06.12.2012 Views

IOCG and Porphyry-Cu deposits in Northern Finland ... - IAGS 2011

IOCG and Porphyry-Cu deposits in Northern Finland ... - IAGS 2011

IOCG and Porphyry-Cu deposits in Northern Finland ... - IAGS 2011

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

FIELD EXCURSION<br />

<strong>IOCG</strong> <strong>and</strong> <strong>Porphyry</strong>-<strong>Cu</strong> <strong>deposits</strong><br />

<strong>in</strong> <strong>Northern</strong> F<strong>in</strong>l<strong>and</strong><br />

<strong>and</strong> Sweden


<strong>IOCG</strong> <strong>and</strong> <strong>Porphyry</strong>-<strong>Cu</strong> <strong>deposits</strong> <strong>in</strong><br />

<strong>Northern</strong> F<strong>in</strong>l<strong>and</strong> <strong>and</strong> Sweden<br />

Excursion guide, 27 - 28 August <strong>2011</strong><br />

25th International Applied Geochemistry Symposium <strong>2011</strong><br />

22-26 August <strong>2011</strong> Rovaniemi, F<strong>in</strong>l<strong>and</strong><br />

Tero Niiranen<br />

Publisher: Vuorimiesyhdistys - F<strong>in</strong>nish Association of M<strong>in</strong><strong>in</strong>g <strong>and</strong> Metallurgical<br />

Eng<strong>in</strong>eers, Serie B, Nro B92-12, Rovaniemi <strong>2011</strong>


Niiranen, T. <strong>2011</strong>. Iron oxide-copper-gold <strong>and</strong> porphyry-<strong>Cu</strong> <strong>deposits</strong> <strong>in</strong> <strong>Northern</strong> F<strong>in</strong>l<strong>and</strong> <strong>and</strong> Sweden.<br />

Excursion guide <strong>in</strong> the 25th International Applied Geochemistry Symposium <strong>2011</strong>, 22-26 August <strong>2011</strong>,<br />

Rovaniemi, F<strong>in</strong>l<strong>and</strong>. Vuorimiesyhdistys - F<strong>in</strong>nish Association of M<strong>in</strong><strong>in</strong>g <strong>and</strong> Metallurgical Eng<strong>in</strong>eers, Serie<br />

B92-12, 40 pages.<br />

Layout: Irma Varrio<br />

ISBN 978-952-9618-86-6 (Pr<strong>in</strong>ted)<br />

ISBN 978-952-9618-87-3 (Pdf)<br />

ISSN 0783-1331<br />

© Vuorimiesyhdistys<br />

This volume is available from:<br />

Vuorimiesyhdistys ry.<br />

Kaskilaaksontie 3 D 108<br />

02360 ESPOO<br />

Electronic version:<br />

http://www.iags<strong>2011</strong>.fi or http://www.vuorimiesyhdistys.fi/julkaisut.php<br />

Pr<strong>in</strong>ted <strong>in</strong>:<br />

Pa<strong>in</strong>atuskeskus F<strong>in</strong>l<strong>and</strong> Oy, Rovaniemi


<strong>IOCG</strong> <strong>and</strong> <strong>Porphyry</strong>-<strong>Cu</strong> <strong>deposits</strong> <strong>in</strong><br />

<strong>Northern</strong> F<strong>in</strong>l<strong>and</strong> <strong>and</strong> Sweden<br />

Tero Niiranen<br />

Geological Survey of F<strong>in</strong>l<strong>and</strong>, P.O. Box 77, 96101 Rovaniemi, F<strong>in</strong>l<strong>and</strong>, e-mail<br />

tero.niiranen(at)gtk.fi<br />

Abstract<br />

The field excursion visits the iron <strong>and</strong> iron-copper-gold <strong>deposits</strong> <strong>in</strong> Kolari-Pajala<br />

area currently under development by Northl<strong>and</strong> Resources S.A. <strong>and</strong> the Aitik <strong>Cu</strong>-<br />

Ag-Au m<strong>in</strong>e <strong>in</strong> Gällivare operated by New Boliden Ab.<br />

At Kolari we will visit the Hannuka<strong>in</strong>en Fe-<strong>Cu</strong>-Au deposit which was operated<br />

by Rautaruukki Oyj <strong>and</strong> subsequently by Outokumpu Oyj between 1981 <strong>and</strong><br />

1990 total production be<strong>in</strong>g about 4.5 Mt @ 43% Fe, 0.48% <strong>Cu</strong>, <strong>and</strong> 0.29 g/t Au.<br />

Northl<strong>and</strong> Resources has been develop<strong>in</strong>g the Hannuka<strong>in</strong>en deposit s<strong>in</strong>ce 2005 <strong>and</strong><br />

the current resource estimate for the Hannuka<strong>in</strong>en is 110 Mt @ 33.9% Fe <strong>and</strong> 0.17%<br />

<strong>Cu</strong> (measured + <strong>in</strong>dicated, 15% Fe, cut off) with additional 88 Mt <strong>in</strong>ferred resources.<br />

The Hannuka<strong>in</strong>en deposit is controlled by a thrust zone which is part of the crustalscale<br />

Kolari-Pajala shear zone system. The ore is hosted by altered varieties of 1.86<br />

Ga diorite <strong>in</strong>trusion <strong>and</strong> 2.2-2.05 Ga mafic volcanic rocks. The deposit has been suggested<br />

to belong to <strong>IOCG</strong> class.<br />

At Pajala the excursion visits two iron <strong>deposits</strong>, the Sahavaara <strong>and</strong> Tapuli.<br />

Both <strong>deposits</strong> are skarn-hosted magnetite <strong>deposits</strong>. The resource estimate for the Tapuli<br />

is 101 Mt @ 26.9% Fe (measured & <strong>in</strong>dicated). For the Sahavaara, the current<br />

resource estimate is 64.9 Mt @ 42.5% Fe (measured & <strong>in</strong>dicated) with additional<br />

34.7 Mt <strong>in</strong> <strong>in</strong>ferred category. Both the Tapuli <strong>and</strong> Sahavaara <strong>deposits</strong> are hosted<br />

by 2.4-1.98 Ga sedimentary sequence of dolomitic marbles, phyllites, <strong>and</strong> graphitic<br />

schists.<br />

At Gällivare, we will visit the Aitik <strong>Cu</strong>-Ag-Au m<strong>in</strong>e which is one of Europe’s<br />

largest copper producers. M<strong>in</strong><strong>in</strong>g at Aitik started at 1968 <strong>and</strong> s<strong>in</strong>ce then about<br />

500 Mt of ore has been m<strong>in</strong>ed from a open pit operation. The total ore reserves <strong>in</strong><br />

2009 were 747 Mt grad<strong>in</strong>g 0.25% <strong>Cu</strong>, 1.7 g/t Ag, <strong>and</strong> 0.14 g/t Au. In 2010 the ore<br />

production was 27.6 Mt. The Aitik deposit is hosted by gneissic varieties of regionally<br />

wide spread calc-alkal<strong>in</strong>e Hapar<strong>and</strong>a Suite <strong>in</strong>trusives <strong>and</strong> co-magmatic volcanic<br />

rocks. The geological features for the Aitik deposit suggest that it is a metamorphosed<br />

porphyry-copper deposit.


Excursion program <strong>and</strong> route<br />

Introduction 8<br />

Geological <strong>and</strong> tectonic evolution of the northern part of the Fennosc<strong>and</strong>ian Shield 9<br />

Iron oxide <strong>and</strong> iron oxide-<strong>Cu</strong>-Au <strong>deposits</strong> <strong>in</strong> the Kolari-Pajala district 17<br />

Aitik <strong>Cu</strong>-Au-Ag M<strong>in</strong>e 24<br />

References 31<br />

Saturday, 27th August<br />

Stop 1. Hannuka<strong>in</strong>en Fe-<strong>Cu</strong>-Au deposit, Kolari. About 190 km, 2 h 30 m<strong>in</strong>. We will visit the two old open pits<br />

at Hannuka<strong>in</strong>en <strong>and</strong> waste rocks piles next to them. Possibility to see the ore, host rock, <strong>and</strong> wall rock boulders<br />

of the Hannuka<strong>in</strong>en deposit.<br />

Stop 2. Northl<strong>and</strong> Resources S.A. drill core facilities <strong>in</strong> Äkäsjokisuu. About 20 km drive (30 m<strong>in</strong>) from Hannuka<strong>in</strong>en.<br />

Drill core display of the Northl<strong>and</strong>s targets <strong>in</strong> the Kolari <strong>and</strong> Pajala districts<br />

Stop 3. Kolari Hotel, about 18 km (20 m<strong>in</strong>). Lunch <strong>and</strong> Northl<strong>and</strong>’s presentation of the projects <strong>in</strong> Kolari <strong>and</strong><br />

Pajala areas.<br />

Stop 4. The Stora Sahavaara deposit, Pajala, Sweden. About 40 km drive (45 m<strong>in</strong>). Possibility to see the ore<br />

<strong>and</strong> host rock boulders taken from a bulk sample drive made by Northl<strong>and</strong> <strong>in</strong> 2006.<br />

Stop 5. Optional. Tapuli deposit (about 5 km). Depend<strong>in</strong>g on the operations <strong>in</strong> there, possibility to see the host<br />

rock assemblage rocks.<br />

Stop 6. Gällivare, Sweden. 160 km, about 2 hours. Accommodation to Gr<strong>and</strong> Hotel Lapl<strong>and</strong> <strong>and</strong> d<strong>in</strong>ner <strong>in</strong> the<br />

even<strong>in</strong>g at the hotel.<br />

Sunday, 28th August<br />

8:00 Check out from the hotel, short drive to the New Boliden’s Aitik m<strong>in</strong>e (about 25 km drive). Company<br />

geologists presentation on the geology <strong>and</strong> m<strong>in</strong><strong>in</strong>g operations at Aitik. Visit to the open pit. The exact localities<br />

to be visited <strong>in</strong> the open cut depend on the accessibility to different parts of the m<strong>in</strong>e which changes rapidly as<br />

a consequence of the m<strong>in</strong><strong>in</strong>g activities.<br />

14:00 Drive to Rovaniemi. About 280 km, about 4 hours. If necessary we’ll drive through the airport where<br />

we’ll expect to arrive around 6 p.m. The buss will also stop at the Hotels down town Rovaniemi.<br />

Weather <strong>and</strong> cloth<strong>in</strong>g:<br />

Weather <strong>in</strong> late August can vary considerably - the temperature range is <strong>in</strong> between 0 to 25ºC, be<strong>in</strong>g typically<br />

around 15ºC <strong>in</strong> daytime. It is recommended that one should have a weatherproof jacket <strong>in</strong> case of ra<strong>in</strong>.<br />

The field targets <strong>in</strong> both Kolari <strong>and</strong> Pajala are easily accessed <strong>and</strong> one can manage with regular shoes. Dur<strong>in</strong>g<br />

the visit to Aitik safety boots, hard hat <strong>and</strong> safety classes are provided by the company.


SAFETY INSTRUCTIONS:<br />

The <strong>in</strong>structions of your guides <strong>and</strong> hosts MUST be followed at all times. Be aware of loose boulders <strong>in</strong> the<br />

waste rock piles <strong>and</strong> open cut walls. Be aware of heavy mach<strong>in</strong>ery, hard hat <strong>and</strong> safety boots provided <strong>in</strong> the<br />

Aitik m<strong>in</strong>e must be worn all the time.<br />

Mobile numbers of your guides:<br />

Tero Niiranen: +358 503 487 621<br />

Tuomo Kar<strong>in</strong>en: +358 504 369 360


8<br />

Introduction<br />

Pär Weihed, Olof Mart<strong>in</strong>sson<br />

Luleå University of Technology, Luleå, Sweden<br />

Pasi Eilu<br />

Geological Survey of F<strong>in</strong>l<strong>and</strong>, Espoo, F<strong>in</strong>l<strong>and</strong><br />

The Fennosc<strong>and</strong>ian Shield forms the north-westernmost<br />

part of the East European craton <strong>and</strong> constitutes<br />

large parts of F<strong>in</strong>l<strong>and</strong>, NW Russia, Norway,<br />

<strong>and</strong> Sweden (Fig. 1). The oldest rocks yet found<br />

<strong>in</strong> the shield have been dated at 3.5 Ga (Huhma et<br />

al. 2004) <strong>and</strong> major orogenies took place <strong>in</strong> the Archaean<br />

<strong>and</strong> Palaeoproterozoic. Younger Meso- <strong>and</strong><br />

Neoproterozoic crustal growth took place ma<strong>in</strong>ly <strong>in</strong><br />

the western part, but apart from the anorthositic Ti<strong>deposits</strong><br />

<strong>in</strong> SW Norway, no major ore <strong>deposits</strong> are<br />

related to rocks of this age. The western part of the<br />

shield was reworked dur<strong>in</strong>g the Caledonian Orogeny.<br />

Economic m<strong>in</strong>eral <strong>deposits</strong> are largely restricted<br />

to the Palaeoproterozoic parts of the shield.<br />

Although Ni–PGE, Mo, BIF, <strong>and</strong> orogenic gold <strong>deposits</strong>,<br />

<strong>and</strong> some very m<strong>in</strong>or VMS <strong>deposits</strong> occur <strong>in</strong><br />

the Archaean, virtually all economic examples of<br />

these deposit types are related to Palaeoproterozoic<br />

magmatism, deformation <strong>and</strong> fluid flow. Besides<br />

these major deposit types, the Palaeoproterozoic<br />

part of the shield is also known for its Fe-oxide <strong>deposits</strong>,<br />

<strong>in</strong>clud<strong>in</strong>g the famous Kiruna-type Fe-apatite<br />

<strong>deposits</strong>. Large-tonnage low-grade <strong>Cu</strong>–Au <strong>deposits</strong><br />

(e.g., Aitik), are associated with <strong>in</strong>trusive rocks <strong>in</strong><br />

the northern part of the Fennosc<strong>and</strong>ian Shield. These<br />

<strong>deposits</strong> have been described as porphyry style <strong>deposits</strong><br />

or as hybrid <strong>deposits</strong> with features that also<br />

warrant classification as iron oxide–copper–gold<br />

(<strong>IOCG</strong>) <strong>deposits</strong> (Weihed 2001, Wanha<strong>in</strong>en et al.<br />

2005).<br />

Dur<strong>in</strong>g this field trip we will visit the iron<br />

<strong>and</strong> iron oxide-<strong>Cu</strong>-Au <strong>deposits</strong> straddl<strong>in</strong>g the national<br />

border between F<strong>in</strong>l<strong>and</strong> <strong>and</strong> Sweden (Fig. 2)<br />

as well as the giant Aitik <strong>Cu</strong>-Au deposit <strong>in</strong> Sweden.<br />

Fig. 1. Simplified geological map of the Fennosc<strong>and</strong>ian<br />

Shield with major tectono-stratigraphic units<br />

discussed <strong>in</strong> text. Map based on Koist<strong>in</strong>en et al.<br />

(2001), tectonic <strong>in</strong>terpretation after Laht<strong>in</strong>en et al.<br />

(2005). LGB = Lap¬l<strong>and</strong> Greenstone Belt, CLGC<br />

= Central Lapl<strong>and</strong> Granitoid Complex, BMB =<br />

Belomorian Mobile Belt, CKC = Central Karelian<br />

Complex, IC = Iisalmi Complex, PC = Pudasjärvi<br />

Complex, TKS = Tipasjärvi–Kuhmo–Suomussalmi<br />

green¬stone complex. Shaded area, BMS =<br />

Bothnian Megashear.


Fig. 2. Hannuka<strong>in</strong>en deposit open pits <strong>in</strong> Kolari, F<strong>in</strong>l<strong>and</strong> dur<strong>in</strong>g w<strong>in</strong>ter 2009.<br />

Photo courtesy of Northl<strong>and</strong> Resources S.A.<br />

Geological <strong>and</strong> tectonic evolution<br />

of the northern part of the<br />

Fennosc<strong>and</strong>ian Shield<br />

Stefan Bergman<br />

Geological Survey of Sweden, Uppsala, Sweden<br />

Pär Weihed, Olof Mart<strong>in</strong>sson<br />

Luleå University of Technology, Luleå, Sweden<br />

Pasi Eilu<br />

Geological Survey of F<strong>in</strong>l<strong>and</strong>, Espoo, F<strong>in</strong>l<strong>and</strong><br />

Markku Ilj<strong>in</strong>a<br />

Geological Survey of F<strong>in</strong>l<strong>and</strong>, Rovaniemi, F<strong>in</strong>l<strong>and</strong><br />

Regional geology<br />

The oldest preserved cont<strong>in</strong>ental crust <strong>in</strong> the<br />

Fennosc<strong>and</strong>ian Shield was generated dur<strong>in</strong>g the<br />

Saamian Orogeny at 3.1–2.9 Ga (Fig. 1) <strong>and</strong> is<br />

dom<strong>in</strong>ated by gneissic tonalite, trondhjemite <strong>and</strong><br />

granodiorite. Rift- <strong>and</strong> volcanic arc-related greenstones,<br />

subduction-generated calc-alkal<strong>in</strong>e volcanic<br />

rocks <strong>and</strong> tonalitic-trondhjemitic igneous rocks<br />

were formed dur<strong>in</strong>g the Lopian Orogeny at 2.9–2.6<br />

Ga. Only a few Archaean economic to subeconom<br />

ic m<strong>in</strong>eral <strong>deposits</strong> have been found <strong>in</strong> the shield,<br />

<strong>in</strong>clud<strong>in</strong>g orogenic gold, BIF <strong>and</strong> Mo occurrences,<br />

<strong>and</strong> ultramafic-to mafic-hosted Ni-<strong>Cu</strong> (Frietsch et al.<br />

1979, Gaál 1990, Weihed et al. 2005).<br />

Dur<strong>in</strong>g the Palaeoproterozoic, Sumi-Sariolian<br />

(2.5–2.3 Ga) clastic sediments, <strong>in</strong>tercalated with<br />

volcanic rocks vary<strong>in</strong>g <strong>in</strong> composition from komatiitic<br />

<strong>and</strong> tholeiitic to calc-alkal<strong>in</strong>e <strong>and</strong> <strong>in</strong>termediate to<br />

felsic, were deposited on the deformed <strong>and</strong> metamorphosed<br />

Archaean basement dur<strong>in</strong>g extensional<br />

events. Layered <strong>in</strong>trusions, most of them with Cr,<br />

Ni, Ti, V <strong>and</strong>/or PGE occurrences, represent a major<br />

magmatic <strong>in</strong>put at 2.45–2.39 Ga (Amel<strong>in</strong> et al. 1995,<br />

