28.11.2012 Views

dental biometrics used in forensic science - Call for papers= Asian ...

dental biometrics used in forensic science - Call for papers= Asian ...

dental biometrics used in forensic science - Call for papers= Asian ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

JERS/Vol.III/ Issue I/January-March, 2012/26-29<br />

Journal of Eng<strong>in</strong>eer<strong>in</strong>g Research and Studies E-ISSN0976-7916<br />

Research Article<br />

DENTAL BIOMETRICS USED IN FORENSIC SCIENCE<br />

Shubhangi Jadhav 1 , Revati Shriram 2<br />

Address <strong>for</strong> Correspondence<br />

1 Dept. of Instrumentation and Control, D Y Patil College of Eng<strong>in</strong>eer<strong>in</strong>g, Pimpri, Pune, INDIA<br />

2 Cumm<strong>in</strong>s College of Eng<strong>in</strong>eer<strong>in</strong>g <strong>for</strong> Women, Karvenagar, Pune, Maharashtra, INDIA<br />

ABSTRACT<br />

Dental <strong>biometrics</strong> <strong>used</strong> <strong>in</strong> <strong><strong>for</strong>ensic</strong> <strong>science</strong> <strong>for</strong> human identification. It utilizes <strong>dental</strong> radiographs. This radiograph provides<br />

<strong>in</strong><strong>for</strong>mation related to teeth shape, teeth contour and relative position of neighbor<strong>in</strong>g teeth, also it gives shapes of <strong>dental</strong><br />

work like crowns, fill<strong>in</strong>g & bridges etc. This paper <strong>in</strong>cludes different method <strong>used</strong> <strong>for</strong> <strong>dental</strong> <strong>biometrics</strong> and related<br />

<strong>in</strong><strong>for</strong>mation. Dental <strong>biometrics</strong> requires antemortem (AM) and postmortem (PM) radiographs <strong>for</strong> f<strong>in</strong>d<strong>in</strong>g unidentified<br />

subject. Dental <strong>biometrics</strong> hav<strong>in</strong>g three stages: Preprocess<strong>in</strong>g and segmentation of radiographs, Contour extraction or <strong>dental</strong><br />

work extraction, Atlas registration and match<strong>in</strong>g. Segmentation can be done by various methods that are mentioned <strong>in</strong> this<br />

paper. Contour or shape of teeth and <strong>dental</strong> work can be extracted by us<strong>in</strong>g active contour model (ACM) or active shape<br />

model (ASM) methods. Atlas registration is the method <strong>used</strong> <strong>for</strong> label<strong>in</strong>g to teeth, which will help <strong>in</strong> the match<strong>in</strong>g stage.<br />

Match<strong>in</strong>g of AM radiograph with PM radiograph can be done by us<strong>in</strong>g algorithms.<br />

KEYWORDS Biometrics, Dental Radiograph, Forensic Science, Teeth contour, Dental work.<br />

1. INTRODUCTION<br />

Determ<strong>in</strong><strong>in</strong>g identity of an <strong>in</strong>dividual is becom<strong>in</strong>g<br />

very important now days. For this purpose biometric<br />

system is <strong>used</strong>. A biometric is a measurable physical<br />

characteristic which are reliable than a password.<br />

Many biometric systems are employed which work<br />

on the basis of image analysis. “Biometrics” is a<br />

general term <strong>used</strong> alternatively to describe a<br />

characteristic or process.<br />

The biometric systems are divided <strong>in</strong>to two<br />

categories as: behavioral <strong>biometrics</strong> and<br />

physiological <strong>biometrics</strong>. In behavioral biometric<br />

systems a person is identified based on how he<br />

per<strong>for</strong>ms someth<strong>in</strong>g. The most popular technique<br />

under this category is the voice verification<br />

technique. Here user has to actively participate <strong>in</strong> the<br />

process of identification i.e. he needs to per<strong>for</strong>m<br />

some action <strong>in</strong> front of the mach<strong>in</strong>e. Other examples<br />

