12.07.2015 Views

Exploration for orogenic gold deposits – with ... - Vuorimiesyhdistys

Exploration for orogenic gold deposits – with ... - Vuorimiesyhdistys

Exploration for orogenic gold deposits – with ... - Vuorimiesyhdistys

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

WORKSHOP<strong>Exploration</strong> <strong>for</strong> <strong>orogenic</strong><strong>gold</strong> <strong>deposits</strong> – <strong>with</strong> emphasis ongeochemical exploration inglaciated Precambrian terrain


<strong>Exploration</strong> <strong>for</strong> <strong>orogenic</strong> <strong>gold</strong> <strong>deposits</strong> –<strong>with</strong> emphasis on geochemical exploration inglaciated Precambrian terrainWorkshop, 21 August 201125th International Applied Geochemistry Symposium 201122-26 August 2011 Rovaniemi, FinlandPasi Eilu, V. Juhani Ojala and Pertti SaralaPublisher: <strong>Vuorimiesyhdistys</strong> - Finnish Association of Mining and MetallurgicalEngineers, Serie B, Nro B92-6, Rovaniemi 2011


Eilu, P., Ojala, V.J. and Sarala, P. 2011. <strong>Exploration</strong> <strong>for</strong> <strong>orogenic</strong> <strong>gold</strong> <strong>deposits</strong> – <strong>with</strong> emphasis on geochemicalexploration in glaciated Precambrian terrain. Workshop in the 25th International Applied GeochemistrySymposium 2011 22-26 August 2011 Rovaniemi, Finland. <strong>Vuorimiesyhdistys</strong>, B92-6, 88 pages.Layout:Cover – Irma VarrioISBN 978-952-9618-74-3 (Printed)ISBN 978-952-9618-75-0 (Pdf)ISSN 0783-1331© <strong>Vuorimiesyhdistys</strong>This volume is available from:<strong>Vuorimiesyhdistys</strong> ry.Kaskilaaksontie 3 D 10802360 ESPOOElectronic version:http://www.iags2011.fi or http://www.vuorimiesyhdistys.fi/julkaisut.phpPrinted in:Painatuskeskus Finland Oy, Rovaniemi


<strong>Exploration</strong> <strong>for</strong> <strong>orogenic</strong> <strong>gold</strong> <strong>deposits</strong> – <strong>with</strong> emphasis ongeochemical exploration in glaciated Precambrian terrainPasi Eilu 1 , V. Juhani Ojala 2 and Pertti Sarala 11 Geological Survey of Finland, E-mail firstname.lastname@gtk.fi2 Store Norske Gull, E-mail firstname.lastname@snsk.noAbstractAn <strong>orogenic</strong> <strong>gold</strong> deposit is a structurally controlled <strong>gold</strong> occurrence <strong>for</strong>med duringone of the major stages of an orogeny by <strong>orogenic</strong> fluids. Any rock type <strong>with</strong>ina greenstone or schist belt, a metamorphosed supracrustal rock, dyke, or intrusion<strong>with</strong>in or intrusion bounding such belt may host an <strong>orogenic</strong> <strong>gold</strong> deposit. There isstrong structural control of mineralization at a variety of scales but the favoured hostis typically the locally most reactive and/or most competent lithological unit. These<strong>deposits</strong> are not present in post- or an<strong>orogenic</strong> intrusions or unmetamorphosed supracrustalrocks. Most of the Precambrian <strong>deposits</strong> were <strong>for</strong>med during 2.70–2.60Ga and 2.10–1.70 Ga. These epochs appear to be related to rapid crustal growth andaccretionary stages of supercontinents. Mineralisation typically takes place duringthe last major stage of an orogeny. The late timing of this deposit type to provideimportant geological aids in exploration as the geometry of the geological units hasnot significantly changed after the mineralisation. Hence computer aided methodslike geomechanical stress modelling can be utilised to model structurally favourablesites.In greenschist facies settings, mineralisation typically takes place slightlyafter the metamorphic peak, but in amphibolite facies at the local regional-metamorphicpeak. The ore bodies typically have a strongly flattened ellipsoidal shape, areplate-like, may have a steep or a gentle dip and plunge of ore shoots. An ore bodycan be 0.5–50 m wide, 100 m – 2 km long, consisting of a vein network, an en echelonvein swarm, or just of one single large vein. The depth extent of an ore bodymay well be much larger than its extent along strike. An individual vein can be 1cm – 10 m thick and 20–1000 m long. In most cases, <strong>gold</strong> occurs as native <strong>gold</strong>, freein gangue and <strong>with</strong> main sulphides, and as inclusions and in fractures of gangue andsulphide grains. In a few cases, most of <strong>gold</strong> is in the lattice of or submicroscopicinclusions in pyrite or arsenopyrite.All <strong>deposits</strong> are developed by an alteration halo characterised by proximalto distal carbonatisation and proximal sericitisation or biotitisation. Also, proximalsulphidation may be distinct if the host rock is iron rich. Elements enriched typicallyinclude As, Au, CO2, K, Rb, S, Sb, Te, W; in some cases also Ag, B, Bi, Co, Cu,and Se are enriched. The Au/Ag is consistently >1, typically 5–10. Enrichment ordepletion of Ca, Fe, Mn or Mg are non-existent, and Na mobility, if present, is minorand spatially restricted to the ore itself. Alteration mineral assemblages, alterationindices based on CO2 and K, and trace (pathfinder) elements enriched in the <strong>deposits</strong>can be used in defining exploration targets and vectors to ore in bedrock.Surficial geological, till geochemical and indicator mineral studies are effectivemethods in <strong>gold</strong> exploration in glaciated terrains. By test pit surveys and stratigraphiccontrolled till geochemical and heavy mineral sampling glacial transportdistances and mechanisms, secondary element dispersions, and ice flow directionscan be estimated. Strong changes in glacial dynamics and erosional and depositionalconditions lead to a variable degree of preservation of earlier <strong>deposits</strong> and pre-Quaternaryregolith, and deposition of complex glacigenic <strong>for</strong>mations.


6Workshop ProgramSunday, 21 August 2011, Hotel Santa Claus, Rovaniemi8:30-9:00 am Registration9:00 am Overview of the <strong>orogenic</strong> <strong>gold</strong> deposit type, Juhani Ojala9:45 am Reference to other types of <strong>gold</strong> <strong>deposits</strong> in shield areas, Juhani Ojala10:30 am Coffee break10:45 Alteration and geochemical dispersion related to <strong>orogenic</strong> <strong>gold</strong>, Pasi Eilu12:00 Lunch13:15 Brief overview to the surficial geological and geochemical exploration <strong>for</strong> <strong>gold</strong>in glaciated terrains, Pertti Sarala14:00 Discussion14:30 Coffee14:45-16.00 Ore and alteration zone samples, Pasi Eilu


7Overview of the <strong>orogenic</strong> <strong>gold</strong>deposit typeJuhani OjalaStore Norske Gull ASHeavily based on talks by D. I. GrovesTalk outline• Nature and tectonic setting of <strong>orogenic</strong> <strong>gold</strong>• Lithospheric scale energy sources andprocesses• Timing of <strong>orogenic</strong> <strong>gold</strong> systems• Crustal continuum model• Orogenic <strong>gold</strong> mineral system• Structural and host rock controls• Endowment• Conceptual targeting and GIS


8A SIMPLIFIED OROGENIC GOLDMINERAL SYSTEM1. SIMPLIFIED MINERAL SYSTEM2. RHEOLOGICAL CONTRASTS AND HOST ROCKCONTROLS3. STRUCTURAL AND GEOMETRICAL CONTROLSa) Supracrustal Beltsb) Role of Granitoids and Other Rigid Bodies4. PRODUCTIVE vs POORLY-ENDOWED TERRANESHostrockStructuralpermeabilityChannelway(shear zone)Fluid focussingSourcerockAnatomy of a Hydrothermal System


97Epigenetic Gold Deposits in Orogenic Belts• Orogenic <strong>gold</strong> <strong>deposits</strong> (e.g. Kalgoorlie, Ashanti)• “Intrusion-related” <strong>gold</strong> <strong>deposits</strong> (e.g. Fort Knox)• Overprinted porphyry <strong>deposits</strong> (e.g. McIntyre,Boddington?)• Overprinted VMS (Bousquet, Bulyanhulu)Includes “greenstone-hosted”, “slate-belt hosted”,“Mother lode-style” etc89