Mutanen 1997, Alapieti & Laht<strong>in</strong>en 2002). Periods<br />

of arenitic sedimentation preceded <strong>and</strong> followed<br />

extensive komatiitic <strong>and</strong> basaltic volcanic stages at<br />

about 2.2, 2.13, 2.05 <strong>and</strong> 2.0 Ga <strong>in</strong> the northeastern<br />

part of the Fennosc<strong>and</strong>ian Shield dur<strong>in</strong>g extensional<br />

events (Mutanen 1997, Lehtonen et al. 1998, Rastas<br />

et al. 2001). Associated with the subaquatic extrusive<br />

<strong>and</strong> volcaniclastic units, there are carbonate<br />

rocks, graphite schist, iron formation <strong>and</strong> stratiform<br />

sulphide occurrences across the region.<br />

Svecofennian subduction-generated calcalkal<strong>in</strong>e<br />

<strong>and</strong>esites <strong>and</strong> related volcaniclastic sedimentary<br />

units were deposited around 1.9 Ga <strong>in</strong> the<br />

northern Fennosc<strong>and</strong>ia <strong>in</strong> a subaerial to shallowwater<br />

environment. In the Kiruna area, the 1.89 Ga<br />

Kiirunavaara Group rocks (formerly Kiruna Porphy<br />

9


10<br />

ries) are chemically different from the <strong>and</strong>esites <strong>and</strong><br />

are geographically restricted to this area. The Svecofennian<br />

porphyries form host to apatite-iron ores<br />

<strong>and</strong> various styles of epigenetic <strong>Cu</strong>-Au occurrences<br />

<strong>in</strong>clud<strong>in</strong>g porphyry <strong>Cu</strong>-style <strong>deposits</strong> (Weihed et al.<br />

2005).<br />

The up to 10 km thick pile of Palaeoproterozoic<br />

volcanic <strong>and</strong> sedimentary rocks was multiply<br />

deformed <strong>and</strong> metamorphosed contemporaneously<br />

with the <strong>in</strong>trusion of the 1.89–1.87 Ga granitoids.<br />

Anatectic granites were formed dur<strong>in</strong>g 1.82–1.79<br />

Ga, dur<strong>in</strong>g another major stage of deformation <strong>and</strong><br />

metamorphism. Large-scale migration of fluids of<br />

variable sal<strong>in</strong>ity dur<strong>in</strong>g the many stages of igneous<br />

activity, metamorphism <strong>and</strong> deformation is expressed<br />

by regional scapolitisation, albitisation <strong>and</strong><br />

albite-carbonate alteration <strong>in</strong> the region. For example,<br />

scapolitisation is suggested to be related to felsic<br />

<strong>in</strong>trusions (Ödman 1957), or to be an expression of<br />

mobilised evaporates from the supracrustal successions<br />

dur<strong>in</strong>g metamorphism (Tuisku 1985, Frietsch<br />

et al. 1997, Vanhanen 2001).<br />

S<strong>in</strong>ce Hietanen (1975) proposed a subduction<br />

zone dipp<strong>in</strong>g north beneath the Skellefte district,<br />

many similar models have been proposed for<br />

the ma<strong>in</strong> period of the formation of the crust dur<strong>in</strong>g<br />

the Svecokarelian (or Svecofennian) orogeny roughly<br />

between 1.95 <strong>and</strong> 1.77 Ga (e.g. Rickard & Zweifel<br />

1975, Pharaoh & Pearce 1984, Berthelsen & Marker<br />

1986, Gaál 1986, Weihed 1992). This orogeny <strong>in</strong>volved<br />

both strong rework<strong>in</strong>g of older crust with<strong>in</strong><br />

the Karelian craton <strong>and</strong>, importantly, subduction towards<br />

NE, below the Archaean, <strong>and</strong> the accretion of<br />

several volcanic arc complexes from the SW towards<br />

NE. Recently, substantially more complex models<br />

for crustal growth at this stage of the evolution of<br />

the Fennosc<strong>and</strong>ian Shield have been proposed (e.g.<br />

Nironen 1997, Laht<strong>in</strong>en et al. 2005). The most recent<br />

model for the Palaeoproterozoic tectonic evolution<br />

of the Fennosc<strong>and</strong>ian Shield <strong>in</strong>volv<strong>in</strong>g five partly<br />

overlapp<strong>in</strong>g orogenies was presented by Laht<strong>in</strong>en et<br />

al. (2005). This model builds on the amalgamation<br />

of several microcont<strong>in</strong>ents <strong>and</strong> isl<strong>and</strong> arcs with the<br />

Archaean Karelian, Kola <strong>and</strong> Norrbotten cratons <strong>and</strong><br />

Fig. 1. Simplified geological map of the Fennosc<strong>and</strong>ian<br />

Shield with major tectono-stratigraphic units<br />

discussed <strong>in</strong> text. Map based on Koist<strong>in</strong>en et al.<br />

(2001), tectonic <strong>in</strong>terpretation after Laht<strong>in</strong>en et al.<br />

(2005). LGB = Lap¬l<strong>and</strong> Greenstone Belt, CLGC<br />

= Central Lapl<strong>and</strong> Granitoid Complex, BMB =<br />

Belomorian Mobile Belt, CKC = Central Karelian<br />

Complex, IC = Iisalmi Complex, PC = Pudasjärvi<br />

Complex, TKS = Tipasjärvi–Kuhmo–Suomussalmi<br />

green¬stone complex. Shaded area, BMS =<br />

Bothnian Megashear.


other pre-1.92 Ga components. The Karelian craton<br />

experienced a long period of rift<strong>in</strong>g (2.5–2.1 Ga)<br />

that f<strong>in</strong>ally led to cont<strong>in</strong>ental break-up (c. 2.06 Ga).<br />

The microcont<strong>in</strong>ent accretion stage (1.92–1.87 Ga)<br />

<strong>in</strong>cludes the Lapl<strong>and</strong>-Kola <strong>and</strong> Lapl<strong>and</strong>-Savo orogenies<br />

(both with peak at 1.91 Ga) when the Karelian<br />

craton collided with Kola <strong>and</strong> the Norrbotten cratons,<br />

respectively. It also <strong>in</strong>cludes the Fennian orogeny<br />

(peak at c. 1.88 Ga) caused by the accretion of the<br />

Bergslagen microcont<strong>in</strong>ent <strong>in</strong> the south. The follow<strong>in</strong>g<br />

cont<strong>in</strong>ental extension stage (1.86–1.84 Ga) was<br />

caused by extension of hot crust <strong>in</strong> the h<strong>in</strong>terl<strong>and</strong>s<br />

of subduction zones located to the south <strong>and</strong> west.<br />

Oblique collision with Sarmatia occurred dur<strong>in</strong>g the<br />

Svecobaltic orogeny (1.84–1.80 Ga). After collision<br />

with Amazonia, <strong>in</strong> the west, dur<strong>in</strong>g the Nordic<br />

orogeny (1.82–1.80 Ga), orogenic collapse <strong>and</strong> stabilization<br />

of the Fennosc<strong>and</strong>ian Shield took place at<br />

1.79–1.77 Ga. The Gothian orogeny (1.73–1.55 Ga)<br />

at the southwestern marg<strong>in</strong> of the shield ended the<br />

Palaeoproterozoic orogenic development. <strong>in</strong>g cont<strong>in</strong>ental<br />

extension stage (1.86–1.84 Ga) was caused<br />

by extension of hot crust <strong>in</strong> the h<strong>in</strong>terl<strong>and</strong>s of subduction<br />

zones located to the south <strong>and</strong> west. Oblique<br />

collision with Sarmatia occurred dur<strong>in</strong>g the Svecobaltic<br />

orogeny (1.84–1.80 Ga). After collision with<br />

Amazonia, <strong>in</strong> the west, dur<strong>in</strong>g the Nordic orogeny<br />

(1.82–1.80 Ga), orogenic collapse <strong>and</strong> stabilization<br />

of the Fennosc<strong>and</strong>ian Shield took place at 1.79–1.77<br />

Ga. The Gothian orogeny (1.73–1.55 Ga) at the<br />

southwestern marg<strong>in</strong> of the shield ended the Palaeoproterozoic<br />

orogenic development.<br />

Palaeoproterozoic 2.45–1.97 Ga<br />

greenstone belts<br />

The Palaeoproterozoic Lapl<strong>and</strong> Greenstone Belt,<br />

which overlies much of the northern part of the Archaean<br />

craton, is the largest coherent greenstone terra<strong>in</strong><br />

exposed <strong>in</strong> the Fennosc<strong>and</strong>ian Shield (Fig. 1). It<br />

extends for over 500 km from the Norwegian northwest<br />

coast through the Swedish <strong>and</strong> F<strong>in</strong>nish Lapl<strong>and</strong><br />

<strong>in</strong>to the adjacent Russian Karelia <strong>in</strong> the southeast.<br />

Due to large lithostratigraphic similarities <strong>in</strong> different<br />

greenstone areas from this region <strong>and</strong> the ma<strong>in</strong>ly<br />

tholeiitic character of the volcanic rocks, Pharaoh<br />

(1985) suggested them to be coeval <strong>and</strong> represent<strong>in</strong>g<br />

a major tholeiitic prov<strong>in</strong>ce. Based on petrological<br />

<strong>and</strong> chemical studies of the mafic volcanic rocks <strong>and</strong><br />

associated sediments, an orig<strong>in</strong>ally cont<strong>in</strong>ental rift<br />

sett<strong>in</strong>g is favoured for these greenstones (e.g., Lehtonen<br />

et al. 1985, Pharaoh et al. 1987, Huhma et al.<br />

1990, Olesen & S<strong>and</strong>stad 1993, Mart<strong>in</strong>sson 1997).<br />

It <strong>in</strong>cludes the Central Lapl<strong>and</strong> Greenstone Belt <strong>and</strong><br />

Kuusamo <strong>and</strong> Peräpohja Schist Belts <strong>in</strong> F<strong>in</strong>l<strong>and</strong> <strong>and</strong><br />

the Kiruna <strong>and</strong> Masugnsbyn areas <strong>in</strong> Sweden. The<br />

lithostratigraphy of the F<strong>in</strong>nish part of the Lapl<strong>and</strong><br />

Greenstone Belt, the Central Lapl<strong>and</strong> Greenstone<br />

Belt, is presented <strong>in</strong> Fig. 2.<br />

In northern Sweden, a Palaeoproterozoic<br />

succession of greenstones, porphyries <strong>and</strong> clastic<br />

sediments rests unconformably on deformed,<br />

2.7–2.8 Ga, Archaean basement. Stratigraphically<br />

lowest is the Kovo Group. It <strong>in</strong>cludes a basal conglomerate,<br />

tholeiitic lava, calc-alkal<strong>in</strong>e basic to <strong>in</strong>termediate<br />

volcanic rocks <strong>and</strong> volcaniclastic sediments.<br />

Sedimentary rocks were deposited along a<br />

coastl<strong>in</strong>e of a mar<strong>in</strong>e rift bas<strong>in</strong>, <strong>and</strong> material <strong>in</strong>put<br />

was provided through a number of alluvial fans<br />

(Kumpula<strong>in</strong>en 2000). The Kovo Group is overla<strong>in</strong><br />

by the Kiruna Greenstone Group which is dom<strong>in</strong>ated<br />

by mafic to ultramafic volcanic rocks. An albite diabase<br />

(albitised dolerite), <strong>in</strong>trud<strong>in</strong>g the lower part of<br />

the Kovo Group, has been dated at 2.18 Ga (Skiöld<br />

1986), <strong>and</strong> gives a m<strong>in</strong>imum depositional age for<br />

this unit. The Kovo Group is suggested to be c. 2.5–<br />

2.3 Ga <strong>in</strong> age (Sumi-Sariolan) whereas the Kiruna<br />

Greenstone Group is suggested to be 2.2–2.0 Ga <strong>in</strong><br />

age (Jatulian <strong>and</strong> Ludikowian). The upper contacts of<br />

the Kovo Group <strong>and</strong> the Kiruna Greenstone Group<br />

are characterised by m<strong>in</strong>or unconformities <strong>and</strong> clasts<br />

from these units are found <strong>in</strong> basal conglomerates <strong>in</strong><br />

overly<strong>in</strong>g units.<br />

In F<strong>in</strong>l<strong>and</strong>, the lowermost units of the greenstones<br />

also lie unconformably on the Archaean, <strong>and</strong><br />

are represented by the Salla Group rocks <strong>in</strong> the<br />

Central Lapl<strong>and</strong> Greenstone Belt (CLGB; Fig. 2), a<br />

polymictic conglomerate <strong>in</strong> the Kuusamo Schist Belt<br />

<strong>and</strong> the Sompujärvi Formation of the Peräpohja Schist<br />

Belt. Recently, a new group, the Vuojärvi Group was<br />

recognized <strong>in</strong> CLGB area (Fig. 2). This consists of<br />

quartz-feldspar <strong>and</strong> quartz-sericite schists that may<br />

represent metamorphosed clastic sedimentary rocks<br />

<strong>and</strong>/or felsic volcanic rocks. The current stratigraphic<br />

relation between the Vuojärvi <strong>and</strong> Salla Groups<br />

is uncerta<strong>in</strong>. The Vuojärvi <strong>and</strong> Salla Groups is followed<br />

by sedimentary units which precede the c. 2.2<br />

Ga igneous event <strong>and</strong> comprise the Kuusamo <strong>and</strong><br />

Sodankylä Group rocks <strong>in</strong> the CLGB <strong>and</strong> the Kuusamo<br />

schist belt. The latter lithostratigraphic group<br />

also hosts most of the known Palaeoproterozoic syngenetic<br />

sulphide occurrences <strong>in</strong> the CLGB.<br />

The Savukoski Group mafic to ultramafic<br />

volcanic <strong>and</strong> shallow-mar<strong>in</strong>e sedimentary units<br />

were deposited dur<strong>in</strong>g 2.2–2.01 Ga <strong>in</strong> the CLGB,<br />

<strong>and</strong> similar units were also formed <strong>in</strong> the Kuusamo<br />

<strong>and</strong> Peräpohja belts (Lehtonen et al. 1998, Rastas<br />

et al. 2001). Age determ<strong>in</strong>ations of the Palaeo<br />

proterozoic greenstones exist ma<strong>in</strong>ly from F<strong>in</strong>l<strong>and</strong><br />

(e.g. Perttunen & Vaasjoki 2001, Rastas et al. 2001,<br />

Väänänen & Lehtonen 2001) <strong>and</strong> suggests a major<br />

11


12<br />

magmatic <strong>and</strong> rift<strong>in</strong>g event at c. 2.1 Ga with the f<strong>in</strong>al<br />

break up tak<strong>in</strong>g place at c. 2.06 Ga. Extensive occurrence<br />

of 2.13 <strong>and</strong> 2.05 Ga dolerites also support<br />

these dates. Thick piles of mantle-derived volcanic<br />

rocks <strong>in</strong>clud<strong>in</strong>g komatiitic <strong>and</strong> picritic high-temperature<br />

melts are restricted to the Kittilä-Karasjok-<br />

Kautoke<strong>in</strong>o-Kiruna area <strong>and</strong> are suggested to represent<br />

plume-generated volcanism (Mart<strong>in</strong>sson 1997).<br />

The rift<strong>in</strong>g of the Archaean craton, along a l<strong>in</strong>e <strong>in</strong> a<br />

NW-direction from Ladoga to Lofoten, was accompanied<br />

by NW-SE <strong>and</strong> NE-SW directed rift bas<strong>in</strong>s<br />

(Saverikko 1990) <strong>and</strong> <strong>in</strong>jection of 2.1 Ga trend<strong>in</strong>g<br />

dyke swarms parallel to these (Vuollo 1994). Eruption<br />

of N-MORB pillow lava occurred along the rift<br />

marg<strong>in</strong>s (e.g., Åhman 1957, Pekkar<strong>in</strong>en & Lukkar<strong>in</strong>en<br />

1991). The Kiruna greenstones <strong>and</strong> dyke swarms<br />

north of Kiruna outl<strong>in</strong>e a NNE-trend<strong>in</strong>g magmatic<br />

belt extend<strong>in</strong>g to Alta <strong>and</strong> Repparfjord <strong>in</strong> the northernmost<br />

Norway. This belt is almost perpendicular<br />

to the major rift, <strong>and</strong> may represent a failed rift arm<br />

related to a triple junction south of Kiruna (Mart<strong>in</strong>sson<br />

1997). The rapid bas<strong>in</strong> subsidence, accompanied<br />

by eruption of a 500–2000 m thick unit of MORBtype<br />

pillow lava is suggested to be an expression of<br />

the development of this rift arm.<br />

Rift<strong>in</strong>g culm<strong>in</strong>ated <strong>in</strong> extensive mafic <strong>and</strong><br />

ultramafic volcanism <strong>and</strong> the formation of oceanic<br />

crust at c. 1.97 Ga. This is <strong>in</strong>dicated by the extensive<br />

komatiitic <strong>and</strong> basaltic lavas of the Kittilä Group of<br />

the CLGB <strong>in</strong> the central parts of the F<strong>in</strong>nish Lapl<strong>and</strong><br />

Fig. 2. Stratigraphy of the Central Lapl<strong>and</strong> greenstone belt.<br />

After Hanski et al. (2001) <strong>and</strong> the <strong>2011</strong> version of the GTK digital bedrock database.<br />

(Fig. 2). The 1.97 Ga stage also <strong>in</strong>cluded deposition<br />

of shallow- to deep-mar<strong>in</strong>e sediments, the latter<br />

<strong>in</strong>dicat<strong>in</strong>g the most extensive rift<strong>in</strong>g <strong>in</strong> the region.<br />

Fragments of oceanic crust were subsequently emplaced<br />

back onto the Karelian craton <strong>in</strong> F<strong>in</strong>l<strong>and</strong>, as<br />

<strong>in</strong>dicated by the Nuttio ophiolites <strong>in</strong> central F<strong>in</strong>nish<br />

Lapl<strong>and</strong> <strong>and</strong> the Jormua <strong>and</strong> Outokumpu ophiolites<br />

further south (Kont<strong>in</strong>en 1987, Sorjonen-Ward et al.<br />

1997, Lehtonen et al. 1998).<br />

Svecofennian complexes<br />

The Palaeoproterozoic greenstones are overla<strong>in</strong> by<br />

volcanic <strong>and</strong> sedimentary rocks compris<strong>in</strong>g several<br />

different but stratigraphically related units. Regionally,<br />

they exhibit considerable variation <strong>in</strong> lithological<br />

composition due to partly rapid changes from<br />

volcanic- to sedimentary-dom<strong>in</strong>ated facies. Stratigraphically<br />

lowest <strong>in</strong> the Kiruna area are rocks of<br />

the Porphyrite Group <strong>and</strong> the Kurravaara Conglomerate.<br />

The former represents a volcanic-dom<strong>in</strong>ated<br />

unit <strong>and</strong> the latter is a ma<strong>in</strong>ly epiclastic unit (Offerberg<br />

1967) deposited as one or two fan deltas<br />

(Kumpula<strong>in</strong>en 2000). The Sammakkovaara Group<br />

<strong>in</strong> northeastern Norrbotten comprises a mixed volcanic-epiclastic<br />

sequence that is <strong>in</strong>terpreted to be stratigraphically<br />

equivalent to the Porphyrite Group <strong>and</strong><br />

the Kurravaara Conglomerate, <strong>and</strong> the Pahakurkio<br />

Group, south of Masugnsbyn. The Muorjevaara


Group <strong>in</strong> the Gällivare area is also considered to be<br />

equivalent to the Sammakkovaara Group <strong>in</strong> the Pajala<br />

area <strong>and</strong> is dom<strong>in</strong>ated by <strong>in</strong>termediate volcaniclastic<br />

rocks <strong>and</strong> epiclastic sediments. In the Kiruna<br />

area, these volcanic <strong>and</strong> sedimentary units are overla<strong>in</strong><br />

by the Kiirunavaara Group that is followed by<br />

the Hauki <strong>and</strong> Maattavaara quartzites constitut<strong>in</strong>g<br />

the uppermost Svecofennian units <strong>in</strong> the area.<br />

In northern F<strong>in</strong>l<strong>and</strong>, pelitic rocks <strong>in</strong> the<br />