of physiological biometric characteristic are mak<strong>in</strong>g a<br />

signature, walk<strong>in</strong>g, typ<strong>in</strong>g on a keyboard. In<br />

physiological biometric system a person is identified<br />

based on a unique characteristic of some body organ<br />

of that person. It’s a passive process. All the user has<br />

to do is stand <strong>in</strong> front of the system or at max touch<br />

the sensor of the system with a f<strong>in</strong>ger tip (f<strong>in</strong>ger<br />

biometry) and wait till identification process is<br />

completed. The typical examples of physiological<br />

biometric system are Iris biometry, face biometry,<br />

f<strong>in</strong>ger biometry, ear biometry, <strong>dental</strong> biometry etc.<br />

Dental biometry <strong>used</strong> <strong>in</strong> <strong><strong>for</strong>ensic</strong> identification. This<br />

technique requires ante mortem and postmortem<br />

radiographs. In this both radiographs are segmented<br />

and matched <strong>for</strong> identification of unidentified victim.<br />

There are some various techniques of <strong>dental</strong><br />

biometric that are proposed by different authors as <strong>in</strong><br />

below section.<br />

1.1. Forensic Identification<br />

Forensic identification is <strong>used</strong> <strong>for</strong> suspect<br />

identification and victim identification. Victim<br />

identification is done by physical <strong>biometrics</strong>. Dental<br />

radiograph can be <strong>used</strong> <strong>for</strong> victim identification based<br />

on <strong>dental</strong> evidences. [1]<br />

1.2. Types of Dental Radiographs<br />

There are three types of <strong>dental</strong> radiograph (X-ray):<br />

• Bitew<strong>in</strong>g X-ray- Bitew<strong>in</strong>g x-ray is taken at<br />

rout<strong>in</strong>e check-ups.<br />

• Periapical x-ray- It shows entire tooth, <strong>in</strong>clud<strong>in</strong>g<br />

crown, root and bone.<br />

• Panoramic x-ray- It gives broader overview of<br />

entire dentition. It shows not only teeth also<br />

s<strong>in</strong>us, upper and lower jawbone.<br />

1.3. Dental Biometry<br />

Forensic <strong>dental</strong> <strong>biometrics</strong> <strong>used</strong> to identify<br />

unidentified victims. Automatic <strong><strong>for</strong>ensic</strong><br />

identification utilizes <strong>dental</strong> radiographs [1].<br />

Biometrics can be classified <strong>in</strong> two category based on<br />

characteristic like behavioral and physical. Physical<br />

biometric represents iris, f<strong>in</strong>gerpr<strong>in</strong>t, face recognition<br />

etc. Behavioral biometric represent voice, gait,<br />

signature and all behavioral traits of <strong>in</strong>dividual. [1]<br />

Evaluation of <strong>biometrics</strong> features requires<br />

characteristics such as universality, uniqueness,<br />

permanence, per<strong>for</strong>mance, collectability and<br />

acceptability. [1]<br />

2. DENTAL IDENTIFICATION SYSTEM<br />

The components of Dental identification system<br />

are:<br />

1) Dental Radiograph<br />

2) Radiograph preprocess<strong>in</strong>g and segmentation<br />

3) Contour extraction<br />

4) Atlas registration<br />

5) Match<strong>in</strong>g of Radiograph<br />

In block diagram of Dental identification system<br />

(Fig.1), <strong>dental</strong> radiograph of patients are collected <strong>for</strong><br />

