Rise and fall of the Paratethys Sea during the Messinian Salinity Crisis

Rise and fall of the Paratethys Sea during the Messinian Salinity Crisis

Rise and fall of the Paratethys Sea during the Messinian Salinity Crisis

  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Earth <strong>and</strong> Planetary Science Letters 290 (2010) 183–191Contents lists available at ScienceDirectEarth <strong>and</strong> Planetary Science Lettersjournal homepage: www.elsevier.com/locate/epsl<strong>Rise</strong> <strong>and</strong> <strong>fall</strong> <strong>of</strong> <strong>the</strong> <strong>Paratethys</strong> <strong>Sea</strong> <strong>during</strong> <strong>the</strong> <strong>Messinian</strong> <strong>Salinity</strong> <strong>Crisis</strong>W. Krijgsman a, ⁎, M. Stoica b , I. Vasiliev a , V.V. Popov ca Paleomagnetic Laboratory ‘Fort Ho<strong>of</strong>ddijk’, Utrecht University, Budapestlaan 17, 3584 CD, Utrecht, The Ne<strong>the</strong>rl<strong>and</strong>sb Department <strong>of</strong> Palaeontology, Faculty <strong>of</strong> Geology <strong>and</strong> Geophysics, University <strong>of</strong> Bucharest, Bălcescu Bd. 1, 010041, Romaniac VNIGRI, All-Russia Petroleum Research Exploration Institute, St. Petersburg, RussiaarticleinfoabstractArticle history:Received 9 July 2009Received in revised form 16 November 2009Accepted 8 December 2009Available online 3 January 2010Editor: P. DeMenocalKeywords:<strong>Paratethys</strong>Mediterranean<strong>Messinian</strong> <strong>Salinity</strong> <strong>Crisis</strong>magnetostratigraphyfloodingsea level changeExtremely thick evaporite units were deposited <strong>during</strong> <strong>the</strong> so-called <strong>Messinian</strong> <strong>Salinity</strong> <strong>Crisis</strong> (MSC: 5.96–5.33 Ma) in a deep Mediterranean basin that was progressively disconnected from <strong>the</strong> Atlantic Ocean. A crucial,but still poorly understood component in <strong>Messinian</strong> evaporite models is <strong>the</strong> connectivity between Mediterranean<strong>and</strong> <strong>Paratethys</strong>, i.e. <strong>the</strong> former Black <strong>Sea</strong> domain. Inadequate stratigraphic correlations <strong>and</strong> insufficient agecontrol for <strong>Paratethys</strong> sediments have so far hampered a thorough underst<strong>and</strong>ing <strong>of</strong> hydrological fluxes <strong>and</strong>paleoenvironmental changes. Here, we present a new chronology for <strong>the</strong> Eastern <strong>Paratethys</strong> by integratingbiostratigraphic <strong>and</strong> paleomagnetic data from Mio–Pliocene sedimentary successions <strong>of</strong> Romania <strong>and</strong> Russia. Weshow that a major flooding event from <strong>the</strong> Mediterranean surged <strong>the</strong> <strong>Paratethys</strong> basins at <strong>the</strong> Maeotian–Pontianboundary, 6.04 million years ago. This indicates that sea level in both Mediterranean <strong>and</strong> <strong>Paratethys</strong> was high at<strong>the</strong> beginning <strong>of</strong> <strong>the</strong> MSC. We argue in favor <strong>of</strong> changes in <strong>Paratethys</strong>–Mediterranean connectivity to initiate <strong>the</strong>MSC in combination with elusive tectonic processes in <strong>the</strong> Gibraltar arc. A subsequent <strong>fall</strong> <strong>of</strong> Paratethyan waterlevel closely coincides to <strong>the</strong> Mediterranean isolation-event, corresponding in age to <strong>the</strong> glacial cycles TG12–14(5.60–5.50 Myr). In <strong>the</strong> latest <strong>Messinian</strong>, a major climate change towards more humid conditions produced apositive hydrological balance <strong>and</strong> likely a transgression in <strong>the</strong> <strong>Paratethys</strong>, although our stratigraphic resolutioncannot exclude a possible relation to <strong>the</strong> Pliocene flooding <strong>of</strong> <strong>the</strong> Mediterranean here.© 2009 Elsevier B.V. All rights reserved.1. IntroductionMajor sea level fluctuations, causing dramatic paleoenvironmentalchanges <strong>and</strong> related mass-extinctions, form an intricate part <strong>of</strong> Earthhistory (Hallam <strong>and</strong> Wignall, 1997). Renowned examples are <strong>the</strong>biblical flood <strong>of</strong> Noah <strong>and</strong> <strong>the</strong> <strong>Messinian</strong> <strong>Salinity</strong> <strong>Crisis</strong> (MSC) <strong>of</strong> <strong>the</strong>Mediterranean. Geological investigations indicated that a great delugesurged <strong>the</strong> Black <strong>Sea</strong> basin roughly 8000 years ago, rapidly raising <strong>the</strong>lake level by some 100 m (Ryan et al., 1997, 2003) so that civilizations<strong>and</strong> populations inhabiting <strong>the</strong> Black <strong>Sea</strong> shores may have suddenlydrowned (Ryan <strong>and</strong> Pitman, 1998). The sudden influx hypo<strong>the</strong>sis ishighly debated between geologists <strong>and</strong> archeologists (Aksu et al., 2002),but may also have occurred in late <strong>Messinian</strong> times (Hsü <strong>and</strong> Giovanoli,1979) when <strong>the</strong> Black <strong>Sea</strong> domain was part <strong>of</strong> <strong>the</strong> Eastern <strong>Paratethys</strong>(Fig. 1). During <strong>the</strong> <strong>Messinian</strong> (7.24–5.33 Ma), <strong>the</strong> Mediterraneanbecame progressively isolated from <strong>the</strong> Atlantic Ocean, triggeringwidespread precipitation <strong>of</strong> gypsum (5.96–5.6 Ma), massive saltdeposition (5.6–5.5 Ma), <strong>and</strong> a dramatic sea level lowering followedby brackish water environments <strong>of</strong> “Lago-Mare” (Lake <strong>Sea</strong>) facies (e.g.Hilgen et al., 2007; Krijgsman <strong>and</strong> Meijer, 2008; Roveri et al., 2008). Acatastrophic re-flooding from <strong>the</strong> Atlantic at <strong>the</strong> beginning <strong>of</strong> <strong>the</strong>⁎ Corresponding author. Tel.: +31 30 2531672.E-mail address: krijgsma@geo.uu.nl (W. Krijgsman).Pliocene (5.33 Ma) abruptly ended <strong>the</strong> salinity crisis by re-establishingopen marine conditions in <strong>the</strong> Mediterranean (Hsü et al., 1973).The hydrological flux from <strong>Paratethys</strong> to Mediterranean is a crucialcomponent in quantitative studies on paleocirculation patterns <strong>and</strong>precipitation models <strong>of</strong> evaporites (Meijer <strong>and</strong> Krijgsman, 2005;Flecker <strong>and</strong> Ellam, 2006), but connectivity between <strong>the</strong> two basins iscontroversial (Çagatay et al., 2006). Overspilling <strong>of</strong> <strong>Paratethys</strong> watersinto <strong>the</strong> Mediterranean has been argued to explain <strong>the</strong> presence <strong>of</strong>brackish water fauna in <strong>the</strong> Lago-Mare sediments (Cita et al., 1978),but a lowering <strong>of</strong> <strong>Paratethys</strong> levels <strong>during</strong> <strong>the</strong> <strong>Messinian</strong> event is alsosuggested (Hsü <strong>and</strong> Giovanoli, 1979). Seismic pr<strong>of</strong>iles <strong>of</strong> <strong>the</strong> Black <strong>Sea</strong>basin show evidence <strong>of</strong> deep canyon cutting, but <strong>the</strong> exactstratigraphic position differs; at <strong>the</strong> base <strong>of</strong> <strong>the</strong> Pontian Stage (Dinuet al., 2005) or intra-Pontian (Gillet et al., 2007). Sequencestratigraphic interpretations on a seismic transect from <strong>the</strong> westernDacian Basin also reveal significant sea level changes within <strong>the</strong>Pontian Stage (Leever et al., 2009). Seismic <strong>and</strong> borehole data from<strong>the</strong> Pannonian Basin show unconformities as well, but <strong>the</strong>se areinterpreted to have a regional tectonic origin <strong>and</strong> no relation to<strong>Messinian</strong> drawdown (Magyar <strong>and</strong> Sztanó, 2008). A concurrent baselevel drop has been proposed for <strong>the</strong> Caspian <strong>Sea</strong> (Reynolds et al.,1998; Popov et al., 2006), although numerical ages are poorly defined.