λ 1 ,...... ,µ 1 λ 1 + µ 2 λ 2 ,... ...,µ 1 λ 1 + µ 2 λ 2 + · · · + µ d λ d }of all integers α from 1 to µ 1 λ 1 + µ 2 λ 2 + · · · + µ d λ d with the followingspecific set(3.36) {1:1:1,... ,1:1:λ} {{ 1 ,...,1:µ} 1 :λ 1 ,... ,2:µ 2 :λ 2 ,... ,d:µ d :λ d },λ}1{{ }µ 1 λ 1} {{ }µ 1 λ 1 +µ 2 λ 2} {{ }µ 1 λ 1 +µ 2 λ 2 +···+µ d λ dwritten in a lexicographic way which emphasizes clearly the subdivision ind collections of µ d groups of λ d integers.With this notation at hand, we see that the <strong>de</strong>velopment, in several in<strong>de</strong>pen<strong>de</strong>ntvariab<strong>les</strong>, of the general monomial (y λ1 ) µ1 · · ·(y λd ) µ d, may bewritten as follows:(3.37)y k1:1:1 ,...,k 1:1:λ1 · · · y k1:µ1 :1,...,k 1:µ1 :λ 1· · · y kd:1:1 ,...,k d:1:λd · · · · · · y kd:µd :1,...,k d:µd :λ d.Formally speaking, this expression is better than (3.32). Using product symbols,we may even write it un<strong>de</strong>r the slightly more compact form∏∏(3.38)y k1:ν1 :1,...,k 1:ν1 :λ 1· · · y kd:νd :1,...,k d:νd :λ d.1ν 1 µ 1 1ν d µ dNow that we have translated the monomial, we may add all the summationsymbols: the general expression of Y κ (which generalizes our three previousexamp<strong>les</strong> (3.26)) will be of the form:(3.39)Y κ = Y x i 1···x iκ +n∑k 1:1:1 ,...,k 1:1:λ1 =1[?]∏∑κ+1d=1· · ·∑1λ 1


3303.40. Combinatorics of the Kronecker symbols. Our next task is to <strong>de</strong>terminewhat appears insi<strong>de</strong> the brackets [?] of the above equation. We willtreat this rather <strong>de</strong>licate question very progressively. Inductively, we have toguess how we may pass from the bracketed term of (2.25), namely from[ κ · · ·(κ − µ1 λ 1 − · · · − µ d λ d + 1)· Y(λ 1 !) µ 1 µ1 ! · · ·(λ d !) µ d µd ! x κ−µ 1 λ 1 −···−µ d λ d y µ 1 +···+µ d −(3.41) − κ · · ·(κ − µ 1λ 1 − · · · − µ d λ d + 2)(µ 1 λ 1 + · · · + µ d λ d )·(λ 1 !) µ 1 µ1 ! · · ·(λ d !) µ d µd !· X x κ−µ 1 λ 1 −···−µ d λ d +1 y µ 1 +···+µ d −1 ],to the corresponding (still unknown) bracketed term [?].First of all, we examine the following term, extracted from the completeexpression of Y i1 ,i 2 ,i 3(first line of (3.24)):(3.42)n∑k 1 =1[δk 1i 1Y x i 2x i 3y + δ k 1i 2Y x i 1x i 3y + δ k 1i 3Y x i 1x i 2y − X k 1x i 1x i 2x i 3]yk1 .Here, the coefficient [3 Y x 2 y − X x 3] of the monomial y 1 in Y 3 is replacedby the above bracketed terms.Let us precisely analyze the combinatorics. Here, X x 3 is replaced byX k 1x i 1x i 2x , where the lower indices i i 3 1, i 2 , i 3 come from Y i1 ,i 2 ,i 3and wherethe upper in<strong>de</strong>x k 1 is the summation in<strong>de</strong>x. Also, the integer 3 in 3 Y x 2 y isreplaced by a sum of exactly three terms, each involving a single Kroneckersymbol δi k , in which the lower in<strong>de</strong>x is always an in<strong>de</strong>x i = i 1 , i 2 , i 3 and inwhich the upper in<strong>de</strong>x is always equal to the summation in<strong>de</strong>x k 1 . By theway, more generally, we immediately observe that all the successive positiveintegers(3.43) 1, 3, 1, 3, 3, 1, 3, 1, 3, 3, 3, 9, 6, 3, 1, 3, 4appearing in the formula (2.8) for Y 3 are replaced, in the formula (3.24) forY i1 ,i 2 ,i 3, by sums of exactly the same number of terms involving Kroneckersymbols. This observation will be a precious gui<strong>de</strong>. Finally, in the symbolδ k 1i , if i is chosen among the set {i 1 , i 2 , i 3 }, for instance if i = i 1 , it followsthat the <strong>de</strong>velopment of Y x 2 y necessarily involves the remaining indices, forinstance Y x i 2x i 3y . Since there are three choices for i = i 1 , i 2 , i 3 , we recoverthe number 3.Next, comparing [Y yy − 2 X xy ] (y 1 ) 2 with the termn∑ [](3.44) δ k 1,k 2i 1 , i 2Y yy − δ k 1i 1X k 1x i 2y − δk 1i 2X k 1yx i 1y k1 y k2 ,k 1 ,k 2 =1extracted from the complete expression of Y i1 ,i 2(second line of (3.18)),we learn and we guess that the number of Kronecker symbols before Y x γ y δ


must be equal to the number of indices k α minus γ. This rule is confirmedby examining the term (second and third line of (3.24))∑ [δ k 1,k 2i 1 , i 2Y x i 3y 2 + δ k 1,k 2i 3 , i 1Y x i 2y 2 + δ k 1,k 2i 2 , i 3Y x i 1y 2−(3.45)k 1 ,k 2]−δ k 1i 1X k 2x i 2x i 3y − δk 1i 2X k 2x i 1x i 3y − δk 1i 3X k 2yx i 1x i 2y k1 y k2 ,<strong>de</strong>veloping [3 Y xy 2 − 3 X x 2 y] (y 1 ) 2 .Also, we may examine the following term331(3.46)n∑k 1 ,k 2 =1[δ k 1,k 2i 1 , i 2Y x i 3x i 4y 2 + δ k 1,k 2i 1 , i 3Y x i 2x i 4y 2 + δ k 1,k 2i 1 , i 4Y x i 2x i 3y 2++δ k 1,k 2i 2 , i 3Y x i 1x i 4y 2 + δ k 1,k 2i 2 , i 4Y x i 1x i 3y 2 + δ k 1,k 2i 3 , i 4Y x i 1x i 2y 2−−δ k 1i 1X k 1x i 2x i 3x i 4y − δk 1i 2X k 1x i 1x i 2x i 3y − δk 1i 3X k 1x i 1x i 2x i 4y −−δ k 1i 4X k 1x i 1x i 2x i 3y]y k1 y k2 ,extracted from Y i1 ,i 2 ,i 3 ,i 4and <strong>de</strong>veloping [6 Y x 2 y 2 − 4 X x 3 y] (y 1 ) 2 . Wewould like to mention that we have not written the complete expression ofY i1 ,i 2 ,i 3 ,i 4, because it would cover two and a half printed pages.By inspecting the way how the indices are permuted in the multiple Kroneckersymbols of the first two lines of this expression (3.46), we observethat the six terms correspond exactly to the six possible choices of two complementaryor<strong>de</strong>red coup<strong>les</strong> of integers in the set {1, 2, 3, 4}, namely(3.47){1, 2} ∪ {3, 4}, {1, 3} ∪ {2, 4}, {1, 4} ∪ {2, 3},{2, 3} ∪ {1, 4}, {2, 4} ∪ {1, 3}, {3, 4} ∪ {1, 2}.At this point, we start to <strong>de</strong>vise the general combinatorics. Before proceedingfurther, we need some notation.3.48. Permutation groups. For every p ∈ N with p 1, we <strong>de</strong>note by S pthe full permutation group of the set {1, 2, . . ., p − 1, p}. Its cardinal equalsp!. The letters σ and τ will be used to <strong>de</strong>note an element of S p . If p 2, andif q ∈ N satisfies 1 q p−1, we <strong>de</strong>note by S q p the subset of permutationsσ ∈ S p satisfying the two collections of inequalities(3.49)σ(1) < σ(2) < · · · < σ(q) and σ(q +1) < σ(q +2) < · · · < σ(p).The cardinal of S q p equals C q p = p!q! (p−q)! .


332Lemma 3.50. For κ 1, the <strong>de</strong>velopment of (2.20) to several in<strong>de</strong>pen<strong>de</strong>ntvariab<strong>les</strong> (x 1 , . . .,x n ) is:(3.51)⎡⎤n∑Y i1 ,i 2 ,...,i κ= Y x i 1x i 2···x iκ + ⎣ ∑δ k 1i τ(1)Y i x τ(2)···x i τ(κ) y − X k 1 ⎦ yx i 1x i 2 ···x iκ k1 +++n∑k 1 ,k 2 =1n∑⎡k 1 ,k 2 ,k 3 =1+ · · · · · · +++n∑k 1 ,...,k κ=1n∑⎣ ∑τ∈S 2 κ⎡⎣ ∑⎡τ∈S 3 κk 1 ,...,k κ,k κ+1 =1k 1 =1τ∈S 1 κδ k 1, k 2i τ(1) ,i τ(2)Y xi τ(3)···x i τ(κ) y 2 − ∑τ∈S 1 κδ k 1, k 2 , k 3i τ(1) ,i τ(2) ,i τ(3)Y xi τ(4)···x i τ(κ) y 3 −− ∑τ∈S 2 κ⎣δ k 1,...,k κi 1 ,..., i κY y κ −δ k 1i τ(1)X k 2x i τ(2) ···x i τ(κ) yδ k 1, k 2i τ(1),iτ(2)X k 3x i τ(3)···x i τ(κ) y 2 ⎤⎦ y k1 y k2 y k3 +∑τ∈S κ−1κ⎤⎦ y k1 y k2 +δ k 1,......,k κ−1i τ(1) ,...,i τ(κ−1)X kκx i τ(κ) y κ−1 ⎤⎦ y k1 · · · y kκ +[−δ k 1,...,k κi 1 ,..., i κX k κ+1y κ ]y k1 · · · y kκ y kκ+1 + remain<strong>de</strong>r.Here, the term remain<strong>de</strong>r collects all remaining monomials in the pure jetvariab<strong>les</strong> y k1 ,...,k λ.3.52. Continuation. Thus, we have <strong>de</strong>vised how the part of Y i1 ,...,i κwhichinvolves only the jet variab<strong>les</strong> y kα must be written. To proceed further, weshall examine the following term, extracted from Y i1 ,i 2 ,i 3(lines 12 and 13of (3.24))(3.53) ∑ [−δ k 1,k 2 ,k 3i 1 , i 2 , i 3X k 4y− δ k 2,k 3 ,k 12 i 1 , i 2 , i 3X k 4y− δ k 3,k 2 ,k 12 i 1 , i 2 , i 3X k 4y− 2k 1 ,k 2 ,k 3 ,k 4−δ k 3,k 4 ,k 1i 1 , i 2 , i 3X k 2y 2 − δ k 3,k 1 ,k 4i 1 , i 2 , i 3X k 2y 2 − δ k 1,k 3 ,k 4i 1 , i 2 , i 3X k 2y 2 ]y k1 y k2 y k3 ,k 4,which <strong>de</strong>velopes the term [−6 X y 2] (y 1 ) 2 y 2 of Y 3 (third line of (2.8)). Duringthe computation which led us to the final expression (3.24), we organizedthe formula in or<strong>de</strong>r that, in the six Kronecker symbols, the lower indicesi 1 , i 2 , i 3 are all written in the same or<strong>de</strong>r. But then, what is the rule for theappearance of the four upper indices k 1 , k 2 , k 3 , k 4 ?In April 2001, we discovered the rule by inspecting both (3.53) andthe following complicated term, extracted from the complete expression of


Y i1 ,i 2 ,i 3 ,i 4written in one of our manuscripts:∑ [δ k 1,k 2 ,k 3i 1 , i 2 , i 3Y x i 4y 2 + δ k 2,k 1 ,k 3i 1 , i 2 , i 3Y x i 4y 2 + δ k 2,k 3 ,k 1i 1 , i 2 , i 3Y x i 4y 2+k 1 ,k 2 ,k 3(3.54)+ δ k 1,k 2 ,k 3i 1 , i 2 , i 4Y x i 3y 2 + δ k 2,k 1 ,k 3i 1 , i 2 , i 4Y x i 3y 2 + δ k 2,k 3 ,k 1i 1 , i 2 , i 4Y x i 3y 2++ δ k 1,k 2 ,k 3i 1 , i 3 , i 4Y x i 2y 2 + δ k 2,k 1 ,k 3i 1 , i 3 , i 4Y x i 2y 2 + δ k 2,k 3 ,k 1i 1 , i 3 , i 4Y x i 2y 2++ δ k 1,k 2 ,k 3i 2 , i 3 , i 4Y x i 1y 2 + δ k 2,k 1 ,k 3i 2 , i 3 , i 4Y x i 1y 2 + δ k 2,k 3 ,k 1i 2 , i 3 , i 4Y x i 1y 2−− δ k 1,k 2i 1 , i 2X k 3x i 3x i 4y − δk 2,k 1i 1 , i 2X k 3x i 3x i 4y − δk 2,k 3i 1 , i 2X k 1x i 3x i 4y −− δ k 1,k 2i 1 , i 3X k 3x i 2x i 4y − δk 2,k 1i 1 , i 3X k 3x i 2x i 4y − δk 2,k 3i 1 , i 3X k 1x i 2x i 4y −− δ k 1,k 2i 1 , i 4X k 3x i 2x i 3y − δk 2,k 1i 1 , i 4X k 3x i 2x i 3y − δk 2,k 3i 1 , i 4X k 1x i 2x i 3y −− δ k 1,k 2i 2 , i 3X k 3x i 1x i 4y − δk 2,k 1i 2 , i 3X k 3x i 1x i 4y − δk 2,k 3i 2 , i 3X k 1x i 1x i 4y −− δ k 1,k 2i 2 , i 4X k 3x i 1x i 3y − δk 2,k 1i 2 , i 4X k 3x i 1x i 3y − δk 2,k 3i 2 , i 4X k 1x i 1x i 3y −−δ k 1,k 2i 3 , i 4X k 3x i 1x i 2y − δk 2,k 1i 3 , i 4X k 3x i 1x i 2y − δk 2,k 3i 3 , i 4X k 1x i 1x i 2y]y k1 y k2 ,k 3.This sum <strong>de</strong>velopes the term [12 Y xy 2 − 18 X x 2 y] y 1 y 2 of Y 3 (third lineof (2.9)). Let us explain what are the formal ru<strong>les</strong>.In the bracketed terms of (3.53), there are no permutation of the indicesi 1 , i 2 , i 3 , but there is a certain unknown subset of all the permutations of thefour indices k 1 , k 2 , k 3 , k 4 . In the bracketed terms of (3.54), two combinatoricsare present:• there are some permutations of the indices i 1 , i 2 , i 3 , i 4 and• there are some permutations of the indices k 1 , k 2 , k 3 .Here, the permutations of the indices i 1 , i 2 , i 3 , i 4 are easily guessed, sincethey are the same as the permutations which were introduced in §3.48 above.In<strong>de</strong>ed, in the first four lines of (3.54), we see the four <strong>de</strong>compositions(3.55){i 1 , i 2 , i 3 }∪{i 4 }, {i 1 , i 2 , i 4 }∪{i 3 }, {i 1 , i 3 , i 4 }∪{i 2 }, {i 2 , i 3 , i 4 }∪{i 1 },of the set {i 1 , i 2 , i 3 , i 4 }, and in the last six lines of (3.54), we see the six<strong>de</strong>compositions(3.56){i 1 , i 2 } ∪ {i 3 , i 4 }, {i 1 , i 3 } ∪ {i 2 , i 4 }, {i 1 , i 4 } ∪ {i 2 , i 3 },{i 2 , i 3 } ∪ {i 1 , i 4 }, {i 2 , i 4 } ∪ {i 1 , i 3 }, {i 3 , i 4 } ∪ {i 1 , i 2 },so that (3.54) may be written un<strong>de</strong>r the form(3.57) ⎡∑⎣ ∑ ∑δ k τ(1),k τ(2) ,k τ(3)i τ(1) ,i τ(2) ,i τ(3)Y i − ∑x τ(4) y 2k 1 ,k 2 ,k 3 σ∈?τ∈S 3 4τ∈S 2 4∑σ∈?δ k τ(1),k τ(2)i τ(1) ,i τ(2)X k τ(3)333x i τ(3) x i τ(4) y⎤⎦ y k1 y k2 ,k 3,


334where in the two above sums ∑ σ∈?, the letter σ <strong>de</strong>notes a permutation ofthe set {1, 2, 3} and where the sign ? refers to two (still unknown) subset ofthe full permutation group S 3 . The only remaining question is to <strong>de</strong>terminehow the indices k α are permuted in (3.53) and in (3.54).The answer may be guessed by looking at the permutations of the set{k 1 , k 2 , k 3 , k 4 } which stabilize the monomial y k1 y k2 y k3 ,k 4in (3.53): weclearly have the following four symmetry relations between monomials:(3.58) y k1 y k2 y k3 ,k 4≡ y k2 y k1 y k3 ,k 4≡ y k1 y k2 y k4 ,k 3≡ y k2 y k1 y k4 ,k 3,and nothing more. Then the number 6 of bracketed terms in (3.53) is exactlyequal to the cardinal 24 = 4! of the full permutation group of the set{k 1 , k 2 , k 3 , k 4 } divi<strong>de</strong>d by the number 4 of these symmetry relations. Theset of permutations σ of {1, 2, 3, 4} satisfying these symmetry relations(3.59) y kσ(1) y kσ(2) y kσ(3) ,k σ(4)≡ y k1 y k2 y k3 ,k 4consitutes a subgroup of S 4 which we will <strong>de</strong>note by H (2,1),(1,2)4 . Furthermore,the coset(3.60) F (2,1),(1,2)4 := S 4 /H (2,1),(1,2)4possesses the six representatives( ) ( )1 2 3 4 1 2 3 4,,1 2 3 4 2 3 1 4(3.61) ( ) ( )1 2 3 4 1 2 3 4,,3 4 1 2 3 1 4 2( )1 2 3 4,3 2 1 4( )1 2 3 4,1 3 4 2which exactly appear as the permutations of the upper indices of our example(3.53). Of course, the question arises whether the choice of such sixrepresentatives in the quotient S 4 /H (2,1),(1,2)4 is legitimate.Fortunately, we observe that after conjugation by any permutation σ ∈H (2,1),(1,2)4 , we do not perturb any of the six terms of (3.53), for instance thethird term of (3.53) is not perturbed, as shown by the following computation(3.62)∑ [−δ k σ(3),k σ(2) ,k σ(1)i 1 , i 2 , i 3X k σ(4)]yy 2 k1 y k2 y k3 ,k 4=k 1 ,k 2 ,k 3 ,k 4= ∑ [−δ k 3,k 2 ,k 1i 1 , i 2 , i 3X k σ(4)]yy 2 kσ −1 (1)y kσ −1 (2)y kσ −1 (3) ,k σ −1 (4)k 1 ,k 2 ,k 3 ,k 4= ∑ [−δ k 3,k 2 ,k 1i 1 , i 2 , i 3X k σ(4)]yy 2 k1 y k2 y k3 ,k 4k 1 ,k 2 ,k 3 ,k 4thanks to the symmetry (3.59). Thus, as expected, the choice of 6 arbitraryrepresentatives σ ∈ F (2,1),(1,2)4 in the bracketed terms of (3.53) is free. In


