11.07.2015 Views

Phylogeny and Molecular Evolution of the Green Algae - Phycology ...

Phylogeny and Molecular Evolution of the Green Algae - Phycology ...

Phylogeny and Molecular Evolution of the Green Algae - Phycology ...

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

34 F. LELIAERT ET AL.Cocquyt, E., Verbruggen, H., Leliaert, F., <strong>and</strong> De Clerck, O. 2010b. <strong>Evolution</strong><strong>and</strong> cytological diversification <strong>of</strong> <strong>the</strong> green seaweeds (Ulvophyceae). Mol.Biol. Evol. 27: 2052–2061.Cocquyt, E., Verbruggen, H., Leliaert, F., Zechman, F., Sabbe, K., <strong>and</strong> De Clerck,O. 2009. Gain <strong>and</strong> loss <strong>of</strong> elongation factor genes in green algae. BMC Evol.Biol. 9: art no. 39.Colbath, G. K. 1983. Fossil prasinophycean phycomata (Chlorophyta) from <strong>the</strong>Silurian Bainbridge formation, Missouri, USA. Phycologia 22: 249–265.Cook, M. E. 2004a. Cytokinesis in Coleochaete orbicularis (Charophyceae):An ancestral mechanism inherited by plants. Am. J. Bot. 91: 313–320.Cook, M. E. 2004b. Structure <strong>and</strong> asexual reproduction <strong>of</strong> <strong>the</strong> enigmatic charophyceangreen alga Entransia fimbriata (Klebsormidiales, Charophyceae). J.Phycol. 40: 424–431.Countway, P. D. <strong>and</strong> Caron, D. A. 2006. Abundance <strong>and</strong> distribution <strong>of</strong> Ostreococcussp. in <strong>the</strong> San Pedro Channel, California, as revealed by quantitativePCR. Appl. Environ. Microbiol. 72: 2496–2506.Courties, C., Vaquer, A., Troussellier, M., Lautier, J., Chretiennot-Dinet, M.J., Neveux, J., Machado, C., <strong>and</strong> Claustre, H. 1994. Smallest eukaryoticorganism. Nature 370: 255.Dagan, T. <strong>and</strong> Martin, W. 2009a. Getting a better picture <strong>of</strong> microbial evolutionen route to a network <strong>of</strong> genomes. Philos. Trans. R. Soc. Lond. B Biol. Sci.364: 2187–2196.Dagan, T. <strong>and</strong> Martin, W. 2009b. Seeing green <strong>and</strong> red in diatom genomes.Science 324: 1651–1652.Daugbjerg, N., Moestrup, Ø., <strong>and</strong> Arct<strong>and</strong>er, P. 1994. <strong>Phylogeny</strong> <strong>of</strong> <strong>the</strong> genusPyramimonas (Prasinophyceae, Chlorophyta) inferred from <strong>the</strong> rbcL gene. J.Phycol. 30: 991–999.Daugbjerg, N., Moestrup, Ø., <strong>and</strong> Arct<strong>and</strong>er, P. 1995. <strong>Phylogeny</strong> <strong>of</strong> genera <strong>of</strong>Prasinophyceae <strong>and</strong> Pedinophyceae (Chlorophyta) deduced from molecularanalysis <strong>of</strong> <strong>the</strong> rbcL gene. Phycol. Res. 43: 203–213.De Bodt, S., Maere, S., <strong>and</strong> Van de Peer, Y. 2005. Genome duplication <strong>and</strong> <strong>the</strong>origin <strong>of</strong> angiosperms. Trends Ecol. Evol. 20: 591–597.de Cambiaire, J. C., Otis, C., Lemieux, C., <strong>and</strong> Turmel, M. 2006. The completechloroplast genome sequence <strong>of</strong> <strong>the</strong> chlorophycean green alga Scenedesmusobliquus reveals a compact gene organization <strong>and</strong> a biased distribution <strong>of</strong>genes on <strong>the</strong> two DNA str<strong>and</strong>s. BMC Evol. Biol. 6: art no. 37.de Cambiaire, J. C., Otis, C., Turmel, M., <strong>and</strong> Lemieux, C. 2007. The chloroplastgenome sequence <strong>of</strong> <strong>the</strong> green alga Leptosira terrestris: multiple losses<strong>of</strong> <strong>the</strong> inverted repeat <strong>and</strong> extensive genome rearrangements within <strong>the</strong> Trebouxiophyceae.BMC Genomics 8: art no. 213.de Jesus, M. D., Tabatabai, F., <strong>and</strong> Chapman, D. J. 1989. Taxonomic distribution<strong>of</strong> copper-zinc superoxide dismutase in green algae <strong>and</strong> its phylogeneticimportance. J. Phycol. 