11.07.2015 Views

Physiological and Behavioral Effects of Hyperinsulinism on Goldfish

Physiological and Behavioral Effects of Hyperinsulinism on Goldfish

Physiological and Behavioral Effects of Hyperinsulinism on Goldfish

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Biology 231Supplement#4<str<strong>on</strong>g>Physiological</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Behavioral</str<strong>on</strong>g> <str<strong>on</strong>g>Effects</str<strong>on</strong>g><str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Hyperinsulinism</str<strong>on</strong>g> <strong>on</strong> <strong>Goldfish</strong>OBJECTIVES1. To observe the rapid, pr<strong>on</strong>ounced effect(s)that horm<strong>on</strong>es can have <strong>on</strong> the body.2. To increase an underst<str<strong>on</strong>g>and</str<strong>on</strong>g>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> the value<str<strong>on</strong>g>and</str<strong>on</strong>g> significance <str<strong>on</strong>g>of</str<strong>on</strong>g> the body’s homeostaticmechanisms.MATERIALS<strong>Goldfish</strong>BeakersInsulinGlucose soluti<strong>on</strong> (20% recommended)The endocrine system is the sec<strong>on</strong>d majorc<strong>on</strong>trolling system <str<strong>on</strong>g>of</str<strong>on</strong>g> the body (the first is thenervous system). The role <str<strong>on</strong>g>of</str<strong>on</strong>g> the endocrinesystem is to alter the activity <str<strong>on</strong>g>of</str<strong>on</strong>g> body cellsprimarily through chemical changes inducedthrough the gl<str<strong>on</strong>g>and</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the endocrine system.These chemical “messengers” are referred to ashorm<strong>on</strong>es, <str<strong>on</strong>g>and</str<strong>on</strong>g> are typically released into theblood for transport throughout the body.The origin <str<strong>on</strong>g>of</str<strong>on</strong>g> the word “horm<strong>on</strong>e” is found in theGreek language with the meaning “to arouse”associated with the word. The body’s horm<strong>on</strong>esarouse the body’s tissues <str<strong>on</strong>g>and</str<strong>on</strong>g> cells by stimulatingchanges in their metabolic activity. Horm<strong>on</strong>es arequite specific. A given horm<strong>on</strong>e affects <strong>on</strong>ly thebiochemical activity <str<strong>on</strong>g>of</str<strong>on</strong>g> select organ or organsystems. Those tissues that resp<strong>on</strong>d to the effect<str<strong>on</strong>g>of</str<strong>on</strong>g> the horm<strong>on</strong>e are referred to as the targettissues or organs.The most widely understood relati<strong>on</strong>ship <str<strong>on</strong>g>of</str<strong>on</strong>g> theendocrine system with animal behavior is in thearea <str<strong>on</strong>g>of</str<strong>on</strong>g> reproductive behaviors, <str<strong>on</strong>g>and</str<strong>on</strong>g> we will beexamining the role <str<strong>on</strong>g>of</str<strong>on</strong>g> the reproductive horm<strong>on</strong>esin a future lab. There are many otherrelati<strong>on</strong>ships that exist between the endocrinesystem <str<strong>on</strong>g>and</str<strong>on</strong>g> animal behavior. One easilyobserved interacti<strong>on</strong> is seen in the study <str<strong>on</strong>g>of</str<strong>on</strong>g> thehorm<strong>on</strong>e insulin, <str<strong>on</strong>g>and</str<strong>on</strong>g> its effects <strong>on</strong> thehomeostatic maintenance <str<strong>on</strong>g>of</str<strong>on</strong>g> behaviors.Insulin, a horm<strong>on</strong>e produced by the pancreas todecrease blood glucose levels, is found invirtually all vertebrates. When food is c<strong>on</strong>sumed<str<strong>on</strong>g>and</str<strong>on</strong>g> digested, glucose molecules enter thebloodstream <str<strong>on</strong>g>and</str<strong>on</strong>g> if enough food is eaten in asmall period <str<strong>on</strong>g>of</str<strong>on</strong>g> time, elevati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> blood glucosecan occur. Without insulin, the levels <str<strong>on</strong>g>of</str<strong>on</strong>g> bloodglucose can reach such elevated levels that thereis great risk for cellular <str<strong>on</strong>g>and</str<strong>on</strong>g> tissue damage,especially within tissues <str<strong>on</strong>g>of</str<strong>on</strong>g> the nervous system.1