<strong>dental</strong> identification system. These radiographs firstly<br />

preprocessed <strong>for</strong> filter out unwanted background<br />

present with teeth. Then radiographs segmented <strong>for</strong><br />

region of <strong>in</strong>terest. Contour of teeth are extracted from<br />

radiograph and also contour of <strong>dental</strong> work present<br />

on radiograph is extracted us<strong>in</strong>g active contour


model. Atlas registration is <strong>used</strong> to give label<strong>in</strong>g or<br />

number<strong>in</strong>g to the teeth present <strong>in</strong> jaw, it will help <strong>in</strong><br />

match<strong>in</strong>g stage. Radiograph from database selected<br />

and this radiograph are preprocessed, segmented and<br />

contour extracted from it. Also registration of teeth is<br />

given as per atlas registration. And last stage of this<br />

system is match<strong>in</strong>g, <strong>in</strong> this feature extracted from<br />

these two radiograph matched with each other us<strong>in</strong>g<br />

algorithm and f<strong>in</strong>al result is identification of person<br />

based on match<strong>in</strong>g distance between radiographs[1]<br />

[5].<br />

Radiograph Collection<br />

Radiograph segmentation<br />

Match<strong>in</strong>g tooth<br />

contour<br />

Contour Extraction<br />

Dental work Extraction<br />

Atlas Registration<br />

Match<strong>in</strong>g of Radiograph<br />

Fusion<br />

Subject Identification<br />

Fig.1 Block diagram of Dental<br />

Identification System<br />

3. HUMAN IDENTIFIACTION BASED ON<br />

DENTAL RESTORATIONS<br />

Preprocess<strong>in</strong>g and Segmentation:<br />

Dental radiograph <strong>in</strong>itially converted <strong>in</strong>to gray scale<br />

image. Region of <strong>in</strong>terest (ROI) are decided on<br />

radiograph. Algorithm is <strong>used</strong> to determ<strong>in</strong>ed gray<br />

threshold value of ROI. Then histogram is prepared<br />

<strong>for</strong> the grayscale threshold. To smooth the histogram<br />

filter is <strong>used</strong> to filter out unwanted <strong>in</strong>tensities from<br />

image .After this gray image converted <strong>in</strong>to b<strong>in</strong>ary<br />

image. Active contour model (Snake method) is <strong>used</strong><br />

<strong>for</strong> segmentation of image [6] [15].<br />

Dental Code:<br />

Dental code is <strong>used</strong> to locate teeth, size of teeth and<br />

distance between DR or teeth.<br />

Dental Atlas registration:<br />

Method or code is developed to locate teeth this is<br />

known as <strong>dental</strong> atlas registration. In this we can give<br />

number<strong>in</strong>g to teeth from left to right of jaw and also<br />

we can differentiate between upper jaw and lower<br />

jaw. As per [2], HMM and Markov model was <strong>used</strong><br />

JERS/Vol.III/ Issue I/January-March, 2012/26-29<br />

Journal of Eng<strong>in</strong>eer<strong>in</strong>g Research and Studies E-ISSN0976-7916<br />

Match<strong>in</strong>g <strong>dental</strong><br />

work<br />

<strong>for</strong> this registration purpose. This registration will<br />

help <strong>in</strong> match<strong>in</strong>g stage.<br />

Size of DR:<br />

The method uses to resize DR <strong>in</strong> same size. It means<br />

amount of pixels should be same <strong>for</strong> all DR. So it<br />

will help <strong>in</strong> match<strong>in</strong>g.<br />

Distance between DR:<br />

This is more useful <strong>in</strong> match<strong>in</strong>g stage to create more<br />

sensitive algorithm of match<strong>in</strong>g. In this distance of<br />

neighbor<strong>in</strong>g teeth is calculated.<br />

Match<strong>in</strong>g:<br />

After creation of <strong>dental</strong> code (DC) ,this DC will<br />

match to the DC of database radiograph and distance<br />

between this two DCs calculated. So f<strong>in</strong>ally we<br />

received match<strong>in</strong>g percentage between the AM and<br />

PM radiograph. Based on result subject get identified<br />

[6] [15].<br />

2.1 Nomir & Adlab-Mottaleb<br />

In [2], Nomir & Adlab-Mottaleb <strong>in</strong>troduce a fully<br />

automated approach <strong>for</strong> <strong>dental</strong> x-ray images. The<br />

technique depends on apply<strong>in</strong>g the follow<strong>in</strong>g stages:<br />

iterative threshold to divide the image <strong>in</strong>to two parts<br />

teeth & background, adaptive threshold <strong>in</strong> order to<br />

<strong>in</strong>crease the accuracy and remove teeth <strong>in</strong>terfer<strong>in</strong>g,<br />

horizontal <strong>in</strong>tegral part <strong>in</strong> order to separate the upper<br />

jaw and lower jaw, f<strong>in</strong>al, vertical <strong>in</strong>tegral projection<br />