Lapl<strong>and</strong> Granulite Belt were deposited after 1.94<br />

Ga (Tuisku & Huhma 2006). Svecofennian units<br />

are ma<strong>in</strong>ly represented by the Kumpu Group <strong>in</strong> the<br />

CLGB (Lehtonen et al. 1998) <strong>and</strong> by the Paakkola<br />

Group <strong>in</strong> the Peräpohja area (Perttunen & Vaasjoki<br />

2001). The molasse-like conglomerates <strong>and</strong> quartzites<br />

compris<strong>in</strong>g the Kumpu Group were deposited <strong>in</strong><br />

deltaic <strong>and</strong> fluvial fan environments after 1913 Ma <strong>and</strong><br />

before c. 1800 Ma (Rastas et al. 2001). The Kumpu<br />

rocks apparently are equivalent to the Hauki <strong>and</strong><br />

Maattavaara quartzites, <strong>and</strong> Porphyrite Group rocks<br />

<strong>and</strong> the Kurravaara Conglomerate of the Kiruna area.<br />

With the present knowledge of ages <strong>and</strong> petrochemistry<br />

of the Porphyrite <strong>and</strong> Kumpu Groups,<br />

it is possible to attribute these rocks completely to<br />

the same event of collisional tectonics <strong>and</strong> juvenile<br />

convergent marg<strong>in</strong> magmatism. This period of convergence<br />

was manifested by the numerous <strong>in</strong>trusions<br />

of Jörn- (south of the craton marg<strong>in</strong>) <strong>and</strong> Hapar<strong>and</strong>a-<br />

(with<strong>in</strong> the craton) type calc-alkal<strong>in</strong>e <strong>in</strong>trusions, as<br />

described by Mellqvist et al. (2003). With<strong>in</strong> a few<br />

million years, this period of convergent marg<strong>in</strong> magmatism<br />

was followed by a rapid uplift recorded <strong>in</strong><br />

extensive conglomeratic units, more alkal<strong>in</strong>e <strong>and</strong><br />

terrestrial volcanism (Vargfors-Arvidsjaur Groups<br />

south of the craton marg<strong>in</strong> <strong>and</strong> the Kiirunavaara<br />

Group with<strong>in</strong> the craton) <strong>and</strong> plutonism (Gallejaur-<br />

Arvidsjaur type south of the craton marg<strong>in</strong>, Perthite<br />

Monzonite Suite with<strong>in</strong> the craton). This took place<br />

between 1.88 <strong>and</strong> 1.86 Ga <strong>and</strong> the ma<strong>in</strong> volcanic<br />

episode probably lasted less than 10 million years.<br />

The evolution after c. 1.86 is ma<strong>in</strong>ly recorded<br />

by an extensive S-type magmatism (c. 1.85 Ga<br />

Jyryjoki, <strong>and</strong> 1.81–1.78 Ga L<strong>in</strong>a-type <strong>and</strong> the Central<br />

Lapl<strong>and</strong> Granitoid Complex) derived from anatectic<br />

melts <strong>in</strong> the middle crust. In the western part of the<br />

shield, extensive I- to A-type magmatism (Revsund-<br />

Sorsele type) formed roughly N-S trend<strong>in</strong>g batholiths<br />

(the Transc<strong>and</strong><strong>in</strong>avian Igneous Belt) coeval with the<br />

S-type magmatism. Scattered <strong>in</strong>trusions of this type<br />

<strong>and</strong> age also occur further east (e.g. Edefors <strong>in</strong> Sweden,<br />

Nattanen <strong>in</strong> F<strong>in</strong>l<strong>and</strong>). The period from c. 1.87<br />

to 1.80 Ga possibly also <strong>in</strong>volved a shift <strong>in</strong> orogenic<br />

vergence from NE-SW to E-W <strong>in</strong> the northern part<br />

of the Shield as suggested by Weihed et al. (2002).<br />

Palaeoproterozoic magmatism<br />

Early rift<strong>in</strong>g <strong>and</strong> emplacement<br />

of layered igneous complexes<br />

The beg<strong>in</strong>n<strong>in</strong>g of the rift<strong>in</strong>g period between 2.51<br />

<strong>and</strong> 2.43 Ga is <strong>in</strong>dicated by <strong>in</strong>trusion of numerous<br />

layered mafic igneous complexes (Alapieti et<br />

al. 1990, Weihed et al. 2005). Most of the <strong>in</strong>trusions<br />

are located along the marg<strong>in</strong> of the Archaean<br />

granitoid area, either at the boundary aga<strong>in</strong>st the<br />

Proterozoic supracrustal sequence, totally enclosed<br />

by Archaean granitoid, or enclosed by a Proterozoic<br />

supracrustal sequence. Most of the <strong>in</strong>trusions<br />

are found <strong>in</strong> W-trend<strong>in</strong>g Tornio-Näränkävaara belt<br />

of layered <strong>in</strong>trusions (Ilj<strong>in</strong>a & Hanski 2005). Rest<br />

of the <strong>in</strong>trusions are found <strong>in</strong> NW Russia, central<br />

F<strong>in</strong>nish Lapl<strong>and</strong> <strong>and</strong> NW F<strong>in</strong>l<strong>and</strong>. These Palaeoproterozoic<br />

layered <strong>in</strong>trusions are characteristic to<br />

northern F<strong>in</strong>l<strong>and</strong> as only one of them, the Tornio<br />

<strong>in</strong>trusion, be<strong>in</strong>g partly on the Swedish side of the<br />

border. Alapieti <strong>and</strong> Laht<strong>in</strong>en (2002) divided the<br />

<strong>in</strong>trusions <strong>in</strong>to three types, (1) ultramafic–mafic, (2)<br />

mafic <strong>and</strong> (3) <strong>in</strong>termediate megacyclic. They also <strong>in</strong>terpret<br />

the ultramafic–mafic <strong>and</strong> the lowermost part<br />

of the megacyclic type to have crystallised from a<br />

similar, quite primitive magma type, which is characterised<br />

by slightly negative <strong>in</strong>itial e Nd values <strong>and</strong><br />

relatively high MgO <strong>and</strong> Cr, <strong>in</strong>termediate SiO 2, <strong>and</strong><br />

low TiO 2 concentrations, resembl<strong>in</strong>g the bon<strong>in</strong>itic<br />

magma type. The upper parts of megacyclic type<br />

<strong>in</strong>trusions <strong>and</strong> most mafic <strong>in</strong>trusions crystallised<br />

from an evolved Ti-poor, Al-rich basaltic magma.<br />

Amel<strong>in</strong> et al. (1995) suggested two age<br />

groups for the <strong>in</strong>trusions for Fennosc<strong>and</strong>ian Shield,<br />

the first with U–Pb ages at 2.505–2.501 Ga, <strong>and</strong> the<br />

second at 2.449–2.430 Ga. All F<strong>in</strong>nish layered <strong>in</strong>trusions<br />

belong to the younger age group. The <strong>in</strong>trusions<br />

were later deformed <strong>and</strong> metamorphosed dur<strong>in</strong>g<br />

the Svecofennian orogeny.<br />

Mafic dykes<br />

Mafic dykes are locally abundant <strong>and</strong> show a variable<br />

strike, degree of alteration <strong>and</strong> metamorphic<br />

recrystallisation which, with age dat<strong>in</strong>g, <strong>in</strong>dicate<br />

multiple igneous episodes. Albite diabase (a term<br />

commonly used <strong>in</strong> F<strong>in</strong>l<strong>and</strong> <strong>and</strong> Sweden for any albitised<br />

dolerite) is a characteristic type of <strong>in</strong>trusions<br />

that form up to 200 m thick sills. They have a coarsegra<strong>in</strong>ed<br />

central part dom<strong>in</strong>ated by albitic plagioclase<br />

<strong>and</strong> constitute laterally extensive, highly magnetic<br />

units north of Kiruna.<br />

Extensive dyke swarms occur <strong>in</strong> the Archaean<br />

doma<strong>in</strong> north of Kiruna; the swarms are dom<strong>in</strong>ated<br />

by 1–100 m wide dykes with a metamorphic m<strong>in</strong>eral<br />

assemblage but with a more or less preserved<br />

igneous texture (Ödman 1957, Mart<strong>in</strong>sson 1999a,b).<br />

The NNE-trend<strong>in</strong>g dykes that are suggested to represent<br />

feeders to the Kiruna Greenstone Group (Mar-<br />

13


14<br />

t<strong>in</strong>sson 1997, 1999a,b). Scapolite-biotite alteration<br />

is common <strong>in</strong> the dykes with<strong>in</strong> Svecofennian rocks<br />

(Offerberg 1967) <strong>and</strong> also <strong>in</strong> feeder dykes with<strong>in</strong><br />

the lower part of the Kiruna Greenstone Group<br />

(Mart<strong>in</strong>sson 1997).<br />

In northern F<strong>in</strong>l<strong>and</strong>, albite diabases, both<br />

sills <strong>and</strong> dykes, form age groups of 2.2, 2.13, 2.05<br />

<strong>and</strong> 2.0 Ga (Vuollo 1994, Lehtonen et al. 1998, Perttunen<br />

& Vaasjoki 2001, Rastas et al. 2001). These<br />

dates also reflect extrusive magmatism <strong>in</strong> the region.<br />

The dykes vary <strong>in</strong> width from


orig<strong>in</strong> is supported by the abundant occurrence of<br />

mafic-ultramafic complexes northwest of Kiruna,<br />

which possibly def<strong>in</strong>e the plume centre.<br />

L<strong>in</strong>a Suite<br />

Intrusions of the L<strong>in</strong>a Suite are extensive <strong>in</strong> northern<br />

Norrbotten where they typically occur as granite,<br />

pegmatite <strong>and</strong> aplite of ma<strong>in</strong>ly m<strong>in</strong>imum melt<br />

composition generated by crustal melt<strong>in</strong>g. In F<strong>in</strong>l<strong>and</strong>,<br />

they appear to form most of the volume of the<br />

Central Lapl<strong>and</strong> Granitoid Complex (Fig. 1), <strong>and</strong><br />

are also present as smaller <strong>in</strong>trusions <strong>in</strong> many areas<br />

across northern F<strong>in</strong>l<strong>and</strong> (Lehtonen et al. 1998). However,<br />

the seismic appearance of the Central Lapl<strong>and</strong><br />

Granitoid Complex is <strong>in</strong>consistent with this area as<br />

an <strong>in</strong>trusion-rich belt, <strong>and</strong> it may have a composition<br />

comparable with the supracrustal belts to the north<br />

<strong>and</strong> south (Patison et al. 2006). The L<strong>in</strong>a Suite is<br />

composed of monzo-, syeno-granites, <strong>and</strong> adamellite,<br />

<strong>and</strong> is characterised by its restricted SiO 2 range<br />

at 72–76 wt. %. It is peralum<strong>in</strong>ous <strong>and</strong> a high content<br />

of Rb <strong>and</strong> depletion of Eu are characteristic.<br />

The heat source generat<strong>in</strong>g the magmas<br />

might be the cont<strong>in</strong>ent-cont<strong>in</strong>ent collision events<br />

to the south <strong>and</strong> west (Öhl<strong>and</strong>er et al. 1987b, Öhl<strong>and</strong>er<br />

& Skiöld 1994, Laht<strong>in</strong>en et al. 2005) or the<br />

contemporaneous TIB 1 magmatism (Åhäll & Larsson<br />

2000). Age determ<strong>in</strong>ations <strong>in</strong>dicate a relatively<br />

large span <strong>in</strong> the emplacement age at 1.81–1.78 Ga<br />

for the L<strong>in</strong>a Suite (Huhma 1986, Skiöld et al. 1988,<br />

Wikström <strong>and</strong> Persson 1997b, Perttunen & Vaasjoki<br />

2001, Rastas et al. 2001, Väänänen & Lehtonen<br />

2001, Bergman et al. 2002).<br />

A- <strong>and</strong> I-type <strong>in</strong>trusions<br />

This is the youngest of the described <strong>in</strong>trusive suites<br />

<strong>and</strong>, <strong>in</strong> the west, it forms part of the Transc<strong>and</strong><strong>in</strong>avian<br />

Igneous Belt (TIB). Two generations (c. 1.8<br />

<strong>and</strong> 1.7 Ga) of <strong>in</strong>trusions belong<strong>in</strong>g to the TIB exist<br />

<strong>in</strong> northern Sweden <strong>and</strong> adjacent areas of Norway.<br />

They commonly show quartz-poor monzonitic<br />

trends, <strong>and</strong> gabbroic-dioritic-granitic components<br />

are relatively common. (Romer et al. 1992, 1994,<br />

Öhl<strong>and</strong>er & Skiöld 1994)<br />

Across northern F<strong>in</strong>l<strong>and</strong>, the suite is represented<br />

by the Nattanen-type granitic <strong>in</strong>trusions dated<br />

at 1.80–1.77 Ga (Huhma 1986, Rastas et al. 2001).<br />

They form undeformed <strong>and</strong> unmetamorphosed, multiphase,<br />

peralum<strong>in</strong>ous, F-rich plutons which sharply<br />

cut across their country rocks. Their Nd <strong>and</strong> Hf isotopic<br />

ratios <strong>in</strong>dicate a substantial Archaean component<br />

<strong>in</strong> their source.<br />

In northern Norrbotten, monzonitic to syenitic<br />

rocks give ages between 1.80 <strong>and</strong> 1.79 (Romer<br />

et al 1994, Bergman et al. 2001), whereas granites<br />

range from 1.78–1.77 <strong>and</strong> 1.72–1.70 Ga (Romer<br />

et al. 1992). Further south, the age of the granitic<br />

Ale massif <strong>in</strong> the Luleå area is 1802±3 Ma <strong>and</strong><br />

1796±2 Ma for the core <strong>and</strong> the rim of the massif,<br />

respectively (Öhl<strong>and</strong>er & Schöberg 1991). This is<br />

similar to the 1.80 Ga age of Edefors type monzonitic<br />

to granitic rocks (Öhl<strong>and</strong>er & Skiöld 1994).<br />

This suite can be classified as a quartz<br />

monzodiorite–quartz monzonite–adamellite–granite<br />

suite <strong>and</strong> shows a metalum<strong>in</strong>ous to peralum<strong>in</strong>ous<br />

trend with alkal<strong>in</strong>e aff<strong>in</strong>ity (Ahl et al. 2001). Lithophile<br />

elements are enriched <strong>in</strong> this suite, e.g. Zr is<br />

strongly enriched <strong>in</strong> the Edefors granitoids (Öhl<strong>and</strong>er<br />

& Skiöld 1994).<br />

Characteristic for the 1.8 Ga monzonitic to<br />

syenitic rocks is the occurrence of augite <strong>and</strong> locally<br />

also orthopyroxene <strong>and</strong> oliv<strong>in</strong>e demonstrat<strong>in</strong>g an<br />

orig<strong>in</strong> from dry magmas (Ödman 1957, Öhl<strong>and</strong>er &<br />

Skiöld 1994, Bergman et al. 2001). The Transsc<strong>and</strong><strong>in</strong>avian<br />

Igneous Belt (TIB) has been suggested to have<br />

formed <strong>in</strong> response to eastward subduction (Wilson<br />

1980, Nyström 1982, Andersson 1991, Romer et al.<br />

1992, Weihed et al. 2002), possibly dur<strong>in</strong>g a period<br />

of extensional conditions (Wilson et al. 1986, Åhäll<br />

& Larsson 2000). The Edefors granitoids are <strong>in</strong>terpreted<br />

as products of plate convergence <strong>and</strong> a mantle<br />

source is suggested for these rocks based on Sm-Nd<br />

isotopic characteristics. Mafic magmas may have<br />

formed by mantle melt<strong>in</strong>g <strong>in</strong> an extensional sett<strong>in</strong>g<br />

caused by a 1.8 Ga collisional event follow<strong>in</strong>g northward<br />

subduction. These magmas were subsequently<br />

contam<strong>in</strong>ated with cont<strong>in</strong>ental crust <strong>and</strong> crystallised<br />

as monzonitic to granitic rocks (Öhl<strong>and</strong>er & Skiöld<br />

1994).<br />

The related plate-tectonic sett<strong>in</strong>g may also<br />

be that of the f<strong>in</strong>al orogenic collapse, decompression<br />

<strong>and</strong>/or thermal resett<strong>in</strong>g <strong>in</strong> the term<strong>in</strong>al stages of<br />

the orogenic development, follow<strong>in</strong>g the cont<strong>in</strong>entcont<strong>in</strong>ent<br />

collisional stage (Laht<strong>in</strong>en et al. 2005)<br />

Deformation <strong>and</strong> metamorphism<br />

The Palaeoproterozoic rocks <strong>in</strong> the northern part of<br />

the Fennosc<strong>and</strong>ian Shield have undergone several<br />

phases of deformation <strong>and</strong> metamorphism. Metamorphic<br />

grades vary from greenschist to granulite<br />

facies.<br />

A sequence of ductile deformation events<br />

<strong>in</strong> central F<strong>in</strong>nish Lapl<strong>and</strong> is reported <strong>in</strong> Hölttä et<br />

al. (2007) <strong>and</strong> Patison (2007) <strong>and</strong> references there<strong>in</strong>.<br />

The earliest foliation (S1) is bedd<strong>in</strong>g-parallel <strong>and</strong><br />

can be seen <strong>in</strong> F2 fold h<strong>in</strong>ges <strong>and</strong> as <strong>in</strong>clusion trails<br />

<strong>in</strong> <strong>and</strong>alusite, garnet <strong>and</strong> staurolite porphyroblasts.<br />

The ma<strong>in</strong> regional foliation S2 is axial planar to tight<br />

15


16<br />

or isocl<strong>in</strong>al folds. It is mostly gently dipp<strong>in</strong>g to flat-.<br />

ly<strong>in</strong>g, <strong>and</strong> suggested to have been caused by horizontal<br />

movements related to thrust tectonics, e.g. along<br />

the Sirkka Shear Zone. The elongation l<strong>in</strong>eation generally<br />

trends NNE-SSW, <strong>and</strong> the movement direction<br />

was from SSW to NNE. The S-dipp<strong>in</strong>g Sirkka<br />

Shear Zone is composed of several sub-parallel<br />

thrusts <strong>and</strong> fold structures at the southern marg<strong>in</strong><br />

of the Central Lapl<strong>and</strong> Greenstone Belt. This NNEdirected<br />

thrust<strong>in</strong>g occurred dur<strong>in</strong>g D1-D2, with a<br />

maximum age of c. 1.89 Ga (Lehtonen et al. 1998),<br />

<strong>and</strong> was contemporaneous with S- to SW-directed<br />

thrust<strong>in</strong>g of the Lapl<strong>and</strong> Granulite Belt <strong>in</strong> the north.<br />

