13.07.2015 Views

The 8q isomer in 78Zn and the doubly magic character of 78Ni

The 8q isomer in 78Zn and the doubly magic character of 78Ni

The 8q isomer in 78Zn and the doubly magic character of 78Ni

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

16 March 2000Ž .Physics Letters B 476 2000 213–218<strong>The</strong> 8 q <strong>isomer</strong> <strong>in</strong> 78 Zn <strong>and</strong> <strong>the</strong> <strong>doubly</strong> <strong>magic</strong> <strong>character</strong> <strong>of</strong> 78 NiJ.M. Daugas a , R. Grzywacz b,c , M. Lewitowicz a , L. Achouri d , J.C. Angelique d ,D. Baiborod<strong>in</strong> a,e , K. Bennaceur a , R. Bentida f , R. Beraud ´f , C. Borcea g ,C. B<strong>in</strong>gham b , W.N. Catford h , A. Emsallem f , G. de France a , H. Grawe i ,K.L. Jones h , R.C. Lemmon h , M.J. Lopez Jimenez a , F. Nowacki j ,F. de Oliveira Santos a , M. Pfutzner ¨c , P.H. Regan h , K. Rykaczewski k,c ,J.E. Sauvestre l , M. Sawicka c , G. Sletten m , M. Stanoiu a,ga GANIL BP 5027, 14076 Caen Cedex 5, Franceb UniÕersity <strong>of</strong> Tennessee, KnoxÕille, TN 37996, USAc IFD, Warsaw UniÕersity, Hoza ˙ 69, PL-00681 Warsaw, Pol<strong>and</strong>d LPC Caen, 14021 Caen Cedex, Francee Nuclear Physics Institute, 250 68 Rez, Czech Republicf IPN Lyon, 69622 Villeurbane Cedex, Franceg IAP, P.O. Box MG6, Bucharest-Magurele, Romaniah Department <strong>of</strong> Physics, UniÕersity <strong>of</strong> Surrey, Guildford, GU2 5XH, UKiGSI, Postfach 110552, D-64220, Darmstadt, GermanyjLPT, UniÕersite´Louis Pasteur, 67084 Strasbourg Cedex, Francek ORNL, Physics DiÕision, Oak Ridge, TN 37830, USAlCEA Bruyeres ` le Chatel, ˆ BP 12, 91680 Bruyeres ` le Chatel, ˆ Francem Niels Bohr Institute, UniÕersity <strong>of</strong> Copenhagen, Copenhagen, DenmarkReceived 15 September 1999; received <strong>in</strong> revised form 1 February 2000; accepted 1 February 2000Editor: J.P. Schiffer´AbstractA new <strong>isomer</strong>ic state <strong>in</strong> 78 Zn has been identified <strong>and</strong> studied <strong>in</strong> <strong>the</strong> fragmentation <strong>of</strong> a 60.5 AMeV 86 Kr beam on a nat Nitarget. <strong>The</strong> measured energies <strong>of</strong> <strong>the</strong> transitions <strong>and</strong> <strong>the</strong> half-life, T s319Ž.1r2 9 ns, <strong>of</strong> <strong>the</strong> <strong>isomer</strong>ic decay suggest a sp<strong>in</strong> <strong>and</strong>p qŽqparity assignment I s8 . <strong>The</strong> deduced B E2,8 6 q. value equals 1.21Ž 5.W.u. is well reproduced <strong>in</strong> large scale shellmodel calculations us<strong>in</strong>g realistic <strong>in</strong>teractions <strong>in</strong> <strong>the</strong> proton-neutron 2p 3r 2, 1f 5r 2, 2p 1r 2, 1g9r 2 model space. St<strong>and</strong>ard E2polarisation charges <strong>of</strong> 0.5e for both protons <strong>and</strong> neutrons were used. This result consists <strong>the</strong> first experimental evidence <strong>of</strong><strong>the</strong> persistance <strong>of</strong> <strong>the</strong> Ns50 shell gap <strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity <strong>of</strong> 78 Ni . q 2000 Elsevier Science B.V. All rights reserved.28 50Nuclei <strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity <strong>of</strong> <strong>the</strong> recently observed78<strong>doubly</strong> <strong>magic</strong> nucleus Ni w1,2x28 50 are amongst <strong>the</strong>best c<strong>and</strong>idates to study <strong>the</strong> evolution <strong>of</strong> nuclearstructure far from <strong>the</strong> valley <strong>of</strong> stability. <strong>The</strong> largeneutrons to protons ratio <strong>in</strong> this region might allow<strong>the</strong> observation <strong>of</strong> unusual shell effects. In particular,<strong>the</strong> question <strong>of</strong> whe<strong>the</strong>r <strong>the</strong> Ns50 shell gap persistsso far away from stability might be studied <strong>in</strong> <strong>the</strong>Ž .78two-hole particle structure neighbours <strong>of</strong> Ni,namely 76 Ni, 80 Zn orr<strong>and</strong> 78 Zn. As proven <strong>in</strong> ourwx78recent studies 3 we can progress towards Ni us<strong>in</strong>g<strong>isomer</strong> spectroscopy follow<strong>in</strong>g a projectile fragmen-0370-2693r00r$ - see front matter q 2000 Elsevier Science B.V. All rights reserved.Ž .PII: S0370-2693 00 00177-5


214( )J.M. Daugas et al.rPhysics Letters B 476 2000 213–218tation reaction. This method provides <strong>in</strong>formation on<strong>the</strong> energy levels <strong>and</strong> lifetimes <strong>of</strong> excited states. <strong>The</strong>values <strong>of</strong> transition strengths obta<strong>in</strong>ed for <strong>the</strong> highsp<strong>in</strong> <strong>isomer</strong>s with simple <strong>and</strong> pure configurations Žasobserved near shell closures.are essential to extract<strong>the</strong> nucleon effective charge. In a large scale shellmodel calculation <strong>the</strong> effective charge is a measure<strong>of</strong> <strong>the</strong> polarisation effects on <strong>the</strong> core <strong>in</strong>duced by <strong>the</strong>valence particle undergo<strong>in</strong>g an electromagnetic transition.In <strong>the</strong> 100 Sn region <strong>the</strong> effective charges forproton, neutron <strong>and</strong> proton-neutron configurationshave been studied. <strong>The</strong> results were discussed controversiallybut imply that a large isovector charge isrequired, i.e. a large difference <strong>in</strong> proton <strong>and</strong> neutronpolarisation charge w5–7 x. For neutron rich systems,with relatively small valence particle b<strong>in</strong>d<strong>in</strong>g, due to<strong>the</strong> reduced overlap <strong>of</strong> valence neutrons <strong>and</strong> protoncore, a decreas<strong>in</strong>g role <strong>of</strong> polarisation effects <strong>and</strong>thus a smaller effective neutron charge is expected.On <strong>the</strong> o<strong>the</strong>r h<strong>and</strong> a dim<strong>in</strong>ish<strong>in</strong>g shell gap couldenable core excitations <strong>and</strong> even deformation as <strong>in</strong><strong>the</strong> well known Mg example 8 . <strong>The</strong> s<strong>in</strong>gle particlestructure at <strong>the</strong> Fermi surface for proton holes <strong>in</strong>Ns50 nuclei below 100 Sn is identical to that <strong>of</strong>neutrons <strong>in</strong> Zs28 Ni isotopes below 78 Ni, i.e. <strong>the</strong>seare valence mirror states. <strong>The</strong> respective neutron <strong>and</strong>proton particle states differ<strong>in</strong>g by one major shell32wxexhibit aga<strong>in</strong> very similar features. <strong>The</strong>refore 78 Zn 30 48is related to 78 Ni <strong>and</strong> 76 Ni , as is 100 28 28 48 48 Cd52to100 Sn <strong>and</strong> 98 50 50 48Cd 50, if we exploit isosp<strong>in</strong> symmetry<strong>of</strong> mirror nuclei <strong>in</strong> <strong>the</strong> latter case. <strong>The</strong> importantdifference though, is that <strong>in</strong> contrast to <strong>the</strong> highlysymmetrical 100 Sn system, where protons <strong>and</strong> neutronsoccupy <strong>the</strong> same orbitals, 78 Ni has a largeneutron excess. This makes <strong>the</strong> 8 q <strong>isomer</strong> <strong>in</strong> 78 Zn avery good model state for <strong>the</strong> 8 q level <strong>in</strong> 76 Ni,which is a two neutron-hole excitation <strong>in</strong> 78 Ni. <strong>The</strong>mere existence <strong>of</strong> an <strong>isomer</strong> <strong>in</strong> 78 Zn implies ‘‘afortiori’’ its existence <strong>in</strong> 76 Ni <strong>and</strong> would be a directpro<strong>of</strong> for <strong>the</strong> persistence <strong>of</strong> <strong>the</strong> Ns50 shell closure<strong>in</strong> 78 Ni. By comparison with a shell-model calculationone can, <strong>in</strong> pr<strong>in</strong>ciple, extract <strong>the</strong> neutron polarisationcharge <strong>of</strong> 78 Ni. A similar method was previouslyused to extract <strong>the</strong> effective E2 operator forprotons <strong>and</strong> neutrons <strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity <strong>of</strong> <strong>the</strong> NsZ100w x<strong>doubly</strong> <strong>magic</strong> nucleus Sn 5,9,10 .<strong>The</strong> present work was performed <strong>in</strong> order tosearch <strong>and</strong> study new <strong>isomer</strong>ic states <strong>in</strong> neutron richnuclei <strong>in</strong> <strong>the</strong> potassium to germanium region producedby <strong>the</strong> fragmentation reaction <strong>of</strong> a 86 Kr beam.It is a cont<strong>in</strong>uation <strong>of</strong> <strong>the</strong> previous survey experimentwhere new spectroscopic <strong>in</strong>formation has beenobta<strong>in</strong>ed for 13 <strong>isomer</strong>ic states wx 3 . In that work,evidence for <strong>the</strong> existence <strong>of</strong> an <strong>isomer</strong>ic state <strong>in</strong>78 Zn was shown, but due to a very low statistics,both <strong>the</strong> half-life <strong>and</strong> <strong>the</strong> energy <strong>of</strong> <strong>the</strong> <strong>isomer</strong>ictransition could not be accurately deduced.<strong>The</strong> experiment has been performed at GANILus<strong>in</strong>g <strong>the</strong> LISE spectrometer w11 x. <strong>The</strong> neutron rich86 Kr 34q beam with an energy <strong>of</strong> 60.5 AMeV <strong>and</strong>Ž11mean <strong>in</strong>tensity <strong>of</strong> 1.6 mAe 3=10 pps.imp<strong>in</strong>gedon a rotat<strong>in</strong>g 100 mm thick nat Ni target. A 500 mmthick Be back<strong>in</strong>g placed beh<strong>in</strong>d <strong>the</strong> target allowed areduction <strong>of</strong> <strong>the</strong> width <strong>of</strong> <strong>the</strong> charge states distribution<strong>of</strong> produced fragments. A 50 mm thick Be wedgewas used <strong>in</strong> <strong>the</strong> first dispersive plane <strong>of</strong> <strong>the</strong> spectrometerto remove light fragments <strong>and</strong> to fur<strong>the</strong>rsuppress non-fully-stripped ions. In order to reduce<strong>the</strong> time <strong>of</strong> flight <strong>of</strong> fragments to less than 200 nsŽcompared with 1.2 ms <strong>in</strong> our previous experimentwx. 3 <strong>the</strong> experimental set-up was placed <strong>in</strong> <strong>the</strong> firstachromatic focal po<strong>in</strong>t <strong>of</strong> LISE. <strong>The</strong> heavy ions weredetected by a three-element Si-detector telescope.<strong>The</strong> silicon detectors were 300 mm, 300 mm <strong>and</strong>500 mm thick, respectively. <strong>The</strong> last detector was x<strong>and</strong> y position sensitive <strong>and</strong> it was mounted at anangle <strong>of</strong> 458 with respect to <strong>the</strong> beam axis.