04.12.2012 Views

Active and ongoing gold exploration and mining in ... - IAGS 2011

Active and ongoing gold exploration and mining in ... - IAGS 2011

Active and ongoing gold exploration and mining in ... - IAGS 2011

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

FIELD EXCURSION<br />

<strong>Active</strong> <strong>and</strong> <strong>ongo<strong>in</strong>g</strong><br />

<strong>gold</strong> <strong>exploration</strong> <strong>and</strong> <strong>m<strong>in</strong><strong>in</strong>g</strong><br />

<strong>in</strong> Northern F<strong>in</strong>l<strong>and</strong>


<strong>Active</strong> <strong>and</strong> <strong>ongo<strong>in</strong>g</strong> <strong>gold</strong> <strong>exploration</strong><br />

<strong>and</strong> <strong>m<strong>in</strong><strong>in</strong>g</strong> <strong>in</strong> Northern F<strong>in</strong>l<strong>and</strong><br />

Excursion guide, 18 - 20 August <strong>2011</strong><br />

25th International Applied Geochemistry Symposium <strong>2011</strong><br />

22-26 August <strong>2011</strong> Rovaniemi, F<strong>in</strong>l<strong>and</strong><br />

Pasi Eilu <strong>and</strong> Vesa Nykänen<br />

Publisher: Vuorimiesyhdistys - F<strong>in</strong>nish Association of M<strong>in</strong><strong>in</strong>g <strong>and</strong> Metallurgical<br />

Eng<strong>in</strong>eers, Serie B, Nro B92-7, Rovaniemi <strong>2011</strong>


Eilu, P. & Nykänen, V. <strong>2011</strong>. <strong>Active</strong> <strong>and</strong> <strong>ongo<strong>in</strong>g</strong> <strong>gold</strong> <strong>exploration</strong> <strong>and</strong> <strong>m<strong>in</strong><strong>in</strong>g</strong> <strong>in</strong> Northern F<strong>in</strong>l<strong>and</strong>. Excursion<br />

guide <strong>in</strong> the 25th International Applied Geochemistry Symposium <strong>2011</strong>, 22–26 August <strong>2011</strong>, Rovaniemi,<br />

F<strong>in</strong>l<strong>and</strong>. Vuorimiesyhdistys – F<strong>in</strong>nish Association of M<strong>in</strong><strong>in</strong>g <strong>and</strong> Metallurgical Eng<strong>in</strong>eers, Serie<br />

B92-7, 48 pages.<br />

Layout: Irma Varrio<br />

ISBN 978-952-9618-76-7 (Pr<strong>in</strong>ted)<br />

ISBN 978-952-9618-77-4 (Pdf)<br />

ISSN 0783-1331<br />

© Vuorimiesyhdistys<br />

This volume is available from:<br />

Vuorimiesyhdistys ry.<br />

Kaskilaaksontie 3 D 108<br />

02360 ESPOO<br />

Electronic version:<br />

http://www.iags<strong>2011</strong>.fi or http://www.vuorimiesyhdistys.fi/julkaisut.php<br />

Pr<strong>in</strong>ted <strong>in</strong>:<br />

Pa<strong>in</strong>atuskeskus F<strong>in</strong>l<strong>and</strong> Oy, Rovaniemi


<strong>Active</strong> <strong>and</strong> <strong>ongo<strong>in</strong>g</strong> <strong>gold</strong> <strong>exploration</strong><br />

<strong>and</strong> <strong>m<strong>in</strong><strong>in</strong>g</strong> <strong>in</strong> Northern F<strong>in</strong>l<strong>and</strong><br />

Pasi Eilu1 <strong>and</strong> Vesa Nykänen2 1 Geological Survey of F<strong>in</strong>l<strong>and</strong>, P.O. Box 96, 02151 Espoo, F<strong>in</strong>l<strong>and</strong>,<br />

e-mail pasi.eilu[at]gtk.fi<br />

2 Geological Survey of F<strong>in</strong>l<strong>and</strong>, P.O. Box 77, 96101 Rovaniemi, F<strong>in</strong>l<strong>and</strong><br />

Abstract<br />

This excursion <strong>in</strong>cludes visits to the Pahtavaara <strong>and</strong> Kittilä <strong>gold</strong> m<strong>in</strong>es, Mustajärvi<br />

<strong>and</strong> Hanhimaa <strong>gold</strong> occurrences, <strong>and</strong> Rompas Au-U occurrences. In addition, the<br />

field trip provides an <strong>in</strong>troduction to the Palaeoproterozoic metallogenic evolution<br />

of the region.<br />

Pahtavaara is an active <strong>gold</strong> m<strong>in</strong>e (<strong>in</strong> production 1996–2000, 2003–), with<br />

a total <strong>in</strong> situ size estimate of 13 t <strong>gold</strong> at the average grade of 2.7 g/t (production +<br />

resource, December 2010), <strong>in</strong> a komatiitic sequence at the eastern part of the Central<br />

Lapl<strong>and</strong> greenstone belt. It comprises a swarm of subparallel lodes; nearly all <strong>gold</strong><br />

is free native. It has many of the alteration characteristics of amphibolite-facies orogenic<br />

<strong>gold</strong> deposits <strong>and</strong> an obvious structural control, but has an anomalous barite<strong>gold</strong><br />

association <strong>and</strong> a very high f<strong>in</strong>eness (>99.5 % Au) of <strong>gold</strong>. Pahtavaara is best<br />

<strong>in</strong>terpreted as a metamorphosed seafloor alteration system with ore lenses as either<br />

carbonate- <strong>and</strong> barite-bear<strong>in</strong>g cherts or quartz-carbonate-barite ve<strong>in</strong>s. The <strong>gold</strong> may<br />

have been <strong>in</strong>troduced later, but its gra<strong>in</strong> size, textural position (occurs with silicates,<br />

not sulphides) <strong>and</strong> high f<strong>in</strong>eness po<strong>in</strong>t to a pre-peak metamorphic tim<strong>in</strong>g.<br />

Kittilä M<strong>in</strong>e, also known by the name Suurikuusikko, is the largest <strong>gold</strong><br />

deposit <strong>in</strong> northern Europe. It has a current <strong>in</strong> situ resource of 194 t <strong>gold</strong>, at the average<br />

grade of 3.6 g/t. Production started <strong>in</strong> 2008. The deposit is a Palaeoproterozoic<br />

orogenic <strong>gold</strong> deposit hosted by albitised, mafic to <strong>in</strong>termediate, volcanic rock <strong>and</strong><br />

tuffite. It comprises a number of ore bodies <strong>in</strong> a 4-km long section of the subvertical,<br />

compressional, Suurikuusikko shear zone. This NNE-trend<strong>in</strong>g shear zone, which has<br />

a dextral component, is known to be <strong>gold</strong>-enriched for its entire length of >20 km.<br />

The deposit is open at the depth of >1.4 km <strong>and</strong> along strike. The <strong>gold</strong> is refractory<br />

<strong>gold</strong>: 71 % of <strong>gold</strong> <strong>in</strong> the lattice of, <strong>and</strong> as t<strong>in</strong>y <strong>in</strong>clusions <strong>in</strong>, arsenopyrite <strong>and</strong> 22 %<br />

<strong>in</strong> pyrite, <strong>in</strong> both th<strong>in</strong> ve<strong>in</strong>s <strong>and</strong> altered host rock.<br />

Mustajärvi is a Palaeoproterozoic orogenic <strong>gold</strong> occurrence with no resource<br />

estimate available. It is characterised by carbonate- <strong>and</strong> tourmal<strong>in</strong>e-quartz ve<strong>in</strong>s <strong>in</strong><br />

albitised schists. The occurrence is controlled by a NE-trend<strong>in</strong>g shear zone possibly<br />

branch<strong>in</strong>g from the WNW-trend<strong>in</strong>g Sirkka shear zone. Native <strong>gold</strong> is present<br />

<strong>in</strong> quartz ve<strong>in</strong>s <strong>and</strong> their alteration haloes. Saprolitic part of the deposit is presently<br />

exploited <strong>in</strong> a small scale.<br />

Three orogenic <strong>gold</strong> occurrences are known from the N-trend<strong>in</strong>g Hanhimaa<br />

shear zone which is parallel to the Suurikuusikko shear zone 10 km to the east.<br />

The area has seen only m<strong>in</strong>or <strong>exploration</strong>, <strong>in</strong>clud<strong>in</strong>g trench<strong>in</strong>g, drill<strong>in</strong>g, <strong>and</strong> tillgeochemical<br />