<strong>Paratethys</strong> time scales comprise regional stages (e.g. Maeotian–Pontian–Dacian or Kimmerian within <strong>the</strong> Mio–Pliocene interval) <strong>and</strong>substages (e.g. Odessian–Portaferrian–Bosphorian within <strong>the</strong> Pontian)0012-821X/$ – see front matter © 2009 Elsevier B.V. All rights reserved.doi:10.1016/j.epsl.2009.12.020

186 W. Krijgsman et al. / Earth <strong>and</strong> Planetary Science Letters 290 (2010) 183–191Fig. 3. Ostracod distribution <strong>of</strong> <strong>the</strong> Râmnicu Sărat section in <strong>the</strong> east Carpathian foredeep <strong>of</strong> <strong>the</strong> Dacian Basin. The magnetostratigraphic pattern is after Vasiliev et al. (2004) <strong>and</strong> correlatesexcellently to <strong>the</strong> GTS. It allows high-resolution dating <strong>of</strong> <strong>the</strong> ostracod assemblages <strong>and</strong> related stages <strong>and</strong> substages. The resulting new ages <strong>of</strong> <strong>the</strong> (sub)stage boundaries are indicated.sediments indicating deposition in shallow water, probably on <strong>the</strong>lower shore face (Panaiotu et al., 2007). The Portaferrian thusrepresents a regressive event where <strong>the</strong> bathymetry <strong>of</strong> <strong>the</strong> DacianBasin decreased. In marginal settings, <strong>the</strong> rich Odessian ostracod faunaindicative <strong>of</strong> basinal conditions is replaced by littoral, fluvial <strong>and</strong>lacustrine Portaferrian species: Amplocypris dorsobrevis, C. pannonica,

W. Krijgsman et al. / Earth <strong>and</strong> Planetary Science Letters 290 (2010) 183–191187Fig. 4. Detailed integrated stratigraphic data <strong>of</strong> <strong>the</strong> Maeotian/Pontian interval. Pontian–Kimmerian are regional stages <strong>of</strong> <strong>the</strong> Black <strong>Sea</strong> Basin. Magnetostratigraphic data from Râmnicu Săratare after Vasiliev et al. (2004), from Zheleznyi Rog <strong>of</strong> this paper. Red circles represent reliable directions from <strong>the</strong>rmal demagnetization, whereby small circles denote greigite, large circlesmagnetite. The blue diamonds indicate directions from alternating field demagnetization .The Maeotian–Pontian boundary interval is marked by a short influx <strong>of</strong> marine calcareous benthicforaminifera (A–C) Porosononian ex. gr. subgranosus (Egger), (D) Ammonia ex. gr. beccarii (Linné), agglutinated foraminifera, (E,H) Ammotium sp. <strong>and</strong> planktonic foraminifera comprisingStreptochilus sp. (I–J).C. sp., Tyrrhenocy<strong>the</strong>re ex. gr. motasi, C<strong>and</strong>oniella sp., <strong>and</strong>Zonocyprismembranae (Fig. 3).The Portaferrian low-st<strong>and</strong> is determined magnetostratigraphically in<strong>the</strong> middle part <strong>of</strong> chron C3r, <strong>and</strong> precize ages can thus not be obtainedhere. Assuming constant sedimentation rates for <strong>the</strong> Râmnicu Săratsection results in interpolated ages <strong>of</strong> ∼5.8 <strong>and</strong> ∼5.5 Ma for <strong>the</strong> lower <strong>and</strong>upper Portaferrian boundary, respectively (Fig. 3). Seismic data from <strong>the</strong>western part <strong>of</strong> <strong>the</strong> Dacian Basin confirm a general regressive middlePontian low-st<strong>and</strong> (Leever et al., 2009), while an erosional unconformity<strong>of</strong> regional significance has been observed between Maeotian <strong>and</strong> upperPontian sediments at marginal regions (Stoica et al., 2007).The section at <strong>the</strong> Black <strong>Sea</strong> margin shows a conspicuous change at<strong>the</strong> top <strong>of</strong> this interval by deep lacustrine brackish marls with Pontianfauna indicative <strong>of</strong> <strong>the</strong> photic zone (b100 m deep) abruptly changingto condensed coastal sequences <strong>of</strong> reddish s<strong>and</strong>s, with some minorsedimentary hiatuses, attributed to <strong>the</strong> base <strong>of</strong> <strong>the</strong> Kimmerian (Fig. 5).This red sequence comprises oolites/pisolites plus nodular marls thatsuggest high-energetic coastal environments (Fig. 5E). It fur<strong>the</strong>rmorecontains molluscs that are characteristic <strong>of</strong> <strong>the</strong> Portaferrian (Fig. 5F–H)<strong>and</strong> minerals indicative <strong>of</strong> evaporitic conditions (selenite, gypsum <strong>and</strong>jarosite), which probably formed after deposition (Fig. 5I–L). Thisindicates that <strong>the</strong> Black <strong>Sea</strong> experienced a sea level drop <strong>of</strong> about 50–100 m at <strong>the</strong> base <strong>of</strong> <strong>the</strong> Kimmerian (middle Portaferrian), which iscoeval to <strong>the</strong> intra-Pontian unconformities observed in seismic pr<strong>of</strong>iles<strong>of</strong> <strong>the</strong> Romanian Black <strong>Sea</strong> margin (Gillet et al., 2007).The Caspian <strong>Sea</strong> may have become isolated <strong>during</strong> this period, assuggested by <strong>the</strong> expansion <strong>of</strong> <strong>the</strong> deltaic systems <strong>of</strong> <strong>the</strong> ‘ProductiveSeries’, which are Kimmerian in age. This is <strong>the</strong> main hydrocarbonreservoir unit <strong>of</strong> <strong>the</strong> South Caspian Basin, thought to represent <strong>the</strong>low-st<strong>and</strong> wedge <strong>of</strong> a dramatic sea level <strong>fall</strong> (Hinds et al., 2004). Atentative link has been made with <strong>the</strong> late <strong>Messinian</strong> eustatic sea level<strong>fall</strong> (Reynolds et al., 1998), but o<strong>the</strong>r studies have suggested a relationto large scale plate-tectonic processes (Allen et al., 2002). The base <strong>of</strong><strong>the</strong> Productive Series is radiometrically dated at ∼5.5 Ma <strong>and</strong> isinterpreted as <strong>the</strong> sudden southward expansion <strong>of</strong> <strong>the</strong> Miocene Volgadelta resulting from a major regression (Dumont, 1998).Consequently, we conclude that all regions in <strong>the</strong> Eastern <strong>Paratethys</strong>show evidence for a marked sea level lowering <strong>of</strong> at least 50 m <strong>during</strong> <strong>the</strong><strong>Messinian</strong> (5.6–5.5 Myr) time interval, corresponding to <strong>the</strong> Portaferrian<strong>of</strong> <strong>the</strong> Dacian Basin <strong>and</strong> <strong>the</strong> lowermost Kimmerian <strong>of</strong> <strong>the</strong> Black <strong>Sea</strong> <strong>and</strong>Caspian basins.6. <strong>Paratethys</strong> transgression <strong>during</strong> <strong>the</strong> BosphorianThe upper Pontian (Bosphorian) corresponds to a second transgressiveevent in <strong>the</strong> Dacian Basin, showing a major faunal change in <strong>the</strong>