25: 767–772.de Koning, A. P. <strong>and</strong> Keeling, P. J. 2004. Nucleus-encoded genes for plastidtargetedproteins in Helicosporidium: Functional diversity <strong>of</strong> a cryptic plastidin a parasitic alga. Eukaryotic Cell 3: 1198–1205.de Koning, A. P. <strong>and</strong> Keeling, P. J. 2006. The complete plastid genome sequence<strong>of</strong> <strong>the</strong> parasitic green alga Helicosporidium sp. is highly reduced <strong>and</strong>structured. BMC Biology 4: art no. 12.de Koning, A. P., Tartar, A., Boucias, D. G., <strong>and</strong> Keeling, P. J. 2005. Expressedsequence tag (EST) survey <strong>of</strong> <strong>the</strong> highly adapted green algal parasite, Helicosporidium.Protist 156: 181–190.De Smet, I., Voss, U., Lau, S., Wilson, M., Shao, N., Timme, R. E., Swarup, R.,Kerr, I., Hodgman, C., Bock, R., Bennett, M., Jurgens, G., <strong>and</strong> Beeckman,T. 2011. Unraveling <strong>the</strong> evolution <strong>of</strong> auxin signaling. Plant Physiol. 155:209–221.De Wever, A., Leliaert, F., Verleyen, E., Vanormelingen, P., Van der Gucht,K., Hodgson, D. A., Sabbe, K., <strong>and</strong> Vyverman, W. 2009. Hidden levels <strong>of</strong>phylodiversity in Antarctic green algae: fur<strong>the</strong>r evidence for <strong>the</strong> existence <strong>of</strong>glacial refugia. Proc. R. Soc. B Biol. Sci. 276: 3591–3599.Deason, T. R., Silva, P. C., Watanabe, S., <strong>and</strong> Floyd, G. L. 1991. Taxonomicstatus <strong>of</strong> <strong>the</strong> species <strong>of</strong> <strong>the</strong> green algal genus Neochloris. Plant Syst. Evol.177: 213–219.Delwiche, C. F. 1999. Tracing <strong>the</strong> thread <strong>of</strong> plastid diversity through <strong>the</strong> tapestry<strong>of</strong> life. Am. Nat. 154: S164–S177.Delwiche, C. F., Graham, L. E., <strong>and</strong> Thomson, N. 1989. Lignin-like compounds<strong>and</strong> sporopollenin in Coleochaete, an algal model for l<strong>and</strong> plant ancestry.Science 245: 399–401.Delwiche, C. F., Karol, K. G., Cimino, M. T., <strong>and</strong> Sytsma, K. J. 2002. <strong>Phylogeny</strong><strong>of</strong> <strong>the</strong> genus Coleochaete (Coleochaetales, Charophyta) <strong>and</strong> relatedtaxa inferred by analysis <strong>of</strong> <strong>the</strong> chloroplast gene rbcL. J. Phycol. 38: 394–403.Demir-Hilton, E., Sudek, S., Cuvelier, M. L., Gentemann, C. L., Zehr, J. P.,<strong>and</strong> Worden, A. Z. 2011. Global distribution patterns <strong>of</strong> distinct clades <strong>of</strong> <strong>the</strong>photosyn<strong>the</strong>tic picoeukaryote Ostreococcus. ISME Journal 5: 1095–1107.doi:10.1038/ismej.2010.209.Denboh, T., Hendrayanti, D., <strong>and</strong> Ichimura, T. 2001. Monophyly <strong>of</strong> <strong>the</strong> genusClosterium <strong>and</strong> <strong>the</strong> order Desmidiales (Charophyceae, Chlorophyta) inferredfrom nuclear small subunit rDNA data. J. Phycol. 37: 1063–1072.Derelle, E., Ferraz, C., Rombauts, S., Rouze, P., Worden, A. Z., et al. 2006.Genome analysis <strong>of</strong> <strong>the</strong> smallest free-living eukaryote Ostreococcus tauri unveilsmany unique features. Proc. Natl. Acad. Sci. U.S.A. 103: 11647–11652.Diez, B., Pedros-Alio, C., <strong>and</strong> Massana, R. 2001. Study <strong>of</strong> genetic diversity <strong>of</strong>eukaryotic picoplankton in different oceanic regions by small-subunit rRNAgene cloning <strong>and</strong> sequencing. Appl. Environ. Microbiol. 