11.07.2015 Views

(044) Nesbitt et al 2013

(044) Nesbitt et al 2013

(044) Nesbitt et al 2013

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Downloaded from http://sp.lyellcollection.org/ at CAPES on May 3, <strong>2013</strong>Geologic<strong>al</strong> Soci<strong>et</strong>y, London, Speci<strong>al</strong> Publications Online FirstRauisuchiaSterling J. <strong>Nesbitt</strong>, Stephen L. Brusatte, Julia B. Desojo,Alexandre Liparini, Marco A. G. De França, Jonathan C.Weinbaum and David J. GowerGeologic<strong>al</strong> Soci<strong>et</strong>y, London, Speci<strong>al</strong> Publications, first publishedJanuary 24, <strong>2013</strong>; doi 10.1144/SP379.1Email <strong>al</strong>ertingservicePermissionrequestSubscribeHow to citeclick here to receive free e-mail <strong>al</strong>erts whennew articles cite this articleclick here to seek permission to re-use <strong>al</strong>l orpart of this articleclick here to subscribe to Geologic<strong>al</strong> Soci<strong>et</strong>y,London, Speci<strong>al</strong> Publications or the LyellCollectionclick here for further information about OnlineFirst and how to cite articlesNotes© The Geologic<strong>al</strong> Soci<strong>et</strong>y of London <strong>2013</strong>


Downloaded from http://sp.lyellcollection.org/ at CAPES on May 3, <strong>2013</strong>RauisuchiaSTERLING J. NESBITT 1,2 *, STEPHEN L. BRUSATTE 2,3 , JULIA B. DESOJO 4 ,ALEXANDRE LIPARINI 5 , MARCO A. G. DE FRANÇA 6 ,JONATHAN C. WEINBAUM 7 & DAVID J. GOWER 81 Department of Biology, University of Washington, Seattle, WA 98195-1800, USA2 Division of P<strong>al</strong>eontology, American Museum of Natur<strong>al</strong> History, Centr<strong>al</strong> Park West at79th Stre<strong>et</strong>, New York, NY 10024, USA3 Department of Earth and Environment<strong>al</strong> Sciences, Columbia University, New York, NY, USA4 CONICET, Comisión Nacion<strong>al</strong> de Investigación Científica y Técnica, Sección P<strong>al</strong>eontologíadeVertebrados, Museo Argentino de Ciencias Natur<strong>al</strong>es ‘Bernardino Rivadavia, Av. AngelG<strong>al</strong>lardo 470, C1405DRJ, Buenos Aires, Argentina5 Departamento de P<strong>al</strong>eontologia e Estratigrafia, Instituto de Geociências, Universidade Feder<strong>al</strong>do Rio Grande do Sul, Cx.P. 15001, 91540-970, Porto Alegre, RS, Brazil6 Laboratório de P<strong>al</strong>eontologia de Ribeirão Pr<strong>et</strong>o, FFCLRP, Universidade de São Paulo, Av.Bandeirantes 3900, Ribeirão Pr<strong>et</strong>o, SP 14040-901, Brazil7 Biology Department, Southern Connecticut State University, New Haven, CT 06515, USA8 Department of Zoology, The Natur<strong>al</strong> History Museum, London SW7 5BD, UK*Corresponding author (e-mail: sjn2104@gmail.com)Abstract: ‘Rauisuchia’ comprises Triassic pseudosuchians that ranged greatly in body size, locomotorstyles and feeding ecologies. Our concept of what constitutes a rauisuchian is changing as aresult of discoveries over the last 15 years. New evidence has shown that rauisuchians are probablynot a natur<strong>al</strong> (monophyl<strong>et</strong>ic) group, but instead are a number of sm<strong>al</strong>ler clades (e.g. Rauisuchidae,Ctenosauriscidae, Shuvosauridae) that may not be each other’s closest relatives within Pseudosuchia.Here, we acknowledge that there are still large gaps in the basic understanding in the <strong>al</strong>ph<strong>al</strong>eveltaxonomy and relationships of these groups, but good progress is being made. As a result ofrenewed interest in rauisuchians, an expanding number of recent studies have focused on thegrowth, locomotor habits, and biomechanics of these anim<strong>al</strong>s, and we review these studies here.We are clearly in the midst of a renaissance in our understanding of rauisuchian evolution andthe continuation of d<strong>et</strong>ailed descriptions, the development of explicit phylogen<strong>et</strong>ic hypotheses,and explicit p<strong>al</strong>aeobiologic<strong>al</strong> studies are essenti<strong>al</strong> in advancing our knowledge of these extinctanim<strong>al</strong>s.During the Triassic Period, archosaurs radiated intoa diverse array of body sizes, ecologies and morphologies(Benton & Clark 1988; Sereno 1991; Benton1999, 2004; <strong>Nesbitt</strong> & Norell 2006; Brusatte <strong>et</strong> <strong>al</strong>.2008, 2010; <strong>Nesbitt</strong> 2011). Bas<strong>al</strong>ly, Archosauriasplit into two major lineages, the pseudosuchians(crocodylian line) and avem<strong>et</strong>atars<strong>al</strong>ians (bird line),early in the Triassic (Benton & Clark 1988; Sereno1991; Benton 1999; Gower & Sennikov 2000;Brusatte <strong>et</strong> <strong>al</strong>. 2010, 2011; <strong>Nesbitt</strong> 2003, 2011;<strong>Nesbitt</strong> <strong>et</strong> <strong>al</strong>. 2011a). Pseudosuchians diversifiedinto some easily recognized and clearly monophyl<strong>et</strong>icgroups during the Triassic, such as the heavilyarmoured a<strong>et</strong>osaurs and the more fle<strong>et</strong>-footedcrocodylomorphs. However, there are many otherTriassic pseudosuchians that are not easily placedinto discr<strong>et</strong>e, well-diagnosed clades (e.g. Ticinosuchusferox, Gracilisuchus stipanicicorum).Over the past century, large (2–7 m) hypercarnivorousarchosaurs with recurved serrated te<strong>et</strong>h thatare not clearly referable to other pseudosuchian ormore inclusive archosauromorph clades (e.g. A<strong>et</strong>osauria,Phytosauria, Ornithosuchidae or Crocodylomorpha)were often shoehorned into the poorlydefined group ‘Rauisuchia.’ Many of these taxawere often <strong>al</strong>so assigned to sm<strong>al</strong>ler subgroups (subdivisionsof ‘Rauisuchia’), such as Prestosuchidae,Poposauridae, Rauisuchidae or various ranksFrom: <strong>Nesbitt</strong>, S. J., Desojo, J.B.&Irmis, R. B. (eds) Anatomy, Phylogeny and P<strong>al</strong>aeobiology of EarlyArchosaurs and their Kin. Geologic<strong>al</strong> Soci<strong>et</strong>y, London, Speci<strong>al</strong> Publications, 379,http://dx.doi.org/10.1144/SP379.1 # The Geologic<strong>al</strong> Soci<strong>et</strong>y of London <strong>2013</strong>. Publishing disclaimer:www.geolsoc.org.uk/pub_<strong>et</strong>hics


Downloaded from http://sp.lyellcollection.org/ at CAPES on May 3, <strong>2013</strong>S. J. NESBITT ET AL.associated with Rauisuchidae (e.g. Rauisuchiformes,Parrish 1993). Furthermore, many of thes<strong>et</strong>axa, such as Prestosuchus chiniquensis and Rauisuchustiradentes, were represented only by incompl<strong>et</strong>efossils that provided information on onlysm<strong>al</strong>l portions of the skel<strong>et</strong>on. In addition, sever<strong>al</strong>Triassic pseudosuchians with divergent crani<strong>al</strong>and/orvertebr<strong>al</strong>anatomies (e.g.Lotosaurusadentus,‘Chatterjeea elegans’) were associated with more‘typic<strong>al</strong>’ rauisuchians by virtue of their similar pelvicand hindlimb morphology. As a result, confusionabout what diagnosed rauisuchians and abouttheir relationships to one another and to other pseudosuchiansdominated the literature of the late 20thcentury, and little consensus had been reached. Atthe most basic level, it was not clear if rauisuchianswere a natur<strong>al</strong> group, a paraphyl<strong>et</strong>ic group withrespect to other pseudosuchian clades, or a polyphyl<strong>et</strong>icassemblage spread among more easily recognizedpseudosuchian groups (Gower 2000).Given their gener<strong>al</strong>ly poor fossil record and theabsence of a clear taxonomy, rauisuchians werelargely bypassed in studies of Triassic vertebratemacroevolution until recently (<strong>al</strong>though see Benton1983; Bonaparte 1984). Non<strong>et</strong>heless, rauisuchiansare now attracting an increased level of attentionbecause of a series of recent discoveries of newtaxa and <strong>al</strong>so b<strong>et</strong>ter materi<strong>al</strong> regarding previouslyknown taxa (e.g. Gower 1999; Sen 2005; Sulej2005; Li <strong>et</strong> <strong>al</strong>. 2006; <strong>Nesbitt</strong> & Norell 2006; J<strong>al</strong>il& Peyer 2007; Desojo & Arcucci 2009; França<strong>et</strong> <strong>al</strong>. 2011; Gauthier <strong>et</strong> <strong>al</strong>. 2011; Trotteyn <strong>et</strong> <strong>al</strong>.2011), advances in understanding character statedistributions among pseudosuchians (Brusatte <strong>et</strong> <strong>al</strong>.2010; <strong>Nesbitt</strong> 2011), redescriptions of importantspecimens (<strong>Nesbitt</strong> 2007; Weinbaum & Hungerbühler2007; Brusatte <strong>et</strong> <strong>al</strong>. 2009; Butler <strong>et</strong> <strong>al</strong>. 2011;Lautenschlager & Desojo 2011; Weinbaum 2011),progress in pseudosuchian phylogen<strong>et</strong>ics (Brusatte<strong>et</strong> <strong>al</strong>. 2010; <strong>Nesbitt</strong> 2011) and expansion of agener<strong>al</strong> interest in these fascinating creatures. As aresult of this influx of new research and fossil discoveries,the anatomy, systematics and evolutionaryhistory of rauisuchians are becoming increasinglyclear, <strong>al</strong>though many debates remain.Wh<strong>et</strong>her a natur<strong>al</strong> group or a collection of moredistantly related groups, rauisuchians are importantfor a number of reasons. They were an importantcomponent of Triassic faunas, especi<strong>al</strong>ly duringthe Early–Middle Triassic when ecosystems werestabilizing after the Permo-Triassic extinction and‘modern ecosystems’ were being established (Sues& Fraser 2010). Rauisuchians were an integr<strong>al</strong>part of the initi<strong>al</strong> diversification of Archosauria inthe Early Triassic, but went extinct by the end ofthe Triassic, seemingly quite suddenly and possiblydue to the glob<strong>al</strong> end-Triassic mass extinction(Benton 2004). Some rauisuchians, such asthe sail-backed ctenosauriscids, are some of the earliestarchosaurs to appear in the fossil record andthus help to date the origin of Archosauria, whichis an important c<strong>al</strong>ibration point in many molecularphylogen<strong>et</strong>ic an<strong>al</strong>yses (<strong>Nesbitt</strong> 2003, 2011; Butler<strong>et</strong> <strong>al</strong>. 2011; <strong>Nesbitt</strong> <strong>et</strong> <strong>al</strong>. 2011a; Parham <strong>et</strong> <strong>al</strong>.2012). Furthermore, rauisuchians were part ofnearly <strong>al</strong>l Triassic archosaur assemblages and havebeen found on nearly <strong>al</strong>l portions of Pangaea withLower to Upper Triassic deposits.Rauisuchians were both taxonomic<strong>al</strong>ly and ecologic<strong>al</strong>lydiverse. They include the first large-bodiedcarnivorous reptiles (up to 7 m in length) in the fossilrecord and were som<strong>et</strong>imes were much larger thancontemporary herbivores, which is unusu<strong>al</strong>, becaus<strong>et</strong>he opposite relationship b<strong>et</strong>ween largest predatorand herbivore size usu<strong>al</strong>ly holds in modern terrestri<strong>al</strong>ecosystems (Sookias <strong>et</strong> <strong>al</strong>. 2012). Although mostrauisuchians were massive, quadruped<strong>al</strong> predators(e.g. Batrachotomus kuperferzellensis, Postosuchuskirkpatricki, Prestosuchus chiniquensis, Saurosuchusg<strong>al</strong>ilei), some taxa departed from this bodytype. Some may have been parti<strong>al</strong>ly aquatic (e.g.Qianosuchus mixtus) whereas others were morelightly built and probably biped<strong>al</strong> (e.g. Effigia okeeffeae,Poposaurus gracilis, Shuvosaurus inexpectatus).Other taxa, such as ctenosauriscids and thebeaked Lotosaurus adentus, sported elaborate sailson their backs. Intriguingly, sever<strong>al</strong> rauisuchianswere long misidentified as theropod dinosaursbecause of some remarkable convergences b<strong>et</strong>weenthese groups (e.g. Colbert 1961; Chatterjee 1985,1993; Benton 1986a; <strong>Nesbitt</strong> & Norell 2006;<strong>Nesbitt</strong> 2007; Brusatte <strong>et</strong> <strong>al</strong>. 2009; Bates & Schachner2012). It seems likely, therefore, that rauisuchiansoccupied many ecologic<strong>al</strong> niches that weresubsequently filled by dinosaurs during the Jurassicand Cr<strong>et</strong>aceous (Brusatte <strong>et</strong> <strong>al</strong>. 2008).An understanding of the anatomy, ecology andsystematics of rauisuchians is clearly important forunderstanding the major patterns and processes inTriassic archosaur evolution. At this point in time,however, there are a number of problems thatremain to be resolved. First and foremost, we cannotidentify a rauisuchian by unambiguous synapomorphies,which is key to identifying these anim<strong>al</strong>sin the field or in collections. This point <strong>al</strong>so underscoresa major phylogen<strong>et</strong>ic problem: there are noclear apomorphies that unite <strong>al</strong>l rauisuchianstog<strong>et</strong>her as a clade, and the relationships of sever<strong>al</strong>genera remain unclear. This natur<strong>al</strong>ly prevents aclear understanding of character evolution amongthese anim<strong>al</strong>s.In gener<strong>al</strong>, taxa classic<strong>al</strong>ly referred to as rauisuchiansshare a large skull relative to their body,recurved te<strong>et</strong>h, and a few other character states highlightedby researchers over the past 75 years (Fig. 1).However, these long-assumed ‘key characters’ are


Downloaded from http://sp.lyellcollection.org/ at CAPES on May 3, <strong>2013</strong>S. J. NESBITT ET AL.some of these taxa into discr<strong>et</strong>e clades, <strong>al</strong>thoughthere is a long way to go.Here, we briefly synthesize the current understandingof rauisuchians. We highlight current consensusin rauisuchian taxonomy and review thediscr<strong>et</strong>e clades (such as Poposauroidea and Rauisuchidae)that can be identified by derived charactersand that have a similar taxonomic compositionin recent phylogen<strong>et</strong>ic an<strong>al</strong>yses. We <strong>al</strong>so reviewadvances in studies of rauisuchian p<strong>al</strong>aeobiologybeyond systematics. Fin<strong>al</strong>ly, we end with a roadmapof what we consider to be important to futurework on rauisuchians.TerminologyHere, we use Archosauria to refer to the crowngroup defined by the common ancestor of birds andcrocodylians, and <strong>al</strong>l of its descendants (Gauthier &Padian 1985; Gauthier 1986; Sereno 1991). Pseudosuchia(Gauthier & Padian 1985) refers to archosaursmore closely related to crocodylians thanto birds, whereas Avem<strong>et</strong>atars<strong>al</strong>ia (Benton 1999)refers to archosaurs more closely related to birdsthan to crocodylians. Note that sever<strong>al</strong> authors us<strong>et</strong>he clade name Crurotarsi (node-based group origin<strong>al</strong>ly)to refer to what we here c<strong>al</strong>l Pseudosuchia(e.g. Sereno & Arcucci 1990; Sereno 1991; Benton1999, 2004; Brusatte <strong>et</strong> <strong>al</strong>. 2010).In the late 20th century, Rauisuchia Bonaparte1975 came to encompass an assortment of Triassicgenera that were som<strong>et</strong>imes (<strong>al</strong>though not consistentlyand with varying definitions and content) partitionedinto Linnean families such as RauisuchidaeHuene 1942, Ctenosauriscidae Kuhn 1964, PrestosuchidaeRomer 1966, Poposauridae (Nopcsa1923) and Chatterjeeidae Long & Murry 1995 (seeGower 2000; <strong>Nesbitt</strong> 2011 for further discussion).In that ‘Rauisuchia’, as understood here, includesgenera gener<strong>al</strong>ly referred to these higher taxa, it ishighly likely to be non-monophyl<strong>et</strong>ic and is thereforeused in inverted commas. Rauisuchians, inthe sense used here, are best defined as <strong>al</strong>most <strong>al</strong>lsuchians that are not members of A<strong>et</strong>osauria orCrocodylomorpha, with addition<strong>al</strong> exceptions comprisinga few non-rauisuchian, possible suchianssuch as Gracilisuchus stipanicicorum and Turfanosuchusdabanensis. Other than Parrish (1993), whoredefined Rauisuchia to apply to a clade that <strong>al</strong>soincluded Crocodylomorpha, most authors since the1990s have understood ‘Rauisuchia’ and rauisuchiansin the sense used here.Phylogen<strong>et</strong>ic definitionsShifting ideas (most not strongly supported) aboutthe relationships among rauisuchians and otherpseudosuchians has led to a number of ch<strong>al</strong>lengeswhen presenting a natur<strong>al</strong> classification based onexplicit phylogen<strong>et</strong>ic definitions (sensu de Queiroz& Gauthier 1990, 1992). Most workers who haveapplied numeric<strong>al</strong> phylogen<strong>et</strong>ic m<strong>et</strong>hods agree that‘Rauisuchia’ is not monophyl<strong>et</strong>ic, and most haveconverted pre-cladistic names to clade names (e.g.Rauisuchidae: Parrish 1993). Some authors hav<strong>et</strong>ied explicit definitions to these latter two types ofclade names (e.g. Sereno <strong>et</strong> <strong>al</strong>. 2005; Weinbaum& Hungerbühler 2007; Brusatte <strong>et</strong> <strong>al</strong>. 2010), butothers have not (e.g. Parrish 1993).To add to the confusion, different authors evenin the cladistic age have used various names torefer to clades with a similar composition and/orthe same names for different groups (compare, forexample, the use of Rauisuchia by Gauthier (1986)and Parrish (1993) and the use of Rauisuchidae byParrish (1993) and Brusatte <strong>et</strong> <strong>al</strong>. (2010) and<strong>Nesbitt</strong> (2011)). Although the higher-level relationshipsof rauisuchians in the most recent large-sc<strong>al</strong>ean<strong>al</strong>yses (Brusatte <strong>et</strong> <strong>al</strong>. 2010; Butler <strong>et</strong> <strong>al</strong>. 2011;<strong>Nesbitt</strong> 2011) are far from full agreement, sever<strong>al</strong>sm<strong>al</strong>ler clades of rauisuchians are compatible (Fig.2). Therefore, the following list of clade definitionsis split into two sections. The first s<strong>et</strong> of cladenames refers to groups that have been found inrecent an<strong>al</strong>yses using different data s<strong>et</strong>s, and thusappear to be relatively stable. The second s<strong>et</strong> refersto monophyl<strong>et</strong>ic groups that have been found insome an<strong>al</strong>yses, but denote a s<strong>et</strong> of either paraphyl<strong>et</strong>icor polyphyl<strong>et</strong>ic groups in other an<strong>al</strong>yses. The cladenames in the second s<strong>et</strong> should be re-ev<strong>al</strong>uated ifsubsequent phylogen<strong>et</strong>ic an<strong>al</strong>yses find that theclades, as defined by the phylogen<strong>et</strong>ic definitions,turn out to include other pseudosuchians (e.g. A<strong>et</strong>osauria)not intention<strong>al</strong>ly included in the definition.First s<strong>et</strong>Rauisuchidae Huene 1942. Stem-based definition –the most inclusive clade containing Rauisuchus tiradentesHuene 1938b but not A<strong>et</strong>osaurus ferratusFraas 1877, Prestosuchus chiniquensis Huene1938b, Poposaurus gracilis Mehl 1915 or Crocodylusniloticus (Laurenti 1768). (Sensu Sereno <strong>et</strong> <strong>al</strong>.2005.)Poposauroidea Nopcsa 1923. Stem-based definition– the most inclusive clade containing Poposaurusgracilis Mehl 1915 but not Rauisuchustiradentes Huene 1938b, Crocodylus niloticus(Laurenti 1768), Ornithosuchus longidens (Huxley1877) or A<strong>et</strong>osaurus ferratus Fraas 1877. (SensuWeinbaum & Hungerbühler 2007.)Shuvosauridae. Node-based definition – theleast inclusive clade containing Shuvosaurusinexpectatus Chatterjee 1993 and Sillosuchus


Downloaded from http://sp.lyellcollection.org/ at CAPES on May 3, <strong>2013</strong>RAUISUCHIA(a)PSEUDOSUCHIASUCHIAARCHOSAURIAPARACROCODYLOMORPHALORICATAPOPOSAUROIDEACTENOSAURISCIDAERiojasuchusOrnithosuchusGracilisuchusTurfanosuchusRevueltosaurusA<strong>et</strong>osaurusStagonolepisLongosuchusTicinosuchusQianosuchusArizonasaurusXilousuchusHypselorhachisCtenosauriscusW<strong>al</strong>dhaus TaxonPoposaurus gracilis HPoposaurus gracilis YLotosaurusSillosuchusShuvosaurusEffigiaPrestosuchusSaurosuchusBatrachotomusFasolasuchusRauisuchusPolonosuchus silesiacusPostosuchus <strong>al</strong>isonaePostosuchus kirkpatrickiCROCODYLOMORPHARAUISUCHIDAE(b)ARCHOSAURIAPSEUDOSUCHIASUCHIARAUISUCHIARAUISUCHOIDEAPOPOSAUROIDEAPHYTOSAURIAAETOSAURIAGracilisuchusErptosuchusCROCODYLOMORPHARevueltosaurusORNITHOSUCHIDAEArganasuchusFasolasuchusStagonosuchusTicinosuchusSaurosuchusBatrachotomusPrestosuchusTikisuchusRauisuchusPostosuchusTeratosaurus*YarasuchusQianosuchusArizonasaurusBromsgroveiaLotosaurusPoposaurusSillosuchusEffigiaShuvosaurusAVEMETATARSALIAPRESTOSUCHIDAERAUISUCHIDAEAVEMETATARSALIAFig. 2. Recent hypotheses of the relationships of rauisuchians within Archosauria of (a) <strong>Nesbitt</strong> (2011) and (b) Brusatte<strong>et</strong> <strong>al</strong>. (2010) presented with addition<strong>al</strong> ctenosauriscids in Butler <strong>et</strong> <strong>al</strong>. (2011). Some larger clades have been simplified(e.g. Avem<strong>et</strong>atars<strong>al</strong>ia, Crocodylomorpha) from the origin<strong>al</strong> an<strong>al</strong>yses. * refers to Polonosuchus after the work of Brusatte<strong>et</strong> <strong>al</strong>. (2009).longicervix Alcober & Parrish 1997. (Sensu <strong>Nesbitt</strong>2011.)Ctenosauriscidae Kuhn 1964. Stem-based definition– the most inclusive clade containing Ctenosauriscuskoeneni (Huene 1902) but not Poposaurusgracilis Mehl 1915, Effigia okeeffeae <strong>Nesbitt</strong> &Norell 2006, Postosuchus kirkpatricki Chatterjee1985, Crocodylus niloticus Laurenti 1768, Ornithosuchuslongidens (Huxley 1877) or A<strong>et</strong>osaurus ferratusFraas 1877. (Sensu Butler <strong>et</strong> <strong>al</strong>. 2011.)Second s<strong>et</strong>Rauisuchia Bonaparte 1975. Node-based definition– the least inclusive clade containing Poposaurusgracilis Mehl 1915, Batrachotomuskupferzellensis Gower 1999, Prestosuchus chiniquensisHuene 1938b and Rauisuchus tiradentesHuene 1938b, but not Crocodylus niloticus Laurenti1768, Ornithosuchus longidens (Huxley 1877) orA<strong>et</strong>osaurus ferratus Fraas 1877. (New explicit definition.)This clade name applies only if there is aclade that contains most of the taxa classic<strong>al</strong>lyconsidered rauisuchians (i.e. Postosuchus-like taxaand Poposaurus-like taxa).Rauisuchoidea. Stem-based definition – the mostinclusive clade containing Rauisuchus tiradentesHuene 1938b, but not Crocodylus niloticus Laurenti1768, Ornithosuchus longidens (Huxley 1877),A<strong>et</strong>osaurus ferratus Fraas 1877 or Poposaurus gracilisMehl 1915. (New explicit definition.) Thisclade name applies only if Rauisuchia is monophyl<strong>et</strong>ic;in this case, it would refer to a major clade ofrauisuchians as the sister taxon of Poposauroidea(see Brusatte <strong>et</strong> <strong>al</strong>. (2010) for an example of thison one phylogen<strong>et</strong>ic topology).Prestosuchidae Romer 1966. Stem-baseddefinition – the most inclusive clade containingPrestosuchus chiniquensis Huene 1938b but notRauisuchus tiradentes Huene 1938b, A<strong>et</strong>osaurusferratus Fraas 1877, Poposaurus gracilis Mehl1915 or Crocodylus niloticus Laurenti 1768. (SensuSereno <strong>et</strong> <strong>al</strong>. 2005.)Paracrocodylomorpha Parrish 1993. Nodebaseddefinition – the least inclusive clade