<strong>and</strong> ground-geophysical surveys. Hosts to m<strong>in</strong>eralisation <strong>in</strong>clude mafic<br />

volcanic rocks. In addition to <strong>gold</strong>, some of the Hanhimaa occurrences are, partially,<br />

also enriched <strong>in</strong> Ag, Cu, Pb <strong>and</strong> Zn.<br />

Rompas is a new <strong>gold</strong>-uranium discovery <strong>in</strong> Palaeoproterozoic Peräpohja<br />

Schist Belt <strong>in</strong> SW Lapl<strong>and</strong>. Bonanza-grade Au <strong>and</strong> U m<strong>in</strong>eralisation occur at surface<br />

over an area 6 km long <strong>and</strong> 200 m wide. Only surface sampl<strong>in</strong>g has been performed<br />

<strong>in</strong> the area: weighted average of all 80 channel samples from the 2010 program is<br />

0.59 m @ 203.7 g/t Au, 0.73 % U. M<strong>in</strong>eralisation appears to be hydrothermal <strong>in</strong><br />

nature <strong>and</strong> fracture-controlled <strong>in</strong> metavolcanic host rocks. The occurrence may be<br />

related to a buried <strong>in</strong>trusive that may be an apophyse or down-dip extension of a<br />

granitoid complex a few kilometres to the north of the property.<br />

Keywords: <strong>gold</strong>, <strong>m<strong>in</strong><strong>in</strong>g</strong>, <strong>exploration</strong>, Palaeoproterozoic, F<strong>in</strong>l<strong>and</strong>


Excursion program <strong>and</strong> route<br />

Introduction 8<br />

Geological <strong>and</strong> tectonic evolution of the northern part of the Fennosc<strong>and</strong>ian Shield 8<br />

Epigenetic Au deposits <strong>in</strong> northern Fennosc<strong>and</strong>ian shield 17<br />

Pahtavaara <strong>gold</strong> m<strong>in</strong>e 19<br />

Mustajärvi (Ahvenjärvi) regolith <strong>gold</strong> project 23<br />

Kittilä M<strong>in</strong>e (Suurikuusikko deposit) 24<br />

Hanhimaa <strong>gold</strong> project 32<br />

Rompas Au-U prospect 36<br />

References 42<br />

Thursday, 18th August<br />

Stop 1. Pahtavaara <strong>gold</strong> m<strong>in</strong>e (Lappl<strong>and</strong> Goldm<strong>in</strong>ers) at Sodankylä. About 165 km drive (2.5 h) north from<br />

Rovaniemi. We will visit the active Pahtavaara <strong>gold</strong> m<strong>in</strong>e. Possibility to see the ore, host <strong>and</strong> wall rock, as well<br />

as the process<strong>in</strong>g plant.<br />

Stop 2. Lunch at Sodankylä town.<br />

Stop 3. Mustajärvi (Ahvenjärvi) regolith <strong>gold</strong> project, Kittilä, west of Sodankylä. See a small pit <strong>and</strong> piled Aurich<br />

regolith. About 70 km drive (1 h) from Sodankylä.<br />

Stop 4. Levi, Kittilä. 40 km (30 m<strong>in</strong>) NW from Mustajärvi. Accommodation at Hotel K5; d<strong>in</strong>ner <strong>in</strong> the even<strong>in</strong>g<br />

at the hotel.<br />

Friday, 19th August<br />

9:00 Leave hotel, 40 km (45 m<strong>in</strong>) drive east, to the Kittilä M<strong>in</strong>e. We’ll return to the same hotel <strong>in</strong> the even<strong>in</strong>g.<br />

Stop 5. Kittilä M<strong>in</strong>e. Agnico-Eagle geologists presentation on the geology <strong>and</strong> <strong>m<strong>in</strong><strong>in</strong>g</strong> operations. The exact<br />

localities to be visited depend on the accessibility to different parts of the m<strong>in</strong>e. Lunch at the m<strong>in</strong>e site.<br />

Stop 6. Hanhimaa <strong>gold</strong> project. About 30 km drive (30 m<strong>in</strong>) to the NW from Kittilä m<strong>in</strong>e. Dragon M<strong>in</strong><strong>in</strong>g<br />

geologists presentation on the project. Visit <strong>exploration</strong> trenches, see the project terra<strong>in</strong> <strong>and</strong> drill core; possibly<br />

also see geophysical <strong>and</strong> geochemical <strong>exploration</strong> data.<br />

Stop 7. Levi, Kittilä. Drive 30 km (30 m<strong>in</strong>) south from Hanhimaa. Accommodation at Hotel K5; d<strong>in</strong>ner <strong>in</strong> the<br />

even<strong>in</strong>g at the hotel.<br />

Saturday, 20th August<br />

9:00 Checkout <strong>and</strong> leave hotel, 210 km (3 h) drive south, to Ylitornio.<br />

Stop 8. Rompas Au-U prospect. Mawson Resources geologists presentation on the project. Visit <strong>exploration</strong><br />

trenches, see the project terra<strong>in</strong> <strong>and</strong> geophysical <strong>and</strong> geochemical <strong>exploration</strong> data. Field lunch.<br />

15:00 Drive to Rovaniemi. About 40 km, about 45 m<strong>in</strong>, to the east. The buss will stop at the hotels downtown<br />

Rovaniemi.


Weather <strong>and</strong> cloth<strong>in</strong>g:<br />

Weather <strong>in</strong> mid August can vary a lot; the possible temperature range is 5–25°C, be<strong>in</strong>g typically around 15°C<br />

<strong>in</strong> daytime. You may meet some re<strong>in</strong>deer <strong>and</strong> a few mosquitoes along route. The field targets are quite easily<br />

accessed, but the ground can be wet. Expect some walk<strong>in</strong>g <strong>in</strong> forest at Hanhimaa <strong>and</strong> Rompas, but no climb<strong>in</strong>g.<br />

For the field gear, we recommend field boots <strong>and</strong> a weatherproof jacket. Dur<strong>in</strong>g visits to the m<strong>in</strong>es, safety<br />

boots, hard hat <strong>and</strong> safety classes are provided by the company.<br />

SAFETY INSTRUCTIONS:<br />

The <strong>in</strong>structions of your guides <strong>and</strong> hosts MUST be followed at all times. Be aware of loose boulders <strong>in</strong> the<br />

waste rock piles, open cut walls <strong>and</strong> <strong>exploration</strong> trenches. At the m<strong>in</strong>e sites, be aware of heavy mach<strong>in</strong>ery, <strong>and</strong><br />

the hard hat <strong>and</strong> safety boots provided must be worn all the time.<br />

Mobile numbers of your guides:<br />

Pasi Eilu: +358 40 8649 165<br />

Vesa Nykänen: +358 40 7396 787<br />

Excursion route <strong>and</strong> location of the stops.


8<br />

Introduction<br />

Pär Weihed, Olof Mart<strong>in</strong>sson<br />

Luleå University of Technology, Luleå, Sweden<br />

Pasi Eilu<br />

Geological Survey of F<strong>in</strong>l<strong>and</strong>, Espoo, F<strong>in</strong>l<strong>and</strong><br />

The Fennosc<strong>and</strong>ian Shield forms the north-westernmost<br />

part of the East European craton <strong>and</strong> constitutes<br />

large parts of F<strong>in</strong>l<strong>and</strong>, NW Russia, Norway, <strong>and</strong><br />

Sweden (Fig. 1). The oldest rocks yet found <strong>in</strong> the<br />

shield have been dated at 3.5 Ga (Huhma et al. 2004)<br />

<strong>and</strong> major orogenies took place <strong>in</strong> the Archaean <strong>and</strong><br />

Palaeoproterozoic. Younger Meso- <strong>and</strong> Neoproterozoic<br />

crustal growth took place ma<strong>in</strong>ly <strong>in</strong> the western<br />

part, but apart from the anorthositic Ti-deposits<br />

<strong>in</strong> SW Norway, no major ore deposits are related to<br />

rocks of this age. The western part of the shield was<br />

reworked dur<strong>in</strong>g the Caledonian Orogeny.<br />

Economic m<strong>in</strong>eral deposits are largely restricted<br />

to the Palaeoproterozoic parts of the shield.<br />

Although Ni–PGE, Mo, BIF, <strong>and</strong> orogenic <strong>gold</strong> de-<br />