335conclusion, we have shown that (3.53) may be written un<strong>de</strong>r the form:⎤∑ ⎢(3.63) ⎣−∑δ k σ(1),k σ(2) ,k σ(3) ⎥⎦y k1 y k2 y k3 ,k 4,k 1 ,k 2 ,k 3 ,k 4⎡σ∈F (2,1),(1,2)4i 1 , i 2 , i 3X k σ(4)y 2This rule is confirmed by inspecting (3.54) (as well as all the otherterms of Y i1 ,i 2 ,i 3and of Y i1 ,i 2 ,i 3 ,i 4). In<strong>de</strong>ed, the permutations σ of the set{k 1 , k 2 , k 3 } which stabilize the monomial y k1 y k2 ,k 3consist just of the i<strong>de</strong>ntitypermutation and the transposition of k 2 and k 3 . The coset S 3 /H (1,1),(1,2)3has the three representatives( )1 2 3(3.64),1 2 3(1 2 32 1 3),(1 2 32 3 1which appear in the upper in<strong>de</strong>x position of each of the ten lines of (3.54).It follows that (3.54) may be written un<strong>de</strong>r the form(3.65)⎡∑⎢∑⎣k 1 ,k 2 ,k 3τ∈S 3 4− ∑ σ∈S 2 4∑σ∈F (1,1),(1,2)3∑τ∈F (1,1),(1,2)3δ k σ(1),k σ(2) ,k σ(3)i τ(1) ,i τ(2) ,i τ(3)δ k σ(1),k σ(2)i τ(1) ,i τ(2)X k σ(3)Y xi τ(4) y 2 −x i τ(3) x i τ(4) y⎤),⎥⎦y k1 y k2 ,k 3.3.66. General complete expression of Y i1 ,...,i κ. As in the incomplete expression(3.39) of Y i1 ,...,i κ, consi<strong>de</strong>r integers 1 λ 1 < · · · < λ d κ andµ 1 1, . . ., µ d 1 satisfying µ 1 λ 1 +· · ·+µ d λ d κ+1. By H µ1 λ 1 +···+H µd λ d,we <strong>de</strong>note the subgroup of permutations τ ∈ S µ1 λ 1 +···+H µd λ dthat leave unchangedthe general monomial (3.38), namely that satisfy∏y kσ(1:ν1 :1),...,k · · ·∏σ(1:ν1 :λ 1y) kσ(d:νd :1),...,k =σ(d:νd :λ d )1ν 1 µ 1 1ν d µ d(3.67)= ∏∏y k1:ν1 :1,...,k 1:ν1 :λ 1· · · y kd:νd :1,...,k d:νd :λ d.1ν 1 µ 1 1ν d µ dThe structure of this group may be <strong>de</strong>scribed as follows. For every e =1, . . ., d, an arbitrary permutation σ of the set(3.68){e: 1:1, . . ., e: 1:λ } {{ } e , e: 2:1, . . ., e: 2:λ e , · · · , e: µ } {{ } e :1, . . .,e: µ e :λ } {{ } eλ eλ eλ} {{e}µ e}


336which leaves unchanged the monomial(3.69)∏y kσ(e:νe:1) ,...,k σ(e:νe:λe)=1ν eµ e∏1ν eµ ey ke:νe:1 ,...,k e:νe:λe.uniquely <strong>de</strong>composes as the composition of• µ e arbitrary permutations of the µ e groups of λ e integers {e : ν e :1, . . ., e:ν e :λ e }, of total cardinal (λ e !) µe ;• an arbitrary permutation between these µ e groups, of total cardinal µ e !.Consequently( )(3.70) Card H (µ 1,λ 1 ),...,(µ d ,λ d )µ 1 λ 1 +···+µ d λ d= µ 1 !(λ 1 !) µ1 · · ·µ d !(λ d !) µ d.Finally, <strong>de</strong>fine the coset(3.71) F (µ 1,λ 1 ),...,(µ d ,λ d )µ 1 λ 1 +···+µ d λ d:= S µ1 λ 1 +···+µ d λ d/H (µ 1,λ 1 ),...,(µ d ,λ d )µ 1 λ 1 +···+µ d λ dwith(3.72)( )Card F (µ 1,λ 1 ),...,(µ d ,λ d )µ 1 λ 1 +···+µ d λ d= Card (S µ 1 λ 1 +···+µ d λ d)(Card)H (µ 1,λ 1 ),...,(µ d ,λ d )µ 1 λ 1 +···+µ d λ d= (µ 1λ 1 + · · · + µ d λ d )!.µ 1 !(λ 1 !) µ 1 · · ·µd !(λ d !) µ dIn conclusion, by means of this formalism, we may write down the completegeneralization of Theorem 2.24 to several in<strong>de</strong>pen<strong>de</strong>nt variab<strong>les</strong>.


337Theorem 3.73. For every κ 1 and for every choice of κ indices i 1 , . . .,i κin the set {1, 2, . . ., n}, the general expression of Y i1 ,...,i κis as follows:(3.74)κ+1∑Y i1 ,...,i κ= Y x i 1 ···x iκ +n∑d=1· · ·∑1λ 1


338Appying the chain rule, we may compute:(3.76)h i1 = f 1 [g i1 ] ,h i1 ,i 2= f 2 [g i1 g i2 ] + f 1 [g i1 ,i 2],h i1 ,i 2 ,i 3= f 3 [g i1 g i2 g i3 ] + f 2 [g i1 g i2 ,i 3+ g i2 g i1 ,i 3+ g i3 g i1 ,i 2] + f 1 [g i1 ,i 2 ,i 3],h i1 ,i 2 ,i 3 ,i 4= f 4 [g i1 g i2 g i3 g i4 ] + f 3 [g i2 g i3 g i1 ,i 4+ g i3 g i1 g i2 ,i 4+ g i1 g i2 g i3 ,i 4++g i1 g i4 g i2 ,i 3+ g i2 g i4 g i1 ,i 3+ g i3 g i4 g i1 ,i 2]++ f 2 [g i1 ,i 2g i3 ,i 4+ g i1 ,i 3g i2 ,i 4+ g i1 ,i 4g i2 ,i 3] ++ f 2 [g i1 g i2 ,i 3 ,i 4+ g i2 g i1 ,i 3 ,i 4+ g i3 g i1 ,i 2 ,i 4+ g i4 g i1 ,i 2 ,i 3] ++ f 1 [g i1 ,i 2 ,i 3 ,i 4] .Introducing the <strong>de</strong>rivations(3.77)n∑Fi 2 := g k1 ,iF 3i :=k 1 =1n∑k 1 =1k 1 =1g k1 ,i(∂+ g i f 2∂g k1∂∂g k1+n∑k 1 ,k 2 =1)∂,∂f 1g k1 ,k 2 ,i(∂+ g i f 2∂g k1 ,k 2∂∂f 1+ f 3)∂,∂f 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n∑Fi λ ∂n∑ ∂:= g k1 ,i + g k1 ,k∂g 2 ,i + · · · +k1 ∂g k1 ,k 2+n∑k 1 ,...,k λ−1 =1+ g i(f 2k 1 ,k 2 =1∂∂f 1+ f 3g k1 ,...,k λ−1 ,i∂∂g k1 ,...,k λ−1+∂∂f 2+ · · · + f λ)∂,∂f λ−1we observe that the following induction relations hold:(3.78)h i1 ,i 2= F 2i 2(h i1 ),h i1 ,i 2 ,i 3= F 3i 3(h i1 ,i 2) ,. . . . . . . . . . . . . . . . . . . . .h i1 ,i 2 ,...,i λ= F λi λ(hi1 ,i 2 ,...,i λ−1).To obtain the explicit version of the Faà di Bruno in the case of severalvariab<strong>les</strong> (x 1 , . . ., x n ) and one variable y, it suffices to extract from the expressionof Y i1 ,...,i κprovi<strong>de</strong>d by Theorem 3.73 only the terms correspondingto µ 1 λ 1 + · · ·+µ d λ d = κ, dropping all the X terms. After some simplificationsand after a translation by means of an elementary dictionary, we obtaina statement.


Theorem 3.79. For every integer κ 1 and for every choice of indicesi 1 , . . .,i κ in the set {1, 2, . . ., n}, the κ-th partial <strong>de</strong>rivative of the compositefunction h = h(x 1 , . . .,x n ) = f(g(x 1 , . . .,x n )) with respect to thevariab<strong>les</strong> x i 1, . . .,x iκ may be expressed as an explicit polynomial <strong>de</strong>pendingon the <strong>de</strong>rivatives of f, on the partial <strong>de</strong>rivatives of g and having integercoefficients:(3.80)∂ κ h∂x i 1 · · ·∂xi κ=⎡⎢⎣κ∑d=1∑1λ 1


340The induction formulas are:(4.4)⎧⎪⎨Y j 1 := D 1 ( Y j) − D 1 (X ) y j 1,Y j 2 := D2 ( Y j 1)− D 1 (X ) y j 2 ,· · · · · · · · · · · ·⎪⎩Y j λ := ( Dλ Yλ−1) j − D 1 (X )y j λ ,where the total differentiation operators D λ are <strong>de</strong>noted by (insteadof (1.22)):(4.5) D λ := ∂∂x + m∑l=1y l 1∂∂y + ∑ m ll=1∂y2l ∂y1l+ · · · +m∑l=1∂yλl ∂yλ−1l.Applying the <strong>de</strong>finitions in the first two lines of (4.4), we compute, we simplifyand we organize the results in a harmonious way, using in an essentialway the Kronecker symbol. Here, the computations are more elementarythan the computations of Y i1 and of Y i1 ,i 2achieved thoroughly in the previousSection 3, so that we do not provi<strong>de</strong> a Latex track of the <strong>de</strong>tails. Firstlyand secondly:(4.6) ⎧⎪⎨⎪⎩Y j 1 = Y jx +Y j 2 = Y jx 2 +Thirdly:(4.7)Y j 3 = Y jx 3 +m∑l 1 =1m∑l 1 =1[Y jy l 1 − δj l 1X x]y l 11 +m∑l 1 ,l 2 =1[]2Y jxy − l 1 δj l 1X x 2 y l 11 +[−δ j l 1X y l 2]y l 11 y l 21 ,m∑l 1 ,l 2 =1[Y jy l 1y l 2 − δj l 12X xy l 2]y l 11 y l 21 ++ ∑ [−δ j l 1X y l 2y l 3]y l 11 y l 21 y l 31 + ∑ [ ]Y jy − l 1 δj l 12X x y l 12 +l 1 ,l 2 ,l 3 l 1m∑]+[−δ j l 1X y l 2 − δ j l 22X y l 1 y l 11 y l 22 .l 1 ,l 2 =1m∑l 1 =1[]3Y jx 2 y − l 1 δj l 1X x 3 y l 11 +m∑l 1 ,l 2 =1+ ∑l 1 ,l 2 ,l 3[Y jy l 1y l 2y l 3 − δj l 13X xy l 2y l 3]y l 11 y l 21 y l 31 ++ ∑l 1 ,l 2 ,l 3 ,l 4[−δ j l 1X y l 2y l 3y l 4]y l 11 y l 21 y l 31 y l 41 +[]3Y jxy l 1y − l 2 δj l 13X x 2 y l 2 y l 11 y l 21 +m∑l 1 =1[3Y jxy l 1 − δj l 13X x 2]y l 12 +


+++m∑l 1 ,l 2 =1m∑l 1 ,l 2 ,l 3 =1m∑l 1 =1[3Y jy l 1y l 2 − δj l 13X xy l 2 − δ j l 26X xy l 1]y l 11 y l 22 +[−δ j l 13X y l 2y l 3 − δ j l 33X y l 1y l 2]y l 11 y l 21 y l 32 +[Y jy l 1 − δj l 13X x]y l 13 +m∑l 1 ,l 2 =1m∑l 1 ,l 2 =1[−δ j l 1X y l 2 − δ j l 23X y l 1]y l 11 y l 23 .341[−δ j l 33X y l 2]y l 12 y l 22 +Fourthly:Y j 4 = Y jx 4 ++++m∑l 1 =1m∑l 1 ,l 2 ,l 3 =1m∑l 1 ,l 2 ,l 3 ,l 4 =1m∑l 1 ,l 2 ,l 3 ,l 4 ,l 5 =1[]4Y jx 3 y − l 1 δj l 1X x 4 y l 11 +m∑l 1 ,l 2 =1[]4Y jxy l 1y l 2y − l 3 δj l 16X x 2 y l 2y l 3 y l 11 y l 21 y l 31 +[Y jxy l 1y l 2y l 3y l 4 − δj l 14X xy l 2y l 3y l 4]y l 11 y l 21 y l 31 y l 41 +[−δ j l 1X y l 2y l 3y l 4y l 5]y l 11 y l 21 y l 31 y l 41 y l 51 +[]6Y jx 2 y l 1y − l 2 δj l 14X x 3 y l 2 y l 11 y l 21 +m∑l 1 =1[]6Y jx 2 y − l 1 δj l 14X x 3 y l 12 +(4.8)+++m∑l 1 ,l 2 =1m∑l 1 ,l 2 ,l 3 =1m∑l 1 ,l 2 ,l 3 ,l 4 =1[]12Y jxy l 1y − l 2 δj l 16X x 2 y l 2 − δ j l 212X x 2 y l 1 y l 11 y l 22 +[6Y jy l 1y l 2y l 3 − δj l 112X xy l 2y l 3 − δ j l 312X xy l 1y l 2]y l 11 y l 21 y l 32 +[−δ j l 16X y l 2y l 3y l 4 − δ j l 44X y l 1y l 2y l 3]y l 11 y l 21 y l 31 y l 42 +


342++++++m∑l 1 ,l 2 =1m∑l 1 ,l 2 ,l 3 =1m∑l 1 ,l 2 =1m∑l 1 ,l 2 ,l 3 =1m∑l 1 ,l 2 =1m∑l 1 =1[3Y jy l 1y l 2 − δj l 112X xy l 2]y l 12 y l 22 +[−δ j l 13X y l 2y l 3 − δ j l 212X y l 1y l 3]y l 11 y l 22 y l 32 +[4Y jy l 1y l 2 − δj l 14X xy l 2 − δ j l 212X xy l 1]y l 11 y l 23 +[−δ j l 14X y l 2y l 3 − δ j l 36X y l 1y l 2]y l 11 y l 21 y l 33 +[−δ j l 14X y l 2 − δ j l 26X y l 1]y l 12 y l 23 +[Y jy l 1 − δj l 14X x]y l 14 +m∑l 1 ,l 2 =1m∑l 1 =1[−δ j l 1X y l 2 − δ j l 24X y l 1]y l 11 y l 24 .[]4Y jxy − l 1 δj l 16X x 2 y l 13 +4.9. Inductive elaboration of the general formula. Now we compare theformula (2.9) for Y 4 with the above formula (4.8) for Y j 4 . The goal isto find the ru<strong>les</strong> of transformation and of <strong>de</strong>velopment by inspecting severalinstances, in or<strong>de</strong>r to <strong>de</strong>vise how to transform and to <strong>de</strong>velope the formula(2.25) to several <strong>de</strong>pen<strong>de</strong>nt variab<strong>les</strong>.First of all, we have to <strong>de</strong>velope the general monomial (y λ1 ) µ1 · · ·(y λd ) µ d .In every monomial present in the expressions of Y j 1 , of Yj 2 , of Yj 3 and of∑Y j 4 above, we see that the number α of indices l β appearing in all the sumsml 1 ,...,l is exactly equal to µ α=1 1 + · · · + µ d . To <strong>de</strong>note these µ 1 + · · · + µ dindices l β , we shall use the notation:(4.10) l 1:1 , . . .,l 1:µ1 , . . .,l d:1 , . . .,l d:µd} {{ } } {{ }µ 1 µ} {{d}µ 1 +···+µ d,inspired by Convention 3.33. With such a choice of notation, we may avoidlong subscripts in the indices l β , like l µ1 +···+µ d. It follows that the <strong>de</strong>velopmentof the general monomial (y λ1 ) µ1 · · ·(y λd ) µ d to several <strong>de</strong>pen<strong>de</strong>nt variab<strong>les</strong>yields m µ 1+···+µ d possible choices:∏∏(4.11)y l 1:ν 1λ 1· · · · · · y l d:ν dλ d,1ν 1 µ 1 1ν d µ dwhere the indices l 1:1 , . . .,l 1:µ1 , . . .,l d:1 , . . .,l d:µd take their values in the set{1, 2, . . ., m}. Consequently, the general expression of Yκ j must be of the


343form:(4.12)κ+1Yκ j = Y jx κ + ∑d=1m∑l 1:1 =1∑1λ 1


344Then we examine four instances extracted from the complete expression ofY4:j ⎧m∑ []4Y jxy l 1y l 2y − l 3 δj l 16X x 2 y l 2y l 3 y l 11 y l 21 y l 31 ,(4.15)⎪⎨⎪⎩l 1 ,l 2 ,l 3 =1m∑l 1 ,l 2 =1m∑l 1 ,l 2 ,l 3 ,l 4 =1m∑l 1 ,l 2 ,l 3 =1[]12Y jxy l 1y − l 2 δj l 16X x 2 y l 2 − δ j l 212X x 2 y l 1 y l 11 y l 22 ,[−δ j l 16X y l 2y l 3y l 4 − δ j l 44X y l 1y l 2y l 3]y l 11 y l 21 y l 31 y l 42 ,[−δ j l 14X y l 2y l 3 − δ j l 36X y l 1y l 2]y l 11 y l 21 y l 33 ,and we compare them to the corresponding terms of Y 4 :⎧ [ ]4Yxy 3 − 6X x 2 y 2 (y1 ) 3 ,(4.16)⎪⎨⎪⎩[ ]12Yxy 2 − 18X x 2 y y1 y 2 ,[ ]−10Xy 3 (y1 ) 3 y 2 ,[ ]−10Xy 2 (y1 ) 2 y 3 .In the <strong>de</strong>velopment from (4.16) to (4.15), we see that the four integers justbefore X , namely 6 = 6, 18 = 6 + 12, 10 = 6 + 4 and 10 = 4 + 6, aresplit in a certain manner. Also, a single Kronecker symbol δ j l αis ad<strong>de</strong>d as afactor. What are the ru<strong>les</strong>?In the second splitting 18 = 6 + 12, we see that the relative weight of6 and of 12 is the same as the relative weight of 1 and 2 in the splitting3 = 1 + 2 issued from the lower indices of the corresponding monomialy l 11 y l 22 . Similarly, in the third splitting 10 = 6 + 4, the relative weight of6 and of 4 is the same as the relative weight of 1 + 1 + 1 and of 2 issuedfrom the lower indices of the corresponding monomial y l 11 y l 21 y l 31 y l 42 . Thisrule may be confirmed by inspecting all the other monomials of Y 2 , Y2,jof Y 3 , Y j 3 and of Y 4 , Y4. j For a general κ 1, the splitting of integersjust amounts to <strong>de</strong>compose the sum appearing insi<strong>de</strong> the brackets of (4.14)as µ 1 λ 1 , µ 2 λ 2 , . . .,µ d λ d . In fact, when we wrote (4.14), we emphasized inadvance the <strong>de</strong>composable factor (µ 1 λ 1 + · · · + µ d λ d ).Next, we have to <strong>de</strong>termine what is the subscript α in the Kronecker symbolδ j l α. We claim that in the four instances (4.15), the subscript α is intrinsicallyrelated to weight splitting. In<strong>de</strong>ed, recall that in the second lineof (4.15), the number 6 of the splitting 18 = 6 + 12 is related to the number1 in the splitting 3 = 1 + 2 of the lower indices of the monomial y l 11 y l 22 . Itfollows that the in<strong>de</strong>x l α must be the in<strong>de</strong>x l 1 of the monomial y l 11 . Similarly,also in the second line of (4.15), the number 12 of the splitting 18 = 6 + 12