188 W. Krijgsman et al. / Earth <strong>and</strong> Planetary Science Letters 290 (2010) 183–191Fig. 5. A) The reddish interval <strong>of</strong> <strong>the</strong> Zheleznyi Rog section. Portaferrian molluscs found in <strong>the</strong> marl interval below <strong>the</strong> red unit; B) Valenciennius sp.,C)Paradacna abichi,D)Dreissenarostriformis. Characteristic mollusc species <strong>and</strong> <strong>the</strong> most relevant evaporitic minerals found in <strong>the</strong> reddish interval, marking <strong>the</strong> beginning <strong>of</strong> <strong>the</strong> Kimmerian: E) oolithic/pisolithics<strong>and</strong>stone, F) Caladacna steindachneri, G)D. rostriformis, H)Pteradacna edentula, I) jarosite, J) prismatic gypsum crystals, K) jarosite, <strong>and</strong> L) radial gypsum. The corresponding levelsare indicated right <strong>of</strong> <strong>the</strong> schematic lithological column.ostracod assemblages (Fig. 3) <strong>and</strong> a lithological change to more basinalsequences (Jipa, 1997). The Portaferrian–Bosphorian transition ismarked by a second bloom <strong>of</strong> ostracod fauna, <strong>and</strong> most Pontian speciesare well represented. Some species pass through <strong>the</strong> limit with lowerDacian (Getian substage).Interpolation assuming constant sedimentation rates, suggeststhat this upper Pontian transgression started at an age <strong>of</strong> 5.5±0.1 Ma(Table 1). Detailed micropalaeontological studies have not revealed<strong>the</strong> presence <strong>of</strong> marine foraminifera here. In <strong>the</strong> western Dacian Basin,seismic pr<strong>of</strong>iles also show a transgressive system tract at <strong>the</strong> base <strong>of</strong><strong>the</strong> Bosphorian (Leever et al., 2009). In <strong>the</strong> Topolog region <strong>of</strong> <strong>the</strong> southCarpathian foredeep, <strong>the</strong> Bosphorian is found transgressive onMaeotian deposits while <strong>the</strong> upper Maeotian <strong>and</strong> lower-middlePontian are missing (Stoica et al., 2007). In addition, <strong>the</strong> bottom sets<strong>of</strong> a ‘Gilbert fan delta’ are correlated to this sea level rise (Clauzonet al., 2005), although stratigraphic data from Romanian geologistsindicate that <strong>the</strong>se fan deposits are <strong>of</strong> pre-Maeotian age (Savu <strong>and</strong>Ghenea, 1967; Nastaseanu <strong>and</strong> Bercia, 1968).In <strong>the</strong> Black <strong>Sea</strong> Basin, <strong>the</strong> Miocene–Pliocene boundary is commonlyplaced at <strong>the</strong> Pontian/Kimmerian boundary. This is in slight disagreementwith our stratigraphic results, which shows that <strong>the</strong> red level <strong>of</strong><strong>the</strong> lowermost Kimmerian corresponds to <strong>the</strong> Portaferrian <strong>of</strong> <strong>the</strong> DacianTable 1New magnetostratigraphic ages for <strong>the</strong> (sub)stage boundaries in <strong>the</strong> Dacian <strong>and</strong> Black<strong>Sea</strong> basins <strong>of</strong> <strong>the</strong> Eastern <strong>Paratethys</strong>.Dacian BasinBoundaryAge(Ma)Black <strong>Sea</strong> BasinBoundaryAge(Ma)Pontian/Dacian 4.70 ±0.05 × ×Portaferrian/Bosphorian 5.5 ±0.1 Portaferrian/Kimmerian 5.6±0.1Odessian/Portaferrian 5.8 ±0.1 Novorossian/Portaferrian 5.8±0.1Maeotian/Pontian 6.04 ±0.01 Maeotian/Pontian 6.04±0.01Basin <strong>and</strong> thus to <strong>the</strong> latest Miocene (Fig. 4). Faunal elements <strong>of</strong>Kimmerian marls, overlying <strong>the</strong> reddish interval at Zheleznyi Rog, aresimilar to <strong>the</strong> Bosphorian <strong>and</strong> can be largely attributed to <strong>the</strong> Pliocene.The “Productive Series” <strong>of</strong> <strong>the</strong> Caspian Basin are also biostratigraphicallydated as Kimmerian in terms <strong>of</strong> Eastern Paratethyan chronostratigraphy(Nevesskaya et al., 2002). The numerical age is still a matter <strong>of</strong> debate,because <strong>of</strong> conflicting paleomagnetic evidence on which calibration to<strong>the</strong> global record is based, <strong>and</strong> because biostratigraphic control forinterregional correlation is hindered by <strong>the</strong> presence <strong>of</strong> mostly localfaunas <strong>and</strong> by massive reworking (Jones <strong>and</strong> Simmons, 1996).Our integrated stratigraphic results from <strong>the</strong> Dacian Basin showthat <strong>the</strong> Pontian/Dacian boundary is younger than <strong>the</strong> Sidufjall normalchron (C3n.3n) <strong>and</strong> is magnetostratigraphically dated at ∼4.7 Ma(Fig. 3). This is significantly younger than presumed in o<strong>the</strong>r<strong>Paratethys</strong> time scales, where <strong>the</strong> Pontian–Dacian stage boundary istentatively positioned at, or close to, <strong>the</strong> Miocene–Pliocene boundary(5.33 Ma) (Steininger et al., 1996; Clauzon et al., 2005; Snel et al.,2006). It is clear that different definitions have been used for <strong>the</strong>upper Pontian boundary in Romanian <strong>and</strong> Russian literature (Fig. 6;Table 1), which is especially problematic when working on <strong>the</strong> Mio–Pliocene sedimentary successions <strong>and</strong> seismic sequences <strong>of</strong> <strong>the</strong> Black<strong>Sea</strong> domain. A formal re-definition <strong>of</strong> <strong>the</strong> <strong>Paratethys</strong> regional stagesaccording to international stratigraphic codes is urgently required.7. Causes <strong>and</strong> consequences for <strong>the</strong> <strong>Messinian</strong> <strong>Salinity</strong> <strong>Crisis</strong>Our new chronological framework for <strong>the</strong> Eastern <strong>Paratethys</strong>allows high-resolution correlations with <strong>the</strong> oxygen isotope curves(Hodell et al., 2001; Hilgen et al., 2007) <strong>and</strong> <strong>the</strong> <strong>Messinian</strong> successions<strong>of</strong> <strong>the</strong> Mediterranean (Fig. 6). These are subdivided into threeastronomically dated evaporite phases; M1) marine “Lower Gypsum”(5.96–5.6 Ma), M2) halite <strong>and</strong> resedimented evaporites (5.6–5.5 Ma),M3) Lago-Mare sediments with gypsum (5.5–5.3 Ma) (Krijgsmanet al., 1999; Hilgen et al., 2007; Roveri et al., 2008).