Likewise, too much insulin in the body will causeglucose levels to plummet below normal levels. Ifthe drop in insulin levels is not too severe, theorganism will experience mild symptoms <str<strong>on</strong>g>of</str<strong>on</strong>g>fatigue, anxiety, tremors, <str<strong>on</strong>g>and</str<strong>on</strong>g> hunger. However, ifthe drop in glucose through very high levels <str<strong>on</strong>g>of</str<strong>on</strong>g>insulin grows more extreme, the organism canexperience insulin shock. Insulin shock occurswhen the blood glucose levels drop to such lowlevels that the brain is no l<strong>on</strong>ger sufficientlyprovided with glucose <str<strong>on</strong>g>and</str<strong>on</strong>g> begins to malfuncti<strong>on</strong>.Symptoms <str<strong>on</strong>g>of</str<strong>on</strong>g> insulin shock include disorientati<strong>on</strong>,c<strong>on</strong>vulsi<strong>on</strong>s, unc<strong>on</strong>sciousness, <str<strong>on</strong>g>and</str<strong>on</strong>g> if leftuntreated will result in death. Fortunately, weshall see that insulin shock is easily reversed byproviding a rapidly metabolized form <str<strong>on</strong>g>of</str<strong>on</strong>g> glucoseto those affected.Many people with diabetes mellitus needinjecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> insulin to maintain blood glucosehomeostasis. Therefore it is easy for us to use thisavailable source <str<strong>on</strong>g>of</str<strong>on</strong>g> injectable insulin in behavioralexperiments in our laboratory. We shall usegoldfish to dem<strong>on</strong>strate the effects <str<strong>on</strong>g>of</str<strong>on</strong>g>hyperinsulinism <strong>on</strong> goldfish behavior. Since theacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> insulin is similar in all vertebrates, wecan make some generalized c<strong>on</strong>clusi<strong>on</strong>s about ourresults with many other species.There are three very distinct behavior patterns thatcan be observed in goldfish. One, mouth gapingbehavior, is an indicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the fishes’metabolism. As the metabolism <str<strong>on</strong>g>of</str<strong>on</strong>g> the fishincreases, the mouth gaping behavior increases ingoldfish. To observe mouth gaping behavior,researchers simply count the number <str<strong>on</strong>g>of</str<strong>on</strong>g> times afish opens its mouth in a set time frame. Asec<strong>on</strong>d behavior, operculum movement, is abehavior that signifies oxygen c<strong>on</strong>sumpti<strong>on</strong> in theanimal. As the number <str<strong>on</strong>g>of</str<strong>on</strong>g> operculum movementsincreases in a given unit <str<strong>on</strong>g>of</str<strong>on</strong>g> time, it is associatedwith decreased overall oxygen within the body.The operculum movements are an attempt by thefish to increase the flow <str<strong>on</strong>g>of</str<strong>on</strong>g> water through the gillsto increase oxygen absorpti<strong>on</strong>. The third behavioreasily viewed in the goldfish is pectoral finmovement behavior. The movement <str<strong>on</strong>g>of</str<strong>on</strong>g> thesefins, the “arms” <str<strong>on</strong>g>of</str<strong>on</strong>g> the fish, are vital for balance,directi<strong>on</strong>al movements, <str<strong>on</strong>g>and</str<strong>on</strong>g> maintenance <str<strong>on</strong>g>of</str<strong>on</strong>g>positi<strong>on</strong> in the fish. The number <str<strong>on</strong>g>and</str<strong>on</strong>g> quality <str<strong>on</strong>g>of</str<strong>on</strong>g>the fin movement signifies the overall physicalstate <str<strong>on</strong>g>of</str<strong>on</strong>g> the fish.Experimental Materialsgoldfishinsulinsyringes <str<strong>on</strong>g>and</str<strong>on</strong>g> needlesicebeakerswhite papertimersglucose soluti<strong>on</strong>Experimental Procedure —Normal Behaviors in the<strong>Goldfish</strong>What is the normal behavior pattern in goldfish?1. Obtain a beaker <str<strong>on</strong>g>and</str<strong>on</strong>g> fill it with 1–1.5 cm <str<strong>on</strong>g>of</str<strong>on</strong>g>water.2. Place <strong>on</strong>e goldfish in the beaker. Allow itto acclimate for 5 minutes.3. Begin observing the behavioral patterns <str<strong>on</strong>g>of</str<strong>on</strong>g>the fish in the following order: mouthgaping, operculum movements, pectoral finmovements. Observe each behavior for aperiod <str<strong>on</strong>g>of</str<strong>on</strong>g> two minutes. Have each member<str<strong>on</strong>g>of</str<strong>on</strong>g> your group record these behaviors (thiscan be simultaneous or c<strong>on</strong>secutive viewing... you as a group must decide <str<strong>on</strong>g>and</str<strong>on</strong>g> remain2