eing related to the number 2 in the splitting 3 = 1 + 2 of the lower indicesof the monomial y l 11 y l 22 , it follows that the in<strong>de</strong>x l α attached to the second Xterm must be the in<strong>de</strong>x l 2 of the monomial y l 22 .This rule is still ambiguous. In<strong>de</strong>ed, let us examine the third line of (4.15).We have the splitting 10 = 6 + 4, homologous to the splitting of relativeweights 5 = (1+1+1)+2 in the monomial y l 11 y l 21 y l 31 y l 42 . Of course, it is clearthat we must choose the in<strong>de</strong>x l 4 for the Kronecker symbol associated to thesecond X term −4 X y 3, thus obtaining −δ j l 44 X y l 1y l 2y l 3 . However, sincethe monomial y l 11 y l 21 y l 31 has three indices l 1 , l 2 and l 3 , there arises a question:what in<strong>de</strong>x l α must we choose for the Kronecker symbol δ j l αattached to thefirst X term 6 X y 3: the in<strong>de</strong>x l 1 , the in<strong>de</strong>x l 2 or the in<strong>de</strong>x l 3 ?The answer is simple: any of the three indices l 1 , l 2 or l 3 works. In<strong>de</strong>ed,since the monomial y l 11 y l 21 y l 31 is symmetric with respect to all permutationsof the set of three indices {l 1 , l 2 , l 3 }, we have(4.17)∑ m ]m∑][−δ j l 16X y l 2y l 3y l 4 y l 11 y l 21 y l 31 y l 42 =[−δ j l 26X y l 1y l 3y l 4 y l 11 y l 21 y l 31 y l 42 =l 1 ,l 2 ,l 3 ,l 4 =1=l 1 ,l 2 ,l 3 ,l 4 =1m∑l 1 ,l 2 ,l 3 ,l 4 =1345[−δ j l 36X y l 1y l 2y l 4]y l 11 y l 21 y l 31 y l 42 .In fact, we have systematically used such symmetries during the intermediatecomputations (not exposed here) which we achieved manually to obtainthe final expressions of Y j 1, of Y j 2, of Y j 3 and of Y j 4. To fix i<strong>de</strong>as, we havealways choosen the first in<strong>de</strong>x. Here, the first in<strong>de</strong>x is l 1 ; in the first sum ofline 9 of (4.8), the first in<strong>de</strong>x l α for the second weight 12 is l 2 .This rule may be confirmed by inspecting all the monomials of Y j 2, ofY j 3, of Y j 4 (and also of Y j 5, which we have computed in a manuscript, butnot copied in this Latex file).From these consi<strong>de</strong>rations, we <strong>de</strong>duce that for the general formula, theweight <strong>de</strong>composition is simply µ 1 λ 1 , . . .,µ d λ d and that the Kronecker symbolδ j α is intrinsically associated to the weights. In conclusion, building oninductive reasonings, we have formulated the following statement.Theorem 4.18. For one in<strong>de</strong>pen<strong>de</strong>nt variable x, for several <strong>de</strong>pen<strong>de</strong>nt variab<strong>les</strong>(y 1 , . . ., y m ) and for κ 1, the general expression of the coefficient


346Yκ j of the prolongation (4.3) of a vector field is:(4.19)κ+1Yκ j = Y jx κ + ∑ ∑ ∑m∑l 1:1 =1d=1· · ·1λ 1


Appying the chain rule, we may compute:(4.21)m∑h 1 = f l1 g l 11 ,h 2 =h 3 =h 4 =h 5 =l 1 =1m∑l 1 ,l 2 =1m∑l 1 ,l 2 ,l 3 =1m∑l 1 ,l 2 ,l 3 ,l 4 =1+ 3f l1 ,l 2g l 11 g l 21 +m∑l 1 =1f l1 g l 12 ,f l1 ,l 2 ,l 3g l 11 g l 21 g l 31 + 3m∑l 1 ,l 2 =1m∑l 1 ,l 2 ,l 3 ,l 4 ,l 5 =1+ 15+ 10m∑l 1 ,l 2 =1f l1 ,l 2 ,l 3 ,l 4g l 11 g l 21 g l 31 g l 41 + 6m∑l 1 ,l 2 ,l 3 =1m∑l 1 ,l 2 =1f l1 ,l 2g l 12 g l 22 + 4m∑l 1 ,l 2 =1f l1 ,l 2g l 11 g l 22 +m∑l 1 ,l 2 ,l 3 =1f l1 ,l 2g l 11 g l 23 +f l1 ,l 2 ,l 3 ,l 4 ,l 5g l 11 g l 21 g l 31 g l 41 g l 51 + 10f l1 ,l 2 ,l 3g l 11 g l 22 g l 32 + 10f l1 ,l 2g l 12 g l 23 + 5m∑l 1 ,l 2 =1m∑l 1 ,l 2 ,l 3 =1f l1 ,l 2g l 11 g l 24 +m∑l 1 =1f l1 g l 13 ,f l1 ,l 2 ,l 3g l 11 g l 21 g l 32 +m∑l 1 =1m∑l 1 ,l 2 ,l 3 ,l 4 =1f l1 g l 14 ,f l1 ,l 2 ,l 3g l 11 g l 21 g l 33 +m∑l 1 =1347f l1 ,l 2 ,l 3 ,l 4g l 11 g l 21 g l 31 g l 42 +f l1 g l 15 .Introducing the <strong>de</strong>rivations(4.22)⎛m∑F 2 := g l ∂m∑12∂g l g l 11 1⎝F 3 :=l 1 =1m∑l 1 =1l 1 =1g l 12∂∂g l 11+1+l 2 =1l 1 =1m∑l 1 =1m∑l 2 =1g l 13∂∂g l 12+f l1 ,l 2m∑l 1 =1⎞∂⎠ ,∂f l2⎛g l 11⎝m∑l 2 =1f l1 ,l 2∂∂f l2+m∑l 2 ,l 3 =1f l1 ,l 2 ,l 3⎞∂⎠,∂f l2 ,l 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .m∑F λ := g l ∂m∑12l 1∂g l + g l ∂m∑11 3=1 1 l 1∂g l + · · · + g l ∂11λ=1 2 l 1∂g l +1=1 λ−1⎛⎞m∑ m∑+ g l 1 ⎝∂m∑ ∂m∑∂1 f l1 ,l 2+ f l1 ,l∂f 2 ,l 3+ · · · + f l1 ,ll2 ∂f 2⎠,...,l λ,l2 ,l 3∂f l2 ,...,l λl 2 ,l 3 =1l 2 ,...,l λ =1


348we observe that the following induction relations hold:(4.23)h 2 = F 2 (h 1 ) ,h 3 = F 3 (h 2 ) ,. . . . . . . . . . . . . . .h λ = F λ (h λ−1 ) .To obtain the explicit version of the Faà di Bruno in the case of one variable xand several variab<strong>les</strong> (y 1 , . . ., y m ), it suffices to extract from the expressionof Y j κ provi<strong>de</strong>d by Theorem 4.18 only the terms corresponding to µ 1λ 1 +· · · + µ d λ d = κ, dropping all the X terms. After some simplifications andafter a translation by means of an elementary dictionary, we may formulatea statement.Theorem 4.24. For every integer κ 1, the κ-th partial <strong>de</strong>rivative of thecomposite function h = h(x) = f (g 1 (x), . . .,g m (x)) with respect to x maybe expressed as an explicit polynomial <strong>de</strong>pending on the partial <strong>de</strong>rivativesof f, on the <strong>de</strong>rivatives of g and having integer coefficients:(4.25)d κ hκ∑dx = κd=1∑1λ 1


Secondly:(5.3)Y j i 1 ,i 2= Y jx i 1x i 2 + m ∑++++m∑l 1 ,l 2 =1m∑l 1 ,l 2 ,l 3 =1m∑l 1 =1m∑l 1 ,l 2 =1l 1 =1n∑k 1 ,k 2 =1n∑k 1 ,k 2 =1n∑k 1 =1[]δ k 1i 1Y jx i 2y + l 1 δk 1i 2Y jx i 1y − l 1 δj l 1X k 1y l x i 1x i 12 k1+349[]δ k 1,k 2i 1 , i 2Y jy l 1y − l 2 δj l 2δ k 1i 1X k 2x i 2y − l 1 δj l 2δ k 1i 2X k 2y l 1x i 1y l 1 k1y l 2k2+n∑k 1 ,k 2 ,k 3 =1[]−δ j l 3δ k 1,k 2i 1 , i 2X k 3y l y l 1y l 12 k1y l 2k2y l 3k3+[]δ k 1,k 2i 1 , i 2Y jy − l 1 δj l 1δ k 1i 1X k 2x − i 2 δj l 1δ k 1i 2X k 2y l x i 11 k1 ,k 2+n∑k 1 ,k 2 ,k 3 =1[]−δ j l 1δ k 2,k 3i 1 , i 2X k 1y − l 2 δj l 2δ k 3,k 1i 1 , i 2X k 2y − l 1 δj l 2δ k 1,k 2i 1 , i 2X k 3y l y l 11 k1y l 2k2y l 3k3.Thirdly:Y j i 1 ,i 2 ,i 3= Y jx i 1x i 2x i 3 + m ∑++m∑l 1 ,l 2 =1m∑l 1 ,l 2 ,l 3 =1l 1 =1n∑k 1 ,k 2 =1n∑k 1 =1[]δ k 1i 1Y jx i 2x i 3y + l 1 δk 1i 2Y jx i 1x i 3y + l 1 δk 1i 3Y jx i 1x i 2y − l 1 δj l 1X k 1y l x i 1x i 2x i 13 k1+[δ k 1,k 2i 1 , i 2Y jx i 3y l 1y l 2 + δk 1,k 2i 3 , i 1Y jx i 2y l 1y l 2 + δk 1,k 2i 2 , i 3Y jx i 1y l 1y l 2 −n∑k 1 ,k 2 ,k 3 =1]−δ j l 2δ k 1i 1X k 2x i 2x i 3y − l 1 δj l 2δ k 1i 2X k 2x i 1x i 3y − l 1 δj l 2δ k 1i 3X k 2y l x i 1x i 2y l 11 k1y l 2[δ k 1,k 2 ,k 3i 1 , i 2 , i 3Y jy l 1y l 2y − l 3 δj l 3δ k 1,k 2i 1 , i 2X k 3x i 3y l 1y − l 2]−δ j l 3δ k 1,k 2i 1 , i 3X k 3x i 2y l 1y − l 2 δj l 3δ k 1,k 2i 2 , i 3X k 3y l x i 1y l 1y l 12 k1y l 2k2y l 3k3+k2+++m∑l 1 ,l 2 ,l 3 ,l 4 =1m∑l 1 =1n∑k 1 ,k 2 =1n∑k 1 ,k 2 ,k 3 ,k 4 =1[]−δ j l 4δ k 1,k 2 ,k 3i 1 , i 2 , i 3X k 4y l y l 1y l 2y l 13 k1y l 2k2y l 3k3y l 4k4+[δ k 1,k 2i 1 , i 2Y jx i 3y l 1 + δk 1,k 2i 3 , i 1Y jx i 2y l 1 + δk 1,k 2i 2 , i 3Y jx i 1y l 1 −]−δ j l 1δ k 1i 1X k 2x i 2x − i 3 δj l 1δ k 1i 2X k 2x i 1x − i 3 δj l 1δ k 1i 3X k 2y l x i 1x i 12 k1 ,k 2+


350(5.4)+++++m∑l 1 ,l 2 =1m∑l 1 ,l 2 ,l 3 =1m∑l 1 ,l 2 =1m∑l 1 =1m∑l 1 ,l 2 =1n∑k 1 ,k 2 ,k 3 =1n∑k 1 ,k 2 ,k 3 ,k 4 =1n∑k 1 ,k 2 ,k 3 ,k 4 =1n∑k 1 ,k 2 ,k 3 =1n∑k 1 ,k 2 ,k 3 ,k 4 =1[δ k 1,k 2 ,k 3i 1 , i 2 , i 3Y jy l 1y l 2 + δk 3,k 1 ,k 2i 1 , i 2 , i 3Y jy l 1y l 2 + δk 2,k 3 ,k 1i 1 , i 2 , i 3Y jy l 1y l 2 −−δ j l 1δ k 2,k 3i 1 , i 2X k 1x i 3y l 2 − δj l 1δ k 2,k 3i 1 , i 3X k 1x i 2y l 2 − δj l 1δ k 2,k 3i 2 , i 3X k 1x i 1y l 2 −−δ j l 2δ k 3,k 1i 1 , i 2X k 2x i 3y l 1 − δj l 2δ k 3,k 1i 1 , i 3X k 2x i 2y l 1 − δj l 2δ k 3,k 1i 2 , i 3X k 2x i 1y l 1 −−δ j l 2δ k 1,k 2i 1 , i 2X k 3x i 3y l 1 − δj l 2δ k 1,k 2i 1 , i 3X k 3x i 2y l 1 − δj l 2δ k 1,k 2i 2 , i 3X k 3x i 1y l 1]y l 1k1y l 2k2 ,k 3+[−δ j l 3δ k 1,k 2 ,k 3i 1 , i 2 , i 3X k 4y l 1y l 2 − δj l 3δ k 2,k 3 ,k 1i 1 , i 2 , i 3X k 4y l 1y l 2 − δj l 3δ k 3,k 2 ,k 1i 1 , i 2 , i 3X k 4y l 1y l 2 −−δ j l 2δ k 3,k 4 ,k 1i 1 , i 2 , i 3X k 2y l 1y l 3 − δj l 2δ k 3,k 1 ,k 4i 1 , i 2 , i 3X k 2y l 1y l 3 −−δ j l 2δ k 1,k 3 ,k 4i 1 , i 2 , i 3X k 2y l 1y l 3[−δ j l 2δ k 1,k 2 ,k 3i 1 , i 2 , i 3X k 3y − l 1 δj l 2δ k 2,k 4 ,k 1i 1 , i 2 , i 3X k 3y − l 1 δj l 2δ k 4,k 1 ,k 2i 1 , i 2 , i 3X k 3y l 1]y l 1k1y l 2k2y l 3k3 ,k 4+]y l 1k1 ,k 2y l 2k3 ,k 4+[]δ k 1,k 2 ,k 3i 1 , i 2 ,ß 3Y jy − l 1 δj l 1δ k 1,k 2i 1 , i 2X k 3x − i 3 δj l 1δ k 1,k 2i 1 , i 3X k 3x − i 2 δj l 1δ k 1,k 2i 2 , i 3X k 3y l x i 11 k1 ,k 2 ,k 3+[−δ j l 2δ k 1,k 2 ,k 3i 1 , i 2 , i 3X k 4y l 1 − δj l 2δ k 4,k 1 ,k 2i 1 , i 2 , i 3X k 3y l 1 − δj l 2δ k 3,k 4 ,k 1i 1 , i 2 , i 3X k 2y l 1 −]−δ j l 1δ k 2,k 3 ,k 4i 1 , i 2 , i 3X k 1y l 1y l 2 k1y l 2k2 ,k 3 ,k 4.5.5. Final synthesis. To obtain the general formula for Y j i 1 ,...,i κ, we have toachieve the synthesis between the two formulas (3.74) and (4.19). We startwith (3.74) and we modify it until we reach the final formula for Y j i 1 ,...,i κ.We have to add the µ 1 +· · ·+µ d sums ∑ ml 1:1 =1 · · ·∑ml 1:µ1 =1 · · · · · ·∑ml d:1 =1 · · ·∑ml d:µd =1 ,together with various indices l α . About these indices, the only point whichis not obvious may be analyzed as follows.A permutation σ ∈ F (µ 1,λ 1 ),...,(µ d ,λ d )µ 1 λ 1 +···+µ d λ dyields the list:(5.6)σ(1:1:1), . . ., σ(1:1:λ 1 ), . . .σ(1:µ 1 :1), . . .,σ(1:µ 1 :λ 1 ), . . .. . .,σ(d:1:1), . . ., σ(1:1:λ d ), . . .σ(d:µ d :1), . . .,σ(d:µ d :λ d ),In the sixth line of (3.74), the last term σ(d : µ d : λ d ) of the above listappears as the subscript of the upper in<strong>de</strong>x k σ(d:µd :λ d ) of the term X k σ(d:µ d :λ d) .According to the formal ru<strong>les</strong> of Theorem 4.19, we have to multiply thepartial <strong>de</strong>rivative of X k σ(d:µ d :λ d) by a certain Kronecker symbol δ j l α. Thequestion is: what is the subscript α and how to <strong>de</strong>note it?