Geological <strong>and</strong> tectonic evolution of<br />

the northern part of the<br />

Fennosc<strong>and</strong>ian shield<br />

Stefan Bergman<br />

Geological Survey of Sweden, Uppsala, Sweden<br />

Pär Weihed, Olof Mart<strong>in</strong>sson<br />

Luleå University of Technology, Luleå, Sweden<br />

Pasi Eilu<br />

Geological Survey of F<strong>in</strong>l<strong>and</strong>, Espoo, F<strong>in</strong>l<strong>and</strong><br />

Markku Ilj<strong>in</strong>a<br />

Geological Survey of F<strong>in</strong>l<strong>and</strong>, Rovaniemi, F<strong>in</strong>l<strong>and</strong><br />

Regional geology<br />

The oldest preserved cont<strong>in</strong>ental crust <strong>in</strong> the<br />

Fennosc<strong>and</strong>ian Shield was generated dur<strong>in</strong>g the<br />

Saamian Orogeny at 3.1–2.9 Ga (Fig. 1) <strong>and</strong> is<br />

dom<strong>in</strong>ated by gneissic tonalite, trondhjemite <strong>and</strong><br />

granodiorite. Rift- <strong>and</strong> volcanic arc-related greenstones,<br />

subduction-generated calc-alkal<strong>in</strong>e volcanic<br />

rocks <strong>and</strong> tonalitic-trondhjemitic igneous rocks<br />

were formed dur<strong>in</strong>g the Lopian Orogeny at 2.9–2.6<br />

Ga. Only a few Archaean economic to subeconomic<br />

posits, <strong>and</strong> some very m<strong>in</strong>or VMS deposits occur<br />

<strong>in</strong> the Archaean, virtually all economic examples of<br />

these deposit types are related to Palaeoproterozoic<br />

magmatism, deformation <strong>and</strong> fluid flow. Besides<br />

these major deposit types, the Palaeoproterozoic<br />

part of the shield is also known for its Fe-oxide deposits,<br />

<strong>in</strong>clud<strong>in</strong>g the famous Kiruna-type Fe-apatite<br />

deposits. Large-tonnage low-grade Cu–Au deposits<br />

(e.g., Aitik), are associated with <strong>in</strong>trusive rocks <strong>in</strong><br />

the northern part of the Fennosc<strong>and</strong>ian Shield. These<br />

deposits have been described as porphyry style deposits<br />

or as hybrid with features that also warrant<br />

classification as iron oxide–copper–<strong>gold</strong> (IOCG) deposits<br />

(Weihed 2001, Wanha<strong>in</strong>en et al. 2005).<br />

Dur<strong>in</strong>g this field trip to northern F<strong>in</strong>l<strong>and</strong>,<br />

we will emphasize <strong>gold</strong> deposit characteristics, their<br />

diversity, <strong>and</strong> speculate on temporal <strong>and</strong> spatial relationship<br />

between different deposits. The deposits are<br />

discussed <strong>in</strong> terms of their tectonic sett<strong>in</strong>g <strong>and</strong> relationship<br />

to the overall geodynamic evolution of the<br />

shield. Also considered are deposit-scale structural<br />

features <strong>and</strong> their relevance for the underst<strong>and</strong><strong>in</strong>g<br />

of the ore genesis.<br />

m<strong>in</strong>eral deposits have been found <strong>in</strong> the shield, <strong>in</strong>clud<strong>in</strong>g<br />

orogenic <strong>gold</strong>, BIF <strong>and</strong> Mo occurrences,<br />

<strong>and</strong> ultramafic-to mafic-hosted Ni-Cu (Weihed et al.<br />

2005, Fennosc<strong>and</strong>ian Ore Deposit Database 2010).<br />

Dur<strong>in</strong>g the Palaeoproterozoic, Sumi-Sariolian<br />

(2.5–2.3 Ga) clastic sediments, <strong>in</strong>tercalated<br />

with volcanic rocks vary<strong>in</strong>g <strong>in</strong> composition from<br />

komatiitic <strong>and</strong> tholeiitic to calc-alkal<strong>in</strong>e <strong>and</strong> <strong>in</strong>termediate<br />

to felsic, were deposited on the deformed<br />

<strong>and</strong> metamorphosed Archaean basement dur<strong>in</strong>g extensional<br />

events. Layered <strong>in</strong>trusions, most of them<br />

with Cr, Ni, Ti, V <strong>and</strong>/or PGE occurrences, represent<br />

a major magmatic <strong>in</strong>put at 2.45–2.39 Ga (Amel<strong>in</strong><br />

et al. 1995, Mutanen 1997, Alapieti & Laht<strong>in</strong>en<br />

2002). Periods of arenitic sedimentation preceded<br />

<strong>and</strong> followed extensive komatiitic <strong>and</strong> basaltic volcanic<br />

stages at about 2.2, 2.13, 2.05 <strong>and</strong> 2.0 Ga <strong>in</strong> the<br />

northeastern part of the Fennosc<strong>and</strong>ian Shield dur<strong>in</strong>g<br />

extensional events (Mutanen 1997, Lehtonen et al.<br />

1998, Rastas et al. 2001). Associated with the subaquatic<br />

extrusive <strong>and</strong> volcaniclastic units, there are<br />

carbonate rocks, graphite schist, iron formation <strong>and</strong><br />

stratiform sulphide occurrences across the region.


Fig. 1. Simplified geological map of the Fennosc<strong>and</strong>ian Shield with major tectono-stratigraphic units discussed<br />

<strong>in</strong> text. Map based on Koist<strong>in</strong>en et al. (2001), tectonic <strong>in</strong>terpretation after Laht<strong>in</strong>en et al. (2005).<br />

LGB = Lapl<strong>and</strong> Greenstone Belt, CLGC = Central Lapl<strong>and</strong> Granitoid Complex, BMB = Belomorian<br />

Mobile Belt, CKC = Central Karelian Complex, IC = Iisalmi Complex, PC = Pudasjärvi Complex, TKS<br />

= Tipasjärvi–Kuhmo–Suomussalmi greenstone complex. Shaded area, BMS = Bothnian Megashear.<br />

9


10<br />

Svecofennian subduction-generated calc-alkal<strong>in</strong>e<br />

<strong>and</strong>esites <strong>and</strong> related volcaniclastic sedimentary<br />

units were deposited around 1.9 Ga <strong>in</strong> the northern<br />

Fennosc<strong>and</strong>ia <strong>in</strong> a subaerial to shallow-water environment.<br />

In the Kiruna area, the 1.89 Ga Kiirunavaara<br />

Group rocks (formerly Kiruna Porphyries)<br />

are chemically different from the <strong>and</strong>esites <strong>and</strong> are<br />

geographically restricted to this area. The Svecofennian<br />

porphyries form host to apatite-iron ores <strong>and</strong><br />

various styles of epigenetic Cu-Au occurrences <strong>in</strong>clud<strong>in</strong>g<br />

porphyry Cu-style deposits (Weihed et al.<br />

2005).<br />

The up to 10 km thick pile of Palaeoproterozoic<br />

volcanic <strong>and</strong> sedimentary rocks was multiply<br />

deformed <strong>and</strong> metamorphosed contemporaneously<br />

with the <strong>in</strong>trusion of the 1.89–1.87 Ga granitoids.<br />

Anatectic granites were formed dur<strong>in</strong>g 1.82–1.79<br />

Ga, dur<strong>in</strong>g another major stage of deformation <strong>and</strong><br />

metamorphism. Large-scale migration of fluids of<br />

variable sal<strong>in</strong>ity dur<strong>in</strong>g the many stages of igneous<br />

activity, metamorphism <strong>and</strong> deformation is expressed<br />

by regional scapolitisation, albitisation <strong>and</strong><br />

albite-carbonate alteration <strong>in</strong> the region. For example,<br />

scapolitisation is suggested to be related to felsic<br />

<strong>in</strong>trusions (Ödman 1957), or to be an expression of<br />

mobilised evaporates from the supracrustal successions<br />

dur<strong>in</strong>g metamorphism (Tuisku 1985, Frietsch<br />

et al. 1997, Vanhanen 2001).<br />

S<strong>in</strong>ce Hietanen (1975) proposed a subduction<br />

zone dipp<strong>in</strong>g north beneath the Skellefte district,<br />

many similar models have been proposed for<br />

the ma<strong>in</strong> period of the formation of the crust dur<strong>in</strong>g<br />

the Svecokarelian (or Svecofennian) orogeny roughly<br />

between 1.95 <strong>and</strong> 1.77 Ga (e.g. Rickard & Zweifel<br />

1975, Pharaoh & Pearce 1984, Berthelsen & Marker<br />

1986, Gaál 1986, Weihed 1992). This orogeny <strong>in</strong>volved<br />

both strong rework<strong>in</strong>g of older crust with<strong>in</strong><br />

the Karelian craton <strong>and</strong>, importantly, subduction<br />

towards NE, below the Archaean, <strong>and</strong> the accretion<br />

of several volcanic arc complexes from the SW towards<br />

NE. Later, substantially more complex models<br />

for crustal growth at this stage of the evolution of<br />

the Fennosc<strong>and</strong>ian Shield have been proposed (e.g.<br />

Nironen 1997, Laht<strong>in</strong>en et al. 2005). The most recent<br />

model for the Palaeoproterozoic tectonic evolution<br />

of the Fennosc<strong>and</strong>ian Shield <strong>in</strong>volv<strong>in</strong>g five partly<br />

overlapp<strong>in</strong>g orogenies was presented by Laht<strong>in</strong>en et<br />

al. (2005). This model builds on the amalgamation<br />

of several microcont<strong>in</strong>ents <strong>and</strong> isl<strong>and</strong> arcs with the<br />