c<strong>on</strong>sistent) <str<strong>on</strong>g>and</str<strong>on</strong>g> take an average <str<strong>on</strong>g>of</str<strong>on</strong>g> each set <str<strong>on</strong>g>of</str<strong>on</strong>g>data collected by individuals in your group.This average for a given behavior willrepresent the normal rate <str<strong>on</strong>g>of</str<strong>on</strong>g> each <str<strong>on</strong>g>of</str<strong>on</strong>g> thesebehaviors in the goldfish.3. Record the temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> the water inwhich the fish is residing.4. Repeat the above steps for two other fish.Experimental Procedure —Behaviors in the <strong>Goldfish</strong>Exposed to InsulinWhat effect will high insulin levels have <strong>on</strong> thegoldfish <str<strong>on</strong>g>and</str<strong>on</strong>g> its behaviors?1. Into the beaker <str<strong>on</strong>g>of</str<strong>on</strong>g> fish you examined in theexperiment above, inject 1 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> insulin intothe water surrounding the fish.2. Repeat steps 3 & 4 above (in experiment 1)<str<strong>on</strong>g>and</str<strong>on</strong>g> record the behaviors <str<strong>on</strong>g>of</str<strong>on</strong>g> the fish.3. Pour into the beaker, 50 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> sucrosesoluti<strong>on</strong>. After waiting 2 minutes, againrecord the behaviors <str<strong>on</strong>g>of</str<strong>on</strong>g> the fish.Experimental Procedure —Behaviors in the <strong>Goldfish</strong>Exposed to Insulin <str<strong>on</strong>g>and</str<strong>on</strong>g> ColdWhat effect will high insulin levels have <strong>on</strong> thegoldfish <str<strong>on</strong>g>and</str<strong>on</strong>g> its behaviors if the fish are in a coldenvir<strong>on</strong>ment? How will this compare to the roomtemperature envir<strong>on</strong>ment?1. Recreate the situati<strong>on</strong> outlined in the firstexperiment in steps 1 & 2. However, thistime, place the beaker in a bowl c<strong>on</strong>taining aquantity <str<strong>on</strong>g>of</str<strong>on</strong>g> ice.2. Repeat the steps outlined in experiment two(steps 1–3) for insulin exposure.3


QUESTIONS1. Why is it important to have multiple observati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the same fish that you average?2. What c<strong>on</strong>clusi<strong>on</strong>s can you draw from your results about the acti<strong>on</strong> that insulin has <strong>on</strong> each <str<strong>on</strong>g>of</str<strong>on</strong>g> thebehaviors recorded in the fish?3. To generalize, what can you say about the overall behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> the fish in each <str<strong>on</strong>g>of</str<strong>on</strong>g> the threeexperiments? How can you compare <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>trast them?4


4. How has cold altered the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> insulin <strong>on</strong> the fish? How has cold altered the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> recoveryin the fish?5. Create <strong>on</strong>e additi<strong>on</strong>al study you feel would be a beneficial additi<strong>on</strong> to this laboratory exercise.5

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!