W. Krijgsman et al. / Earth <strong>and</strong> Planetary Science Letters 290 (2010) 183–191189Fig. 6. A new chronology for <strong>the</strong> different local <strong>and</strong> regional stages <strong>of</strong> <strong>the</strong> <strong>Paratethys</strong> allows detailed correlations to <strong>the</strong> GTS, <strong>the</strong> Mediterranean event stratigraphy <strong>during</strong> <strong>the</strong><strong>Messinian</strong> <strong>Salinity</strong> <strong>Crisis</strong> (M1–M3) (Krijgsman et al., 1999; Roveri et al., 2008) <strong>and</strong> to <strong>the</strong> oxygen isotope curves <strong>of</strong> <strong>the</strong> Atlantic margin <strong>of</strong> Morocco (Hilgen et al., 2007). Red star/foraminifer indicates influx <strong>of</strong> marine nann<strong>of</strong>ossils (Marunteanu <strong>and</strong> Papaianopol, 1998)/foraminifera (see Fig. 4). Schematic cross-sections show <strong>the</strong> changes in connectivity <strong>and</strong><strong>the</strong> phases <strong>of</strong> basin isolation <strong>of</strong> <strong>the</strong> <strong>Paratethys</strong> <strong>and</strong> Mediterranean <strong>during</strong> <strong>the</strong> <strong>Messinian</strong> <strong>Salinity</strong> <strong>Crisis</strong>.7.1. The onset <strong>of</strong> “Lower Gypsum” formation in <strong>the</strong> MediterraneanOur new data shows that <strong>the</strong> onset <strong>of</strong> <strong>the</strong> <strong>Messinian</strong> <strong>Salinity</strong> <strong>Crisis</strong>in <strong>the</strong> Mediterranean was directly preceded by <strong>the</strong> marine flooding <strong>of</strong><strong>the</strong> Eastern <strong>Paratethys</strong>, confirming <strong>the</strong> hypo<strong>the</strong>sis that <strong>the</strong> LowerGypsum units formed <strong>during</strong> a relative high-st<strong>and</strong> <strong>of</strong> Mediterraneansea level (Flecker et al., 2002; Krijgsman <strong>and</strong> Meijer, 2008). Atransgression at <strong>the</strong> onset <strong>of</strong> <strong>the</strong> <strong>Messinian</strong> evaporite formation is inserious contrast to hypo<strong>the</strong>ses inferring glacio-eustatic sea levellowering (Hsü et al., 1973; Clauzon et al., 2005), but has earlier beensuggested on <strong>the</strong> basis <strong>of</strong> strontium isotope models (Flecker et al.,2002; Flecker <strong>and</strong> Ellam, 2006). It is interesting to note that <strong>the</strong> bloom<strong>of</strong> Odessian ostracods (Fig. 3), indicating re-stabilization <strong>of</strong> paleoenvironmentalconditions in <strong>the</strong> <strong>Paratethys</strong>, coincides with <strong>the</strong> onset <strong>of</strong>MSC evaporites at 5.96 Ma in <strong>the</strong> Mediterranean (Krijgsman et al.,1999). Consequently, <strong>the</strong> changes in <strong>Paratethys</strong>–Mediterraneanconnectivity at <strong>the</strong> Maeotian–Pontian transition interval probablygenerated a new hydrological equilibrium in both <strong>Paratethys</strong> <strong>and</strong>Mediterranean that allows gypsum to precipitate <strong>during</strong> astronomically-forcedoptimum (=dry) climate conditions on a precessionalresolution in <strong>the</strong> Mediterranean Basin (Krijgsman et al., 2001).A flooding <strong>of</strong> <strong>the</strong> <strong>Paratethys</strong> basin could only have happened if itswater level was significantly below global ocean <strong>and</strong> Mediterranean level.This indicates that <strong>the</strong> hydrological budget for <strong>the</strong> <strong>Paratethys</strong> region inMaeotian times was slightly negative. Establishing a Mediterranean–<strong>Paratethys</strong> connection would result in an increased hydrological flux into<strong>the</strong> <strong>Paratethys</strong> <strong>and</strong> consequently an increase in water <strong>and</strong> salt flux from<strong>the</strong> Atlantic into <strong>the</strong> highly restricted evaporation-dominated Mediterranean.We speculate that creating a connection to <strong>the</strong> <strong>Paratethys</strong> willincrease Mediterranean stratification <strong>and</strong> ultimately influence <strong>the</strong>hydrodynamics <strong>of</strong> <strong>the</strong> Gibraltar gateways, two crucial factors to explain<strong>the</strong> onset <strong>of</strong> widespread gypsum deposition <strong>during</strong> <strong>the</strong> MSC (Meijer <strong>and</strong>Krijgsman, 2005).7.2. Location <strong>of</strong> <strong>Paratethys</strong> floodingAno<strong>the</strong>r intriguing question is: where did <strong>the</strong> <strong>Paratethys</strong> floodingactually come from? The Aegean region <strong>of</strong> <strong>the</strong> Mediterranean <strong>Sea</strong> is<strong>the</strong> most likely source area according to <strong>the</strong> paleogeographicreconstructions <strong>of</strong> <strong>the</strong> <strong>Paratethys</strong> domain (e.g. Popov et al., 2006),although we cannot exclude <strong>the</strong> Indian Ocean on <strong>the</strong> basis <strong>of</strong> our data.A flooding event is fur<strong>the</strong>r expected to leave marked traces <strong>of</strong>significant erosion on l<strong>and</strong> <strong>and</strong> <strong>of</strong>fshore <strong>the</strong> Bosporus region (e.g.Loget et al. 2005). The Karadeniz-1 borehole in <strong>the</strong> European part <strong>of</strong><strong>the</strong> Turkish Black <strong>Sea</strong> shelf indeed shows <strong>Messinian</strong> erosional surfaces(Gillet et al., 2007), which can possibly be traced to <strong>the</strong> Karacaköyregion at <strong>the</strong> Black <strong>Sea</strong> margin northwest <strong>of</strong> Istanbul. We thusconsider a Karacaköy–Karadeniz passage as potential c<strong>and</strong>idate toaccount for <strong>the</strong> flooding event, but more detailed biostratigraphic datais necessary to confirm this hypo<strong>the</strong>sis.