Archaean Karelian, Kola <strong>and</strong> Norrbotten cratons <strong>and</strong><br />

other pre-1.92 Ga components. The Karelian craton<br />

experienced a long period of rift<strong>in</strong>g (2.5–2.1 Ga) that<br />

f<strong>in</strong>ally led to cont<strong>in</strong>ental break-up (c. 2.06 Ga).<br />

The microcont<strong>in</strong>ent accretion stage (1.92–<br />

1.87 Ga) <strong>in</strong>cludes the Lapl<strong>and</strong>-Kola <strong>and</strong> Lapl<strong>and</strong>-<br />

Savo orogenies (both with peak at 1.91 Ga) when<br />

the Karelian craton collided with Kola <strong>and</strong> the<br />

Norrbotten cratons, respectively. It also <strong>in</strong>cludes the<br />

Fennian orogeny (peak at c. 1.88 Ga) caused by the<br />

accretion of the Bergslagen microcont<strong>in</strong>ent <strong>in</strong> the<br />

south. The follow<strong>in</strong>g cont<strong>in</strong>ental extension stage<br />

(1.86–1.84 Ga) was caused by extension of hot crust<br />

<strong>in</strong> the h<strong>in</strong>terl<strong>and</strong>s of subduction zones located to the<br />

south <strong>and</strong> west. Oblique collision with Sarmatia occurred<br />

dur<strong>in</strong>g the Svecobaltic orogeny (1.84–1.80<br />

Ga). After collision with Amazonia, <strong>in</strong> the west,<br />

dur<strong>in</strong>g the Nordic orogeny (1.82–1.80 Ga), orogenic<br />

collapse <strong>and</strong> stabilization of the Fennosc<strong>and</strong>ian<br />

Shield took place at 1.79–1.77 Ga. The Gothian<br />

orogeny (1.73–1.55 Ga) at the southwestern marg<strong>in</strong><br />

of the shield ended the Palaeoproterozoic orogenic<br />

development.<br />

Palaeoproterozoic 2.45–1.97 Ga<br />

greenstone belts<br />

The Palaeoproterozoic Lapl<strong>and</strong> greenstone belt,<br />

which overlies much of the northern part of the Archaean<br />

craton, is the largest coherent greenstone terra<strong>in</strong><br />

exposed <strong>in</strong> the Fennosc<strong>and</strong>ian Shield (Fig. 1). It<br />

extends for over 500 km from the Norwegian northwest<br />

coast through the Swedish <strong>and</strong> F<strong>in</strong>nish Lapl<strong>and</strong><br />

<strong>in</strong>to the adjacent Russian Karelia <strong>in</strong> the southeast.<br />

Due to large lithostratigraphic similarities <strong>in</strong> different<br />

greenstone areas from this region <strong>and</strong> the ma<strong>in</strong>ly<br />

tholeiitic character of the volcanic rocks, Pharaoh<br />

(1985) suggested them to be coeval <strong>and</strong> represent<strong>in</strong>g<br />

a major tholeiitic prov<strong>in</strong>ce. Based on petrological<br />

<strong>and</strong> chemical studies of the mafic volcanic rocks<br />

<strong>and</strong> associated sediments, an orig<strong>in</strong>ally cont<strong>in</strong>ental<br />

rift sett<strong>in</strong>g is favoured for these greenstones (e.g.,<br />

Lehtonen et al. 1985, Pharaoh et al. 1987, Huhma<br />

et al. 1990, Olesen & S<strong>and</strong>stad 1993). It <strong>in</strong>cludes<br />

the Central Lapl<strong>and</strong> greenstone belt (Fig. 2) <strong>and</strong><br />

Kuusamo <strong>and</strong> Peräpohja schist belts <strong>in</strong> F<strong>in</strong>l<strong>and</strong> <strong>and</strong><br />

the Kiruna <strong>and</strong> Masugnsbyn areas <strong>in</strong> Sweden. The<br />

lithostratigraphy of the F<strong>in</strong>nish part of the Lapl<strong>and</strong><br />

greenstone belt, the Central Lapl<strong>and</strong> greenstone belt,<br />

is presented <strong>in</strong> Figure 3.<br />

In northern Sweden, a Palaeoproterozoic<br />

succession of greenstones, porphyries <strong>and</strong> clastic<br />

sediments rests unconformably on deformed,<br />

2.7–2.8 Ga, Archaean basement. Stratigraphically<br />

lowest is the Kovo Group. It <strong>in</strong>cludes a basal conglomerate,<br />

tholeiitic lava, calc-alkal<strong>in</strong>e basic to <strong>in</strong>termediate<br />

volcanic rocks <strong>and</strong> volcaniclastic sediments.<br />

Sedimentary rocks were deposited along a<br />

coastl<strong>in</strong>e of a mar<strong>in</strong>e rift bas<strong>in</strong>, <strong>and</strong> material <strong>in</strong>put<br />

was provided through a number of alluvial fans<br />

(Kumpula<strong>in</strong>en 2000). The Kovo Group is overla<strong>in</strong><br />

by the Kiruna Greenstone Group which is dom<strong>in</strong>ated


Fig. 2. Geology of western F<strong>in</strong>nish Lapl<strong>and</strong>. Ages given as Ga. Compiled by Tero Niiranen <strong>and</strong> Vesa Nykänen (GTK),<br />

after the <strong>2011</strong> version of the GTK digital bedrock database.<br />

by mafic to ultramafic volcanic rocks. An albite diabase<br />

(albitised dolerite), <strong>in</strong>trud<strong>in</strong>g the lower part of<br />

the Kovo Group, has been dated at 2.18 Ga (Skiöld<br />

1986), <strong>and</strong> gives a m<strong>in</strong>imum depositional age for<br />

this unit. The Kovo Group is suggested to be c. 2.5–<br />

2.3 Ga <strong>in</strong> age (Sumi-Sariolan) whereas the Kiruna<br />

Greenstone Group is suggested to be 2.2–2.0 Ga <strong>in</strong><br />

age (Jatulian <strong>and</strong> Ludikowian). The upper contacts of<br />

the Kovo Group <strong>and</strong> the Kiruna Green stone Group<br />

are characterised by m<strong>in</strong>or unconformities <strong>and</strong> clasts<br />

from these units are found <strong>in</strong> basal con glomerates <strong>in</strong><br />

overly<strong>in</strong>g units.<br />

In F<strong>in</strong>l<strong>and</strong>, the lowermost units of the<br />

greenstones also lie unconformably on the Archaean,<br />

<strong>and</strong> are represented by the Salla Group<br />

rocks <strong>in</strong> the Central Lapl<strong>and</strong> Greenstone Belt<br />

(CLGB; Figs. 2 <strong>and</strong> 3), a polymictic conglomerate<br />

<strong>in</strong> the Kuusamo schist belt <strong>and</strong> the Sompujärvi<br />

Formation of the Peräpohja schist belt.<br />

Recently, a new group, the Vuojärvi Group was<br />

recognised <strong>in</strong> CLGB area (Fig. 3). This consists<br />

of quartz-feldspar <strong>and</strong> quartz-sericite schists<br />

that may represent metamorphosed clastic<br />

sedimentary rocks <strong>and</strong>/or felsic volcanic rocks.<br />

11


12<br />

Fig. 3. Stratigraphy of the Central Lapl<strong>and</strong> greenstone belt. Ages given as Ga. Compiled by Tero Niiranen (GTK), after Hanski et al.<br />

(2001) <strong>and</strong> the <strong>2011</strong> version of the GTK digital bedrock database.<br />

The current stratigraphic relation between the<br />

Vuojärvi <strong>and</strong> Salla Groups is uncerta<strong>in</strong>. The Vuojärvi<br />