<strong>in</strong> order to separate <strong>in</strong>dividual tooth.<br />

3.2 Eyad Haj Said, Diaa Eld<strong>in</strong> M Nassar, Gamal<br />

Fabry & Hany Ammar<br />

In [3], Eyad Haj Said, Diaa Eld<strong>in</strong> M Nassar, Gamal<br />

Fabry & Hany Ammar presented method of teeth<br />

segmentation us<strong>in</strong>g mathematical morphology<br />

approach offers fully automated teeth segmentation<br />

and reduces segmentation error due to <strong>in</strong>herent to that<br />

improve the def<strong>in</strong>ition of teeth versus background<br />

and segmentation per<strong>for</strong>mance.<br />

3.3 Supaporn Kiaths<strong>in</strong>, Adison Leelasantitham,<br />

Kos<strong>in</strong> Chamnogthai & Kohji Higuchi<br />

A match of x-ray teeth films us<strong>in</strong>g image process<strong>in</strong>g<br />

based on special features of teeth by Supaporn<br />

Kiaths<strong>in</strong>, Adison Leelasantitham, Kos<strong>in</strong><br />

Chamnogthai & Kohji Higuchi [4]. This method can<br />

help dentist to match simply pair of teeth us<strong>in</strong>g<br />

special features present on teeth film. This presents<br />

some steps: teeth’s picture is scanned and adjusted by<br />

scanner & computer, converted <strong>in</strong>to b<strong>in</strong>ary code, and<br />

decoded <strong>in</strong> cha<strong>in</strong> code (Direction code)<br />

3.4 Hong Chen & A.K. Ja<strong>in</strong><br />

Dental biometry is <strong>used</strong> to identify human. In [5],<br />

Hong Chen & A.K. Ja<strong>in</strong> <strong>in</strong>troduced <strong>dental</strong> <strong>biometrics</strong><br />

us<strong>in</strong>g active contour extraction model (ACM). In this<br />

they proposed a new dynamic energy term i.e.<br />

directional snake to extract contours of teeth. As per<br />

this paper traditional snake cannot able to<br />

discrim<strong>in</strong>ate edges of multiple adjacent objects. So<br />

there can be presence of overlapp<strong>in</strong>g images. To<br />

remove this problem Hong Chen & A.K. Ja<strong>in</strong> utilized<br />

direction gradients. The contour extraction process<br />

hav<strong>in</strong>g three steps: <strong>in</strong>itialization- In this gum l<strong>in</strong>e is


<strong>used</strong> to separate the crown and roots of teeth <strong>for</strong> the<br />

snake <strong>in</strong>itialization, convergence of Gradient, f<strong>in</strong>e<br />

adjustment<br />

Hong Chen & A.K. Ja<strong>in</strong> [6] presented Dental<br />

Biometrics: Alignment and Match<strong>in</strong>g of Dental<br />

Radiographs. This proposed system has ma<strong>in</strong> two<br />

stages: feature extraction, match<strong>in</strong>g.<br />

In this to extract contours of <strong>dental</strong> work the <strong>in</strong>tensity<br />

histogram of the tooth image is automated with the<br />

mixture of Gaussian model.<br />

In the match<strong>in</strong>g stage three steps given: Tooth level<br />

match<strong>in</strong>g, tooth contours are matched us<strong>in</strong>g a shape<br />