190 W. Krijgsman et al. / Earth <strong>and</strong> Planetary Science Letters 290 (2010) 183–1917.3. Down drop <strong>of</strong> <strong>the</strong> sea level <strong>during</strong> <strong>the</strong> MSCThe observed <strong>fall</strong> in Paratethyan water level at <strong>the</strong> base <strong>of</strong> <strong>the</strong>Portaferrian is estimated to have occurred at 5.8 Ma in <strong>the</strong> DacianBasin (Fig. 3). This is remarkably close to glacial peaks TG22–20(Fig. 6), which are suggested to have caused a significant drop inglobal sea level (Shackleton et al., 1995). In <strong>the</strong> Zheleznyi Rogsuccession this interval also shows evidence <strong>of</strong> sea level lowering,expressed by <strong>the</strong> occurrence <strong>of</strong> white shell beds <strong>of</strong> Portaferrian age(Po 2 : Popov et al., 2006).The climax <strong>of</strong> <strong>the</strong> <strong>Messinian</strong> <strong>Salinity</strong> <strong>Crisis</strong> occurred <strong>during</strong> glacialpeaks TG12–14, when <strong>the</strong> water exchange with <strong>the</strong> Atlantic becamerestricted resulting in <strong>the</strong> formation <strong>of</strong> massive halite in <strong>the</strong> deepestparts <strong>of</strong> <strong>the</strong> Mediterranean <strong>and</strong> a dramatic <strong>fall</strong> in water level (Fig. 6).The potential connection to <strong>Paratethys</strong> thus also would have becomelost, lowering <strong>the</strong> water level in <strong>the</strong> Black <strong>Sea</strong> Basin immediately to<strong>the</strong> level <strong>of</strong> <strong>the</strong> paleo-Bosphorus. Our data from Zheleznyi Rog suggestthat this event is clearly reflected in <strong>the</strong> sharp transition to <strong>the</strong> reddishinterval at <strong>the</strong> Russian Black <strong>Sea</strong> margin <strong>of</strong> <strong>the</strong> Taman Peninsula. Theultimate lake levels in <strong>the</strong> isolated Dacian, Black <strong>Sea</strong> <strong>and</strong> Caspianbasins will obviously be influenced by astronomically inducedchanges <strong>of</strong> regional climate. Depending on <strong>the</strong> hydrological budget<strong>of</strong> <strong>the</strong> individual <strong>Paratethys</strong> basins desiccation (negative) or overflow(positive) will take place (Fig. 6).A marked change occurs in <strong>the</strong> oxygen isotope curves after TG12 at5.5 Ma (Fig. 6), interpreted to result in much warmer <strong>and</strong> humid globalclimates (Hodell et al., 2001; Hilgen et al., 2007). This resulted in apositive hydrological change <strong>and</strong> caused widespread transgression <strong>of</strong>Lago-Mare/Upper Evaporite facies over <strong>the</strong> <strong>Messinian</strong> erosional surfaces(L<strong>of</strong>i et al., 2005; Roveri et al., 2008). Transgressional sequences areespecially clear in Nor<strong>the</strong>rn Italy where <strong>the</strong>y are attributed to anincreased hydrological flux from <strong>the</strong> Alps (Willet et al., 2006). The timeequivalenttransgression in <strong>the</strong> <strong>Paratethys</strong> can also be explained by<strong>the</strong>se regional climatic changes.The alternative hypo<strong>the</strong>sis for this transgression is <strong>the</strong> re-establishment<strong>of</strong> <strong>Paratethys</strong>–Mediterranean connectivity by <strong>the</strong> Zanclean deluge<strong>of</strong> <strong>the</strong> Mediterranean at <strong>the</strong> Miocene Pliocene boundary (5.33 Ma). Thiswould better explain <strong>the</strong> sharp transition from littoral <strong>and</strong> fluvialPortaferrian facies to predominantly pelitic facies in <strong>the</strong> lowerBosphorian. The Bosphorian ostracod <strong>and</strong> mollusc fauna do not showevidence <strong>of</strong> significant freshening <strong>of</strong> <strong>the</strong> water conditions, although<strong>the</strong>ir strontium isotope ratios suggest isolation from <strong>the</strong> Mediterranean(Vasiliev, 2006). Mio–Pliocene connectivity at high sea level has earlierbeen suggested by Clauzon et al. (2005), but <strong>the</strong>se authors based it on<strong>the</strong> nann<strong>of</strong>ossil influxes in <strong>the</strong> <strong>Paratethys</strong> at <strong>the</strong> Pontian–Dacianboundary which are dated at 4.7 Ma <strong>and</strong> have thus no relation at allwith <strong>the</strong> Pliocene flooding. We realize that a correlation to <strong>the</strong> Zancleanflooding cannot be excluded on <strong>the</strong> basis <strong>of</strong> our data. However, were <strong>the</strong><strong>Paratethys</strong> transgression to be coeval with <strong>the</strong> Mediterranean flooding,substantial changes in sedimentation rate would be required, especiallyby a major (4×) increase in <strong>the</strong> lowermost part <strong>of</strong> <strong>the</strong> Bosphorian(below <strong>the</strong> Thvera). We have not seen any evidence for such an increasein <strong>the</strong> field, nor in <strong>the</strong> Râmnicu Sărat section (east Carpathian foredeep),nor in <strong>the</strong> Topolog region (south Carpathian foredeep). Future researchshould <strong>the</strong>refore aim at localizing marine influxes at <strong>the</strong> base <strong>of</strong> <strong>the</strong>Bosphorian <strong>and</strong> focus on geochemical proxies that may quantify<strong>Paratethys</strong>–Mediterranean connectivity.8. ConclusionsOur integrated stratigraphic data results in a robust chronologicalframework for <strong>the</strong> Dacian <strong>and</strong> Black <strong>Sea</strong> basins <strong>of</strong> <strong>the</strong> Eastern <strong>Paratethys</strong>(Table 1), allowing high-resolution stratigraphic correlations between<strong>the</strong> individual <strong>Paratethys</strong> subbasins <strong>and</strong> with <strong>the</strong> <strong>Messinian</strong> <strong>Salinity</strong><strong>Crisis</strong> <strong>of</strong> <strong>the</strong> Mediterranean (Fig. 6). The Maeotian/Pontian boundary isdated at 6.04 Ma <strong>and</strong> corresponds to a major faunal change triggered byamarineflooding <strong>of</strong> <strong>the</strong> <strong>Paratethys</strong>, as evidenced by <strong>the</strong> presence <strong>of</strong>planktonic foraminifera. The lowermost Pontian (Odessian/Novorossian)substage relates to a general high-st<strong>and</strong> in <strong>the</strong> <strong>Paratethys</strong>, possiblywith interbasinal <strong>and</strong> Mediterranean connections. The onset <strong>of</strong> MSCevaporites closely coincides in age with <strong>the</strong> bloom <strong>of</strong> Odessian ostracodsin <strong>the</strong> <strong>Paratethys</strong> at ∼5.95 Ma. The peak <strong>of</strong> <strong>the</strong> MSC at 5.6–5.5 Madefinitely ended Mediterranean–<strong>Paratethys</strong> connectivity in <strong>the</strong> Portaferrian,causing a sudden drawdown <strong>of</strong> <strong>Paratethys</strong> water levels <strong>of</strong> atleast 50–100 m <strong>and</strong> isolating <strong>the</strong> Caspian <strong>Sea</strong> <strong>and</strong> <strong>the</strong> Dacian Basin from<strong>the</strong> Black <strong>Sea</strong> domain. From 5.5 Ma onward a major change in Eurasianclimate, resulting in much warmer <strong>and</strong> humid conditions changed <strong>the</strong>hydrological balance <strong>and</strong> resulted in a widespread transgression inMediterranean <strong>and</strong> <strong>Paratethys</strong>. The Miocene/Pliocene boundary maycorrespond to <strong>the</strong> Portaferrian/Bosphorian boundary in <strong>the</strong> Dacian Basin<strong>and</strong> to <strong>the</strong> top <strong>of</strong> <strong>the</strong> red layer in Zheleznyi Rog, i.e. within <strong>the</strong> lowerKimmerian <strong>of</strong> <strong>the</strong> Black <strong>Sea</strong> Basin, but certainly not to <strong>the</strong> Pontian/Dacian boundary in <strong>the</strong> Dacian Basin, which is dated ∼600 kyr youngerat 4.7 Ma.Our new stratigraphic framework has also serious consequences for<strong>the</strong> Mediterranean MSC. Ever since <strong>the</strong> discovery <strong>of</strong> widespread<strong>Messinian</strong> evaporites all over <strong>the</strong> Mediterranean seafloor, tectonic orglacio-eustatic processes restricting <strong>and</strong> closing <strong>the</strong> water exchange to<strong>the</strong> Atlantic in <strong>the</strong> west have been put forward <strong>and</strong> modeled tounderst<strong>and</strong> <strong>the</strong> causes <strong>of</strong> <strong>the</strong> <strong>Messinian</strong> <strong>Salinity</strong> <strong>Crisis</strong> (Hsü et al., 1973;Meijer <strong>and</strong> Krijgsman, 2005; Ryan, 2009), but conclusive answers arestill lacking. Our data suggest that changing <strong>the</strong> connectivity to <strong>the</strong><strong>Paratethys</strong> in <strong>the</strong> nor<strong>the</strong>ast could play an essential role in <strong>the</strong> onset <strong>of</strong>gypsum formation, which should give ample ammunition for new ideas<strong>and</strong> models concerning evaporite formation in semi-isolated basins.This will also have major implications for paleoceanographic circulationpatterns, Mediterranean paleosalinity models <strong>and</strong> <strong>the</strong> internal stratification<strong>of</strong> its water column.AcknowledgementsWe thank Dan Jipa, Iulia Lazăr ar <strong>and</strong> Gheorghe Popescu for <strong>the</strong>ir helpwith sedimentological <strong>and</strong> biostratigraphical analyses <strong>of</strong> <strong>the</strong> RâmnicuSărat data. Alex<strong>and</strong>r Iosifidi is acknowledged for skilful paleomagneticsampling at Zheleznyi Rog. Cor Langereis, Frits Hilgen, Paul Meijer <strong>and</strong>Pasha Karami are thanked for discussions <strong>and</strong> useful comments on anearlier version <strong>of</strong> this manuscript. Rachel Flecker, Miguel Garcés <strong>and</strong>four anonymous EPSL reviewers are thanked for <strong>the</strong>ir constructivecomments. Sergei Yudin <strong>and</strong> Vika Tomsha assisted with <strong>the</strong> paleomagneticanalyses. This study was performed under <strong>the</strong> inspiring leadership<strong>of</strong> Cor Langereis <strong>and</strong> Alexei Khramov, within <strong>the</strong> NWO program onDutch–Russian cooperation. This work was financially supported by <strong>the</strong>Ne<strong>the</strong>rl<strong>and</strong>s Research Centre for Integrated Solid Earth Sciences (ISES)<strong>and</strong> <strong>the</strong> Ne<strong>the</strong>rl<strong>and</strong>s Geosciences Foundation (ALW) with support from<strong>the</strong> Ne<strong>the</strong>rl<strong>and</strong>s Organization for Scientific Research (NWO).ReferencesAksu, A.E., Hiscott, R.N., Yasar, D., Isler, F.I., Marsh, S., 2002. Seismic stratigraphy <strong>of</strong> LateQuaternary deposits from <strong>the</strong> southwestern Black <strong>Sea</strong> shelf: evidence for noncatastrophicvariations in sea-level <strong>during</strong> <strong>the</strong> last 10000 yr. Mar. Geol. 190, 61–94.Allen, M.B., Jones, S., Ismail-Zadeh, A.D., Simmons, M.D., Anderson, L., 2002. Onset <strong>of</strong>subduction as <strong>the</strong> cause <strong>of</strong> rapid Pliocene/Quaternary subsidence in <strong>the</strong> SouthCaspian basin. Geology 30, 775–778.Çagatay, M.N., et al., 2006. Paratethyan–Mediterranean connectivity in <strong>the</strong> <strong>Sea</strong> <strong>of</strong> Marmararegion (NW Turkey) <strong>during</strong> <strong>the</strong> <strong>Messinian</strong>. Sediment. Geol. 188–189, 171–187.Chumakov, L.S., et al., 1992. Interlaboratory fission track dating <strong>of</strong> volcanic ash levelsfrom eastern <strong>Paratethys</strong>: a Mediterranean–<strong>Paratethys</strong> correlation. Palaeogeogr.Palaeoclimatol. Palaeoecol. 24, 287–295.Cita, M.B., Wright, R.C., Ryan, W.B.F., Longinelli, A., 1978. <strong>Messinian</strong> paleoenvironments.In: Hsü, K.J. (Ed.), Initial Reports <strong>of</strong> <strong>the</strong> Deep <strong>Sea</strong> Drilling Project, pp. 1003–1035.Clauzon, G., et al., 2005. Influence <strong>of</strong> Mediterranean sea-level changes on <strong>the</strong> DacicBasin (Eastern <strong>Paratethys</strong>) <strong>during</strong> <strong>the</strong> late Neogene: <strong>the</strong> Mediterranean Lago Marefacies deciphered. Basin Res. 17, 437–462.Dinu, C., Wong, H.K., Tambrea, D., Matenco, L., 2005. Stratigraphic <strong>and</strong> structuralcharacteristics <strong>of</strong> <strong>the</strong> Romanian Black <strong>Sea</strong> shelf. Tectonophysics 410, 417–435.