10Features Common to Majority ofOrogenic Gold Deposits1. At or near terrane boundaries (or other crustalscalefaults/ shear zones).2. Strong structural control in lower-order structures.3. Large vertical extent <strong>with</strong> subtle vertical zonation.4. Typically K-mica and carbonate alteration atgreenschist facies.5. Characteristic addition of SiO 2 , K, Rb, Ba+Na+B.6. Characteristic ore metals : Au+Ag+As+Sb+Te+W<strong>with</strong> low Pb-Zn-Cu.7. Low salinity H 2 O-CO 2 +CH 4 ore fluid.8. Radiogenic and stable isotope signatures indicatemixed sources. 10FACTORS CRITICAL TO FORMATION OFWORLD-CLASS OROGENIC DEPOSITS1. HIGH FLUID FLUXa) Thick competent host rocksb) Strong contrasts in rock strength (rheology)c) High structural permeability in failed units or fault/shear zonecontacts2. EFFICIENT GOLD DEPOSITIONa) Reactive host rocks (high Fe/Mg or C?)b) Phase separation (lower H+, CH4 and H2S in residual fluid)c) Fluid mixing (note problems of mixing: limited fluid reservoirs;high fluid pressure; confusion <strong>with</strong> reaction <strong>with</strong> previouslyaltered rocksCRITICAL CHEMICAL FACTORS FOR LARGETONNAGE - OROGENIC GOLD DEPOSITS1. REACTIVE HOST ROCK TO PRODUCE DISSEMINATED GOLD RESOURCE (INADDITION TO HIGH-GRADE VEINS)2. FLUID IS H2O – CO2 ± CH4 WITH VERY MINOR (


111415


13A CRUSTAL THICKENINGAccretedoceanic crustHg-Sb ArcAuB PLUME IMPACT/SUBDUCTIONAuMantleplumeheadC SUBDUCTION ROLLBACKExtension incontinental crustAuDOCEANIC RIDGE SUBDUCTIONExtensionAuSlabrollbackAsthenosphereupwellingAsthenosphereupwelling19EEROSION OF MANTLELITHOSPHEREF DELAMINATION OF MANTLELITHOSPHEREAuAuAuAsthenosphereupwellingAsthenosphereupwellingGA GreenschistamphibolitetransitionFault <strong>with</strong>movementvectorGranitoidsAccretedcontinental crustStablecontinental crustMantleplumeMantlelithosphereAsthenosphereOceanic crust2021


14222324


1525Youngest rocks hosting <strong>gold</strong> mineralisationGranny SmithMt SheaPorphyryJundeeKanowna Belle (pre-main Au event)Mt MorgansAges of <strong>gold</strong> mineralisationKanowna Belle (minor)Golden MileEasternMt CharlotteGoldfieldsVictory, KambaldaProvinceChaliceOtherProvincesReedysMarymiaOldest rocks syn to post <strong>gold</strong> mineralisationScotiaMt GibsonWestonia OtherGriffin’s FindNevoriaCorinthiaMatilda, WilunaBig BellMt GibsonU-Pb in zirconU-Pb in titaniteU-Pb in monaziteRe-Os in molybdeniteAr/Ar in micaSm-Nd in garnetPb-Pb in pegmatitePb-Pb in sulphideLawlers (minor)East Lode, WilunaEastern GoldfieldsScotia ProvinceProvinces2680Ma 2660 2640 2620 2600 2580 2560Ma2627


16282930


17313233


18343536


19373839


20404142


21434445


2246The Situationin 1990kg x 10 312501000750500250Golden Mile (Kalgoorlie)Central NorsemanSons of GwaliaMt Charlotte (Kalgoorlie)Wiluna-MoonlightHill 50 - Mt MagnetBoddington - HedgesGreat Fingall - Golden crown (Day Crown)Paddys Flat (Meekatharra)Kambalda - St IvesLancefield (Laverton)Big Bell (Cue)Lady Shenton - Crusoe - Princess May (Menzies)Copperhead (Bullfinch)Emu (Lawlers)kg x 10 31000ABITIBI750500250YILGARN4748Hollinger-McIntyre-Coniaurum:TimminsDome : TimminsKerr Addison : Larder LakeCampbell : Red LakeLake Shore : Kirkland LakeWilliams : HemloGolden Giant : HemloWright - Hargraves : Kirkland LakeLamaque : Val D’OrEdna May (Westonia)PaddingtonReedyWestralia (Mt Morgans)New CelebrationOroya Black Range (Sandstone)YouanmiFrasers (Southern Cross)Bayleys (Coolgardie)BurbanksHannans North (Kalgoorlie)Cosmopolitan (Kalgoorlie)Granny Smith (Laverton)Dickinson : Red LakePamour : TimminsSigma : Val D’OrDavid Bell : HemloDoyon : BousquetMacassa : Kirkland LakeEast Malartic : MalarticMadsen : Red LakeBousquet : BousquetAunor : TimminsMalartic : MalarticSylvanite : Kirkland LakeHallnor : TimminsCamflo : Val D’OrPreston : TimminsDetour : Lake DetourPickle Crow : Pickle LakeMacleod-Cockshunt : GeraltonAgnico-Eagle : JouielThe Situationin 2000kg x 10 31250kg x 10 31000750500250Hollinger-McIntyre-Coniaurum:TimminsDome : TimminsKerr Addison : Larder LakeCampbell : Red LakeLake Shore : Kirkland LakeWilliams : HemloGolden Giant : HemloWright - Hargraves : Kirkland LakeLamaque : Val D’OrDickinson : Red LakePamour : TimminsSigma : Val D’OrDavid Bell : HemloDoyon : BousquetMacassa : Kirkland LakeEast Malartic : MalarticMadsen : Red LakeBousquet : BousquetAunor : TimminsMalartic : MalarticSylvanite : Kirkland LakeHallnor : TimminsCamflo : Val D’OrPreston : TimminsDetour : Lake DetourPickle Crow : Pickle LakeMacleod-Cockshunt : GeraltonAgnico-Eagle : JouielABITIBI1000750500250Golden Mile (Kalgoorlie)PlutonicSunrise/CleoJundeeWallabyKanowna BellBronzewingCarosue DamCentral NorsemanTarmoolaSons of GwaliaMt Charlotte : KalgoorlieWiluna-MoonlightHill 50 - Mt MagnetBoddington - HedgesGranny Smith : LavertonGreat Fingall - Golden crown : Day CrownYILGARNPaddys Flat : MeekatharraKambalda - St IvesLancefield : LavertonThunderboxBig Bell (Cue)Lady Shenton - Crusoe - Princess May:MenziesCopperhead (Bullfinch)Emu : LawlersEdna May (Westonia)PaddingtonReedyWestralia : Mt MorgansNew CelebrationOroya Black Range : SandstoneYouanmiFrasers : Southern CrossBayleys : CoolgardieBurbanksHannans : North (KalgoorlieCosmopolitan : Kalgoorlie


23GIS modellingModellingDigital elevationmodel and basemapsTill geochemistryBedrock mappingGravitySatellite imagesQuaternary geologyAirborne geophysics•magnetic•electro-magnetic•gamma radiationWeights of Evidence <strong>orogenic</strong> <strong>gold</strong> model,Combined Empirical/Conceptual WofECombined empirical/conceptual weights-of-evidencemodel CLGBClass Area km 2 Area %Sites W+ W- Contrast s(C) ConfidenceVery high 403 2.2 6 2.1128 -0.1726 2.2854 0.4527 5.0482High 517 2.8 12 2.5653 -0.4078 2.9731 0.3617 8.22Moderate 2493 13.4 10 0.7903 -0.2051 0.9954 0.377 2.6404Low 635 3.4 0 0 0 0 0 0Very low 14593 78.3 6 -1.4911 1.3379 -2.829 0.4502 -6.2837total 18642 100.0


24GIS conclusions• the models predict areas <strong>with</strong> high potential<strong>for</strong> <strong>orogenic</strong> Au mineralization in the CentralLapland Greenstone Belt-> considerable reductiong of the area to beexplored (less than 1% of the original studyarea)DISTAL VS PROXIMAL SOURCE MODELS FOROROGENIC GOLD DEPOSITSB. Salier (2003)53σ1SIMPLE MINERAL SYSTEM MODELARCHAEAN OROGENIC GOLD DEPOSITSSub –GreenschistDoleriteMid -GreenschistVolcanic RockSEALTRAPSedimentary Sequenceσ1FLUID PATHWAYAmphiboliteGranuliteDistalMagmaticFluidGraniteIIMetamorphic FluidSOURCEMetamorphic FluidGranite IFluid from SubcretedOceanic Crust54


25Reference to other types of<strong>gold</strong> <strong>deposits</strong> in shield areasV. Juhani OjalaCurrent organisation:Store Norske Gull ASOuline of the talk• Evolution of the Fennoscandian Shield• Gold mineralization types– Metamorphosed epitermal– Massive sulphide hosted– Granitoid related (non skarn)– Skarn-Iron Oxide Copper Gold– Orogenic (mesothermal)– Paleoplacer– Supergene and Recent alluvialGold mineralisation can occur in nearly allgeological environmentsTectonic settings of <strong>gold</strong>-rich mineral <strong>deposits</strong>Groves et al. (1998, 2000, 2003, 2005)