As explained before the statement of Theorem 4.19, the subscript α isobtained as follows. The term σ(d : µ d : λ d ) is of the form (e : ν d : γ e ), forsome e with 1 e d, for some ν e with 1 ν e µ e and for some γ e with1 γ e λ e . The single pure jet variable351(5.7) y le:νek e:νe:1 ,...,k e:νe:γe ,...,k e:νe:λeappears insi<strong>de</strong> the total monomial(5.8)∏y l 1:ν 1k 1:ν1 :1,...,k 1:ν1· · ·:λ 11ν 1 µ 1∏y l d:ν dk d:νd :1,...,k d:νd,:λ d1ν d µ dplaced at the end of the formula for Y j i 1 ,...,i κ(see in advance formula (5.13)below; this total monomial generalizes to several <strong>de</strong>pen<strong>de</strong>nt variab<strong>les</strong> thetotal monomial appearing in the last line of (3.74)). According to the ruleexplained before the statement of Theorem 4.18, the in<strong>de</strong>x l α must be equalto l e:νe , since l e:νe is attached to the monomial (5.7). Coming back to theterm σ(d:µ d :λ d ), we shall <strong>de</strong>note this in<strong>de</strong>x by(5.9) l e:νe =: l π(e:νe:γ e) =: l πσ(d:µd :λ d ),where the symbol π <strong>de</strong>notes the projection from the set(5.10) {1:1:1, . . ., 1:µ 1 :λ 1 , . . .. . .,d:1:1, . . .,d:µ d :λ d }to the set(5.11) {1:1, . . ., 1:µ 1 , . . .,d:1, . . ., d:µ d }simply <strong>de</strong>fined by π(e:ν e :γ e ) := (e:ν e ).In conclusion, by means of this formalism, we may write down the completegeneralization of Theorems 2.24, 3.73 and 4.18 to several in<strong>de</strong>pen<strong>de</strong>ntvariab<strong>les</strong> and several <strong>de</strong>pen<strong>de</strong>nt variab<strong>les</strong>Theorem 5.12. For j = 1, . . ., m, for every κ 1 and for every choice of κindices i 1 , . . .,i κ in the set {1, 2, . . ., n}, the general expression of Y j i 1 ,...,i κ


352is as follows:(5.13)κ+1Y j i 1 ,...,i κ= Y jx i 1 ···x + ∑iκn∑d=1· · ·∑1λ 1


g j i 1 ,...,i λand similarly for h i1 ,...,i λ. For arbitrary indices l 1 , . . .,l λ = 1, . . .,m,∂the partial <strong>de</strong>rivativeλ fwill be abbreviated by f ∂y l 1 ···∂y l λ l 1 ,...,l λ.Appying the chain rule, we may compute:(5.17)m∑ ]h i1 = f l1[g l 1i1,h i1 ,i 2=h i1 ,i 2 ,i 3=h i1 ,i 2 ,i 3 ,i 4=l 1 =1m∑l 1 ,l 2 =1m∑l 1 ,l 2 ,l 3 =1+m∑l 1 =1f l1 ,l 2[g l 1i1g l 2i2]+m∑l 1 ,l 2 ,l 3 ,l 4 =1m∑l 1 ,l 2 ,l 3 =1+++m∑l 1 =1f l1 ,l 2 ,l 3[g l 1i1g l 2i2g l 3i3]+f l1[g l 1i1 ,i 2 ,i 3],m∑l 1 ,l 2 =1m∑l 1 ,l 2 =1m∑l 1 =1Introducing the <strong>de</strong>rivationsF 2i :=F 3i :=n∑f l1[g l 1i1 ,i 2],m∑l 1 ,l 2 =1f l1 ,l 2 ,l 3 ,l 4[g l 1i1g l 2i2g l 3i3g l 4i4]+353f l1 ,l 2[g l 1i1g l 2i2 ,i 3+ g l 1i2g l 2i1 ,i 3+ g l 1i3g l 2i1 ,i 2]+f l1 ,l 2 ,l 3[g l 1i2g l 2i3g l 3i1 ,i 4+ g l 1i3g l 2i1g l 3i2 ,i 4+ g l 1i1g l 2i2g l 3i3 ,i 4++g l 1i1g l 2i4g l 3i2 ,i 3+ g l 1i2g l 2i4g l 3i3 ,i 1+ g l 1i3g l 2i4g l 3i1 ,i 2]+f l1 ,l 2[g l 1i1 ,i 2g l 2i3 ,i 4+ g l 1i1 ,i 3g l 2i2 ,i 4+ g l 1i1 ,i 4g l 2i2 ,i 3]+f l1 ,l 2[g l 1i1g l 2i2 ,i 3 ,i 4+ g l 1i2g l 2i1 ,i 3 ,i 4+ g l 1i3g l 2i1 ,i 2 ,i 4+ g l 1i4g l 2i1 ,i 2 ,i 3]+f l1[g l 1i1 ,i 2 ,i 3 ,i 4].m∑k 1 =1 l 1 =1n∑k 1 =1 l 1 =1+m∑l 1 =1m∑g l 1k1 ,ig l 1k1 ,i⎛g l 1 ⎝ i∂∂g l 1∂∂g l 1m∑l 2 =1k1+k1+f l1 ,l 2m∑l 1 =1n∑⎛g l 1 ⎝ im∑k 1 ,k 2 =1 l 1 =1∂∂f l2+m∑l 2 =1m∑l 2 ,l 3 =1f l1 ,l 2g l 1k1 ,k 2 ,if l1 ,l 2 ,l 3⎞∂⎠ ,∂f l2∂∂g l +1k1 ,k 2⎞∂⎠,∂f l2 ,l 3(5.18) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


354F λi :=n∑m∑k 1 =1 l 1 =1++g l 1k1 ,in∑∂∂g l 1k1+k 1 ,k 2 ,...,k λ−1 =1 l 1 =1m∑l 1 =1⎛g l 1 ⎝ im∑l 2 =1m∑f l1 ,l 2n∑m∑k 1 ,k 2 =1 l 1 =1g k1 ,k 2 ,...,k λ−1 ,i∂∂f l2++ · · · + ∑m∑l 2 ,l 3 =1g l 1k1 ,k 2 ,i∂∂g l + · · · +1k1 ,k 2∂∂g l +1k1 ,...,k λ−1f l1 ,l 2 ,l 3l 2 ,l 3 ,...,l λf l1 ,l 2 ,l 3 ,...,l λ∂∂f l2 ,l 3+⎞∂⎠,∂f l2 ,l 3 ,...,l λwe observe that the following induction relations hold:(5.19)h i1 ,i 2= F 2i 2(h i1 ),h i1 ,i 2 ,i 3= F 3i 3(h i1 ,i 2) ,. . . . . . . . . . . . . . . . . . . . .h i1 ,i 2 ,...,i λ= F λi λ(hi1 ,i 2 ,...,i λ−1).To obtain the explicit version of the Faà di Bruno in the case of severalvariab<strong>les</strong> (x 1 , . . .,x n ) and several variab<strong>les</strong> (y 1 , . . .,y m ), it suffices to extractfrom the expression of Y j i 1 ,...,i κprovi<strong>de</strong>d by Theorem 5.12 only theterms corresponding to µ 1 λ 1 + · · · + µ d λ d = κ, dropping all the X terms.After some simplifications and after a translation by means of an elementarydictionary, we obtain the fourth and the most general multivariate Faàdi Bruno formula.Theorem 5.20. For every integer κ 1 and for every choice of indicesi 1 , . . .,i κ in the set {1, 2, . . ., n}, the κ-th partial <strong>de</strong>rivative of the compositefunction(5.21) h = h(x 1 , . . ., x n ) = f ( g 1 (x 1 , . . .,x n ), . . .,g m (x 1 , . . .,x n ) )


with respect to the variab<strong>les</strong> x i 1, . . .,x iκ may be expressed as an explicitpolynomial <strong>de</strong>pending on the partial <strong>de</strong>rivatives of f, on the partial <strong>de</strong>rivativesof the g j and having integer coefficients:(5.22)∂ κ h∂x i 1 · · ·∂xi κ=κ∑d=1∑1λ 1


356III: Systems of second or<strong>de</strong>rTable of contents1. Explicit characterizations of flatness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356.2. Completely integrable systems of second or<strong>de</strong>r ordinary differential equations . . . 361.3. First and second <strong>aux</strong>iliary systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .370.§1. EXPLICIT CHARACTERIZATIONS OF FLATNESSIn 1883, S. <strong>Lie</strong> obtained the following explicit characterization of thelocal equivalence of a second or<strong>de</strong>r ordinary differential equation (E 1 ):y xx = F(x, y, y x ) to the Newtonian free particle equation with one <strong>de</strong>greeof freedom Y XX = 0. All the functions are assumed to be analytic.Theorem 1.1. ([<strong>Lie</strong>1883], pp. 362–365) Let K = R of C. Let x ∈ Kand y ∈ K. A local second or<strong>de</strong>r ordinary differential equation y xx =F(x, y, y x ) is equivalent un<strong>de</strong>r an invertible point transformation (x, y) ↦→(X(x, y), Y (x, y)) to the free particle equation Y XX = 0 if and only if thefollowing two conditions are satisfied:(i) F yxy xy xy x= 0, or equivalently F is a <strong>de</strong>gree three polynomial in y x ,namely there exist four functions G, H, L and M of (x, y) such that Fcan be written as(1.2) F(x, y, y x ) = G(x, y)+y x·H(x, y)+(y x ) 2·L(x, y)+(y x ) 3·M(x, y);(ii) the four functions G, H, L and M satisfy the following system of twosecond or<strong>de</strong>r quasi-linear partial differential equations:(1.3) ⎧0 = −2 G yy + 4 3 H xy − 2 3 L xx+⎪⎨+ 2 (G L)y − 2 G x M − 4 G M x + 2 3 H L x − 4 3 H H y,0 = − 2 3 H yy + 4 3 L xy − 2 M xx +⎪⎩+ 2 G M y + 4 G y M − 2 (H M) x − 2 3 H y L + 4 3 L L x.Open question 1.4. Deduce an explicit necessary and sufficient conditionfor the associated submanifold of solutions y = Π(x, a, b) to be locallyequivalent to Y = B + XA.


Assuming F = F(x, y x ) to be in<strong>de</strong>pen<strong>de</strong>nt of y, or equivalently assumingM (E1 ) to be:(1.5) y = b + Π(x, a),the author has checked that equivalence to Y = B + XA holds if and onlyif two differential rational expressions annihilate:0 = Π x 2 a( ) 44− 6 Π x 2 a 3 Π xa( ) 25+ 15 Π ( ) 2x 2 a 2 Πxa 2( ) 6− 4 Π x 2 a 2 Π xa( ) 35Πxa Πxa Πxa Πxa357(1.6)− Π x 2 a Π xa 4( ) 5+ 10 Π xa 3 Π x 2 a Π xa 2( ) 6− 15 Π ( 3x 2 a Πxa 2)( ) 7andΠxa Πxa Πxa0 = Π x 4 a 2(Πxa) 2− 6 Π x 3 a 2 Π x 2 a(Πxa) 3− 4 Π x 3 a Π x 2 a 2(Πxa) 3− Π x 4 a Π xa 2(Πxa) 3++ 15 Π ( ) 2x 2 a 2 Πx 2 a( ) 4+ 10 Π ( ) 3x 3 a Π x 2 a Π xa 2 Πx( ) 4− 152 a Πxa 2( ) 5.Πxa Πxa ΠxaAs an application, this characterizes local sphericity of a rigid hyper<strong>sur</strong>facew = ¯w + i Θ(z, ¯z) of C 2 . The answer for a general y = Π(x, a, b), togetherwith a proof, will appear elsewhere.A mo<strong>de</strong>rn restitution of <strong>Lie</strong>’s original proof of Theorem 1.1 may be foundin [Me2004]. In this reference, we generalize Theorem 1.1 to several <strong>de</strong>pen<strong>de</strong>ntvariab<strong>les</strong> y = (y 1 , y 2 , . . .,y m ). In the present Part III, we will insteadpass to several in<strong>de</strong>pen<strong>de</strong>nt variab<strong>les</strong> x = (x 1 , x 2 , . . ., x n ).Theorem 1.7. Let K = R or C, let n ∈ N, suppose n 2 and consi<strong>de</strong>r asystem of completely integrable partial differential equations in n in<strong>de</strong>pen<strong>de</strong>ntvariab<strong>les</strong> x = (x 1 , . . .,x n ) ∈ K n and in one <strong>de</strong>pen<strong>de</strong>nt variable y ∈ Kof the form:(1.8) y x j 1x j 2 (x) = F j 1,j 2(x, y(x), yx 1(x), . . .,y x n(x) ) , 1 j 1 , j 2 n,where F j 1,j 2= F j 2,j 1. Un<strong>de</strong>r a local change of coordinates (x, y) ↦→(X, Y ) = (X(x, y), Y (x, y)), this system (1.8) is equivalent to the simp<strong>les</strong>t“flat” system(1.9) Y X j 1X j 2 = 0, 1 j 1 , j 2 n,if and only if there exist arbitrary functions G j1 ,j 2, H k 1j 1 ,j 2, L k 1j 1and M k 1ofthe variab<strong>les</strong> (x, y), for 1 j 1 , j 2 , k 1 n, satisfying the two symmetryconditions G j1 ,j 2= G j2 ,j 1and H k 1j 1 ,j 2= H k 1j 2 ,j 1, such that the equation (1.8)


358is of the specific cubic polynomial form:(1.10)n∑y x j 1x j 2 = G j1 ,j 2+k 1 =1for j 1 , j 2 = 1, . . .,n.y x k 1(H k 1j 1 ,j 2+ 1 2 y x j 1 L k 1j 2+ 1 2 y x j 2 L k 1j 1+ y x j 1 y x j 2 M k 1It may seem quite paradoxical and counter-intuitive (or even false?) thatevery system (1.10), for arbitrary choices of functions G j1 ,j 2, H k 1j 1 ,j 2, L k 1j 1and M k 1, is automatically equivalent to Y X j 1X j 2 = 0. However, a stronghid<strong>de</strong>n assumption holds: that of complete integrability. Shortly, this crucialcondition amounts to say that(1.11) D j3(Fj 1 ,j 2)= Dj2(Fj 1 ,j 3),for all j 1 , j 2 , j 3 = 1, . . ., n, where, for j = 1, . . ., n, the D j are the totaldifferentiation operators <strong>de</strong>fined by(1.12) D j := ∂∂x j + y x j∂n∑∂y +l=1F j,l∂.∂y x lThese conditions are non-void precisely when n 2. More concretely,<strong>de</strong>veloping out (1.11) when the F j 1,j 2are of the specific cubic polynomialform (1.10), after some nontrivial manual computation, we obtain the complicatedcubic differential polynomial in the variab<strong>les</strong> y x k. Equating to zeroall the coefficients of this cubic polynomial, we obtain four fami<strong>les</strong> (I’), (II’),(III’) and (IV’) of first or<strong>de</strong>r partial differential equations satisfied by G j1 ,j 2,H k 1j 1 ,j 2, L k 1j 1and M k 1:{(I’)0 = G j1 ,j 2 ,x j 3 − G j1 ,j 3 ,x j 2 +⎧n∑k 1 =1H k 1j 1 ,j 2G k1 ,j 3−n∑k 1 =10 = δ k 1j 3G j1 ,j 2 ,y − δ k 1j 2G j1 ,j 3 ,y + H k 1j 1 ,j 2 ,x j 3 − Hk 1j 1 ,j 3 ,x j 2 +H k 1j 1 ,j 3G k1 ,j 2.),(II’)⎪⎨⎪⎩+ 1 2 G j 1 ,j 3L k 1j 2− 1 2 G j 1 ,j 2L k 1+ 1 2 δk 1j 1+ 1 2 δk 1j 2+n∑k 2 =1n∑k 2 =1n∑k 2 =1j 3+G k2 ,j 3L k 2j 2− 1 2 δk 1j 1G k2 ,j 3L k 2j 1− 1 2 δk 1j 3H k 1k 2 ,j 3H k 2j 1 ,j 2−n∑k 2 =1n∑k 2 =1n∑k 2 =1H k 1k 2 ,j 2H k 2j 1 ,j 3.G k2 ,j 2L k 2j 3+G k2 ,j 2L k 2j 1+


359(III’) ⎧0 = ∑ (δ k 2)j 3H k σ(1)j 1 ,j 2 ,y − δk σ(2)j 2H k σ(1)j 1 ,j 3 ,y +σ∈S 2+ 1 2 δk σ(2)j 2L k σ(1)− 1j 1 ,x j 32 δk σ(2)j 3L k σ(1)+ j 1 ,x j 2⎪⎨⎪⎩+ 1 2 δk σ(2)j 1+δ k σ(2)j 2L k σ(1)− 1j 2 ,x j 32 δk σ(2)j 1L k σ(1)+ j 3 ,x j 2G j1 ,j 3M k σ(1)− δ k σ(2)j 3G j1 ,j 2M k σ(1)++δ k σ(1),k σ(2)j 1 , j 2n∑+ 1 2 δk σ(1)j 1+ 1 2 δk σ(1)j 2+ 1 2 δk σ(1)j 3k 3 =1n∑k 3 =1n∑k 3 =1n∑k 3 =1G k3 ,j 3M k 3− δ k σ(1),k σ(2)j 1 , j 3n∑H k σ(2)k 3 ,j 3L k 3j 2− 1 2 δk σ(1)j 1H k σ(2)k 3 ,j 3L k 3j 1− 1 2 δk σ(1)j 3H k 3j 1 ,j 2L k σ(2)k 3− 1 2 δk σ(1)j 2n∑k 3 =1n∑k 3 =1n∑k 3 =1k 3 =1G k3 ,j 2M k 3+H k σ(2)k 3 ,j 2L k 3j 3+H k σ(2)k 3 ,j 2L k 3j 1+)H k 3j 1 ,j 3L k σ(2)k 3.(IV’) ⎧0 = ∑ ( 12 δk σ(3),k σ(2)j 3 , j 1L k σ(1)j 2 ,y − 1 2 δk σ(3),k σ(2)j 2 , j 1L k σ(1)j 3 ,y +σ∈S 3⎪⎨⎪⎩+δ k σ(3),k σ(2)j 2 , j 1M k σ(1)− δ k σ(3),k σ(2)x j 3 j 3 , j 1M k σ(1)+x j 2+δ k σ(3),k σ(1)j 2 , j 1n∑k 4 =1+ 1 4 δk σ(1),k σ(3)j 1 , j 3n∑k 4 =1H k σ(2)k 4 ,j 3M k 4− δ k σ(3),k σ(1)n∑j 3 , j 1k 4 =1L k σ(2)k 4L k 4j 2− 1 4 δk σ(1),k σ(3)n∑j 1 , j 2k 4 =1H k σ(2)k 4 ,j 2M k 4+)L k σ(2)k 4L k 4j 3.(These systems (I’), (II’), (III’) and (IV’) should be distinguished from thesystems (I), (II), (III) and (IV) of Theorem 1.7 in [Me2004], although theyare quite similar.) Here, the indices j 1 , j 2 , j 3 , k 1 , k 2 , k 3 vary in {1, 2, . . ., n}.By S 2 and by S 3 , we <strong>de</strong>note the permutation group of {1, 2} and of{1, 2, 3}. To facilitate hand- and Latex-writing, partial <strong>de</strong>rivatives are <strong>de</strong>notedas indices after a comma; for instance, G j1 ,j 2 ,x j 3 is an abreviation for∂G j1 ,j 2/∂x j 3. To <strong>de</strong>duce (I’), (II’), (III’) and (IV’) from equation (1.11), we


360use the fact that every cubic polynomial equation of the form(1.13)0 ≡ A ++n∑k 1 =1n∑B k1 · y x k 1 +n∑n∑k 1 =1 k 2 =1 k 2 =1n∑n∑k 1 =1 k 2 =1C k1 ,k 2· y x k 1 y x k 2 +D k1 ,k 2 ,k 3· y x k 1 y x k 2 y x k 3is equivalent to the annihilation of the following symmetric sums of its coefficients:(1.14) ⎧0 = A,⎪⎨ 0 = B k1 ,0 = C k1 ,k 2+ C k2 ,k 1,⎪⎩0 = D k1 ,k 2 ,k 3+ D k3 ,k 1 ,k 2+ D k2 ,k 3 ,k 1+ D k2 ,k 1 ,k 3+ D k3 ,k 2 ,k 1+ D k1 ,k 3 ,k 2.for all k 1 , k 2 , k 3 = 1, . . .,n.In conclusion, the functions G j1 ,j 2, H k 1j 1 ,j 2, L k 1j 1and M k 1in the statementof Theorem 1.7 are far from being arbitrary: they satisfy the complicatedsystem of first or<strong>de</strong>r partial differential equations (I’), (II’), (III’) and (IV’)above.Our proof of Theorem 1.7 is similar to the one provi<strong>de</strong>d in [Me2004], inthe case of systems of second or<strong>de</strong>r ordinary differential equations, so thatmost steps of the proof will be summarized.In the end of this paper, we will <strong>de</strong>lineate a complicated system of secondor<strong>de</strong>r partial differential equations satisfied by G j1 ,j 2, H k 1j 1 ,j 2, L k 1j 1andM k 1which is the exact analog of the system <strong>de</strong>scribed in the abstract. Themain technical part of the proof of Theorem 1.7 will be to establish thatthis second or<strong>de</strong>r system is a consequence, by linear combinations and bydifferentiations, of the first or<strong>de</strong>r system (I’), (II’), (III’) and (IV’).Open question 1.15. Are Theorems 1.1 and 1.7 true un<strong>de</strong>r weaker smoothnessassumptions, namely with a C 2 or a W 1,∞locright-hand si<strong>de</strong> ?We refer to [Ma2003] for inspiration and appropriate tools.Open question 1.16. Deduce from Theorem 1.7 an explicit necessary andsufficient condition for the associated submanifold of solutions y = b +Π(x i , a k , b) to be locally equivalent to Y = B + X 1 A 1 + · · · + X n A n .As an application, this would characterize local sphericity of a Levi non<strong>de</strong>generatehyper<strong>sur</strong>face M ⊂ C n+1 with n 2.Generalizing the <strong>Lie</strong>-Tresse classification would be a great achievement.