Downloaded from http://sp.lyellcollection.org/ at CAPES on May 3, <strong>2013</strong>S. J. NESBITT ET AL.containing Poposaurus gracilis Mehl 1915 and Crocodylusniloticus Laurenti 1768. (Sensu Weinbaum& Hungerbühler 2007.)Loricata Merrem 1820. Stem-based definition –the most inclusive clade containing Crocodylusniloticus Laurenti 1768 but not Poposaurus gracilisMehl 1915, Ornithosuchus longidens (Huxley 1877)or A<strong>et</strong>osaurus ferratus Fraas 1877. (Sensu <strong>Nesbitt</strong>2011.) This clade name applies only if Paracrocodylomorphais monophyl<strong>et</strong>ic.Fossil recordDistribution and biogeographyRauisuchians have been found in sedimentarydeposits dating from the Early Triassic to the endof the Late Triassic (Table 1) and have a nearly cosmopolitandistribution (Fig. 3). With one possibleexception (see below), rauisuchians are restrictedto the Triassic. Most rauisuchians are found in continent<strong>al</strong>terrestri<strong>al</strong> deposits laid down in floodplainsand/or river channels from fluvi<strong>al</strong> environmentssuch as the Chinle Formation of North America(Stewart <strong>et</strong> <strong>al</strong>. 1972), the Ischigu<strong>al</strong>asto Formationin Argentina (Alcober 2000; Currie <strong>et</strong> <strong>al</strong>. 2008)and the Santa Maria Formation of Brazil (Schultz<strong>et</strong> <strong>al</strong>. 2000). Some are clearly from strongly season<strong>al</strong>environments, including taxa from the major knownclades, such as Ticinosuchus ferox, Effigia okeeffeaeand Rauisuchus tiradentes (Golonka & Ford 2000;Pires <strong>et</strong> <strong>al</strong>. 2005; Nützel <strong>et</strong> <strong>al</strong>. 2010). A few terrestri<strong>al</strong>rauisuchians, however, were fossilized afterapparently being washed into a brackish lagoon/lake (e.g. Batrachotomus kupferzellensis; Schoch2002; Hagdorn & Mutter 2011) or marine intraplatformbasin (e.g. Ticinosuchus ferox, found in oneof the most diverse Triassic Lagerstätten) environments(Krebs 1965; Lautenschlager & Desojo2011), and at least one taxon (Qianosuchus mixtus)was possibly semi-aquatic and is preserved incoast<strong>al</strong> limestones (Li <strong>et</strong> <strong>al</strong>. 2006; <strong>Nesbitt</strong> 2011).Rauisuchians are commonly present in mostvertebrate-producing Triassic formations. Withthat being said, we urge caution in interpr<strong>et</strong>ingsome published records of rauisuchian distribution.Many reports of Triassic vertebrate faunas/assemblagesfrom around the world include rauisuchiansin faun<strong>al</strong> lists (e.g. Renesto <strong>et</strong> <strong>al</strong>. 2003; Heckert2004; Heckert <strong>et</strong> <strong>al</strong>. 2012), but many of these occurrencesare based exclusively on te<strong>et</strong>h, which weconsider non-diagnostic to any subgroup of rauisuchiansat this point in time (because rauisuchian-likerecurved te<strong>et</strong>h are present in many groups ofamniotes). Therefore, we have not included thoseoccurrences in our review and have focused onnamed and diagnostic materi<strong>al</strong>.North America boasts one of the most diversefossil records of rauisuchians and has yieldedmembers of the clades Ctenosauriscidae, Shuvosauridaeand Rauisuchidae, as well as a few otherforms. Furthermore, the fossil record of NorthAmerican rauisuchians extends from the early partof the Middle Triassic to nearly the end of the Triassic(Fig. 3). The earliest forms are from the top(early Anisian portion) of the Moenkopi Formationin Arizona and New Mexico (<strong>Nesbitt</strong> 2003, 2005a,b; Schoch <strong>et</strong> <strong>al</strong>. 2010). Heptasuchus clarki fromcentr<strong>al</strong> Wyoming was <strong>al</strong>ways considered to beUpper Triassic in age (Dawley <strong>et</strong> <strong>al</strong>. 1979), butrecent work suggests that it may be Middle Triassic(Zawiskie <strong>et</strong> <strong>al</strong>. 2011). The majority of North Americanrauisuchian taxa are from the Upper TriassicChinle Formation of Utah (Gauthier <strong>et</strong> <strong>al</strong>. 2011),Arizona (Long & Murry 1995; Parker & Irmis2005), Colorado (Sm<strong>al</strong>l 2001) and New Mexico(Long & Murry 1995), and <strong>al</strong>so the DockumGroup of New Mexico (Hunt 1994) and Texas(Chatterjee 1985; Long & Murry 1995). These rauisuchianshave been found throughout the aforementionedformations and are commonly found inmajor bonebeds, including the Placerias Quarry(Long & Murry 1995), the Post Quarry (Chatterjee1985), the Otis Ch<strong>al</strong>k Quarries (Elder 1978),Hayden Quarry (Irmis <strong>et</strong> <strong>al</strong>. 2007) and the CoelophysisQuarry (<strong>Nesbitt</strong> & Norell 2006; <strong>Nesbitt</strong>2007). Only one specimen, of Postosuchus <strong>al</strong>isonae,has been found in the Newark Super Group of theeastern portion of North America (Peyer <strong>et</strong> <strong>al</strong>.2008).Rauisuchians are <strong>al</strong>so widespread acrossEurasia, with specimens ranging from the Early tothe Late Triassic. Well-preserved materi<strong>al</strong> has beenfound at various stratigraphic levels throughout theGermanic Basin, including the upper Lower TriassicSolling Formation (¼ Middle Buntsandstein) ofGermany (Butler <strong>et</strong> <strong>al</strong>. 2011), the Middle TriassicErfurt Formation of southern Germany (Gower1999; Gower & Schoch 2009), the Upper TriassicLöwenstein Formation (¼ Stubensandstein) ofGermany (G<strong>al</strong>ton 1985; Benton 1986a) and theUpper Triassic strata of southern Poland (Sulej2005; Brusatte <strong>et</strong> <strong>al</strong>. 2009). Addition<strong>al</strong> remains ofnamed forms in western Europe are from theMiddle Triassic of the United Kingdom (Benton &Gower 1997) and Ticinosuchus ferox from nearthe Anisian–Ladinian boundary in Switzerland(Krebs 1965) and possibly from Besano, NorthernIt<strong>al</strong>y (Lautenschlager & Desojo 2011). A numberof reptiles referred to different subgroups of rauisuchianshave been reported from the Triassic formations<strong>al</strong>ong the flanks of the Ur<strong>al</strong> Mountains inRussia. However, with a single exception, theseforms cannot be confidently assigned to any rauisuchiansubgroups (Gower 2000; Gower & Sennikov


Table 1. Summary of rauisuchian taxa.Taxa Occurrence Age Materi<strong>al</strong>Poposauroidea Nopsca 1923Qianosuchus mixtus Li <strong>et</strong> <strong>al</strong>. 2006 Guanling Fm./Guizhou, China Middle Triassic:AnisianCtenosauriscidae Kuhn 1964Arizonasaurus babbitti Welles 1947Moenkopi Fm./Arizona and NewMexico, SW USAMiddle Triassic:AnisianXilousuchus sapingensis Wu 1981 Heshanggou Fm./Shaanxi, China Lower–MiddleTriassic: lateOlenekian–?early AnisianCtenosauriscus koeneni Huene (1902) sensuKuhn 1964 (¼‘Ctenosaurus’ koeneni)Upper Middle Buntsandstein, SollingFm./Lower Saxony, north GermanyLower Triassic:OlenekianHypselorhachis mirabilis Butler <strong>et</strong> <strong>al</strong>. 2009 Lifua Mb., Manda beds./SW Tanzania Middle Triassic:late AnisianBromsgroveia w<strong>al</strong>keri G<strong>al</strong>ton 1985Bromsgrove Sandstone Fm./Middle Triassic:Warwickshire, EnglandAnisian‘W<strong>al</strong>dhaus taxon’ Butler <strong>et</strong> <strong>al</strong>. 2011Röt Fm./Baden-Württemburg,Middle Triassic:GermanyearliestPoposaurus gracilis Mehl 1915 sensuWeinbaum & Hungerbühler 2007Poposaurus langstoni Long & Murry (1995)sensu Weinbaum & Hungerbühler 2007(¼‘Lythrosuchus’ langstoni)Popo Agie Fm., Chinle Fm., andDockum Gr./SW USAColorado City Fm. Dockum Grp./Texas, SW USAAnisianLate Triassic:early–midNorianLate Triassic:early NorianLotosaurus adentus Zhang 1975 Butang Fm./Hunan, China Middle Triassic:Anisian‘Moenkopi Shuvosaurid’Shuvosauridae Chatterjee 1993Sillosuchus longicervix Alcober &Parrish 1997Moenkopi Fm./Arizona and NewMexico, SW USAIschigu<strong>al</strong>asto Fm./San Juan, ArgentinaMiddle Triassic:AnisianLate Triassic:late CarnianNearly compl<strong>et</strong>e skull and postcrani<strong>al</strong> skel<strong>et</strong>on(based on three articulated specimens) (3)Parti<strong>al</strong> skull, cervic<strong>al</strong>, dors<strong>al</strong> and sacr<strong>al</strong>vertebrae, and nearly compl<strong>et</strong>e pector<strong>al</strong> andpelvic girdles (2+)Parti<strong>al</strong> skull, anterior region of axi<strong>al</strong> skel<strong>et</strong>onand appendicular fragments (1)Parti<strong>al</strong> axi<strong>al</strong> skel<strong>et</strong>on, including some cervic<strong>al</strong>,dors<strong>al</strong>, sacr<strong>al</strong> and caud<strong>al</strong> vertebra and ribs;unidentified fragments (? pector<strong>al</strong> girdle) (1)Anterior dors<strong>al</strong> vertebra (1)Dors<strong>al</strong>, sacr<strong>al</strong> and caud<strong>al</strong> fragmentary vertebra,and parti<strong>al</strong> pelvic girdle (≏1)Ilium, vertebrae (≏5)Crani<strong>al</strong> fragments and nearly compl<strong>et</strong>epostcrani<strong>al</strong> skel<strong>et</strong>on (based on sever<strong>al</strong>specimens) (10+)Cervic<strong>al</strong> and dors<strong>al</strong> fragmentary vertebra, andparti<strong>al</strong> pelvic girdle (1)Articulated and disarticulated individu<strong>al</strong>s,including crani<strong>al</strong> and postcrani<strong>al</strong> remains(10+)Parti<strong>al</strong> pelvic girdle, femora (5)Parti<strong>al</strong> postcrani<strong>al</strong> skel<strong>et</strong>on, referred materi<strong>al</strong> (3)RAUISUCHIADownloaded from http://sp.lyellcollection.org/ at CAPES on May 3, <strong>2013</strong>(Continued)


Table 1. ContinuedTaxa Occurrence Age Materi<strong>al</strong>Shuvosaurus inexpectatus Long & Murry 1995sensu <strong>Nesbitt</strong> 2007Effigia okeeffeae <strong>Nesbitt</strong> & Norell 2006Rauisuchidae Huene 1942Rauisuchus tiradentes Huene 1938bPolonosuchus silesiacus Sulej (2005) sensuBrusatte <strong>et</strong> <strong>al</strong>. 2009 (¼‘Teratosaurus’silesiacus)Postosuchus kirkpatricki Chatterjee 1985Cooper Canyon Fm., Dockum Grp./Texas, SW USAChinle Fm. (Coelophysis Quarry)/NewMexico, SW USASanta Maria Fm. (HyperodapedonAZ)/Santa Maria Area (Rio Grandedo Sul), S BrazilDrawno Beds, Krasiejów/Opole Silesia,S PolandLate Triassic:early–midNorianLate Triassic:late NorianLate Triassic:CarnianLate Triassic:NorianCooper Canyon Fm., Dockum Grp. andChinle Fm. SW USALate Triassic:NorianPostosuchus <strong>al</strong>isonae Peyer <strong>et</strong> <strong>al</strong>. 2008Deep River Basin, NewarkLate Triassic:Supergroup./North Carolinamid NorianTikisuchus romeri Chatterjee & Majumdar 1987 Tiki Fm./ Madhya Pradesh, Indian Late Triassic:Carnian?Teratosaurus suevicus Meyer 1861Löwenstein Formation (¼middle Late Triassic:Stubensandstein/Baden-?mid NorianWürttemburg, GermanyRauisuchiansTicinosuchus ferox Krebs 1965Prestosuchus chiniquensis Huene 1938bPrestosuchus loricatus Huene 1938bSaurosuchus g<strong>al</strong>ilei Reig 1959Batrachotomus kupferzellensis Gower 1999Middle Grenzbitumenzone( polymorphus-Z)/Switzerland andnorth It<strong>al</strong>ySanta Maria Fm. (DinodontosaurusAZ)/Rio Grande do Sul, south BrazilSanta Maria Fm. (DinodontosaurusAZ)/Chiniquá Area (Rio Grande doSul), south BrazilIschigu<strong>al</strong>asto Fm./San Juan and LaRioja, NW ArgentinaLower Keuper, Erfurt Fm. (UpperL<strong>et</strong>tenkeuper sequence)/Baden-Württemburg, south GermanyMiddle Triassic:late AnisianMiddle Triassic:LadinianMiddle Triassic:LadinianLate Triassic:late CarnianMiddle Triassic:LadinianNearly compl<strong>et</strong>e skull and parti<strong>al</strong> postcrani<strong>al</strong>(based on sever<strong>al</strong> specimens, including‘Chatterjeea elegans’) (10+)Nearly compl<strong>et</strong>e skull and postcrani<strong>al</strong> skel<strong>et</strong>on(based on four articulated specimens) (4+)Parti<strong>al</strong> crani<strong>al</strong> and postcrani<strong>al</strong> skel<strong>et</strong>on (based onfour origin<strong>al</strong> specimens from two distinctloc<strong>al</strong>ities) (1)Nearly compl<strong>et</strong>e skull and parti<strong>al</strong> anterior regionof axi<strong>al</strong> skel<strong>et</strong>on, parti<strong>al</strong> mid-caud<strong>al</strong> series (1)Nearly compl<strong>et</strong>e crani<strong>al</strong> and postcrani<strong>al</strong> skel<strong>et</strong>on(based on sever<strong>al</strong> specimens) (2)Fragmentary crani<strong>al</strong> bones and parti<strong>al</strong>postcrani<strong>al</strong> skel<strong>et</strong>on (1)Parti<strong>al</strong> crani<strong>al</strong> and postcrani<strong>al</strong> remains (1+)Isolated right maxilla (1)Parti<strong>al</strong> crani<strong>al</strong> and nearly compl<strong>et</strong>e postcrani<strong>al</strong>skel<strong>et</strong>on (3)Nearly compl<strong>et</strong>e crani<strong>al</strong> and postcrani<strong>al</strong>elements (based on two origin<strong>al</strong> specimensfrom two distinct loc<strong>al</strong>ities and at least threeother specimens from other loc<strong>al</strong>ities) (5)Te<strong>et</strong>h fragments, osteoderms, cervic<strong>al</strong> andcaud<strong>al</strong> vertebrae and appendicular fragments(e.g. scapula, c<strong>al</strong>caneum, ischium andm<strong>et</strong>atars<strong>al</strong>) (2)Nearly compl<strong>et</strong>e crani<strong>al</strong> and postcrani<strong>al</strong> skel<strong>et</strong>on(based on sever<strong>al</strong> specimens) (5+)Nearly compl<strong>et</strong>e skull and postcrani<strong>al</strong> skel<strong>et</strong>on,except manus (5+)S. J. NESBITT ET AL.Downloaded from http://sp.lyellcollection.org/ at CAPES on May 3, <strong>2013</strong>


Fasolasuchus tenax Bonaparte 1981Upper Los Colorados Fm./La Rioja,NW ArgentinaLate Triassic:late NorianParti<strong>al</strong> skull elements, including parti<strong>al</strong>mandible, and postcrani<strong>al</strong> skel<strong>et</strong>on (2)‘Otis Ch<strong>al</strong>k taxon’Colorado City Fm. Dockum Grp./ Late Triassic Compl<strong>et</strong>e maxilla and parti<strong>al</strong> skull (2)Texas, USAHeptasuchus clarki Dawley <strong>et</strong> <strong>al</strong>. 1979 Popo Agie Fm./Wyoming, SW USA Late Triassic:early NorianParti<strong>al</strong> crani<strong>al</strong> and postcrani<strong>al</strong> skel<strong>et</strong>on (based onat least four specimens) (3+)Arganasuchus dutuiti J<strong>al</strong>il & Peyer 2007 Iroh<strong>al</strong>ene Mb., Timezgadiouine Fm.(Lower part of unit T5)/Argana,Late Triassic:CarnianMaxilla, parti<strong>al</strong> mandibles, parti<strong>al</strong> vertebras,ribs, pubis and hindlimb (4+)MoroccoStagonosuchus nyassicus Huene 1938a Lifua Mb., Manda Beds/SW Tanzania Middle Triassic:late AnisianCrani<strong>al</strong> fragments and parti<strong>al</strong> postcrani<strong>al</strong>skel<strong>et</strong>on (2)Luperosuchus fractus Romer 1971 Chañares Fm./La Rioja, SW Argentina Middle Triassic: Parti<strong>al</strong> skull roof and p<strong>al</strong>ate (2)Ladinian‘Mandasuchus tanyauchen’ Charig 1956 Lifua Mb., Manda Beds/SW Tanzania Middle Triassic: Parti<strong>al</strong> mandible and postcrani<strong>al</strong> skel<strong>et</strong>ons (3)late Anisian‘P<strong>al</strong>listeria angustimentum’ Charig 1967 Lifua Mb., Manda Beds/SW Tanzania Middle Triassic: Parti<strong>al</strong> skull and postcrani<strong>al</strong> fragments (1)late AnisianVytshegdosuchus zheshartensis Sennikov 1988 Upper Yarenskian Horizon/Komi, Lower Triassic: Crani<strong>al</strong> fragments, ilium, fragmentary femur andDecuriasuchus quartacolonia França <strong>et</strong> <strong>al</strong>. 2011RussianSanta Maria Fm. (DinodontosaurusAZ)/Quarta Colonia Area, RioGrande do Sul, south Brazillate OlenekianMiddle Triassic:Ladinianother postcrani<strong>al</strong> bones (≏1)Nearly compl<strong>et</strong>e skull and postcrani<strong>al</strong> skel<strong>et</strong>on(10+)SAM 383 upper Elliot Fm./South Africa ?Early Jurassic Parti<strong>al</strong> maxilla with te<strong>et</strong>h (1)ProblematicaDongusuchus efremovi Sennikov 1988 Donguz Horizon/Orenburg, Russia Middle Triassic:AnisianCervic<strong>al</strong> vertebra and femur (≏1)Energosuchus garjainovi Ochev 1986 Bukobay Horizon/Orenburg, Russian Middle Triassic:LadinianCervic<strong>al</strong> vertebra, humerus, radius, incompl<strong>et</strong>ecoracoid (≏1)Fenhosuchus cristatus Young 1964 Upper Ehrmaying Fm./Shanxi, China Middle Triassic Crani<strong>al</strong> and postcrani<strong>al</strong> fragments (?)Jaikosuchus magnus Sennikov 1990 Yarenga Horizon/Orenburg, Russia Lower Triassic: Two cervic<strong>al</strong> vertebrae (1)late OlenekianJushatyria vjushkovi K<strong>al</strong>andadze &Bukobay Horizon/Bashkortostan, Middle Triassic: Incompl<strong>et</strong>e maxilla (1)Sennikov 1985RussianLadinianProcerosuchus celer Huene 1938bSanta Maria Fm. (DinodontosaurusAZ)/Chiniquá Area (Rio Grande doSul), south BrazilMiddle Triassic:LadinianCrani<strong>al</strong> fragments, pector<strong>al</strong> girdle andappendicular fragments (2)(Continued)RAUISUCHIADownloaded from http://sp.lyellcollection.org/ at CAPES on May 3, <strong>2013</strong>


Table 1. ContinuedTaxa Occurrence Age Materi<strong>al</strong>Scythosuchus basileus Sennikov 1999Lipovskaya Fm./Sirotinskaya,Ilovlinskiy District, RussiaLower Triassic:late OlenekianSkull fragments (squamos<strong>al</strong>, postfront<strong>al</strong>,maxillae, te<strong>et</strong>h and articular region of lowerjaw ramus), fragmentary axi<strong>al</strong> elements axi<strong>al</strong>,parti<strong>al</strong> humerus, ilium and femur, compl<strong>et</strong><strong>et</strong>ibia and c<strong>al</strong>caneum with some dist<strong>al</strong> tars<strong>al</strong>s(?)Cervic<strong>al</strong> vertebra (1)Tsylmosuchus donensis Sennikov 1990 Yarenga Horizon/Volgograd, Russia Lower Triassic:late OlenekianTsylmosuchus jakovlevi Sennikov 1990 Ustmylian Horizon/Komi, Russia Lower Triassic: Cervic<strong>al</strong> vertebra and incompl<strong>et</strong>e ilium (≏1)OlenekianTsylmosuchus samariensis Sennikov 1990 Rybinskian Horizon/Obshchii Syrt Lower Triassic: Incompl<strong>et</strong>e vertebra (1)Area, RussiaInduan‘Youngosuchus’ sinensis (Young, 1973) sensu Kelamauy Fm./Sinkiang, China Middle Triassic Parti<strong>al</strong> skull, cervic<strong>al</strong> vertebra, ribs, pector<strong>al</strong>K<strong>al</strong>andadze & Sennikov 1985girdle and forelimb (1)Vjushkovisaurus berdjanensis Ochev 1982 Donguz Horizon/Orenburg, Russian Middle Triassic: Cervic<strong>al</strong> and dors<strong>al</strong> vertebra, and humerus (≏1)AnisianWangisuchus tzeyii Young 1964 Ermaying Fm./Shanxi, China Middle Triassic: Maxilla and other postcrani<strong>al</strong> remains (≏1)AnisianYarasuchus deccanensis Sen 2005 Yerrap<strong>al</strong>li Fm./Andhra Pradesh, India Middle Triassic: Skull fragments and parti<strong>al</strong> postcrani<strong>al</strong> skel<strong>et</strong>onAnisian(2+)Numbers in parentheses refer to number of unique specimens.S. J. NESBITT ET AL.Downloaded from http://sp.lyellcollection.org/ at CAPES on May 3, <strong>2013</strong>


Downloaded from http://sp.lyellcollection.org/ at CAPES on May 3, <strong>2013</strong>RAUISUCHIARha<strong>et</strong>ianNorianCarnianLadinianAnisianOlenekianInduanARGENTINA:Luperosuchus fractusSaurosuchus g<strong>al</strong>ileiSillosuchus longicervixFasolasuchus tenaxBRAZIL:Prestosuchus loricatusPrestosuchus chiniquensisRauisuchus tiradentisDecuriasuchus quartacoloniaUNITEDSTATES:Arizonasaurus babbittiMoenkopi poposauroidHeptasuchus clarkiPoposaurus gracilisPoposaurus langstoniOtis Ch<strong>al</strong>k taxonPostosuchus <strong>al</strong>isonaePostosuchus kirkpatrickiShuvosaurus inexpectatusEffigia okeeffeaeUNITED KINGDOM:Bromsgroveia w<strong>al</strong>keriGERMANY:Ctenosauriscus koeneni“W<strong>al</strong>dhaus taxon”Batrachotomus kupferzellensisTeratosaurus suevicusRUSSIA:Vytshegdosuchus zheshartensisSWITZERLAND:Ticinosuchus feroxPOLAND:Polonosuchus silesiacusCHINA:Xilousuchus sapingensisQianosuchus mixtusLotosaurus adentusMAROCCO:Arganasuchus dutuitiTANZANIA:INDIA:Stagonosuchus nyassicusHypselorhachis mirabilis“Mandasuchus tanyauchen”“P<strong>al</strong>listeria angustumentum”Tikisuchus romeriFig. 3. Distribution of rauisuchians in time and space. The ranges of the individu<strong>al</strong> taxa represent age error and do notrepresent stratigraphic range. Modified from França 2011.