26Genetic deposit typesPalaeoproterozoic, 1.92-1.77 Ga• Multistage rifting during 2.45-1.97 Ga• Four main <strong>orogenic</strong> stages:1.92-1.88 Ga: Microcontinent accretion1.88-1.85 Ga: Continental extension1.85-1.79 Ga: Continent-continent collision1.79-1.77 Ga: Orogenic collapse and stabilisation


271.92–1.90collision1.90–1.88collision II1.86–1.85exension1.85–1.79collision IIIMetamorphosedepithermalMetamorphosed epithermal:PahtavaaraKutemajärvi/OrivesiPasi Eilu 2003


28Kutemajärvi:Metamorphosed HS epithermalHost to ore: quartz rockImmediately around to ore: Al-rich rocksquartz-andalusite-pyrophylliteF-Al(-P) minerals present: topaz, fluorite, apatiteMetal association Au±Ag-As-TeNo potassic or carbonate alterationExtremely low Na 2O + K 2O + CaO + MgOPasi Eilu 2003Kutemajärvi, Tampere Schist BeltAfter Poutiainen& Grönholm(1996)Pahtavaara


29Pahtavaara•Gangue – quartz, baryte, tremolite, dolomite, scheelite•Ba- and Mn-anomalies•Au = 99.02% Au, 0.07% Ag, 0.25% BiChampagene Pool, New ZealandWhite Island New Zealand


30Pasi Eilu 20067 Auriferous massivesulphide <strong>deposits</strong>&Submarine Au-richprecipitatesPasi Eilu 2006VHMS: back-arc environmentsGroves et al. (1998, 2000, 2003, 2005)RhyolintrusionVHMS: what happens there – ”a bit” simplified viewPirajno (1992)


31Precious-metal mineralisationPyhäsalmi mine, Proterozoic central FinlandFahlore?PyrrhotiteElectrumPyritePasi Eilu 2006ChalcopyriteField of view about 1 mmAll that glitters can be <strong>gold</strong>!Haveri ore, SW Finland:Au-Cu VHMS mineralisationor a submarine epithermaloverprint on Cu-VHMS?Pasi Eilu 2006Field of view about 10 cmPhoto J. Väätäinen


32Iron oxide-copper<strong>gold</strong>After Lahtinen et al. (2003),Weihed & Eilu (2003)IOCG•Hosted by epigenetic alkaline to alkali-calcicpredominantly subaerial volcanic rocks, ironstones,skarn-like rocks, albite rocks, graphitic schists, marbles•Structural control distinct in all cases•Magnetite-Chalcopyrite-Pyrite-Pyrrhotite-Gold ±Cobaltite, Co pentlandite, Uraninite association•Regional extensive albitisation and scapolitisation•Local multi-stage Fe ± Mg ± K ± Na alterationWeihed & Eilu 2003


33IOCG KolariHANNUKAINENW162 Kivivuopio0102Laurinoja17079 78 71 75 89 42 39Kuervaara36 92 90 86 84 33E400 mMonzonite SkarnDioriteIronstoneOverburden Qz-fsp schistModified from Hiltunen (1982)QuartziteMica gneissMafic metavolcanicrockFeOx-Cu-AuGranitoid relatedKopsa


34Kopsa•Major opaques Chalcopyrite, arsenopyrite, pyrrhotite•Minor opaques Loellingite, marcasite, pyrite, sphalerite,<strong>gold</strong>, molybdenite, cubanite, bornite, stannite, bismuth andseveral Bi-bearing sulphosalts•The entire intrusion is anomalous in Ag, As, Au and CuGranitoid related-Porphyry <strong>gold</strong>Pasi Eilu 2006Porphyry <strong>deposits</strong>: arc environmentsGroves et al. (1998, 2000, 2003, 2005)


35Raitevarri till and rock geochemistryCu-Au Anomalous zone 3 km long and 1 km wide2009 drilling2008 drilling500 profile Au/Cu


36OrogenicOrogenic <strong>gold</strong> in Fennoscandian ShieldDistributionAgeAfter Lahtinen et al. (2003),Weihed Pasi & Eilu Eilu (2003)ArchaeanIn every greenstonebelt explored <strong>for</strong><strong>gold</strong>?IlomantsiPampalo


37Orogenic Gold: Archaean• Structural control in both regional and local scale• The locally most competent ± reactive rock unit as themain host to ore• Au-only <strong>deposits</strong>• Enriched: Ag, As, Au, Ba, Bi, CO 2 , K, Li, Rb, S, Sb, Te, W• Timing: ca. 2.7 Ga, in the latest stage of theNeoarchaean orogeny (Global control?)• Compressional to transpressional de<strong>for</strong>mation• Syn-late <strong>orogenic</strong> TTG, but no indication of fluid ormetals from the granitoidsWeihed & Eilu 2003Orogenic Gold: ArchaeanPampalo:Structurally most complicated location,Locally, the most competent rock typesOrogenic Gold: Palaeoproterozoic• Structural control in both regional and local scale• The most competent ± reactive rock unit as the mainhost to ore• Enriched: Ag, As, Au, CO 2 , K, Rb, S, Sb, Te, W± Co, Cu, U (Kuusamo, Saattopora)• No indication of fluids or metals from granitoidsWeihed & Eilu 2003


38Central Lapland Greenstone BeltGold: Blue and green dotsKeinänen & Eilu 2003Orogenic Gold: PalaeoproterozoicSuurikuusikko,Central Lapland:In a shear zone,intense brecciation•No alteration•No increase ofany other elementthan AuPaleoplacerKumputunturi-OutapääKaarestunturi


39Placers and supergeneIsomaa supergene <strong>gold</strong> from regolithPuskuoja (Alhonen)Isomaa-KittiläMiessi (Tapio)Sotajoki(Vehviläinen)Nokia5 cmRuosselkäIvalojoki


40ConclusionsComplex tectonic evolution results diversity of Goldmineralisation styles•Orogenic: dominant, in all greenstone or schist belts, all ages•FeOx-Cu-Au: Palaeoproterozoic, W Lapland,•Granitoid-related: Palaeoproterozoic, near SW suturebetween Archaean and Proterozoic•Metamorphosed epithermal: Palaeoproterozoic, volcanic arcs•VHMS: Haveri?, Palaeoproterozoic, volcanic arcs•Paloeplacer in Lapland – erosion from VHMS and <strong>orogenic</strong>•Supergene in regolith remnants weathering startedNeoproterozoic•Placers reworking until RecentPasi Eilu 2003Thanks:David GrovesStephen GardollRaimo LahtinenVeikko KeinänenPär WeihedTero NiiranenNicole PatisonNick OliverPekka NurmiErkki VanhanenPeter Sorjonen-WardEelis PulkkinenJukka JokelaIlkka HärkönenVesa KortelainenHelena HulkkiEsa SandbergHeikki JuopperiAntero KarvinenHeikki Papunenjne…


141Orogenic <strong>gold</strong>:alterationPasi Eilu2011Pasi Eilu August 2011Factors controlling alteration in <strong>orogenic</strong> systems1.De<strong>for</strong>mation2.Structure3.PT4.Primary rock composition5.Fluid composition6.Fluid/rockPasi Eilu August 201121. De<strong>for</strong>mationBrittle, brittle-ductile or ductileEvents can be episodic, repeated2. StructureLocated in:- fracture arrays, stockworks, breccia zones,- foliated zones <strong>with</strong> pressure solution cleavage,- fold hinges, “saddle reefs”, etc.Pasi Eilu August 20113


423. PTMineralisation and alteration during peakregional metamorphism or soon after thatRange: 160–700°C, 0.7–5 kbar4. Primary rock compositionHosted by almost any rock type <strong>with</strong>in ametamorphic beltPasi Eilu August 201145. Fluid compositionH 2O-CO 2-NaCl±CH 4±N 2fluidXCO 2typically 0.05–0.30Low salinity, commonly 2–8 % NaCl eq.Au+ Ag, As, CO 2, K, Rb, S, Sb, Te, W± B, Ba, Bi, Hg, Mo, Pb, SeCo, Cu, Fe, Ni, Zn contents normally very low6. Fluid/rockFluid-dominated to rock-dominatedPasi Eilu August 20115These factors produce an apparently great variation in the styleand products of alteration…yet several features of alteration are common to all <strong>orogenic</strong> <strong>gold</strong><strong>deposits</strong>… and many of them can be utilised in explorationPasi Eilu August 20116