Open problem 1.17. For n = 2 establish a complete list of normal forms ofall possible systems (1.?) according to their <strong>Lie</strong> symmetry group. In case ofsuccess, classify Levi non<strong>de</strong>generate real analytic hyper<strong>sur</strong>faces of C 3 up tobiholomorphisms.361§2. COMPLETELY INTEGRABLE SYSTEMS OFSECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS2.1. Prolongation of a point transformation to the second or<strong>de</strong>r jetspace. Let K = R or C, let n ∈ N, suppose n 2, let x = (x 1 , . . .,x n ) ∈K n and let y ∈ K. According to the main assumption of Theorem 1.7, wehave to consi<strong>de</strong>r a local K-analytic diffeomorphism of the form((2.2) xj 1, y ) ↦−→ ( X j (x j 1, y), Y (x j 1, y) ) ,which transforms the system (1.8) to the system Y X i 1X i 2 = 0, 1 j 1 , j 2 n. Without loss of generality, we shall assume that this transformation isclose to the i<strong>de</strong>ntity. To obtain the precise expression (2.35) of the transformedsystem (1.8), we have to prolong the above diffeomorphism to thesecond or<strong>de</strong>r jet space. We introduce the coordinates (x j , y, y x j 1 , y x j 1x j 2 ) onthe second or<strong>de</strong>r jet space. Let(2.3) D k := ∂∂x k + y x k∂n∑∂y +l=1y x k x l∂,∂y x lbe the k-th total differentiation operator. According to [Ol1986, BK1989,Ol1995], for the first or<strong>de</strong>r partial <strong>de</strong>rivatives, one has the (implicit, compact)expression:⎛ ⎞ ⎛D 1 X 1 · · · D 1 X n −1 ⎛ ⎞D 1 Y(2.4)⎝Y X 1.Y X n⎠ = ⎝⎞. · · · .⎠D n X 1 · · · D n X n⎝.D n Ywhere (·) −1 <strong>de</strong>notes the inverse matrix, which exists, since the transformation(2.2) is close to the i<strong>de</strong>ntity. For the second or<strong>de</strong>r partial <strong>de</strong>rivatives,again according to [Ol1986, BK1989, Ol1995], one has the (implicit, compact)expressions:⎛ ⎞ ⎛Y X j X 1 D 1 X 1 · · · D 1 X n ⎞−1 ⎛ ⎞D 1 Y X j(2.5) ⎝.⎠ = ⎝. · · · .⎠ ⎝.⎠ ,Y X j X n D n X 1 · · · D n X n D n Y X jfor j = 1, . . ., n. Let DX <strong>de</strong>note the matrix (D i X j ) 1jn1in, where i is thein<strong>de</strong>x of lines and j the in<strong>de</strong>x of columns, let Y X <strong>de</strong>note the column matrix(Y X i) 1inand let DY be the column matrix (D i Y ) 1in.⎠ ,


362By inspecting (2.5) above, we see that the equivalence between (i), (ii)and (iii) just below is obvious:Lemma 2.6. The following conditions are equivalent:(i) the differential equations Y X j Xk = 0 hold for 1 j, k n;(ii) the matrix equations D k (Y X ) = 0 hold for 1 k n;(iii) the matrix equations DX · D k (Y X ) = 0 hold for 1 k n;(iv) the matrix equations 0 = D k (DX)·Y X −D k (DY ) hold for 1 k n.Formally, in the sequel, it will be more convenient to achieve the explicitcomputations starting from condition (iv), since no matrix inversion at all isinvolved in it.Proof. In<strong>de</strong>ed, applying the total differentiation operator D k to the matrixequation (2.4) written un<strong>de</strong>r the equivalent form 0 = DX · Y X − DY , weget:(2.7) 0 = D k (DX) · Y X + DX · D k (Y X ) − D k (DY ),so that the equivalence between (iii) and (iv) is now clear.2.8. An explicit formula in the case n = 2. Thus, we can start to <strong>de</strong>velopeexplicitely the matrix equations(2.9) 0 = D k (DX) · Y X − D k (DY ).In it, some huge formal expressions are hid<strong>de</strong>n behind the symbol D k . Proceedinginductively, we start by examinating the case n = 2 thoroughly. Bydirect computations which require to be clever, we reconstitute some 3 × 3<strong>de</strong>terminants in the four (in fact three) <strong>de</strong>veloped equations (2.9). Aftersome work, the first equation is:(2.10)∣∣ ∣ ∣∣∣∣∣ X 10 = y x 1 x 1 · xX 1 1 xX 1 2 y ∣∣∣∣∣ X 2 xX 2 1 xX 2 2 y +Y x 1 Y x 2 Y y∣⎧ ∣⎨ ∣∣∣∣∣ X 1+ y x 1 ·⎩ 2 xX 1 1 xX 1 2 x 1 yX 2 xX 2 1 xX 2 2 x 1 yY x 1 Y x 2 Y x 1 y∣X 1 xX 1 1 xX 1 ∣∣∣∣∣ 2 x 1 x 1X 2 xX 2 1 xX 2 2 x 1 x+ 1Y x 1 Y x 2 Y x 1 x 1∣ ⎫∣∣∣∣∣ X 1 ∣ − x 1 xX 1 1 xX 1 2 y⎬X 2 x 1 xX 2 1 xX 2 2 yY x 1 x 1 Y x 2 Y ∣⎭ +y⎧ ∣ ⎫⎨ ∣∣∣∣∣ X 1+ y x 2 ·⎩ − xX 1 1 x 1 xX 1 1 y⎬X 2 xX 2 1 x 1 xX 2 1 yY x 1 Y x 1 x 1 Y ∣⎭ +y


⎧∣ ⎨X 1 xX 1+ y x 1 y x 1 ·1 xX 2 yy1 ∣∣∣∣∣ ⎩X 2 xX 2∣1 xX 2 2 yy − 2Y x 1 Y x 2 Y yy∣⎧ ∣ ∣⎫ ⎨ ∣∣∣∣∣ X 1+ y x 1 y x 2 ·⎩ −2 xX 1 1 x 1 yXy1 ∣∣∣∣∣ ⎬X 2 xX 2 1 x 1 yXy2 ⎭ +Y x 1 Y x 1 y Y y⎧ ∣ ∣⎫ ⎨ ∣∣∣∣∣ X 1+ y x 1 y x 1 y x 1 ·⎩ − yy X 1 xX 1 2 y ∣∣∣∣∣ ⎬Xyy 2 X 2 xX 2 2 y⎭ +Y yy Y x 2 Y y⎧ ∣⎨ ∣∣∣∣∣ X 1+ y x 1 y x 1 y x 2 ·⎩ − xX 1 1 yy Xy1X 2 xX 2 1 yy Xy2X 1 x 1 yX 1 x 2 X 1 yX 2 x 1 yX 2 x 2 X 2 yY x 1 y Y x 2 Y y∣ ∣∣∣∣∣⎫⎬⎭ +Y x 1 Y yy Y y∣ ∣∣∣∣∣⎫⎬⎭ .This formula and the two next (2.22), (2.23) have been checked by SylvainNeut and Michel Petitot with the help of Maple.2.11. Comparison with the coefficients of the second prolongation ofa vector field. At present, it is useful to make an illuminating digressionwhich will help us to <strong>de</strong>vise what is the general form of the <strong>de</strong>velopment ofthe equations (2.9). Consi<strong>de</strong>r an arbitrary vector field of the form(2.12) L :=j 1 =1n∑k=1X k∂∂x k + Y ∂∂y ,where the coefficients X k and Y are functions of (x i , y). Accordingto [Ol1986, BK1989, Ol1995], there exists a unique prolongation L (2) ofthis vector field to the second or<strong>de</strong>r jet space, of the formn∑(2.13) L (2) ∂n∑ n∑ ∂:= L + Y j1 + Y j1 ,j∂y2,x j 1 ∂y x j 1x j 2j 1 =1 j 2 =1where the coefficients Y j1 , Y j1 ,j 2may be computed by means of formulas(3.4) of Section 3(II). In Part II, we obtained the following perfect formulas:(2.14) ⎧⎪⎨⎪⎩Y j1 ,j 2= Y x j 1x j 2 +++n∑n∑k 1 =1n∑k 1 =1 k 2 =1n∑n∑k 1 =1 k 2 =1 k 3 =1y x k 1 · {δ k 1j 1Y x j 2y + δ k 1j 2Y x j 1y − X k 1x j 1x j 2}+y x k 1 y x k 2 ·n∑363{}δ k 1,k 2j 1 , j 2Y yy − δ k 1j 1X k 2x j 2y − δk 1j 2X k 2+x j 1yy x k 1 y x k 2 y x k 3 ·{ }−δ k 1,k 2j 1 , j 2X k 3yy ,


364for j 1 , j 2 = 1, . . ., n. The expression of Y j1 does not matter for us here.Specifying this formula to the the case n = 2 and taking account of thesymmetry Y 1,2 = Y 2,1 we get the following three second or<strong>de</strong>r coefficients:(2.15) ⎧Y 1,1 = Y x 1 x 1 + y x 1 · {2 }Y x 1 y − X 1x 1 x + 1 yx 2 · {−X } 2x 1 x + 1+ y x 1 y x 1 · {Y }yy − 2 X 1x 1 y + yx 1 y x 2 · {−2X 2x y}+ 1+ y x 1 y x 1 y x 1 · {−X }yy1 + yx 1 y x 1 y x 2 · {−Xyy} 2 ,Y 1,2 = Y x 1 x 2 + y x 1 · {Y }x 2 y − X 1x⎪⎨1 x + 2 yx 2 · {Y }x 1 y − X 2x 1 x + 2+ y x 1 y x 1 · {−X } 1x 2 y + yx 1 y x 2 · {Yyy − X 1x 1 y − X 2x y}+ 2+ y x 2 y x 2 · {−X 2x y}+ 1+ y x 1 y x 1 y x 2 · {−X 1yy}+ yx 1 y x 2 y x 2 · {−X 2yy},Y 2,2 = Y x 2 x 2 + y x 1 · {−X }x 1 2 x + 2 yx 2 · {2 }Y x 2 y − Xx 2 2 x + 2+ y x 1 y x 2 · {−2 }X 1x⎪⎩2 y + yx 2 y x 2 · {Yyy − 2 X 2x y}+ 2+ y x 1 y x 2 y x 2 · {−X }yy1 + yx 2 y x 2 y x 2 · {−Xyy} 2 .We would like to mention that the computation of Y j1 ,j 2, 1 j 1 , j 2 2,above is easier than the verification of (2.10). Based on the three formulas(2.15), we claim that we can guess the second and the third equations,which would be obtained by <strong>de</strong>veloping and by simplifying (2.9), namelywith y x 1 x 2 and with y x 2 x 2 instead of y x 1 x2 in (2.10). Our dictionary to translatefrom the first formula (2.15) to (2.10) may be <strong>de</strong>scribed as follows.Begin with the Jacobian <strong>de</strong>terminant(2.16)∣∣X 1 xX 1 1 xX 1 2 y ∣∣∣∣∣X 2 xX 2 1 xX 2 2 yY x 1 Y x 2 Y yof the change of coordinates (2.2). Since this change of coordinates is closeto the i<strong>de</strong>ntity, we may consi<strong>de</strong>r that the following Jacobian matrix approximationholds:⎛⎞ ⎛(2.17) ⎝ X1 xX 1 1 xX 1 2 yX 2 xX 2 1 xX 2 ⎠ ∼ 2 y = ⎝ 1 0 0⎞0 1 0 ⎠ .Y x 1 Y x 2 Y y 0 0 1The jacobian matrix has three columns. There are six possible second or<strong>de</strong>r<strong>de</strong>rivatives with respect to the variab<strong>les</strong> (x 1 , x 2 , y), namely(2.18) (·) x 1 x 1, (·) x 1 x 2, (·) x 2 x 2, (·) x 1 y, (·) x 2 y, (·) yy .In the Jacobian <strong>de</strong>terminant (2.16), by replacing any one of the threecolumns of first or<strong>de</strong>r <strong>de</strong>rivatives with a column of second or<strong>de</strong>r <strong>de</strong>rivatives,we obtain exactly 3 × 6 = 18 possible <strong>de</strong>terminants. For instance, by


eplacing the third column by the second or<strong>de</strong>r <strong>de</strong>rivative (·) x 1 y or the firstcolumn by the second or<strong>de</strong>r <strong>de</strong>rivative (·) x 1 x1, we get:365(2.19)∣X 1 x 1 X 1 x 2 X 1 x 1 yX 2 x 1 X 2 x 2 X 2 x 1 yY x 1 Y x 2 Y x 1 y∣or∣X 1 x 1 x 1 X 1 x 2 Xy1X 2 x 1 x 1 X 2 x 2 Xy2Y x 1 x 1 Y x 2 Y y∣ .We recover the two <strong>de</strong>terminants appearing in the second line of (2.10). Onthe other hand, according to the approximation (2.17), these two <strong>de</strong>terminantsare essentially equal to(2.20)∣1 0 X 1 x 1 y0 1 X 2 x 1 y0 0 Y x 1 y∣ = Y x 1 yor to∣X 1 x 1 x 1 0 0X 2 x 1 x 1 1 0Y x 1 x 1 0 1 ∣ ∣∣∣∣∣= X 1 x 1 x 1.Consequently, in the second line of (2.10), up to a change to calligraphicletters, we recover the coefficient(2.21) 2 Y x 1 y − X 1x 1 x 1of y x1 in the expression of Y 1,1 in (2.15). In conclusion, we have discoveredhow to pass symbolically from the first equation (2.15) to the equation (2.10)and conversely.Translating the second equation (2.15), we <strong>de</strong>duce, without any furthercomputation, that the second equation which would be obtained by <strong>de</strong>veloping(2.9) in length, is:(2.22)∣ ∣ ∣∣∣∣∣ X 10 = y x 1 x 2 · xX 1 1 xX 1 2 y ∣∣∣∣∣X 2 xX 2 1 xX 2 2 y +Y x 1 Y x 2 Y y⎧⎨+ y x 1 ·⎩∣⎧⎨+ y x 2 ·⎩∣X 1 x 1 X 1 x 2 X 1 x 2 yX 2 x 1 X 2 x 2 X 2 x 2 yY x 1 Y x 2 Y x 2 yX 1 x 1 X 1 x 2 X 1 x 1 yX 2 x 1 X 2 x 2 X 2 x 1 yY x 1 Y x 2 Y x 1 y∣ Xx 1 X 1 x 1 X 1 ∣∣∣∣∣ 2 x 1 x 2X 2 xX 2∣1 xX 2 2 x 1 x+ 2Y x 1 Y x 2 Y x 1 x ∣ 2 ∣∣∣∣∣ X 1 ∣ − x 1 xX 1 2 xX 1 2 yX 2 x 1 xX 2 2 xX 2 2 yY x 1 x 2 Y x 2 Y y∣ ∣∣∣∣∣ X 1 ∣ − xX 1 1 x 1 xX 1 2 yX 2 xX 2 1 x 1 xX 2 2 yY x 1 Y x 1 x 2 Y y⎫⎬∣⎭ +⎫⎬∣⎭ +


366⎧ ∣ ∣⎫ ⎨ ∣∣∣∣∣ X 1+ y x 1 y x 1 ·⎩ − x 2 yX 1 xX 1 2 y ∣∣∣∣∣ ⎬X 2 x 2 yX 2 xX 2 2 y⎭ +Y x 2 y Y x 2 Y y⎧∣ ∣⎨X 1 xX 1+ y x 1 y x 2 ·1 xX 1 2 yy ∣∣∣∣∣ X 1⎩X 2 xX 2∣1 xX 2 x 2 yy −1 yX 1 xX 2 y1 ∣∣∣∣∣ X 2 xY x 1 Y x 2 Y yy∣1 yX 2 xX 2 2 y −Y x 1 y Y x 2 Y y ∣⎫ ⎧ ∣ ∣⎫ X 1 xX 1−1 x 2 yXy1 ∣∣∣∣∣ ⎬ ⎨ ∣∣∣∣∣ X 1 X 2 xX 2∣1 x 2 yXy2 ⎭ + y x 2 y x 2 ⎩ − xX 1 1 x 1 yXy1 ∣∣∣∣∣ ⎬X 2 xX 2 1 x 1 yXy2 ⎭ +Y x 1 Y x 2 y Y y Y x 1 Y x 1 y Y y⎧ ∣ ∣⎫ ⎨ ∣∣∣∣∣ X 1+ y x 1 y x 1 y x 2 ·⎩ − yy X 1 xX 1 2 y ∣∣∣∣∣ ⎬Xyy 2 X 2 xX 2 2 y⎭ +Y yy Y x 2 Y y⎧ ∣ ∣⎫ ⎨ ∣∣∣∣∣ X 1+ y x 1 y x 2 y x 2 ·⎩ − xX 1 1 yy Xy1 ∣∣∣∣∣ ⎬X 2 xX 2 1 yy Xy2 ⎭ .Y x 1 Y yy Y yUsing the third equation (2.15), we also <strong>de</strong>duce, without any further computation,that the third equation which would be obtained by <strong>de</strong>veloping (2.9)in length, is:(2.23) ∣ ∣ ∣ ∣∣∣∣∣ X 10 = y x 2 x 2 · xX 1 1 xX 1 2 y ∣∣∣∣∣ X 1X 2 xX 2 1 xX 2 xX 12 y +1 xX 1 ∣∣∣∣∣ 2 x 2 x 2X 2 xX 2Y x 1 Y x 2 Y y∣1 xX 2 2 x 2 x+ 2Y x 1 Y x 2 Y x 2 x⎧ ∣ ⎫2⎨ ∣∣∣∣∣ X 1+ y x 1 ·⎩ − x 2 xX 1 2 xX 1 2 y⎬X 2 x 1 xX 2 2 xX 2 2 yY x 2 x 2 Y x 2 Y ∣⎭ +y⎧ ∣ ∣ ⎫⎨ ∣∣∣∣∣ X 1+ y x 2 ·⎩ 2 xX 1 1 xX 1 2 x 2 y ∣∣∣∣∣ X 1X 2 xX 2 1 xX 2 2 x 2 yY x 1 Y x 2 Y x∣ − xX 1 1 x 2 xX 1 2 y⎬X 2 xX 2 1 x 2 xX 2 2 y2 y Y x 1 Y x 2 x 2 Y ∣⎭ +y