Downloaded from http://sp.lyellcollection.org/ at CAPES on May 3, <strong>2013</strong>S. J. NESBITT ET AL.2000; Butler <strong>et</strong> <strong>al</strong>. 2011; <strong>Nesbitt</strong> 2011). Some wellpreservedrauisuchian skel<strong>et</strong>ons have been foundthroughout the Triassic formations in China, includingone of the oldest forms from the Early–MiddleTriassic Heshanggou Formation (<strong>Nesbitt</strong> <strong>et</strong> <strong>al</strong>.2011a) as well as others from the Middle TriassicBatung Formation (Zhang 1975; <strong>Nesbitt</strong> 2011) andthe marine deposits of the Anisian Guanlang Formation(Li <strong>et</strong> <strong>al</strong>. 2006). Only one clear rauisuchian(Tikisuchus romeri, which is probably a memberof Rauisuchidae) has been found so far in the LateTriassic formations of India (Chatterjee & Majumdar1987), but other possible rauisuchian materi<strong>al</strong>(Yarasuchus deccanensis; see below) is from theunderlying Middle Triassic Yerrap<strong>al</strong>li Formation(Sen 2005).Rauisuchians were first recognized from theextensive Triassic deposits in South America, andremains have been recovered from sever<strong>al</strong> Middl<strong>et</strong>o-LateTriassic formations in both Argentina andBrazil. The oldest forms are Luperosuchus fractusfrom the Middle Triassic Chañares Formation ofArgentina (Romer 1971) and Huene’s rauisuchids(Prestosuchus chiniquensis, ‘Prestosuchus’ loricatus,Procerosuchus celer) from the Middle Triassicportion of the Santa Maria sequence (Santa Maria 1Sequence, Dinodontosaurus Assemblage Zone) inBrazil (Zerfass <strong>et</strong> <strong>al</strong>. 2003; Langer 2005; Desojo& Rauhut 2009; França <strong>et</strong> <strong>al</strong>. 2011). Sillosuchuslongicervix and Saurosuchus g<strong>al</strong>ilei co-occur inthe end-Carnian portion of the Ischigu<strong>al</strong>asto Formationin Argentina (<strong>Nesbitt</strong> 2011), whereas Fasolasuchustenax is from the Late Triassic LosColorados Formation of Argentina (Bonaparte1981), and Rauisuchus tiradentes is from the LateTriassic portion of the Santa Maria sequence(Santa Maria 2 Sequence, Hyperodapedon AssemblageZone) in Brazil.A reasonable amount of African rauisuchianmateri<strong>al</strong> is known, <strong>al</strong>though much of this has onlybeen studied recently. A number of diverse formsoccur in the Anisian Manda beds of Tanzania,including the large taxon Stagonosuchus nyassicus(Huene 1938a; Gebauer 2004; Lautenschlager &Desojo 2011) and the sail-backed form Hypselorhachismirabilis (Charig 1967; Butler <strong>et</strong> <strong>al</strong>. 2009).These two taxa co-occur with specimens that havey<strong>et</strong> to be form<strong>al</strong>ly described but have been referredto in the literature as ‘Mandasuchus tanyauchen’,‘P<strong>al</strong>listeria angustimentum’ and ‘Teleocrater rhadinus’,as well as with a new form that may pertainto a rauisuchian (<strong>Nesbitt</strong> <strong>et</strong> <strong>al</strong>. 2011b; see <strong>al</strong>soCharig 1956). This is the most diverse concurrentassemblage of rauisuchians y<strong>et</strong> known. AnotherAfrican taxon, Arganasuchus dutuiti, is knownfrom well-preserved but fragmentary remains fromthe Late Triassic Timezgadiouine Formation ofMorocco (J<strong>al</strong>il & Peyer 2007).The absence of a robust, well-resolved comprehensiverauisuchian phylogeny has prevented theestablishment of well-supported biogeographic<strong>al</strong>hypotheses to explain the distribution of thes<strong>et</strong>axa. However, it is possible to comment on the distributionof certain subgroups whose relationshipsare b<strong>et</strong>ter defined. Members of the sail-backed Ctenosauriscidaeranged from the end of the EarlyTriassic to the end of the Anisian (Butler <strong>et</strong> <strong>al</strong>.2011), and during this short duration the group wasestablished across Pangaea, reaching a cosmopolitandistribution before any other archosaur subgroup(Butler <strong>et</strong> <strong>al</strong>. 2011; <strong>Nesbitt</strong> 2011). Members of thelarge-skulled Rauisuchidae had a wide range duringthe Late Triassic, including South America,North America and Europe, but this clade may havebeen present only from the end Carnian through themid-Norian. One of the longest-lived clades wasthe Shuvosauridae and their immediate sister taxa(unnamed node within Poposauroidea) (Fig. 2).Anisian members of this clade have been reported(<strong>Nesbitt</strong> 2005b; Schoch <strong>et</strong> <strong>al</strong>. 2010), but b<strong>et</strong>terknownmembers of Shuvosauridae represented bynearly compl<strong>et</strong>e skel<strong>et</strong>ons (e.g. Effigia okeeffeae:<strong>Nesbitt</strong> & Norell 2006) nearly reach the end of theTriassic. Shuvosauridae <strong>al</strong>so has a fossil recordspanning North and South America (Alcober &Parrish 1997; <strong>Nesbitt</strong> 2011).Oldest recordA handful of species from the Early Triassic ofRussia have been named and classified as rauisuchiansby Ochev (1979, 1982, 1986), K<strong>al</strong>andadze &Sennikov (1985) and Sennikov (1988, 1990, 1999).These are based on fragmentary fossils with noclear association; their ages are poorly constrainedand they (mostly) preserve no clear synapomorphieslinking them to rauisuchian clades (Table 2; Gower& Sennikov 2000). That being said, at least someof the holotype materi<strong>al</strong> (an ilium) of Vytshegdosuchuszheshartensis shares character states with otherrauisuchians (Gower & Sennikov 2000; <strong>Nesbitt</strong>2011), and we suggest that this specimen probablypertains to a rauisuchian.The oldest confirmed rauisuchians are ctenosauriscidpoposauroids, which appear in at least twolocations in northern Pangaea during the late Olenekianto the early Anisian (Fig. 3). The oldest recordis Ctenosauriscus koeneni Kuhn 1964 from theupper Middle Buntsandstein, Solling Formation,latest Olenekian (Butler <strong>et</strong> <strong>al</strong>. 2011). Similar inage but possibly slightly younger is Xilosuchussapingensis Wu 1981, known from good head andneck materi<strong>al</strong> of a single specimen from Chinafrom the late Olenekian/early Anisian (<strong>Nesbitt</strong><strong>et</strong> <strong>al</strong>. 2011a; see Butler <strong>et</strong> <strong>al</strong>. 2011 for a d<strong>et</strong>ailed discussionon the ages of Ctenosauriscus koeneni and


Table 2. Taxa once considered to be rauisuchiansTaxon Occurrence Age Materi<strong>al</strong> Current classification Rauisuchian classificationZanclodon sp. Plieninger1846Typothorax sp. Cope1875Ornithosuchuswoodwardi Huxley1877 sensu W<strong>al</strong>ker1964‘Episcoposaurus’horridus Cope 1887‘Episcoposaurus’haplocerus Cope 1887Hoplitosuchus rauiHuene 1938bDongusia colorataHuene 1940Spondylosomaabsconditum Huene1942Various loc<strong>al</strong>ities fromEuropaChinle Fm., Bull CanyonFm./Arizona, NewMexico, Texas, SW USALossiemouth SandstoneFm./Elgin Area,ScotlandP<strong>et</strong>rified Forest Mb.,Chinle Fm./NewMexico, SW USADockum Grp./Texas SWUSASanta Maria Fm.(Hyperodapedon AZ)/Santa Maria Area (RioGrande do Sul), southBrazilDonguz Fm./Orenburg,RussianSanta Maria Fm.(Dinodontosaurus AZ)/Chiniquá Area, RioGrande do Sul, southBrazilTriassic Fragmentary bones Archosauriformes Schoch Rauisuchia Sennikov(2011)(1995)Late Triassic Sever<strong>al</strong> specimens A<strong>et</strong>osauria Rauisuchidae Huene (1956)Late Triassic: ?lateCarnianLate Triassic: midNorianLate Triassic:NorianLate Triassic:CarnianMiddle Triassic:AnisianMiddle Triassic:LadinianParti<strong>al</strong> crani<strong>al</strong> andpostcrani<strong>al</strong> (based onsever<strong>al</strong> specimens)Skull fragment, two caud<strong>al</strong>vertebra andappendicular skel<strong>et</strong>onfragmentsSever<strong>al</strong> vertebrae, scapula,osteodermsFemur, tibia, osteodermsand possibly c<strong>al</strong>caneumIsolated dors<strong>al</strong> vertebraParti<strong>al</strong> axi<strong>al</strong> skel<strong>et</strong>onEarly Pseudosuchia:Ornithosuchidae <strong>Nesbitt</strong>(2011)Typothorax horridus Huene(1915)/junior subjectivesynonym of Typothoraxcoccinarum Lucas <strong>et</strong> <strong>al</strong>.(2007)/A<strong>et</strong>osauriaDesmatosuchus haplocerusGregory (1953)/A<strong>et</strong>osauria?Archosauria/nomemdubiumErythrosuchidae Gower &Sennikov (2000)Dinosauria ind<strong>et</strong>. Langer(2004)Rauisuchia:Ornithosuchidae França<strong>et</strong> <strong>al</strong>. (2011)Rauisuchidae Huene (1956)Rauisuchidae Huene (1956)Prestosuchidae(Rauisuchidae) Romer(1972)Rauisuchia Sennikov(1995)Rauisuchian G<strong>al</strong>ton (2000)RAUISUCHIADownloaded from http://sp.lyellcollection.org/ at CAPES on May 3, <strong>2013</strong>(Continued)


Table 2. ContinuedTaxon Occurrence Age Materi<strong>al</strong> Current classification Rauisuchian classificationCerritosaurus binsfeldiPrice 1946Sinosaurus triassicusYoung 1948Cuyosuchus huenei Reig1961Shansisuchusshansisuchus Young1964Riojasuchus tenuiscepsBonaparte 1967Gracilisuchusstipanicicorum Romer1972Santa Maria Fm./SantaMaria Area, Rio Grandedo Sul, south BrazilLufeng Fm./Yunnan,ChinaCachu<strong>et</strong>a Fm./Mendoza,ArgentinaErmaying Fm./Wuhsiang,ChinaLos Colorados Fm./ElS<strong>al</strong>to, ArgentinaChañares Fm./La Rioja,ArgentinaMiddle–LateTriassic(unspecified site)?Late Triassic–?Lower JurassicParti<strong>al</strong> crani<strong>al</strong> andpostcrani<strong>al</strong> skel<strong>et</strong>onMaxilla, parti<strong>al</strong> mandibleand toothProterochampsidae Rauisuchidae Huene (1956)Saurischia (Dinosauria)Young (1948)/bas<strong>al</strong>Theropoda (Dinosauria)Rauhut (2003)Rauisuchian Carroll (1988);Sennikov (1995)Late Triassic Parti<strong>al</strong> postcrani<strong>al</strong> skel<strong>et</strong>on Archosauriformes ind<strong>et</strong>. Rauisuchidae Huene (1956)Middle Triassic:AnisianLate Triassic:Norian–?Rha<strong>et</strong>ianMiddle Triassic:LadinianParti<strong>al</strong> crani<strong>al</strong> andpostcrani<strong>al</strong> skel<strong>et</strong>onCompl<strong>et</strong>e skull and nearlycompl<strong>et</strong>e postcrani<strong>al</strong>skel<strong>et</strong>on (based in fourspecimens)Nearly compl<strong>et</strong>e skull andpostcrani<strong>al</strong> skel<strong>et</strong>onErythrosuchidae Charig &Reig (1970)Early Pseudosuchia:Ornithosuchidae <strong>Nesbitt</strong>(2011)Early Suchia <strong>Nesbitt</strong>(2011)Rauisuchidae Huene (1956)Rauisuchia:Ornithosuchidae França<strong>et</strong> <strong>al</strong>. (2011)Rauisuchia Parrish (1993)S. J. NESBITT ET AL.Downloaded from http://sp.lyellcollection.org/ at CAPES on May 3, <strong>2013</strong>


Downloaded from http://sp.lyellcollection.org/ at CAPES on May 3, <strong>2013</strong>RAUISUCHIAXilousuchus sapingensis). These well-constrainedages for these ctenosauriscids <strong>al</strong>so double as theoldest confirmed dates for both Pseudosuchia andArchosauria as a whole (<strong>Nesbitt</strong> 2011; <strong>Nesbitt</strong><strong>et</strong> <strong>al</strong>. 2011a; Butler <strong>et</strong> <strong>al</strong>. 2011; Brusatte <strong>et</strong> <strong>al</strong>. 2011).A vari<strong>et</strong>y of other rauisuchians are known fromthe Middle Triassic, including the Anisian ‘Mandasuchustanyauchen’ (Charig 1967), Stagonosuchusnyassicus (Huene 1938a) and possibly ‘P<strong>al</strong>listeriaangustimentum’ from the Manda beds, and Prestosuchuschiniquensis (Huene 1938b) and Decuriasuchusquartacolonia (França <strong>et</strong> <strong>al</strong>. 2011) from theLadinian (Dinodontosaurus Assemblage Zone) partof the Santa Maria Formation. However, the exactages of these rocks are not clear.Youngest recordAn<strong>al</strong>yses of the end-Triassic extinction (e.g. Benton1986b, 1994; Olsen & Sues 1986) have depictedrauisuchians extending to the end of the Triassic.However, the previously presented data have threenotable limitations: (i) the rauisuchians used inthese studies are not monophyl<strong>et</strong>ic; (ii) revisionsin the Triassic timesc<strong>al</strong>e (Muttoni <strong>et</strong> <strong>al</strong>. 2004; Furin<strong>et</strong> <strong>al</strong>. 2006; Mundil <strong>et</strong> <strong>al</strong>. 2010) have changed stratigraphicranges; and (iii) the vertebrate fossil recordin the latest Triassic is poor glob<strong>al</strong>ly (Sues & Fraser2010). Fasolasuchus tenax from the top of the LosColorados Formation was previously thought tobe one of the youngest occurrences from the latestTriassic (Lucas 1998; Arcucci <strong>et</strong> <strong>al</strong>. 2004), butnew magn<strong>et</strong>ostratigraphic data (Santi M<strong>al</strong>nis <strong>et</strong> <strong>al</strong>.2011) suggest a mid-Norian date approximatelyequiv<strong>al</strong>ent to the age of Postosuchus kirkpatricki,c. 217–215 million years ago (mya) (Irmis <strong>et</strong> <strong>al</strong>.2010). The youngest known poposauroid is clearlyEffigia okeeffeae from the late Norian or Rha<strong>et</strong>ianCoelophysis Quarry (<strong>Nesbitt</strong> 2007; Zeigler & Geissman2011). A specimen referred to Postosuchus sp.(CM 73372) was recorded from the same quarry(Long & Murry 1995; Weinbaum 2002; Novak2004; Peyer <strong>et</strong> <strong>al</strong>. 2008), and if it belongs to Postosuchuskirkpatricki it would represent the youngestknown occurrence of Rauisuchidae. Recently,however, <strong>Nesbitt</strong> (2011) hypothesized a crocodylomorphrelationship for this specimen. Clearly, thediscovery and study of latest Triassic rauisuchiansis a pressing area of future research.The only possible early Jurassic record of a rauisuchianbelongs to a single specimen from the upperElliot Formation of South Africa (<strong>Nesbitt</strong> andR. Smith unpublished data). The specimen (SAM383) consists of the posterior portion of a maxillawith portions of five te<strong>et</strong>h from an anim<strong>al</strong> with askull length estimated to be c.1 m. It is unclear ifsome features of the maxilla that it shares with rauisuchians(e.g. Fasolasuchus tenax) are apomorphic(rectangular posterior portion of the maxilla inlater<strong>al</strong> view, fused interdent<strong>al</strong> plates, sh<strong>al</strong>low antorbit<strong>al</strong>fossa, large posteriorly opening foramen onposterior portion maxilla in medi<strong>al</strong> view). Alternatively,it is possible that the maxilla could belongto an early crocodylomorph. Addition<strong>al</strong> materi<strong>al</strong>and a b<strong>et</strong>ter understanding of character evolutionin rauisuchians and early crocodylomorphs areneeded to more confidently identify this intriguingspecimen.Relationships and evolutionRauisuchian taxonomy and evolution have beenpoorly understood because of a number of factors,including poor preservation of specimens, a fragmentaryfossil record, incompl<strong>et</strong>e descriptions, confusionin sorting <strong>al</strong>pha-level taxonomy and anincompl<strong>et</strong>e understanding of Triassic pseudosuchianrelationships. D<strong>et</strong>ails of the tortured taxonomichistory of rauisuchian classification areprovided elsewhere (see Gower 2000; Brusatte<strong>et</strong> <strong>al</strong>. 2010; <strong>Nesbitt</strong> 2011) and will not be repeatedhere. However, the combination of an increasinglymore compl<strong>et</strong>e fossil record with advances in phylogen<strong>et</strong>icm<strong>et</strong>hodologies (e.g. character construction,Sereno 2007; taxon inclusion, Brusatte 2010) instudying early archosaurs has led to a number ofbreakthroughs in understanding rauisuchian systematics.For example, early archosaur phylogenies(e.g. Juul 1994) including rauisuchians often usedcomposite scoring for suprageneric taxa thatassumed the monophyly of groups such as Prestosuchidae.Lately, b<strong>et</strong>ter-sampled archosaur phylogenies(Brusatte <strong>et</strong> <strong>al</strong>. 2010; Butler <strong>et</strong> <strong>al</strong>. 2011;<strong>Nesbitt</strong> 2011) including rauisuchians have usedspecies- or genus-level termin<strong>al</strong> taxa that do notassume the monophyly of Rauisuchia or majorsubgroups of rauisuchians. Even with those m<strong>et</strong>hodologiesin place, however, there is still no consensusabout rauisuchian relationships as a whole,<strong>al</strong>though the framework of one does seem to beemerging. This will, of course, only become clearwith further an<strong>al</strong>yses.The following descriptions of the relationshipsand evolution of rauisuchians follow the recentworks of Brusatte <strong>et</strong> <strong>al</strong>. (2010) and <strong>Nesbitt</strong> (2011)and revised iterations of those matrices in Butler<strong>et</strong> <strong>al</strong>. (2011). These two large an<strong>al</strong>yses disagree onthe fundament<strong>al</strong> relationships of rauisuchians; Brusatte<strong>et</strong> <strong>al</strong>. (2010) found a monophyl<strong>et</strong>ic Rauisuchia(<strong>al</strong>beit with minim<strong>al</strong> support, and overturned by therevised an<strong>al</strong>ysis in Butler <strong>et</strong> <strong>al</strong>. 2011), whereas<strong>Nesbitt</strong> (2011) found a paraphyl<strong>et</strong>ic ‘Rauisuchia’with respect to Crocodylomorpha (Fig. 2). However,<strong>al</strong>though these two an<strong>al</strong>yses differ fundament<strong>al</strong>ly,both works recovered similar relationships


Downloaded from http://sp.lyellcollection.org/ at CAPES on May 3, <strong>2013</strong>S. J. NESBITT ET AL.