43The three main classes of alteration in<strong>orogenic</strong> systemsPasi Eilu August 201171 Lateral zoning- Due to chemical gradients and decreasingfluid/rock away from the fluid flow channels- Surrounds all <strong>deposits</strong>- Distinct lateral zoning sequence- Along-strike and -dip variation <strong>with</strong>in a singlerock type is rarePasi Eilu August 20118Alteration envelope around <strong>orogenic</strong> <strong>gold</strong>mineralisationDistal alteration Proximal alteration OrePasi Eilu August 20119


442 Variation in primary rock type- Variation in primary composition =>variation in alteration mineral assemblage<strong>with</strong>out a change in w/r or PT3 Variation in metamorphic grade- Systematic variation according tometamorphic grade- Typical between individual <strong>deposits</strong> ordeposit groups (<strong>gold</strong> camps)- Rare in a single deposit;only if a T isograd crosses the systemPasi Eilu August 201110?Extent of alteration?Pasi Eilu August 201111Extent of alteration- Alteration envelope 5 cm - 2 km wide;length up to 10 km or even more- Depends on the size and duration of the hydrothermalsystem, and the stress field during alteration- Positive correlation <strong>with</strong> the size of themineralisation (commonly)- Zone width grows outwards- Single zone may be 1 mm - 100 m wide,distal zone even up to 2 km (Golden Mile)Pasi Eilu August 201112


45Bronzewing,WesternAustraliaAlterationmapped fromdrillingintercepts at 150m depthEilu et al. (2001)Pasi Eilu August 201113Hollinger-McIntyreTimmins, AbitibiAlteration atthe presentsurface(simplified)Smith & Kesler (1985)Pasi Eilu August 201114Alteration at greenschist faciesPasi Eilu August 201115


460. Unaltered rockActinolite + epidote + albite + titanite ±ilmenite, magnetite (ol, cpx, kfsp, qz)1. Distal zoneChlorite + calcite + albite + rutile + quartz2. Intermediate zoneChlorite + calcite + ankerite/Fe dolomite +albite + quartz + rutile ± muscovite3. Proximal zoneMuscovite + ankerite + quartz + albite + rutile +pyrite ± arsenopyrite, <strong>gold</strong>Pasi Eilu August 201116Mafic rock:Pasi Eilu August 201117Bulletin, WilunaUnaltered metabasaltActinolite-Epidote-Chlorite-Albite-Titanite-MagnetitephotoJ. VäätäinenPasi Eilu August 201118


47Distal alterationChlorite-Calcite-Albite-Quartz-Rutile-Magnetite2 cmPasi Eilu August 2011photo J. Väätäinen19Intermediate alterationChlorite-Calcite-Dolomite-Albite-Quartz-Rutile-Magnetite2 cmphoto J. VäätäinenPasi Eilu August 201120Proximal alteration, oreDolomite-Sericite-Albite-Quartz-Rutile-Pyrite-Arsenopyrite2 cmphoto J. VäätäinenPasi Eilu August 201121


48Proximal alteration, 20 g/t AuArsenopyriteQz+Dolo+AbSericiteRutilePyriteQuartz vein0.5 cmphoto J. VäätäinenPasi Eilu August 201122Bulletin mine, Wiluna, Western AustraliaLower-greenschist faciesUnaltered metabasaltProximal alteration, oreCrossed polarizers, field of wiew 3.2 mmphoto P. EiluPasi Eilu August 201123Granny Smith, Western AustraliaGranodiorite, lower-greenschist faciesUnaltered (Kfsp-Pl-Qz-Biot±Hbl)+ two mineralisation-related fractures2 cmOre, pervasive proximal alteration (Ab-Qz-Ser-Dol-Py)photo J. VäätäinenPasi Eilu August 201124


49Sunrise Dam, Western AustraliaKomatiite, lower-greenschist facies10 cmDistal: talc-chlorite-dolomitel Proximal:fuchsitequartzankeritephoto P. EiluPasi Eilu August 201125Loukinen, Central LaplandKomatiite, mid-greenschist faciesPasi Eilu August 201126Loukinen, Central LaplandPhyllite, mid-greenschist faciesPasi Eilu August 201127


50Mt Magnet, Western AustraliaBIF, upper-greenschist faciesPyrite replacing magnetite; a sulphidation frontPhotoC. MathisonPasi Eilu August 201128Uppermost greenschist facies- Biotite instead of muscovite- Pyrrhotite instead of, or <strong>with</strong>, pyrite- Commonly, calcite <strong>with</strong> or instead of othercarbonates in the proximal alteration zone- In ultramafic rocks, talc more common- K feldspar may be stable in proximal alterationzones (felsic rocks)Pasi Eilu August 2011 29BronzewingYandal Belt, NE YilgarnTholeiitic basalt host rockProximal alterationChl-Calc-Ank-Ab-Qz → Biot-Calc-Ank-Ab-Qz-Pyphoto P. EiluPasi Eilu August 2011 30


51Uppermost greenschist faciesIf T is above biotite isograd, proximal alteration:Increasing XCO 2=> biotite → sericiteDecreasing XCO 2=> sericite → biotiteBut no change in sulphides(?)Pasi Eilu August 2011 31Py-Po-Mgt-Hm at greenschist facies:effect of temperatureRock: averageinterflowsediment atKambalda, WAp = 2kbkbarconstant w/rp(ox) =proportion ofoxidised sulphurEvans (2010) Mineralium Deposita 45, 207-213Pasi Eilu August 2011 32Py-Po-Mgt-Hm in greenschist facies:effect of fluid-rock ratioEvans (2010) Mineralium Deposita 45, 207-213300°C 350°CNo need p = 2 kbar, <strong>for</strong> another, constant w/r, oxidising or reducing fluid, if you see magnetitep(ox) or = proportion haematite of oxidised in a system, sulphur or Po±Py±Mgt±Hm zoningPasi Eilu August 2011 33


52Amphibolite faciesPasi Eilu August 201134Contrasts to greenschist facies- Bleaching is not a characteristic feature- Calcic plagioclase is stable- Potassic alteration (biotite ± K-feldspar) fld )hasa wider extent than carbonation- Calcite is, normally, the only carbonate presentPasi Eilu August 2011 35Contrasts to greenschist facies- Calc-silicates characterise proximal alteration:diopside, hornblende, tremolite-actinolite, garnet- Pyrrhotite is the dominant Fe sulphide- Löllingite may be present- Rutile gives way to ilmenite and titanite asstable Ti-minerals, and magnetite may be stablePasi Eilu August 2011 36


53Lower-amphibolite faciesRegional metamorphic mineral assemblageplagioclase + hornblende→ Distal alteration zone (1 cm - 40 m)plagioclase + hornblende + biotite ± pyrrhotite→ Proximal alteration zone (1 mm - 20 m)plagioclase + biotite + calcite + quartz + pyrrhotite± arsenopyrite, actinolitePasi Eilu August 2011 37Ore, proximal alteration in lower-amphibolite faciesPasi Eilu August 2011 38Flin Flon, CanadaBIF: sulphidation front also herephoto C. Mathison5 mmPasi Eilu August 201139


54Mid-amphibolite facies and highermetamorphic gradesRegional metamorphic mineral assemblageplagioclase + hornblende→ Distal alteration zone (0 cm - 20 m)plagioclase + hornblende + biotite→ Proximal alteration zone (1 mm - 10 m)diopside ± grossular, almandine, actinolite, hornblende, biotite/Kfeldspar,plagioclase, calcite, quartz, pyrrhotite,arsenopyrite/löllingitePasi Eilu August 2011 40Ore, proximal alterationMid- to upper-amphibolite faciesBasalt, Polaris South, Southern Cross, YilgarnOrogeeninen AuDi-HblHbl-BiotDi-HblGar-Qzphoto C. Mathisonmm scalePasi Eilu August 2011 41Alteration as exploration toolPasi Eilu August 2011 42


55Alteration as exploration tool1. Alteration envelope can be used to define potential explorationtargetsEasy to identifyTargets detected are much larger than if only <strong>gold</strong> mineralisationwas used in the target identification2. Once an alteration halo is recognised, the sequence of alterationzones can be used as a rough vector towards the potential oreIt is most important to recognise these features in theearly stages of explorationPasi Eilu August 2011 43General trendsIn all rocks:K metasomatism + carbonation(± Ca-silicates) + sulphidation i + quartz veinsPasi Eilu August 2011 44Greenschist faciesCarbonate-free → calcite → calcite-dolomite → dolomite/ankerite;ilmenite / magnetite / titanite → rutile;sericitisation + bleachingBIF: sulphidation frontPasi Eilu August 2011 45