registration method, and the <strong>dental</strong> work is matched<br />

on overlapp<strong>in</strong>g areas.<br />

Distance between postmortem and ante mortem<br />

radiographs provide candidates identities to estimate<br />

subject identification.<br />

Hofer M & Marana<br />

In [6], Hofer M & Marana AN presented Dental<br />

<strong>biometrics</strong> <strong>for</strong> human identification based on <strong>dental</strong><br />

work. Dental <strong>biometrics</strong> <strong>used</strong> <strong>for</strong> <strong><strong>for</strong>ensic</strong><br />

identification, <strong>in</strong> this <strong>dental</strong> work <strong>in</strong><strong>for</strong>mation is <strong>used</strong><br />

to identify human. This paper three process<strong>in</strong>g steps<br />

were given as per follow<strong>in</strong>g: Segmentation (Feature<br />

Extraction), creation of <strong>dental</strong> code, match<strong>in</strong>g<br />

Primarily segmentation is done by detect<strong>in</strong>g<br />

threshold and f<strong>in</strong>ally snake (active contour model)<br />

algorithm <strong>used</strong>. Dental code is prepared as per the<br />

position, size of <strong>dental</strong> work and neighbor<strong>in</strong>g <strong>dental</strong><br />

work. Match<strong>in</strong>g done by edit<strong>in</strong>g distance between<br />

<strong>dental</strong> works.<br />

4. DISCUSSION<br />

Dental biometry is <strong>used</strong> <strong>in</strong> <strong><strong>for</strong>ensic</strong> identification.<br />

Some other methods are also present <strong>for</strong> <strong><strong>for</strong>ensic</strong><br />

identification. But it is more useful when there is no<br />

any other identity like iris [11], face, f<strong>in</strong>gerpr<strong>in</strong>ts [16]<br />

etc of victim rema<strong>in</strong><strong>in</strong>g. Dental atlas can rema<strong>in</strong> <strong>in</strong><br />

well condition <strong>for</strong> some time period after the death of<br />

person so by tak<strong>in</strong>g radiograph at the time of PM and<br />

match<strong>in</strong>g with it to database hav<strong>in</strong>g with <strong><strong>for</strong>ensic</strong><br />

department it can give you identification of victim or<br />

subject. Also <strong>dental</strong> biometry can be <strong>used</strong> <strong>in</strong> human<br />

identification system. Also match<strong>in</strong>g of x-ray films<br />

which is the part of <strong>dental</strong> biometry can help dentist<br />

to their cl<strong>in</strong>ical diagnosis [1] [5]. Dental biometry<br />

requires AM and PM radiograph only <strong>for</strong><br />

identification. Dental biometry cannot require<br />

additional <strong>in</strong><strong>for</strong>mation. DNA requires additional<br />

<strong>in</strong><strong>for</strong>mation of subject <strong>for</strong> identification. Dental<br />

biometry comes under physical biometry so it is<br />

easier to measure quantitatively as compared to<br />

behavioral biometry. Hand ve<strong>in</strong> pattern and ret<strong>in</strong>a<br />

scan are physical biometry but it hav<strong>in</strong>g low<br />

acceptability because it may reveal person’s health<br />

status and it is <strong>in</strong>vasive method. In disasters, victim<br />

or subject’s physical characteristics like iris, face,<br />

f<strong>in</strong>gerpr<strong>in</strong>ts not available that time biometry related<br />

to these characteristic not worked. So there is then<br />

need of <strong>dental</strong> biometry because <strong>dental</strong> jaw<br />

JERS/Vol.III/ Issue I/January-March, 2012/26-29<br />

Journal of Eng<strong>in</strong>eer<strong>in</strong>g Research and Studies E-ISSN0976-7916<br />

rema<strong>in</strong><strong>in</strong>g <strong>in</strong> well condition <strong>in</strong> massive disasters.<br />

Dental biometry is <strong>used</strong> <strong>for</strong> <strong><strong>for</strong>ensic</strong> identification.<br />