Downloaded from http://sp.lyellcollection.org/ at CAPES on May 3, <strong>2013</strong>RAUISUCHIAamong rauisuchids and poposauroids, and therelationships of these two clades will be expandedon below. The relationships of the remainingrauisuchians included in Brusatte <strong>et</strong> <strong>al</strong>. (2010)and Butler <strong>et</strong> <strong>al</strong>. (2011) and some included in<strong>Nesbitt</strong> (2011) – Arganasuchus dutuiti, Fasolasuchustenax, Stagonosuchus nyassicus, Ticinosuchusferox, Saurosuchus g<strong>al</strong>ilei, Batrachotomus kupferzellensisand Prestosuchus chiniquensis – will notbe discussed further as the relationships of thes<strong>et</strong>axa are far from understood at this point in time.PoposauroideaThe phylogen<strong>et</strong>ic an<strong>al</strong>yses of <strong>Nesbitt</strong> (2003),<strong>Nesbitt</strong> & Norell (2006), Weinbaum & Hungerbühler(2007), Brusatte <strong>et</strong> <strong>al</strong>. (2010) and <strong>Nesbitt</strong> (2011)have examined the relationships of a diverse arrayof rauisuchians (Figs 3 & 4) and have found agroup of rauisuchians with affinities to Poposaurusgracilis. This clade, Poposauroidea (see definitionabove), is one of the best-supported subgroups ofrauisuchians. Poposauroidea (equiv<strong>al</strong>ent to ‘groupX’ of <strong>Nesbitt</strong> 2007) includes an eclectic array ofarchosaurs ranging in body size, locomotor strategiesand seemingly di<strong>et</strong>ary ecologies, with a stratigraphicrange from the end of the Early Triassic(Ctenosauriscus koeneni) to the end of the Triassic(Effigia okeeffeae). Taxonomic<strong>al</strong>ly, Poposauroideacomprises Qianosuchus mixtus, Lotosaurusadentus, Poposaurus gracilis, Poposaurus langstoni,Ctenosauriscidae and Shuvosauridae.Both Brusatte <strong>et</strong> <strong>al</strong>. (2010) and <strong>Nesbitt</strong> (2011)recovered a similar s<strong>et</strong> of taxa within Poposauroidea,but there are a few important differencesb<strong>et</strong>ween the studies. Brusatte <strong>et</strong> <strong>al</strong>. (2010) foundYarasuchus deccanensis as the sister to <strong>al</strong>l othermembers of their Poposauroidea, whereas <strong>Nesbitt</strong>(2011) did not include the taxon in his phylogen<strong>et</strong>ican<strong>al</strong>ysis. A recent examination by one of us(JBD) suggests that the type series and referredspecimens of Yarasuchus deccanensis describedby Sen (2005) may include a minimum of twodifferent archosauromorph taxa, and it is unclearwh<strong>et</strong>her any of this materi<strong>al</strong> even pertains to a pseudosuchian.Nevertheless, the position of Yarasuchusdeccanensis is only weakly resolved in Brusatte<strong>et</strong> <strong>al</strong>.’s (2010) an<strong>al</strong>ysis. The sister taxon to <strong>al</strong>lother (non-Yarasuchus) poposauroids in Brusatte<strong>et</strong> <strong>al</strong>.’s (2010) an<strong>al</strong>ysis, and the sister taxon to <strong>al</strong>lother poposauroids in <strong>Nesbitt</strong>’s (2011) an<strong>al</strong>ysis, isQianosuchus mixtus. The monophyly of Qianosuchusmixtus + other poposauroids is supported bya number of features rare among pseudosuchiansincluding, but not limited to, a maxilla that bordersthe extern<strong>al</strong> naris, the entrance of the cerebr<strong>al</strong>branches of the intern<strong>al</strong> carotid artery positionedon the ventr<strong>al</strong> surface of the braincase, and at leastthree sacr<strong>al</strong> vertebrae (only two are present in Qianosuchusmixtus) (Fig. 1). Qianosuchus mixtus is theonly poposauroid to bear osteoderms, a characterstate that is apomorphic<strong>al</strong>ly absent in <strong>al</strong>l otherpoposauroids.The recently phylogen<strong>et</strong>ic<strong>al</strong>ly defined Ctenosauriscidae(Butler <strong>et</strong> <strong>al</strong>. 2011) comprises a cladeof sail-backed poposauroids (Fig. 1) glob<strong>al</strong>ly widespreadfrom the end of the Early Triassic to the endof the Anisian (<strong>Nesbitt</strong> 2003; Butler <strong>et</strong> <strong>al</strong>. 2009,2011; <strong>Nesbitt</strong> 2011). Presacr<strong>al</strong>, sacr<strong>al</strong> and anteriorcaud<strong>al</strong> vertebrae with extremely elongated neur<strong>al</strong>spines (which would have supported a sail) havebeen known for more than a century from theEarly–Middle Triassic deposits of Germany, Africaand China, but the affinities of these anim<strong>al</strong>s werepoorly understood. After the discovery of a wellpreservedspecimen of Arizonasaurus babbitti,<strong>Nesbitt</strong> (2003, 2005a) hypothesized that sail-backedarchosaurs formed a clade among Poposaurus-lik<strong>et</strong>axa. Later work corroborated this hypothesis(Butler <strong>et</strong> <strong>al</strong>. 2011; <strong>Nesbitt</strong> 2011), but hypothesized<strong>al</strong>so that the sail-backed form Lotosaurus adentuswas not part of Ctenosauriscidae but instead wasmore closely related to Shuvosauridae, and thusmay have evolved its sail convergently. Butler<strong>et</strong> <strong>al</strong>. (2011) presented revised an<strong>al</strong>yses of the Brusatte<strong>et</strong> <strong>al</strong>. (2010) and <strong>Nesbitt</strong> (2011) data s<strong>et</strong>s thatincluded greater taxon sampling, and found that Ctenosauriscus,Hypselorhachis mirabilis, a GermanAnisian group of specimen referred to a singl<strong>et</strong>axon (¼‘W<strong>al</strong>dhaus taxon’), Xilousuchus sapingensis,Arizonasaurus babbitti and Bromsgroveiaw<strong>al</strong>keri comprise the Ctenosauriscidae. This cladeis diagnosed by sever<strong>al</strong> character states relating tothe neur<strong>al</strong> spines, including dors<strong>al</strong> neur<strong>al</strong> spinesthat are more than seven times t<strong>al</strong>ler than centrumheight and strongly curved dors<strong>al</strong> neur<strong>al</strong> spines.Fig. 4. Rauisuchian skull morphology: (a) two skulls of the newly named Decuriasuchus quartacolonia (MCNPV10105c, d) from França <strong>et</strong> <strong>al</strong>. (2011); (b) likely skull of Prestosuchus chiniquensis (UFRGS 0156-T) (reversed);(c) holotype skull of Qianosuchus mixtus (IVPP V14300); (d) skull of the poposauroid Lotosaurus adentus (IVPP V48013); (e) holotype maxilla of Postosuchus kirkpatricki (TTUP 9000); (f ) holotype maxilla of Teratosaurus suevicus(NHMUK 38646) (reversed); (g) holotype maxilla of Polonosuchus silesiacus (ZPAL Ab III/563); (h) referred maxillaof Fasolasuchus tenax (PVL 3851); (i) holotype maxilla of Batrachotomus kuperferzellensis (SMNS 52970);(j) holotype maxilla of Xilousuchus sapingensis (IVPP V6024); (k) holotype skel<strong>et</strong>on of Ticinosuchus ferox (PIZT2817). Sc<strong>al</strong>e bars: 5 cm (a–j); 10 cm (k). See appendix for institution<strong>al</strong> abbreviations.


Downloaded from http://sp.lyellcollection.org/ at CAPES on May 3, <strong>2013</strong>S. J. NESBITT ET AL.Fig. 5. Selected postcrani<strong>al</strong> elements of rauisuchians: (a) right foot of Postosuchus <strong>al</strong>isonae (UNC 15575) in dors<strong>al</strong>view; (b) left humerus of Postosuchus <strong>al</strong>isonae (UNC 15575) in anterior view; (c) right ilium of Poposaurus gracilis(TTU-P 10419) in later<strong>al</strong> view; (d) left ilium of Batrachotomus kuperferzellensis (SMNS unnumbered) in later<strong>al</strong> view;(e) right femur of Shuvosauridae (TTU-P 3870) in posteromedi<strong>al</strong> view; (f ) left pubis of Batrachotomuskuperferzellensis (SMNS 80279) in later<strong>al</strong> view; (g) articulated caud<strong>al</strong> vertebrae of Ticinosuchus ferox (PIZ T2817) inlater<strong>al</strong> view; (h) dors<strong>al</strong> osteoderm of Batrachotomus kuperferzellensis (SMNS unnumbered) in dors<strong>al</strong> view; (i) rightarticulated ankle of Fasolasuchus tenax (PVL 3850) in proxim<strong>al</strong> view; ( j) left c<strong>al</strong>caneum of Batrachotomuskuperferzellensis (SMNS 90018) in proxim<strong>al</strong> view; (k) dist<strong>al</strong> end of the right pubis of Poposaurus gracilis (TMM43683-1) in later<strong>al</strong> view; (l) left ischium of Postosuchus kirkpatricki (TTU-P 9000) in later<strong>al</strong> view. Sc<strong>al</strong>e bars: 1 cm(a, e, g–k); 5 cm (b, d, f, l). See appendix for institution<strong>al</strong> abbreviations.Lotosaurus adentus <strong>al</strong>so has a dors<strong>al</strong> sail, but the sailis much less t<strong>al</strong>l and other features in the skull andpostcrania indicate that Lotosaurus adentus is moreclosely related to Shuvosauridae than to any otherctenosauriscid (Butler <strong>et</strong> <strong>al</strong>. 2011; <strong>Nesbitt</strong> 2011).The two named species of Poposaurus – P. gracilisand P langstoni – represent ‘mid-grade’ poposauroidsmore closely related to shuvosaurids thanto other poposauroids (ctenosauriscids and possiblyLotosaurus adentus). Although few specimens ofPoposaurus preserve more than a few vertebraeand portions of the pelvis (Colbert 1961; Weinbaum& Hungerbühler 2007), a recently discovered,nearly compl<strong>et</strong>e and articulated specimen shedsnew light on the relationships and locomotorhabits of P. gracilis (Gauthier <strong>et</strong> <strong>al</strong>. 2011; Schachner<strong>et</strong> <strong>al</strong>. 2011; Bates & Schachner 2012). Demonstrablybiped<strong>al</strong>, P. gracilis had long, slim legs thatwere held underneath the body, a three-toed foot,and short and gracile arms, <strong>al</strong>l of which are characterstates found in early theropod dinosaurs. Poposaurusshares a number of pelvic modifications withshuvosaurids, including a supra-ac<strong>et</strong>abular crest(¼ supra-ac<strong>et</strong>abular rim) of the ilium that projectsventr<strong>al</strong>ly (Fig. 5), an anterodors<strong>al</strong>ly inclined crestdors<strong>al</strong> to the supra-ac<strong>et</strong>abular crest/rim of theilium, and an anterior (¼ preac<strong>et</strong>abular, ¼ crani<strong>al</strong>)process of the ilium that is long. Furthermore,


Downloaded from http://sp.lyellcollection.org/ at CAPES on May 3, <strong>2013</strong>RAUISUCHIAPoposaurus and shuvosaurids share flattened, hooflikeungu<strong>al</strong>s (<strong>Nesbitt</strong> 2011).Shuvosaurids and their possible sister taxon,Lotosaurus adentus, deviate the most among rauisuchiansfrom the typic<strong>al</strong> pseudosuchian bodyplan. Shuvosaurid fossils are relatively common(<strong>al</strong>though gener<strong>al</strong>ly not especi<strong>al</strong>ly compl<strong>et</strong>e) in theChinle Formation and the Dockum Group of thewestern USA (Long & Murry 1995; <strong>Nesbitt</strong> 2007).<strong>Nesbitt</strong> (2005b) hypothesized that a close relativeof shuvosaurids (‘Moenkopi chatterjeeid’ of<strong>Nesbitt</strong> 2005b) was present in the Anisian portionof the Moenkopi Formation of Arizona, but thishas never been tested with an explicit phylogen<strong>et</strong>ican<strong>al</strong>ysis. Shuvosaurids and Lotosaurus adentuspossess a number of unusu<strong>al</strong>, apomorphic crani<strong>al</strong>characters including the modification of the jawsinto a beak that probably supported a rhamphothecain life (Fig. 4), an enormous orbit, and a mandibularfenestra that is larger than h<strong>al</strong>f the length of theentire mandible (<strong>Nesbitt</strong> 2011). Lotosaurus adentus,which <strong>Nesbitt</strong> (2011) found to be the sister taxon ofshuvosaurids (but see Butler <strong>et</strong> <strong>al</strong>. (2011) for an<strong>al</strong>ternative view), is even more unusu<strong>al</strong> in that ithas a sail like that of ctenosauriscids but was quadruped<strong>al</strong>and more heavily built than any other wellknownpoposauroid. In contrast, shuvosaurids werelightly built, had very tiny hands, huge pubic bootsand large ilia, and were probably biped<strong>al</strong> like Poposaurus(<strong>Nesbitt</strong> 2011). As with Poposaurus, fossilsof shuvosaurids have long been confused withthose of early dinosaurs due to the striking convergencesof nearly <strong>al</strong>l portions of the skel<strong>et</strong>on (<strong>Nesbitt</strong>& Norell 2006; <strong>Nesbitt</strong> 2007). Indeed, the first skullof Shuvosaurus inexpectatus was origin<strong>al</strong>ly hypothesizedto be an early member of the ornithomimiddinosaurs, a group that lived 100 million yearslater during the Cr<strong>et</strong>aceous (Chatterjee 1993).RauisuchidaeA discr<strong>et</strong>e clade of rauisuchians with strong affinitiesto Rauisuchus tiradentes (Fig. 4) was recoveredby the recent phylogen<strong>et</strong>ic an<strong>al</strong>yses of Brusatte <strong>et</strong> <strong>al</strong>.(2010) and <strong>Nesbitt</strong> (2011), and both studies recoverstrong character support for Rauisuchidae centred onRauisuchus tiradentes (Fig. 2). This is one of themajor points of agreement b<strong>et</strong>ween the two an<strong>al</strong>yses.For these reasons, we consider this clade, which istermed Rauisuchidae by reference to the phylogen<strong>et</strong>icdefinition above (<strong>al</strong>so see Sereno <strong>et</strong> <strong>al</strong>. 2005),to be robustly supported.At a minimum, Rauisuchidae contains threegenera: the monotypic Rauisuchus tiradentes(Huene 1938b; Lautenschlager 2008) and Polonosuchussilesiacus (Sulej 2005; Brusatte <strong>et</strong> <strong>al</strong>. 2009)and Postosuchus (Fig. 4), which contains twospecies, P. kirkpatricki Chatterjee 1985 (seeWeinbaum 2011) and P. <strong>al</strong>isonae Peyer <strong>et</strong> <strong>al</strong>.2008. Note that Brusatte <strong>et</strong> <strong>al</strong>. (2010) used thegenus name Teratosaurus to refer to Polonosuchussilesiacus, following from Sulej’s (2005) origin<strong>al</strong>referr<strong>al</strong> of the type species of Polonosuchus (P. silesiacus)to Teratosaurus. Subsequent to Sulej’s(2005) origin<strong>al</strong> description of this species, Brusatte<strong>et</strong> <strong>al</strong>. (2009) showed that ‘Teratosaurus’ silesiacusdid not share any unique characters with the typespecies of Teratosaurus (T. suevicus Meyer 1861,represented by a fragmentary maxilla; G<strong>al</strong>ton1985; Benton 1986a). Therefore, Brusatte <strong>et</strong> <strong>al</strong>.(2009) removed ‘T.’ silesiacus from Teratosaurusand assigned it to its own genus, Polonosuchus.It is possible that Teratosaurus suevicus is <strong>al</strong>soa member of Rauisuchidae, but the fragmentarynature of the holotype makes it difficult to test thisproposition using cladistic an<strong>al</strong>ysis (Brusatte <strong>et</strong> <strong>al</strong>.2009). In the same vein, Brusatte <strong>et</strong> <strong>al</strong>. (2010)recovered the Indian Tikisuchus romeri to be amember of Rauisuchidae, as the outgroup to Rauisuchustiradentes + (Postosuchus kirkpatricki +Polonosuchus silesiacus). <strong>Nesbitt</strong> (2011) did notinclude Tikisuchus romeri in his an<strong>al</strong>ysis, becausehe was unable to score the materi<strong>al</strong> from person<strong>al</strong>observations, but he did acknowledge it as a ‘potenti<strong>al</strong>member’ of Rauisuchidae based on previousstudies that reported derived characters of (andsuggested close relationships) b<strong>et</strong>ween Tikisuchusand other rauisuchids (Gower 2002; Sulej 2005).All known members of Rauisuchidae share thesame gener<strong>al</strong> body plan: they were mid- to largesizedquadruped<strong>al</strong> predators, with relatively large,robust skulls and recurved te<strong>et</strong>h. Based on theknown fossil materi<strong>al</strong> of the genera, Postosuchus(including both species) is probably the largest rauisuchid,with a skull estimated at c. 60 cm in lengthbased on the holotype (Weinbaum 2011). The holotypesof Polonosuchus silesiacus and Tikisuchusromeri were approximately two-thirds (Sulej 2005)and h<strong>al</strong>f this size, respectively. A size estimate forRauisuchus tiradentes is difficult based on the fragmentarycondition of the holotype skull, but it wassm<strong>al</strong>ler than the holotype of Postosuchus kirkpatricki.The type maxilla of Teratosaurus suevicusis approximately the same size as that of Postosuchuskirkpatricki (Sulej 2005; Brusatte <strong>et</strong> <strong>al</strong>. 2009).The tempor<strong>al</strong> range of Rauisuchidae extended fromthe late Carnian (Polonosuchus silesiacus: Sulej2005, Dzik & Sulej 2007) to the Norian (Postosuchus:Peyer <strong>et</strong> <strong>al</strong>. 2008; <strong>Nesbitt</strong> 2011).All rauisuchids share sever<strong>al</strong> derived charactersthat have been optimized as synapomorphies ofthe group (or less inclusive subgroups) in recentphylogen<strong>et</strong>ic an<strong>al</strong>yses. The variable optimizationof these characters results largely from missingdata, because some rauisuchids are missing largeportions of the skel<strong>et</strong>on (e.g. only fragments of the


Downloaded from http://sp.lyellcollection.org/ at CAPES on May 3, <strong>2013</strong>S. J. NESBITT ET AL.skull are known for Rauisuchus tiradentes). <strong>Nesbitt</strong>(2011) reported four unequivoc<strong>al</strong> synapomorphiesof Rauisuchidae, including a rugose later<strong>al</strong> ridgeon the nas<strong>al</strong>, a later<strong>al</strong> tempor<strong>al</strong> fenestra that isbisected by squamos<strong>al</strong>–postorbit<strong>al</strong> contact, a longitudin<strong>al</strong>ridge on the later<strong>al</strong> surface of the jug<strong>al</strong>, andan axis with two paramedian keels on its ventr<strong>al</strong>surface (Fig. 1). Sever<strong>al</strong> other characters werefound to represent either rauisuchid synapomorphiesthat cannot be scored in Rauisuchus tiradentesbecause of missing data, or characters supportinga Polonosuchus silesiacus + Postosuchus clade.These include fused interdent<strong>al</strong> plates on the maxilla,a longitudin<strong>al</strong> ridge on the later<strong>al</strong> surface of themaxilla (continuous with the ridge on the jug<strong>al</strong>),a maxillary ascending process that remains wideacross its entire length, a dorsoventr<strong>al</strong>ly orientedcrest on the posterior surface of the quadrate, <strong>al</strong>arge exit for crani<strong>al</strong> nerve VII on the braincase,and triangular p<strong>al</strong>pebr<strong>al</strong>s over the orbits that sharea suture with the front<strong>al</strong>s. Brusatte <strong>et</strong> <strong>al</strong>. (2010)<strong>al</strong>so reported sever<strong>al</strong> synapomorphies for Rauisuchidaeand ingroup clades. Some of these werefound to be more widely distributed by <strong>Nesbitt</strong>(2011), but most importantly, Brusatte <strong>et</strong> <strong>al</strong>. (2010)<strong>al</strong>so found a later<strong>al</strong> ridge on the jug<strong>al</strong>, triangularp<strong>al</strong>pebr<strong>al</strong>s, a divided later<strong>al</strong> tempor<strong>al</strong> fenestra, anda later<strong>al</strong> ridge on the nas<strong>al</strong> to diagnose Rauisuchidaeor ingroup clades (Fig. 1).P<strong>al</strong>aeobiologyRauisuchians lie at a critic<strong>al</strong> junction b<strong>et</strong>ween theearliest archosaurs and the single subgroup of pseudosuchiansto survive the end-Triassic extinction,the crocodylomorphs (including living crocodylians)(<strong>Nesbitt</strong> 2011). To understand the evolutionof crocodylomorph biology and life history (di<strong>et</strong>,ecology, locomotion and growth strategies), wehave to turn to their closest relatives, rauisuchiansand other pseudosuchian groups, just as researchershave turned to non-avian theropods to study theorigin of birds and avian biology (Gauthier 1986).In the following paragraphs, we summarize recentbreakthroughs in the study of rauisuchian p<strong>al</strong>aeobiology.Rauisuchians are <strong>al</strong>so key to understandingthe evolution of vertebrate faunas, and vertebratebiology and ecology, through the Triassic andbeyond.Di<strong>et</strong> and ecologyMost rauisuchians were probably carnivorous,based on their large, gener<strong>al</strong>ly labio-lingu<strong>al</strong>ly compressed,pointed, recurved and serrated (ziphodont)te<strong>et</strong>h and relatively t<strong>al</strong>l, narrow skulls (which areoften similar in over<strong>al</strong>l shape and proportions tothe skulls of carnivorous theropod dinosaurs suchas Tyrannosaurus: Chatterjee 1985). Rocks yieldingrauisuchian fossils tend to have a high abundanceand high diversity of potenti<strong>al</strong> prey in the form ofmedium to large herbivorous t<strong>et</strong>rapods (e.g. Hyperodaperonsanjuanensis, Ischigu<strong>al</strong>astia jenseni,Stahleckeria potens). For example, the South AmericanSaurosuchus g<strong>al</strong>ilei and Prestosuchus chiniquensiswere at least broadly sympatric withdicynodonts, rhynchosaurs and herbivorous therapsidsand dinosauromorphs (e.g. Zerfass <strong>et</strong> <strong>al</strong>. 2004;Langer <strong>et</strong> <strong>al</strong>. 2007). These two rauisuchians grewto considerably larger sizes than other carnivoroust<strong>et</strong>rapods in their environment (e.g. Herrerasaurusischigu<strong>al</strong>astensis, Zupaysaurus rougieri, Coelophysisbauri, Liliensternus liliensterni, Staurikosauruspricei) and consequently were probably primarypredators in these Triassic faunas. The largestknown rauisuchians are Fasolasuchus tenax, whichmay have reached a tot<strong>al</strong> body length of 8–10 m,and the shuvosaurid Sillosuchus longicervex,which <strong>al</strong>so may have reached 8–10 m in length(<strong>Nesbitt</strong> 2011). Fossil remains are gener<strong>al</strong>ly notcompl<strong>et</strong>e enough to <strong>al</strong>low confident estimates ofaverage or maximum sizes of most taxa, but it isprobable that some adult rauisuchians were not thelargest predators in their ecosystems. For example,<strong>al</strong>l known fossils of Rauisuchus tiradentesare sm<strong>al</strong>ler than those of the saurischian dinosaurStaurikosaurus pricei from the Late Triassic ofBrazil.Despite the fact that many rauisuchians wereprobably large, terrestri<strong>al</strong> hypercarnivores, rauisuchiandentition and skull morphology are widelyvariable, which indicates a potenti<strong>al</strong> diversity ofdi<strong>et</strong>s and food-processing abilities (Figs 1 & 4).The possibly semi-aquatic Qianosuchus mixtus hasan elongated and low premaxilla with nine needlesharpte<strong>et</strong>h, gener<strong>al</strong>ly similar to those of living crocodyliansand other t<strong>et</strong>rapods that primarily eat fish(Fig. 4). Therefore, Qianosuchus may have possiblyfed on aquatic vertebrates such as the sauropterygians,protorosaurs, ichthyosaurs and fish that havebeen found in the same deposits (Li <strong>et</strong> <strong>al</strong>. 2006).The edentulous jaws (and possible rhamphothecae)of Lotosaurus adentus, Effigia okeeffeae and Shuvosaurusinexpectatus do not suggest a specificdi<strong>et</strong>, but it is clear that these anim<strong>al</strong>s must havebeen feeding differently than the ziphodont-toothedand large-skulled hypercarnivorous rauisuchians.The di<strong>et</strong>s of these edentulous poposauroids mayhave included plants, invertebrates and/or vertebrateeggs, in addition to meat, based on similarhypotheses proposed for edentulous theropoddinosaurs (e.g. Gower 2000, p. 457; <strong>Nesbitt</strong> 2007;Lautenschlager & Desojo 2011, p. 379; see Barr<strong>et</strong>t2005 for a discussion of di<strong>et</strong> in toothless theropoddinosaurs).