56UnalteredDistalIntermedProximal,OREPasi Eilu August 2011 46Amphibolite facies and uppermost greenschist faciesBiotitisation and brown colourAmphibolite faciesBanded proximal alteration characterised bydiopside and intense green colourPasi Eilu August 2011 47Sources of confusion 1, 2Sheared felsic rocks <strong>with</strong>in a sequence dominated by mafic orultramafic rocks=> apparently bleached zones:Check primary chemical characteristicsSpilites metamorphosed at amphibolite facies conditions=> diopside ± quartz, garnet, calcite, pyritebetween pillows, fractures, etc.:Check primary volcanic structuresPasi Eilu August 2011 48


57Sources of confusion 3Carbonatisation related to VMS-style mineralisationDifferences to <strong>orogenic</strong> <strong>gold</strong> systems:- Distinct gains in Ca, Fe, Mg- At greenschist facies, no mineralogical gradients definedby carbonates- Silicate assemblages commonly contain Al-rich, alkali-deficientminerals (also true in metamorphosed epithermal systems)- Typically strati<strong>for</strong>m, unrelated to late faults or shear zonesPasi Eilu August 2011 49Sources of confusion 4Amphibolite facies: SkarnsDifferences to <strong>orogenic</strong> <strong>gold</strong> systems:- Intimate association <strong>with</strong> an (granitoid) intrusion +- No potassic alteration associated <strong>with</strong> calc-silicate <strong>for</strong>mation- Gold in retrograde gangue association, typically distalto intrusion and to high-T skarn mineral association- Radiometric dating shows synchronous mineralisationand intrusionPasi Eilu August 2011 50Next:GeochemicalhaloesPasi Eilu August 201151


158Orogenic <strong>gold</strong>:geochemical featuresPasi Eilu2011Pasi Eilu April 2010Geochemical anomalies- Discriminate between <strong>gold</strong>-related and unmineralisedstructures- Expand the target- Define vectors to orePasi Eilu April 20102Elements enriched in <strong>orogenic</strong> <strong>gold</strong> systemsVery little difference regarding:- Metamorphic grade-Host rock- Craton or greenstone beltPasi Eilu April 20103


59Bulk ore samples, Yilgarn CratonAll concentrations in ppmDeposit Host Au Ag As Bi Sb Se Te WSub-greenschistWiluna Mafic 8.1


60First, define theprimary rocktypesPasi Eilu April 20107Define also the primaryvariation <strong>with</strong>in therock typesBlue: unaltered sampleRed: altered sampleBased on data fromStanley & Madeisky (1995)and Eilu (1996)Pasi Eilu April 20108Then, evaluate the mass transferPasi Eilu April 20109


61Greenschist faciesEilu & Mikucki (1998)Pasi Eilu April 201010Qz-porphyry y, intense alterationQuartz porphyry, sericitis sation zone I, potential ore302520150.004xBi0.09xCu0.04xPb4xAu0.02xTe0.1xW10xS0.4xCd0.005xZn0.05xSbEnriched0.1xRb50xP 2 O 50.01xBa0.2xVAl 2 O 30.25xSiO 2Least altered quartz porphyryGaNi0.2xZrLa0.05xCrIsoconMataralampiprospectArchaeanKuhmogreenstone belt,FinlandHost rock:quartz porphyry2xK 2 O1010xCO 2FeO*0.2xClLiAg5Y10xTiO 20.05xSr100xMnDepletedMgO CaONa02 OPasi Eilu 0 5 10 15 20 25 30April 2010Qz-porphyry, least altered11Elements shown to be enrichedin <strong>orogenic</strong> <strong>gold</strong> <strong>deposits</strong>,no. of casesPasi Eilu April 201012


1362Pasi Eilu April 2010Pathfinders and alteration indicesMajor components:+ No significant problems <strong>with</strong> detection limitsor analytical methods+ Easy to relate <strong>with</strong> mineral assemblages+ Alteration indices can be very useful parameters- Host rock effect can be large- Mass balance evaluation neededPasi Eilu April 201014Pathfinders and alteration indicesPathfinder trace elements:+ Enrichment up to 1000-10000 x+ Host rock effect generally very minor- Very low detection limits may be needed- Background thresholds needed to bedefined <strong>for</strong> each areaPasi Eilu April 201015


63Extent of an anomaly1. The threshold between backgroundand an anomalyPasi Eilu April 201016Trace-elementcontour mapand a crosssectionBackground thresholdOptimal backgroundthreshold h somewherebetween 60 and 80 ppm<strong>for</strong> the element depictedPasi Eilu April 201017Statistical methods: histograman empiric methodConcentration in log(ppm)Pasi Eilu April 201018


64Statisticalmethods:cumulativefrequency plotConcentration (p ppm)After Sinclair(1974, 1976, 1991)Cumulative frequency (%)Pasi Eilu April 201019The background thresholds achievedmust be checked <strong>with</strong> geology:are the results of the statistical analysis,whatever used, reasonable?Pasi Eilu April 201020Background I:igneous host rocksBackground thresholds definedGranny Bulletin KX BW Madsen- MoyageeSmithStratt-O.Grano- Basalt Basalt Basalt Basalt, Komat.dioriteKomat.Au 8.5 6 5 4 6Ag 140 80 130 160 110As 5 28 (6) 4 50 5Sb 0.9 2.0 (0.6) 0.9 0.4 2 0.45Se 0.10 0.30 0.15Te 10 10 37 (10) 44 (10) 10W 6.0 0.6 1.3 1.9 0.5Au, Ag, Te in ppb, , others in ppmPasi Eilu April 201021


65Background thresholds definedBackground II:felsic to intermediate igneous host, Mataralampi, FinlandAu 0.045Bi 0.10; 0.41Cu 42Pb 90S 270Sb 0.07Te 0.065W 14; 80Zn 57; 160All data in ppmPasi Eilu April 201022Background III:metasedimentary host rocksBackground thresholds definedGranny Twin Sunrise Hattu belt Bendigo-Smith Peaks Dam (Finland) BallaratAu 2 2 6 5 10Ag 180 100 110 150As 40 6 15 15 50Bi 0.20 0.20 0.07 0.02Sb 1.0 0.8 2.8 0.5Se 1.0 0.17 0.08 0.10Te 125 50 12 75W 2.3 3.0 8.5 3.0Au, Ag, Te in ppb, , others in ppmPasi Eilu April 201023Detection limits needed <strong>for</strong> pathfinder elementsAt least, during the early stages of exploration,to define the local background levelsAg 10 ppb Hg 3-5 ppbAs 0.2-1 ppm Mo 0.1 ppmAu 0.2-1 ppb Sb 0.02-0.1 ppmB 1 ppm Se 10 ppbBi 10 ppb Te 1-2 ppbCd 0.01-0.1 ppm W 0.1 ppmPasi Eilu April 201024


66Extent of an anomalyPasi Eilu April 201025Form of ananomalySuurikuusikkoN FinlandAu at thetill-bedrock interfaceHärkönen (1992)Pasi Eilu April 201026Form of ananomalyBronzewing,Central zonePathfinderelements IDispersion after dataavailable in June 1994Ore as realised(1999)Pasi Eilu April 2010 27Eilu et al. (2001)


67Form of ananomalyBronzewing,Central zonePathfinderelements IIDispersion after dataavailable in June 1994Ore as realised(1999)Pasi Eilu April 2010 28Eilu et al. (2001)Form of ananomalyBronzewing,Central zoneAlteration indicesDispersion after dataavailable in June 1994Ore as realised(1999)Pasi Eilu April 2010 29Eilu et al. (2001)0 m100100 mSunrise Dam,Western AustraliaArsenicSection acrosshost rocks andmineralised shear zonesPasi Eilu April 201030


68As Form of ananomaly100 mAuAs and Au, values along a mineralised shear zone(= <strong>with</strong>in a fault plane)Pasi Eilu April 201031How far from ore ananomaly can extend?(in bedrock)Pasi Eilu April 201032Pasi Eilu April 201033


3469Pasi Eilu April 2010Size of primary anomaly in planArchaeanParameter Across Along strikeFennoscandiaHattu schist belt Te, As 1-4 km 60 kmCanadaStratt-Olsen– As, Au, B, 200-600 m 9 kmMadsenK, Sb, NaHollinger-McIntyre As 800 m >3 kmCO 2 >2 km >3.5 kmYilgarnGolden Mile As, Au, Te >1.5 kmMoyagee As, Au, Se, Te, W >1.2 kmBronzewing Te >400 m >800 mAu, CO 2 , K, 100-300 m >800 mRb, Sb, WTanzaniaGolden Pride Sb, Li >500 mPasi Eilu April 201035Size of primary anomaly in planProterozoicParameter Across Along strikeFennoscandiaPahtavaara Au >6 kmSuurikuusikko As, Au 50-100 m >10 kmSaattopora camp As, CO 2>200 m >20 kmVesiperä camp As, Au, K 100-200 m >8 kmPasi Eilu April 201036