Also match<strong>in</strong>g of <strong>dental</strong> radiograph can be <strong>used</strong> <strong>in</strong><br />

cl<strong>in</strong>ical diagnosis <strong><strong>for</strong>ensic</strong> medic<strong>in</strong>e (Forensic<br />

Dentistry) [1].<br />

Dental biometry hav<strong>in</strong>g some limitation based on<br />

below mentioned po<strong>in</strong>ts so <strong>in</strong> some cases it is not<br />

good choice <strong>for</strong> identification:<br />

• Positive identification: AM and PM radiographs<br />

should have sufficient data to match, with no any<br />

discrepancy like miss<strong>in</strong>g tooth.<br />

• Possible identification: If consistent features are<br />

present <strong>in</strong> AM or PM radiograph but if there is<br />

problem <strong>in</strong> quality of either AM or PM<br />

radiograph then this may create no positive<br />

identification.<br />

• Insufficient evidence: Sufficient <strong>in</strong><strong>for</strong>mation is<br />

not available <strong>for</strong> the basis of conclusion.<br />

• Exclusion: The radiograph <strong>in</strong><strong>for</strong>mation is<br />

<strong>in</strong>consistent [1].<br />

5. CONCLUSION<br />

Segmentation of Radiographs: A fast march<strong>in</strong>g based<br />

algorithm is <strong>used</strong> to segment radiographs <strong>in</strong>to<br />

homogeneous regions so that each region conta<strong>in</strong>s<br />

only one tooth [9]. This method utilizes the<br />

characteristics of <strong>dental</strong> radiographs <strong>in</strong> that soft tissue<br />

and bone have different pixel <strong>in</strong>tensity. This method<br />

can be extended to analyze other types of<br />

radiographs. ASM-Based Tooth Contour Extraction:<br />

An active shape model (ASM) is <strong>used</strong> to extract tooth<br />

contours. The traditional ASMs have some problems<br />

that are solved by new ASM. Extraction of Contours<br />

of Dental Work: An anisotropic diffusion <strong>used</strong> to<br />

enhance the images and extract the contours of <strong>dental</strong><br />

work with a reasonable assumption that pixel values<br />

of <strong>dental</strong> restoration follow a Gaussian distribution<br />

[1] [2] [3] [5] [10] [17]. Hybrid HMM/SVM Model<br />

<strong>for</strong> Representation of Dental Atlas: Tooth states <strong>in</strong><br />

the HMM comb<strong>in</strong>ed with SVMs model the shape of<br />

teeth, and distance states <strong>in</strong> the HMM model the<br />

<strong>in</strong>ter-teeth distance ca<strong>used</strong> by miss<strong>in</strong>g teeth.<br />

Construction of Observation sequences: An<br />

observation sequence is an alternat<strong>in</strong>g sequence of<br />

tooth shapes and distances between successive teeth.<br />

To compensate <strong>for</strong> the difference between image<br />

resolutions of AM and PM images, the tooth shapes<br />

are normalized to affixed width, and the distances<br />

between teeth are regularized with the width of<br />

neighbor<strong>in</strong>g teeth [1] [7] [17]. Location of DW<br />

(Dental Work) can be f<strong>in</strong>d<strong>in</strong>g out by implement<strong>in</strong>g<br />

algorithm. In this all DWs <strong>in</strong> the DWM from left to<br />

right based on the center of mass po<strong>in</strong>t of each<br />

<strong>in</strong>dividual DW sorted. This is requir<strong>in</strong>g creat<strong>in</strong>g<br />

