11.07.2015 Views

Lecture 1 - Introduction to Solid State Physics - University of Surrey

Lecture 1 - Introduction to Solid State Physics - University of Surrey

Lecture 1 - Introduction to Solid State Physics - University of Surrey

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Solid</strong> <strong>State</strong> <strong>Physics</strong>Pr<strong>of</strong>essor Stephen SweeneyAdvanced Technology Institute and Department <strong>of</strong> <strong>Physics</strong><strong>University</strong> <strong>of</strong> <strong>Surrey</strong>, Guildford, GU2 7XH, UKs.sweeney@surrey.ac.ukOffice: 12ATI01 (book appointments by email)<strong>Solid</strong> <strong>State</strong> <strong>Physics</strong> - <strong>Lecture</strong> 1


Where does this fit in?Nuclear physics: fundamental particles,radioactivity, fission, nuclear reactionsetc.A<strong>to</strong>mic physics: energy levels,chemistry, spin-effects,spectroscopy etc.<strong>Solid</strong>-state physics: crystal structures, conduc<strong>to</strong>rs,insula<strong>to</strong>rs, semiconduc<strong>to</strong>rs, thermal properties,strength <strong>of</strong> materials etc.<strong>Solid</strong> <strong>State</strong> <strong>Physics</strong> - <strong>Lecture</strong> 1


<strong>Solid</strong>-<strong>State</strong> <strong>Physics</strong>• <strong>Solid</strong>-state physics provides a description <strong>of</strong> how a<strong>to</strong>ms bond <strong>to</strong> form solids• It shows how microscopic effects give rise <strong>to</strong> macroscopic behaviour:• Thermal conductivity• Electrical conductivitySource: PRB Germany• Semiconduc<strong>to</strong>rs and optical properties<strong>Solid</strong> <strong>State</strong> <strong>Physics</strong> - <strong>Lecture</strong> 1


Course structure• Delivery :• Assessment:39 hours <strong>of</strong> lectures and tu<strong>to</strong>rial periods& labora<strong>to</strong>ry based activities within level 2 lab. classesCoursework test (week 15, Jan/Feb 2011) [13% <strong>of</strong> mm]Examination (two papers in May/June 2011) [23% <strong>of</strong> mm]• Suggested reading (the course will not follow any particular book):Rosenberg, The <strong>Solid</strong> <strong>State</strong>, OxfordRudden & Wilson, Elements <strong>of</strong> <strong>Solid</strong> <strong>State</strong> <strong>Physics</strong>, WileyKittel, <strong>Introduction</strong> <strong>to</strong> <strong>Solid</strong>-<strong>State</strong> <strong>Physics</strong>, WileyBlakemore, <strong>Solid</strong> <strong>State</strong> <strong>Physics</strong>, Cambridge Univ. PressAshcr<strong>of</strong>t & Mermin, <strong>Solid</strong> <strong>State</strong> <strong>Physics</strong>, Wiley<strong>Solid</strong> <strong>State</strong> <strong>Physics</strong> - <strong>Lecture</strong> 1


Course Aims• Learn about basic concepts in <strong>Solid</strong> <strong>State</strong> <strong>Physics</strong>:- Crystal structure (types, terminology, real and reciprocal lattices,diffraction)- Lattice Dynamics (phonons, thermal conduction, heat capacity)- Thermal statistics, i.e. how <strong>to</strong> describe the energy <strong>of</strong> electrons in solids(Fermi-Dirac distributions, Fermi energy, density <strong>of</strong> states)- Free electron theory (electrical conduction)- Band structure theory (collective behaviour <strong>of</strong> a<strong>to</strong>ms in a crystal, bandgaps, metals, insula<strong>to</strong>rs, semiconduc<strong>to</strong>rs)- Low dimensional systems (quantum wells, quantum dots, application insemiconduc<strong>to</strong>r devices such as light emitting diodes and lasers)<strong>Solid</strong> <strong>State</strong> <strong>Physics</strong> - <strong>Lecture</strong> 1