Downloaded from http://sp.lyellcollection.org/ at CAPES on May 3, <strong>2013</strong>RAUISUCHIAFossilized gastrointestin<strong>al</strong> contents of rauisuchiansare rare, but are preserved in the nearly compl<strong>et</strong>eand articulated holotype of Ticinosuchusferox and the well-preserved, parti<strong>al</strong>ly articulatedholotype of Postosuchus <strong>al</strong>isonae. The preservedgastrointestin<strong>al</strong> contents of Ticinosuchus ferox(<strong>Nesbitt</strong> 2011, p. 26) include fish sc<strong>al</strong>es, <strong>al</strong>thoughthe rather unspeci<strong>al</strong>ized skull and mandible of thisspecies bear no indications that it was a speci<strong>al</strong>izedpiscivore. The diverse gastrointestin<strong>al</strong> contents ofthe Postosuchus <strong>al</strong>isonae specimen include part ofan a<strong>et</strong>osaur, a traversodontid cynodont, ph<strong>al</strong>angesof a dicynodont and possibly an amphibian (Peyer<strong>et</strong> <strong>al</strong>. 2008).The discovery of multiple (ten) associated individu<strong>al</strong>sof Decuriasuchus quartacolonia (França<strong>et</strong> <strong>al</strong>. 2011) is rare for pseudosuchians. França<strong>et</strong> <strong>al</strong>. (2011) interpr<strong>et</strong>ed this associated assemblageas a possible indication of soci<strong>al</strong> grouping, a behaviourwell known in various ornithodirans, includingTriassic dinosaurs (e.g. Sander 1992). This hypothesisis consistent with the discovery of other rauisuchians,such as Batrachotomus kupferzellensis,Heptasuchus clarki, Postosuchus kirkpatricki,Effigia okeeffeae and Shuvosaurus inexpectatus, infossil assemblages that include specimens of variousontogen<strong>et</strong>ic stages. Furthermore, some rauisuchianassemblages include multiple individu<strong>al</strong>s of differentrauisuchian taxa. For example, other rauisuchians(e.g. Prestosuchus chiniquensis UFRGS-PV-0629-T) were found in the same quarry thatyielded the D. quartacolonia specimens (Langer<strong>et</strong> <strong>al</strong>. 2007; Mastrantonio 2010; França 2011).Other multi-taxon rauisuchian assemblages are <strong>al</strong>soknown, for example from the Manda beds (<strong>Nesbitt</strong><strong>et</strong> <strong>al</strong>. 2010) of East Africa and the Dockum Groupand Chinle Formation of the western USA (e.g.Long & Murry 1995; <strong>Nesbitt</strong> 2011). More thanone species of rauisuchian are som<strong>et</strong>imes foundtog<strong>et</strong>her in bone beds. For example, the holotypesof Postosuchus kirkpatricki and Shuvosaurus inexpectatuswere found associated in the Post Quarryin the Upper Triassic Dockum Group of NorthAmerica. It is clear, therefore, that many rauisuchianfaunas in the Triassic were diverse.Crani<strong>al</strong> and mandibular mechanicsStudying the feeding habits, skull strength, biteforces and possible crani<strong>al</strong> kinesis of rauisuchiansis an interesting area of research that is only beginningto be explored with explicit, quantitative m<strong>et</strong>hodologies.One subject that has been the focusof considerable research is crani<strong>al</strong> mechanics inextant reptiles (e.g. Erickson <strong>et</strong> <strong>al</strong>. 2003; M<strong>et</strong>zger<strong>et</strong> <strong>al</strong>. 2005), <strong>al</strong>though this is difficult to study infossil taxa. Even in extant taxa it can be difficult todemonstrate function<strong>al</strong> and active crani<strong>al</strong> kinesis,even with access to living anim<strong>al</strong>s and knowledgeof soft, as well as hard, tissue anatomy (Smith &Hylander 1985). For extinct vertebrates, inferencesare made by studying the shape of and contactsb<strong>et</strong>ween skull bones (Rayfield 2005; Liparini2008), <strong>al</strong>though care must be taken because apparentlymovable bony joints in fossil materi<strong>al</strong> mightnot be involved in kinesis in life (e.g. Bühler <strong>et</strong> <strong>al</strong>.1988; Gower 1999).With respect to rauisuchians, Chatterjee (1985),Gower (1999) and Liparini (2008) suggested potenti<strong>al</strong>,but probably greatly restricted and passivecrani<strong>al</strong> kinesis for adult Postosuchus kirkpatricki,Batrachotomus kupferzellensis and Prestosuchuschiniquensis, respectively (Fig. 6d). Gower (1999)argued that the poor preservation of the edges ofincompl<strong>et</strong>ely preserved crani<strong>al</strong> elements in B. kupferzellensisprevented firm conclusions regardingcrani<strong>al</strong> mechanics, but he was able to rule out notablekinesis due to the rigid skull roof. However, it isimportant to acknowledge that restricted passiveintracrani<strong>al</strong> mobility of loc<strong>al</strong> parts might haveoccurred even if other fused regions of the skull preventedmore extensive intracrani<strong>al</strong> movements. Themandibular symphysis, where known, appears to berelatively simple in rauisuchians, but potenti<strong>al</strong> interorintra-mandibular joints are difficult to assessbecause of lack of d<strong>et</strong>ailed information about themiddle part of the mandibular ramus (e.g. thejoints b<strong>et</strong>ween dentary, surangular and angular) inthe vast majority of rauisuchian fossils. Someworkers have highlighted a supposedly moveablepremaxilla–maxilla joint in some rauisuchians(e.g. Benton & Clark 1988; Long & Murry 1995),but d<strong>et</strong>ailed biomechanic<strong>al</strong> investigations of thisportion of the skull have not been undertaken andno firm evidence has been forwarded in support ofanything other than sm<strong>al</strong>l amounts of passive movementin this region.Much addition<strong>al</strong> work on crani<strong>al</strong> mechanics inrauisuchians is clearly needed. Liparini (2008)suggested that the main areas to look for possiblykin<strong>et</strong>ic joints in rauisuchian skulls include the contactb<strong>et</strong>ween the maxilla and premaxilla, jug<strong>al</strong> andlacrim<strong>al</strong>, and b<strong>et</strong>ween the pterygoid and the basipterygoidprocess of the basisphenoid, quadrate andectopterygoid (Fig. 6). However, d<strong>et</strong>ailed descriptionsof the histology and bone texture of theseregions of the skull, and comparisons among manyrauisuchian taxa, have y<strong>et</strong> to be undertaken. D<strong>et</strong>ailedcraniofaci<strong>al</strong> and mandibular muscular reconstructionswould assist in investigations of kinesis, butthese have <strong>al</strong>so not y<strong>et</strong> been undertaken. Anotherapproach that is likely to yield useful informationin future is integrated biomechanic<strong>al</strong> modelling.For example, finite element an<strong>al</strong>ysis (FEA) hasbeen used to examine differences in crani<strong>al</strong> mechanicsduring biting with or without intracrani<strong>al</strong>


Downloaded from http://sp.lyellcollection.org/ at CAPES on May 3, <strong>2013</strong>S. J. NESBITT ET AL.Fig. 6. Examples of p<strong>al</strong>aeobiologic<strong>al</strong> studies on rauisuchians: (a) three-dimension<strong>al</strong> reconstruction of themusculoskel<strong>et</strong><strong>al</strong> system of the hindlimb of the poposauroid Poposaurus gracilis (from Bates & Schachner 2012);(b) muscle reconstructions of the hindlimb of Prestosuchus chiniquensis (from Liparini 2011); (c) example of the‘pillar-erect’ hindlimb posture of Poposaurus gracilis, in posterior view (from Schachner <strong>et</strong> <strong>al</strong>. 2011);(d) three-dimension<strong>al</strong> model of skull and mandible of Prestosuchus chiniquensis illustrating movable joints (labelledi–iii) b<strong>et</strong>ween the skull bones (modified from Liparini 2008); (e) histologic<strong>al</strong> sections through a dors<strong>al</strong> osteoderm ofBatrachotomus kupferzellensis showing Sharpey’s fibres (Shf) and par<strong>al</strong>lel-fibred bone tissues (PFB) (sc<strong>al</strong>e bars: 1 cm)(from Scheyer & Desojo 2011); (f ) histologic<strong>al</strong> section through the femur of Effigia okeeffeae (AMNH FR 30589);(g) histologic<strong>al</strong> section through the femur of Postosuchus (UCMP 28353). See appendix for institution<strong>al</strong>abbreviations.mobility in, for example, extinct theropod dinosaurs(e.g. Rayfield 2004), and might usefully be extendedto rauisuchians.There is <strong>al</strong>so an ontogen<strong>et</strong>ic dimension to crani<strong>al</strong>mechanics and di<strong>et</strong>, and this <strong>al</strong>so requiresfuture research with respect to rauisuchians. Somesm<strong>al</strong>ler, presumably younger, rauisuchian individu<strong>al</strong>sare known from disarticulated skullelements, in contrast to the compl<strong>et</strong>ely articulatedskulls of larger, presumably older, conspecificspecimens. This phenomenon is observed, forexample, in Luperosuchus fractus (Desojo &Arcucci 2009) and Prestosuchus chiniquensis (seeMastrantonio (2010) and Barberena (1978) forcomparison). This might be related to differencesin the relative degree of mobility of crani<strong>al</strong> joints


Downloaded from http://sp.lyellcollection.org/ at CAPES on May 3, <strong>2013</strong>RAUISUCHIAb<strong>et</strong>ween juveniles and adults (as well as size, andtherefore amounts of associated connecting softtissue), which might thus indicate a reduction ofkinesis with age. W<strong>al</strong>ker (1990) suggested a similarontogen<strong>et</strong>ic trajectory for the crocodylomorphSphenosuchus acutus, and thought this mightexplain the presence of potenti<strong>al</strong>ly moveable jointsin a seemingly rigid adult skull (sm<strong>al</strong>ler/youngerspecimens were not available to test thishypothesis).Sexu<strong>al</strong> dimorphism, ontogeny and growthThere is no compelling evidence for sexu<strong>al</strong> dimorphismin any rauisuchian and little information ongrowth rates or ontogen<strong>et</strong>ic trends, but this is unsurprisinggiven the fragmentary nature of much ofthe fossil materi<strong>al</strong> and the gener<strong>al</strong> lack of p<strong>al</strong>aeobiologic<strong>al</strong>an<strong>al</strong>yses for rauisuchians. Very recently,however, some rauisuchians have been studied usinghistologic<strong>al</strong> an<strong>al</strong>yses, which offer potenti<strong>al</strong> toprovide insights into these questions about growthand ontogeny, as well as other areas of rauisuchianp<strong>al</strong>aeobiology (<strong>Nesbitt</strong> 2007; Cerda <strong>et</strong> <strong>al</strong>. 2011;Scheyer & Desojo 2011; Scheyer <strong>et</strong> <strong>al</strong>. 2011). Histologycan provide data on growth rates, the originand development of bony structures, the osteogenicmechanisms linked to the development of thesestructures (e.g. osteoderm ornamentation), and therelation of bones to soft tissues. Few histologic<strong>al</strong>studies of the long bones of rauisuchians have beenconducted, but the handful of published studieshas generated some important data. Ricqlès <strong>et</strong> <strong>al</strong>.(2003, 2008) examined long bones referred to Postosuchuskirkpatricki (Fig. 6g), ‘Mandasuchus tanyauchen’and Luperosuchus fractus (for which nolimb materi<strong>al</strong> was reported to be found with theholotype skull), and found their histology to besimilar to that of phytosaurs, a<strong>et</strong>osaurs and extantcrocodilians. Based on these comparisons, theysuggested that rauisuchians had high growth ratesearly in ontogeny and achieved large adult sizesthrough protracted cyclic<strong>al</strong> growth. <strong>Nesbitt</strong> (2007)reported a similar histologic<strong>al</strong> structure in thefemur of Effigia okeeffeae (Fig. 6f), <strong>al</strong>though indicativeof perhaps higher growth rates than in otherpseudosuchians except non-crown-group crocodylomorphs.The most gener<strong>al</strong> result of thesestudies is that rauisuchian growth rates do notseem to have approached the rapid rates of dinosaursor pterosaurs (Padian <strong>et</strong> <strong>al</strong>. 2001; Erickson2005).In many pseudosuchians, osteoderms constitut<strong>et</strong>he most consistently well-preserved fossil elements,and thus justify d<strong>et</strong>ailed an<strong>al</strong>ysis. Recentstudies of archosaur osteoderm histology have generatedimportant data for systematic and function<strong>al</strong>studies (e.g. Scheyer & Sander 2004; Main <strong>et</strong> <strong>al</strong>.2005; Hill 2005; Hayashi <strong>et</strong> <strong>al</strong>. 2010; Cerda &Desojo 2011). Rauisuchian osteoderms (Fig. 6e)were rather compact bones, usu<strong>al</strong>ly lacking substanti<strong>al</strong>bone remodelling or large areas of cancellousbone, and thus presenting good growth records. Ofthe rauisuchians examined thus far, only Tikisuchusromeri and the possible rauisuchian Yarasuchusdeccanensis deviate from this trend and have osteodermswith a slightly larger centr<strong>al</strong> area of cancellousbone, forming a diploë structure. Preliminarystudies of osteoderms of Prestosuchus chiniquensisand ind<strong>et</strong>erminate rauisuchians indicate, however,that there is some intraspecific variation in termsof bone compactness and degree of remodelling(Cerda <strong>et</strong> <strong>al</strong>. 2011). Comparison with extantcrocodylians suggests that this variation might berelated to the relative age, sex and reproductivestatus of the individu<strong>al</strong> anim<strong>al</strong> (Scheyer <strong>et</strong> <strong>al</strong>. 2011).However, age estimation based on the count ofgrowth marks in rauisuchian osteoderms will beaccurate only in those specimens that lack intern<strong>al</strong>remodelling (i.e. only for individu<strong>al</strong>s that diedat a young age). Interestingly, nearly <strong>al</strong>l poposauroids(with the exception of Qianosuchus) lackosteoderms.Growth-associated changes have been documentedby comparing the crani<strong>al</strong> and postcrani<strong>al</strong> skel<strong>et</strong>onsof presumably younger (sm<strong>al</strong>ler and lessfirmly sutured) and older (larger and more firmlysutured) individu<strong>al</strong>s of Prestosuchus chiniquensis(Huene 1938b, 1942; Barberena 1978; Mastrantonio<strong>et</strong> <strong>al</strong>. 2008). These ontogen<strong>et</strong>ic changes may <strong>al</strong>so becharacteristic for rauisuchians more widely, becaus<strong>et</strong>hey <strong>al</strong>so seem to occur in taxa with less compl<strong>et</strong>erepresentation of younger (sm<strong>al</strong>ler) individu<strong>al</strong>s,such as both species of Postosuchus (Weinbaum2002, 2011; Peyer <strong>et</strong> <strong>al</strong>. 2008), Batrachotomus kupferzellensis(Gower 1999) and Decuriasuchus quartacolonia(França <strong>et</strong> <strong>al</strong>. 2011). In <strong>al</strong>l these taxa,presumed younger individu<strong>al</strong>s differ from olderones in lacking fusion b<strong>et</strong>ween some bones (e.g.neur<strong>al</strong> arches and centra; scapula and coracoid)and having less tightly connected crani<strong>al</strong> andmandibular elements. In Saurosuchus g<strong>al</strong>ilei, forexample, one of the most compl<strong>et</strong>e skel<strong>et</strong>onsknown (PVSJ 32) is skel<strong>et</strong><strong>al</strong>ly immature (based onthe work of Brochu 1996 and Irmis 2007) becauseit has unfused cervic<strong>al</strong> neur<strong>al</strong> arch–centrum articulations.Furthermore, its skull bones are relativelypoorly ossified (e.g. articular end of the quadrate,poor ossification b<strong>et</strong>ween exoccipit<strong>al</strong> and basioccipit<strong>al</strong>),and sever<strong>al</strong> skull bones (e.g. braincase)were preserved disarticulated (Alcober 2000; Trotteyn<strong>et</strong> <strong>al</strong>. 2011) (Fig. 4). Gower & Schoch (2009,p. 118) reported less robust limb and pelvic girdlebones and less strongly pronounced muscle attachmentsites in sm<strong>al</strong>ler individu<strong>al</strong>s of Batrachotomuskupferzellensis.


Downloaded from http://sp.lyellcollection.org/ at CAPES on May 3, <strong>2013</strong>S. J. NESBITT ET AL.LocomotionSchaeffer (1941) pointed out that a termin<strong>al</strong> proxim<strong>al</strong>femor<strong>al</strong> head, contrasting with one offs<strong>et</strong> fromthe long axis of the femur, is capable only of horizont<strong>al</strong>or slightly oblique movements and is associatedwith a gener<strong>al</strong>ly sprawling locomotion withlittle vertic<strong>al</strong> component, as observed in extant crocodylians.This femor<strong>al</strong> configuration is plesiomorphicfor Archosauria, characteristic of <strong>al</strong>lrauisuchians, and is <strong>al</strong>so observed in extant crocodylians.This led some authors, notably Charig (1972),to interpr<strong>et</strong> such groups as function<strong>al</strong>ly and evolutionarilyintermediate forms b<strong>et</strong>ween ancestr<strong>al</strong>‘sprawlers’, such as non-archosaurian archosauriforms,and derived ‘fully improved’ (upright) locomotors,such as dinosaurs and birds. Beyond thelimits of his typologic<strong>al</strong> approach, Charig’s interpr<strong>et</strong>ationsare incompatible with current understandingof archosaur phylogeny. In addition,Bonaparte (1984) identified an <strong>al</strong>ternative mode oflocomotion and posture in rauisuchians, characterizedby a largely unmodified femur but upright hindlimbsand a parasagitt<strong>al</strong> gait (Fig. 6c). Bonaparte(1984) drew attention to changes in the pelvicgirdle that permitted such a posture without substanti<strong>al</strong>changes in femur morphology, includingmore ventr<strong>al</strong>ly directed dist<strong>al</strong> ends of sacr<strong>al</strong> ribs,an <strong>al</strong>most horizont<strong>al</strong>ly held ilium with a low dors<strong>al</strong>blade, a deep ac<strong>et</strong>abulum bordered by a prominentsupra-ac<strong>et</strong>abular crest, and an elongated pubisand ischium (Fig. 5). Since Bonaparte’s (1984)work, it has become apparent that rauisuchianshave notable variations on this theme. For example,Prestosuchus chiniquensis (Fig. 6b) has a combinationof the plesiomorphic and derived pelvic/hindlimb characters and has been considered tohave a less upright and parasagitt<strong>al</strong> gait than Postosuchuskirkpatricki and Effigia okeeffeae (Liparini2011).Although muscular reconstructions for extinctdinosaurs have been attempted since Dollo (1888),only in the 1990s did researchers begin to reconstructthe soft tissues of extinct archosaurs usingthe extant phylogen<strong>et</strong>ic brack<strong>et</strong>ing m<strong>et</strong>hodology,which depends on an explicit phylogen<strong>et</strong>ic context(Bryant & Russell 1992; Witmer 1995). The onlycomprehensive soft tissue reconstruction for a rauisuchianthat has been published thus far is for thepelvic and hindlimb myology of Poposaurus gracilis(Fig. 6a) presented by Schachner <strong>et</strong> <strong>al</strong>. (2011),<strong>al</strong>though the unpublished theses of Kischlat (2003)and Liparini (2011) <strong>al</strong>so discuss muscular reconstructionsfor Prestosuchus chiniquensis (Fig. 6b)and other south Brazilian rauisuchians. Notable featuresof Schachner <strong>et</strong> <strong>al</strong>.’s (2011) reconstructioninclude elongation and expansion of muscle- attachmentareas in the bone for the muscles that flexand extend the hip and knee articulations. For Prestosuchuschiniquensis, similar, but less accentuatedmodifications have been reconstructed by Liparini(2011). The distinctive rauisuchian ridge abov<strong>et</strong>he supra-aca<strong>et</strong>abular crest is inferred to be for theorigin of the M. iliofemor<strong>al</strong>is, the expanded preac<strong>et</strong>abularprocess of the ilium for part of the M.puboischiofemor<strong>al</strong>is internus, and the extern<strong>al</strong> surfacesof the extended dist<strong>al</strong> parts of the pubes andischia largely for parts of the M. puboischiofemor<strong>al</strong>isexternus group. The architecture of the hip jointprobably restricted femor<strong>al</strong> extension, flexure andabduction relative to that found in parasagitt<strong>al</strong>ornithodirans. Despite the derived nature of rauisuchianpelvic osteology, these reconstructions havenot had to argue for any novel myologic<strong>al</strong> elements.This suggests that the complement of inferredmuscles in extinct and extant archosaurs was probablyfairly conservative, even though musculararrangements and locomotor function were diverse(Liparini 2011; Schachner <strong>et</strong> <strong>al</strong>. 2011).Biomechanic<strong>al</strong> and function<strong>al</strong> an<strong>al</strong>yses of therauisuchian crurotars<strong>al</strong> ankle joint and the m<strong>et</strong>atarsusindicate a predominantly plantigrade posture,where the whole plantar region of the foot participatesin at least part of the stride phase (Bonaparte1984; Parrish 1986; Carrano 1997). The caud<strong>al</strong>ly/posteriorly orientated c<strong>al</strong>cane<strong>al</strong> tuber of rauisuchians(in contrast to a more obliquely or <strong>al</strong>mostlater<strong>al</strong> one, as observed, for example, in crocodyliansand phytosaurs) suggests a narrower, moreparasagitt<strong>al</strong> gait (Brinkman 1980). A longer c<strong>al</strong>cane<strong>al</strong>tuber is b<strong>et</strong>ter suited to support greater bodyweights and to impress greater (more powerful)foot strokes rather than high speed and amplitudemovements of the fe<strong>et</strong> (Carrano 1997) (Fig. 5).The footprint fossil record (e.g. of Chirotheriumstor<strong>et</strong>onense) provides some evidence in supportof the interpr<strong>et</strong>ation that the hindlimbs of evenquadruped<strong>al</strong> rauisuchians were held in a relativelyupright and narrow gait (Kubo & Benton 2009).Rauisuchians studied thus far seem to lacknotable adaptations for supporting extreme bodymass or facilitating extreme cursori<strong>al</strong>ity. Mediumsized(4.5 m) individu<strong>al</strong>s of Prestosuchus chiniquensisare estimated to have weighed up to400 kg (Liparini 2011), much less than the tons ofkilograms of members of sever<strong>al</strong> dinosaur lineages(e.g. Christiansen & Fariña 2004; Erickson <strong>et</strong> <strong>al</strong>.2004; Sereno <strong>et</strong> <strong>al</strong>. 2009; Sander <strong>et</strong> <strong>al</strong>. 2011). Traitsof Prestosuchus chiniquensis such as relativelyshort limbs, a digit III that is not elongated, margin<strong>al</strong>digits that are not notably reduced, similar proportionsof both hindlimb epipodi<strong>al</strong>s, and a m<strong>et</strong>atars<strong>al</strong>III that is approximately h<strong>al</strong>f the length of th<strong>et</strong>ibia indicate a subcursori<strong>al</strong> habit for this species,without obvious adaptations for running (Liparini2011). Accordingly, it seems that this and similar