This thrust<strong>in</strong>g geometry is consistent with data<br />

from recent seismic reflection studies (Patison et al.<br />

2006). The D2 <strong>and</strong> earlier structures are overpr<strong>in</strong>ted<br />

by sets of late folds, collectively called F3-folds,<br />

with a variety of orientations. It is possible that some<br />

earlier-formed structures were reactivated dur<strong>in</strong>g<br />

D3. A m<strong>in</strong>imum age for the D3 deformation is given<br />

by post-collisional 1.77 Ga Nattanen-type granites.<br />

This age is also the maximium age for D4, which is<br />

characterised by discont<strong>in</strong>uous brittle shear zones.<br />

Ductile deformation <strong>in</strong> Sweden <strong>in</strong>cludes at<br />

least three phases of fold<strong>in</strong>g <strong>and</strong> also <strong>in</strong>volves the<br />

formation of major crustal-scale shear zones. The<br />

<strong>in</strong>tensity of deformation varies from a strong penetrative<br />

foliation to texturally <strong>and</strong> structurally well<br />

preserved rocks both regionally <strong>and</strong> on a local scale.<br />

Axial surface trace of the folds ma<strong>in</strong>ly trends <strong>in</strong> a SE<br />

or a SSW direction (Bergman et al. 2001). Locally,<br />

they <strong>in</strong>terfere <strong>in</strong> a dome <strong>and</strong> bas<strong>in</strong> pattern but more<br />

commonly either trend is dom<strong>in</strong>ant. The difference<br />

<strong>in</strong> the <strong>in</strong>tensity of deformation shown by <strong>in</strong>trusions<br />

of the Hapar<strong>and</strong>a Suite <strong>and</strong> the Perthite Monzonite<br />

Suite suggests an event of regional metamorphism<br />

<strong>and</strong> deformation at c. 1.88 Ga <strong>in</strong> northern Norrbotten<br />

(Bergman et al. 2001), correspond<strong>in</strong>g to D1–D2<br />

<strong>in</strong> F<strong>in</strong>l<strong>and</strong>. Evidence for an episode of magmatism,<br />

ductile deformation <strong>and</strong> metamorphism at c. 1.86–<br />

1.85 Ga from the Pajala area <strong>in</strong> the northeastern part<br />

of Norrbotten has been presented by Bergman et al.<br />

(2006). A third metamorphic event at 1.82–1.78 Ga<br />

is recorded by chronological data from zircon <strong>and</strong><br />

monazite <strong>in</strong> the same area. Movement along the Pajala-Kolari<br />

Shear Zone occurred dur<strong>in</strong>g this event.<br />

Major ductile shear zones <strong>in</strong> Sweden are represented<br />

by the NNE-trend<strong>in</strong>g Karesu<strong>and</strong>o-Arjeplog<br />

deformation zone, the N to NNE-directed Pajala-<br />

Kolari Shear Zone <strong>and</strong> the NNW-directed Nautanen<br />

deformation zone. The Pajala-Kolari Shear Zone has<br />

been given a major significance as represent<strong>in</strong>g the<br />

boundary between the Karelian <strong>and</strong> Norrbotten Cratons<br />

(Laht<strong>in</strong>en et al. 2005). These major shear zones<br />

show evidences to have been active at c. 1.8 Ga. In<br />

general the shear zones <strong>in</strong> the western part show a<br />

western-side-up movement whereas the shear<br />

zones <strong>in</strong> the eastern northern Norrbotten are characterised<br />

by an eastern-side-up movement (Bergman<br />

et al. 2001).<br />

One strik<strong>in</strong>g feature is that several of the<br />

crustal-scale shear zones are associated with abrupt<br />

changes <strong>in</strong> metamorphic grade, <strong>in</strong>dicat<strong>in</strong>g that these<br />

zones have been active after the peak of regional<br />

metamorphism. Moreover, many of the epigenetic<br />

Au <strong>and</strong> <strong>Cu</strong>-Au <strong>deposits</strong> also show a strong spatial<br />

relationship with these major shear zones, although<br />

their local control are the second- to fourth-order<br />

faults <strong>and</strong> shear zones. Geochronology <strong>and</strong> structural<br />

evidence <strong>in</strong>dicate late- to post-peak metamorphic<br />

conditions for many of the epigenetic <strong>Cu</strong>-Au<br />

occurrences <strong>in</strong> Sweden, whereas close to syn-peak<br />

metamorphic tim<strong>in</strong>g has been suggested for most<br />

of the occurrences <strong>in</strong> F<strong>in</strong>l<strong>and</strong> (Mänttäri 1995, Eilu<br />

et al. 2003), although very few age dates exist for<br />

m<strong>in</strong>eralisation <strong>in</strong> F<strong>in</strong>l<strong>and</strong><br />

The metamorphic grade ma<strong>in</strong>ly is of low-<br />

to <strong>in</strong>termediate- pressure type, <strong>in</strong> Sweden generally<br />

vary<strong>in</strong>g from upper-greenschist to upper-amphibolite<br />

<strong>and</strong> <strong>in</strong> F<strong>in</strong>l<strong>and</strong> from lower-greenschist to<br />

upper-amphibolite facies. Granulite facies rocks<br />

are only of m<strong>in</strong>or importance, except for the northern<br />

F<strong>in</strong>nish Lapl<strong>and</strong> <strong>and</strong> Kola Pen<strong>in</strong>sula with<strong>in</strong> the<br />

arcuate Lapl<strong>and</strong> Granulite Belt (Fig. 1).<br />

Regional metamorphic assemblages <strong>in</strong><br />

metaargillites <strong>and</strong> mafic metavolcanic rocks, <strong>in</strong>terpreted<br />

to be of Svecofennian age <strong>and</strong> generally <strong>in</strong>dicate<br />

that the metamorphism is of low to medium<br />

pressure type, 2–4 <strong>and</strong> 6–7.5 kbar, under temperatures<br />

of 510–570°C <strong>and</strong> 615–805°C, respectively.<br />

High T–low P regional metamorphism characterise<br />

large areas of Norrbotten, but as po<strong>in</strong>ted out by<br />

Bergman et al. (2001), the measured pressures <strong>and</strong><br />

temperatures are not constra<strong>in</strong>ed <strong>in</strong> time <strong>and</strong> could<br />

be related to different metamorphic events. Still<br />

the geochronology of the metamorphic history <strong>in</strong><br />

northern Sweden is rather sparse <strong>and</strong> the distribution<br />

<strong>in</strong> time <strong>and</strong> space is not well-known. Bergman<br />

et al. (2001) divided the pre-1.88 Ga rocks<br />

<strong>in</strong> northernmost Sweden <strong>in</strong>to low-, medium- <strong>and</strong><br />

high-grade areas follow<strong>in</strong>g the def<strong>in</strong>itions of W<strong>in</strong>kler<br />

(1979). It is <strong>in</strong>terest<strong>in</strong>g to note that most of<br />

the low-grade areas there (i.e. Kiruna, Rensjön <strong>and</strong><br />

Stora Sjöfallet) are located <strong>in</strong> the westernmost part<br />

of Norrbotten whereas the majority of medium to<br />

high grade metamorphic rocks are located <strong>in</strong> the<br />

central to eastern part where also the vast majority<br />

of the L<strong>in</strong>a type granites (c. 1.81 to 1.78 Ga) are<br />

situated. The strong spatial relationship between<br />

the higher-grade metamorphic rocks <strong>and</strong> the Stype<br />

granites is either a result of deeper erosional<br />

level of the crust <strong>in</strong> these areas or reflects areas


affected by higher heat flow at c. 1.8 Ga.<br />

In central F<strong>in</strong>nish Lapl<strong>and</strong>, the follow<strong>in</strong>g<br />

metamorphic zones have been mapped (Hölttä et al.<br />

2007): I) granulite facies migmatitic amphibolites<br />

south of the Lapl<strong>and</strong> Granulite Belt, II) high pressure<br />

mid-amphibolite facies rocks south of the zone<br />

I, characterised by garnet-kyanite-biotite-muscovite<br />

assemblages with local migmatisation <strong>in</strong> metapelites,<br />

<strong>and</strong> garnet-hornblende-plagioclase assemblages <strong>in</strong><br />

mafic rocks, III) low-pressure mid-amphibolite facies<br />

rocks south of the zone II, with garnet-<strong>and</strong>alusite-staurolite-chlorite-muscovite<br />

assemblages with<br />

retrograde chloritoid <strong>and</strong> kyanite <strong>in</strong> metapelites,<br />

<strong>and</strong> hornblende-plagioclase-quartz±garnet <strong>in</strong> metabasites,<br />

IV) greenschist facies rocks of the Central<br />

Lapl<strong>and</strong> Greenstone Belt, with f<strong>in</strong>e-gra<strong>in</strong>ed white<br />

mica-chlorite-biotite-albite-quartz <strong>in</strong> metapelites,<br />

<strong>and</strong> act<strong>in</strong>olite-albite-chlorite-epidote-carbonate <strong>in</strong><br />

metabasites, V) prograde metamorphism south of<br />

the zone IV from lower-amphibolite (<strong>and</strong>alusitekyanite-staurolite-muscovite-chlorite±chloritoid<br />

schists), to mid-amphibolite facies (kyanite-<strong>and</strong>alus-<br />

Iron oxide <strong>and</strong> iron oxide-<strong>Cu</strong>-Au<br />

<strong>deposits</strong> <strong>in</strong> the Kolari-Pajala district<br />

Tero Niiranen<br />

Geological Survey of F<strong>in</strong>l<strong>and</strong>, Rovaniemi, F<strong>in</strong>l<strong>and</strong><br />

Introduction<br />

The Kolari (F<strong>in</strong>l<strong>and</strong>) <strong>and</strong> Pajala (Sweden) areas<br />

have long been known for their iron <strong>deposits</strong>. Earliest<br />

records for the exploration <strong>and</strong> m<strong>in</strong><strong>in</strong>g of the<br />

iron oxide <strong>deposits</strong> <strong>in</strong> the district are from 17th<br />

century (Hiltunen, 1982). Small scale m<strong>in</strong><strong>in</strong>g was<br />

carried out <strong>in</strong> Juvakaisenmaa magnetite occurrence<br />

<strong>in</strong> Kolari around 1840. Modern exploration <strong>in</strong> Pajala<br />

area dur<strong>in</strong>g 1950s to 1960s by SGU <strong>and</strong> LKAB<br />

resulted discovery of around 10 magnetite occurrences<br />

of various size, however, at the time all of<br />

those were considered uneconomic. Exploration <strong>in</strong><br />

the Kolari area by Rautaruukki Oyj dur<strong>in</strong>g 1950s<br />

to 1980s resulted discovery of about 15 magnetite<br />

<strong>and</strong> magnetite-<strong>Cu</strong>-Au <strong>deposits</strong>. Two <strong>deposits</strong> at<br />

the Kolari area were exploited dur<strong>in</strong>g 1974-1992<br />

by Rautaruukki Oyj produc<strong>in</strong>g iron, copper, <strong>and</strong><br />

gold. In 2005 Northl<strong>and</strong> Resources SA staked the<br />

known occurrences <strong>in</strong> both Kolari <strong>and</strong> Pajala area<br />

the company has s<strong>in</strong>ce been develop<strong>in</strong>g the targets<br />

aim<strong>in</strong>g to start m<strong>in</strong><strong>in</strong>g <strong>in</strong> late 2012 (Northl<strong>and</strong> data).<br />

ite-staurolite-biotite-muscovite gneisses, <strong>and</strong> upper<br />

amphibolite facies garnet-sillimanite-biotite gneisses,<br />

VI) amphibolite facies pluton-derived metamorphism<br />

related with heat flow from central <strong>and</strong> western<br />

Lapl<strong>and</strong> granitoids.<br />

The present structural geometry shows an<br />

<strong>in</strong>verted gradient where pressure <strong>and</strong> temperature<br />

<strong>in</strong>crease up wards <strong>in</strong> the present tectonostratigraphy<br />

from greenschist facies <strong>in</strong> the zone IV through<br />

garnet-<strong>and</strong>alusite-staurolite grade <strong>in</strong> the zone III<br />

<strong>and</strong> garnet-kyanite grade amphibolite facies <strong>in</strong> the<br />

zone II to granulite facies <strong>in</strong> the zone I. The <strong>in</strong>verted<br />

gradient could be expla<strong>in</strong>ed by crustal thicken<strong>in</strong>g<br />

caused by overthrust of the hot granulite complex<br />

onto the lower grade rocks. Metamorphism <strong>in</strong> the<br />

Lapl<strong>and</strong> Granulite Belt occurred at 1.91–1.88 Ga<br />

(Tuisku & Huhma 2006), but the present metamorphic<br />

structure <strong>in</strong> central F<strong>in</strong>nish Lapl<strong>and</strong> may record<br />

later, postmetamorphic thrust<strong>in</strong>g <strong>and</strong> fold<strong>in</strong>g events<br />

(Hölttä et al. 2007).<br />

General Geology of the Kolari-Pajala area<br />

The bedrock of the Kolari-Pajala district is comprized<br />

by 2.44-1.91 Ga Karelian <strong>and</strong>


18<br />

Fig. 1. The ma<strong>in</strong> geological units of the Kolari-Pajala district <strong>and</strong> location of the known Fe <strong>and</strong> Fe-<strong>Cu</strong>-Au <strong>deposits</strong>.<br />

Modified after Fennosc<strong>and</strong>ian Bedrock map 1: 1 000 000.


Table 1. Size <strong>and</strong> grade data of the selected <strong>deposits</strong> <strong>in</strong> Kolari-Pajala district. Table modified after Eilu et al., (<strong>in</strong> prep.).<br />

Subarea,<br />

Occurrence Tonnage (Mt) M<strong>in</strong>ed (Mt) Fe % <strong>Cu</strong> % Aug/t Ma<strong>in</strong> ore m<strong>in</strong>erals 1 Reference<br />

Pajala<br />

Palotieva 8.7 24.2 0.05 Mgt, Py, Po, Cpy L<strong>in</strong>droos et al.<br />

(1972), Baker &<br />

Lepley (2010)<br />

Ruutijärvi 8.3 40.9 Mgt L<strong>in</strong>droos<br />

& Johansson<br />

(1972)<br />

Stora Sahavaara 145 43.1 0.08 Mgt, Cpy, Py, Po Frietsch (1997),<br />

Northl<strong>and</strong> (2007)<br />

Södra Sahavaara 19.6 32.1 0.05 Mgt, Py, Po L<strong>in</strong>droos (1972)<br />

Suksivuoma 3.5 43.5 Mgt Frietsch (1997)<br />

Tapuli 116.1 26.1 Mgt, Py, Po L<strong>in</strong>droos et al.<br />

(1972), Baker &<br />

Lepley (2010)<br />

Kolari<br />

Hannuka<strong>in</strong>en 202.5 4.56 33.1 0.16 0.05 Mgt, Cpy, Py, Po Hiltunen (1982),<br />

Northl<strong>and</strong> (2010a)<br />

Kuervitikko 45 22.9 0.16 0.17 Mgt, Cpy, Py, Po Northl<strong>and</strong> (2010a)<br />

Rautuoja 1.9 36.7 0.19 0.34 Mgt, Cpy, Py Korkalo (2006)<br />

Rautuvaara M<strong>in</strong>e 13.3 11.6 2 46.8 0.2 Mgt, Cpy, Py, Po Hiltunen (1982)<br />

Rautuvaara SW 4.5 42.7 0.15 Mgt, Cpy, Py, Po Hiltunen (1982)<br />

Rautuvaara-<strong>Cu</strong> 2.8 21.8 0.48 0.2 Mgt, Cpy, Py, Po Hiltunen (1982),<br />

Niiranen et al.(2007)<br />

Mannakorpi 20 25 Mgt, Bary, Py, Po, Cpy Hiltunen (1982)<br />

Sivakkalehto 0.4 3 37 Mgt, Po, Py, Cpy Hugg & Heiskanen<br />

(1983)<br />

Taporova 7 28 Mgt, Hem, Bary Hiltunen (1982)<br />

1 Bary = baryte, Cpy = chalcopyrite, Mgt = magnetite, Hem = haematite, Po = pyrrhotite, Py = pyrite.<br />

2 <strong>in</strong>cludes the production from both Rautuvaara <strong>and</strong> SW Rautuvaara <strong>deposits</strong><br />

3 Massive ore of 0.4 Mt plus dissem<strong>in</strong>ated magnetite m<strong>in</strong>eralisation of about 200 Mt at 20−25 % Fe (Hugg & Heiskanen 1983).<br />

19


20<br />

The ore <strong>deposits</strong><br />

Total of about 25 <strong>deposits</strong> are known with<strong>in</strong> the area.<br />

The known <strong>deposits</strong> display considerable variation <strong>in</strong><br />

size, Fe, <strong>Cu</strong>, <strong>and</strong> Au grades, host rock assemblage,<br />

<strong>and</strong> m<strong>in</strong>eralization style (Table 1; Frietsch et al.,<br />

1979; Hiltunen 1982, Northl<strong>and</strong> data). The m<strong>in</strong>eralization<br />

style range from massive to semi-massive<br />

magnetite lenses to breccia hosted <strong>and</strong> to dissem<strong>in</strong>ated<br />

magnetite-<strong>Cu</strong>-Au ore bodies. The <strong>deposits</strong> occur<br />

with<strong>in</strong> the Karelian <strong>and</strong> Svecofennian supracrustal<br />

units as well as <strong>in</strong> the Hapar<strong>and</strong>a Suite <strong>in</strong>trusions.<br />

Typically the <strong>deposits</strong> are hosted by Ca-cl<strong>in</strong>opyrox-<br />

Fig. 2. Geological map of the Kolari area <strong>and</strong> location of the known Fe, <strong>and</strong> Fe-<strong>Cu</strong>-Au <strong>deposits</strong>.<br />

Modified after Digital bedrock database of the Geological Survey of F<strong>in</strong>l<strong>and</strong>.<br />

ene <strong>and</strong>/or act<strong>in</strong>olite, or serpent<strong>in</strong>e skarns. In addition<br />

there are <strong>deposits</strong> <strong>in</strong> the Kolari area <strong>in</strong> which the<br />

part or most of the Fe- <strong>and</strong> Fe-<strong>Cu</strong>-Au m<strong>in</strong>eralization<br />

occurs with<strong>in</strong> albite- <strong>and</strong> albite-biotite-act<strong>in</strong>olite altered<br />

country rocks (e.g. Hiltunen, 1982; Niiranen et<br />

al., 2007). The <strong>deposits</strong> <strong>in</strong> Kolari area (Fig. 2) display<br />

clear structural control be<strong>in</strong>g associated to the<br />

thrust <strong>and</strong> shear zones that comprise the crustal scale<br />

Pajala-Kolari shear zone which is sometimes also<br />

referred as Baltic-Bothnian megashear (Berthelsen<br />

& Marker, 1986; Hiltunen, 1982; Niiranen et al.,<br />

2007). For the Pajala <strong>deposits</strong> the structural geology<br />

is poorly described <strong>in</strong> the literature.