<strong>dental</strong> code. The upper jaw and lower jaw is<br />

identified by the valley location with respect to upper<br />

jaw and lower jaw [6] [15].<br />

Match<strong>in</strong>g of tooth contours: Tooth contours are open<br />

curves. To match tooth contours, correspondence<br />

between the tooth contours has to be established. An


iterative procedure is present to align tooth contours<br />

and compute distances based on the correspond<strong>in</strong>g<br />

segments of the two curves. Algorithm is presented to<br />

align <strong>dental</strong> work and by us<strong>in</strong>g we can compute the<br />

distance between two images us<strong>in</strong>g a metric of<br />

overlapp<strong>in</strong>g pixels. Dental restorations are not always<br />

present <strong>in</strong> the <strong>dental</strong> radiographs. To fuse the<br />

match<strong>in</strong>g distances between tooth contours and<br />

<strong>dental</strong> restoration contours, a scheme presented based<br />

on posterior probability. A scheme <strong>used</strong> to compute<br />

the distance between an image and a subject and the<br />

distance between two subjects [1].<br />

REFERENCES<br />

1. Hong Chen, “Automatic Forensic Identification<br />

based on <strong>dental</strong> radiographs”, Michigan State<br />

University, 2007.<br />

2. O. Nomir and M. Abdel-Mottaleb, “Human<br />

Identification from Dental X-Ray Images Based<br />

on the Shape and Appearance of the Teeth”,<br />

IEEE Transactions on In<strong>for</strong>mation Forensics and<br />

Security, vol. 2, Issue 2, pp. 188 – 197, 2007.<br />

3. E.H. Said; D.E.M. Nassar; G. Fahmy and H.H.<br />

Ammar, “ Teeth segmentation <strong>in</strong> digitized <strong>dental</strong><br />

X-ray films us<strong>in</strong>g mathematical morphology”,<br />

IEEE Transactions on In<strong>for</strong>mation Forensics and<br />

Security, vol. 1, Issue 2, pp. 178 – 189, 2006<br />

4. Supaporn Kiattism, Adisorn Leelasantitham,<br />

Kos<strong>in</strong> Chamnongthai and Kohji Higuchi, “ A<br />

match of x-ray teeth films us<strong>in</strong>g image<br />

process<strong>in</strong>g based on special features of teeth”,<br />

SICE Annual conference 2008, August 20-<br />

22,2008, The University Electro-<br />

Communications, Japan.<br />

5. Hong Chen and A.K. Ja<strong>in</strong>, “Dental <strong>biometrics</strong>:<br />

alignment and match<strong>in</strong>g of <strong>dental</strong> radiographs”,<br />

IEEE Transactions on Pattern Analysis and<br />

Mach<strong>in</strong>e Intelligence, vol. 27, Issue 8, pp. 1319 –<br />

1326, 2005.<br />

6. Hofer M and Marana AN, “Dental <strong>biometrics</strong> :<br />

Human identification based on <strong>dental</strong> work<br />

<strong>in</strong><strong>for</strong>mation” eHealth2008 – Medical In<strong>for</strong>matics<br />

meets eHealth. Tagungsband der eHealth2008 –<br />

Wien, 29.-30. Mai 2008<br />

7. Andrea Castellani, Debora Botturi, Manuele<br />

Bicago, and Paolo Fior<strong>in</strong>i “ Hybrid HMM/SVM<br />

model <strong>for</strong> the analysis and segmentation of<br />

teleoperation tasks”, In Proc. IEEE International<br />

Conference on Robotics & Automation, page<br />

2918-2923,New Orleans, LA, April 2004.<br />

8. G. Fahmy, D Nassar, E. Haj-Said, H. Chen, O.<br />

Nomir, J. Zhou, R. Howell, H.H. Ammar, M.<br />

Abdel-Mottaleb and A. K. Ja<strong>in</strong> “Towards an<br />

automated <strong>dental</strong> identification system (ADIS).In<br />

Proc. ICBA(International Conference on<br />

Biometric Authentication),volume LNCS 3072,<br />

pages 789–796, Hong Kong, July 2004.<br />

9. Hong Chen and Carol Novak, “ Segmentation of<br />

hand radiographs us<strong>in</strong>g fast march<strong>in</strong>g methods”,<br />