70Beyond the <strong>gold</strong> anomaly,intounaltered rockPasi Eilu April 201037Beyond bleaching,locally into unalteredrock, no rock type effectBackgroundthreshold: 4 ppb AuPasi Eilu April 201038Relative lateral extentPasi Eilu April 201039


71Vectors towards the ore?Shkolnoe, Kolyma, RussiaPasi Eilu April 201040Any pathfinder or alteration index maydefine a trend towards oreIn <strong>orogenic</strong> <strong>gold</strong> systems, this is not alwayseasily seen – why?Pasi Eilu April 201041Golden MileKalgoorlie, WADolerite-hostedAlteration vs. carbonationindexAfter data from Phillips (1986)Pasi Eilu April 201042


####72Mataralampi section 7149710N CM 19/4412/2003/4/10Geological Survey of FinlandPasi EiluKUH/HK-1KUH/HK-2KUH/HK-3KUH/HK-4GoldAntimonydolerAu Sbgrdrmdykeqz-porfsp-pormvolc20 0 20 40 MetersPasi Eilu April 201043HJB SZBulletin, WilunaNorthern YilgarnTholeiitic-basalt hostedSection across the ore,shear zone and hangingwallEilu & Mikucki (1998)Pasi Eilu April 201044Harbour LightsCentral Norseman-WilunaBelt, YilgarnSection across the oreand wallrocksBased on data fromSkwarnecki (1990)Pasi Eilu April 201045


173Surficial geological and geochemical exploration <strong>for</strong><strong>gold</strong> in glaciated terrains – brief overviewPertti SaralaGeological Survey of FinlandPertti Sarala, 25th IAGS 2011, WS 5: <strong>Exploration</strong> <strong>for</strong> <strong>orogenic</strong> <strong>gold</strong> <strong>deposits</strong> , 20.8.2011Outline• Introduction• Surficial geology in glacigenic environment– Glacial dynamics– Ice flow indicators– Till stratigraphy– Bedrock vs. pre-glacial weathered bedrock vs. till– Glacigenic <strong>for</strong>mations and deposition processes• Surficial exploration methods– Till geochemistry– Indicator minerals– Prospectivity modelling• <strong>Exploration</strong> case studiesPertti Sarala, 25th IAGS 2011, WS 5: <strong>Exploration</strong> <strong>for</strong> <strong>orogenic</strong> <strong>gold</strong> <strong>deposits</strong> , 20.8.20112Introduction• Indicator (usually heavy) mineral studies are the oldest methods in<strong>gold</strong> exploration• Nuggets were concentrated using water and gravity (e.g. panning)• First ideas and observations of glacial transportation from 18thand 19th century– Glacial erratics -> boulder fans -> tracing the source• Theory of ice ages and glaciations <strong>with</strong> glacial transportation waslargely accepted in the beginning of 20th centuryPertti Sarala, 25th IAGS 2011, WS 5: <strong>Exploration</strong> <strong>for</strong> <strong>orogenic</strong> <strong>gold</strong> <strong>deposits</strong> , 20.8.20113


74Introduction• Use of soil in exploration started after development of chemicalanalysis methods– References from antiquity of the relation of geology and chemistry– Techniques of modern geochemical prospecting in the Soviet Unionand Scandinavia in 1930s; in Northern America in 1940s– Trace elements in <strong>gold</strong> exploration• Soil and till samples were used largely since 1950s in explorationin glaciated terrains– Analysis methods developed to ppm and ppb levels– Easy and effective sampling– Development of sampling techniques– Costs reasonable <strong>for</strong> large sampling projectsPertti Sarala, 25th IAGS 2011, WS 5: <strong>Exploration</strong> <strong>for</strong> <strong>orogenic</strong> <strong>gold</strong> <strong>deposits</strong> , 20.8.20114Glacial dynamics• Geomorfological systems- Cold-based (Drybed)-no erosion anddeposition- Warm-based (Wet bed)-erosion and deposition- Marginal meltwaterzone-eskers and endmorainecomplexesKleman & Borgström 1995Pertti Sarala, 25th IAGS 2011, WS 5: <strong>Exploration</strong> <strong>for</strong> <strong>orogenic</strong> <strong>gold</strong> <strong>deposits</strong> , 20.8.2011 5Glacial dynamics• Glacial processes and their variations key issues=> time-transgressive and spatiallychancing events like cold - warm basal conditions and ice stream networkPunkari 1997 Punkari 1997Pertti Sarala, 25th IAGS 2011, WS 5: <strong>Exploration</strong> <strong>for</strong> <strong>orogenic</strong> <strong>gold</strong> <strong>deposits</strong> , 20.8.2011 6


75Ice flow indicators• Erosion marks; striae, grooves etc.• Till fabricsHirvas et al. 1973-1977Pertti Sarala, 25th IAGS 2011, WS 5: <strong>Exploration</strong> <strong>for</strong> <strong>orogenic</strong> <strong>gold</strong> <strong>deposits</strong> , 20.8.2011 7Ice flow indicators: Surficial boulder fansSector of ore boulder observationsSalonen, V-P. 1986.Pertti Sarala, 25th IAGS 2011, WS 5: <strong>Exploration</strong> <strong>for</strong> <strong>orogenic</strong> <strong>gold</strong> <strong>deposits</strong> , 20.8.2011 8Ice flow indicators: Single boulder transportationThe longest transport distance of single ore boulder from the known sourcePertti Sarala, 25th IAGS 2011, WS 5: <strong>Exploration</strong> <strong>for</strong> <strong>orogenic</strong> <strong>gold</strong> <strong>deposits</strong> , 20.8.2011 9


76Ice flow indicators: Glacial morphology• Morphological interpretation key point <strong>for</strong> estimating ice-flow direction butalso distance and deposition processesNPerpendicular ribbed-moraine ridges inPetäjäskoski, S-W RovaniemiStreamlined drumlins in Kuusamo (two fields overlapping)Pertti Sarala, 24.11.2008 25th IAGS 2011, WS 5: <strong>Exploration</strong> <strong>for</strong> <strong>orogenic</strong> <strong>gold</strong> <strong>deposits</strong> , 20.8.2011 10Example: Relief/land<strong>for</strong>ms in southern LaplandHummockyribbedmorainesRibbed morainesand drumlinsN-S oriented drumlins and mostly till-covered esker chainsDrumlins in Kuusamodrumlin fieldPertti Sarala, 25th IAGS 2011, WS 5: <strong>Exploration</strong> <strong>for</strong> <strong>orogenic</strong> <strong>gold</strong> <strong>deposits</strong> , 20.8.2011 11Example: Glacial morphology as an indicator <strong>for</strong>glacial dynamics in southern LaplandRibbedmorainesYoungerdrumlinsOlderdrumlinsGlacial flowdirectionyoungerTervolaRanua InterlobateareaKuusamo Ice lobeOulu Ice lobeSarala 2005Pertti Sarala, 24.11.2008 25th IAGS 2011, WS 5: <strong>Exploration</strong> <strong>for</strong> <strong>orogenic</strong> <strong>gold</strong> <strong>deposits</strong> , 20.8.2011 12


77Example: Glacial dispersion and transportdistance in southern LaplandSarala et al. 2007Pertti Sarala, 25th IAGS 2011, WS 5: <strong>Exploration</strong> <strong>for</strong> <strong>orogenic</strong> <strong>gold</strong> <strong>deposits</strong> , 20.8.201113Till stratigraphy• Till stratigraphy includes till beds and interlayers• Two different types stratigraphy: Straight (simple and straight<strong>for</strong>ward; 1-2 tillbeds) and complex (multiple till beds <strong>with</strong> different ice-flow directions)70 ± 5 ka93 ± 10 ka99 ± 11 ka102 ± 11 ka107 ± 13 ka??Till stratigraphy in Rautuvaara, Kolari, Drawing H. KutvonenPertti Sarala 24.11.200814Pre-Quaternary weathered bedrock• Pre-glacial weathered bedrock surface has been preserved beneath glacial<strong>deposits</strong> in many areas in northern Finland.• Remnants of weathered bedrock are up to tens of meters thick mainly in the lastice divide zone in Central LaplandPertti Sarala, 25th IAGS 2011, WS 5: <strong>Exploration</strong> <strong>for</strong> <strong>orogenic</strong> <strong>gold</strong> <strong>deposits</strong> , 20.8.201115