W. Krijgsman et al. / Earth <strong>and</strong> Planetary Science Letters 290 (2010) 183–191191Dumont, H.J., 1998. The Caspian Lake: history, biota, structure, <strong>and</strong> function. Limnol.Oceanogr. 43, 44–52.Filippova, N.Y., 2002. Spores, pollen, <strong>and</strong> organic-walled Phytoplankton from neogenedeposits <strong>of</strong> <strong>the</strong> Zheleznyi Rog reference section (Taman Peninsula). Strat. Geol.Correlat. 10, 176–188.Flecker, R., Ellam, R.M., 2006. Identifying Late Miocene episodes <strong>of</strong> connection <strong>and</strong>isolation in <strong>the</strong> Mediterranean–Paratethyan realm using Sr isotopes. Sediment.Geol. 188–189, 189–203.Flecker, R., de Villiers, S., Ellam, R.M., 2002. Modelling <strong>the</strong> effect <strong>of</strong> evaporation on <strong>the</strong>salinity −87Sr/86Sr relationship in modern <strong>and</strong> ancient marginal-marine systems:<strong>the</strong> Mediterranean <strong>Messinian</strong> salinity crisis. Earth Planet. Sci. Lett. 203, 221–233.Gillet, H., Lericolais, G., Rehault, J.-P., 2007. <strong>Messinian</strong> event in <strong>the</strong> Black <strong>Sea</strong>: evidence<strong>of</strong> a <strong>Messinian</strong> erosional surface. Mar. Geol. 244, 142–165.Hallam, A., Wignall, P.B., 1997. Mass Extinctions <strong>and</strong> <strong>the</strong>ir Aftermath. Oxford UniversityPress, Oxford. 320 pp.Hilgen, F.J., Kuiper, K.F., Krijgsman, W., Snel, E., Van der Laan, E., 2007. Astronomicaltuning as <strong>the</strong> basis for high resolution chronostratigraphy: <strong>the</strong> intricate history <strong>of</strong><strong>the</strong> <strong>Messinian</strong> salinity crisis. Stratigraphy 2007, 231–238.Hinds, D.J., et al., 2004. Sedimentation in a discharge dominated fluvial/lacustrinesystem: <strong>the</strong> Neogene Productive Series <strong>of</strong> <strong>the</strong> South Caspian Basin, Azerbaijan.Mar. Petrol. Geol. 21, 613–638.Hodell, D.A., Curtis, J.H., Sierro, F.J., Raymo, M.E., 2001. Correlation <strong>of</strong> late Miocene to earlyPliocene sequences between <strong>the</strong> Mediterranean <strong>and</strong> North Atlantic. Paleoceanography16, 164–178.Hsü, K.J., Giovanoli, F., 1979. <strong>Messinian</strong> event in <strong>the</strong> Black <strong>Sea</strong>. Palaeogeogr.Palaeoclimatol. Palaeoecol. 29, 75–93.Hsü, K.J., Ryan, W.B.F., Cita, M.B., 1973. Late Miocene desiccation <strong>of</strong> <strong>the</strong> Mediterranean.Nature 242, 240–244.Jipa, D., 1997. Late Neogene–Quaternary evolution <strong>of</strong> Dacian basin (Romanian). Ananalysis <strong>of</strong> sediment thickness pattern. Geo-Eco-Marina 2, 127–134.Jones, R.W., Simmons, M.D., 1996. A review <strong>of</strong> <strong>the</strong> stratigraphy <strong>of</strong> eastern <strong>Paratethys</strong>(Oligocene–Holocene). Bull. Nat. Hist. Museum (Geol. Suppl.) 52, 25–49.Krijgsman, W., Meijer, P.T., 2008. Depositional environments <strong>of</strong> <strong>the</strong> Mediterranean“Lower Evaporites” <strong>of</strong> <strong>the</strong> <strong>Messinian</strong> salinity crisis: constraints from quantitativeanalyses. Mar. Geol. 253, 73–81. doi:10.1016/j.margeo.2008.04.010.Krijgsman, W., Hilgen, F.J., Raffi, I., Sierro, F.J., Wilson, D.S., 1999. Chronology, causes <strong>and</strong>progression <strong>of</strong> <strong>the</strong> <strong>Messinian</strong> salinity crisis. Nature 400, 652–655.Krijgsman, W., Fortuin, A.R., Hilgen, F.J., Sierro, F.J., 2001. Astrochronology for <strong>the</strong><strong>Messinian</strong> Sorbas Basin (SE Spain) <strong>and</strong> orbital (precessional) forcing for evaporitecyclicity. Sediment. Geol. 140, 43–60.Leever, K.A., 2007. Forel<strong>and</strong> <strong>of</strong> <strong>the</strong> Romanian Carpathians: controls on late orogenicsedimentary basin evolution <strong>and</strong> <strong>Paratethys</strong> paleogeography, PhD <strong>the</strong>sis, VUUniversity Amsterdam, Amsterdam, 182 pp.Leever, K.A., et al., 2009. <strong>Messinian</strong> sea level <strong>fall</strong> in <strong>the</strong> Dacic Basin (Eastern <strong>Paratethys</strong>):palaeogeographical implications from seismic sequence stratigraphy. Terra Nova.doi:10.1111/j.1365-3121.2009.00910.x.L<strong>of</strong>i, J., et al., 2005. Erosional processes <strong>and</strong> paleo-environmental changes in <strong>the</strong> WesternGulf <strong>of</strong> Lions (SW France) <strong>during</strong> <strong>the</strong> <strong>Messinian</strong> salinity crisis. Mar. Geol. 217, 1–30.Loget, N., Van Den Driessche, J., Davy, P., 2005. How did <strong>the</strong> <strong>Messinian</strong> salinity crisis end.Terra Nova 17, 414–419.Magyar, I., Sztanó, O., 2008. Is <strong>the</strong>re a <strong>Messinian</strong> unconformity in <strong>the</strong> Central<strong>Paratethys</strong>? Stratigraphy 5, 245–255.Marunteanu, M., Papaianopol, I., 1998. Mediterranean nannoplankton in <strong>the</strong> Dacicbasin. Rom. J. Stratigraphy 78, 115–121.Meijer, P.T., Krijgsman, W., 2005. A quantitative analysis <strong>of</strong> <strong>the</strong> desiccation <strong>and</strong> re-filling<strong>of</strong> <strong>the</strong> Mediterranean <strong>during</strong> <strong>the</strong> <strong>Messinian</strong> salinity crisis. Earth Planet. Sci. Lett.240, 510–520.Nastaseanu, S., Bercia, I., 1968. Baia de Arama. : Carte géologique de Roumanie au 1/200.000, vol. 32. Institut géologique, Bucharest.Nevesskaya, L.A., Goncharova, I.A., Ilyina, L.B., Paramonova, N.P., Khondkarian, S.O., 2002.The Neogene stratigraphic scale <strong>of</strong> <strong>the</strong> Eastern <strong>Paratethys</strong>. Strat. Geol. Correlat. 