⎧ ∣ ∣⎫ ⎨ ∣∣∣∣∣ X 1+ y x 1 y x 2 ·⎩ −2 x 2 yX 1 xX 1 2 y ∣∣∣∣∣ ⎬X 2 x 2 yX 2 xX 2 2 y⎭ +Y x 2 y Y x 2 Y y⎧∣ ⎨X 1 xX 1+ y x 2 y x 2 ·1 xX 2 yy1 ∣∣∣∣∣ ⎩X 2 xX 2∣1 xX 2 2 yy − 2Y x 1 Y x 2 Y yy∣⎧ ∣ ∣⎫ ⎨ ∣∣∣∣∣ X 1+ y x 1 y x 2 y x 2 ·⎩ − yy X 1 xX 1 2 y ∣∣∣∣∣ ⎬Xyy 2 X 2 xX 2 2 y⎭ +Y yy Y x 2 Y y⎧ ∣ ∣⎫ ⎨ ∣∣∣∣∣ X 1+ y x 2 y x 2 y x 2 ·⎩ − xX 1 1 yy Xy1 ∣∣∣∣∣ ⎬X 2 xX 2 1 yy Xy2 ⎭ .Y x 1 Y yy Y yX 1 x 1 X 1 x 2 yX 1 yX 2 x 1 X 2 x 2 yX 2 yY x 1 Y x 2 y Y y∣ ∣∣∣∣∣⎫⎬⎭ +3672.24. Appropriate formalism. To <strong>de</strong>scribe the combinatorics un<strong>de</strong>rlyingformulas (2.10), (2.22) and (2.23), as in [Me2004], let us introduce the followingnotation for the Jacobian <strong>de</strong>terminant:(2.25) ∆(x 1 |x 2 |y) :=∣∣X 1 xX 1 1 xX 1 2 y ∣∣∣∣∣X 2 xX 2 1 xX 2 2 y .Y x 1 Y x 2 Y yHere, in the notation ∆(x 1 |x 2 |y), the three spaces between the two verticallines | refer to the three columns of the Jacobian <strong>de</strong>terminant, and the termsx 1 , x 2 , y in (x 1 |x 2 |y) <strong>de</strong>signate the partial <strong>de</strong>rivatives appearing in eachcolumn. Accordingly, in the following two examp<strong>les</strong> of modified Jacobian<strong>de</strong>terminants:(2.26)⎧∆(x 1 x 2 |x 2 |y) :=⎪⎨∣∆(x 1 |x 2 |x 1 y) :=⎪⎩∣X 1 x 1 x 2 X 1 x 2 Xy1X 2 x 1 x 2 X 2 x 2 Xy2Y x 1 x 2 Y x 2 Y yX 1 x 1 X 1 x 2 X 1 x 1 yX 2 x 1 X 2 x 2 X 2 x 1 yY x 1 Y x 2 Y x 1 y∣,∣andwe simply mean which column of first or<strong>de</strong>r <strong>de</strong>rivatives is replaced by acolumn of second or<strong>de</strong>r <strong>de</strong>rivatives in the original Jacobian <strong>de</strong>terminant.As there are 6 possible second or<strong>de</strong>r <strong>de</strong>rivatives (·) x 1 x 1, (·) x 1 x 2, (·) x 1 x y,(·) x 2 x 2, (·) x 2 y and (·) yy together with 3 columns, we obtain 3 × 6 = 18


368possible modified Jacobian <strong>de</strong>terminants:(2.27)⎧⎪⎨⎪⎩∆(x 1 x 1 |x 2 |y) ∆(x 1 |x 1 x 1 |y) ∆(x 1 |x 2 |x 1 x 1 )∆(x 1 x 2 |x 2 |y) ∆(x 1 |x 1 x 2 |y) ∆(x 1 |x 2 |x 1 x 2 )∆(x 1 y|x 2 |y) ∆(x 1 |x 1 y|y) ∆(x 1 |x 2 |x 1 y)∆(x 2 x 2 |x 2 |y) ∆(x 1 |x 2 x 2 |y) ∆(x 1 |x 2 |x 2 x 2 )∆(x 2 y|x 2 |y) ∆(x 1 |x 2 y|y) ∆(x 1 |x 2 |x 2 y)∆(yy|x 2 |y) ∆(x 1 |yy|y) ∆(x 1 |x 2 |yy).Next, we observe that if we want to solve with respect to y x 1 x1 in (2.10),with respect to y x 1 x 2 in (2.22) and with respect to y x 2 x2 in (2.23), we have todivi<strong>de</strong> by the Jacobian <strong>de</strong>terminant ∆(x 1 |x 2 |y). Consequently, we introduce18 new square functions as follows:(2.28)⎧⎪⎨⎪⎩□ 1 x 1 x 1 := ∆(x1 x 1 |x 2 |y)∆(x 1 |x 2 |y)□ 1 x 2 x 2 := ∆(x2 x 2 |x 2 |y)∆(x 1 |x 2 |y)□ 2 x 1 x 1 := ∆(x1 |x 1 x 1 |y)∆(x 1 |x 2 |y)□ 2 x 2 x 2 := ∆(x1 |x 2 x 2 |y)∆(x 1 |x 2 |y)□ 3 x 1 x 1 := ∆(x1 |x 2 |x 1 x 1 )∆(x 1 |x 2 |y)□ 3 x 2 x 2 := ∆(x1 |x 2 |x 2 x 2 )∆(x 1 |x 2 |y)□ 1 x 1 x 2 := ∆(x1 x 2 |x 2 |y)∆(x 1 |x 2 |y)□ 1 x 2 y := ∆(x2 y|x 2 |y)∆(x 1 |x 2 |y)□ 2 x 1 x 2 := ∆(x1 |x 1 x 2 |y)∆(x 1 |x 2 |y)□ 2 x 2 y := ∆(x1 |x 2 y|y)∆(x 1 |x 2 |y)□ 3 x 1 x 2 := ∆(x1 |x 2 |x 1 x 2 )∆(x 1 |x 2 |y)□ 3 x 2 y := ∆(x1 |x 2 |x 2 y)∆(x 1 |x 2 |y)□ 1 x 1 y := ∆(x1 y|x 2 |y)∆(x 1 |x 2 |y)□ 1 yy := ∆(yy|x2 |y)∆(x 1 |x 2 |y)□ 2 x 1 y := ∆(x1 |x 1 y|y)∆(x 1 |x 2 |y)□ 2 yy := ∆(x1 |yy|y)∆(x 1 |x 2 |y)□ 3 x 1 y := ∆(x1 |x 2 |x 1 y)∆(x 1 |x 2 |y)□ 3 yy := ∆(x1 |x 2 |yy)∆(x 1 |x 2 |y) .Thanks to these notations, we can rewrite the three equations (2.10),(2.22) and (2.23) in a more compact style.Lemma 2.29. A completely integrable system of three second or<strong>de</strong>r partialdifferential equations(2.30)⎧⎪⎨y x 1 x 1(x) = F ( 1,1 x 1 , x 2 , y(x), y x 1(x), y x 2(x) ) ,y x⎪⎩1 x 2(x) = F ( 1,2 x 1 , x 2 , y(x), y x 1(x), y x 2(x) ) ,y x 2 x 2(x) = F ( 2,2 x 1 , x 2 , y(x), y x 1(x), y x 2(x) ) ,is equivalent to the simp<strong>les</strong>t system Y X 1 X 1 = 0, Y X 1 X 2 = 0, Y X 2 ,X 2 = 0, ifand only if there exist local K-analytic functions X 1 , X 2 , Y such that it may


e written un<strong>de</strong>r the specific form:(2.31)⎧)y x 1 x 1 = −□3 x 1 x+ y 1 x 1 ·(−2□ 3 x 1 y + □1 x 1 x+ y 1 x 2 · (□ 2 )x 1 x +( ) ( )1+ y x 1 y x 1 · −□ 3 yy + 2□ 1 x 1 y+ y x 1 y x 2 · 2□ 2 x 1 y++ y x 1 y x 1 y x 1 · (□ 1 yy)+ yx 1 y x 1 y x 2 · (□ 2 yy),))y x⎪⎨1 x 2 = −□3 x 1 x+ y 2 x 1 ·(−□ 3 x 2 y + □1 x 1 x+ y 2 x 2 ·(−□ 3 x 1 y + □2 x 1 x+( ) ()2+ y x 1 y x 1 · □ 1 x 2 y+ y x 1 y x 2 · −□ 3 yy + □ 1 x 1 y + □2 x 2 y+( )+ y x 2 y x 2 · □ 2 x 1 y+ y x 1 y x 1 y x 2 · (□ 1 yy)+ yx 1 y x 2 y x 2 · (□ 2 yy),y x 2 x 2 = −□3 x 2 x+ y 2 x 1 · (□ 1 ) )x 2 x + 2 yx 2 ·(−2□ 3 x 2 y + □2 x 2 x+( ) (2 )+ y x 1 y x 2 · 2□ 1 x⎪⎩2 y+ y x 2 y x 2 · −□ 3 yy + 2□2 x 2 y++ y x 1 y x 2 y x 2 · (□ 1 yy)+ yx 2 y x 2 y x 2 · (□ 2 yy).3692.32. General formulas. The formal dictionary between the original <strong>de</strong>terminantialformulas (2.10), (2.22), (2.23), between the coefficients (2.15) ofthe second or<strong>de</strong>r prolongation of a vector field and between the new squareformulas (2.31) above is evi<strong>de</strong>nt. Consequently, without any computation,just by translating the family of formulas (2.14), we may <strong>de</strong>duce the exactformulation of the <strong>de</strong>sired generalization of Lemma 2.29 above.Lemma 2.33. A completely integrable system of second or<strong>de</strong>r partial differentialequations of the form(2.34)y x j 1x j 2 (x) = F j 1,j 2(x, y(x), y x 1(x), . . .,y x n(x)) , j 1 , j 2 = 1, . . .n,is equivalent to the simp<strong>les</strong>t system Y X j 1X j 2 = 0, j 1 , j 2 = 1, . . ., n, if andonly if there exist local K-analytic functions X l , Y such that it may be writtenun<strong>de</strong>r the specific form:(2.35) ⎧⎪⎨⎪⎩y x j 1x j 2 = −□ n+1x j 1x j 2 + n∑+y x j 1 ·k 1 =1y x k 1 ·(□ k 1x j 2y − 1 )2 δk 1j 2□ n+1yy+y x j 1 y x j 2 · (□ k 1yy)}.{()□ k 1x j 1x − j 2 δk 1j 1□ n+1x j 2y − δk 1j 2□ n+1 +x j 1y+ y x j 2 ·(□ k 1x j 1y − 1 )2 δk 1j 1□ n+1yy +


370Of course, to <strong>de</strong>fine the square functions in the context of n 2 in<strong>de</strong>pen<strong>de</strong>ntvariab<strong>les</strong> (x 1 , x 2 , . . ., x n ), we introduce the Jacobian <strong>de</strong>terminantX 1 x· · · X 1 ∣ 1 x n X1 y ∣∣∣∣∣∣∣ (2.36) ∆(x 1 |x 2 | · · · |x n |y) :=. · · · . .,X n x· · · X n∣1 x n Xn yY x 1 · · · Y x n Y ytogether with its modifications(2.37) ∆ ( x 1 | · · · | k 1x j 1x j 2| · · · |y ) ,in which the k 1 -th column of partial first or<strong>de</strong>r <strong>de</strong>rivatives | k 1x k 1| is replacedby the column | k 1x j 1x j 2| of partial <strong>de</strong>rivatives. Here, the indices k 1 , j 1 ,j 2 satisfy 1 k 1 , j 1 , j 2 n + 1, with the convention that we adopt thenotational equivalence(2.38) x n+1 ≡ y .This convention will be convenient to write some of our general formulas inthe sequel.As we promised to only summarize the proof of Theorem 1.7 in this paper,we will not <strong>de</strong>velope the proof of Lemma 2.33: it is similar to the proof ofLemma 3.32 in [Me2004].§3. FIRST AND SECOND AUXILIARY SYSTEM3.1. Functions G j1 ,j 2, H k 1j 1 ,j 2, L k 1j 1and M k 1. To discover the four families offunctions appearing in the statement of Theorem 1.7, by comparing (2.35)and (1.10), it suffices (of course) to set:(3.2)⎧⎪⎨⎪⎩G j1 ,j 2:= −□ n+1x j 1x , j 2H k 1j 1 ,j 2:= □ k 1x j 1x − j 2 δk 1j 1□ n+1x j 2y − δk 1j 2□ n+1x j 1y ,L k 1j 1:= 2 □ k 1x j 1y − δk 1j 1□ n+1yy ,M k 1:= □ k 1yy.Consequently, we have shown the “only if” part of Theorem 1.7, which isthe easiest implication.To establish the “if” part, by far the most difficult implication, the verymain lemma can be stated as follows.Lemma 3.3. The partial differerential relations (I’), (II’), (III’) and (IV’)which express in length the compatibility conditions (1.11) are necessaryand sufficient for the existence of functions X l , Y of (x l 1, y) satisfying thesecond or<strong>de</strong>r nonlinear system of partial differential equations (3.2) above.


In<strong>de</strong>ed, the collection of equations (3.2) is a system of partial differentialequations with unknowns X l , Y , by virtue of the <strong>de</strong>finition of the squarefunctions.3.4. First <strong>aux</strong>iliary system. To proceed further, we observe that there are(m + 1) more square functions than functions G j1 ,j 2, H k 1j 1 ,j 2, L k 1j 1and M k 1.In<strong>de</strong>ed, a simple counting yields:⎧#{□⎪⎨k 1x j 1x } = n2 (n + 1), #{□ k j 122x j 1y } = n2 ,(3.5)#{□ k 1yy } = n,n(n + 1)#{□n+1 } = ,x⎪⎩j 1x j 22#{□ n+1x j 1y } = n,#{□n+1 yy } = 1,whereas⎧⎨#{G j 1,j 2n(n + 1)} = , #{H k 1j(3.6)21 ,j 2} = n2 (n + 1),2⎩#{L k 1j 1} = n 2 , #{M k 1} = n.Here, the indices j 1 , j 2 , k 1 satisfy 1 j 1 , j 2 , k 1 n. Similarly asin [Me2004], to transform the system (3.2) in a true complete system, letus introduce functions Π k 1j 1 ,j 2of (x l 1, y), where 1 j 1 , j 2 , k 1 n+1, whichsatisfy the symmetry Π k 1j 1 ,j 2= Π k 1j 1 ,j 1, and let us introduce the following first<strong>aux</strong>iliary system:{□k 1x(3.7)j 1x = j 2 Πk 1j 1 ,j 2, □ k 1x j 1y = Πk 1j 1 ,n+1 , □k 1yy = Πk 1n+1,n+1 ,□ n+1x j 1x = j 2 Πn+1 j 1 ,j 2, □ n+1x j 1y = Πn+1 j 1 ,n+1 , □n+1 yy = Π n+1n+1,n+1 .It is complete. The necessary and sufficient conditions for the existence ofsolutions X l , Y follow by cross differentiations.Lemma 3.8. For all j 1 , j 2 , j 3 , k 1 = 1, 2, . . ., n+1, we have the cross differentiationrelations(3.9)(□k 1)x j 1x −( )□ k j 12 x j 3 x j 1x j 3= − ∑n+1x j 2k 2 =1□ k 2x j 1x j 2 □k 1x j 3x + ∑n+1k 2k 2 =1371□ k 2x j 1x j 3 □k 1x j 2x k 2 .The proof of this lemma is exactly the same as the proof of Lemma 3.40in [Me2004].As a direct consequence, we <strong>de</strong>duce that a necessary and sufficient conditionfor the existence of solutions Π k 1j 1 ,j 2to the first <strong>aux</strong>iliary system is thatthey satisfy the following compatibility partial differential relations:(3.10)∂Π k 1j 1 ,j 2∂x j 3− ∂Πk 1j 1 ,j 3∂x j 2= −∑n=1k 2 =1∑n=1Π k 2j 1 ,j 2 · Π k 1j 3 ,k 2+k 2 =1Π k 2j 1 ,j 3 · Π k 1j 2 ,k 2,


372for all j 1 , j 2 , j 3 , k 1 = 1, . . .,n + 1.We shall have to specify this system in length according to the splitting{1, 2, . . ., n} and {n + 1} of the indices of coordinates. We obtain six familiesof equations equivalent to (3.10) just above:(3.11) ⎧⎪⎨⎪⎩( )Πn+1j 1 ,j − ( )2Π n+1x j 3 j 1 ,j = − 3 x j 2n∑k 2 =1+( )Πn+1j 1 ,j − ( n∑2Π n+1y j 1 ,n+1)x = − j 2k 2 =1(Πn+1j 1 ,n+1)y − ( n∑Π n+1n+1,n+1)x = − j 1(Πk 1j 1 ,j 2)x j 3 − ( Π k 1j 1 ,j 3)x j 2 = −+k 2 =1+n∑k 2 =1+(Πk 1)j 1 ,j − ( n∑2Π k 1y j 1 ,n+1)x = − j 2k 2 =1(Πk 1)j 1 ,n+1 − ( n∑Π k 1y n+1,n+1)x = − j 1+k 2 =1+Π k 2j 1 ,j 2Π n+1j 3 ,k 2− Π n+1j 1 ,j 2Π n+1j 3 ,n+1 +n∑k 2 =1Π k 2j 1 ,j 3Π n+1j 2 ,k 2+ Π n+1j 1 ,j 3Π n+1j 2 ,n+1 ,Π k 2j 1 ,j 2Π n+1n+1,k 2− Π n+1j 1 ,j 2Π n+1n+1,n+1 +n∑k 2 =1Π k 2j 1 ,n+1 Πn+1 j 2 ,k 2+ Π n+1j 1 ,n+1 Πn+1 j 2 ,n+1 ,Π k 2j 1 ,n+1 Πn+1 n+1,k 2− Π n+1j 1 ,n+1 Πn+1 n+1,n+1 +a ◦n∑k 2 =1Π k 2n+1,n+1 Π n+1j 1 ,k 2+ Π n+1n+1,n+1 Π n+1j 1 ,n+1 ,a ◦Π k 2j 1 ,j 2Π k 1j 3 ,k 2− Π n+1j 1 ,j 2Π k 1j 3 ,n+1 +n∑k 2 =1Π k 2j 1 ,j 3Π k 1j 2 ,k 2+ Π n+1j 1 ,j 3Π k 1j 2 ,n+1 ,Π k 2j 1 ,j 2Π k 1n+1,k 2− Π n+1j 1 ,j 2Π k 1n+1,n+1 +n∑k 2 =1Π k 2j 1 ,n+1 Πk 1j 2 ,k 2+ Π n+1j 1 ,n+1 Πk 1j 2 ,n+1 ,Π k 2j 1 ,n+1 Πk 1n+1,k 2− Π n+1j 1 ,n+1 Πk 1n+1,n+1 +n∑k 2 =1Π k 2n+1,n+1 Π k 1j 1 ,k 2+ Π n+1n+1,n+1 Π k 1j 1 ,n+1 .where the indices j 1 , j 2 , j 3 , k 1 vary in the set {1, 2, 1, . . ., n}.