<strong>The</strong> last Si-detector was surrounded by 4 highpuritygermanium detectors: one four-crystal clover<strong>of</strong> 120% relative efficiency Ž add-back <strong>in</strong>clud<strong>in</strong>g .,two coaxial-type <strong>of</strong> 90% <strong>and</strong> 80% efficiency respectively<strong>and</strong> one low energy photon spectrometerŽ LEPS .. In order to <strong>in</strong>crease <strong>the</strong> geometrical efficiency<strong>of</strong> <strong>the</strong> setup, two detectors with <strong>the</strong> highestefficiency, were placed at about 1.5 cm from <strong>the</strong>implantation Si-detector. <strong>The</strong> distance between <strong>the</strong>o<strong>the</strong>r two Ge-detectors <strong>and</strong> <strong>the</strong> beam axis was about5 cm. <strong>The</strong> sensitivity range for g-ray energies wasbetween 30 keV <strong>and</strong> 4 MeV. <strong>The</strong> total photopeakefficiency was measured to be 6.2Ž.1 % for 1.3 MeVg-rays. All detectors were mounted perpendicularlyto <strong>the</strong> beam axis. Three large volume BaF2crystalswere placed at about 0 o with respect to <strong>the</strong> beamaxis. <strong>The</strong> lifetimes <strong>of</strong> <strong>isomer</strong>ic states were measuredby stor<strong>in</strong>g <strong>the</strong> time difference between <strong>the</strong> heavy ionimplantation signal <strong>and</strong> delayed g-rays. Two separate


( )J.M. Daugas et al.rPhysics Letters B 476 2000 213–218 215time ranges <strong>of</strong> up to 500 ns <strong>and</strong> 40 ms respectivelywere recorded for each Ge crystal us<strong>in</strong>g st<strong>and</strong>ardtime-to-digital converter Ž TDC.<strong>and</strong> time-to-amplitudeconverter Ž TAC.modules respectively.<strong>The</strong> identification <strong>of</strong> fragments <strong>in</strong> mass, atomicnumber <strong>and</strong> atomic charge was achieved by means<strong>of</strong> energy-loss, total-k<strong>in</strong>etic-energy <strong>and</strong> time-<strong>of</strong>-flightmeasurements. <strong>The</strong> <strong>in</strong>dependent confirmation <strong>of</strong> <strong>the</strong>fragment identification comes from <strong>the</strong> observation<strong>of</strong> <strong>character</strong>istic g-rays correspond<strong>in</strong>g to <strong>the</strong> previ-67,68ously identified <strong>isomer</strong>ic decays <strong>of</strong> Ni w12,13 x.All <strong>isomer</strong>ic states reported <strong>in</strong> Ref. wx 3 were observedalso <strong>in</strong> <strong>the</strong> present experiment, <strong>in</strong> most cases, withmuch higher statistics. For example, due to <strong>the</strong> reducedtime <strong>of</strong> flight, <strong>in</strong>creased primary beam <strong>in</strong>tensity<strong>and</strong> improved g-detection efficiency, for 70m Ni<strong>the</strong> number <strong>of</strong> counts <strong>in</strong> <strong>the</strong> correspond<strong>in</strong>g g-rayl<strong>in</strong>es was about 400 times higher than <strong>in</strong> <strong>the</strong> previouswork.In <strong>the</strong> present letter only results concern<strong>in</strong>g <strong>the</strong><strong>isomer</strong>ic state <strong>in</strong> 78 Zn are presented. A summary <strong>of</strong><strong>the</strong> measured gamma rays <strong>and</strong> half-lives for o<strong>the</strong>rnew <strong>isomer</strong>ic states observed <strong>in</strong> this experiment maybe found <strong>in</strong> Ref. wx 4 .