Why is this important?SiliconSilicon waferSand (mainly SiO 2 )iPhoneLap<strong>to</strong>pSat NavToasteretc…Processor chip<strong>Solid</strong> <strong>State</strong> <strong>Physics</strong> - <strong>Lecture</strong> 1


Progress1cm30nmFirst transis<strong>to</strong>r (1947)Intel transis<strong>to</strong>r (2009)<strong>Solid</strong> <strong>State</strong> <strong>Physics</strong> - <strong>Lecture</strong> 1


<strong>State</strong>s <strong>of</strong> Matter<strong>Solid</strong>: a<strong>to</strong>ms are packed <strong>to</strong>gether in a rigid structure with shor<strong>to</strong>rlong-range order (more later).As the solid is heated up, the a<strong>to</strong>ms oscillate around theirequilibrium positions but retain a rigid structure.Liquid: a<strong>to</strong>ms are closely packed but do not form a rigidstructure. As the liquid is heated up the a<strong>to</strong>ms move aroundbut without clear relation <strong>to</strong> one another.Gas: a<strong>to</strong>ms are located far away from each other (a muchlower density than for a liquid or gas) with little interactionwith each other. As the gas is heated up the a<strong>to</strong>ms becomemore energetic, increasing the probability <strong>of</strong> collision.(also plasmas, but we won’t worry about those here…)<strong>Solid</strong> <strong>State</strong> <strong>Physics</strong> - <strong>Lecture</strong> 1


What is a <strong>Solid</strong>?Could be a bulk composite with weakly bondedconstituents. The a<strong>to</strong>mic arrangement is completelyrandom. Such materials are relatively weak, and are poorthermal and electrical conduc<strong>to</strong>rs (e.g. wood).In amorphous solids there may be shortrange order between a<strong>to</strong>ms but the a<strong>to</strong>msdo not overall form a periodic structure.The a<strong>to</strong>ms themselves are at equilibriumspacing (e.g. glasses)In crystalline solids the a<strong>to</strong>ms form a periodicstructure and there is long range order in the position<strong>of</strong> the a<strong>to</strong>ms (e.g. metals, diamond, silicon etc.).More than 90% <strong>of</strong> solids form crystalline structures.<strong>Solid</strong> <strong>State</strong> <strong>Physics</strong> - <strong>Lecture</strong> 1


Crystal StructuresAn ideal crystal is constructed from an infinite repetition <strong>of</strong> identical groups <strong>of</strong> a<strong>to</strong>ms• The group is known as the basis (this will contain one or more a<strong>to</strong>ms)• The set <strong>of</strong> points on which the basis sits is called the lattice(a mathematical construction)<strong>Solid</strong> <strong>State</strong> <strong>Physics</strong> - <strong>Lecture</strong> 1


Lattices & lattice translation vec<strong>to</strong>rsLattice translation vec<strong>to</strong>rs describe how <strong>to</strong> move around a crystal1 dimensional (1D) casear r’r'r uaa 1a 22 dimensional (2D) case(where u is an integer)r' r u a ua1 1 2 2<strong>Solid</strong> <strong>State</strong> <strong>Physics</strong> - <strong>Lecture</strong> 1


Lattices & lattice translation vec<strong>to</strong>rs3 dimensional (3D) casea 1a 2r' r ua ua u21123a3a 3More generally, for n dimensions:r' rnu annAll possible combinations <strong>of</strong> u n define the latticeLattice translation vec<strong>to</strong>rs a n are primitive if there is no other cell <strong>of</strong>volume


Primitive cell & uniqueness (2D)a 1a 2a 1a 2 a 1 a2In 2D case primitive basis set whenA primitive cell contains 1 lattice point!a1 a2is minimisedA primitive cell can be defined in more than one way<strong>Solid</strong> <strong>State</strong> <strong>Physics</strong> - <strong>Lecture</strong> 1