3.12. Principal unknowns. As there are (m + 1) more square (or Pi) functionsthan the functions G j1 ,j 2, H k 1j 1 ,j 2, L k 1j 1and M k 1, we cannot invert directlythe linear system (3.2). To quasi-inverse it, we choose the (m + 1) specificsquare functions(3.13) Θ 1 := □ 1 x 1 x 1, Θ2 := □ 2 x 2 x 2, · · · · · · , Θn+1 := □ n+1x n+1 x n+1 ,calling them principal unknowns, and we get the quasi-inversion:(3.14) ⎧Π k 1j 1 ,j 2= □ k 1x j 1x = j 2 Hk 1j 1 ,j 2− 1 2 δk 1j 1H j 2j 2 ,j 2− 1 2 δk 1j 2H j 1j 1 ,j 1+ 1 2 δk 1j 1Θ j 2+ 1 2 δk 1j 2Θ j 1,⎪⎨⎪⎩Π k 1j 1 ,n+1 = □k 1x j 1y = 1 2 Lk 1j 1+ 1 2 δk 1j 1Θ n+1 ,Π k 1n+1,n+1 = □k 1yy = Mk 1,Π n+1j 1 ,j 2= □ n+1x j 1x j 2 = −G j 1 ,j 2,Π n+1j 1 ,n+1 = □n+1 x j 1y = −1 2 Hj 1j 1 ,j 1+ 1 2 Θj 1.3.15. Second <strong>aux</strong>iliary system. Replacing the five families of functionsΠ k 1j 1 ,j 2, Π k 1j 1 ,n+1 , Πk 1n+1,n+1 , Πn+1 j 1 ,j 2, Π n+1j 1 ,n+1 by their values obtained in (3.14)just above together with the principal unknowns(3.16) Π j 1j1 ,j 1= Θ j 1, Π n+1n+1,n+1 = Θn+1 ,in the six equations (3.11) 1 , (3.11) 2 , (3.11) 3 , (3.11) 4 , (3.11) 5 and (3.11) 6 ,after hard computations that we will not reproduce here, we obtain six familiesof equations. From now on, we abbreviate every sum ∑ nk=1 as ∑ k 1.Firstly:(3.17) 0 = G j1 ,j 2 ,x j 3 − G j1 ,j 3 ,x j 2 + ∑ k 1G j3 ,k 1H k 1j 1 ,j 2− ∑ k 1G j2 ,k 1H k 1j 1 ,j 3.This is (I’) of Theorem 1.7. Just above and below, we plainly un<strong>de</strong>rline themonomials involving a first or<strong>de</strong>r <strong>de</strong>rivative. Secondly:(3.18) ⎧Θ j 1= −2 G x j 2 j 1 ,j 2 ,y + H j 1+ j 1 ,j 1 ,x j 2373⎪⎨+ ∑ k 1G j2 ,k 1L k 1j 1+ 1 2 Hj 1j 1 ,j 1H j 2j 2 ,j 2− ∑ k 1H k 1j 1 ,j 2H k 1k 1 ,k 1−− G j1 ,j 2Θ n+1 − 1 2 Hj 1j 1 ,j 1Θ j 2− 1 2 Hj 2j 2 ,j 2Θ j 1+ ∑ k 1H k 1j 1 ,j 2Θ k 1+⎪⎩+ 1 2 Θj 1Θ j 2.


374Thirdly:(3.19) ⎧−Θ n+1 + 1 x j 12 Θj 1y = 1 2 Hj 1j 1 ,j 1 ,y −⎪⎨− ∑ G j1 ,k 1M k 1+ 1 4k 1⎪⎩+ 1 4 Hj 1j 1 ,j 1Θ n+1 − 1 4∑∑Fourtly:(3.20) ⎧12 δk 1j 1Θ j 2− 1x j 32 δk 1j 1Θ j 3+ 1x j 22 δk 1j 2Θ j 1− 1x j 32 δk 1j 3Θ j 1= x j 2H k 1k 1 ,k 1L k 1j 1+k 1L k 1j 1Θ k 1− 1 4 Θj 1Θ n+1 .k 1= −H k 1j 1 ,j 2 ,x j 3 + Hk 1j 1 ,j 3 ,x j 2 − 1 2 δk 1j 1H j 3j 3 ,j 3 ,x j 2 + 1 2 δk 1j 1H j 2j 2 ,j 2 ,x j 3 −− 1 2 δk 1j 3H j 1j 1 ,j 1 ,x j 2 + 1 2 δk 1j 2H j 1j 1 ,j 1 ,x j 3 −⎪⎨− 1 2 G j 1 ,j 2L k 1j 3+ 1 2 G j 1 ,j 3L k 1j 2− 1 4 δk 1j 3H j 1j 1 ,j 1H j 2j 2 ,j 2+ 1 4 δk 1j 2H j 1j 1 ,j 1H j 3j 3 ,j 3−− ∑ k 2H k 2j 1 ,j 2H k 1j 3 ,k 2+ ∑ k 2H k 2j 1 ,j 3H k 1j 2 ,k 2− 1 2 δk 1j 2H k 2j 1 ,j 3H k 2k 2 ,k 2+ 1 2 δk 1j 3H k 2j 1 ,j 2H k 2k 2 ,k 2−− 1 2 δk 1j 2G j1 ,j 3Θ n+1 + 1 2 δk 1j 3G j1 ,j 2Θ n+1 −⎪⎩− 1 4 δk 1j 2H j 1j 1 ,j 1Θ j 3+ 1 4 δk 1j 3H j 1j 1 ,j 1Θ j 2− 1 4 δk 1j 2H j 3j 3 ,j 3Θ j 1+ 1 4 δk 1j 3H j 2j 2 ,j 2Θ j 1−− 1 ∑2 δk 1j 3 j 1 ,j 2Θ k 2+ 1 ∑2 δk 1j 2 j 1 ,j 3Θ k 2−k 1H k 2− 1 4 δk 1j 3Θ j 1Θ j 2+ 1 4 δk 1j 2Θ j 1Θ j 3.k 1H k 2Fifthly:(3.21)⎧12 δk 1j 1Θ j 2y + 1 2 δk 1j 2Θ j 1y − 1 2 δk 1j 1Θ n+1 =x j 2⎪⎨= G j1 ,j 2M k 1+ 1 ∑H k 1j2 1 ,k 2L k 2j 1− 1 ∑H k 2j2 1 ,j 2L k 1k 2− 1 ∑4 δk 1j 2k 2 k 2⎪⎩ − 1 4 δk 1j 2H j 1j 1 ,j 1Θ n+1 + 1 ∑4 δk 1j 2L k 2j 1Θ k 2+ 1 4 δk 1j 2Θ j 1Θ n+1 .k 2H k 2k 2 ,k 2L k 2j 1−k 2


375Sixthly:(3.22) ⎧δ k 1j 1Θ n+1y = −L k 1j 1 ,y + 2 Mk 1+ x j 1⎪⎨ + 2 ∑ ∑H k 1j 1 ,k 2M k 2− δ k 1j 1k 2⎪⎩k 2H k 2k 2 ,k 2M k 2− 1 2∑+ δ k 1j 1M k 2Θ k 2+ 1 2 δk 1j 1Θ n+1 Θ n+1 .k 2∑L k 2j 1L k 1k 2+k 23.23. Solving Θ j 1, x j 2 Θj 1 y , Θ n+1 and Θ n+1x j 1 y . From the six families of equations(3.17), (3.18), (3.19), (3.20), (3.21) and (3.22), we can solve Θ j 1, x j 2Θ j 1 y , Θ n+1 and Θ n+1x j 1 y . Not mentioning the (hard) intermediate computations,we obtain firstly:(3.24)⎧⎪⎨Θ j 1x j 2 = −2 G j 1 ,j 2 ,y + H j 1j 1 ,j 1 ,x j 2 + ∑ lG j2 ,l L l j 1+ 1 2 Hj 1j 1 ,j 1H j 2j 2 ,j 2− ∑ lH l j 1 ,j 2H l l,l−⎪⎩− G j1 ,j 2Θ n+1 − 1 2 H j 1 ,j 1Θ j 1− 1 2 Hj 2j 2 ,j 2Θ j 1+ ∑ lH l j 1 ,j 2Θ l + 1 2 Θj 1Θ j 2.Secondly:(3.25) ⎧Θ j 1y = − 1 3 Hj 1j 1 ,j 1 ,y + 2 3 Lj 1+ 4j 1 ,x j 13 G j 1 ,j 1M j 1+ 2 3⎪⎨⎪⎩+ 2 3∑l+ 1 2 Θj 1Θ n+1 .H j 1j 1 ,l Ll j 1− 2 3∑l∑G j1 ,l M l − 1 ∑Hl,l l L l j21+ll∑L l j 1Θ l +H l j 1 ,j 1L j 1l− 1 2 Hj 1j 1 ,j 1Θ n+1 + 1 2lThirdly:(3.26) ⎧Θ n+1 = − 2 x j 13 Hj 1j 1 ,j 1 ,y + 1 3 Lj 1+ 2j 1 ,x j 13 G j 1 ,j 1M j 1+ 4 3⎪⎨⎪⎩+ 1 3∑l+ 1 2 Θj 1Θ n+1 .H j 1j 1 ,l Ll j 1− 1 3∑l∑G j1 ,l M l − 1 ∑Hl,l l 2Ll j 1+ll∑L l j 1Θ l +H l j 1 ,j 1L j 1l− 1 2 Hj 1j 1 ,j 1Θ n+1 + 1 2l


376Fourtly:(3.27) ⎧Θ ⎪⎨n+1y = −L j 1j1 ,y + 2 Mj 1+ 2 ∑x j 1lH j 1j 1 ,l Ml − ∑ lH l l,l M l − 1 2∑lL l j 1L j 1l+⎪⎩+ ∑ lM l Θ l + 1 2 Θn+1 Θ n+1 .These four families of partial differential equations constitute the second<strong>aux</strong>iliary system. By replacing these solutions in the three remaining familiesof equations (3.20), (3.21) and (3.22), we obtain supplementary equations(which we do not copy) that are direct consequences of (I’), (II’), (III’),(IV’).To complete the proof of the main Lemma 3.3 above, it suffices now toestablish the first implication of the following list, since the other three havebeen already established.• Some given functions G j1 ,j 2, H k 1j 1 ,j 2, L k 1j 1and M k 1of (x l 1, y) satisfy thefour families of partial differential equations (I’), (II’), (III’) and (IV’)of Theorem 1.7.⇓• There exist functions Θ j 1, Θ n+1 satisfying the second <strong>aux</strong>iliary system(3.24), (3.25), (3.26) and (3.27).⇓• These solution functions Θ j 1, Θ n+1 satisfy the six families of partialdifferential equations (3.17), (3.18), (3.19), (3.20), (3.21) and (3.22).⇓• There exist functions Π k 1j 1 ,j 2of (x l 1, y), 1 j 1 , j 2 , k 1 m + 1, satisfyingthe first <strong>aux</strong>iliary system (3.7) of partial differential equations.⇓• There exist functions X l 2, Y of (x l 1, y) transforming the systemy x j 1x j 2 = F j 1,j 2(x l 1, y, y x l 2 ), j 1 , j 2 = 1, . . ., n, to the simp<strong>les</strong>t systemY X j 1X j 2 = 0, j 1 , j 1 = 1, . . ., n.3.28. Compatibility conditions for the second <strong>aux</strong>iliary system. We noticethat the second <strong>aux</strong>iliary system is also a complete system. Thus, toestablish the first above implication, it suffices to show that the four familiesof compatibility conditions:⎧0 = ( Θ j )1− ( Θ j )1,x j 2 x⎪⎨j 3 x j 3 x j 20 = ( Θ j )1x(3.29)− ( Θ j j 12 y y)x , j 20 = ( Θ n+1 )x − ( )Θ n+1j 2⎪⎩x j 10 = ( Θ n+1x j 2x j 2)y − ( )Θ n+1yx j 1 ,x j 2 ,


are a consequence of (I’), (I”), (III’), (IV’).For instance, in (3.29) 1 , replacing Θ j 1by its expression (3.24), differentiatingit with respect to x j 3x j 2, replacing Θ j 1by its expression (3.24), differentiatingit with respect to x j 2x j 3and substracting, we get:(3.30) ⎧0 = −2 G j1 ,j 2 ,yx j 3 + 2 G j1 ,j 3 ,yx j 2 + H j 1j 1 ,j 1− H j 1,x j 2x j 3 j a 1 ,j 1+,x j 3x j 2 a+ 1 2 Θj 1x j 3 Θj 2+ 1 2 Θj 1Θ j 2x j 3 − 1 2 Θj 1x j 2 Θj 3− 1 2 Θj 1Θ j 3x j 2 −377− 1 2 Hj 1j 1 ,j 1 ,x j 3 Θj 2− 1 2 Hj 1j 1 ,j 1Θ j 2x j 3 + 1 2 Hj 1j 1 ,j 1 ,x j 2 Θj 3+ 1 2 Hj 1j 1 ,j 1Θ j 3x j 2 −⎪⎨− 1 2 Hj 2j 2 ,j 2 ,x j 3 Θj 1− 1 2 Hj 2j 2 ,j 2Θ j 1x j 3 + 1 2 Hj 3j 3 ,j 3 ,x j 2 Θj 1+ 1 2 Hj 3j 3 ,j 3Θ j 1x j 2 −− G j1 ,j 2 ,x j 3 Θ n+1 − G j1 ,j 2Θ n+1x j 3+ G j1 ,j 3 ,x j 2 Θ n+1 + G j1 ,j 3Θ n+1x j 2 ++ ∑ lH l j 1 ,j 2 ,x j 3Θ l + ∑ lH l j 1 ,j 2Θ l x j 3− ∑ lH l j 1 ,j 3 ,x j 2Θ l − ∑ lH l j 1 ,j 3Θ l x j 2++ 1 2 Hj 1j 1 ,j 1 ,x j 3 Hj 2j 2 ,j 2+ 1 2 Hj 1j 1 ,j 1H j 2j 2 ,j 2 ,x j 3 − 1 2 Hj 1j 1 ,j 1 ,x j 2 Hj 3j 3 ,j 3− 1 2 Hj 1j 1 ,j 1H j 3j 3 ,j 3 ,x j 2 −− ∑ lH l j 1 ,j 2 ,x j 3H l l,l − ∑ lH l j 1 ,j 2H l l,l,x j 3+ ∑ lH l j 1 ,j 3 ,x j 2H l l,l + ∑ lH l j 1 ,j 3H l l,l,x j 2+⎪⎩+ ∑ lG j2 ,l,x j 3 L l j 1+ ∑ lG j2 ,l L l j 1 ,x j 3− ∑ lG j3 ,l,x j 2 L l j 1− ∑ lG j3 ,l L l j 1 ,x j 2.Next, replacing the twelve first or<strong>de</strong>r partial <strong>de</strong>rivatives un<strong>de</strong>rlined justabove:(3.31)⎧⎨⎩Θ j 1x j 3 , Θj 2x j 3 , Θj 1x j 2 , Θj 3x j 2 , Θj 2x j 3 , Θj 3x j 2 ,Θ j 1x j 3 , Θj 1x j 2 ,Θn+1 x j 3 ,Θn+1 x j 2 , Θl x j 3, Θ l x j 2.by their values issued from (3.24), (3.26) and adapting the summation indices,we get the explicit <strong>de</strong>veloped form of the first family of compatibility


378conditions (3.29) 1 :(3.32) ⎧0 =? = −2 G j1 ,j 2 ,x j 3y + 2 G j1 ,j 3 ,x j 2y−− ∑ lG j3 ,l,x j 2 L l j 1+ ∑ lG j2 ,l,x j 3 L l j 1− G j1 ,j 2 ,y H j 3j 3 ,j 3+ G j1 ,j 3 ,y H j 2j 2 ,j 2−− 2 ∑ lG l,j3 H l j 1 ,j 2+ 2 ∑ lG l,j2 H l j 1 ,j 3− ∑ lH l j 1 ,j 2 ,x j 3H l l,l + ∑ lH l j 1 ,j 3 ,x j 2H l l,l −− 2 3 Hj 2j 2 ,j 2 ,y G j 1 ,j 3+ 2 3 Hj 3j 3 ,j 3 ,y G j 1 ,j 2− 2 3 Lj 3j 3 ,x j 3 G j 1 ,j 2+ 2 3 Lj 2j 2 ,x j 2 G j 1 ,j 3−− ∑ lL l j 1 ,x j 2G j3 ,l + ∑ lL l j 1 ,x j 3G j2 ,l−⎪⎨− 2 3 G j 1 ,j 2G j3 ,j 3M j 3+ 2 3 G j 1 ,j 3G j2 ,j 2M j 2− 4 3+ 4 ∑G j1 ,j33G j2 ,l M l − 1 ∑2ll− 1 ∑G j3 ,l H j 2j22 ,j 2L l j 1+ 1 ∑2ll+ 1 ∑G j1 ,j22Hl,l l Ll j 3− 1 ∑3llG j3 ,l H j 1j 1 ,j 1L l j 2+ 1 2G j2 ,l H j 3j 3 ,j 3L l j 1− 1 2G j1 ,j 2H j 3j 3 ,l Ll j 3+ 1 3∑G j1 ,j 2G j3 ,l M l +l∑lG j2 ,l H j 1j 1 ,j 1L l j 3−∑G j1 ,j 3Hl,l l Ll j 2+l∑lG j1 ,j 3H j 2j 2 ,l Ll j 2−⎪⎩− 1 3 G j 1 ,j 3Hj l 2 ,j 2L j 2l+ 1 3 G j 1 ,j 2Hj l 3 ,j 3L j 3l−− ∑ ∑G j2 ,p Hj l 1 ,j 3L p l + ∑ ∑G j3 ,p Hj l 1 ,j 2L p l −l pl p− ∑ ∑Hj l 1 ,j 2H p l,j 3Hp,p p + ∑ ∑Hj l 1 ,j 3H p l,j 2Hp,p.pl pl pLemma 3.33. ([Me2003, Me2004]) This first family of compatibility conditionsfor the second <strong>aux</strong>iliary system obtained by <strong>de</strong>veloping (3.29) 1 inlength, together with the three remaining families obtained by <strong>de</strong>veloping(3.29) 2 , (3.29) 3 , (3.29) 4 in length, are consequences, by linear combinationsand by differentiations, of (I’), (II’), (III’), (IV’), of Theorem 1.7.The summarized proof of Theorem 1.7 is complete.


379IV: BibliographyREFERENCES[Ar1988] ARNOL’D, V.I.: Dynamical systems. I. Ordinary differential equations andsmooth dynamical systems, Translated from the Russian. Edited by D. V.Anosov and V. I. Arnol’d. Encyclopaedia of Mathematical Sciences, vol. 1.Springer-Verlag, Berlin, 1988. x+233 pp.[Ar1968] ARTIN, M.: On the solutions of analytic equations, Invent. Math. 5 (1968),277–291.[BER1999] BAOUENDI, M.S.; EBENFELT, P.; ROTHSCHILD, L.P.: Real submanifolds incomplex space and their mappings. Princeton Mathematical Series, vol. 47,Princeton University Press, Princeton, NJ, 1999, xii+404 pp.[BJT1985] BAOUENDI, M.S.; JACOBOWITZ, H.; TREVES, F.: On the analyticity of CRmappings, Ann. of Math. 122 (1985), no. 2, 365–400.[Bel1996] BELLAÏCHE, A.: SubRiemannian Geometry, Progress in Mathematics,vol. 144, Birkhäuser Verlag, Basel/Switzerland, 1996, 1–78.[Be1979] BELOSHAPKA, V.K.: On the dimension of the group of automorphisms of ananalytic hyper<strong>sur</strong>face, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), 243–266;English transl. in Math. USSR-Izv. 14 (1980), 223–245.[Be1988] BELOSHAPKA, V.K.: Finite-dimensionality of the group of automorphisms ofa real-analytic <strong>sur</strong>face, Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), 437–442;English transl. in Math. USSR-Izv. 32 (1989), 443–448.[Be1997] BELOSHAPKA, V.K.: CR-varieties of the type (1,2) as varieties of ‘super-high’[Be2002]codimension, Russian J. Math. Phys. 5 (1997), 399–404.BELOSHAPKA, V.K.: Real submanifolds in complex space: polynomial mo<strong>de</strong>ls,automorphisms, and classification problems, Uspekhi Mat. Nauk 57(2002), no. 1, 3–44; English transl. in Russian Math. Surveys 57 (2002), no. 1,1–41.[BES2005] BELOSHAPKA, V.K.; EZHOV, V.; SCHMALZ, G.: Canonical Cartanconnection and holomorphic invariants of Engel CR manifolds,arxiv.org/abs/math.CV/0508084.[BK1989]BLUMAN, G.W.; KUMEI, S.: Symmetries and differential equations, SpringerVerlag, Berlin, 1989.[Bo1991] BOGGESS, A.: CR manifolds and the tangential Cauchy-Riemann complex.Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1991,xviii+364 pp.[Bo1972] BOURBAKI, N.: Groupes at algèbres <strong>de</strong> <strong>Lie</strong>, chapitre 2, Hermann, Paris, 1972.[BSW1978] BURNS, D.Jr.; SHNIDER, S.; WELLS, R.O.Jr.: Deformations of strictly pseudoconvexdomains Invent. Math. 46 (1978), no. 3, 237–253.[Ca1922][Ca1924]CARTAN, É.: Sur <strong>les</strong> équations <strong>de</strong> la gravitation d’Einstein, J. Math. pures etappl. 1 (1922), 141–203.CARTAN, É.: Sur <strong>les</strong> variétés à connexion projective, Bull. Soc. Math. France52 (1924), 205–241.[Ca1932a] CARTAN, É.: Sur la géométrie pseudo-conforme <strong>de</strong>s hyper<strong>sur</strong>faces <strong>de</strong>l’espace <strong>de</strong> <strong>de</strong>ux variab<strong>les</strong> complexes, I, Ann. Math. Pura Appl. 11 (1932),17–90.