<strong>The</strong> measured g-ray spectrum gated by <strong>the</strong> eventscorrespond<strong>in</strong>g to 78 Zn is shown <strong>in</strong> Fig. 1. Thisspectrum represents <strong>the</strong> sum <strong>of</strong> spectra measured byall Ge-detectors. Four pronounced peaks at <strong>the</strong> energies<strong>of</strong> 144.7Ž. 5 , 729.6Ž. 5 , 889.9Ž. 5 <strong>and</strong> 908.3Ž.5keV are clearly observed. When corrected for <strong>the</strong>detection efficiency <strong>and</strong> <strong>in</strong>ternal conversiona Ž E2;144.7keV.tots0.165, all <strong>the</strong> peaks have <strong>the</strong>same <strong>in</strong>tensity <strong>and</strong> half-life <strong>and</strong> <strong>the</strong> correspond<strong>in</strong>gg-rays are found to be <strong>in</strong> co<strong>in</strong>cidence. From <strong>the</strong>seexperimental observables <strong>the</strong> E2 multipolarity wasdeduced for <strong>the</strong> 144.7 keV transition. <strong>The</strong> assignment<strong>of</strong> <strong>the</strong> E2 multipolarity to three o<strong>the</strong>r transitionscomes from <strong>the</strong> <strong>in</strong>tensity balance <strong>and</strong> systematicsdiscussed below. <strong>The</strong> time decay pattern <strong>of</strong> <strong>the</strong><strong>isomer</strong>ic transition, summed over four g-rays isshown <strong>in</strong> <strong>the</strong> <strong>in</strong>set <strong>of</strong> Fig. 1. An exponential x 2 fitto <strong>the</strong> experimental histogram gives a half-life value<strong>of</strong> 319Ž.9 ns. <strong>The</strong> g-ray energies <strong>and</strong> <strong>the</strong> half-lifemeasured by means <strong>of</strong> <strong>the</strong> much faster BaF2crystalsare also <strong>in</strong> agreement with those found us<strong>in</strong>g <strong>the</strong>germanium detectors.<strong>The</strong> low energy g-ray at 144.7Ž.5 keV was assumedto correspond to <strong>the</strong> primary <strong>isomer</strong>ic transi-Fig. 1. <strong>The</strong> g-ray energy spectrum <strong>of</strong> <strong>the</strong> <strong>isomer</strong>ic state <strong>in</strong> 78 Zn.<strong>The</strong> decay curve summed over <strong>the</strong> four observed transitions isshown <strong>in</strong> <strong>the</strong> <strong>in</strong>set.78tion <strong>in</strong> Zn. <strong>The</strong> assignment <strong>of</strong> <strong>the</strong> 729.6Ž.5 keVg-ray to <strong>the</strong> 2 q 0 q transition as well as I p s8 qassignment to <strong>the</strong> <strong>isomer</strong>ic state comes from <strong>the</strong>systematics <strong>of</strong> <strong>the</strong> 8 q <strong>isomer</strong>s <strong>in</strong> <strong>the</strong> neighbour<strong>in</strong>gnuclei as shown <strong>in</strong> Fig. 2. Though go<strong>in</strong>g from 80 Ge78towards Zn an <strong>in</strong>crease <strong>of</strong> EŽ2 q . is expected, avalue <strong>of</strong> about 890 or 908 keV seems to be too high.From <strong>the</strong> EŽ2q . ratios <strong>in</strong> <strong>the</strong> above mentioned valencemirrors 98 Cd – 100 48 50 48 Cd52<strong>and</strong> correspond<strong>in</strong>g50,52 52,54 132,134 208,210pairs Ti, Fe, Te, <strong>and</strong> Po w5,14x<strong>the</strong> latter assignment would imply EŽ2 q , 76 Ni .,1250keV, EŽ2 q , 70 Ni. wx 3 . This appears too high, as70 76from Ni towards Ni an appreciable drop <strong>of</strong> EŽ2q .due to reduced pair<strong>in</strong>g <strong>in</strong> <strong>the</strong> ground state is exwx5 <strong>and</strong> Ns126 w14xisotones.pected, as observed <strong>in</strong> Ns50<strong>The</strong> only <strong>in</strong>formation previously available on excitedlevels <strong>of</strong> 78 Zn comes from <strong>the</strong> b-decay <strong>of</strong>78Cuw15 x. However, <strong>the</strong> 737 keV g-ray, assignedw xq qtentatively <strong>in</strong> Ref. 15 to <strong>the</strong> 2 0 transition <strong>in</strong>