Downloaded from http://sp.lyellcollection.org/ at CAPES on May 3, <strong>2013</strong>RAUISUCHIArauisuchians were possibly b<strong>et</strong>ter ambush huntersthan pursuit hunters.Possible biped<strong>al</strong>ity has been addressed for somerauisuchians that have derived features som<strong>et</strong>imesconsidered characteristic of both obligatorily parasagitt<strong>al</strong>hindlimbs and a biped<strong>al</strong> gait (Figs 1 & 6c).The shuvosaurid Effigea okeeffeae, for example,has a well-developed preac<strong>et</strong>abular process of theilium, an elongated and slender pubis and ischiumwith expansion of their dist<strong>al</strong> extremities (pubicand ischiadic ‘boots’), addition<strong>al</strong> sacr<strong>al</strong> vertebrae(four or more), and reduced forelimb proportionsrelative to hindlimbs (<strong>Nesbitt</strong> 2007). There havebeen disagreements about the degree to which thesefeatures indicate biped<strong>al</strong>ity. For example, Postosuchuskirkpatricki has been reconstructed as a biped(Chatterjee 1985; Weinbaum 2007; Gauthier <strong>et</strong> <strong>al</strong>.2011) or quadruped (Long & Murry 1995; Peyer<strong>et</strong> <strong>al</strong>. 2008), <strong>al</strong>though this case is complicated bydiffering views as to what materi<strong>al</strong> can be referredto this genus. Where the entire presacr<strong>al</strong> vertebr<strong>al</strong>column is preserved, it is possible to estimatewhere the main stresses would occur, and use thisto infer the extent to which forelimbs were used insupport and locomotion (Christian & Preuschoft1996). Applying this m<strong>et</strong>hod, Weinbaum (2007)presented evidence for obligate biped<strong>al</strong>ity in Postosuchuskirkpatricki, and Liparini (2011) for facultativebiped<strong>al</strong>ity in Prestosuchus chiniquensis.Weinbaum (2007) <strong>al</strong>so used evidence from theendocast to argue for biped<strong>al</strong>ity in Postosuchus kirkpatricki.Endocasts of Postosuchus (TTU-P 9002and UMMP-7473) indicate the presence of anenlarged flocculus, and the gener<strong>al</strong> posterior brainmorphology is strikingly similar to that of largebiped<strong>al</strong> theropod dinosaurs (Weinbaum 2007).Schachner <strong>et</strong> <strong>al</strong>. (2011) interpr<strong>et</strong>ed their pelvic andhindlimb muscle reconstruction for Poposaurusgracilis as indicating a derived increase in themuscle moment arms that could have facilitatedbiped<strong>al</strong> locomotion in this taxon. Biped<strong>al</strong>ity wasprobably associated with an increased potenti<strong>al</strong> forcursori<strong>al</strong>ity. Gower (2000, p. 476) pointed out thatdors<strong>al</strong> axi<strong>al</strong> osteoderms have an important biomechanic<strong>al</strong>function in extant crocodylians (Frey1988) and that a consideration of this might helpto understand and exploit osteoderms as sources ofphylogen<strong>et</strong>ic characters among rauisuchians. Thefact that rauisuchian taxa variably have (<strong>al</strong>l nonpoposauroids)or lack (<strong>al</strong>most <strong>al</strong>l poposauroids)osteoderms suggests further that they should be consideredin models established to help infer rauisuchianlocomotion and its evolution.Cervic<strong>al</strong> and dors<strong>al</strong> vertebr<strong>al</strong> morphology seemsto be somewhat bimod<strong>al</strong> in rauisuchians (e.g. Trotteyn<strong>et</strong> <strong>al</strong>. 2011), in that vertebrae are usu<strong>al</strong>lyeither short, high and robust with hyposphenes andhypantra (e.g. Saurosuchus g<strong>al</strong>ilei, Prestosuchuschiniquensis, Fasolasuchus tenax and Batrachotomuskupferzellensis) or longer, lower and moregracile and lacking accessory articular structures(e.g. Arizonasaurus babbitti and Sillosuchus longicervix).Cervic<strong>al</strong> differences in these forms are correlatedto some degree at least with maximum bodysize and sacr<strong>al</strong> and pelvic anatomy. Even if thesecoincident occurrences prove to be explained byphylogeny, they are likely to have locomotor consequences,and this might be addressed in d<strong>et</strong>ail infuture studies to b<strong>et</strong>ter understand the diversity ofrauisuchian p<strong>al</strong>aeobiology.Sever<strong>al</strong> poposauroids have vertebrae withelongated neur<strong>al</strong> spines that form a substanti<strong>al</strong>sail-like structure (Arizonasaurus babbitti: <strong>Nesbitt</strong>2005a, b, 2007; Ctenosauriscus koeneni: Butler<strong>et</strong> <strong>al</strong>. 2011; Lotosaurus adentus: Zhang 1975). Someother poposauroids known from much less compl<strong>et</strong>efossils had greatly elongated neur<strong>al</strong> spines and so<strong>al</strong>so probably had a similar ‘sail’ (Hypselorhachismirabilis: Butler <strong>et</strong> <strong>al</strong>. 2009; Xilousuchus sapingensis:<strong>Nesbitt</strong> <strong>et</strong> <strong>al</strong>. 2010; possibly Bromsgroveia w<strong>al</strong>keri:Benton & Gower 1997). Ebel <strong>et</strong> <strong>al</strong>. (1998)argued that the sail of C. koeneni had an importantbiomechanic<strong>al</strong> function in biped<strong>al</strong>ity, but theirarguments were refuted by Butler <strong>et</strong> <strong>al</strong>. (2011),who interpr<strong>et</strong>ed this taxon as quadruped<strong>al</strong>, as did<strong>Nesbitt</strong> (2005a, b) for A. babbitti. To the best ofour knowledge, other potenti<strong>al</strong> functions of the‘sail’, such as thermoregulation or display, havenot been specific<strong>al</strong>ly proposed for poposauroids,and certainly have never been tested explicitly.PneumaticityGower (2001) argued that osteologic<strong>al</strong> features typic<strong>al</strong>lyused to infer the presence of postcrani<strong>al</strong> skel<strong>et</strong><strong>al</strong>pneumaticity (PSP) – the invasion of thepostcrani<strong>al</strong> skel<strong>et</strong>on by diverticula of the lungs –were not restricted to ornithodirans among archosauriforms,but were <strong>al</strong>so present in at least somerauisuchians (e.g. Batrachotomus kupferzellensis,Postosuchus kirkpatricki, ‘Mandasuchus tanyauchen’).O’Connor (2006) rejected Gower’s (2001)arguments and suggested instead that these features(vertebr<strong>al</strong> fossae) were superfici<strong>al</strong>, possibly associatedwith other soft tissues (e.g. fat deposits), andcould not be deemed unambiguous evidence ofPSP. Alcober & Parrish (1997) reported ‘distinctpleurocoels’ in Shuvosaurus inexpectatus and Sillosuchuslongicervix. <strong>Nesbitt</strong> & Norell (2006; see <strong>al</strong>so<strong>Nesbitt</strong> 2007) reported ‘true pleurocoels’ on cervic<strong>al</strong>vertebrae of Effigia okeeffeae, which was then citedas evidence of PSP by Farmer (2006) and Sereno<strong>et</strong> <strong>al</strong>. (2008). Gower & Schoch (2009) described‘possibly pneumatic’ fossae on the vertebrae ofBatrachotomus kupferzellensis. Butler <strong>et</strong> <strong>al</strong>. (2009,2012) examined specimens of, and micro-computed


Downloaded from http://sp.lyellcollection.org/ at CAPES on May 3, <strong>2013</strong>S. J. NESBITT ET AL.tomography (micro-CT) data for, cervic<strong>al</strong> vertebraeof Bromsgroveia w<strong>al</strong>keri, Effigia okeeffeae, Hypselorhachismirabilis and Batrachotomus kupferzellensisand reconsidered archosaur PSP morebroadly, concluding that no rauisuchians displayunambiguous evidence of PSP. However, rauisuchiansdo have features (well-developed vertebr<strong>al</strong>laminae and fossae) that are absent in extant diapsidsthat lack PSP, and which do accompany instances ofunambiguous evidence for PSP in extinct archosaurs.Thus, rauisuchians (and some other nonornithodirans)may have had a non-invasive systemof pulmonary air sacs. Extant birds and crocodilianshave unidirection<strong>al</strong> lung ventilation (Farmer &Sanders 2010; Sanders & Farmer 2012), and phylogen<strong>et</strong>iccharacter optimization suggests that this mayhave evolved in their common ancestor (i.e. at thebase of Archosauria) and therefore may <strong>al</strong>so havebeen present in rauisuchians (Perry <strong>et</strong> <strong>al</strong>. 2011;Butler <strong>et</strong> <strong>al</strong>. 2012). The relationship b<strong>et</strong>weenvarious inferred extinct lung morphologies andm<strong>et</strong>abolism has y<strong>et</strong> to be worked out.Future directionsInterest in Triassic vertebrates has skyrock<strong>et</strong>ed overthe past 15 years and there is little to suggest that itwill slow down soon. Rauisuchians or some of theirmore probably monophyl<strong>et</strong>ic subgroups (e.g. Shuvosauridae)lie at the heart of this Triassic renaissance,not least because some of them have beenconfused with many other groups of Triassic archosaurs,and knowledge of them clearly impacts whatwe know of pseudosuchians and of early archosaursmore broadly. This current volume attests tothe recent and ongoing research on rauisuchiansbecause more than h<strong>al</strong>f of the volume is devotedto these organisms. Even though there is renewedinterest and a number of important finds, there are,however, a number of ch<strong>al</strong>lenges that lie ahead.Rauisuchian p<strong>al</strong>aeontology has changed enormouslysince Gower’s (2000) overview of thegroup. To a large degree, the optimism expressedby Gower (2000, pp. 476–478) has proven wellfounded. Since 2000, the levels of interest andresearch effort focused on these organisms havegrown dramatic<strong>al</strong>ly, and the number and geographic<strong>al</strong>distribution of rauisuchian researchers hasexpanded he<strong>al</strong>thily (especi<strong>al</strong>ly as many early-careerresearchers have begun to work on the group). Technologic<strong>al</strong>advances have played their part, from theuse of digit<strong>al</strong> photography to greatly enhance thespeed and accuracy of recording information onspecimens that are too numerous and large to beloaned b<strong>et</strong>ween collections, to the application ofcomputed tomography to examine intern<strong>al</strong> structuresof bones non-destructively. Gower (2000)wrote only in vague terms about advances in rauisuchianp<strong>al</strong>aeobiology (beyond systematics) thatcould come from focused, careful research, and hedid not clearly foresee the speed and scope of discoverythat, since then, has included many spectacularnew fossils, d<strong>et</strong>ailed descriptions, newphylogen<strong>et</strong>ic hypotheses, muscle reconstructions,histologic<strong>al</strong> studies and considerations of possiblepneumaticity.Gower (2000) highlighted a number of points ofcaution that lay at the heart of establishing a foundationfor rauisuchian studies, emphasizing d<strong>et</strong>ailedosteologic<strong>al</strong> documentation of both newly discoveredand previously described materi<strong>al</strong> as vit<strong>al</strong> to<strong>al</strong>l other vertebrate p<strong>al</strong>aeontologic<strong>al</strong> contributions,including studies of function, ecology and evolutionbuilt on such morphologic<strong>al</strong> data. Improvement inthis basic documentation has undoubtedly contributedto the great increase in knowledge of rauisuchianssince 2000, and the field would do well tocontinue to pay attention to this aspect. Other potenti<strong>al</strong>pitf<strong>al</strong>ls noted by Gower (2000) <strong>al</strong>so seem tohave been largely avoided, including restrictingthe use of suprageneric taxa as termin<strong>al</strong>s in phylogen<strong>et</strong>ican<strong>al</strong>yses, assessing the support of phylogen<strong>et</strong>ichypotheses, and restraint in naming newsuprageneric taxa on the basis of each new phylogen<strong>et</strong>ichypothesis. We now addition<strong>al</strong>ly recommendthat continued effort is expended to avoidchimeric holotypes (a problem in previous taxonomicstudies of rauisuchians), and that morphologic<strong>al</strong>studies bear in mind the ongoing need toresolve and find addition<strong>al</strong> homologies for use insystematic an<strong>al</strong>yses.Very few researchers currently argue for themonophyly of rauisuchians based on explicit phylogen<strong>et</strong>ican<strong>al</strong>yses, so does the term ‘Rauisuchia’ forthis unnatur<strong>al</strong> ‘group’ still have any use? The mostrecent, large-sc<strong>al</strong>e archosaur phylogenies (e.g. Brusatte<strong>et</strong> <strong>al</strong>. 2010; Butler <strong>et</strong> <strong>al</strong>. 2011; <strong>Nesbitt</strong> 2011)suggest that we are closer to being able to applysome suprageneric names to particular groups ofrauisuchians (Poposauroidea, Shuvosauridae) withmore confidence that these are monophyl<strong>et</strong>ic.However, sever<strong>al</strong> taxa are still far from compl<strong>et</strong>elyknown; many have not been included in <strong>al</strong>l of thelargest recent phylogen<strong>et</strong>ic an<strong>al</strong>yses (e.g. ‘Mandasuchus’,Heptasuchus, Luperosuchus), and manyrauisuchian nodes in published trees have not beencompellingly resolved. Thus, an umbrella term(rauisuchians) for most of the non-ornithosuchid,non-a<strong>et</strong>osaurian and non-crocodylomorphan (andpossibly non-phytosaurian) pseudosuchians probablystill has some use – if only to serve as anongoing reminder that a robust, comprehensive phylogenyhas y<strong>et</strong> to be achieved, and to prevent misunderstandingwhen trying to find ways to preciselyand accurately refer to particular groups without


Downloaded from http://sp.lyellcollection.org/ at CAPES on May 3, <strong>2013</strong>RAUISUCHIAresorting to inappropriate (e.g. Krell & Cranston2004) language for describing any group (bas<strong>al</strong>,early/late-branching, primitive, and so on). Asmore clades within Pseudosuchia become robustlyresolved, we anticipate that the need for the term‘Rauisuchia’ will dissipate natur<strong>al</strong>ly.One thing has not changed in the 12 years since2000. Interpr<strong>et</strong>ing the evolution of rauisuchians andtheir p<strong>al</strong>aeobiology ultimately requires a soundunderstanding of phylogen<strong>et</strong>ic relationships, andadvancing both the systematic and wider p<strong>al</strong>aeobiologic<strong>al</strong>knowledge of this group demands highqu<strong>al</strong>itydocumentation and an<strong>al</strong>ysis of the availablefossils. We believe that many of the limitations ofolder studies of rauisuchians have been surmounted.Recent discoveries combined with the breadth anddepth of current expertise and interest in Triassicarchosaurs make us very optimistic about the next12 years.We especi<strong>al</strong>ly thank O. Alcober and R.N. Martínez fororganizing the congress and providing travel support toDJG, SJN, AL and JBD. SJN was funded by the Nation<strong>al</strong>Science Foundation (NSF, grant EAR #1024036) at theUniversity of Washington and supported by the AmericanMuseum of Natur<strong>al</strong> History. SLB was supported by an NSFGraduate Research Fellowship (Columbia University) andan NSF Doctor<strong>al</strong> Dissertation Improvement Grant (NSFDEB 1110357). JBD was parti<strong>al</strong>ly funded throughAGENCIA PICT 2010 N 207 and CONICET. AL thanksConselho Nacion<strong>al</strong> de Desenvolvimento Científico e Tecnológico(CNPq) and Pró-Reitoria de Pesquisa da UniversidadeFeder<strong>al</strong> do Rio Grande do Sul (PROPESQ –UFRGS) for financi<strong>al</strong> support. JCW’s attendance at thecongress was funded by Southern Connecticut State University.MAGF thanks FAPESP (process 2007/54695-9and 2011/23834-9) for financi<strong>al</strong> support. We thank theP<strong>al</strong>eobiology Database for providing the Triassic continentmap used in Figure 3. Constructively critic<strong>al</strong> reviews byR. J. Butler and W. G. Parker greatly improved the paper.AppendixInstitution<strong>al</strong> abbreviationsAMNH, American Museum of Natur<strong>al</strong> History, New York,NY, USA; BSPG, Bayerische Staatssammlung für P<strong>al</strong>äontologieund Geologie, Munich, Germany; IVPP, Instituteof Vertebrate P<strong>al</strong>eontology and P<strong>al</strong>eoanthropology,Beijing, China; MCN PV, Museu de Ciências Naturais,Fundação Zoobotânica do Rio Grande do Sul, Brazil;NHMUK, Natur<strong>al</strong> History Museum, London, UK; PIZ,P<strong>al</strong>äontologisches Institut und Museum der Universität,Zurich, Switzerland; PVL, Instituto Miguel Lillo, Tucuman,Argentina; SAM, Iziko South African Museum,Cape Town, South Africa; SMNS, Staatliches Museumfür Naturkunde, Stuttgart, Germany; TTU, Texas TechUniversity Museum, Lubbock, TX, USA; UCMP, Universityof C<strong>al</strong>ifornia Museum of P<strong>al</strong>eontology, Berkeley, CA,USA; UFRGS, Institute of Geosciences, Feder<strong>al</strong> Universityof Rio Grande de Sul, Porto Alegre, Brazil; UMMP, Universityof Michigan Museum of P<strong>al</strong>eontology, AnnArbor, MI, USA; UNC, University of North Carolina,Chapel Hill, NC, USA; ZPAL, Institute of P<strong>al</strong>aeobiology,Polish Academy of Sciences, Warsaw, Poland.ReferencesAlcober, O. 2000. Redescription of the skull of Saurosuchusg<strong>al</strong>ilei (Archosauria: Rauisuchidae). Journ<strong>al</strong> ofVertebrate P<strong>al</strong>eontology, 20, 302–316.Alcober, O.&Parrish, M. J. 1997. A new poposauridfrom the Upper Triassic of Argentina. Journ<strong>al</strong> of VertebrateP<strong>al</strong>eontology, 17, 548–556.Arcucci, A. B., Marsicano,C.A.&Caselli, A. T. 2004.T<strong>et</strong>rapod association and p<strong>al</strong>aeoenvironment of theLos Colorados Formation (Argentina): a significantsample from western Gondwana at the end of the Triassic.Geobios, 37, 557–568.Barberena, M. C. 1978. A huge thecodont skull from theTriassic of Brazil. Pesquisas, 7, 111–129.Barr<strong>et</strong>t, P. M. 2005. The di<strong>et</strong> of ostrich dinosaurs (Theropoda:Ornithomimosauria). P<strong>al</strong>aeontology, 48,347–358.Bates, K. T. & Schachner, E. R. 2012. Disparityand convergence in biped<strong>al</strong> archosaur locomotion.Journ<strong>al</strong> of the Roy<strong>al</strong> Soci<strong>et</strong>y Interface, 9,1339–1353.Benton, M. J. 1983. Dinosaur success in the Triassic;a noncomp<strong>et</strong>itive ecologic<strong>al</strong> model. The QuarterlyReview of Biology, 58, 29–55.Benton, M. J. 1986a. The Late Triassic reptile Teratosaurus:a rauisuchian not a dinosaur. P<strong>al</strong>aeontology,29, 293–301.Benton, M. J. 1986b. The Late Triassic t<strong>et</strong>rapod extinctionevents. In: Padian, K. (ed.) The Beginning ofthe Age of Dinosaurs; Faun<strong>al</strong> Change across theTriassic-Jurassic Boundary. Cambridge UniversityPress, Cambridge, 303–320.Benton, M. J. 1994. Late Triassic to Middle Jurassicextinctions among continent<strong>al</strong> t<strong>et</strong>rapods: testing thepattern. In: Fraser, N.C.&Sues, H.-D. (eds) In theShadow of the Dinosaurs. Cambridge UniversityPress, Cambridge, 366–397.Benton, M. J. 1999. Scleromochlus taylori and the originof dinosaurs and pterosaurs. Philosophic<strong>al</strong> Transactionsof the Roy<strong>al</strong> Soci<strong>et</strong>y of London, Series B, 354,1423–1446.Benton, M. J. 2004. Origins and relationships of Dinosauria.In: Weishampel, D. B., Dobson, P.&Osmolska,H. (eds) The Dinosauria, 2nd edn. Universityof C<strong>al</strong>ifornia Press, Berkeley, 7–24.Benton,M.J.&Clark, J. M. 1988. Archosaur phylogenyand the relationships of the Crocodylia. In: Benton,M. J. (ed.) The Phylogeny and Classification of the T<strong>et</strong>rapods.Vol 1: Amphibians and Reptiles. ClarendonPress, Oxford, 295–338.Benton, M.J.&Gower, D. J. 1997. Richard Owen’sgiant Triassic frogs: Middle Triassic archosaurs fromEngland. Journ<strong>al</strong> of Vertebrate P<strong>al</strong>eontology, 17,74–88.


Downloaded from http://sp.lyellcollection.org/ at CAPES on May 3, <strong>2013</strong>S. J. NESBITT ET AL.Bonaparte, J. F. 1967. Dos nuevas ‘faunas’ de reptilesTriasicos de Argentina. In: Gondwana Stratigraphy.I.U.G.S. Symposium. Pris, UNESCO, 283–306.Bonaparte, J. F. 1975. Nuevos materi<strong>al</strong>es de Lagosuchust<strong>al</strong>ampayensis Romer (Thecodontia, Pseudosuchia) ysu significado en el origin de los Saurischia, Chañarenseinferior, Triásico medio de Argentina. Acta GeologicaLilloana, 13, 5–90.Bonaparte, J. F. 1981. Descripcion de Fasolasuchustenax y su significado en la sistematica y evolucion delos Thecodontia. Revista del Museo Argentino de CienciasNatur<strong>al</strong>es ‘Bernardino Rivadavia’, 3, 55–101.Bonaparte, J. F. 1984. Locomotion in rauisuchidthecodonts. Journ<strong>al</strong> of Vertebrate P<strong>al</strong>eontology, 3,210–218.Brinkman, D. 1980. The hind limb step cycle of Caimansclerops and the mechanics of the crocodil<strong>et</strong>arsus and m<strong>et</strong>atarsus. Canadian Journ<strong>al</strong> of Zoology,58, 2187–2200.Brochu, C. A. 1996. Closure of neurocentr<strong>al</strong> suturesduring crocodilian ontogeny: implications for maturityassessment in fossil archosaurs. Journ<strong>al</strong> of VertebrateP<strong>al</strong>eontology, 16, 49–62.Brusatte, S. L. 2010. Representing supraspecific taxain higher-level phylogen<strong>et</strong>ic an<strong>al</strong>yses: guidelines forp<strong>al</strong>aeontologists. P<strong>al</strong>aeontology, 53, 1–9.Brusatte, S. L., Benton, M. J., Ruta, M.&Lloyd,G. T. 2008. Superiority, comp<strong>et</strong>ition, and opportunismin the evolutionary radiation of dinosaurs. Science,321, 1485–1488.Brusatte, S. L., Butler, R. J., Sulej, T.&Niedzwiedzki,G. 2009. The taxonomy and anatomy ofrauisuchian archosaurs from the Late Triassic ofGermany and Poland. Acta P<strong>al</strong>aeontologica Polonica,54, 221–230.Brusatte, S. L., Benton, M. J., Desojo,J.B.&Langer,M. C. 2010. The higher–level phylogeny of Archosauria(T<strong>et</strong>rapoda: Diapsida). Journ<strong>al</strong> of SystematicP<strong>al</strong>aeontology, 8, 3–47.Brusatte, S. L., Benton, M. J., Lloyd, G. T., Ruta,M.&Wang, S. C. 2011. Macroevolutionary patterns in theevolutionary radiation of archosaurs (T<strong>et</strong>rapoda: Diapsida).Earth and Environment<strong>al</strong> Science Transactionsof the Roy<strong>al</strong> Soci<strong>et</strong>y of Edinburgh, 101, 367–382.Bryant,H.N.&Russell, A. P. 1992. The role of phylogen<strong>et</strong>ican<strong>al</strong>ysis in the inference of unpreserved attributesof extinct taxa. Philosophic<strong>al</strong> Transactions ofthe Roy<strong>al</strong> Soci<strong>et</strong>y of London Series B, Biologic<strong>al</strong>Sciences, 337, 405–418.Bühler, P., Martin, L. D. & Witmer, L. M. 1988.Crani<strong>al</strong> kinesis in the Late Cr<strong>et</strong>aceous birds Hesperornisand Parahesperornis. The Auk, 105, 111–122.Butler, R. J., Barr<strong>et</strong>t, P. M., Abel, R.L.&Gower,D. J. 2009. A possible ctenosauriscid archosaur fromthe Middle Triassic Manda beds of Tanzania. Journ<strong>al</strong>of Vertebrate P<strong>al</strong>eontology, 29, 1022–1031.Butler, R. J., Brusatte, S. L., Reich, M., <strong>Nesbitt</strong>, S. J.,Schoch, R.R.&Hornung, J. J. 2011. The sailbackedreptile Ctenosauriscus from the latest EarlyTriassic of Germany and the timing and biogeographyof the early archosaur radiation. PLoS ONE, 6,1–28.Butler, R. J., Barr<strong>et</strong>t, P.M.&Gower, D. J. 2012.Reassessment of the evidence for postcrani<strong>al</strong> skel<strong>et</strong><strong>al</strong>pneumaticity in Triassic archosaurs, and the early evolutionof the avian respiratory system. PLoS ONE.Carrano, M. T. 1997. Morphologic<strong>al</strong> indicators of footposture in mamm<strong>al</strong>s: a statistic<strong>al</strong> and biomechanic<strong>al</strong>an<strong>al</strong>ysis. Zoologic<strong>al</strong> Journ<strong>al</strong> of the Linnean Soci<strong>et</strong>y,121, 77–104.Carroll, R. L. 1988. Vertebrate P<strong>al</strong>eontology and Evolution.W. H. Freeman, New York.Cerda, I.A.&Desojo, J. B. 2011. Derm<strong>al</strong> armour histologyof a<strong>et</strong>osaurs (Archosauria: Pseudosuchia),from the Upper Triassic of Argentina and Brazil.L<strong>et</strong>haia, 44, 417–428.Cerda, I. A., Desojo, J. B., Scheyer, T.M.&Schultz,C. L. 2011. Osteoderm microstructure of the rauisuchianarchosaurs from the Santa Maria Formation(Middle–Late Triassic) of Brazil. In: IV CongresoLatinoamericano de P<strong>al</strong>eontologia de Vertebrados,Abstracts and Program. Museo de Ciencias Natur<strong>al</strong>es,Universidad Nacion<strong>al</strong> de San Juan, San Juan, Argentina,#198.Charig, A. J. 1956. New Triassic archosaurs from Tanganyikaincluding Mandasuchus and Teleocrater. Universityof Cambridge, Cambridge.Charig, A. 1967. Subclass Archosauria. In: Hartland,W. B., Holland, C. H., House, M. R., Hughes,N. F., Reynolds, A. B., Rudwick, M. J. S., Satterthwaite,G. E., Tarlo, L. B. H. & Willey,E. C. (eds) The Fossil Record. Geologic<strong>al</strong> Soci<strong>et</strong>y ofLondon, London, 708–718.Charig, A. J. 1972. The evolution of the archosaur pelvisand hindlimb: an explanation in function<strong>al</strong> terms. In:Joysey,K.A.&Kemp, T. S. (eds) Studies in VertebrateEvolution. Oliver & Boyd, Edinburgh, 121–155.Charig, A.&Reig, F. L. S. 1970. The classification ofthe Proterosuchia. Biologic<strong>al</strong> Journ<strong>al</strong> of the LinneanSoci<strong>et</strong>y, 2, 125–171.Chatterjee, S. 1985. Postosuchus, a new thecodontianreptile from the Triassic of Texas and the origin oftyrannosaurs. Philosophic<strong>al</strong> Transactions of the Roy<strong>al</strong>Soci<strong>et</strong>y of London B, 309, 395–460.Chatterjee, S. 1993. Shuvosaurus, a new theropod.Nation<strong>al</strong> Geographic Research and Exploration, 9,274–285.Chatterjee, S.&Majumdar, P. K. 1987. Tikisuchusromeri, a new rauisuchid reptile from the Late Triassicof India. Journ<strong>al</strong> of P<strong>al</strong>eontology, 61, 784–793.Christian, A.&Preuschoft, H. 1996. Deducing thebody posture of extinct large vertebrates from theshape of the vertebr<strong>al</strong> column. P<strong>al</strong>aeontology, 39,801–812.Christiansen, P.&Fariña, R. A. 2004. Mass predictionin theropod dinosaurs. Historic<strong>al</strong> Biology, 16, 85–92.Colbert, E. H. 1961. The Triassic reptile Poposaurus.Fieldiana Geology, 14, 59–78.Cope, E. D. 1875. The geology of New Mexico. Proceedingsof the Academy of Natur<strong>al</strong> Sciences of Philadelphia,27, 263–267.Cope, E. D. 1887. A contribution to the history of the Vertebrataof the Trias of North America. Proceedings ofthe American Philosophic<strong>al</strong> Soci<strong>et</strong>y, 24, 209–228.Currie, B. S., Colombi, C. E., Tabor, N. J., Shipman,T. C. & Montanez, I. P. 2008. Stratigraphy andarchitecture of the Upper Triassic Ischigu<strong>al</strong>astoFormation, Ischigu<strong>al</strong>asto Provinci<strong>al</strong> Park, San Juan,