Hannuka<strong>in</strong>en deposit<br />

The Hannuka<strong>in</strong>en deposit is the largest known deposit<br />

<strong>in</strong> the Kolari area with current resource estimate<br />

about 200 Mt (Table 1). The deposit consists<br />

of five gently west dipp<strong>in</strong>g lenticular semi-massive<br />

magnetite lenses hosted by Ca-cl<strong>in</strong>opyroxene <strong>and</strong><br />

act<strong>in</strong>olite skarns (Fig. 3). The magnetite lenses <strong>and</strong><br />

the skarns overpr<strong>in</strong>t variably albitized Hapar<strong>and</strong>a<br />

Suite diorite <strong>and</strong> Savukoski Group tholeiitic volcanic<br />

rock (Figs. 2-3). The deposit is structurally controlled<br />

by one of the thrust zones of the Pajala-Kolari<br />

shear zone system.<br />

The <strong>Cu</strong>-Au m<strong>in</strong>eralization is dom<strong>in</strong>antly<br />

hosted by the magnetite-rich lenses, <strong>and</strong> partially<br />

by the skarns. Although <strong>Cu</strong> <strong>and</strong> Au occur <strong>in</strong> anomalous<br />

concentrations throughout the deposit, only part<br />

of the deposit is <strong>Cu</strong>-Au m<strong>in</strong>eralized. The richest<br />

<strong>Cu</strong>-Au grades are with<strong>in</strong> the Laur<strong>in</strong>oja ore body <strong>in</strong><br />

which the best reported <strong>in</strong>tercepts are ca. 0.8% <strong>Cu</strong><br />

<strong>and</strong> 0.3 g/t Au along 35 meter of core (Northl<strong>and</strong><br />

data). However, as all the reported resource estimates<br />

are based on iron cut off, the exact size <strong>and</strong><br />

grade of the <strong>Cu</strong>-Au-richest part is unknown.<br />

The ore m<strong>in</strong>erals at Hannuka<strong>in</strong>en are magnetite,<br />

pyrite, pyrrhotite <strong>and</strong> chalcopyrite bornite,<br />

tellurides, gold, molybdenite, <strong>and</strong> uran<strong>in</strong>ite (Hiltunen,<br />

1982; Niiranen et al., 2007). Native gold occurs<br />

<strong>in</strong> silicate gangue <strong>and</strong> <strong>in</strong>clusions <strong>in</strong> sulfides <strong>and</strong><br />

magnetite (Hiltunen, 1982;<br />

Fig. 3. Surface<br />

geology <strong>and</strong> a<br />

cross section of<br />

the Hannuka<strong>in</strong>en<br />

ore field. The deep<br />

Kivivuopio ore<br />

body is omitted<br />

from the surface<br />

geology. After<br />

Hiltunen (1982),<br />

redrawn by P.<br />

Kurki.<br />

21


22<br />

Alteration & geochemical f<strong>in</strong>gerpr<strong>in</strong>t<br />

Multi-stage <strong>and</strong> -style alteration has been dist<strong>in</strong>guished<br />

at Hannuka<strong>in</strong>en <strong>and</strong> can be divided <strong>in</strong>to five<br />

different styles that may temporally overlap (Hiltunen,<br />

1982; Niiranen et al., 2007). Early albitization<br />

is overpr<strong>in</strong>ted by skarn alteration (cpx-act-mgt). Potassic<br />

alteration, typically biotite-K-feldspar ± magnetite,<br />

cliopyroxene/act<strong>in</strong>olite zone occurs <strong>in</strong> places<br />

as <strong>in</strong>termediate zone to the m<strong>in</strong>eralization. Potassic<br />

alteration is also typical <strong>in</strong> <strong>in</strong>tensely sheared tholeiitic<br />

volcanic rocks at footwall. The <strong>Cu</strong>-Au m<strong>in</strong>eralization<br />

(sulfidization) is temporally late to the ma<strong>in</strong> magnetite<br />

stage. The sulfidization is <strong>in</strong> places accompanied<br />

with second generation of magnetite. Latest alteration<br />

phase is carbonation (calcite) which post-date the<br />

magnetite stage <strong>and</strong> probably also the <strong>Cu</strong>-Au stage.<br />

The metal association of the ore is Fe, <strong>Cu</strong>, S ± Au, Co,<br />

LREE, Mo, Te, U. Potassic alteration is typically accompanied<br />

with elevated Ba concentrations (


Fig. 4. Geology of the Sahavaara deposit, modified after Lundberd (1967).<br />

of semi-cont<strong>in</strong>uous tabular bodies that dip 45-60 degrees<br />

to NW. Substantial part of the m<strong>in</strong>eralization<br />

consists of breccia hosted magnetite bodies (Baker<br />

et al., 2010). The host rock sequence is (from hang<strong>in</strong>g<br />

wall to footwall) quartzite, dolomitic marble,<br />

graphitic phyllite, <strong>and</strong> mafic volcanic rock (Fig. 5).<br />

The metasomatic skarns <strong>and</strong> magnetite overpr<strong>in</strong>t the<br />

dolomitic marble <strong>and</strong> phyllite (Baker et al., 2010).<br />

The sole ore m<strong>in</strong>eral <strong>in</strong> Tapuli is magnetite<br />

with only trace amount of pyrite <strong>and</strong> pyrrhotite. The<br />

gangue consists of cliopyroxene, tremolite, act<strong>in</strong>olite,<br />

serpent<strong>in</strong>e, <strong>and</strong> carbonates.<br />

Alteration & geochemical f<strong>in</strong>gerpr<strong>in</strong>t<br />

Baker et al. (2010) classify the alteration at Tapuli<br />

<strong>in</strong>to three temporally different assemblages which<br />

are: cl<strong>in</strong>opyroxene-tremolite alteration (pre-dat<strong>in</strong>g<br />

the m<strong>in</strong>eralization), magnetite-act<strong>in</strong>olite alteration<br />

(m<strong>in</strong>eralization event), <strong>and</strong> serpent<strong>in</strong>e alteration<br />

(post-dat<strong>in</strong>g m<strong>in</strong>eralization). Baker et al. (2010) further<br />

state that at the higher Fe-grades the dom<strong>in</strong>ant<br />

skarn m<strong>in</strong>eral is serpent<strong>in</strong>e which may <strong>in</strong>dicate that<br />

serpent<strong>in</strong>e-alteration resulted upgrad<strong>in</strong>g of the Fegrades.<br />

They also note that <strong>in</strong> zones where protolith<br />

was silicate rock <strong>in</strong>dicated by higher alum<strong>in</strong>ium<br />

content the biotite- <strong>and</strong> albite-rich alteration assemblages<br />

are dom<strong>in</strong>ant.<br />

Besides the iron, the S, Co, <strong>and</strong> <strong>Cu</strong> occur <strong>in</strong><br />

slightly elevated grades only <strong>in</strong> the sulfur richer parts<br />

of the deposit. Baker et al. (2010) state that elevated<br />

concentrations of La <strong>and</strong> Ce have been detected <strong>in</strong><br />

Tapuli ore, <strong>and</strong> that Cl occurs locally at values over<br />

0.1%.<br />

Genetic models<br />

Several different genetic models have been proposed<br />

for the <strong>deposits</strong> <strong>in</strong> both Pajala <strong>and</strong> Kolari districts. In<br />

Sweden the skarn hosted <strong>deposits</strong> with<strong>in</strong> the Karelian<br />

greenstone formation have traditionally been<br />

referred as skarn iron ores <strong>and</strong> these have been considered<br />

to represent metamorphosed syngenetic iron<br />

formations based on the observations that <strong>in</strong> places<br />

<strong>in</strong> Norrbotten area the skarn iron <strong>deposits</strong> appear to<br />

grade <strong>in</strong>to BIFs (e.g. Frietsch, 1997 <strong>and</strong> references<br />

there<strong>in</strong>). The Fe <strong>deposits</strong> <strong>in</strong> the Pajala area have<br />

been classified as “skarn iron ores” with similar genetic<br />

<strong>in</strong>terpretations ever s<strong>in</strong>ce the discovery of them<br />

(e.g. Griep <strong>and</strong> Frietsch, 1973). In F<strong>in</strong>l<strong>and</strong>, Hiltunen<br />

(1982) proposed that the Kolari <strong>deposits</strong> are metasomatic<br />

skarns related to the Hapar<strong>and</strong>a Suite <strong>in</strong>trusions<br />

based on the spatial association of the known<br />

ores close to the contacts of the <strong>in</strong>trusions. However,<br />

the U-Pb zircon <strong>and</strong> titanite ages from the <strong>in</strong>trusions<br />

<strong>and</strong> altered rocks at Kolari <strong>deposits</strong> <strong>in</strong>dicate that<br />

the m<strong>in</strong>eralization event(s) post-date the magmatic<br />

age of hang<strong>in</strong>g wall diorite <strong>and</strong> monzonite at Hannuka<strong>in</strong>en<br />

by ca. 60 million years, thus the <strong>deposits</strong><br />

are unrelated to the Hapar<strong>and</strong>a Suite magmatism<br />

(Niiranen et al., 2007). Based on the geochemistry,<br />

U-Pb age <strong>and</strong> fluid <strong>in</strong>clusion data as well as similarities<br />

with the Kolari Fe-<strong>Cu</strong>-Au <strong>deposits</strong> with some<br />

of the known <strong>IOCG</strong> <strong>deposits</strong> <strong>in</strong> Cloncurry district,<br />

Australia it has been proposed that the Kolari <strong>deposits</strong><br />

are examples of <strong>IOCG</strong> m<strong>in</strong>eralisation (Niiranen,<br />

2005 Niiranen et al. 2007).<br />

23


24<br />

Fig. 5. Cross section <strong>and</strong> a surface geology of the Tapuli deposit (www.northl<strong>and</strong>.eu).<br />

Aitik <strong>Cu</strong>-Au-Ag M<strong>in</strong>e<br />

Roger Nord<strong>in</strong><br />

Boliden M<strong>in</strong>eral AB, Boliden, Sweden<br />

Christ<strong>in</strong>a Wanha<strong>in</strong>en<br />

Luleå University of Technology, Luleå, Sweden<br />

Riikka Aaltonen<br />

M<strong>in</strong>istry of Trade <strong>and</strong> Industry, F<strong>in</strong>l<strong>and</strong><br />

Introduction<br />

The Aitik <strong>Cu</strong>-Au-Ag m<strong>in</strong>e is situated <strong>in</strong> Norrbotten<br />

County, northern Sweden, some 100 km north of<br />

the Arctic Circle <strong>and</strong> 17 km east of Gällivare town<br />

(Fig. 1). The m<strong>in</strong>e started operat<strong>in</strong>g <strong>in</strong> 1968 at a capacity<br />

of 2 Mt of ore annually. Subsequent expansions<br />

to 5 Mt (1970–72), 11 Mt (1979–81), have<br />

brought the capacity up to 16 Mt (1989–91). The<br />

next expansion will be operational <strong>in</strong> 2010–<strong>2011</strong><br />

<strong>and</strong> will br<strong>in</strong>g the capacity up to 33 Mt of ore <strong>in</strong><br />

2010, which will be ramped up to 36 Mt annually.<br />

production started <strong>in</strong> only 1969. (Juntunen 1971)<br />

M<strong>in</strong><strong>in</strong>g<br />

The Aitik m<strong>in</strong>e (Figs. 2 <strong>and</strong> 3) is a conventional<br />

large open-pit operation with an <strong>in</strong>-pit crusher (18.4<br />

Mt of ore m<strong>in</strong>ed 2006). The <strong>Cu</strong>-Au-Ag ore is moved<br />

by trucks carry<strong>in</strong>g 240 tonnes of ore to the crush<br />

ers. The ore is crushed, milled <strong>and</strong> processed <strong>in</strong> the<br />

flotation plant yield<strong>in</strong>g a chalcopyrite concentrate.<br />

The economic product is a <strong>Cu</strong>-(Au-Ag) concentrate<br />

with an average grade of 27–29 % <strong>Cu</strong>, 8 ppm Au<br />

<strong>and</strong> 250 ppm Ag. The concentrate is transported<br />

by truck to Gällivare <strong>and</strong> then railed 400 km to the<br />

Rönnskär <strong>Cu</strong> smelter east of Skellefteå, where LME<br />

(London Metal Exchange) grade <strong>Cu</strong> cathodes are<br />

produced. By-product gold <strong>and</strong> silver are also extracted<br />

at Rönnskär to produce metallic Au <strong>and</strong> Ag.<br />

Sulphur is captured by the smelter <strong>and</strong> converted<br />

<strong>in</strong>to sulphuric acid. In 2006, Aitik produced about<br />

29 % of the required feed of the Rönnskär smelter,<br />

or 240,000 tonnes of <strong>Cu</strong> concentrate. An average<br />

year at Aitik would yield some 60,000 tonnes<br />

of <strong>Cu</strong>-<strong>in</strong>-concentrate, 1.5–2 tonnes of Au, <strong>and</strong><br />

some 40–50 tonnes of Ag, from 17–18 Mt of ore.<br />

S<strong>in</strong>ce the start of m<strong>in</strong><strong>in</strong>g at Aitik <strong>in</strong> 1968,<br />

approximately 450 Mt of ore have been m<strong>in</strong>ed from<br />

a 3 km long, 1 km wide <strong>and</strong> 390 m deep open pit. In<br />

addition, some 400 Mt of waste rocks have been removed<br />

to expose the ore body. Proven <strong>and</strong> probable<br />

ore reserves at the start of 2007 were 625 Mt with<br />

0.28 % <strong>Cu</strong>, 0.2 ppm Au <strong>and</strong> 2 ppm Ag. Additional<br />

measured <strong>and</strong> <strong>in</strong>dicated m<strong>in</strong>eral resources were 858<br />

Mt with 0.24 % <strong>Cu</strong>, 0.2 ppm Au <strong>and</strong> 2 ppm Ag,<br />

with an additional 66 Mt of <strong>in</strong>ferred resources grad<strong>in</strong>g<br />

0.25 % <strong>Cu</strong>, 0.2 ppm Au <strong>and</strong> 2 ppm Ag (Boliden<br />

AB 2006). This makes Aitik the largest <strong>Cu</strong> deposit<br />

<strong>in</strong> the Fennosc<strong>and</strong>ian Shield <strong>and</strong> one of the largest<br />

Au-rich porphyry copper <strong>deposits</strong> <strong>in</strong> the world.<br />

The current m<strong>in</strong>e life, <strong>in</strong>clud<strong>in</strong>g the expansion to up<br />

to 36 Mt/a, will allow the m<strong>in</strong>e to cont<strong>in</strong>ue to operate<br />

until 2026. The f<strong>in</strong>al dimensions of the open<br />

pit <strong>in</strong> 2026 will be 5000 m long by 1400 m wide<br />

<strong>and</strong> 600 m deep. Exploration <strong>in</strong> the area is ongo<strong>in</strong>g.


Fig. 1. Geology of <strong>Northern</strong> Norrbotten with selected m<strong>in</strong>eral <strong>deposits</strong> <strong>in</strong>clud<strong>in</strong>g location of the Aitik m<strong>in</strong>e<br />

modified from Bergman et al. (2001).<br />

25


26<br />

Fig. 2. Local geology <strong>and</strong> excursion stops at the<br />

Aitik m<strong>in</strong>e. Geology from Wanha<strong>in</strong>en <strong>and</strong> Mart<strong>in</strong>sson<br />

(1999).<br />

M<strong>in</strong>e geology<br />

The local m<strong>in</strong>e geology at Aitik (Figs. 2 <strong>and</strong> 4) is<br />

divided <strong>in</strong>to 3 ma<strong>in</strong> parts, i.e. the hang<strong>in</strong>g wall, ma<strong>in</strong><br />

ore zone <strong>and</strong> the footwall complex. The hang<strong>in</strong>g wall<br />

is basically one unit of strongly b<strong>and</strong>ed hornblende<br />

gneisses. The ma<strong>in</strong> ore zone consists of three ma<strong>in</strong><br />

units, a muscovite schist, biotite schist <strong>and</strong> biotite<br />

gneisses. These rocks are strongly deformed <strong>and</strong> altered<br />

which obscure their primary character. However,<br />

their chemical character suggests a magmatic<br />

precursor of <strong>in</strong>termediate composition <strong>and</strong>, based on<br />

the knowledge from areas outside the m<strong>in</strong>e, a volcaniclastic<br />

orig<strong>in</strong> (Wanha<strong>in</strong>en & Mart<strong>in</strong>sson 1999).<br />

The most important footwall unit is the quartz monzodioritic<br />

<strong>in</strong>trusive. Other <strong>in</strong>trusives of <strong>in</strong>terest are<br />

the pegmatite dykes which cross cut the hang<strong>in</strong>g<br />

wall, ma<strong>in</strong> ore zone <strong>and</strong> the footwall complex.<br />

The ma<strong>in</strong> ore zone dips roughly 45° to the<br />

west (Figs. 3 <strong>and</strong> 4), <strong>and</strong> the lower ore contact consists<br />

of a gradational weaken<strong>in</strong>g of the copper grade<br />

at roughly 50° to the west. The lower contact is approximately<br />

where biotite gneisses change <strong>in</strong>to regional<br />

biotite-amphibole gneiss. Sporadic <strong>Cu</strong> m<strong>in</strong>eralisation<br />

of no economic <strong>in</strong>terest exists <strong>in</strong> these<br />

footwall gneisses. The footwall quartz monzodiorite<br />

<strong>in</strong> the southern part of the m<strong>in</strong>e is part of newly started<br />

series of push backs. Below follows a detailed<br />

description of the Aitik m<strong>in</strong>e rock units (see also the<br />

rock types depicted <strong>in</strong> Fig. 5)<br />

Hornblende-b<strong>and</strong>ed gneiss is a f<strong>in</strong>ely b<strong>and</strong>ed<br />

unit (mm to cm wide b<strong>and</strong>s) with alternat<strong>in</strong>g dark<br />

olive green <strong>and</strong> light grey layers. This unit is more<br />

than 250 m thick, <strong>and</strong> overlies the ma<strong>in</strong> ore zone. It is<br />

devoid of sulphides. M<strong>in</strong>eralogically it is dom<strong>in</strong>ated<br />

by hornblende, with biotite, quartz <strong>and</strong> m<strong>in</strong>or plagioclase.<br />

The light grey b<strong>and</strong>s have weak to moderate<br />

sericitic <strong>and</strong> chloritic alteration. The unit also shows<br />

a red-green microcl<strong>in</strong>e-epidote-alteration. Scapolite<br />

porhyroblasts of 1–5 mm <strong>in</strong> diameter occur throughout<br />

the unit. Other accessory m<strong>in</strong>erals are magnetite<br />

<strong>and</strong> tourmal<strong>in</strong>e. The f<strong>in</strong>e-gra<strong>in</strong>ed unit likely represents<br />

orig<strong>in</strong>al compositional variations, even though<br />

it is strongly metamorphosed. Based on field evidence,<br />

it is suggested that the f<strong>in</strong><strong>in</strong>g upwards of the<br />

layer<strong>in</strong>g shows that way-up is towards the west. The<br />

unit appears to have been tectonically emplaced over<br />

the ma<strong>in</strong> ore zone. The fault at the contact appears to<br />

be a thrust. The boundary between the ma<strong>in</strong> ore zone<br />

<strong>and</strong> the hornblende-b<strong>and</strong>ed gneiss is <strong>in</strong> places highly<br />

fractured, caus<strong>in</strong>g problems for drill<strong>in</strong>g. The border<br />

zone between hornblende b<strong>and</strong>ed gneisses <strong>and</strong> the<br />

ma<strong>in</strong> ore zone is also <strong>in</strong>truded by several pegmatite<br />

dykes up to 40 m wide.