67: 2932–2941.Domozych, D. S., Lambiasse, L., Kiemle, S. N., <strong>and</strong> Gretz, M. R. 2009. Cellwalldevelopment <strong>and</strong> bipolar growth in <strong>the</strong> desmid Penium margaritaceum(Zygnematophyceae, Streptophyta). Asymmetry in a symmetric world. J.Phycol. 45: 879–893.Domozych, D. S., Serfis, A., Kiemle, S. N., <strong>and</strong> Gretz, M. R. 2007. The structure<strong>and</strong> biochemistry <strong>of</strong> charophycean cell walls: I. Pectins <strong>of</strong> Penium margaritaceum.Protoplasma 230: 99–115.Doolittle, W. E. 1998. You are what you eat: a gene transfer ratchet couldaccount for bacterial genes in eukaryotic nuclear genomes. Trends Genet. 14:307–311.Douzery, E. J. P., Snell, E. A., Bapteste, E., Delsuc, F., <strong>and</strong> Philippe, H. 2004.The timing <strong>of</strong> eukaryotic evolution: Does a relaxed molecular clock reconcileproteins <strong>and</strong> fossils? Proc. Natl. Acad. Sci. U.S.A. 101: 15386–15391.Drummond, C. S., Hall, J., Karol, K. G., Delwiche, C. F., <strong>and</strong> McCourt, R. M.2005. <strong>Phylogeny</strong> <strong>of</strong> Spirogyra <strong>and</strong> Sirogonium (Zygnematophyceae) basedon rbcL sequence data. J. Phycol. 41: 1055–1064.Duncan, L., Nishii, I., Harryman, A., Buckley, S., Howard, A., Friedman, N. R.,<strong>and</strong> Miller, S. M. 2007. The VARL gene family <strong>and</strong> <strong>the</strong> evolutionary origins<strong>of</strong> <strong>the</strong> master cell-type regulatory gene, regA,inVolvox carteri. J. Mol. Evol.65: 1–11.Dupuy, L., Mackenzie, J., <strong>and</strong> Hasel<strong>of</strong>f, J. 2010. Coordination <strong>of</strong> plant celldivision <strong>and</strong> expansion in a simple morphogenetic system. Proc. Natl. Acad.Sci. U.S.A. 107: 2711–2716.Eddie, B., Krembs, C., <strong>and</strong> Neuer, S. 2008. Characterization <strong>and</strong> growth responseto temperature <strong>and</strong> salinity <strong>of</strong> psychrophilic, halotolerant Chlamydomonassp. ARC isolated from Chukchi Sea ice. Mar. Ecol. Prog. Ser. 354:107–117.Eder, M., Tenhaken, R., Driouich, A., <strong>and</strong> Lütz-Meindl, U. 2008. Occurrence<strong>and</strong> characterization <strong>of</strong> arabinogalactan-like proteins <strong>and</strong> hemicelluloses inMicrasterias (Streptophyta). J. Phycol. 44: 1221–1234.Edgcomb, V. P., Kysela, D. T., Teske, A., Gomez, A. D., <strong>and</strong> Sogin, M. L.2002. Benthic eukaryotic diversity in <strong>the</strong> Guaymas Basin hydro<strong>the</strong>rmal ventenvironment. Proc. Natl. Acad. Sci. U.S.A. 99: 7658–7662.Eikrem, W. <strong>and</strong> Throndsen, J. 1990. The ultrastructure <strong>of</strong> Bathycoccus gen. nov.<strong>and</strong> Bathycoccus prasinos sp. nov., a nonmotile picoplanktonic alga (Chlorophyta,Prasinophyceae) from <strong>the</strong> Mediterranean <strong>and</strong> Atlantic. Phycologia 29:344–350.Elias, M. <strong>and</strong> Archibald, J. M. 2009. Sizing up <strong>the</strong> genomic footprint <strong>of</strong> endosymbiosis.BioEssays 31: 1273–1279.Elias, M. <strong>and</strong> Neustupa, J. 2009. Pseudomarvania, gen. nov. (Chlorophyta, Trebouxiophyceae),a new genus for “budding” subaerial green algae Marvaniaaerophytica Neustupa et Šejnohová <strong>and</strong>Stichococcus ampulliformis H<strong>and</strong>a.Fottea 9: 169–178.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!