380[Ca1932b] CARTAN, É.: Sur la géométrie pseudo-conforme <strong>de</strong>s hyper<strong>sur</strong>faces <strong>de</strong>l’espace <strong>de</strong> <strong>de</strong>ux variab<strong>les</strong> complexes, II, Ann. Scuola Norm. Sup. Pisa 1(1932), 333–354.[Ca1937] CARTAN, É.: Les problèmes d’équivalence (Séminaire <strong>de</strong> Math., 4 e année,1936–37), Œuvres complètes, II, 1311–1334, Gauthier-Villars, Paris, 1953.[CM1974] CHERN, S.S.; MOSER, J.K.: Real hyper<strong>sur</strong>faces in complex manifolds, ActaMath. 133 (1974), no. 2, 219–271.[Ch1975] CHERN, S.-S.: On the projective structure of a real hyper<strong>sur</strong>face in C n+1 ,Math. Scand. 36 (1975), 74–82.[Ch1989] CHIRKA, E.M.: Complex analytic sets, Mathematics and its applications (SovietSeries), vol. 46. Kluwer Aca<strong>de</strong>mic Publishers Group, Dordrecht, 1989.xx+372 pp.[Ch1991] CHIRKA, E.M.: An introduction to the geometry of CR manifolds (Russian),Uspekhi Mat. Nauk 46 (1991), no. 1(277), 81–164, 240; translation in RussianMath. Surveys 46 (1991), no. 1, 95–197[CS1996] CONSTANTINE, G.M.; SAVITS, T.H.: A multivariate Faà di Bruno formulawith applications, Trans. Amer. Math. Soc. 348 (1996), no. 2, 503–520.[DF1988] DIEDERICH, K.; FORNÆSS, J.E.: Proper holomorphic mappings betweenreal-analytic pseudoconvex domains in C n , Math. Ann 282 (1988), no. 4, 681–700.[DP2003] DIEDERICH, K.; PINCHUK, S.: Regularity of continuous CR-maps in arbitrarydimension, Michigan Math. J. 51 (2003), 111–140. Erratum: ib., no. 3, 667–668.[DW1980] DIEDERICH, K.; WEBSTER, S.M.: A reflection principle for <strong>de</strong>generate realhyper<strong>sur</strong>faces, Duke Math. J. 47 (1980), no. 4, 835–843.[Eb1998] EBENFELT, P.: Normal forms and biholomorphic equivalences of real hyper<strong>sur</strong>facesin C 3 , Indiana Univ. Math. J. 47 (1998), 311–366.[Eb2006] EBENFELT, P.: Correction to "Uniformly Levi <strong>de</strong>generate CR manifolds: the[EL1890]5-dimensional case, Duke Math. J. 131 (2006), 589–591.ENGEL, F.; LIE, S.: Theorie <strong>de</strong>r Transformationsgruppen, I, II, II, Teubner,Leipzig, 1889, 1891, 1893.[EKV1985] EZHOV, V.V.; KRUZHILIN, N.G.; VITUSHKIN, A.G.: Continuation of holomorphicmappings along real-analytic hyper<strong>sur</strong>faces (Russian). Current problemsin mathematics. Mathematical analysis, algebra, topology. Trudy Mat.Inst. Steklov 167 (1985), 60–95, 276.[Fa1980] FARAN, J.: Segre families and real hyper<strong>sur</strong>faces, Invent. Math. 60 (1980),no. 2, 135–172.[F1969] FEDERER, H.: Geometric mea<strong>sur</strong>e theory, Die Grundlehren <strong>de</strong>r MathematischenWissenschaften, Band 153, Springer Verlag, New York, 1969,xiv+676 pp. Springer-Verlag, Berlin, 1969.[Fe1995][FK2005a]FELS, M.: The equivalence problem for systems of second-or<strong>de</strong>r ordinary differentialequations, Proc. London Math. Soc. 71 (1995), no. 2, 221–240.FELS, G.; Kaup, W.: CR-manifolds of dimension 5: A <strong>Lie</strong> algebra approach,J. Reine Angew. Math., to appear. arxiv.org/abs/math.DG/050811.[FK2005b] FELS, G.; Kaup, W.: Homogeneous Levi <strong>de</strong>generate CR-manifolds in dimension5, to appear.[Fr1877] FROBENIUS, G.: Ueber das Pfaffsche Problem, J. Reine Angew. Math. 82(1877), 230–315.


[G1989] GARDNER, R.B.: The method of equivalence and its applications, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 58 (SIAM,Phila<strong>de</strong>lphia, 1989), 127 pp.[GM2003a] GAUSSIER, H.; MERKER, J.: Symmetries of partial differential equations,J. Korean Math. Soc. 40 (2003), no. 3, 517–561; e-print:http://fr.arxiv.org/abs/math.CV/0404127.[GM2003b] GAUSSIER, H.; MERKER, J.: A new example of uniformly Levi non<strong>de</strong>generatehyper<strong>sur</strong>face in C 3 , Ark. Mat. 41 (2003), no. 1, 85–94.[GM2004] GAUSSIER, H.; MERKER, J.: Nonalgebraizable real analytic tubes in C n ,Math. Z. 247 (2004), no. 2, 337–383.[GM2006] GAUSSIER, H.; MERKER, J.: Erratum to "A new example of a uniformly Levi<strong>de</strong>generate hyper<strong>sur</strong>face in C 3 ", 2006, to appear.[GV1987] GERSHKOVICH, V.Ya.; VERSHIK, A.M.: Nonholonomic dynamical systems.Geometry of distributions and variational problems. Dynamical Systems VII,Encyclopædia of mathematical sciences, vol. 16, V.I. Arnol’d and S.P. Novikov(Eds.), 1–81, Springer-Verlag, Berlin, 1994.[Gr2005]DE GRAAF, W.A.: Classification of solvable <strong>Lie</strong> algebras, Experiment. Math.14 (2005), no. 1, 15–25.[GTW1989] GRISSOM, C.; THOMPSON, G.; WILKENS, G.: Linearization of second or<strong>de</strong>rordinary differential equations via Cartan’s equivalence method, J. Diff. Eq.77 (1989), no. 1, 1–15.[Gr2000] GROSSMAN, D.A.: Torsion-free path geometries and integrable second or<strong>de</strong>rODE systems, Selecta Math. (N.S.) 6 (2000), no. 4, 399–442.[Ha1937] HACHTROUDI, M.: Les espaces d’éléments à connexion projective normale,Actualités Scientifiques et Industriel<strong>les</strong>, vol. 565, Paris, Hermann, 1937.[Ha1982] HARTMAN, P.: Ordinary Differential Equations. Birkhäuser, Boston 1982.[Ha2003] HAUSER, H.: The Hironaka theorem on resolution of singularities (or: A proofwe always wanted to un<strong>de</strong>rstand), Bull. Amer. Math. Soc. (N.S.) 40 (2003),no. 3, 323–403.[Hi1976] HIRSCH, M.W.: Differential topology, Graduate Texts in Mathematics, 33,[HK1989][Ib1992][Ib1999][IL2003][Ja1990]381Springer-Verlag, Berlin, 1976, x+222 pp.HSU, L.; KAMRAN, N.: Classification of second or<strong>de</strong>r ordinary differentialequations admitting <strong>Lie</strong> groups of fibre-preserving point symmetries, Proc.London Math. Soc. 58 (1989), no. 3, 387–416.IBRAGIMOV, N.H.: Group analysis of ordinary differential equations and theinvariance principle in mathematical physics, Russian Math. Surveys 47:4(1992), 89–156.IBRAGIMOV, N.H.: Elementary <strong>Lie</strong> group analysis and ordinary differentialequations, Wiley Series in Mathematical Methods in Practice, 4. John Wiley& Sons, Ltd., Chichester, 1999. xviii+347 pp.IVEY, J.A.; LANDSBERG, J.M.: Cartan for beginners: differential geometryvia moving frames and exterior differential systems, Graduate Studiesin Mathematics, 61. American Mathematical Society, Provi<strong>de</strong>nce, RI, 2003.xiv+378 pp.JACOBOWITZ, An introduction to CR structures, Math. Surveys and Monographs,32. Amer. Math. Soc., Provi<strong>de</strong>nce, 1990. x+237 pp.[Ji2002] JI, S.: Algebraicity of real analytic hyper<strong>sur</strong>faces with maximal rank, Amer. J.Math. 124 (2002), no. 6, 1083–1102.


382[Lo2001][JoPf2000] DE JONG, T.; PFISTER, G.: Local analytic geometry. Basic theory and applications,Advanced Lectures in Mathematics. Friedr. Vieweg & Sohn, Braunschweig,2000. xii+382 pp.[Kn2004] KNAPP, A.W.: <strong>Lie</strong> groups beyond an introduction, Progress in Mathematics,140, Birkhäuser, Basel, third edition, 2004, xviii+812 pp.[KN1963] KOBAYASHI, S.; NOMIZU, K.m: Foundations of differential geometry, I, Intersciencepublishers, John Wiley & Sons, New York, 1963. xi+329 pp.[Kr1985] KRUZHILIN, N.G.: Local automorphisms and mappings of smooth strictlypseudoconvex hyper<strong>sur</strong>faces (Russian). Izv. Akad. Nauk SSSR Ser. Mat. 49(1985), no. 3, 566–591, 672.[Kr1987] KRUZHILIN, N.G.: Description of the local automorphism groups of real hyper<strong>sur</strong>faces,Proceedings of the International Congress of Mathematicians,Vol. 1, 2 (Berkeley, Calif., 1986), 749–758, Amer. Math. Soc., Provi<strong>de</strong>nce,RI, 1987.[KV1987] KRUZHILIN, N.G.; VITUSHKIN, A.G.: Description of the automorphismgroups of real hyper<strong>sur</strong>faces in complex space (Russian). Investigations in thetheory of the approximation of functions, 26–69, Akad. Nauk SSSR BashkirFilial, Ot<strong>de</strong>l. Fiz. Mat., Ufa, 1987.[<strong>Lie</strong>1880] LIE, S.: Theorie <strong>de</strong>r Transformationsgruppen, Math. Ann. 16 (1880), 441–528.[<strong>Lie</strong>1883] LIE, S.: Klassifikation und Integration von gewöhnlichen Differentialgleichungenzwischen x, y, die eine Gruppe von Transformationen gestaten I-IV. In:Gesammelte Abhandlungen, Vol. 5, B.G. Teubner, Leipzig, 1924, pp. 240–310; 362–427, 432–448.[LS1893] LIE, S.; SCHEFFERS, G.: Vor<strong>les</strong>ungen ¨ber continuierliche Gruppen mit Geometrischenund an<strong>de</strong>ren Anwendungen. (German) Nachdruck <strong>de</strong>r Auflage <strong>de</strong>sJahres 1893. Chelsea Publishing Co., Bronx, New York, 1971. xii+810 pp.[Lo1981] LOBODA, A.V.: Local automorphisms of real-analytic hyper<strong>sur</strong>faces (Russian),Izv. Akad. Nauk SSSR Ser. Mat. 45 (1981), no. 3, 620–645.LOBODA, A.V.: Homogeneous strictly pseudoconvex hyper<strong>sur</strong>faces in C 3 withtwo-dimensional isotropy groups (Russian) Mat. Sb. 192 (2001), no. 12, 3–24;translation in Sb. Math. 192 (2001), no. 11-12, 1741–1761.[Lo2002] LOBODA, A.V.: Homogeneous non<strong>de</strong>generate <strong>sur</strong>faces in C 3 with twodimensionalisotropy groups (Russian) Mat. Sb. 192 (2001), no. 12, 3–24;translation in Sb. Math. 192 (2001), no. 11–12, 1741–1761.[Lo2003][Ma2003][Me2001][Me2003][Me2004]LOBODA, A.V.: On the <strong>de</strong>termination of a homogeneous strictly pseudoconvexhyper<strong>sur</strong>face from the coefficients of its normal form (Russian) Mat. Zametki73 (2003), no. 3, 453–456; translation in Math. Notes 73 (2003), no. 3-4, 419–423.MARDARE, S.: On isometric immersions of a Riemannian space un<strong>de</strong>r a weakregularity assumption, C. R. Acad. Sci. Paris, Sér. I 337 (2003), 785–790.MERKER, J.: On the partial algebraicity of holomorphic mappings betweentwo real algebraic sets in the complex eucli<strong>de</strong>an spaces of different dimensions,Bull. Soc. Math. France 129 (2001), no. 4, 547–591.MERKER, J.: hand manuscript I, 212 pp., May – July 2003; hand manuscriptII, 114 pp., August 2003.MERKER, J.: Explicit differential characterization of the Newtonian free partic<strong>les</strong>ystem in m 2 <strong>de</strong>pen<strong>de</strong>nt variab<strong>les</strong>, Acta Mathematicæ Applicandæ,to appear, 73 pp; e-print: arxiv.org/abs/math.DG/0411165.


[Me2005a] MERKER, J.: On the local geometry of generic submanifolds of C n and theanalytic reflection principle (Part I), Journal of Mathematical Sciences (N.Y.)125 (2005), no. 6, 751–824.[Me2005b] MERKER, J.: Étu<strong>de</strong> <strong>de</strong> la régularité analytique <strong>de</strong> l’application <strong>de</strong> réflexionCR formelle, Anna<strong>les</strong> Fac. Sci. Toulouse, XIV (2005), no. 2, 215–330.[MP2005] MERKER, J.; PORTEN, E.: Holomorphic extension of CR functions, envelopesof holomorphy and removable singularities, 432 pp., to appear. Downloadableat: www.cmi.univ-mrs/∼merker/in<strong>de</strong>x.html.[N2003] NEUT, S.: Implantation et nouvel<strong>les</strong> applications <strong>de</strong> la métho<strong>de</strong> d’équivalenced’Élie Cartan, Thèse, Université Lille 1, October 2003.[OL1979] OLVER, P.J.: Symmetry groups and group invariant solutions of partial differentialequations, J. Diff. Geom. 14 (1979), 497–542.[Ol1986] OLVER, P.J.: Applications of <strong>Lie</strong> groups to differential equations. SpringerVerlag, New York, 1986. xxvi+497 pp.[Ol1995] OLVER, P.J.: Equivalence, Invariance and Symmetries. Cambridge, CambridgeUniversity Press, 1995, xvi+525 pp.[OV1994] ONISHCHIK, A.L.; VINBERG, E.B.: <strong>Lie</strong> groups and <strong>Lie</strong> algebras, III. Encyclopædiaof mathematical sciences, 41. Springer Verlag, Berlin, 248 pp.[Pi1975] PINCHUK, S.: On the analytic continuation of holomorphic mappings (Russian),Mat. Sb. (N.S.) 98(140) (1975) no.3(11), 375–392, 416–435, 495–496.[Pi1978] PINCHUK, S.: Holomorphic mappings of real-analytic hyper<strong>sur</strong>faces (Russian),Mat. Sb. (N.S.) 105(147) (1978), no. 4, 574–593, 640; English translationin Math. USSR Sbornik 34 (1978), 503–519.[Re1993] REUTENAUER, C.: Free <strong>Lie</strong> algebras, London Mathematical Society Monograph,New Series, 7. Oxford Science Publications, The Clarendon Press, OxfordUniversity Press, New York, 1993. xviii+269 pp.[Se1931] SEGRE, B.: Intorno al problema di Poincaré <strong>de</strong>lla rappresentazione pseudoconforme,Rend. Acc. Lincei, VI, Ser. 13 (1931), 676–683.[Se1932] SEGRE, B.: Questioni geometriche legate colla teoria <strong>de</strong>lle funzioni di duevariabili comp<strong>les</strong>se, Rendiconti <strong>de</strong>l Seminario di Matematici di Roma, II, Ser.7 (1932), no. 2, 59–107.[Sh1997] SHARPE, R.W.: Differential geometry; Cartan’s generalization of Klein’s Erlangenprogram, Graduate texts in mathematics, vol. 166, Springer Verlag,Berlin, 1997, xix+421 pp.[Sp1970] SPIVAK, M.: A comprehensive introduction to differential geometry, vols. 1and 2. Published by M. Spivak, Bran<strong>de</strong>is Univ., Waltham, Mass. 1970.[St1996] STANTON, N.: Infinitesimal CR automorphisms of real hyper<strong>sur</strong>faces, Amer.J. Math. 118 (1996), no. 1, 209–233.[Ste1983] STERNBERG, S.: Lectures in differential geometry, Second edition, Chelseapublishing co., New York, 1983, xviii+442 pp.[Stk1982] STORMARK, O.: On the theorem of Frobenius for complex vector fields, Ann.[Stk2000]383Scuola Norm. Sup. Pisa Cl. Sci. (4) 9 (1982), no. 1, 57–90.STORMARK, O.: <strong>Lie</strong>’s structural approach to PDE systems, Encyclopædia ofmathematics and its applications, vol. 80, Cambridge University Press, Cambridge,2000, xv+572 pp.[Su2001] SUKHOV, A.: Segre varieties and <strong>Lie</strong> symmetries, Math. Z. 238 (2001), no. 3,483–492.[Su2002] SUKHOV, A.: CR maps and point <strong>Lie</strong> transformations, Michigan Math. J. 50(2002), 369–379.


384[Su2003][Su1973][Tr1896][Ve1924][Vi1990][We1977]SUKHOV, A.: On transformations of analytic structures (Russian). Izv. Ross.Akad. Nauk Ser. Mat. 67 (2003), no. 2, 101–132; transl. in Izv. Math. 67(2003), no. 2, 303–332.SUSSMANN, H.J.: Orbits of families of vector fields and integrability of distributions,Trans. Amer. Math. Soc. 180 (1973), no. 1, 171–188.TRESSE, A.: Détermination <strong>de</strong>s invariants ponctuels <strong>de</strong> l’équation différentielledu second ordre y ′′ = ω(x, y, y ′ ), Hirzel, Leipzig, 1896.VESSIOT, E.: Sur une théorie nouvelle <strong>de</strong>s problèmes génér<strong>aux</strong> d’intégration,Bull. Soc. Math. France 52 (1924), 336–395.VITUSHKIN, A.G.: Holomorphic mappings and the Geometry of Hyper<strong>sur</strong>faces,Encyclopædia of Mathematical Sciences, Volume 7, Several ComplexVariab<strong>les</strong>, I, Springer-Verlag, Berlin, 1990, pp. 159–214.WEBSTER, S.M.: On the mapping problem for algebraic real hyper<strong>sur</strong>faces,Invent. Math. 43 (1977), no.1, 53–68.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!