Fig. 3. Metal distribution at Aitik for copper (A) <strong>and</strong> gold (B) for the 100, 300 <strong>and</strong> 500 m horizontal levels. Class limits<br />

are chosen after the classification of m<strong>in</strong>eable to waste rock <strong>and</strong> low- to high-grade ore used by Boliden AB. From<br />

Wanha<strong>in</strong>en et al. (2003b).<br />

Fig. 4. Section across the Aitik deposit, view to the north, 200 m grid.<br />

27


28<br />

Quartz-muscovite (sericite) schist constitutes the<br />

upper part of the ma<strong>in</strong> ore zone. The unit is roughly<br />

200 m thick, <strong>and</strong> consist of a strongly foliated muscovite-rich<br />

matrix with quartz, biotite, microcl<strong>in</strong>e <strong>and</strong><br />

plagioclase. It is a light-buff coloured unit show<strong>in</strong>g a<br />

sharp contact with the overly<strong>in</strong>g hornblende-b<strong>and</strong>ed<br />

gneiss <strong>and</strong> a gradational lower contact grad<strong>in</strong>g <strong>in</strong>to<br />

biotite schist. Accessory m<strong>in</strong>erals <strong>in</strong> this unit are<br />

epidote, tourmal<strong>in</strong>e, magnetite <strong>and</strong> garnet. Magnetite<br />

occurs as occasional mm-scale porphyroblasts,<br />

<strong>and</strong> also as f<strong>in</strong>e dissem<strong>in</strong>ation (1–3 % magnetite).<br />

The sulphide m<strong>in</strong>erals are dom<strong>in</strong>ated by pyrite <strong>and</strong><br />

chalcopyrite (py > cpy > po). Total sulphur content<br />

can reach 5–7 %, correspond<strong>in</strong>g to 15–20 vol-% of<br />

sulphides. The muscovite schist has a Cpy:Py ratio<br />

rang<strong>in</strong>g from 1:2 to 1:7. The upper contact of the<br />

muscovite schist conta<strong>in</strong>s a sulphide rich zone, 5–40<br />

m wide with up to 20–25 % sulphides. Gold <strong>and</strong> copper<br />

zonation is shown <strong>in</strong> Figure 3. Gold <strong>and</strong> copper<br />

grades <strong>in</strong>crease at depth <strong>in</strong> the northern part of the<br />

pit. Pyrrhotite <strong>and</strong> molybdenite occur as less common<br />

sulphides. Pyrite typically occurs as large blebs,<br />

or along foliation planes, <strong>and</strong> as small ve<strong>in</strong>lets. The<br />

Ba content of the unit is quite high, <strong>in</strong> the order of<br />

1,000 – several 1,000s of ppm.<br />

Biotite schist constitutes the middle part of<br />

the ma<strong>in</strong> ore zone. It is gradational <strong>in</strong>to the biotite<br />

gneisses below as well as to the muscovite schists<br />

above. The thickness is on average 150 m. This unit<br />

is strongly foliated <strong>and</strong> sheared <strong>in</strong> a roughly northsouth<br />

direction. It conta<strong>in</strong>s pyrite <strong>and</strong> chalcopyrite<br />

dissem<strong>in</strong>ation <strong>and</strong> ve<strong>in</strong>lets, <strong>and</strong> chalcopyrite clots,<br />

with pyrite <strong>and</strong> chalcopyrite as equal volumes. Magnetite<br />

occurs as a f<strong>in</strong>e dissem<strong>in</strong>ation with gra<strong>in</strong>s<br />

commonly enclosed with<strong>in</strong> amphibole <strong>and</strong>/or garnet<br />

porphyroblasts. Molybdenite is present <strong>in</strong> the northern<br />

part of the m<strong>in</strong>eralisation. Biotite dom<strong>in</strong>ates over<br />

muscovite, <strong>and</strong> def<strong>in</strong>es a strong foliation. Th<strong>in</strong> ve<strong>in</strong>lets<br />

of quartz, commonly deformed, occur <strong>in</strong> this<br />

unit. Undeformed ve<strong>in</strong>lets with late zeolites <strong>and</strong> epidote<br />

occasionally occur with<strong>in</strong> the unit.<br />

Biotite gneisses constitute the lowermost<br />

part of the ma<strong>in</strong> ore zone, although the rock type is<br />

not always present. They commonly display zones<br />

of red garnet (spessart<strong>in</strong>e-alm<strong>and</strong><strong>in</strong>e) <strong>and</strong> more<br />

gneissic, coarser-gra<strong>in</strong>ed character than the strongly<br />

foliated biotite schist. M<strong>in</strong>eralisation is of the same<br />

style as <strong>in</strong> the biotite schist.<br />

Quartz monzodiorite is the dom<strong>in</strong>ant footwall<br />

unit, be<strong>in</strong>g up to 600 m thick. It shows medium-gra<strong>in</strong>ed<br />

equigranular, 2–5 mm phases as well<br />

as strongly porphyritic phases. Transition between<br />

these phases (= subphases of the quartz monzodiorite)<br />

is almost always gradational. The quartz monzodiorite<br />

conta<strong>in</strong>s plagioclase phenocrysts be<strong>in</strong>g up to<br />

7–9 mm <strong>in</strong> size. The plagioclase show compositional<br />

zon<strong>in</strong>g. The matrix of the quartz monzodiorite consists<br />

of a f<strong>in</strong>e-gra<strong>in</strong>ed mixture of plagioclase, quartz,<br />

biotite <strong>and</strong> m<strong>in</strong>or sericite. Alteration is commonly<br />

present as weak silicification <strong>and</strong> p<strong>in</strong>kish potassic<br />

alteration. M<strong>in</strong>eralisation is dom<strong>in</strong>ated by fracturecontrolled<br />

py-cpy±MoS 2, but f<strong>in</strong>ely dissem<strong>in</strong>ated<br />

sulphides are also present. A m<strong>in</strong>or accessory m<strong>in</strong>eral<br />

is epidote, which can conta<strong>in</strong> f<strong>in</strong>e gra<strong>in</strong>ed cpy.<br />

Hornblende <strong>and</strong> quartz-tourmal<strong>in</strong>e ve<strong>in</strong>lets occur<br />

throughout this unit. Ve<strong>in</strong><strong>in</strong>g of quartz, quartz-tourmal<strong>in</strong>e,<br />

gypsum, gypsum-fluorite <strong>and</strong> zeolites occur<br />

as mm–cm wide ve<strong>in</strong>lets. The zeolites present<br />

are stilbite, chabazite <strong>and</strong> desm<strong>in</strong>e, <strong>and</strong> calcite <strong>and</strong><br />

baryte have also been observed <strong>in</strong> this association.<br />

These stockwork ve<strong>in</strong>s cut each other at high angles,<br />

but zones of deformation are also present. The quartz<br />

monzodiorite has a zircon U-Pb age of ca. 1.89 Ga<br />

(Wanha<strong>in</strong>en et al. 2006), which fits well with reported<br />

ages for regional Hapar<strong>and</strong>a suite granitoids<br />

(Bergman et al. 2001).<br />

Feldspar-porphyritic <strong>and</strong>esitic <strong>in</strong>trusives<br />

occur as large dykes <strong>and</strong> occasionally show chilled<br />

marg<strong>in</strong>s. These types of <strong>in</strong>trusives occur throughout<br />

the entire stratigraphic column, but are more common<br />

<strong>in</strong> the footwall area. These dykes are strongly<br />

porphyritic <strong>in</strong> character, with large feldspar phenocryst<br />

laths, up to 25 mm long <strong>and</strong> 4–5 mm wide.<br />

They are set <strong>in</strong> a dark olive green matrix of hornblende,<br />

biotite, chlorite, <strong>and</strong> occasionally act<strong>in</strong>olite<br />

or tremolite. The f<strong>in</strong>e-gra<strong>in</strong>ed, equigranular variety<br />

of this rock is termed amphibolite <strong>in</strong> the m<strong>in</strong>e. Sulphides,<br />

when present, are typically pyrite-chalcopyrite<br />

at a 1:1 ratio, <strong>and</strong> they appear to be both remobilised<br />

from the adjacent rocks <strong>and</strong> to be present with<strong>in</strong><br />

the feldspar porphyritic unit.<br />

Amphibole <strong>and</strong> amphibole-biotite gneisses<br />

constitute a major part of the footwall unit. These<br />

rocks typically exhibit an anastomos<strong>in</strong>g weak network<br />

of 5–30 mm wide hornblende ve<strong>in</strong>lets or<br />

schlieren with a light-coloured feldspar (albite) rim.<br />

Biotite def<strong>in</strong>es a weak foliation, <strong>and</strong> porphyroblastic<br />

garnet is commonly present form<strong>in</strong>g 1–5 vol-%<br />

of the rock. Sporadic scapolite is present as small<br />

gra<strong>in</strong>s <strong>and</strong> as zones of <strong>in</strong>tense scapolitisation. Magnetite<br />

is a common accessory (1–3 %), <strong>and</strong> occurs as<br />

small porphyroblasts <strong>and</strong> as ve<strong>in</strong>lets.<br />

Th<strong>in</strong> pegmatite dykes are common; they<br />

may reach a maximum width of 40 m. Their distribution<br />

is varied with<strong>in</strong> the m<strong>in</strong>e area with the largest<br />

frequency of the dykes <strong>in</strong> <strong>and</strong> around the hang<strong>in</strong>g<br />

wall contact, where they are unm<strong>in</strong>eralised. At<br />

the hang<strong>in</strong>g wall contact, they are oriented roughly<br />

N-S <strong>and</strong> dip about 60º to the west. In the ma<strong>in</strong> ore<br />

zone, the pegmatite dykes occur less frequently,<br />

<strong>and</strong> one series of the dykes show a NNW orientation<br />

<strong>and</strong> a steep dip. The pegmatites commonly


have been <strong>in</strong>truded forcefully s<strong>in</strong>ce they can conta<strong>in</strong><br />

large fragments of the adjacent country rock. When<br />

they <strong>in</strong>trude m<strong>in</strong>eralised host rock they can also exhibit<br />

py-cpy m<strong>in</strong>eralisation. M<strong>in</strong>eralogically they<br />

are dom<strong>in</strong>ated by very-coarse gra<strong>in</strong>ed microcl<strong>in</strong>e,<br />

quartz <strong>and</strong> typically long prismatic black tourmal<strong>in</strong>e.<br />

Greenish muscovite flakes also are common. Accessory<br />

m<strong>in</strong>erals with<strong>in</strong> the pegmatites are molybdenite<br />

<strong>and</strong> fluorite.<br />

Genetic model<br />

The Aitik host rocks belong to the regionally widespread<br />

Hapar<strong>and</strong>a suite of <strong>in</strong>trusions <strong>and</strong> Porphyrite<br />

group of comagmatic volcanic rocks (Wanha<strong>in</strong>en<br />

& Mart<strong>in</strong>sson 1999, Wanha<strong>in</strong>en et al. 2006) which<br />

were generated dur<strong>in</strong>g subduction of oceanic crust<br />

beneath the Archaean craton around 1.9 Ga, dur<strong>in</strong>g<br />

the Svecokarelian orogeny (Weihed 2003). High-sal<strong>in</strong>ity<br />

fluids (30–38 eq. wt. % NaCl+CaCl2) responsible<br />

for chalcopyrite-pyrite m<strong>in</strong>eralisation <strong>in</strong> Aitik<br />

were released contemporaneously with quartz monzodiorite<br />

emplacement <strong>and</strong> quartz stockwork formation<br />

at ca. 1.89 Ga <strong>and</strong> caused potassic alteration of<br />

the <strong>in</strong>trusive <strong>and</strong> surround<strong>in</strong>g volcaniclastic rocks.<br />

The m<strong>in</strong>eralised quartz monzodiorite <strong>in</strong> the footwall<br />

is suggested to represent an apophyse from a larger<br />

<strong>in</strong>trusion at depth consistent with the porphyry copper<br />

model presented by Lowell <strong>and</strong> Guilbert (1970).<br />

Furthermore, zonation <strong>and</strong> alteration patterns, although<br />

disturbed, fit quite well with this model (Yngström<br />

et al. 1986, Monro 1988, Wanha<strong>in</strong>en 2005).<br />

However, all features of the ma<strong>in</strong> ore zone are not<br />

typical for a porphyry system, <strong>and</strong> Aitik is suggested<br />

to be hybrid <strong>in</strong> character with an aff<strong>in</strong>ity to both<br />

<strong>IOCG</strong> <strong>and</strong> porphyry-copper m<strong>in</strong>eralisation based<br />

on the character of the high sal<strong>in</strong>ity ore fluids, the<br />

alteration <strong>and</strong> m<strong>in</strong>eralisation styles, <strong>and</strong> on the 160<br />

Ma (Re-Os molybdenite <strong>and</strong> U-P titanite <strong>and</strong> zircon<br />

dat<strong>in</strong>g) evolution of the deposit (Wanha<strong>in</strong>en et<br />

al. 2003a, Wanha<strong>in</strong>en et al. 2005, Wanha<strong>in</strong>en et al.<br />

2006), <strong>in</strong>clud<strong>in</strong>g a regional m<strong>in</strong>eralis<strong>in</strong>g event of<br />

<strong>IOCG</strong>-type at ca. 1.8 Ga.<br />

29


30<br />

Fig. 5. Rock types at Aitik. A. Hornblende-b<strong>and</strong>ed gneiss – AIA1026 (HWC – at 19.40 m). F<strong>in</strong>ely b<strong>and</strong>ed unit with m<strong>in</strong>or coarser<br />

b<strong>and</strong>s. B. Muscovite schist – AIA1042 (MOZ) at 151.50 m. Display<strong>in</strong>g mixed nature with alternat<strong>in</strong>g muscovite <strong>and</strong> biotite-b<strong>and</strong>s.<br />

C. Biotite schist – AIA1042 (MOZ – 133.95 m) Dark grey rock with biotite b<strong>and</strong>s, display<strong>in</strong>g some muscovite. Garnet-porphyroblasts<br />

<strong>and</strong> dissem<strong>in</strong>ation of chalcopyrite, pyrite <strong>and</strong> pyrrhotite. D. Amphibole-biotite-gneiss – AIA1021 (MOZ – at 112.20 m).<br />

Metamorphic hornblende patches <strong>and</strong> schlieren. E. Diorite – AIA1042 (MOZ/FWC). Coarse-gra<strong>in</strong>ed <strong>and</strong> porphyritic. Overpr<strong>in</strong>t<strong>in</strong>g<br />

metamorphic amphibole alteration <strong>and</strong> silicification causes diffuse textures. F. Diorite – porphyritic with altered plagioclase<br />

phenocrysts (potassic alteration) – AIA1042 (at 505.30 m) Dioritic matrix. Potassic alteration <strong>and</strong> late gypsum ve<strong>in</strong>lets. G. M<strong>in</strong>eralised<br />

diorite. H. Feldspar porphyritic gabbro – AIA1042 (stratigraphic footwall at 609.40 m). Andesitic matrix. Plagioclase<br />

laths (5-15 mm).


References<br />

Åhäll K.-I. & Larsson S.Å. 2000. Growth-related<br />

1.85–1.55 Ga magmatism <strong>in</strong> the Baltic Shield: a<br />

review address<strong>in</strong>g the tectonic characteristics of<br />

Svecofennian, TIB 1-related Gothian events. Geologiska<br />

Fören<strong>in</strong>gens i Stockholm Förh<strong>and</strong>l<strong>in</strong>gar 122,<br />

193–206.<br />

Ahl, M., Bergman, S., Bergström, U., Eliasson, T.,<br />

Ripa, M. & Weihed, P. 2001. Geochemical classification<br />

of plutonic rocks <strong>in</strong> central <strong>and</strong> northern Sweden.<br />

Sveriges Geologiska Undersökn<strong>in</strong>g, Rapporter<br />

och meddel<strong>and</strong>en 106. 82 p.<br />

Alapieti, T., Filen, B., Laht<strong>in</strong>en, J., Lavrov, M.,<br />

Smolk<strong>in</strong>, V. & Voitsekhovsky, S. 1990. Early Proterozoic<br />

layered <strong>in</strong>trusions <strong>in</strong> the northeastern part<br />

of the Fennosc<strong>and</strong>ian Shield. M<strong>in</strong>eralogy <strong>and</strong> Petrology<br />

42, 1–22.<br />

Åhman E. 1957. Degerberget, Baggen och Kluntarna.<br />

Sveriges Geologiska Undersökn<strong>in</strong>g C 555,<br />

1–28.<br />

Amel<strong>in</strong> Y.V., Heaman L.M. & Semenov V.S. 1995.<br />

U-Pb geochronology of layered mafic <strong>in</strong>trusions <strong>in</strong><br />

the eastern Baltic Shield: implications for the tim<strong>in</strong>g<br />

<strong>and</strong> duration of Paleoproterozoic cont<strong>in</strong>ental rift<strong>in</strong>g.<br />

Precambrian Research 75, 31–46.<br />

Andersson U.B. 1991. Granitoid episodes <strong>and</strong> mafic-felsic<br />

magma <strong>in</strong>teraction <strong>in</strong> the Svecofennian of<br />

the Fennosc<strong>and</strong>ian shield, with ma<strong>in</strong> emphasis on<br />

the ca. 1.8 Ga plutonics. Precambrian Research 51,<br />

127–149.<br />

Baker, H., Lepley, B., <strong>and</strong> Arthur J. 2010. M<strong>in</strong>eral<br />

resource estimate for the Sahavaara iron deposit, Pajala<br />

municipality, Norbotten county Sweden. SRK<br />

Consult<strong>in</strong>g report. 171 p.<br />

Baker, H., Lepley, B., <strong>and</strong> Arthur J. 2010. M<strong>in</strong>eral<br />

resource estimate for the Tapuli iron deposit, Pajala<br />

municipality, Norbotten county Sweden. SRK Consult<strong>in</strong>g<br />

report. 178 p.<br />

Bergman S., Kübler L. & Mart<strong>in</strong>sson O. 2001. Description<br />

of regional geological <strong>and</strong> geophysical maps<br />

of northern Norrbotten county. Sveriges Geologiska<br />

Undersökn<strong>in</strong>g, Ba 56. 110 p.<br />

Bergman, S., Persson, P-O. & Kübler, L. 2002. U-Pb<br />

titanite <strong>and</strong> zircon ages of the L<strong>in</strong>a granite at the type<br />

locality NW of Gällivare, northern Sweden. Sveriges<br />

Geologiska Undersökn<strong>in</strong>g, Research Paper C 834,<br />

12–17.<br />

Bergman, S., Billström K., Persson P.-O., Skiöld T.<br />

& Ev<strong>in</strong>s, P. 2006. U-Pb age evidence for repeated<br />

Palaeoproterozoic metamorphism <strong>and</strong> deformation<br />

near the Pajala shear zone <strong>in</strong> the northern Fennosc<strong>and</strong>ian<br />