Wigner-Seitz Primitive Cell (2D)Define a primitive cell by bisecting lines connecting lattice points…2D lattice<strong>Solid</strong> <strong>State</strong> <strong>Physics</strong> - <strong>Lecture</strong> 1


Wigner-Seitz Primitive Cell (2D)Define a primitive cell by bisecting lines connecting lattice points…2D lattice<strong>Solid</strong> <strong>State</strong> <strong>Physics</strong> - <strong>Lecture</strong> 1


Wigner-Seitz Primitive Cell (2D)Define a primitive cell by bisecting lines connecting lattice points…2D lattice<strong>Solid</strong> <strong>State</strong> <strong>Physics</strong> - <strong>Lecture</strong> 1


Wigner-Seitz Primitive Cell (2D)Define a primitive cell by bisecting lines connecting lattice points…2D lattice<strong>Solid</strong> <strong>State</strong> <strong>Physics</strong> - <strong>Lecture</strong> 1


Wigner-Seitz Primitive Cell (2D)Define a primitive cell by bisecting lines connecting lattice points…2D lattice<strong>Solid</strong> <strong>State</strong> <strong>Physics</strong> - <strong>Lecture</strong> 1


Wigner and SeitzEugene Wigner (1902-1995)• American-Hungarianphysicist based in Prince<strong>to</strong>n• Nobel Prize in <strong>Physics</strong>(1963) for theory <strong>of</strong> a<strong>to</strong>micnucleusFrederick Seitz (1911-2008)• American physicist studied PhDunder Wigner• Former President <strong>of</strong> US NationalAcademy <strong>of</strong> Sciences• National Medal <strong>of</strong> Science (1973)for work on solid state physics<strong>Solid</strong> <strong>State</strong> <strong>Physics</strong> - <strong>Lecture</strong> 1


Crystal structure = lattice + basis2D lattice<strong>Solid</strong> <strong>State</strong> <strong>Physics</strong> - <strong>Lecture</strong> 1


Crystal structure = lattice + basisBasisElement AElement BThe position <strong>of</strong> the centre <strong>of</strong> an a<strong>to</strong>m/ion j relative <strong>to</strong> the lattice point is:latticepointa 1a 2r jr x a1For blue a<strong>to</strong>m/ion:r j 0For red a<strong>to</strong>m/ion:rj xja1a 2 z aIn 3D: j j j j 3yyja 2Latticetranslationvec<strong>to</strong>rs<strong>Solid</strong> <strong>State</strong> <strong>Physics</strong> - <strong>Lecture</strong> 10 x , y , z 1(Usual <strong>to</strong> define )jjj


Crystal structure = lattice + basis2D Crystal structure<strong>Solid</strong> <strong>State</strong> <strong>Physics</strong> - <strong>Lecture</strong> 1


Bravais lattices• There are 14 possibletypes <strong>of</strong> lattice in 3Dspace based around7 groups• We will mainlyconsider cubicsystems<strong>Solid</strong> <strong>State</strong> <strong>Physics</strong> - <strong>Lecture</strong> 1


Auguste Bravais (1811-1863)• French physicist renowned for hiswork on crystallography• Chair <strong>of</strong> <strong>Physics</strong> at EcolePolytechnique, Paris• Proved the existence <strong>of</strong> 14 uniquelattices in 3D crystallographicsystems<strong>Solid</strong> <strong>State</strong> <strong>Physics</strong> - <strong>Lecture</strong> 1


Cubic systems – unit cellsSimple cubic(sc)Body-centred cubic(bcc)Face-centred cubic(fcc)NB:Only sc is primitive since it contains one lattice pointQ. How many lattice points are contained in a bcc and fcc unit cell?Q. What are basis vec<strong>to</strong>rs for each structure?<strong>Solid</strong> <strong>State</strong> <strong>Physics</strong> - <strong>Lecture</strong> 1