78Till vs. weatheredbedrockWashedsurfaceTillWeatheredbedrockFreshbedrock• Sometimes difficult to distinguishdifferent stratigraphical unitsPertti Sarala, 25th IAGS 2011, WS 5: <strong>Exploration</strong> <strong>for</strong> <strong>orogenic</strong> <strong>gold</strong> <strong>deposits</strong> , 20.8.2011 16Glacial erosionand deposition• Simple transportation– Glacier erodes the bedrockand <strong>deposits</strong> material intosome distant down-stream• Complex transportation– Till units include materialdeposited and transported byvarious glaciations– Tracing the source ofmineralized material needs goodknowledge of the tillstratigraphyHirvas & Nenonen 1990Pertti Sarala, 25th IAGS 2011, WS 5: <strong>Exploration</strong> <strong>for</strong> <strong>orogenic</strong> <strong>gold</strong> <strong>deposits</strong> , 20.8.201117Erosionand deposition - drumlins vs. ribbed moraines• Short transportation in theribbed moraines is seen in thesurficial parts, i.e. mineralizedsurficial boulders indicatelocal source in the bedrock (ifthe quarrying was reached thebedrock surface)• Deposition process at thewarm-based conditions (<strong>for</strong>example in drumlins) isdifferent and transportdistance longerPertti Sarala, 25th IAGS 2011, WS 5: <strong>Exploration</strong> <strong>for</strong> <strong>orogenic</strong> <strong>gold</strong> <strong>deposits</strong> , 20.8.2011 Pertti Sarala 14.2.2007 18


79Surficial geochemical exploration methods• Soil surveys– Most widely used in geochemical exploration methods– Based on secondary dispersion of weathered and leach material or elementsfrom the buried source– Samples from the soil horizons (A and B) or fresh material (C horizon)– Sampling using drilling or testt pits• Rock surveys (also lithogeochemical survey)– Sampling of unweathered bedrock– An idea to find favourable host rocks <strong>for</strong> mineralization– Samples from the ourcrops or drill coresPertti Sarala, 25th IAGS 2011, WS 5: <strong>Exploration</strong> <strong>for</strong> <strong>orogenic</strong> <strong>gold</strong> <strong>deposits</strong> , 20.8.201119Surficial geochemical exploration methods• Stream-sediment surveys– Used in reconnaissance i.e. in regional scale– Based on secondary dispersion from the upstream in drainage basins– Panning is a good example of this survey method• Water surveys– Both ground water and surface water sampling– Usually used in detailed surveys (ground water)– Contents low, and adsorption causes difficulties <strong>for</strong> interpretation• Biogeochemical surveys– Vegetation used as a test medium– Plants concentrate elements in themselves or in humus– Animals can also collect mineral or organic material in reservations or nestsPertti Sarala, 25th IAGS 2011, WS 5: <strong>Exploration</strong> <strong>for</strong> <strong>orogenic</strong> <strong>gold</strong> <strong>deposits</strong> , 20.8.201120Surficial geochemical exploration methods• Gas surveys– Used in detailed scale to find buried <strong>deposits</strong>– Based on detection of different gases (hyrdorgen sulphide, mercury, iodine, radon)or ions in gases (hydrocarbons)• Mobile metal surveys– Nowadays widely tested and used method– Based on the analyse of weakly bounded metal ions on the surface of mineral soilor organic particles at the top of the soil– Weak acidiferous solutions were used <strong>for</strong> leaching ions <strong>with</strong>out dissolving minerals• Radiation surveys– Total radiation and/or spectrums were measured usually from airplanes– Can use <strong>for</strong> lithogeochemical purpose and <strong>for</strong> soil geologyPertti Sarala, 25th IAGS 2011, WS 5: <strong>Exploration</strong> <strong>for</strong> <strong>orogenic</strong> <strong>gold</strong> <strong>deposits</strong> , 20.8.201121


80Till geochemistry• Till geochemistry is the most commonly used method <strong>for</strong> estimating transportdistance of mineralized material in glaciated terrain.– Is based on secondary dispersion of the indicator elements from themineralized sources• Based on the sampling <strong>with</strong>different intervals andvariable depthsPertti Sarala, 25th IAGS 2011, WS 5: <strong>Exploration</strong> <strong>for</strong> <strong>orogenic</strong> <strong>gold</strong> <strong>deposits</strong> , 20.8.201122Sampling methods – percussion drillingPertti Sarala, 25th IAGS 2011, WS 5: <strong>Exploration</strong> <strong>for</strong> <strong>orogenic</strong> <strong>gold</strong> <strong>deposits</strong> , 20.8.201123Test pit excavations –also in winterTest pit surveys in Petäjäselkä atthe end of Marsh in 2007- Temperature -15°C- Snow depth 1 mGold grains in till at MisiPertti Sarala, 25th IAGS 2011, WS 5: <strong>Exploration</strong> <strong>for</strong> <strong>orogenic</strong> <strong>gold</strong> <strong>deposits</strong> , 20.8.2011 24


81Collected datasets• Test pits and trenches <strong>for</strong>:– Till stratigraphical observations and sampling– Till fabrics and striae– Till and weathered bedrock sampling (incl. geochemistry (ICP-AES, ICP-MS, GAAS, etc.) indicator minerals, rockcomposition, grain size distribution)– Bedrock observations– Bedrock and boulder sampling• Percussion drilling:– Till and weathered bedrock sampling <strong>for</strong> chemical analysesPertti Sarala, 25th IAGS 2011, WS 5: <strong>Exploration</strong> <strong>for</strong> <strong>orogenic</strong> <strong>gold</strong> <strong>deposits</strong> , 20.8.2011 Pertti Sarala 18.6.200725Till geochemical datasets• Small-scale till geochemicaldatasets (1 sample/4 or16 km 2 )are used <strong>for</strong> identifyingregional geochemicalcharacteristic– Anomaly patterns are alsoreflecting general ice flowdirections• For targeting and target-scaleexamination more detailed tillgeochemistry is requiredPertti Sarala, 25th IAGS 2011, WS 5: <strong>Exploration</strong> <strong>for</strong> <strong>orogenic</strong> <strong>gold</strong> <strong>deposits</strong> , 20.8.2011 26Example of sampling densities in Au exploration• Central Lapland; Suurikuusikko depositTill sampling: 10 m intervalTill sampling: one sample / 4 km 2N-S structurePertti Sarala, 25th IAGS 2011, WS 5: <strong>Exploration</strong> <strong>for</strong> <strong>orogenic</strong> <strong>gold</strong> <strong>deposits</strong> , 20.8.201127


82Example: Till and weathered bedrockgeochemistry in the Suurikuusikko depositAu ppb4 m140 mIndicator elements: Au, As, Sb, K, MnSb ppbPertti Sarala, 25th IAGS 2011, WS 5: <strong>Exploration</strong> <strong>for</strong> <strong>orogenic</strong> <strong>gold</strong> <strong>deposits</strong> , 20.8.201128RovaniemiCase study: Petäjävaara• Investigations <strong>for</strong>tracing the Au-Cumineralized surficialboulders in ribbedmoraine area• Bd Bedrock:metasedimentary andmetavolcanic rocks ofthe Peräpohja Schist Belt• Two till units: lowerlodgement till and uppermelt-out till,representing advanceand retreat phasesSarala & Rossi 2006Pertti Sarala, 25th IAGS 2011, WS 5: <strong>Exploration</strong> <strong>for</strong> <strong>orogenic</strong> <strong>gold</strong> <strong>deposits</strong> , 20.8.2011 29RovaniemiCase study: Petäjävaara• Many hydrothermally altered Cu-Au mineralized boulders found on thetop of ribbed moraine ridgesQuartzite bouldersAu 0.1-0.6 ppmCu 0.7-2.4 %Banded amphibolite bouldersAu 0.1-6.9 ppmCu 0.1-3.2 %Pertti Sarala, 25th IAGS 2011, WS 5: <strong>Exploration</strong> <strong>for</strong> <strong>orogenic</strong> <strong>gold</strong> <strong>deposits</strong> , 20.8.2011 30