Shield: Geologiska Fören<strong>in</strong>gens i Stockholm<br />

Förh<strong>and</strong>l<strong>in</strong>gar 128, 7–20.<br />

Berthelsen A & Marker M. 1986. 1.9–1.8 Ga old<br />

strike-slip megashears <strong>in</strong> the Baltic Shield, <strong>and</strong> their<br />

plate tectonic implications. Tectonophysics 128,<br />

163–181.<br />

Billström, K., Eilu, P., Mart<strong>in</strong>sson, O., Niiranen, T.,<br />

Broman, C., Weihed, P., Wanha<strong>in</strong>en, C. & Ojala, J.<br />

<strong>in</strong> press. <strong>IOCG</strong> <strong>and</strong> Related M<strong>in</strong>eral Deposits of the<br />

<strong>Northern</strong> Fennosc<strong>and</strong>ian Shield. In: Porter, T. (ed.)<br />

Hydrothermal Iron Oxide-Copper-Gold & Related<br />

Deposits: A Global Perspective, vol. 3. Advances <strong>in</strong><br />

the Underst<strong>and</strong><strong>in</strong>g of <strong>IOCG</strong> <strong>deposits</strong>. PGC Publish<strong>in</strong>g,<br />

Adelaide.<br />

Eilu, P. 1994. Hydrothermal alteration <strong>in</strong> volcanosedimentary<br />

associations <strong>in</strong> Central Lapl<strong>and</strong> greenstone<br />

belt. Geological Survey of F<strong>in</strong>l<strong>and</strong>, Bullet<strong>in</strong><br />

374. 145 p.<br />

Eilu, P. & Pankka, H. 2009. FINGOLD – A public<br />

database on gold <strong>deposits</strong> <strong>in</strong> F<strong>in</strong>l<strong>and</strong>. Geological<br />

Survey of F<strong>in</strong>l<strong>and</strong>, Digital Data Products 4. Optical<br />

disc (CD-ROM).<br />

Eilu, P., Pankka, H., Ke<strong>in</strong>änen, V., Kortela<strong>in</strong>en, V.,<br />

Niiranen, T. & Pulkk<strong>in</strong>en, E. 2007. Characteristics of<br />

gold m<strong>in</strong>eralisation <strong>in</strong> the greenstone belts of northern<br />

F<strong>in</strong>l<strong>and</strong>. Geological Survey of F<strong>in</strong>l<strong>and</strong>, Special<br />

Paper 44, 57–106.<br />

Eilu, P., Hallberg, A., Bergman, T., Feoktistov,<br />

V., Korsakova, M., Krasotk<strong>in</strong>, S., Lampio, E., Litv<strong>in</strong>enko,<br />

V., Nurmi, P.A., Often, M., Philippov,<br />

N., S<strong>and</strong>stad, J.S., Stromov, V. & Tontti, M. 2010.<br />

Fennosc<strong>and</strong>ian Ore Deposit Database. Updated 30<br />

August 2010. Onl<strong>in</strong>e at http://en.gtk.fi/ExplorationF<strong>in</strong>l<strong>and</strong>/fodd/.<br />

Frietsch R., Papunen H. & Vokes F.M. 1979. The<br />

ore <strong>deposits</strong> <strong>in</strong> F<strong>in</strong>l<strong>and</strong>, Norway, <strong>and</strong> Sweden – a review.<br />

Economic Geology, 74, 975–1001.<br />

Frietsch R., Tuisku, P., Mart<strong>in</strong>sson, O. & Perdahl<br />

J.-A. 1997. <strong>Cu</strong>-(Au) <strong>and</strong> Fe ore <strong>deposits</strong> associated<br />

with Na-Cl metasomatism <strong>in</strong> early Proterozoic rocks<br />

of northern Fennosc<strong>and</strong>ia: A new metallogenic prov<strong>in</strong>ce.<br />

Ore Geology Review 12, 1–34<br />

31


32<br />

Gaál G. 1986. An outl<strong>in</strong>e of the Precambrian evolution<br />

of the Baltic Shield. Precambrian Research 35,<br />

15–52.<br />

Gaál G. 1990. Tectonic styles of Early Proterozoic<br />

ore deposition <strong>in</strong> the Fennosc<strong>and</strong>ian Shield. Precambrian<br />

Research 46, 83–114.<br />

Geijer P. 1931. Berggrunden <strong>in</strong>nom malmtrakten<br />

Kiruna-Gällivare-Pajala. Sveriges Geologiska undersökn<strong>in</strong>g<br />

C 366. 225 p.<br />

Goldfarb, R.J., Groves, D.I. & Gardoll, S. 2001.<br />

Orogenic gold <strong>and</strong> geologic time: a global synthesis.<br />

Ore Geology Reviews 18, 1–75.<br />

Groves, D.I., Goldfarb, R.J., Gebre-Mariam, M.,<br />

Hagemann, S. & Robert, F. 1998. Orogenic gold<br />

<strong>deposits</strong>: A proposed classification <strong>in</strong> the context<br />

of their crustal distribution <strong>and</strong> relationship to other<br />

gold deposit types. Ore Geology Reviews 13, 7–27.<br />

Grip E. & Frietsch R. 1973. Ore <strong>deposits</strong> <strong>in</strong> Sweden<br />

2, northern Sweden: Almqvist & Wiksell. 295 p (<strong>in</strong><br />

Swedish).<br />

Hanski, E., Huhma, H. & Vaasjoki, M. 2001. Geochronology<br />

of northern F<strong>in</strong>l<strong>and</strong>: a summary <strong>and</strong><br />

discussion. In: M. Vaasjoki (ed.) Radiometric age<br />

determ<strong>in</strong>ations from F<strong>in</strong>nish Lapl<strong>and</strong> <strong>and</strong> their bear<strong>in</strong>g<br />

on tim<strong>in</strong>g of Precambrian volcano-sedimentary<br />

sequences. Geological Survey of F<strong>in</strong>l<strong>and</strong>, Special<br />

Paper 33, 255–279.<br />

Hietanen A. 1975. Generation of potassium-poor<br />

magmas <strong>in</strong> the northern Sierra Nevada <strong>and</strong> the Svecofennian<br />

of F<strong>in</strong>l<strong>and</strong>. U.S. Geological Survey, Journal<br />

of Research 3, 631–645.<br />

Hiltunen, A. 1982. The Precambrian geology <strong>and</strong><br />

skarn iron ores of the Rautuvaara area, northern F<strong>in</strong>l<strong>and</strong>:<br />

Geological Survey of F<strong>in</strong>l<strong>and</strong>, Bullet<strong>in</strong> 318.<br />

133 p.<br />

Hulkki, H. & Ke<strong>in</strong>änen, V. 2007. The alteration <strong>and</strong><br />

fluid <strong>in</strong>clusion characteristics of the Hirvilavanmaa<br />

gold deposit, Central Lapl<strong>and</strong> Greenstone Belt, F<strong>in</strong>l<strong>and</strong>.<br />

Geological Survey of F<strong>in</strong>l<strong>and</strong>, Special Paper<br />

44, 135–151.<br />

Huhma, H. 1986. Sm-Nd, U-Pb <strong>and</strong> Pb-Pb isotopic<br />

evidence for the orig<strong>in</strong> of the Early Proterozoic Svecokarelian<br />

crust <strong>in</strong> F<strong>in</strong>l<strong>and</strong>. Geological Survey of<br />

F<strong>in</strong>l<strong>and</strong>, Bullet<strong>in</strong> 337. 48 p.<br />

Huhma, H., Cliff, R.A., Perttunen, V. & Sakko, M.<br />

1990. Sm-Nd <strong>and</strong> Pb isotopic study of mafic rocks<br />

associated with early Proterozoic cont<strong>in</strong>ental rift<strong>in</strong>g:<br />

the Peräpohja schist belt <strong>in</strong> northern F<strong>in</strong>l<strong>and</strong>. Contributions<br />

to M<strong>in</strong>eralogy <strong>and</strong> Petrology 104, 369–379.<br />

Huhma, H., Mutanen, T. & Whitehouse, M. 2004.<br />

Oldest rocks of the Fennosc<strong>and</strong>ian Shield: The 3.5<br />

Ga Siurua trondhjemite gneiss <strong>in</strong> the Archaean Pudasjärvi<br />

Granulite Belt, F<strong>in</strong>l<strong>and</strong>. Geologiska Fören<strong>in</strong>gens<br />

i Stockholm Förh<strong>and</strong>l<strong>in</strong>gar 126, 10.<br />

Hölttä, P., Väisänen, M., Väänänen, J. & Mann<strong>in</strong>en<br />

T. 2007. Paleoproterozoic metamorphism <strong>and</strong> deformation<br />

<strong>in</strong> Central F<strong>in</strong>nish Lapl<strong>and</strong>. Geological Survey<br />

of F<strong>in</strong>l<strong>and</strong>, Special Paper 44. 7-56.<br />

Ilj<strong>in</strong>a M. & Hanski E. 2005. Layered mafic <strong>in</strong>trusions<br />

of the Tornio–Näränkävaara belt. In: Leht<strong>in</strong>en,<br />

M., Nurmi, P.A., Rämö, O.T. (Eds.), Precambrian<br />

Geology of F<strong>in</strong>l<strong>and</strong> – Key to the Evolution of the<br />

Fennosc<strong>and</strong>ian Shield. Elsevier B.V., Amsterdam,<br />

101–138.<br />

Kathol B. & Mart<strong>in</strong>sson O. 1999. Bedrock map, 30J<br />

Rensjön, 1:50 000: Geological Survey of Sweden,<br />

Ai 132.<br />

Koist<strong>in</strong>en, T., Stephens, M.B., Bogatchev, V., Nordgulen,<br />

Ø., Wennerström, M. & Korhonen, J. (comp.)<br />

2001. Geological map of the Fennosc<strong>and</strong>ian Shield,<br />

1:2,000,000. Espoo: Geological Survey of F<strong>in</strong>l<strong>and</strong>,<br />

Trondheim: Geological Survey of Norway, Uppsala:<br />

Geological Survey of Sweden, Moscow: M<strong>in</strong>istry of<br />

Natural Resources of Russia.<br />

Kont<strong>in</strong>en, A. 1987. An early Proterozoic ophiolite –<br />

the Jormua mafic-ultramafic complex, northeastern<br />

F<strong>in</strong>l<strong>and</strong>. Precambrian Research 35, 313–341.<br />

Kumpula<strong>in</strong>en, R.A. 2000. The Palaeoproterozoic<br />

sedimentary record of northernmost Norrbotten,<br />

Sweden. Unpublished report, Geological Survey of<br />

Sweden, BRAP 200030. 45 p.<br />

Laht<strong>in</strong>en R., Korja A. & Nironen M. 2005. Palaeoproterozoic<br />

tectonic evolution. In: Leht<strong>in</strong>en,<br />

M., Nurmi, P.A. & Rämö, O.T. (eds.) Precambrian<br />

Geology of F<strong>in</strong>l<strong>and</strong> – Key to the Evolution of The<br />

Fennosc<strong>and</strong>ian Shield. Elsevier Science, Amsterdam,<br />

481–532.


Lehtonen M., Mann<strong>in</strong>en T., Rastas P., Väänänen<br />

J., Roos, S.I. & Pelkonen R. 1985. Keski-Lap<strong>in</strong> geologisen<br />

kartan selitys. Summary <strong>and</strong> discussion:<br />

Explanation to geological map of Central Lapl<strong>and</strong>.<br />

Geological Survey of F<strong>in</strong>l<strong>and</strong>, Report of Investigation<br />

41. 56 p.<br />

Lehtonen, M. I., Airo, M-L., Eilu, P., Hanski, E.,<br />

Kortela<strong>in</strong>en, V., Lanne, E., Mann<strong>in</strong>en, T., Rastas, P.,<br />

Räsänen, J. & Virransalo, P. 1998. Kittilän vihreäkivialueen<br />

geologia. Lap<strong>in</strong> vulkaniittiprojekt<strong>in</strong> raportti.<br />

English summary: The stratigraphy, petrology <strong>and</strong><br />

geochemistry of the Kittilä greenstone area, northern<br />

F<strong>in</strong>l<strong>and</strong>. A report of the Lapl<strong>and</strong> Volcanite Project.<br />

Geological Survey of F<strong>in</strong>l<strong>and</strong>, Report of Investigation<br />

140. 144 p.<br />

Lowell, J.D. & Guilbert, J.M. 1970. Lateral <strong>and</strong> vertical<br />

alteration-m<strong>in</strong>eralization zon<strong>in</strong>g <strong>in</strong> porphyry<br />

ore <strong>deposits</strong>. Economic Geology 65, 373–408.<br />

Mart<strong>in</strong>sson O. 1995. Greenstone <strong>and</strong> porphyry hosted<br />

ore <strong>deposits</strong> <strong>in</strong> northern Norrbotten: Unpublished<br />

report, NUTEK Project nr 92-00752P, Division of<br />

Applied Geology, Luleå University of Technology.<br />

58 p.<br />

Mart<strong>in</strong>sson O. 1997. Paleoproterozoic greenstones at<br />

Kiruna <strong>in</strong> northern Sweden: a product of cont<strong>in</strong>ental<br />

rift<strong>in</strong>g <strong>and</strong> associated mafic-ultramafic volcanism.<br />

In Mart<strong>in</strong>sson, O.: Tectonic sett<strong>in</strong>g <strong>and</strong> metallogeny<br />

of the Kiruna Greenstones. Ph. D. Thesis 1997:19,<br />

Paper I, Luleå University of Technology, Sweden.<br />

49 p.<br />

Mart<strong>in</strong>sson O. 1999a. Bedrock map 31J Råstojaure<br />

SO, 1:50 000: Geological Survey of Sweden, Ai<br />

135.<br />

Mart<strong>in</strong>sson O. 1999b. Bedrock map 30J Rensjön NO,<br />

1:50 000: Geological Survey of Sweden, Ai 131.<br />

Mellqvist C., Öhl<strong>and</strong>er B., Weihed P. & Schöberg<br />

H. 2003. Some aspects on the subdivision of the<br />

Hapar<strong>and</strong>a <strong>and</strong> Jörn <strong>in</strong>trusive suites <strong>in</strong> northern Sweden.<br />

Geologiska Fören<strong>in</strong>gens I Stockholm Förh<strong>and</strong>l<strong>in</strong>gar<br />

125, 77–85.<br />

Monro D. 1988. The geology <strong>and</strong> genesis of the<br />

Aitik copper-gold deposit, Arctic Sweden. Unpublished<br />

Ph.D. Thesis, University of Wales, College of<br />

Cardiff, 386 p.<br />

Mutanen T. 1997. Geology <strong>and</strong> ore petrology of the<br />

Akanvaara <strong>and</strong> Koitela<strong>in</strong>en mafic layered <strong>in</strong>trusions<br />

<strong>and</strong> the Keivitsa-Satovaara layered complex, northern<br />

F<strong>in</strong>l<strong>and</strong>. Geological Survey of F<strong>in</strong>l<strong>and</strong>, Bullet<strong>in</strong><br />

395. 232 p.<br />

Mänttäri, I. 1995. Lead isotope characteristics of epigenetic<br />

gold m<strong>in</strong>eralization <strong>in</strong> the Palaeoproterozoic<br />

Lapl<strong>and</strong> greenstone belt, northern F<strong>in</strong>l<strong>and</strong>: Geological<br />

Survey of F<strong>in</strong>l<strong>and</strong>, Bullet<strong>in</strong> 381. 70 p.<br />

Niiranen, T. 2005. Iron oxide-copper-gold <strong>deposits</strong><br />

<strong>in</strong> F<strong>in</strong>l<strong>and</strong>: case studies from the Peräpohja schist<br />

belt <strong>and</strong> the Central Lapl<strong>and</strong> greenstone belt. University<br />

of Hels<strong>in</strong>ki, Publications of the Department<br />

of Geology D6, 27 p. Available at: https://oa.doria.<br />

fi/dspace/bitstream/10024/2687/2/ironoxid.pdf<br />

Niiranen, T., Poutia<strong>in</strong>en, M. & Mänttäri, I. 2007. Geology,<br />

geochemistry, fluid <strong>in</strong>clusion characteristics,<br />

<strong>and</strong> U–Pb age studies on iron oxide–<strong>Cu</strong>–Au <strong>deposits</strong><br />

<strong>in</strong> the Kolari region, northern F<strong>in</strong>l<strong>and</strong>. Ore Geology<br />

Reviews 30, 75–105.<br />

Nironen M. 1997. The Svecofennian orogen: a tectonic<br />

model. Precambrian Research 86, 21–44.<br />

Nyström J.O. 1982. Post-Svecokarelian And<strong>in</strong>otype<br />

evolution <strong>in</strong> central Sweden. Geologische Rundschau<br />

71, 141–157.<br />

Ödman O., Härme M., Mikkola A. & Simonen A.<br />

1949. The Swedish-F<strong>in</strong>nish geological excursion <strong>in</strong><br />

Tornedalen the summer 1948: Geologiska Fören<strong>in</strong>gen<br />

i Stockholms Förh<strong>and</strong>l<strong>in</strong>gar 71, 113–126. (<strong>in</strong><br />

Swedish).<br />

Ödman O. 1957. Beskrivn<strong>in</strong>g till Bergrundskarta<br />

över Norrbottens Län. Sveriges Geologiska Undersökn<strong>in</strong>g,<br />

Ca 41. 151 p. (with English summary).<br />

Offerberg J. 1967. Beskrivn<strong>in</strong>g till Bergrundskartbalden<br />

Kiruna NV, NO, SV, SO. Sveriges Geologiska<br />

Undersökn<strong>in</strong>g, Af 1–4. 146 p. (English summary)<br />

Öhl<strong>and</strong>er B. & Schöberg H. 1991. Character <strong>and</strong><br />

U-Pb zircon age of the Proterozoic Ale granite,<br />

northern Sweden. Geologiska Fören<strong>in</strong>gens i Stockholm<br />

Förh<strong>and</strong>l<strong>in</strong>gar 113, 105–112.<br />

33


34<br />

Öhl<strong>and</strong>er B. & Skiöld T. 1994. Diversity of 1.8 Ga<br />

potassic granitoids along the edge of the Archaean<br />

craton <strong>in</strong> northern Sc<strong>and</strong><strong>in</strong>avia: a result of melt formation<br />

at various depths <strong>and</strong> from various sources.<br />

Lithos 33, 265–283.<br />

Öhl<strong>and</strong>er B., Skiöld T., Hamilton P.J. & Claesson<br />

L.-Å. 1987a. The western border of the Archaean<br />

prov<strong>in</strong>ce of the Baltic Shield: evidence from northern<br />

Sweden. Contribution to M<strong>in</strong>eralogy <strong>and</strong> Petrology<br />

95, 437–450.<br />

Öhl<strong>and</strong>er B., Hamilton P.J., Fallick A.E. & Wilson<br />

M.R. 1987b. Crustal reactivation <strong>in</strong> northern Sweden:<br />

the Vettasjärvi granite. Precambrian Research<br />

35, 277–293.<br />

Ödman O. 1957. Beskrivn<strong>in</strong>g till Bergrundskarta<br />

över Norrbottens Län. Sveriges Geologiska Undersökn<strong>in</strong>g,<br />

Ca 41. 151 p. (with English summary).<br />

Ojala, V.J., Weihed, P., Eilu, P. & Ilj<strong>in</strong>a, M. (eds.)<br />

2007. Metallogeny <strong>and</strong> tectonic evolution of the<br />

<strong>Northern</strong> Fennosc<strong>and</strong>ian Shield: Field trip guidebook.<br />