<strong>and</strong> Salla Groups are followed by sedimentary<br />

units which precede the c. 2.2 Ga igneous event <strong>and</strong><br />

comprise the Kuusamo <strong>and</strong> Sodankylä Group rocks<br />

<strong>in</strong> the CLGB <strong>and</strong> <strong>in</strong> the Kuusamo Schist Belt. The<br />

latter group also hosts most of the known Palaeoproterozoic<br />

syngenetic sulphide occurrences <strong>in</strong> the<br />

CLGB.<br />

The Savukoski Group mafic to ultramafic<br />

volcanic <strong>and</strong> shallow-mar<strong>in</strong>e sedimentary units were<br />

deposited dur<strong>in</strong>g 2.2–2.01 Ga <strong>in</strong> the CLGB, <strong>and</strong><br />

similar units were also formed <strong>in</strong> the Kuusamo <strong>and</strong><br />

Peräpohja belts (Lehtonen et al. 1998, Rastas et al.<br />

2001). Age determ<strong>in</strong>ations of the Palaeoproterozoic<br />

greenstones exist ma<strong>in</strong>ly from F<strong>in</strong>l<strong>and</strong> (e.g. Perttunen<br />

& Vaasjoki 2001, Rastas et al. 2001, Väänänen<br />

& Lehtonen 2001) <strong>and</strong> suggests a major magmatic<br />

<strong>and</strong> rift<strong>in</strong>g event at c. 2.1 Ga with the f<strong>in</strong>al break up<br />

tak<strong>in</strong>g place at c. 2.06 Ga. Extensive occurrence of<br />

2.13 <strong>and</strong> 2.05 Ga dolerites also support these dates.<br />

Thick piles of mantle-derived volcanic rocks <strong>in</strong>clud<strong>in</strong>g<br />

komatiitic <strong>and</strong> picritic high-temperature melts<br />

are restricted to the Kittilä-Karasjok-Kautoke<strong>in</strong>o-<br />

Kiruna area <strong>and</strong> are suggested to represent plumegenerated<br />

volcanism (Mart<strong>in</strong>sson 1997). The rift<strong>in</strong>g<br />

of the Archaean craton, along a l<strong>in</strong>e <strong>in</strong> a NW-direction<br />

from Ladoga to Lofoten, was accompanied by<br />

NW-SE <strong>and</strong> NE-SW directed rift bas<strong>in</strong>s (Saverikko<br />

1990) <strong>and</strong> <strong>in</strong>jection of 2.1 Ga trend<strong>in</strong>g dyke swarms<br />

parallel to these (Vuollo 1994). Eruption of N-<br />

MORB pillow lava occurred along the rift marg<strong>in</strong>s<br />

(e.g., Pekkar<strong>in</strong>en & Lukkar<strong>in</strong>en 1991). The Kiruna<br />

greenstones <strong>and</strong> dyke swarms north of Kiruna outl<strong>in</strong>e<br />

a NNE-trend<strong>in</strong>g magmatic belt extend<strong>in</strong>g to<br />

Alta <strong>and</strong> Repparfjord <strong>in</strong> the northernmost Norway.<br />

This belt is almost perpendicular to the major rift,<br />

<strong>and</strong> may represent a failed rift arm related to a triple<br />

junction south of Kiruna (Mart<strong>in</strong>sson 1997). The<br />

rapid bas<strong>in</strong> subsidence, accompanied by eruption of<br />

a 500–2000 m thick unit of MORB-type pillow lava<br />

is suggested to be an expression of the development<br />

of this rift arm.<br />

Rift<strong>in</strong>g culm<strong>in</strong>ated <strong>in</strong> extensive mafic <strong>and</strong><br />

ultramafic volcanism <strong>and</strong> the formation of oceanic<br />

crust at c. 1.97 Ga. This is <strong>in</strong>dicated by the extensive<br />

komatiitic <strong>and</strong> basaltic lavas of the Kittilä Group of<br />

the CLGB <strong>in</strong> the central parts of the F<strong>in</strong>nish Lapl<strong>and</strong><br />

(Figs. 2 <strong>and</strong> 3). The 1.97 Ga stage also <strong>in</strong>cluded<br />

deposition of shallow- to deep-mar<strong>in</strong>e sediments,<br />

the latter <strong>in</strong>dicat<strong>in</strong>g the most extensive rift<strong>in</strong>g <strong>in</strong><br />

the region. Fragments of oceanic crust were subsequently<br />

emplaced back onto the Karelian craton<br />

<strong>in</strong> F<strong>in</strong>l<strong>and</strong>, as <strong>in</strong>dicated by the Nuttio ophiolites <strong>in</strong><br />

central F<strong>in</strong>nish Lapl<strong>and</strong> <strong>and</strong> the Jormua <strong>and</strong> Outokumpu<br />

ophiolites further south (Kont<strong>in</strong>en 1987,<br />

Sorjonen-Ward et al. 1997, Lehtonen et al. 1998).


Svecofennian complexes<br />

The Palaeoproterozoic greenstones are overla<strong>in</strong> by<br />

volcanic <strong>and</strong> sedimentary rocks compris<strong>in</strong>g several<br />

different but stratigraphically related units. Regionally,<br />

they exhibit considerable variation <strong>in</strong> lithological<br />

composition due to partly rapid changes from<br />

volcanic- to sedimentary-dom<strong>in</strong>ated facies. Stratigraphically<br />

lowest <strong>in</strong> the Kiruna area are rocks of<br />

the Porphyrite Group <strong>and</strong> the Kurravaara Conglomerate.<br />

The former represents a volcanic-dom<strong>in</strong>ated<br />

unit <strong>and</strong> the latter is a ma<strong>in</strong>ly epiclastic unit (Offerberg<br />

1967) deposited as one or two fan deltas<br />

(Kumpula<strong>in</strong>en 2000). The Sammakkovaara Group<br />

<strong>in</strong> northeastern Norrbotten comprises a mixed volcanic-epiclastic<br />

sequence that is <strong>in</strong>terpreted to be stratigraphically<br />

equivalent to the Porphyrite Group <strong>and</strong><br />

the Kurravaara Conglomerate, <strong>and</strong> the Pahakurkio<br />

Group, south of Masugnsbyn. The Muorjevaara<br />

Group <strong>in</strong> the Gällivare area is also considered to be<br />

equivalent to the Sammakkovaara Group <strong>in</strong> the Pajala<br />

area <strong>and</strong> is dom<strong>in</strong>ated by <strong>in</strong>termediate volcaniclastic<br />

rocks <strong>and</strong> epiclastic sediments. In the Kiruna<br />

area, these volcanic <strong>and</strong> sedimentary units are overla<strong>in</strong><br />

by the Kiirunavaara Group that is followed by<br />

the Hauki <strong>and</strong> Maattavaara quartzites constitut<strong>in</strong>g<br />

the uppermost Svecofennian units <strong>in</strong> the area.<br />

In northern F<strong>in</strong>l<strong>and</strong>, pelitic rocks <strong>in</strong> the Lapl<strong>and</strong><br />

Granulite Belt were deposited after 1.94 Ga<br />

(Tuisku & Huhma 2006). Svecofennian units are<br />

ma<strong>in</strong>ly represented by the Kumpu Group <strong>in</strong> the<br />

CLGB (Lehtonen et al. 1998) <strong>and</strong> by the Paakkola<br />

Group <strong>in</strong> the Peräpohja area (Perttunen & Vaasjoki<br />

2001). The molasse-like conglomerates <strong>and</strong> quartzites<br />

compris<strong>in</strong>g the Kumpu Group were deposited<br />

<strong>in</strong> deltaic <strong>and</strong> fluvial fan environments after 1913<br />

Ma <strong>and</strong> before c. 1800 Ma (Rastas et al. 2001).<br />

The Kumpu rocks apparently are equivalent to the<br />

Hauki <strong>and</strong> Maattavaara quartzites, <strong>and</strong> Porphyrite<br />

Group rocks <strong>and</strong> the Kurravaara Conglomerate of<br />

the Kiruna area.<br />

With the present knowledge of ages <strong>and</strong> petrochemistry<br />

of the Porphyrite <strong>and</strong> Kumpu Groups,<br />

it is possible to attribute these rocks completely to<br />

the same event of collisional tectonics <strong>and</strong> juvenile<br />

convergent marg<strong>in</strong> magmatism. This period of convergence<br />

was manifested by the numerous <strong>in</strong>trusions<br />

of Jörn- (south of the craton marg<strong>in</strong>) <strong>and</strong> Hapar<strong>and</strong>a-<br />