Downloaded from http://sp.lyellcollection.org/ at CAPES on May 3, <strong>2013</strong>RAUISUCHIAArgentina. Journ<strong>al</strong> of South American Earth Sciences,27, 74–87.Dawley, R. M., Zawiskie,J.M.&Cosgriff, J. W. 1979.A rauisuchid thecodont from the Upper Triassic PopoAgie Formation of Wyoming. Journ<strong>al</strong> of P<strong>al</strong>eontology,53, 1428–1431.Desojo, J.B.&Arcucci, A. B. 2009. New materi<strong>al</strong> ofLuperosuchus fractus (Archosauria: Crurotarsi) fromthe Middle Triassic of Argentina: the earliest knownSouth American rauisuchian. Journ<strong>al</strong> of VertebrateP<strong>al</strong>eontology, 29, 1311–1315.Desojo, J.B.&Rauhut, O. W. M. 2009. The taxonomicstatus and phylogen<strong>et</strong>ic position of the Late TriassicBrazilian rauisuchian Prestosuchus. Journ<strong>al</strong> of VertebrateP<strong>al</strong>eontology (suppl. 3), 29, 87A.Dollo, L. 1888. Sur la signification du ‘trochanterpendant’ des dinosauriens. Bull<strong>et</strong>in Scientifique de laFrance <strong>et</strong> de la Belgique, 19, 215–224.Dzik, J.&Sulej, T. 2007. A review of the early LateTriassic Krasiejów biota from Silesia, Poland. ActaP<strong>al</strong>aeontologia Polonica, 64, 1–27.Ebel, K., F<strong>al</strong>kenstein, F., Haderer, F.-O. & Wild, R.1998. Ctenosauriscus koeneni (v. Huene) and the rauisuchianreptile from W<strong>al</strong>dshut: Biomechanic<strong>al</strong>interpr<strong>et</strong>ation of the vertebr<strong>al</strong> column and relations toChirotherium sickleri Kaup. Stuttgarter Beitraege zurNaturkunde Serie B (Geologie und P<strong>al</strong>aeontologie),29, 1–18.Elder, R. L. 1978. P<strong>al</strong>eontology and p<strong>al</strong>eoecology of theDockum Group, Upper Triassic, Texas. University ofTexas at Austin, Austin.Erickson, G. M. 2005. Assessing dinosaur growth patterns:a microscopic revolution. Trends in Ecologyand Evolution, 20, 677–684.Erickson, G. M., Lappin,A.K.&Vli<strong>et</strong>, K. A. 2003. Theontogeny of bite-force performance in American <strong>al</strong>ligator(Alligator mississippiensis). Journ<strong>al</strong> of Zoology,260, 317–327.Erickson, G. M., Makovicky, P. J., Currie, P. J.,Norell, M. A., Yerby, S.A.&Brochu, C. A. 2004.Gigantism and comparative life-history param<strong>et</strong>ers oftyrannosaurid dinosaurs. Nature, 430, 772–775.Farmer, C. G. 2006. On the origin of avian air sacs. RespiratoryPhysiology & Neurobiology, 154, 89–106.Farmer, C.G.&Sanders, K. 2010. Unidirection<strong>al</strong> airflowin the lungs of <strong>al</strong>ligators. Science, 327, 338–340.Fraas, O. 1877. Aëtosaurus ferratus Fr. Die gepanzerteVogel–Escheaus dem Stubensandstein bei Stuttgart.Württembergische naturwissenschaftliche Jahreshefte,33, 1–22.França, M. A. G. 2011. Decrição osteológica de Decuriasuchusquartacolonia (Archosauria, Pseudosuchia) eaevolução dos Rauissúquios. Unpublished PhD dissertation,Faculdade de Filosofia, Ciências e L<strong>et</strong>ras deRibeirão Pr<strong>et</strong>o, Universidade de São Paulo, 434.França, M. A. G., Ferigolo, J. & Langer, M. C.2011. Associated skel<strong>et</strong>ons of a new middle Triassic‘Rauisuchia’ from Brazil. Naturwissenschaften, 98,389–395.Frey, E. 1988. Das Tragsystem der Krokodile – eie biomechanischeund phylogen<strong>et</strong>ische an<strong>al</strong>yse. StuttgarterBeiträge zur Naturkunde, Serie A, 426, 1–60.Furin, S., Pr<strong>et</strong>o, N., Rigo, M., Roghi, G., Gianolla, P.,Crowley, J. L. & Bowring, S. A. 2006.High-precision U–Pb zircon age from the Triassic ofIt<strong>al</strong>y: implications for the Triassic time sc<strong>al</strong>e and theCarnian origin of c<strong>al</strong>careous nannoplankton and dinosaurs.Geology, 34, 1009–1012.G<strong>al</strong>ton, P. M. 1985. The poposaurid thecodontian Teratosaurussuevicus v. Meyer plus referred specimensmostly based on prosauropod dinosaurs from theMiddle Stubensandstein Upper Triassic of NordwuerttembergWest Germany. Stuttgarter Beitraegezur Naturkunde Serie B (Geologie und P<strong>al</strong>aeontologie),116, 1–29.G<strong>al</strong>ton, P. M. 2000. Are Spondylosoma and Staurikosaurus(Santa Maria Formation, Middle–UpperTriassic, Brazil) the oldest saurischian dinosaurs?P<strong>al</strong>äontologische Zeitschrift, 74, 393–423.Gauthier, J. A. 1986. Saurischian monophyly and theorigin of birds. Memoirs of the C<strong>al</strong>ifornia Academyof Science, 8, 1–55.Gauthier, J.&Padian, K. 1985. Phylogen<strong>et</strong>ic, function<strong>al</strong>,and aerodynamic an<strong>al</strong>yses of the origin ofbirds and their flight. In: Hecht, M. K., Ostrom, J.H., Viohl,G.&Wellnhofer, P. (eds) The Beginningof Birds. Freunde des Jura Museums, Eichstatt,185–197.Gauthier, J. A., <strong>Nesbitt</strong>, S. J., Schachner, E., Bever,G. S. & Joyce, W. G. 2011. The biped<strong>al</strong> stem crocodilianPoposaurus gracilis: inferring function infossils and innovation in archosaur locomotion. Bull<strong>et</strong>inof the Peabody Museum of Natur<strong>al</strong> History, 52,107–126.Gebauer, E. V. I. 2004. Neubeschreibung von Stagonosuchusnyassicus v. Huene, 1938 (Thecodontia,Rauisuchia) from the Manda Formation (MiddleTriassic) of southwest Tanzania. Neues Jahrbuchfür Geologie und P<strong>al</strong>äeontologie, Abhandlungen, 231,1–35.Golonka, J.&Ford, D. 2000. Pangean (Late Carboniferous–MiddleJurassic) p<strong>al</strong>eoenvironment andlithofacies. P<strong>al</strong>aeogeography, P<strong>al</strong>aeoclimatology,P<strong>al</strong>aeoecology, 161, 1–34.Gower, D. J. 1999. The crani<strong>al</strong> and mandibular osteologyof a new rauisuchian archosaur from the MiddleTriassic of southern Germany. Stuttgarter Beitraegezur Naturkunde Serie B (Geologie und P<strong>al</strong>aeontologie),280, 1–49.Gower, D. J. 2000. Rauisuchian archosaurs (Reptilia,Diapsida): an overview. Neues Jahrbuch fürGeologie und P<strong>al</strong>äontologie Abhandlungen, 218,447–488.Gower, D. J. 2001. Possible postcrani<strong>al</strong> pneumaticity inthe last common ancestor of birds and crocodilians:evidence from Erythrosuchus and other Mesozoicarchosaurs. Naturwissenschaften, 88, 119–122Gower, D. J. 2002. Braincase evolution in suchian archosaurs(Reptilia: Diapsida): evidence from the rauisuchianBatrachotomus kupferzellensis. Zoologic<strong>al</strong>Journ<strong>al</strong> of the Linnean Soci<strong>et</strong>y, 136, 49–76.Gower,D.J.&Schoch, R. 2009. Postcrani<strong>al</strong> anatomy ofthe rauisuchian archosaur Batrachotomus kupferzellensis.Journ<strong>al</strong> of Vertebrate P<strong>al</strong>eontology, 29,103–122.Gower, D.J.&Sennikov, A. G. 2000. Early archosaursfrom Russia. In: Benton, M. J., Shishkin, M. A.,Unwin, D.M.&Kurochkin, E. N. (eds) The Age


Downloaded from http://sp.lyellcollection.org/ at CAPES on May 3, <strong>2013</strong>S. J. NESBITT ET AL.of Dinosaurs in Russia and Mongolia. CambridgeUniversity Press, New York, 140–159.Gregory, J. T. 1953. Typothorax and Desmatosuchus.Postilla, 16, 1–27.Hagdorn,H.&Mutter, R. J. 2011. The vertebrate faunaof the Lower Keuper Albertibank (Erfurt Formation,Middle Triassic) in the vicinity of Schwäbisch H<strong>al</strong>l(Baden-Württemberg, Germany). P<strong>al</strong>aeodiversity, 4,223–243.Hayashi, S., Carpenter, K., Scheyer, T. M., Watabe,M. & Suzuki, D. 2010. Function and evolution ofankylosaur derm<strong>al</strong> armor. Acta P<strong>al</strong>aeontologica Polonica,55, 213–228.Heckert, A. B. 2004. Late Triassic microvertebrates fromthe lower Chinle Group (Otisch<strong>al</strong>kian-Adamanian:Carnian), southwestern USA. New Mexico Museumof Natur<strong>al</strong> History and Science Bull<strong>et</strong>in, 27,1–170.Heckert, A. B., Mitchell, J. S., Schneider, V.P.&Olsen, P. E. 2012. Diverse new microvertebrateassemblage from the Upper Triassic Cumnock Formation,Sanford Subbasin North Carolina, USA. Journ<strong>al</strong>of P<strong>al</strong>eontology, 86, 368–390.Hill, R. 2005. Integration of morphologic<strong>al</strong> data s<strong>et</strong>s forphylogen<strong>et</strong>ic an<strong>al</strong>ysis of Amniota: the importance ofintegumentary characters and increased taxonomicsampling. Systematic Biology, 54, 530–547.Huene, F. V. 1902. Übersicht über die Reptilien derTrias. Geologische und P<strong>al</strong>äontologische Abhandlungen(Neue Serie), 6, 1–84.Huene, F. V. 1915. On reptiles of the New MexicanTrias in the Cope collection. Bull<strong>et</strong>in of the AmericanMuseum of Natur<strong>al</strong> History, 34, 485–507.Huene, F. V. 1938a. Ein grosser Stagonolepide aus derjüngeren Trias Ostafrikas. Neues Jahrbuch für Geologieund P<strong>al</strong>äeontologie, Beilage–Bände Abt. B, 80,264–278.Huene, F. V. 1938b. Die fossielen Reptilien des südamerikanischenGondwan<strong>al</strong>andes. Neues Jahrbuch fürMiner<strong>al</strong>ogie, Geologie und P<strong>al</strong>äontologie, AbteilungB, 1938, 142–151.Huene, F. V. 1940. Eine Reptilfauna aus der ältestenTrias Nordrusslands. Neues Jahrbuch für Miner<strong>al</strong>ogie,Geologie und P<strong>al</strong>äontologie, Abteilung B, 84,1–23.Huene, F. V. 1942. Die fossilen Reptilien des SudamerikanischenGondwan<strong>al</strong>andes. Ergebnisse der Sauriergrabungenin Sudbrasilien, 1928/1929. C. H. Beck’she,Munchen.Huene, F. V. 1956. P<strong>al</strong>äontologie und Phylogenie derniederen T<strong>et</strong>rapoden. VEB Gustav Fisher–Verlag,Jena.Hunt, A. P. 1994. Vertebrate p<strong>al</strong>eontology and biostratigraphyof the Bull Canyon Formation (Chinle Group,Upper Triassic) with a revision of the families M<strong>et</strong>oposauridae(Amphibia:Temnospondyli) and Parasuchidae(Reptilia:Archosauria). University of NewMexico, Albuquerque.Huxley, T. H. 1877. The crocodilian remains found inthe Elgin sandstones, with remarks on ichnites of Cummingstone.Memoirs of the Geologic<strong>al</strong> Survey of theUnited Kingdom Monograph III, 3, 1–51.Irmis, R. B. 2007. Axi<strong>al</strong> skel<strong>et</strong>on ontogeny in the parasuchia(Archosauria: Pseudosuchia) and its implicationsfor ontogen<strong>et</strong>ic d<strong>et</strong>ermination in archosaurs. Journ<strong>al</strong>of Vertebrate P<strong>al</strong>eontology, 27, 350–361.Irmis, R. B., <strong>Nesbitt</strong>, S. J., Padian, K., Smith, N. D.,Turner, A. H., Woody, D.&Downs, A. 2007. ALate Triassic dinosauromorph assemblage fromNew Mexico and the rise of dinosaurs. Science, 317,358–361.Irmis, R. B., Martz, J. W., Parker,W.G.&<strong>Nesbitt</strong>,S.J. 2010. Re-ev<strong>al</strong>uating the correlation b<strong>et</strong>ween LateTriassic terrestri<strong>al</strong> vertebrate biostratigraphy and theGSSP-defined marine stages. Albertiana, 38, 40–52.J<strong>al</strong>il, N.-E. & Peyer, K. 2007. A new rauisuchian(Archosauria, Suchia) from the Upper Triassic ofthe Argana Basin, Morocco. P<strong>al</strong>aeontology, 50,417–430.Juul, L. 1994. The phylogeny of bas<strong>al</strong> archosaurs.P<strong>al</strong>aeontologia Africana, 31, 1–38.K<strong>al</strong>andadze, N.N.&Sennikov, A. G. 1985. New reptilesfrom the Middle Triassic in the southern forelands.P<strong>al</strong>aeontologic<strong>al</strong> Journ<strong>al</strong>, 1995, 73–80.Kischlat, E. E. 2003. Padrão muscular da coxa de arcossauromorfosfósseis: aplicação do cladismo reversoe teste de hipóteses. Universidade Feder<strong>al</strong> do RioGrande do Sul, Porto Alegre.Krebs, B. 1965. Die Triasfauna der Tessiner K<strong>al</strong>k<strong>al</strong>pen.XIX. Ticinosuchus ferox, nov. gen. nov. sp. Einneuer Pseudosuchier aus der Trias des Monte SanGeorgio. Schweizersiche P<strong>al</strong>aontologische, Abhandlungen,81, 1–140.Krell, F.-T. & Cranston, P. S. 2004. Which side ofthe tree is more bas<strong>al</strong>? Systematic Entomology, 29,279–281.Kubo, T.&Benton, M. J. 2009. T<strong>et</strong>rapod postur<strong>al</strong> shiftestimated from Permian and Triassic trackways.P<strong>al</strong>aeontology, 52, 1029–1037.Kuhn, O. 1964. Ungelöste Probleme der Stammesgeschichteder Amphibien und Reptilien. Jahresheftedes Vereins für vaterländische Naturkunde in Württemberg,118–119, 293–325.Langer, M. C. 2004. Bas<strong>al</strong> saurischians. In: Weishampel,D. B., Dodson, P.&Osmólska, H. (eds) The Dinosauria,2nd edn. University of C<strong>al</strong>ifornia Press, Berkeley,25–46.Langer, M. C. 2005. Studies on continent<strong>al</strong> Late Triassict<strong>et</strong>rapod biochronology. II. The Ischigu<strong>al</strong>astian and aCarnian glob<strong>al</strong> correlation. Journ<strong>al</strong> of South AmericanEarth Sciences, 19, 219–239.Langer, M. C., Ribeiro, A. M., Schultz, C. L. &Ferigolo, J. 2007. The continent<strong>al</strong> t<strong>et</strong>rapod-bearingTriassic of South Brazil. In: Lucas, S.G.&Spielmann,J. A. (eds) The Glob<strong>al</strong> Triassic. New MexicoMuseum of Natur<strong>al</strong> History and Science Bull<strong>et</strong>in,Albuquerque, New Mexico, 41, 201–218.Laurenti, J. N. 1768. Specimen Medicum, Exhibens Synopsinreptilium Emendatam cum Experimentis circaVenena <strong>et</strong> Antidota Reptilium Austriacorum. J.T.N.de Trattnern, Vienna.Lautenschlager, S. 2008. Revision of Rauisuchus tirdentes(Archosauria: Rauisuchia) from the Late Triassic(Carnian) Santa Maria Formation of Brazil andits implications for rauisuchian phylogeny. Ludwig-Maximilians-Universität, Munich.Lautenschlager,S.&Desojo, J. B. 2011. Reassessmentof the Middle Triassic ‘rauisuchian’ archosaurs