11,105–127.Panaiotu, C.E., Vasiliev, I., Panaiotu, C.G., Krijgsman, W., Langereis, C.G., 2007.Provenance analysis as a key to orogenic exhumation: a case study from <strong>the</strong> EastCarpathians (Romania). Terra Nova 19, 120–126.Pevzner, M.A., Semenenko, V.N., Vangengeim, E.A., 2003. Position <strong>of</strong> <strong>the</strong> Pontian <strong>of</strong> <strong>the</strong>Eastern <strong>Paratethys</strong> in <strong>the</strong> Magnetochronological Scale. Strat. Geol. Correlat. 11, 482–491.Popov, S.V., et al., 2006. Late Miocene to Pliocene papaeogeography <strong>of</strong> <strong>the</strong> <strong>Paratethys</strong><strong>and</strong> its relation to <strong>the</strong> Mediterranean. Palaeogeogr. Palaeoclimatol. Palaeoecol. 238,91–106.Reynolds, A.D., et al., 1998. Implications <strong>of</strong> outcrop geology for reservoirs in <strong>the</strong>Neogene Productive Series: Apsheron Peninsula, Azerbaijan. AAPG Bull. 82, 25–49.Roveri, M., Lugli, S., Manzi, V., Schreiber, B.C., 2008. The <strong>Messinian</strong> Sicilian stratigraphyrevisited: new insights for <strong>the</strong> <strong>Messinian</strong> salinity crisis. Terra Nova 20, 483–488.Ryan, W.B.F., 2009. Decoding <strong>the</strong> Mediterranean <strong>Salinity</strong> <strong>Crisis</strong>. Sedimentology 56,95–136.Ryan, W.B.F., Pitman, W.C., 1998. Noah's Flood: <strong>the</strong> New Scientific Discoveries About<strong>the</strong> Event that Changed History. Simon & Schuster, p. 319.Ryan, W.B.F., et al., 1997. An abrupt drowning <strong>of</strong> <strong>the</strong> Black <strong>Sea</strong> shelf. Mar. Geol. 138, 119–126.Ryan, W.B.F., Major, C.O., Lericolais, G., Goldstein, S.L., 2003. Catastrophic flooding <strong>of</strong><strong>the</strong> Black <strong>Sea</strong>. Annu. Rev. Earth Planet. Sci. 31, 525–554. doi:10.1146/annurev.earth.31.100901.141249.Savu, H., Ghenea, C., 1967. Turnu Severin. : Carte géologique de Roumanie au 1/200.000,vol. 40. Institut géologique, Bucharest.Semenenko, V.N., 1979. Correlation <strong>of</strong> Mio–Pliocene <strong>of</strong> <strong>the</strong> Eastern <strong>Paratethys</strong> <strong>and</strong> Tethys.VII th International Congress on Mediterranean Neogene: A<strong>the</strong>ns, pp. 1101–1111.Shackleton, N.J., Crowhurst, S., Hagelberg, T., Pisias, N.G., Schneider, D.A., 1995. A new LateNeogene time scale: application to leg 138 sites. Proc. ODP Sci. Results 138, 73–101.Snel, E., Marunteanu, M., Macalet, R., Meulenkamp, J.E., van Vugt, N., 2006. Late Mioceneto Early Pliocene chronostratigraphic framework for <strong>the</strong> Dacic Basin, Romania.Palaeogeogr. Palaeoclimatol. Palaeoecol. 238 (1–4), 107–124.Steininger, F.F., et al., 1996. Circum-Mediterranean Neogene (Miocene <strong>and</strong> Pliocene)marine-continental chronologic correlations <strong>of</strong> European mammal units. In:Bernor, R.L., Fahlbusch, V., Mittmann, H.-W. (Eds.), The Evolution <strong>of</strong> WesternEurasian Neogene Mammal Faunas. Columbia Univ. Press, New York, pp. 7–46.Stevanovic, P., Nevesskaya, L.A., Marinescu, F., Sokac, A., Jámbor, A., 1989. Chronostratigraphieund Neostratotypen: Pliozän Pl1. Pontien.JAZU&SANU,Zagreb-Beograd.952pp.Stoica, M., Lazar, I., Vasiliev, I., Krijgsman, W., 2007. Mollusc assemblages <strong>of</strong> <strong>the</strong> Pontian<strong>and</strong> Dacian deposits from <strong>the</strong> Topolog-Arges area (sou<strong>the</strong>rn Carpathian foredeep —Romania). Geobios 40, 391–405.Trubikhin, V.M., 1986. Neogene magnetostratigraphic scale <strong>of</strong> <strong>the</strong> Eastern <strong>Paratethys</strong>. IIIconference <strong>of</strong> Geomagnetism, Kiev, pp. 206–207.Vasiliev, I. 2006. A new chronology for <strong>the</strong> Dacian Basin (Romania). PhD Thesis UtrechtUniversity, Geologica Ultraiectina, 267, pp 191.Vasiliev, I., et al., 2004. Towards an astrochronological framework for <strong>the</strong> eastern<strong>Paratethys</strong> Mio–Pliocene sedimentary sequences <strong>of</strong> <strong>the</strong> Focşani basin (Romania).Earth Planet. Sci. Lett. 227, 231–247.Vasiliev, I., Krijgsman, W., Stoica, M., Langereis, C.G., 2005. Mio–Pliocene magnetostratigraphyin <strong>the</strong> sou<strong>the</strong>rn Carpathian foredeep <strong>and</strong> Mediterranean–<strong>Paratethys</strong>correlations. Terra Nova 17, 376–384.Vasiliev, I., et al., 2007. Early diagenetic greigite as a recorder <strong>of</strong> <strong>the</strong> palaeomagneticsignal in Miocene–Pliocene sedimentary rocks <strong>of</strong> <strong>the</strong> Carpathian foredeep(Romania). Geophys. J. Int. 171, 613–629.Vasiliev, I., et al., 2008. Putative greigite magnet<strong>of</strong>ossils from <strong>the</strong> Pliocene epoch. Nat.Geosci. 1, 782–786. doi:10.1038/ngeo335.Willet, S.D., Schlunegger, F., Picotti, V., 2006. <strong>Messinian</strong> climate change <strong>and</strong> erosionaldestruction <strong>of</strong> <strong>the</strong> central European Alps. Geology 34 (8), 613–616. doi:10.1130/G22280.1.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!