Geological Survey of F<strong>in</strong>l<strong>and</strong>, Guide 54. 97 p.<br />

Onl<strong>in</strong>e at http://arkisto.gtk.fi/op/op54.pdf.<br />

Olesen O. & S<strong>and</strong>stad J. S. 1993. Interpretation of<br />

the Proterozoic Kautoke<strong>in</strong>o Greenstone Belt, F<strong>in</strong>nmark,<br />

Norway from comb<strong>in</strong>ed geophysical <strong>and</strong> geological<br />

data. Norges geologiske undersøkelse Bullet<strong>in</strong><br />

425, 1–64.<br />

Patison, N.L, Korja, A., Laht<strong>in</strong>en, R., Ojala, V.J.<br />

& the FIRE Work<strong>in</strong>g Group 2006. FIRE seismic<br />

reflection profiles 4, 4A <strong>and</strong> 4B: Insights <strong>in</strong>to the<br />

Crustal Structure of <strong>Northern</strong> F<strong>in</strong>l<strong>and</strong> from Ranua<br />

to Näätämö. Geological Survey of F<strong>in</strong>l<strong>and</strong>, Special<br />

Paper 43, 161–222.<br />

Patison, N.J. 2007. Structural controls on gold m<strong>in</strong>eralisation<br />

<strong>in</strong> the Central Lapl<strong>and</strong> Greenstone Belt.<br />

Geological Survey of F<strong>in</strong>l<strong>and</strong>, Special Paper 44,<br />

105–122.<br />

Pekkar<strong>in</strong>en L.J. & Lukkar<strong>in</strong>en H. 1991. Paleoproterozoic<br />

volcanism <strong>in</strong> the Kiihtelysvaara-Tohmajärvi<br />

district, eastern F<strong>in</strong>l<strong>and</strong>. Geological Survey of<br />

F<strong>in</strong>l<strong>and</strong>, Bullet<strong>in</strong> 357, 1–30.<br />

Persson, P.-O. & Lundqvist, T. 1997. Radiometric<br />

dat<strong>in</strong>g of the Palaeoproterozoic Pite conglomerate <strong>in</strong><br />

northern Sweden. In Th. Lundqvist (ed.): Radiometric<br />

dat<strong>in</strong>g results 2, Division of Bedrock Geology,<br />

Sveriges Geologiska Undersökn<strong>in</strong>g C830, 41–49.<br />

Perttunen V. & Vaasjoki M. 2001. U-Pb geochronology<br />

of the Peräpohja schist belt, northwestern F<strong>in</strong>l<strong>and</strong>.<br />

In Vaasjoki M. (Ed.): Radiometric age determ<strong>in</strong>ations<br />

from F<strong>in</strong>nish Lapl<strong>and</strong> <strong>and</strong> their bear<strong>in</strong>g<br />

on the tim<strong>in</strong>g of Precambrian volcano-sedimentary<br />

sequences. Geological Survey of F<strong>in</strong>l<strong>and</strong>, Special<br />

Paper 33, 45–84.<br />

Pharaoh T.C. & Pearce J.A. 1984. Geochemical evidence<br />

for the geotectonic sett<strong>in</strong>g of early Proterozoic<br />

metavolcanic sequences <strong>in</strong> Lapl<strong>and</strong>. Precambrian<br />

Research 25, 283–308.<br />

Pharaoh T.C., Warren A. & Walsh N.J. 1987. Early<br />

Proterozoic metavolcanic suites of the northernmost<br />

part of the Baltic Shield. In: T.C. Pharaoh, T.C., R.D.<br />

Beck<strong>in</strong>sale <strong>and</strong> D. Rickard D (Editors), Geochemistry<br />

<strong>and</strong> m<strong>in</strong>eralization of Proterozoic volcanic suites.<br />

Geological Society Special Publication 33, 41–58.<br />

Rastas P., Huhma H., Hanski E., Lehtonen M.I.,<br />

Härkönen I., Kortela<strong>in</strong>en V., Mänttäri I. & Paakkola<br />

J. 2001. U-Pb isotopic studies on the Kittilä greenstone<br />

area, Central Lapl<strong>and</strong>, F<strong>in</strong>l<strong>and</strong>.. Geological<br />

Survey of F<strong>in</strong>l<strong>and</strong>, Special Paper 33, 95–141.<br />

Rickard D.T. & Zweifel H. 1975. Genesis of Precambrian<br />

sulphide ores, Skellefte district, Sweden.<br />

Economic Geology 70, 255–274.<br />

Risto, R., Breede, K., MacFarlane, G.R., Roberts, S.,<br />

Watts, G., <strong>and</strong> H<strong>in</strong>zer., J. 2010. Technical report on<br />

the m<strong>in</strong>eral resource estimates <strong>and</strong> prelim<strong>in</strong>ary assesment<br />

of the Hannuka<strong>in</strong>en Project, F<strong>in</strong>l<strong>and</strong>. Watts,<br />

Griffis, <strong>and</strong> McOuat, Toronto, Canada.<br />

Romer R.L., Kjösnes B., Korneliussen A., L<strong>in</strong>dah,<br />

I., Skysseth T., Stendal, H. & Sundvoll B. 1992. The<br />

Archaean-Proterozoic boundary beneath the Caledonides<br />

of northern Norway <strong>and</strong> Sweden: U-Pb, Rb-<br />

Sr <strong>and</strong> Nd isotopic data from the Rombak-Tysfjord<br />

area: Norges Geologiske Undersøkelse, Rapport 91,<br />

(225), 67 p.<br />

Saalmann, K. & Niiranen, T. 2010. Hydrothermal<br />

alteration <strong>and</strong> structural control on gold deposition<br />

<strong>in</strong> the Hanhimaa shear zone <strong>and</strong> western part of the<br />

Sirkka L<strong>in</strong>e. Geological Survey of F<strong>in</strong>l<strong>and</strong>,, Report<br />

M19/2741/2010/58. 30 p.<br />

Saverikko M. 1990. Komatiitic explosive volcanism<br />

<strong>and</strong> its tectonic sett<strong>in</strong>g <strong>in</strong> F<strong>in</strong>l<strong>and</strong>, the Fennosc<strong>and</strong>ian<br />

(Baltic) Shield. Bullet<strong>in</strong> of the Geological Society<br />

of F<strong>in</strong>l<strong>and</strong> 62, 3–38.


Skiöld T. 1986. On the age of the Kiruna Greenstones,<br />

northern Sweden. Precambrian Research 32,<br />

35–44.<br />

Skiöld T. & Öhl<strong>and</strong>er B. 1989. Chronology <strong>and</strong> geochemistry<br />

of late Svecofennian processes <strong>in</strong> northern<br />

Sweden. Geologiska Fören<strong>in</strong>gens i Stockholm<br />

Förh<strong>and</strong>l<strong>in</strong>gar 111, 347–354.<br />

Skiöld T., Öhl<strong>and</strong>er B., Vocke R.D. & Hamilton P.J.<br />

1988. Chemistry of Proterozoic orogenic processes<br />

at a cont<strong>in</strong>ental marg<strong>in</strong> <strong>in</strong> northern Sweden. Chemical<br />

Geology 69, 193–207.<br />

Sorjonen-Ward, P., Nironen, M. & Luukkonen, E.<br />

1997. Greenstone associations <strong>in</strong> F<strong>in</strong>l<strong>and</strong>. In: de<br />

Wit, M.J. & Ashwal, L.D. (eds.) Greenstone Belts.<br />

Clarendon Press, Oxford. 677–698.<br />

Sorjonen-Ward, P., Ojala, V.J. & Airo, M.-L. 2003.<br />

Structural modell<strong>in</strong>g <strong>and</strong> magmatic expression of<br />

hydrothermal alteration <strong>in</strong> the Paleoproterozoic<br />

Lapl<strong>and</strong> greenstone belt, northern Fennosc<strong>and</strong>ian<br />

Shield. In: D.G. Eliopoulos et al. (eds) M<strong>in</strong>eral Exploration<br />

<strong>and</strong> Susta<strong>in</strong>able Development. Proceed<strong>in</strong>gs<br />

of the Seventh Biennial SGA Meet<strong>in</strong>g, Athens,<br />

Greece, 24–28. August 2003. Millpress, Rotterdam.<br />

1107–1110.<br />

Tuisku P. 1985. The orig<strong>in</strong> of scapolite <strong>in</strong> the Central<br />

Lapl<strong>and</strong> schist area, northern F<strong>in</strong>l<strong>and</strong>, prelim<strong>in</strong>ary<br />

results. Geological Survey of F<strong>in</strong>l<strong>and</strong> Bullet<strong>in</strong><br />

331, 159–173.<br />

Tuisku, P. & Huhma, H. 2006. Evolution of Migmatitic<br />

Granulite Complexes: Implications from Lapl<strong>and</strong><br />

Granulite Belt, Part II: Isotopic dat<strong>in</strong>g. Bullet<strong>in</strong><br />

of the Geological Society of F<strong>in</strong>l<strong>and</strong> 78, 143–175.<br />

Väänänen J. & Lehtonen M.I. 2001. U-Pb isotopic<br />

age determ<strong>in</strong>ations from the Kolari-Muonio area,<br />

western F<strong>in</strong>nish Lapl<strong>and</strong>. In Vaasjoki M. (Ed.): Radiometric<br />

age determ<strong>in</strong>ations from F<strong>in</strong>nish Lapl<strong>and</strong><br />

<strong>and</strong> their bear<strong>in</strong>g on the tim<strong>in</strong>g of Precambrian volcano-sedimentary<br />

sequences. Geological Survey of<br />

F<strong>in</strong>l<strong>and</strong>, Special Paper 33, 85–93.<br />

Vanhanen E. 2001. Geology, m<strong>in</strong>eralogy <strong>and</strong> geochemistry<br />

of the Fe-Co-Au-(U) <strong>deposits</strong> <strong>in</strong> the Paleoproterozoic<br />

Kuusamo Schist Belt, northeastern<br />

F<strong>in</strong>l<strong>and</strong>. Geological Survey of F<strong>in</strong>l<strong>and</strong> Bullet<strong>in</strong> 399.<br />

229 p.<br />

Wanha<strong>in</strong>en C. & Mart<strong>in</strong>sson O. 1999. Geochemical<br />

characteristics of host rocks to the Aitik <strong>Cu</strong>-Au deposit,<br />

Gällivare area, northern Sweden: Proceed<strong>in</strong>gs<br />

of the fifth biennial SGA meet<strong>in</strong>g <strong>and</strong> the tenth quadrennial<br />

IAGOD Meet<strong>in</strong>g, London, 22–25 August<br />

1999, extended abstract, 1443–1446.<br />

Wanha<strong>in</strong>en C., Broman C. & Mart<strong>in</strong>sson O. 2003a.<br />

The Aitik <strong>Cu</strong>-Au-Ag Deposit <strong>in</strong> <strong>Northern</strong> Sweden:<br />

A Product of High Sal<strong>in</strong>ity Fluids: M<strong>in</strong>eralium Deposita<br />

38, 715–726.<br />

Wanha<strong>in</strong>en C., Kontturi M. & Mart<strong>in</strong>sson O. 2003b.<br />

Copper <strong>and</strong> Gold Distribution at the Aitik Deposit,<br />

Gällivare Area, <strong>Northern</strong> Sweden: Institution of<br />

M<strong>in</strong><strong>in</strong>g <strong>and</strong> Metallurgy, Transactions Section B 112,<br />

B260–B267.<br />

Wanha<strong>in</strong>en, C., Billström, K., Mart<strong>in</strong>sson, O., Ste<strong>in</strong>,<br />

H. & Nord<strong>in</strong>, R. 2005. 160 Ma of magmatic/hydrothermal<br />

activity <strong>in</strong> the Gällivare area: Re-Os dat<strong>in</strong>g<br />

of molybdenite <strong>and</strong> U-Pb dat<strong>in</strong>g of titanite from the<br />

Aitik <strong>Cu</strong>-Au-Ag deposit, northrn Sweden. M<strong>in</strong>eralium<br />

Deposita 40, 435–447.<br />

Wanha<strong>in</strong>en, C. 2005. On the orig<strong>in</strong> <strong>and</strong> evolution<br />

of the Palaeoproterozoic Aitik <strong>Cu</strong>-Au-Ag deposit,<br />

northern Sweden: a porphyry copper-gold ore,<br />

modified by multistage metamorphic-deformational,<br />

magmatic-hydrothermal, <strong>and</strong> <strong>IOCG</strong>-m<strong>in</strong>eraliz<strong>in</strong>g<br />

events. Luleå University of Technology, Sweden.<br />

Doctoral Thesis 2005:36. 150 p.<br />

Wanha<strong>in</strong>en. C., Billström, K. & Mart<strong>in</strong>sson, O. 2006.<br />

Age, petrology <strong>and</strong> geochemistry of the porphyritic<br />

Aitik <strong>in</strong>trusion, <strong>and</strong> its relation to the dissem<strong>in</strong>ated<br />

Aitik <strong>Cu</strong>-Au-Ag deposit, northern Sweden. GFF<br />

128, 273–286.<br />

Weihed P. 1992. Lithogeochemistry, metal <strong>and</strong> alteration<br />

zon<strong>in</strong>g <strong>in</strong> the Proterozoic Tallberg porphyry-type<br />

deposit, northern Sweden. Journal of Geochemical<br />

Exploration 42, 301–325.<br />

Weihed P. 2001. A review of Palaeoproterozoic <strong>in</strong>trusive<br />

hosted <strong>Cu</strong>-Au-Fe-oxide <strong>deposits</strong> <strong>in</strong> northern<br />

Sweden. In Weihed P. (Ed.): Economic Geology Research<br />

1, 4–32.<br />

Weihed, P. 2003. A review of major base metal <strong>deposits</strong><br />

<strong>in</strong> the Fennosc<strong>and</strong>ian Shield. In: Kelly JG,<br />

Andrew JH, Bol<strong>and</strong> MB, Earls G, Fusciardi L, Stanley<br />

G (eds) Europe´s major base metal <strong>deposits</strong>. Irish<br />

Association of Economic Geologists. 49–86.<br />

35


36<br />

Weihed P., Billström K., Persson P.-O. & Bergman<br />

Weihed J. 2002. Relationship between 1.90–<br />

1.85 Ga accretionary processes <strong>and</strong> 1.82–1.80 Ga<br />

oblique subduction at the Karelian craton marg<strong>in</strong>,<br />

Fennosc<strong>and</strong>ian Shield. Geologiska Fören<strong>in</strong>gens i<br />

Stockholm Förh<strong>and</strong>l<strong>in</strong>gar 124, 163–180.<br />

Weihed, P., Arndt, N., Billström, C., Duchesne, J.C,<br />

Eilu, P., Mart<strong>in</strong>sson, O., Papunen, H. & Laht<strong>in</strong>en R.<br />

2005. Precambrian geodynamics <strong>and</strong> ore formation:<br />

the Fennosc<strong>and</strong>ian Shield. Ore Geology Reviews 27,<br />

273–322.<br />

Wikström A. & Persson P.-O. 1997a. Two Hapar<strong>and</strong>a<br />

type granodiorites with contrast<strong>in</strong>g ages <strong>in</strong> the<br />

southeastern part of Norrbotten, northern Sweden.<br />

In Th. Lundqvist (ed): Radiometric dat<strong>in</strong>g results 3.<br />

Sveriges Geologiska undersökn<strong>in</strong>g C 830, 73–80.<br />

Wikström A <strong>and</strong> Persson P.-O. 1997b. U-Pb zircon<br />

<strong>and</strong> monazite dat<strong>in</strong>g of a L<strong>in</strong>a type leucogranite <strong>in</strong><br />

northern Sweden <strong>and</strong> its relationship to the Bothnian<br />

shear zone. In Th. Lundqvist (ed): Radiometric dat<strong>in</strong>g<br />

results 3. Sveriges Geologiska Undersökn<strong>in</strong>g C<br />

830, 81–87.<br />

Wikström A., Mellqvist C. & Persson P.-O. 1996.<br />

An Archaean megaxenolith <strong>and</strong> a Proterozoic fragment<br />

with<strong>in</strong> the Bäl<strong>in</strong>ge magmatic breccia, Luleå,<br />

northern Sweden. In Lundqvist, Th. (ed): Radiometric<br />

dat<strong>in</strong>g results 2. Sveriges Geologiska Undersökn<strong>in</strong>g<br />

C 828, 48–56.<br />

Wilson M.R. 1980. Granite types <strong>in</strong> Sweden. Geologiska<br />

Fören<strong>in</strong>gens i Stockholm Förh<strong>and</strong>l<strong>in</strong>gar 102,<br />

167–176.<br />

Wilson M.R., Fallick A.E., Hamilton P.J. & Persson<br />

L. 1986. Magma sources for some mid-Proterozoic<br />

granitoids <strong>in</strong> SE Sweden: geochemical <strong>and</strong> isotope<br />

constra<strong>in</strong>ts. Geologiska Fören<strong>in</strong>gens i Stockholm<br />

Förh<strong>and</strong>l<strong>in</strong>gar 108, 79–91.<br />

W<strong>in</strong>kler H.G.F. 1979. Petrogenesis of metamorphic<br />

rocks. Spr<strong>in</strong>ger Verlag, New York, Heidelberg, Berl<strong>in</strong>.<br />

348 p.<br />

Witschard F. 1984. The geological <strong>and</strong> tectonic evolution<br />

of the Precambrian of northern Sweden – a<br />

case for basement reactivation? Precambrian Research<br />

23, 273–315.<br />

Witschard F. 1996. Berggrundskartan 28 K Gällivare,<br />

1:50 000. Sveriges Geologiska undersökn<strong>in</strong>g<br />

Ai 98–101.<br />

Yngström S. Nord A.G. & Åberg G. 1986. A sulphur<br />

<strong>and</strong> strontium isotope study of the Aitik copper ore,<br />

northern Sweden. Geologiska Fören<strong>in</strong>gens i Stockholm<br />

Förh<strong>and</strong>l<strong>in</strong>gar 108, 367–372.<br />

Vuollo J. 1994. Paleoproterozoic basic igneous<br />

events <strong>in</strong> eastern Fennosc<strong>and</strong>ian Shield between<br />

2.45 <strong>and</strong> 1.97 Ga. Ph.D. thesis, Acta Universitatis<br />

Ouluensis, Ser A no 250. 47 p.<br />

Väisänen, M. 2002. Structural features <strong>in</strong> the Central<br />

Lapl<strong>and</strong> greenstone belt, northern F<strong>in</strong>l<strong>and</strong>. Geological<br />

Survey of F<strong>in</strong>l<strong>and</strong>, Report K 21.42/2002/3. 20 p.


ISBN 978-952-9618-86-6 (Pr<strong>in</strong>ted)<br />

ISBN 978-952-9618-87-3 (Pdf)<br />

ISSN 0783-1331

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!