Cubic systems – unit cellsSimple cubic(sc)Body-centred cubic(bcc)Face-centred cubic(fcc)NB:Only sc is primitive since it contains one lattice pointQ. How many lattice points are contained in a bcc (2) and fcc unit cell? (4)Q. What are basis vec<strong>to</strong>rs for each structure?<strong>Solid</strong> <strong>State</strong> <strong>Physics</strong> - <strong>Lecture</strong> 1


Examples – simple cubic (sc)The simple cubic structure is notcommon in nature.Why?Simple cubicExample – Polonium (alpha form)Q. If the length <strong>of</strong> one side <strong>of</strong> theunit cell is 335.2pm. What isdensity <strong>of</strong> alpha polonium?(9200kg/m 3 )<strong>Solid</strong> <strong>State</strong> <strong>Physics</strong> - <strong>Lecture</strong> 1


Examples – body centred cubic (bcc)Iron is a common bccstructure.Q. If the density <strong>of</strong> iron is7800kg/m 3 what is thelength <strong>of</strong> each side <strong>of</strong> theunit cell?(280pm)Body-centred cubicAnimation at:http://s<strong>to</strong>kes.byu.edu/bcc.htm<strong>Solid</strong> <strong>State</strong> <strong>Physics</strong> - <strong>Lecture</strong> 1


Examples – face-centred cubicQ. Copper is known <strong>to</strong>crystallise in cubic form. If thedensity <strong>of</strong> copper is 8900kg/m 3and the length <strong>of</strong> each side <strong>of</strong>the unit cell is 360pm, showthat copper must have a fccstructure.Face-centred cubicAnimation at:http://s<strong>to</strong>kes.byu.edu/fcc.htm<strong>Solid</strong> <strong>State</strong> <strong>Physics</strong> - <strong>Lecture</strong> 1


Packing fac<strong>to</strong>rssc bcc fccQ. Assuming a lattice <strong>of</strong> identical a<strong>to</strong>ms, calculate the volume packingfac<strong>to</strong>r for each <strong>of</strong> the cubic structures above.<strong>Solid</strong> <strong>State</strong> <strong>Physics</strong> - <strong>Lecture</strong> 1


Packing fac<strong>to</strong>rssc (52%) bcc (68%) fcc (74%)Q. Assuming a lattice <strong>of</strong> identical a<strong>to</strong>ms, calculate the volume packingfac<strong>to</strong>r for each <strong>of</strong> the cubic structures above.<strong>Solid</strong> <strong>State</strong> <strong>Physics</strong> - <strong>Lecture</strong> 1


Key:bccfccsc<strong>Solid</strong> <strong>State</strong> <strong>Physics</strong> - <strong>Lecture</strong> 1


Crystal basis with >1 a<strong>to</strong>mBasis can in practice contain many a<strong>to</strong>ms:Silicon is fcc with 2 a<strong>to</strong>m basisTwo interpenetrating fcc structuresis called the diamond structureDiamond structure:Co-ordinates <strong>of</strong> a<strong>to</strong>ms in basis areThis is <strong>of</strong>ten called a tetrahedral structure000and1 1 14 4 4Q. Calculate the bond angle.(109.5 o )<strong>Solid</strong> <strong>State</strong> <strong>Physics</strong> - <strong>Lecture</strong> 1


Crystal basis with >1 a<strong>to</strong>mIonic structure (more on bonding later in the course):NaCl – based on fcc structure <strong>of</strong>Na + and Cl - ionsQ. What is the density <strong>of</strong> salt if thecrystal has a lattice constant,a, <strong>of</strong> 563pm? (~2200kgm -3 )Virus (e.g. flu) ~ basis contains ~10 7 -10 9 a<strong>to</strong>ms !a<strong>Solid</strong> <strong>State</strong> <strong>Physics</strong> - <strong>Lecture</strong> 1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!