(with<strong>in</strong> the craton) type calc-alkal<strong>in</strong>e <strong>in</strong>trusions, as<br />

described by Mellqvist et al. (2003). With<strong>in</strong> a few<br />

million years, this period of convergent marg<strong>in</strong> magmatism<br />

was followed by a rapid uplift recorded <strong>in</strong><br />

extensive conglomeratic units, more alkal<strong>in</strong>e <strong>and</strong><br />

terrestrial volcanism (Vargfors-Arvidsjaur Groups<br />

south of the craton marg<strong>in</strong> <strong>and</strong> the Kiirunavaara<br />

Group with<strong>in</strong> the craton) <strong>and</strong> plutonism (Gallejaur-<br />

Arvidsjaur type south of the craton marg<strong>in</strong>, Perthite<br />

Monzonite Suite with<strong>in</strong> the craton). This took place<br />

between 1.88 <strong>and</strong> 1.86 Ga <strong>and</strong> the ma<strong>in</strong> volcanic episode<br />

probably lasted less than 10 million years.<br />

The evolution after c. 1.86 is ma<strong>in</strong>ly recorded<br />

by an extensive S-type magmatism (c. 1.85 Ga<br />

Jyryjoki, <strong>and</strong> 1.81–1.78 Ga L<strong>in</strong>a-type <strong>and</strong> the Central<br />

Lapl<strong>and</strong> Granitoid Complex) derived from anatectic<br />

melts <strong>in</strong> the middle crust. In the western part of the<br />

shield, extensive I- to A-type magmatism (Revsund-<br />

Sorsele type) formed roughly N-S trend<strong>in</strong>g batholiths<br />

(the Transc<strong>and</strong><strong>in</strong>avian Igneous Belt) coeval with the<br />

S-type magmatism. Scattered <strong>in</strong>trusions of this type<br />

<strong>and</strong> age also occur further east (e.g. Edefors <strong>in</strong> Sweden,<br />

Nattanen <strong>in</strong> F<strong>in</strong>l<strong>and</strong>). The period from c. 1.87<br />

to 1.80 Ga possibly also <strong>in</strong>volved a shift <strong>in</strong> orogenic<br />

vergence from NE-SW to E-W <strong>in</strong> the northern part of<br />

the Shield as suggested by Weihed et al. (2002).<br />

Palaeoproterozoic magmatism<br />

Early rift<strong>in</strong>g <strong>and</strong> emplacement of<br />

layered igneous complexes<br />

The beg<strong>in</strong>n<strong>in</strong>g of the rift<strong>in</strong>g period between 2.51 <strong>and</strong><br />

2.43 Ga is <strong>in</strong>dicated by <strong>in</strong>trusion of numerous layered<br />

mafic igneous complexes (Alapieti et al. 1990,<br />

Weihed et al. 2005). Most of the <strong>in</strong>trusions are located<br />

along the marg<strong>in</strong> of the Archaean granitoid<br />

area, either at the boundary aga<strong>in</strong>st the Proterozoic<br />

supracrustal sequence, totally enclosed by Archaean<br />

granitoid, or enclosed by a Proterozoic supracrustal<br />

sequence. Most of the <strong>in</strong>trusions are found <strong>in</strong> Wtrend<strong>in</strong>g<br />

Tornio-Näränkävaara belt of layered <strong>in</strong>trusions<br />

(Ilj<strong>in</strong>a & Hanski 2005). Rest of the <strong>in</strong>trusions<br />

are found <strong>in</strong> NW Russia, central F<strong>in</strong>nish Lapl<strong>and</strong> <strong>and</strong><br />

NW F<strong>in</strong>l<strong>and</strong>. Alapieti <strong>and</strong> Laht<strong>in</strong>en (2002) divided<br />

the <strong>in</strong>trusions <strong>in</strong>to three types, (1) ultramafic–mafic,<br />

(2) mafic <strong>and</strong> (3) <strong>in</strong>termediate megacyclic. They also<br />

<strong>in</strong>terpret the ultramafic–mafic <strong>and</strong> the lowermost part<br />

of the megacyclic type to have crystallised from a<br />

similar, quite primitive magma type, which is characterised<br />

by slightly negative <strong>in</strong>itial εNd values <strong>and</strong><br />

relatively high MgO <strong>and</strong> Cr, <strong>in</strong>termediate SiO 2, <strong>and</strong><br />

low TiO 2 concentrations, resembl<strong>in</strong>g the bon<strong>in</strong>itic<br />

magma type. The upper parts of megacyclic type <strong>in</strong>trusions<br />

<strong>and</strong> most mafic <strong>in</strong>trusions crystallised from<br />

an evolved Ti-poor, Al-rich basaltic magma.<br />

Amel<strong>in</strong> et al. (1995) suggested two age<br />

groups for the <strong>in</strong>trusions for Fennosc<strong>and</strong>ian Shield,<br />

the first with U–Pb ages at 2.505–2.501 Ga, <strong>and</strong> the<br />

second at 2.449–2.430 Ga. All F<strong>in</strong>nish layered <strong>in</strong>trusions<br />

belong to the younger age group. The <strong>in</strong>trusions<br />

were later deformed <strong>and</strong> metamorphosed dur<strong>in</strong>g the<br />

13


14<br />

Svecofennian orogeny.<br />

Mafic dykes<br />

Mafic dykes are locally abundant <strong>and</strong> show a variable<br />

strike, degree of alteration <strong>and</strong> metamorphic recrystallisation<br />

which, with age dat<strong>in</strong>g, <strong>in</strong>dicate multiple<br />

igneous episodes. Albite diabase (a term commonly<br />

used <strong>in</strong> F<strong>in</strong>l<strong>and</strong> <strong>and</strong> Sweden for any albitised dolerite)<br />

is a characteristic type of <strong>in</strong>trusions that form<br />

up to 200 m thick sills. They have a coarse-gra<strong>in</strong>ed<br />

central part dom<strong>in</strong>ated by albitic plagioclase <strong>and</strong><br />

constitute laterally extensive, highly magnetic units<br />

north of Kiruna. Here, the swarms are dom<strong>in</strong>ated by<br />

1–100 m wide dykes with a metamorphic m<strong>in</strong>eral<br />

assemblage but with a more or less preserved igneous<br />

texture (Ödman 1957, Mart<strong>in</strong>sson 1999a,b). The<br />

NNE-trend<strong>in</strong>g dykes that are suggested to represent<br />

feeders to the Kiruna Greenstone Group (Mart<strong>in</strong>sson<br />

1997). Scapolite-biotite alteration is common <strong>in</strong> the<br />

dykes with<strong>in</strong> Svecofennian rocks (Offerberg 1967)<br />

<strong>and</strong> also <strong>in</strong> feeder dykes with<strong>in</strong> the lower part of the<br />

Kiruna Greenstone Group (Mart<strong>in</strong>sson 1997).<br />

In northern F<strong>in</strong>l<strong>and</strong>, albite diabases, both<br />

sills <strong>and</strong> dykes, form age groups of 2.2, 2.13, 2.05<br />

<strong>and</strong> 2.0 Ga (Vuollo 1994, Lehtonen et al. 1998, Perttunen<br />

& Vaasjoki 2001, Rastas et al. 2001). These<br />

dates also reflect extrusive magmatism <strong>in</strong> the region.<br />

The dykes vary <strong>in</strong> width from


magmas (Kathol & Mart<strong>in</strong>sson 1999). The ma<strong>in</strong><br />

magmatic event can probably be set at 1.87–1.88 Ga<br />

with the emplacement of the composite monzoniticsyenitic-granitic<br />

<strong>in</strong>trusions, whereas some granites<br />

formed as late as at c. 1.86 Ga (Skiöld 1981, Skiöld<br />

& Öhl<strong>and</strong>er 1989, Mart<strong>in</strong>sson et al. 1999).<br />

Intrusions of the Perthite Monzonite Suite are<br />

suggested to be comagmatic with the Kiirunavaara<br />

Group volcanic rocks. Both display a compositional<br />

variation from mafic to felsic comb<strong>in</strong>ed with a relatively<br />

high content of alkali <strong>and</strong> HFS-elements. The<br />

<strong>in</strong>tra-plate sett<strong>in</strong>g suggested for the Kiirunavaara<br />