83RovaniemiCase study: Petäjävaara• Sampling: percussion drilling and test pits• Distinct metal anomalies in upper till (e.g. < 0.06 mm fraction)aGFAASGlacial flow directionKnown Cu-Au mineralization(Sarala & Rossi 1998)Glacial flow directionICP-AES Fresh chalcopyritegrain in till(SEM photo)Indicator elements: Au,Co, Cu, Te, SPertti Sarala, 25th IAGS 2011, WS 5: <strong>Exploration</strong> <strong>for</strong> <strong>orogenic</strong> <strong>gold</strong> <strong>deposits</strong> , 20.8.2011 31Other methods <strong>for</strong> Au exploration• Weak leach methods– Based on the analyse of weakly bounded metal ions on the surface ofmineral soil or organic particles at the top of the soil– Weak acidiferous solutions were used <strong>for</strong> leaching ions <strong>with</strong>out dissolvingminerals– The used methods were Mobile Metal Ion (MMI), Enzyme leaching and SoilGas Hydrogen analyses of which results were compared to conventionalpartial leaching (aqua regia) and total leaching (four acid) analysesPertti Sarala, 25th IAGS 2011, WS 5: <strong>Exploration</strong> <strong>for</strong> <strong>orogenic</strong> <strong>gold</strong> <strong>deposits</strong> , 20.8.201132Weak leach methods• Mobile Metal Ions (MMI) + several other commercial methods– Ions are moving from the bedrock through the overburden– Mobilization, movement and enrichmentof the ions are the sum of many factors.The main reasons are capillaryaction, difference of electrochemicalcharge, and biogeochemicalprocesses– MMI is the first commercialmethod; SGS Minerals isthe patentee– Other: Ammonium acetate,entzyme leach, soil gas etc.Cameron et al. 2004Pertti Sarala, 25th IAGS 2011, WS 5: <strong>Exploration</strong> <strong>for</strong> <strong>orogenic</strong> <strong>gold</strong> <strong>deposits</strong> , 20.8.201133


84Sampling• Easy and fast sampling– The sampling depth 10-25 cm under thecontact of humus and mineral soil– Small test pits or soil drills in sampling– Samples from the lines, frequent10-50 m => 25-30 samples/day/two-people sampling group– Sampling procedure same <strong>for</strong> all the weakleach methods• Other methods are <strong>for</strong> example humusand Ah samplings that can be usedbeside the weak leach methodsSampleSampleSamplePertti Sarala, 25th IAGS 2011, WS 5: <strong>Exploration</strong> <strong>for</strong> <strong>orogenic</strong> <strong>gold</strong> <strong>deposits</strong> , 20.8.201134Examples - Case Lauttaselkä, Au• Lauttaselkä target is Auexploration target in Kittilä, ca.10 km from the Agnico-Eagle’sKittilä Mine to the NE• Bedrock is composed ofhydrothermally altered maficvolcanic and sedimentary rocksof which contact zones areenriched of Au, As and Te• Conventional till and weatheredbedrock sampling supported byMMI sampling revealedpotential zones <strong>for</strong> Auexloration in the bedrockAuZnAsPertti Sarala, 25th IAGS 2011, WS 5: <strong>Exploration</strong> <strong>for</strong> <strong>orogenic</strong> <strong>gold</strong> <strong>deposits</strong> , 20.8.201135Mobile XRF analysis• XRF analyzers can also be used in Auexploration in the field– Portable equipments have beendeveloped a lot during the last ten years– Automated scanners can be used <strong>for</strong>drill cores but also <strong>for</strong> the till and Pre-Quaternary weathered bedrock samples• Measurement direct in the field => nosampling or• Sampling as separate samples orcontinuous sample series of till andweathered bedrock along test trences,• In Au exploration indicator elements orindication of suitable alteration in thebedrock is usefulPertti Sarala, 25th IAGS 2011, WS 5: <strong>Exploration</strong> <strong>for</strong> <strong>orogenic</strong> <strong>gold</strong> <strong>deposits</strong> , 20.8.2011Continuous weathered bedrocksampling in Lauttaselkä, Kittilä36


85Mobile XRF analysis (cont.)• Portable XRF analyzers very useful• A mobile laboratory <strong>for</strong> on-line elementalXRF analysis technology new applicationPortable XRF analyzertested during thepercussion drilling <strong>for</strong>the till sampleScanmobile (Mine On-lineServices Ltd)Pertti Sarala, 25th IAGS 2011, WS 5: <strong>Exploration</strong> <strong>for</strong> <strong>orogenic</strong> <strong>gold</strong> <strong>deposits</strong> , 20.8.201137Indicator mineral methods• Indicator minerals (particularly heavy minerals) are largely used in exploration– Straight indication of mineral potentiality– In<strong>for</strong>mation <strong>for</strong> interpreting stratigraphy and determining the provenance of asediment• Till and weathered bedrock samples, but also stream sediments• Au, sulphide minerals, Fe-minerals, garnets and pyroxene and phosphateminerals most common, also PGE-minerals– Demand increasing also <strong>for</strong> light indicator element separation and research due toincreased high-tech metal explorationPertti Sarala, 25th IAGS 2011, WS 5: <strong>Exploration</strong> <strong>for</strong> <strong>orogenic</strong> <strong>gold</strong> <strong>deposits</strong> , 20.8.201138Indicator mineral methodsPanning, Knelson concentrator and spiral separator most used field equipmentsPertti Sarala, 25th IAGS 2011, WS 5: <strong>Exploration</strong> <strong>for</strong> <strong>orogenic</strong> <strong>gold</strong> <strong>deposits</strong> , 20.8.201139


86GIS-basedprospectivitymapping4. Evaluation3. Spatial analysis2. Data preprosessing1. DataNykänen et al. 2006Pertti Sarala, 25th IAGS 2011, WS 5: <strong>Exploration</strong> <strong>for</strong> <strong>orogenic</strong> <strong>gold</strong> <strong>deposits</strong> , 20.8.2011 Pertti Sarala 18.6.200740Example: Prospectivity in Central Lapland• Several new areas potential <strong>for</strong> Au mineralization foundNykänen & Salmirinne (2006)Pertti Sarala, 25th IAGS 2011, WS 5: <strong>Exploration</strong> <strong>for</strong> <strong>orogenic</strong> <strong>gold</strong> <strong>deposits</strong> , 20.8.2011 Pertti Sarala 18.6.200741Example: Prospectivity in Central Lapland• Four test targetson very highprospectivityareas :• Vuomanperänmaa• Nuttiot• Petäjäselkä• LauttaselkäWeight of evidence• Situate near themodern mines ofPahtavaara andKittilä, andseveral known AuoccurrencesPertti Sarala, 25th IAGS 2011, WS 5: <strong>Exploration</strong> <strong>for</strong> <strong>orogenic</strong> <strong>gold</strong> <strong>deposits</strong> , 20.8.2011 Pertti Sarala 18.6.200742


87Case: Petäjäselkä• Bedrock is composed of Mg and Fe tholeitic metabasalts and minor BIF• NNW trending magnetic anomalies are seen on a high resolutionaeromagnetic map. NE-SW oriented faults are breaking them.Pertti Sarala, 25th IAGS 2011, WS 5: <strong>Exploration</strong> <strong>for</strong> <strong>orogenic</strong> <strong>gold</strong> <strong>deposits</strong> , 20.8.2011 Pertti Sarala 18.6.200743Case: Petäjäselkä• Several anomalous Au(Co-As-Cu) mineralized zones havebeen defined• Till geochemistry highlightsthe multimetal anomaly in thetarget area• Anomalies are clearly relatingto SW-NE trending faultsPertti Sarala, 25th IAGS 2011, WS 5: <strong>Exploration</strong> <strong>for</strong> <strong>orogenic</strong> <strong>gold</strong> <strong>deposits</strong> , 20.8.2011 Pertti Sarala 18.6.200744Petäjäselkä (contin.)Au in till (


88Case: Petäjäselkä• Mineralizationhosted by shearedgraphitic chertand clasticsedimentary rocksbetween Mg andFe tholeiticmetabasalts0.5 mm• The best drillintersection is12g/t Au over 1m,and this lode isexposed in thetest trench.Pertti Sarala, 25th IAGS 2011, WS 5: <strong>Exploration</strong> <strong>for</strong> <strong>orogenic</strong> <strong>gold</strong> <strong>deposits</strong> , 20.8.2011 46Conclusions• Till geochemistry is useful method <strong>for</strong> estimating transport distance ofmineralized material in glaciated terrain. Ore indicators – mineralizedboulders and till, and indicator heavy minerals are useful in tracing themineralized bedrock• New applications like weak leach methods and portable XRF developed<strong>for</strong> exploration. Effective, low sampling and analyzing costs, low-impact tothe nature particularly in sensitive areas• Examples from northern Finland shows different kind of glacialtransportartion from short and sharp dispersals of <strong>for</strong> examples Au and itspathfinder elements• The study of moraine <strong>for</strong>mations, ice flow directions, till structures andstratigraphy is essential be<strong>for</strong>e planning sampling and analysing tillgeochemistry, and interpreting the results; i.e. successing in tillgeochemical exploration in glaciated terrainsPertti Sarala, 25th IAGS 2011, WS 5: <strong>Exploration</strong> <strong>for</strong> <strong>orogenic</strong> <strong>gold</strong> <strong>deposits</strong> , 20.8.201147


ISBN 978-952-9618-70-5 (Printed)ISBN 978-952-9618-71-2 (Pdf)ISSN 0783-1331

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!