26.11.2012 Views

Origin of Fractal Branching Complexity in the Lung - Department of ...

Origin of Fractal Branching Complexity in the Lung - Department of ...

Origin of Fractal Branching Complexity in the Lung - Department of ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

major and m<strong>in</strong>or branch<strong>in</strong>g pathways. Equation 5 def<strong>in</strong>es a f<strong>in</strong>e-gra<strong>in</strong> diameter scal<strong>in</strong>g <strong>of</strong> <strong>the</strong><br />

power-law, where Rd leads to an RM such that (1< RM ≤2).<br />

Equation 6 def<strong>in</strong>es a coarse-gra<strong>in</strong><br />

−1<br />

diameter scal<strong>in</strong>g <strong>of</strong> <strong>the</strong> power-law, where γRd > Rd yields Rm ≥ 2. These branch<strong>in</strong>g relationships<br />

account for l<strong>in</strong>ear self-similar power-law behavior only, whereas power-laws with log-periodic<br />

branch<strong>in</strong>g can be observed. Such alternative behavior can be accounted for by a complex-valued<br />

fractal dimension(27).<br />

Conversely, self-similar power-law behavior <strong>in</strong> biological networks corresponds to a<br />

fractal branch<strong>in</strong>g process hav<strong>in</strong>g two network <strong>in</strong>terpretations. Eqs. 5 and 6 correspond to two<br />

classes <strong>of</strong> equivalent branch<strong>in</strong>g networks (14), which imply different connective properties <strong>in</strong><br />

shap<strong>in</strong>g <strong>the</strong> forces <strong>in</strong>volved <strong>in</strong> self-organization (4). F<strong>in</strong>e-gra<strong>in</strong>ed diameter scal<strong>in</strong>g, (R d with R M <<br />

2) represents <strong>the</strong> connective branch<strong>in</strong>g properties <strong>of</strong> an equivalent asymmetric bifurcat<strong>in</strong>g<br />

−1<br />

network with a constant D(27). Alternatively, coarse-gra<strong>in</strong>ed diameter scal<strong>in</strong>g (g Rd with Rm > 2)<br />

represents <strong>the</strong> branch<strong>in</strong>g properties <strong>of</strong> an equivalent symmetric non-bifurcat<strong>in</strong>g branch<strong>in</strong>g network<br />

without connectivity, possess<strong>in</strong>g fewer generations than <strong>the</strong> related asymmetric network for <strong>the</strong><br />

same range <strong>of</strong> diameters (14). There are several methods for summariz<strong>in</strong>g <strong>the</strong> connective and<br />

non-connective branch<strong>in</strong>g properties, R d, R m, R M and X=D 0 <strong>in</strong> biological branch<strong>in</strong>g networks.<br />

Such methods are useful, but artificial, be<strong>in</strong>g based on different topological approaches for vessel<br />

classification, such as <strong>the</strong> Horsfield (R M ≈ R H< 2) and <strong>the</strong> Strahler (R m ≈ R S> 2), or on rank<strong>in</strong>g<br />

schemas(26). If <strong>the</strong> underly<strong>in</strong>g branch<strong>in</strong>g process is a strictly self-similar branch<strong>in</strong>g fractal, <strong>the</strong>n it<br />

does not matter what method is used to characterize X=D 0 (14). However, biological branch<strong>in</strong>g<br />

networks do not branch <strong>in</strong>def<strong>in</strong>itely (7), nor necessarily with <strong>the</strong> same bifurcation design fill<strong>in</strong>g<br />

space(4, 7). Therefore, <strong>the</strong> nature <strong>of</strong> <strong>the</strong> power-law behavior is not sufficient evidence <strong>of</strong> a fractal<br />

condition(15, 16). Also necessary for establish<strong>in</strong>g a fractal condition is ei<strong>the</strong>r evidence <strong>of</strong> self-<br />

similarity <strong>in</strong> scale-<strong>in</strong>variant l<strong>in</strong>ear power-law or a self-aff<strong>in</strong>e scal<strong>in</strong>g condition <strong>in</strong> a non-l<strong>in</strong>ear<br />

scale-vary<strong>in</strong>g power-law(14). Such conditions are evaluated via a convergence test, accomplished<br />

by <strong>the</strong> evaluation <strong>of</strong> <strong>the</strong> multifractal spectrum (Figure 1) which tests for a fractal or non-fractal<br />

condition <strong>in</strong> <strong>the</strong> limit as branch<strong>in</strong>g becomes <strong>in</strong>f<strong>in</strong>ite (23).<br />

M ultifractal basis <strong>of</strong> bifurcation design.<br />

A mono-fractal network is not necessarily an optimal form that m<strong>in</strong>imizes energy<br />

dissipation <strong>in</strong> fluid transport(17-19) and does not account for <strong>the</strong> observation that bifurcation<br />

design <strong>in</strong> biological networks exhibits a distribution <strong>of</strong> values(4-5, 8). An additional symmetry-<br />

7

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!