Group is <strong>in</strong>dicated by the chemical characteristics<br />

of the Perthite Monzonite Suite <strong>in</strong>trusions. Mantle<br />

plume orig<strong>in</strong> is supported by the abundant occurrence<br />

of mafic-ultramafic complexes northwest of<br />

Kiruna, which possibly def<strong>in</strong>e the plume centre.<br />

L<strong>in</strong>a Suite<br />

Intrusions of the L<strong>in</strong>a Suite are extensive <strong>in</strong> northern<br />

Norrbotten where they typically occur as granite,<br />

pegmatite <strong>and</strong> aplite of ma<strong>in</strong>ly m<strong>in</strong>imum melt<br />

composition generated by crustal melt<strong>in</strong>g. In F<strong>in</strong>l<strong>and</strong>,<br />

they appear to form most of the volume of the<br />

Central Lapl<strong>and</strong> Granitoid Complex (Fig. 1), <strong>and</strong><br />

are also present as smaller <strong>in</strong>trusions <strong>in</strong> many areas<br />

across northern F<strong>in</strong>l<strong>and</strong> (Lehtonen et al. 1998). However,<br />

the seismic appearance of the Central Lapl<strong>and</strong><br />

Granitoid Complex is <strong>in</strong>consistent with this area as<br />

an <strong>in</strong>trusion-rich belt, <strong>and</strong> it may have a composition<br />

comparable with the supracrustal belts to the north<br />

<strong>and</strong> south (Patison et al. 2006a). The L<strong>in</strong>a Suite is<br />

composed of monzo-, syeno-granites, <strong>and</strong> adamellite,<br />

<strong>and</strong> is characterised by its restricted SiO 2 range<br />

at 72–76 wt. %. It is peralum<strong>in</strong>ous <strong>and</strong> a high content<br />

of Rb <strong>and</strong> depletion of Eu are characteristic.<br />

The heat source generat<strong>in</strong>g the magmas<br />

might be the cont<strong>in</strong>ent-cont<strong>in</strong>ent collision events to<br />

the south <strong>and</strong> west (Öhl<strong>and</strong>er et al. 1987b, Öhl<strong>and</strong>er<br />

& Skiöld 1994, Laht<strong>in</strong>en et al. 2005) or the contemporaneous<br />

TIB 1 magmatism. Age determ<strong>in</strong>ations<br />

<strong>in</strong>dicate a relatively large span <strong>in</strong> the emplacement<br />

age at 1.81–1.78 Ga for the L<strong>in</strong>a Suite (Huhma 1986,<br />

Wikström & Persson 1997b, Perttunen & Vaasjoki<br />

2001, Rastas et al. 2001, Väänänen & Lehtonen<br />

2001, Bergman et al. 2002).<br />

A- <strong>and</strong> I-type <strong>in</strong>trusions<br />

This is the youngest of the described <strong>in</strong>trusive suites<br />

<strong>and</strong>, <strong>in</strong> the west, it forms part of the Transc<strong>and</strong><strong>in</strong>avian<br />

Igneous Belt (TIB). Two generations (c. 1.8<br />

<strong>and</strong> 1.7 Ga) of <strong>in</strong>trusions belong<strong>in</strong>g to the TIB exist<br />

<strong>in</strong> northern Sweden <strong>and</strong> adjacent areas of Norway.<br />

They commonly show quartz-poor monzonitic<br />

trends, <strong>and</strong> gabbroic-dioritic-granitic components<br />

are relatively common. (Romer et al. 1994, Öhl<strong>and</strong>er<br />

& Skiöld 1994)<br />

Across northern F<strong>in</strong>l<strong>and</strong>, the suite is represented<br />

by the Nattanen-type granitic <strong>in</strong>trusions dated<br />

at 1.80–1.77 Ga (Huhma 1986, Rastas et al. 2001).<br />

They form undeformed <strong>and</strong> unmetamorphosed, multiphase,<br />

peralum<strong>in</strong>ous, F-rich plutons which sharply<br />

cut across their country rocks. Their Nd <strong>and</strong> Hf isotopic<br />

ratios <strong>in</strong>dicate a substantial Archaean component<br />

<strong>in</strong> their source.<br />

In northern Norrbotten, monzonitic to syenitic<br />

rocks give ages between 1.80 <strong>and</strong> 1.79 (Romer<br />

et al 1994, Bergman et al. 2001), whereas granites<br />

range from 1.78–1.77 <strong>and</strong> 1.72–1.70 Ga (Romer et<br />

al. 1994). Further south, the age of the granitic Ale<br />

massif <strong>in</strong> the Luleå area is 1802±3 Ma <strong>and</strong> 1796±2<br />

Ma for the core <strong>and</strong> the rim of the massif, respectively<br />

(Öhl<strong>and</strong>er & Schöberg 1991). This is similar<br />

to the 1.80 Ga age of Edefors type monzonitic to granitic<br />

rocks (Öhl<strong>and</strong>er & Skiöld 1994).<br />

This suite can be classified as a quartz<br />

monzodiorite–quartz monzonite–adamellite–granite<br />

suite <strong>and</strong> shows a metalum<strong>in</strong>ous to peralum<strong>in</strong>ous<br />

trend with alkal<strong>in</strong>e aff<strong>in</strong>ity (Ahl et al. 2001). Lithophile<br />

elements are enriched <strong>in</strong> this suite, e.g. Zr is<br />

strongly enriched <strong>in</strong> the Edefors granitoids (Öhl<strong>and</strong>er<br />

& Skiöld 1994).<br />

Characteristic for the 1.8 Ga monzonitic to<br />

syenitic rocks is the occurrence of augite <strong>and</strong> locally<br />

also orthopyroxene <strong>and</strong> oliv<strong>in</strong>e demonstrat<strong>in</strong>g an<br />

orig<strong>in</strong> from dry magmas (Ödman 1957, Öhl<strong>and</strong>er<br />

& Skiöld 1994, Bergman et al. 2001). The Transsc<strong>and</strong><strong>in</strong>avian<br />

Igneous Belt (TIB) has been suggested<br />

to have formed <strong>in</strong> response to eastward subduction<br />

(Nyström 1982, Andersson 1991, Weihed et al.<br />

2002), possibly dur<strong>in</strong>g a period of extensional conditions<br />

(Wilson et al. 1986, Åhäll & Larsson 2000).<br />

The Edefors granitoids are <strong>in</strong>terpreted as products of<br />

plate convergence <strong>and</strong> a mantle source is suggested<br />

for these rocks based on Sm-Nd isotopic characteristics.<br />

Mafic magmas may have formed by mantle<br />

melt<strong>in</strong>g <strong>in</strong> an extensional sett<strong>in</strong>g caused by a 1.8 Ga<br />

collisional event follow<strong>in</strong>g northward subduction.<br />

These magmas were subsequently contam<strong>in</strong>ated<br />

with cont<strong>in</strong>ental crust <strong>and</strong> crystallised as monzonitic<br />

to granitic rocks (Öhl<strong>and</strong>er & Skiöld 1994).<br />

The related plate-tectonic sett<strong>in</strong>g may also<br />

be that of the f<strong>in</strong>al orogenic collapse, decompression<br />

<strong>and</strong>/or thermal resett<strong>in</strong>g <strong>in</strong> the term<strong>in</strong>al stages of the<br />

orogenic development, follow<strong>in</strong>g the cont<strong>in</strong>ent-cont<strong>in</strong>ent<br />

collisional stage (Laht<strong>in</strong>en et al. 2005).<br />

15


16<br />

Deformation <strong>and</strong> metamorphism<br />

The Palaeoproterozoic rocks <strong>in</strong> the northern part of<br />

the Fennosc<strong>and</strong>ian Shield have undergone several<br />

phases of deformation <strong>and</strong> metamorphism. Metamorphic<br />

grades vary from greenschist to granulite facies.<br />

A sequence of ductile deformation events<br />

<strong>in</strong> central F<strong>in</strong>nish Lapl<strong>and</strong> is reported <strong>in</strong> Hölttä et<br />

al. (2007) <strong>and</strong> Patison (2007) <strong>and</strong> references there<strong>in</strong>.<br />

The earliest foliation (S1) is bedd<strong>in</strong>g-parallel <strong>and</strong><br />

can be seen <strong>in</strong> F2 fold h<strong>in</strong>ges <strong>and</strong> as <strong>in</strong>clusion trails<br />

<strong>in</strong> <strong>and</strong>alusite, garnet <strong>and</strong> staurolite porphyroblasts.<br />

The ma<strong>in</strong> regional foliation S2 is axial planar to tight<br />

or isocl<strong>in</strong>al folds. It is mostly gently dipp<strong>in</strong>g to subhorizontal,<br />