216( )J.M. Daugas et al.rPhysics Letters B 476 2000 213–218Fig. 2. Systematics <strong>of</strong> <strong>the</strong> 8 q <strong>isomer</strong>ic states <strong>in</strong> <strong>the</strong> neutron-richNs48 isotones. <strong>The</strong> proposed level scheme <strong>of</strong> 78 Zn is from <strong>the</strong>80 82present work, those <strong>of</strong> Ge <strong>and</strong> Se from Ref. w22x<strong>and</strong> <strong>the</strong>o<strong>the</strong>rs from Ref. w14 x. <strong>The</strong> level energies are <strong>in</strong> keV. <strong>The</strong> assignment<strong>of</strong> <strong>the</strong> 2 q <strong>and</strong> 4 q energies <strong>in</strong> 78 Zn is based on systematics.See text for details.78 Zn, has an energy about 7 keV higher than thatmeasured <strong>in</strong> <strong>the</strong> present work.It should be mentioned that as <strong>the</strong> above assign-Ž.q qment <strong>of</strong> <strong>the</strong> 729.6 5 keV g-ray to <strong>the</strong> 2 0transition is based on <strong>the</strong> systematics, o<strong>the</strong>r valuesq 78for <strong>the</strong> 2 energy <strong>in</strong> Zn, namely 889.9Ž.5 keV or908.3Ž.5 keV, can not be completely ruled out. Also,<strong>the</strong> order <strong>of</strong> <strong>the</strong> 889.9Ž. 5 keV <strong>and</strong> 908.3Ž.5 keVtransitions <strong>in</strong> 78 Zn rema<strong>in</strong>s uncerta<strong>in</strong>. However, <strong>the</strong>seuncerta<strong>in</strong>ties do not change f<strong>in</strong>al conclusions <strong>of</strong> <strong>the</strong>present work.An I p s8 q assignment to <strong>the</strong> <strong>isomer</strong>ic state is <strong>the</strong>most probable for reasons similar to those expla<strong>in</strong>edwxq 98<strong>in</strong> Ref. 5 for <strong>the</strong> case <strong>of</strong> <strong>the</strong> 8 <strong>isomer</strong> <strong>in</strong> Cd.That implies that <strong>the</strong> 6 q <strong>and</strong> 8 q states are predom<strong>in</strong>antlyneutron hole states <strong>of</strong> configuration g y2 9r2,q qwhile <strong>the</strong> 0 –4 states are mixed with Ž fp. 20y4 configurations.Thus <strong>the</strong> 6 q <strong>and</strong> 8 q states are fairly pureneutron hole states. <strong>The</strong>re are <strong>of</strong> course o<strong>the</strong>r possibilities<strong>of</strong> coupl<strong>in</strong>g neutrons toge<strong>the</strong>r with protons to6 q <strong>and</strong> 8 q states, but <strong>the</strong>se configurations are notexpected to be mixed <strong>in</strong> strongly as particles <strong>and</strong>holes do not overlap much <strong>in</strong> space <strong>and</strong> <strong>the</strong>refore<strong>the</strong>ir <strong>in</strong>teraction rema<strong>in</strong>s small.Assum<strong>in</strong>g configurations n g y29r2 <strong>the</strong> experimentalŽq q. Ž .2value <strong>of</strong> B E2;8 6 s 24.0 11 e fm 4Ž1.21Ž 5..78W.u. for Zn, corresponds to <strong>the</strong> neutron effectivecharge <strong>of</strong> e s1.25Ž.n 2 e, if harmonic oscillator waveŽ .1r6functions with bs " rMv s1.01 A s2.09 fmare used. This is ra<strong>the</strong>r large <strong>in</strong> comparison to e n sŽq1.0e needed to reproduce <strong>the</strong> correspond<strong>in</strong>g B E2;<strong>8q</strong>.70Žy 6 <strong>in</strong> Ni <strong>and</strong> <strong>the</strong> B E2;17r2 13r2 y. <strong>in</strong>69 Ni <strong>in</strong> a shell model calculation <strong>in</strong> <strong>the</strong> 2p 3r 2, 1f 5r 2 ,2p , 1g neutron space w16 x1r 2 9r 2. <strong>The</strong>refore we haveextended <strong>the</strong>se calculations <strong>in</strong>to <strong>the</strong> proton spaceus<strong>in</strong>g <strong>the</strong> realistic <strong>in</strong>teraction deduced by S<strong>in</strong>atkas etal. w17 x. Start<strong>in</strong>g from experimental s<strong>in</strong>gle particleenergies <strong>in</strong> <strong>the</strong> 56 Ni neighbors 57 Ni <strong>and</strong> 57 Cu, wehave adjusted <strong>the</strong>m to reproduce <strong>the</strong> neutron <strong>and</strong>proton s<strong>in</strong>gle particle states at <strong>and</strong> beyond <strong>the</strong> Ns4068 69wx69 – 73subshell <strong>in</strong> Ni, namely Ni 3 <strong>and</strong> Cu w18 x.This is justified by <strong>the</strong> well known deficiency <strong>of</strong>realistic <strong>in</strong>teractions with respect to <strong>the</strong> monopoleterms, which can be absorbed <strong>in</strong> a shift <strong>of</strong> s<strong>in</strong>gleparticle energies with <strong>in</strong>creas<strong>in</strong>g shell occupancy.This results <strong>in</strong> <strong>the</strong> relative s<strong>in</strong>gle particle energiesrelative to a 78 Ni core given <strong>in</strong> <strong>the</strong> Table 1. <strong>The</strong>results <strong>of</strong> <strong>the</strong> calculation Ž A.are shown <strong>in</strong> Fig. 3.For comparison <strong>and</strong> to illum<strong>in</strong>ate <strong>the</strong> <strong>in</strong>fluence <strong>of</strong>different shell model approaches to <strong>the</strong> monopoleproblem, Fig. 3 also shows <strong>the</strong> results <strong>of</strong> a shellmodel calculation derived from an overall fit <strong>of</strong> <strong>the</strong>monopole terms along <strong>the</strong> Zs28 <strong>and</strong> Ns50 cha<strong>in</strong>sw19,20 x. <strong>The</strong> start<strong>in</strong>g po<strong>in</strong>t is a realistic <strong>in</strong>teractionfrom <strong>the</strong> Oslo group. <strong>The</strong> <strong>in</strong>teraction was derived fora 56 Ni core <strong>and</strong> <strong>the</strong> details <strong>of</strong> <strong>the</strong> method are disw21x. <strong>The</strong> s<strong>in</strong>gle particle energies arecussed <strong>in</strong> Ref.taken from 57 Ni to be 0.0, 0.77, 1.11 <strong>and</strong> 3.0 MeVfor <strong>the</strong> p 3r 2, f 5r 2, p1r 2 <strong>and</strong> g9r 2 orbitals. <strong>The</strong>evolution <strong>of</strong> <strong>the</strong> mean field through <strong>the</strong> monopoleTable 1S<strong>in</strong>gle proton particle <strong>and</strong> neutron hole energies <strong>of</strong> <strong>the</strong> 78 Ni coreŽ . Ž .79 77used <strong>in</strong> <strong>the</strong> shell model calculations A <strong>and</strong> B for Cu <strong>and</strong> Ni2p3r 2 1f5r 2 2p1r 2 1g9r 2Calculation A B A B A B A B79 Cu 1.34 0.30 0 0 3.33 1.77 3.61 3.0177 Ni 4.52 1.54 5.42 4.84 2.23 1.06 0 0