Downloaded from http://sp.lyellcollection.org/ at CAPES on May 3, <strong>2013</strong>RAUISUCHIATicinosuchus ferox and Stagonosuchus nyassicus.P<strong>al</strong>äontologische Zeitschrift, 85, 357–381.Li, C., Wu, X.-C., Cheng, Y.-N., Sato, T.&Wang, L.2006. An unusu<strong>al</strong> archosaurian from the marine Triassicof China. Naturwissenschaften, 93, 200–206.Liparini, A. 2008. Estudo da biomecânica craniana de umrauissuquídeo a partir de tomografias computadorizadase técnicas de imagens digitais em three dimensões.Universidade Feder<strong>al</strong> do Rio Grande do Sul, PorteAlegre, Brazil.Liparini, A. 2011. Aspectos biomecânicos e morfofuncionaisdo esquel<strong>et</strong>o apendicular de Prestosuchuschiniquensis (Archosauria: Pseudosuchia) e suasimplicações para a locomoção. Universidade Feder<strong>al</strong>do Rio Grande do Sul, Porte Alegre, Brazil.Long,R.A.&Murry, P. A. 1995. Late Triassic (Carnianand Norian) t<strong>et</strong>rapods from the southwestern UnitedStates. New Mexico Museum of Natur<strong>al</strong> History andScience Bull<strong>et</strong>in, 4, 1–254.Lucas, S. G. 1998. Glob<strong>al</strong> Triassic t<strong>et</strong>rapod biostratigraphyand biochronology. P<strong>al</strong>aeogeography, P<strong>al</strong>aeoclimatology,P<strong>al</strong>aeoeocology, 143, 347–384.Lucas, S. G., Spielmann, J. A., Heckert,A.B.&Hunt,A. P. 2007. Topotypes of Typothorax coccinarum, aLate Triassic a<strong>et</strong>osaur from the American Southwest.New Mexico Museum of Natur<strong>al</strong> History and ScienceBull<strong>et</strong>in, 41, 241–247.Main, R. P., Ricqlès, A. D., Horner,J.R.&Padian,K.2005. The evolution and function of thyreophorandinosaur scutes: implications for plate function in stegosaurs.P<strong>al</strong>eobiology, 31, 291–314.Mastrantonio, B. M. 2010. Descrição osteológica demateriais cranianos e pós–cranianos de Prestosuchuschiniquensis (Archosauria, Rauisuchia) do Meso–Triássico do RS (Biozona de Dinodontosaurus, FormaçãoSanta Maria) e considerações filogenéticas sobreos rauissúquio. Universidade Feder<strong>al</strong> do Rio Grandedo Sul, Porte Alegre, Brazil.Mastrantonio, B. M., Desojo, J.B.&Schultz, C.L.2008. Um novo espécime de rauissúquio (Archosauria,Reptilia) Triássico da Formação Santa Maria, Bacia doParaná, Brasil, e suas implicações na diagnose de PrestosuchusHuene 1938. III Congreso Latinomaericanode P<strong>al</strong>eontología de Vertebrados. Abstract book,Neuquén, ArgentinaMehl, M. G. 1915. Poposaurus gracilis, a new reptilefrom the Triassic of Wyoming. Journ<strong>al</strong> of Geology,23, 516–522.Merrem, B. 1820. Versuch eines Systems der Amphibien.Tentamen systematis amphibiorum. Iohann ChristianKrieger, Marburg.M<strong>et</strong>zger, K., Daniel,W.J.T.&Ross, C. F. 2005. Comparisonof beam theory and finite-element an<strong>al</strong>ysiswith in vivo bone strain data from the <strong>al</strong>ligator. TheAnatomic<strong>al</strong> Record, 283, 331–348.Meyer, H. V. 1861. Reptilien aus dem Stubensandsteindes obern Keupers. P<strong>al</strong>aeontographica, A, 6, 253–346.Mundil, R., P<strong>al</strong>fy, J., Renne, P.R.&Brack, P. 2010.The Triassic timesc<strong>al</strong>e: a review of geochronologic<strong>al</strong>constraints. In: Lucas, S. G. (ed.) The Triassic Timesc<strong>al</strong>e.Geologic<strong>al</strong> Soci<strong>et</strong>y, London, Speci<strong>al</strong> Publications,334, 41–59.Muttoni, G., Kent, D. V., Olsen, P. E., Distefano,P., Lowrie, W., Bernasconi, S. & Hernandez,F. M. 2004. T<strong>et</strong>hyan magn<strong>et</strong>ostratigraphy fromPizzi Mondello (Sicily) and correlation to the LateTriassic Newark astrochronologic<strong>al</strong> polarity timesc<strong>al</strong>e. Geologic<strong>al</strong> Soci<strong>et</strong>y of America Bull<strong>et</strong>in, 116,1043–1058.<strong>Nesbitt</strong>, S. J. 2003. Arizonasaurus and its implicationsfor archosaur divergences. Proceedings of the Roy<strong>al</strong>Soci<strong>et</strong>y of London, B, 270(Suppl. 2), S234–S237.<strong>Nesbitt</strong>, S. J. 2005a. The osteology of the Middle Triassicpseudosuchian archosaur Arizonasaurus babbitti. Historic<strong>al</strong>Biology, 17, 19–47.<strong>Nesbitt</strong>, S. J. 2005b. A new archosaur from the upperMoenkopi Formation (Middle Triassic) of Arizonaand its implications for rauisuchian phylogeny anddiversification. Neues Jahrbuch für Geologie undP<strong>al</strong>äeontologie Monatshefte, 2005, 332–346.<strong>Nesbitt</strong>, S. J. 2007. The anatomy of Effigia okeeffeae(Archosauria, Suchia), theropod convergence, and thedistribution of related taxa. Bull<strong>et</strong>in of the AmericanMuseum of Natur<strong>al</strong> History, 302, 1–84.<strong>Nesbitt</strong>, S. J. 2011. The early evolution of Archosauria:relationships and the origin of major clades. Bull<strong>et</strong>inof the American Museum of Natur<strong>al</strong> History, 352,1–292.<strong>Nesbitt</strong>, S.J.&Norell, M. A. 2006. Extreme convergencein the body plans of an early suchian (Archosauria)and ornithomimid dinosaurs (Theropoda).Proceedings of the Roy<strong>al</strong> Soci<strong>et</strong>y of London B, 273,1045–1048.<strong>Nesbitt</strong>, S. J., Sidor, C. A., Irmis, R. B., Angielczyk,K.D., Smith,R.M.H.&Tsuji, L. A. 2010. Ecologic<strong>al</strong>lydistinct dinosaurian sister-group shows early diversificationof Ornithodira. Nature, 464, 95–98.<strong>Nesbitt</strong>, S. J., Liu, J.&Li, C. 2011a. A sail-backedsuchian from the Heshanggou Formation (Early Triassic:Olenekian) of China. Earth and Environment<strong>al</strong>Science Transactions of the Roy<strong>al</strong> Soci<strong>et</strong>y of Edinburgh,101, 271–284.<strong>Nesbitt</strong>, S. J., Sidor, C. A., Angielczyk, K. D., Smith,R. M. H. & Tsuji, L. A. 2011b. An enigmatic archosauriformfrom the Manda Beds (Middle Triassic) ofsouthwestern Tanzania: Character conflict at the baseof Pseudosuchia. Journ<strong>al</strong> of Vertebrate P<strong>al</strong>eontology(Suppl. 3), 31, 166A.Nopcsa, F. V. 1923. Die Familien der Reptilien.Fortschritte der Geologie und P<strong>al</strong>äontologie, 2,1–210.Novak, S. E. 2004. A New Specimen of Postosuchus fromthe Late Triassic Coelophysis Quarry, Siltstone Member,Chinle Formation, Ghost Ranch, New Mexico.University of North Carolina at Chapel Hill, ChapelHill.Nützel, A., Joachimski,M.&López Correa, M. 2010.Season<strong>al</strong> climatic fluctuations in the Late Triassictropics. High–resolution oxygen isotope recordsfrom aragonitic biv<strong>al</strong>ve shells (Cassian Formation,Northern It<strong>al</strong>y). P<strong>al</strong>aeogeography, P<strong>al</strong>aeoclimatology,P<strong>al</strong>aeoecology, 285, 194–204.Ochev, V. G. 1979. New Lower Triassic archosaurs fromthe eastern part of the European USSR. P<strong>al</strong>aeontologic<strong>al</strong>Journ<strong>al</strong>, 1, 104–109.Ochev, V. G. 1982. Pseudosuchia from the Middle Triassicof the southern Ur<strong>al</strong> Forelands. P<strong>al</strong>eontologicheskiiZhurn<strong>al</strong>, 1982, 96–102.


Downloaded from http://sp.lyellcollection.org/ at CAPES on May 3, <strong>2013</strong>S. J. NESBITT ET AL.Ochev, V. G. 1986. On Middle Triassic reptiles of thesouthern Cis–Ur<strong>al</strong>s. Ezhegodnik VsesoyiznogoP<strong>al</strong>eontologicheskogo Obshehestva, 29, 171–180.O’Connor, P. M. 2006. Postcrani<strong>al</strong> pneumaticity: anev<strong>al</strong>uation of soft-tissue influences on the postcrani<strong>al</strong>skel<strong>et</strong>on and the reconstruction of pulmonaryanatomy in archosaurs. Journ<strong>al</strong> of Morphology, 267,1199–1226.Olsen,P.E.&Sues, H.-D. 1986. Correlation of continent<strong>al</strong>Late Triassic and Early Jurassic sediments, andpatterns of the Triassic–Jurassic t<strong>et</strong>rapod transition.In: Padian, K. (ed.) The Beginning of the Age ofDinosaurs. Cambridge University Press, Cambridge,321–351.Padian, K., Ricqlès, A.D.&Horner, J. R. 2001. Dinosauriangrowth rates and bird origins. Nature, 412,405–408.Parham, J. F., Donoghue, P.C.J.<strong>et</strong> <strong>al</strong>. 2012. Bestpractices for justifying fossil c<strong>al</strong>ibrations. SystematicBiology, http://dx.doi.org/10.1093/sysbio/syr10.Parker, W.G.&Irmis, R. B. 2005. Advances in LateTriassic vertebrate p<strong>al</strong>eontology based on new materi<strong>al</strong>from P<strong>et</strong>rified Forest Nation<strong>al</strong> Park, Arizona. In:Heckert, A. B. & Lucas, S. G. (eds) VertebrateP<strong>al</strong>eontology in Arizona. Albuquerque, New MexicoMuseum of Natur<strong>al</strong> History and Science, 29, 45–58.Parrish, J. M. 1986. Locomotor adaptations in the hindlimband pelvis of the Thecodontia. Hunteria, 1, 1–35.Parrish, J. M. 1993. Phylogeny of the Crocodylotarsi,with reference to archosaurian and crurotarsanmonophyly. Journ<strong>al</strong> of Vertebrate P<strong>al</strong>eontology, 13,287–308.Perry, S. F., Breuer, T.&Pajor, N. 2011. Structureand function of the sauropod respiratory system. In:Klein, N., Remes, K., Gee, C.T.&Sander, P.M.(eds) Biology of the Sauropod Dinosaurs: Understandingthe Life of Giants. Indiana University Press, Bloomington& Indianapolis, 83–93.Peyer, K., Carter, J. G., Sues, H.-D., Novak, S.E.&Olsen, P. E. 2008. A new suchian archosaur fromthe Upper Triassic of North Carolina. Journ<strong>al</strong> of VertebrateP<strong>al</strong>eontology, 28, 363–381.Pires, E. F., Guerra Sommer, M. & Dos SantosScherer, C. M. 2005. Late Triassic climate in southernmostParana Basin (Brazil): evidence from dendrochronologic<strong>al</strong>data. Journ<strong>al</strong> of South American EarthSciences, 18, 213–221.Plieninger, T. 1846. Über ein neues Sauriergenus unddie Einreihung der Saurier mit flachen, schneidendenZähnen in eine Familie. Jahreshefte des Vereinsfür vaterländische Naturkunde in Württemberg, 2,148–154.Price, L. I. 1946. Sobre um novo pseudosuchio do Triassicosuperior do Rio Grande do Sul. Divisao de Geologicae Miner<strong>al</strong>ogica, Bol<strong>et</strong>in, 120, 7–39.Queiroz, K.D.&Gauthier, J. A. 1990. Phylogeny as acentr<strong>al</strong> principle in taxonomy: phylogen<strong>et</strong>ic definitionsof taxon names. Systematic Biology, 39, 307–322.Queiroz, K.D.&Gauthier, J. A. 1992. Phylogen<strong>et</strong>ictaxonomy. Annu<strong>al</strong> Review of Ecology and Systematics,23, 449–480.Rauhut, O. W. M. 2003. The interrelationships and evolutionof bas<strong>al</strong> theropod dinosaurs. Speci<strong>al</strong> Papers inP<strong>al</strong>aeontology, 69, 1–214.Rayfield, E. J. 2004. Crani<strong>al</strong> mechanics and feedingin Tyrannosaurus rex. Proceedings of the Roy<strong>al</strong> Soci<strong>et</strong>yLondon, Series B, Biologic<strong>al</strong> Sciences, 271,1451–1459.Rayfield, E. J. 2005. Using finite-element an<strong>al</strong>ysis toinvestigate suture morphology: a case study usinglarge carnivorous dinosaurs. The Anatomic<strong>al</strong> Record,Part A, 283, 349–365.Reig, O. A. 1959. Primeros datos descriptivos sobrenuevos reptiles arcosaurios del Triásico de Ischigu<strong>al</strong>asto(San Juan, Argentina). Revista de la AsociaciónArgentina de Geologıá, 13, 257–270.Reig, F. L. S. 1961. Acerca de la posicion sistematica dela familia Rauisuchidae y los genero Saurosuchus(Reptilia, Thecodontia). Museo Municip<strong>al</strong> de CienciasNatur<strong>al</strong>es y Tradicion<strong>al</strong>es de Mar del Plata, 1,73–114.Renesto, S., Conortini, F., Gozzi, E., M<strong>al</strong>zanni, M.& Paganoni, A. 2003. A possible rauisuchid (Reptilia,Archosauria) tooth from the Carnian (Late Triassic)of Lombardy (It<strong>al</strong>y). Rivesta di Museo Civico diStoria Natur<strong>al</strong>e ‘E. Caffi’, Bergamo, 22, 109–144.Ricqlès, A. D., Padian, K.&Horner, J. R. 2003. Onthe bone histology of some Triassic pseudosuchianarchosaurs and related taxa. Ann<strong>al</strong>es de P<strong>al</strong>éontologie,89, 67–101.Ricqlès, A. D., Padian, K., Knoll, F.&Horner, J.R.2008. On the origin of high growth rates in archosaursand their ancient relatives: complementary histologic<strong>al</strong>studies on Triassic archosauriforms and theproblem of a ‘phylogen<strong>et</strong>ic sign<strong>al</strong>’ in bone histology.Ann<strong>al</strong>es P<strong>al</strong>éontologie, 94, 57–76.Romer, A. S. 1966. Vertebrate P<strong>al</strong>eontology. Universityof Chicago Press, Chicago.Romer, A. S. 1971. The Chañares (Argentina) Triassicreptile fauna. VIII. A fragmentary skull of a large thecodont,Luperosuchus fractus. Breviora, 373, 1–8.Romer, A. S. 1972. The Chañares (Argentina) Triassicreptile fauna. XIII. An early ornithosuchid pseudosuchian,Gracilisuchus stipanicicorum, gen. <strong>et</strong> sp. nov.Breviora, 389, 1–24.Sander, P. M. 1992. The Norian Plateosaurus Bonebedsof centr<strong>al</strong> Europe and their taphonomy. P<strong>al</strong>aeogeography,P<strong>al</strong>aeoclimatology, P<strong>al</strong>aeoecology, 93,255–299.Sanders, K. & Farmer, C. G. 2012. The pulmonaryanatomy of Alligator mississippiensis and its similarityto the avian respiratory system. Anatomic<strong>al</strong> Record,295, 699–714.Sander, P. M., Klein, N., Stein, K.&Wings, O. 2011.Sauropod bone histology and its implications for sauropodbiology. In: Klein, N., Remes, K., Gee, C.T.&Sander, P. M. (eds) Biology of the Sauropod Dinosaurs:Understanding the Life of Giants. Indiana UniversityPress, Bloomington, 276–304.Santi M<strong>al</strong>nis, P., Colombi, C. E., Kent, D. V.,Alcober, O. A. & Martínez, R. 2011. Assesing[sic] the age of Los Colorados Formation, Ischigu<strong>al</strong>asto– Villa Union Basin, Argentina. Tempor<strong>al</strong> implicationsfor Coloradian fauna. In: IV CongresoLatinoamericano de P<strong>al</strong>eontologia de Vertebrados,Abstracts and Program. San Juan, Argentina, Museode Ciencias Natur<strong>al</strong>es, Universidad Nacion<strong>al</strong> de SanJuan.


Downloaded from http://sp.lyellcollection.org/ at CAPES on May 3, <strong>2013</strong>RAUISUCHIASchachner, E. R., Manning, P.L.&Dodson, P. 2011.Pelvic and hindlimb myology of the bas<strong>al</strong> archosaurPoposaurus gracilis (Archosauria: Poposauroidea).Journ<strong>al</strong> of Morphology, 272, 1464–1491.Schaeffer, B. 1941. The morphologic<strong>al</strong> and function<strong>al</strong>evolution of the tarsus in amphibians and reptiles. Bull<strong>et</strong>inof the American Museum of Natur<strong>al</strong> History, 78,395–472.Scheyer,T.M.&Desojo, J. B. 2011. P<strong>al</strong>aeohistology andextern<strong>al</strong> microanatomy of rauisuchian osteoderms(Archosauria: Pseudosuchia). P<strong>al</strong>aeontology, 54,1289–1302.Scheyer, T.M.&Sander, P. M. 2004. Histology ofankylosaur osteoderms: implications for systematicsand function. Journ<strong>al</strong> of Vertebrate P<strong>al</strong>eontology, 24,874–893.Scheyer, T. M., Desojo,J.B.&Cerda, I. A. 2011. Comparativep<strong>al</strong>eaeohistology (sic) of Triassic rauisuchianand a<strong>et</strong>osaurian osteoderms (Archosauria: Pseudosuchia).Journ<strong>al</strong> of Vertebrate P<strong>al</strong>eontology (suppl. 3),31, 188A.Schoch, R. R. 2002. Stratigraphie und Taphonomie wirbeltierreicherSchichten im Unteren Keuper von Vellberg.Stuttgarter Beitraege zur Naturkunde Serie B(Geologie und P<strong>al</strong>aeontologie), 218, 1–29.Schoch, R. R. 2011. New archosauriform remainsfrom the German Lower Keuper. Neues Jahrbuchfür Geologie und P<strong>al</strong>äontologie Abhandlungen, 260,87–100.Schoch, R., <strong>Nesbitt</strong>, S. J., Muller, J., Fastnacht, M.,Lucas, S.G.&Boy, J. A. 2010. The reptile assemblagefrom the Moenkopi Formation (Middle Triassic)of New Mexico. Neues Jahrbuch für Geologie undP<strong>al</strong>äontologie, Abhandlungen, 255, 245–369.Schultz, C. L., Scherer, C.M.S.&Barberena, M.C.2000. Bioestratigraphy (sic) of Southern BrazilianMiddle–Upper Triassic. Revista Brasileira de Geociências,30, 495–498.Sen, K. 2005. A new rauisuchian archosaur from theMiddle Triassic of India. P<strong>al</strong>aeontology, 48, 185–196.Sennikov, A. G. 1988. New rauisuchids from the Triassicof the European USSR. P<strong>al</strong>eontologicheskii Zhurn<strong>al</strong>,1988, 124–128.Sennikov, A. G. 1990. New data on the rauisuchids ofeastern Europe. P<strong>al</strong>aeontologic<strong>al</strong> Journ<strong>al</strong>, 24, 1–12.Sennikov, A. G. 1995. Ranniye Tekodont VostochonyYevropy. Trudy P<strong>al</strong>eontologicheskogo Instituta, 263,1–141.Sennikov, A. G. 1999. The evolution of the postcrani<strong>al</strong>skel<strong>et</strong>on in archosaurs in connection with new findsof the Rauisuchidae in the Early Triassic of Russia.P<strong>al</strong>aeontologic<strong>al</strong> Journ<strong>al</strong>, 33, 648–659.Sereno, P. C. 1991. Bas<strong>al</strong> archosaurs: phylogen<strong>et</strong>icrelationships and function<strong>al</strong> implications. Journ<strong>al</strong> ofVertebrate P<strong>al</strong>eontology, 10(Suppl. 3), 1–53.Sereno, P. C. 2007. Logic<strong>al</strong> basis for morphologic<strong>al</strong>characters in phylogen<strong>et</strong>ics. Cladistics, 23,565–587.Sereno,P.C.&Arcucci, A. B. 1990. The monophyly ofcrurotars<strong>al</strong> archosaurs and the origin of bird and crocodileankle joints. Neues Jahrbuch für Geologie undP<strong>al</strong>äeontologie Abhandlungen, 180, 21–52.Sereno, P. C., Mc<strong>al</strong>lister, S.&Brusatte, S. L. 2005.TaxonSearch: a relation<strong>al</strong> database for supragenerictaxa and phylogen<strong>et</strong>ic definitions. PhyloInformatics,8, 1–21.Sereno, P. C., Martinez, R. N., Wilson, J. A., Varricchio,D. J., Alcober,O.A.&Larsson, H. C. E. 2008.Evidence for avian intrathoracic air sacs in a newpredatory dinosaur from Argentina. PLoS ONE, 3,e3303.Sereno, P. C., Tan, L., Brusatte, S. L., Kriegstein,H. J., Zhao, X.&Cloward, K. 2009. Tyrannosauridskel<strong>et</strong><strong>al</strong> design first evolved at sm<strong>al</strong>l body size.Science, 326, 418–422.Sm<strong>al</strong>l, B. J. 2001. Geology and p<strong>al</strong>eontology of the mainElk Creek loc<strong>al</strong>ity (Late Triassic: Norian), Colorado.Journ<strong>al</strong> of Vertebrate P<strong>al</strong>eontology (Suppl. 3), 30,102A.Smith, K.K.&Hylander, W. L. 1985. Strain gaugemeasurement of mesokin<strong>et</strong>ic movement in the lizardVaranus exanthematicus. The Journ<strong>al</strong> of Experiment<strong>al</strong>Biology, 114, 53–70.Sookias, R. B., Butler, R.J.&Benson, R. B. J. 2012.Rise of dinosaurs reve<strong>al</strong>s major body-size transitionsare driven by passive processes of trait evolution.Proceedings of the Roy<strong>al</strong> Soci<strong>et</strong>y B, 279,2180–2187.Stewart, J. H., Poole, F.G.&Wilson, R. F. 1972.Stratigraphy and origin of the Upper Triassic ChinleFormation and related strata in the Colorado Plateauregion. United States Geologic<strong>al</strong> Survey, Profession<strong>al</strong>Paper, 692, 1–336.Sues, H.-D. & Fraser, N. C. 2010. Triassic Life on Land:The Great Transition. Columbia University Press,New York.Sulej, T. 2005. A new rauisuchian reptile (Diapsida:Archosauria) from the Late Triassic of Poland.Journ<strong>al</strong> of Vertebrate P<strong>al</strong>eontology, 25, 78–86.Trotteyn, M. J., Desojo, J.B.&Alcober, O. 2011.Nuevo materi<strong>al</strong> postcraneano de Saurosuchus g<strong>al</strong>ileiReig (Archosauria: Crurotarsi) del Triásico Superiordel centro–oeste de Argentina. Ameghiniana, 48,605–620.W<strong>al</strong>ker, A. D. 1964. Triassic reptiles from the Elgin area:Ornithosuchus and the origin of carnosaurs. Philosophic<strong>al</strong>Transactions of the Roy<strong>al</strong> Soci<strong>et</strong>y of LondonB, 248, 53–134.W<strong>al</strong>ker, A. D. 1990. A revision of Sphenosuchus acutusHaughton, crocodylomorph reptile from the ElliotFormation (Late Triassic or Early Jurassic) of SouthAfrica. Philosophic<strong>al</strong> Transactions of the Roy<strong>al</strong> Soci<strong>et</strong>yof London B, 330, 1–120.Weinbaum, J. C. 2002. Osteology and relationships ofPostosuchus kirkpatricki (Archosauria: Crurotarsi).Unpublished master’s thesis, Texas Tech University,78.Weinbaum, J. C. 2007. Review of the Triassic reptilesPoposaurus gracilis and Postosuchus kirkpatricki (Reptilia:Archosauria). Unpublished PhD dissertation,Texas Tech University, 183.Weinbaum, J. C. 2011. The skull of Postosuchus kirkpatricki(Archosauria: Paracrocodyliformes) from theUpper Triassic of the United States. P<strong>al</strong>eoBios, 30,18–44.Weinbaum, J.C.&Hungerbühler, A. 2007. A revisionof Poposaurus gracilis (Archosauria: Suchia)based on two new specimens from the Late Triassic


Downloaded from http://sp.lyellcollection.org/ at CAPES on May 3, <strong>2013</strong>S. J. NESBITT ET AL.of the southwestern U.S.A. P<strong>al</strong>äontologische Zeitschrift,81/82, 131–145.Welles, S. P. 1947. Vertebrates from the Upper MoenkopiFormation of the Northern Arizona. University of C<strong>al</strong>iforniaPublications in Geologic<strong>al</strong> Science, 27,241–294.Witmer, L. M. 1995. Homology of faci<strong>al</strong> structures inextant archosaurs (birds and crocodilians), withspeci<strong>al</strong> reference to paranas<strong>al</strong> pneumaticity and nas<strong>al</strong>conchae. Journ<strong>al</strong> of Morphology, 225, 269–327.Wu, X.-C. 1981. The discovery of a new thecodontfrom north east Shanxi. Vertebrata P<strong>al</strong>asiatica, 19,122–132.Young, C. C. 1948. On Two New Saurischians fromLufeng, Yunnan. Bull<strong>et</strong>in of the Geologic<strong>al</strong> Soci<strong>et</strong>y ofChina, 28, 75–90.Young, C. C. 1964. The pseudosuchians in China.P<strong>al</strong>aeontologia Sinica, 151, 1–205.Zawiskie, J., Dawlwy, R.&<strong>Nesbitt</strong>, S. J. 2011. Therelationships and type loc<strong>al</strong>ity of Heptasuchusclarki, Chugwater Group (Middle to Upper Triassic),southeastern Big Horn Mountains, Wyoming,USA. Journ<strong>al</strong> of Vertebrate P<strong>al</strong>eontology, (suppl. 3),31, 219A.Zeigler, K.E.&Geissman, J. W. 2011. Magn<strong>et</strong>ostratigraphyof the Upper Triassic Chinle Group of NewMexico: implications for region<strong>al</strong> and glob<strong>al</strong> correlationsamong Upper Triassic sequences. Geosphere,7, 802–829.Zerfass, H., Lavina, E. L., Schultz, C. L., Garcia,A. J. V., Faccini, U. F. & Chem<strong>al</strong>e, F. J. 2003.Sequence stratigraphy of continent<strong>al</strong> Triassic strata ofsouthernmost Brazil: a contribution to southwesternGondwana p<strong>al</strong>aeogeography and p<strong>al</strong>aeoclimate. SedimentaryGeology, 161, 85–105.Zerfass, H., Chem<strong>al</strong>e, F., Schultz, C.L.&Lavina,E. L. 2004. Tectonics and sedimentation in southernSouth America during Triassic. SedimentaryGeology, 166, 265–292.Zhang, F. K. 1975. A new thecodont Lotosaurus, fromthe Middle Triassic of Hunan. Vertebrata P<strong>al</strong>asiatica,13, 144–147.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!