In Proc. SPIE conference on Medical Imag<strong>in</strong>g,<br />

volume 6144, pages 68-76,San Diego, Cali<strong>for</strong>nia,<br />

2006.<br />

10. Hao Huang and Jughua Wang, “ Anistropic<br />

diffusion <strong>for</strong> object segmentation”, In Proc.<br />

IEEE International conference on systems, Man<br />

and Cybernetics, volume3 pages 1563–1567,<br />

Nashville, TN, October 2000.<br />

11. John Daughman, “How Iris Recognition Works”,<br />

IEEE Transactions on circuits and systems <strong>for</strong><br />

video technology, Vol.14, January 2004.<br />

JERS/Vol.III/ Issue I/January-March, 2012/26-29<br />

Journal of Eng<strong>in</strong>eer<strong>in</strong>g Research and Studies E-ISSN0976-7916<br />

12. A.K. Ja<strong>in</strong> and H. Chen, “Match<strong>in</strong>g of Dental Xray<br />

Images <strong>for</strong> Human Identification”, Pattern<br />

Recognition, vol37, no.7, pp.1519-1532, 2004.<br />

13. H. Chen and A.K. Ja<strong>in</strong>, “Tooth Contour<br />

Extraction <strong>for</strong> Match<strong>in</strong>g Dental Radiographs”,<br />

Proc. 17 th <strong>in</strong>ternational conference. Pattern<br />

Recognition, vol.III, pp.522-525, Aug2004.<br />

14. P.Perona and J.Malik, Scale-Space and Edge<br />

Detection Us<strong>in</strong>g Anistropic Diffusion, IEEE<br />

Trans.Pattern Analysis and Mach<strong>in</strong>e Intelligence,<br />

Vol.12, no.7, pp. 629-639, July 1990.<br />

15. Michael Hofer, Aparecido Nilceu, “ Marana2<br />

Dental Biometrics: Human Identification Based<br />

on Dental Work In<strong>for</strong>mation”, Car<strong>in</strong>thia<br />

University of Applied Sciences, Klagenfurt,<br />

Austria UNESP, Faculdade de C<strong>in</strong>cias,<br />

Departmento de Computao, Bauru SP, Brazil<br />

16. R.Khanna and W. Shen, “Automated f<strong>in</strong>gerpr<strong>in</strong>t<br />

identification system (AFIS) benchmark<strong>in</strong>g us<strong>in</strong>g<br />

the National Institute of Standards and<br />

Technology (NIST) special database4”, <strong>in</strong> Proc.<br />

Inst. Elect.Electron. Eng. 28 th Annu. Int.<br />

Carnahan Conf., Albuquerque, NM, Oct.12-14,<br />

1994, pp. 188–194.<br />

17. Juri Lember, Kristi Kuljus and Alexe<br />

Koloydenco, “Theory of segmentation”,<br />

University Tartu, Swedish University of<br />

Agricultural Sciences, Royal Holloway,<br />

University of London, Estonia, Sweden, UK.<br />

18. Anil K. Ja<strong>in</strong>, Hong Chen and Silviu M<strong>in</strong>ut,<br />

“Dental Biometrics: Human Identification us<strong>in</strong>g<br />

<strong>dental</strong> radiographs”, Department of Computer<br />

Science, Michigan State University, East<br />

Lans<strong>in</strong>g, MI 48824.<br />

19. Marcelo Cavalcanti, Axel Ruprecht, William<br />

Johnson, Southard Thomas, Jane Jakobsen, and<br />

Sao Paulo, “Oral and maxillofacial radiology”,<br />

Oral Surg Oral Med Oral Pathol, Volume 88:<br />

pages 353.357, 1999.<br />

20. Greth Jonasson and Gudrun Bankvall,<br />

“Estimation of skeletal bone m<strong>in</strong>eral density by<br />

means of the trabecular pattern of the alveolar<br />

bone, its <strong>in</strong>ter<strong>dental</strong> thickness, and the bone mass<br />

of the mandible”, Oral Surg Oral Med Oral<br />

Pathol Oral Radiol Endod, Volume92:pages 346-<br />

352 Ba2001.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!