( )J.M. Daugas et al.rPhysics Letters B 476 2000 213–218 21778 mFig. 3. Deduced decay scheme <strong>of</strong> Zn compared to <strong>the</strong> predictions <strong>of</strong> <strong>the</strong> shell model Ž A <strong>and</strong> B .. <strong>The</strong> levels <strong>and</strong> transition energies are <strong>in</strong>keV. <strong>The</strong> relative g-ray <strong>in</strong>tensities, were normalized to <strong>the</strong> 729.6 keV transition. <strong>The</strong> energy <strong>of</strong> <strong>the</strong> 2 q <strong>and</strong> 4 q levels is based onsystematics. See text for details.terms <strong>of</strong> <strong>the</strong> <strong>in</strong>teraction is directly connected to <strong>the</strong>s<strong>in</strong>gle particle <strong>and</strong> s<strong>in</strong>gle hole energies <strong>in</strong> Table 1.<strong>The</strong> spectra A <strong>and</strong> B are ra<strong>the</strong>r similar <strong>and</strong> bothcalculations reproduce <strong>the</strong> <strong>isomer</strong>ism <strong>of</strong> <strong>the</strong> 8 q6 q transition. Us<strong>in</strong>g a polarisation charge <strong>of</strong> des0.5e for both protons <strong>and</strong> neutrons BŽ E2.values <strong>of</strong>1.47 W.u. <strong>and</strong> 1.06 W.u. are calculated for models A<strong>and</strong> B, respectively, <strong>in</strong> good agreement with <strong>the</strong>experimental value 1.21Ž.5 W.u. Both <strong>in</strong>teractionsalso reproduce <strong>the</strong> experimental level schemes <strong>and</strong>Ž .qB E2 values for o<strong>the</strong>r known 8 Ns48 <strong>isomer</strong>sw22xprov<strong>in</strong>g <strong>the</strong> adequacy <strong>of</strong> <strong>the</strong> monopole correctionapplied to <strong>the</strong> realistic <strong>in</strong>teraction. Thus <strong>the</strong>effective polarisation charges <strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity <strong>of</strong> 78 Niseem to be close to st<strong>and</strong>ard ones.In conclusion we have observed for <strong>the</strong> first timean 8 q <strong>isomer</strong>ic state <strong>in</strong> 78 Zn. This result represents<strong>the</strong> closest approach to <strong>the</strong> <strong>doubly</strong>-<strong>magic</strong> nucleus78 Ni made so far <strong>in</strong> g-spectroscopy studies. From <strong>the</strong>comparison <strong>of</strong> <strong>the</strong> measured transition energies <strong>and</strong><strong>the</strong> BŽ E2.value with shell model calculations <strong>the</strong>first spectroscopic <strong>in</strong>formation <strong>in</strong> this region <strong>of</strong> <strong>the</strong>chart <strong>of</strong> nuclei has been ga<strong>in</strong>ed. <strong>The</strong> shell modelcalculation seems to describe correctly <strong>the</strong> observed<strong>isomer</strong>ic state with <strong>the</strong> st<strong>and</strong>ard neutron <strong>and</strong> protonpolarisation charge <strong>of</strong> 0.5e. Thus, <strong>in</strong> <strong>the</strong> presentwork, <strong>the</strong> first experimental evidence for <strong>the</strong> persistence<strong>of</strong> <strong>the</strong> Ns50 shell gap <strong>the</strong> vic<strong>in</strong>ity <strong>of</strong> <strong>the</strong> 78 Nihas been obta<strong>in</strong>ed.AcknowledgementsWe are grateful to <strong>the</strong> technical support providedto us by staff <strong>of</strong> <strong>the</strong> GANIL facility. This work hasbeen partially supported by <strong>the</strong> POLONIUM projectN.98275, KBN grant N.2P03B03615, DOE contractDE-AC05-96OR22464, Alliance grant N.98029 betweenUniversity <strong>of</strong> Surrey <strong>and</strong> GANIL <strong>and</strong> byEPSRCŽ UK ..Referenceswx 1 Ch. Engelmann et al., Z. Phys. A 352 Ž 1995.351.wx 2 M. Bernas et al., Nucl. Phys. A 616 Ž 1997.352c.wx 3 R. Grzywacz et al., Phys. Rev. Lett. 81 Ž 1998.766.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!