<strong>and</strong> suggested to have been caused by<br />

horizontal movements related to thrust tectonics, e.g.<br />

along the Sirkka Shear Zone. The elongation l<strong>in</strong>eation<br />

generally trends NNE-SSW, <strong>and</strong> the movement<br />

direction was from SSW to NNE. The S-dipp<strong>in</strong>g<br />

Sirkka Shear Zone is composed of several sub-parallel<br />

thrusts <strong>and</strong> fold structures at the southern marg<strong>in</strong><br />

of the Central Lapl<strong>and</strong> Greenstone Belt. This NNEdirected<br />

thrust<strong>in</strong>g occurred dur<strong>in</strong>g D1-D2, with a<br />

maximum age of c. 1.89 Ga (Lehtonen et al. 1998),<br />

<strong>and</strong> was contemporaneous with S- to SW-directed<br />

thrust<strong>in</strong>g of the Lapl<strong>and</strong> Granulite Belt <strong>in</strong> the north.<br />

This thrust<strong>in</strong>g geometry is consistent with data<br />

from recent seismic reflection studies (Patison et al.<br />

2006a). The D2 <strong>and</strong> earlier structures are overpr<strong>in</strong>ted<br />

by sets of late folds, collectively called F3-folds,<br />

with a variety of orientations. It is possible that some<br />

earlier-formed structures were reactivated dur<strong>in</strong>g<br />

D3. A m<strong>in</strong>imum age for the D3 deformation is given<br />

by post-collisional 1.77 Ga Nattanen-type granites.<br />

This age is also the maximium age for D4, which<br />

is characterised by discont<strong>in</strong>uous brittle shear zones.<br />

Ductile deformation <strong>in</strong> Sweden <strong>in</strong>cludes at<br />

least three phases of fold<strong>in</strong>g <strong>and</strong> also <strong>in</strong>volves the<br />

formation of major crustal-scale shear zones. The<br />

<strong>in</strong>tensity of deformation varies from a strong penetrative<br />

foliation to texturally <strong>and</strong> structurally well<br />

preserved rocks both regionally <strong>and</strong> on a local scale.<br />

Axial surface trace of the folds ma<strong>in</strong>ly trends <strong>in</strong> a SE<br />

or a SSW direction (Bergman et al. 2001). Locally,<br />

they <strong>in</strong>terfere <strong>in</strong> a dome <strong>and</strong> bas<strong>in</strong> pattern but more<br />

commonly either trend is dom<strong>in</strong>ant. The difference<br />

<strong>in</strong> the <strong>in</strong>tensity of deformation shown by <strong>in</strong>trusions<br />

of the Hapar<strong>and</strong>a Suite <strong>and</strong> the Perthite Monzonite<br />

Suite suggests an event of regional metamorphism<br />

<strong>and</strong> deformation at c. 1.88 Ga <strong>in</strong> northern Norrbotten<br />

(Bergman et al. 2001), correspond<strong>in</strong>g to D1–D2<br />

<strong>in</strong> F<strong>in</strong>l<strong>and</strong>. Evidence for an episode of magmatism,<br />

ductile deformation <strong>and</strong> metamorphism at c. 1.86–<br />

1.85 Ga from the Pajala area <strong>in</strong> the northeastern part<br />

of Norrbotten has been presented by Bergman et al.<br />

(2006). A third metamorphic event at 1.82–1.78 Ga<br />

is recorded by chronological data from zircon <strong>and</strong><br />

monazite <strong>in</strong> the same area. Movement along the Pajala-Kolari<br />

Shear Zone occurred dur<strong>in</strong>g this event.<br />

Major ductile shear zones <strong>in</strong> Sweden are represented<br />

by the NNE-trend<strong>in</strong>g Karesu<strong>and</strong>o-Arjeplog<br />

deformation zone, the N to NNE-directed Pajala-<br />

Kolari Shear Zone <strong>and</strong> the NNW-directed Nautanen<br />

deformation zone. The Pajala-Kolari Shear Zone has<br />

been given a major significance as represent<strong>in</strong>g the<br />

boundary between the Karelian <strong>and</strong> Norrbotten Cratons<br />

(Laht<strong>in</strong>en et al. 2005). These major shear zones<br />

show evidences to have been active at c. 1.8 Ga. In<br />

general the shear zones <strong>in</strong> the western part show a<br />

western-side-up movement whereas the shear zones<br />

<strong>in</strong> the eastern northern Norrbotten are characterised<br />

by an eastern-side-up movement (Bergman et al.<br />

2001).<br />

One strik<strong>in</strong>g feature is that several of the<br />

crustal-scale shear zones are associated with abrupt<br />

changes <strong>in</strong> metamorphic grade, <strong>in</strong>dicat<strong>in</strong>g that these<br />

zones have been active after the peak of regional<br />

metamorphism. Moreover, many of the epigenetic<br />

Au <strong>and</strong> Cu-Au deposits also show a strong spatial<br />

relationship with these major shear zones, although<br />

their local control are the second- to fourth-order<br />

faults <strong>and</strong> shear zones. Geochronology <strong>and</strong> structural<br />

evidence <strong>in</strong>dicate late- to post-peak metamorphic<br />

conditions for many of the epigenetic Cu-Au<br />

occurrences <strong>in</strong> Sweden, whereas close to syn-peak<br />

metamorphic tim<strong>in</strong>g has been suggested for most of<br />

the occurrences <strong>in</strong> F<strong>in</strong>l<strong>and</strong> (Mänttäri 1995, Eilu et al.<br />

2003, 2007), although very few age dates exist for<br />

m<strong>in</strong>eralisation <strong>in</strong> F<strong>in</strong>l<strong>and</strong>.<br />

The metamorphic grade ma<strong>in</strong>ly is of low-<br />

to <strong>in</strong>termediate-pressure type, <strong>in</strong> Sweden generally<br />

vary<strong>in</strong>g from upper-greenschist to upper-amphibolite<br />

<strong>and</strong> <strong>in</strong> F<strong>in</strong>l<strong>and</strong> from lower-greenschist to upperamphibolite<br />

facies. Granulite facies rocks are only of<br />

m<strong>in</strong>or importance, except for the northern F<strong>in</strong>nish<br />

Lapl<strong>and</strong> <strong>and</strong> Kola Pen<strong>in</strong>sula with<strong>in</strong> the arcuate Lapl<strong>and</strong><br />

Granulite Belt (Fig. 1).<br />

Regional metamorphic assemblages <strong>in</strong><br />

metaargillites <strong>and</strong> mafic metavolcanic rocks,<br />

<strong>in</strong>terpreted to be of Svecofennian age <strong>and</strong> generally<br />

<strong>in</strong>dicate that the metamorphism is of low to<br />

medium pressure type, 2–4 <strong>and</strong> 6–7.5 kbar, under<br />

temperatures of 510–570°C <strong>and</strong> 615–805°C,<br />

respectively. High T–low P regional metamorphism<br />

characterise large areas of Norrbotten, but as<br />

po<strong>in</strong>ted out by Bergman et al. (2001), the measured<br />

pressures <strong>and</strong> temperatures are not constra<strong>in</strong>ed <strong>in</strong><br />

time <strong>and</strong> could be related to different metamorphic<br />

events. Still the geochronology of the metamorphic<br />

history <strong>in</strong> northern Sweden is rather sparse <strong>and</strong> the<br />

distribution <strong>in</strong> time <strong>and</strong> space is not well-known.<br />

Bergman et al. (2001) divided the pre-1.88 Ga


ocks <strong>in</strong> northernmost Sweden <strong>in</strong>to low-, medium-<br />

<strong>and</strong> high-grade areas. It is <strong>in</strong>terest<strong>in</strong>g to note<br />

that most of the low-grade areas there (i.e. Kiruna,<br />

Rensjön <strong>and</strong> Stora Sjöfallet) are located <strong>in</strong> the westernmost<br />

part of Norrbotten whereas the majority of<br />

medium to high grade metamorphic rocks are located<br />

<strong>in</strong> the central to eastern part where also the vast<br />

majority of the L<strong>in</strong>a type granites (1.81–1.78 Ga)<br />

are situated. The strong spatial relationship between<br />

the higher-grade metamorphic rocks <strong>and</strong> the S-type<br />

granites is either a result of deeper erosional level of<br />

the crust <strong>in</strong> these areas or reflects areas affected by<br />

higher heat flow at c. 1.8 Ga.<br />

In central F<strong>in</strong>nish Lapl<strong>and</strong>, the follow<strong>in</strong>g<br />

metamorphic zones have been mapped (Hölttä et al.<br />

2007): I) granulite facies migmatitic amphibolites<br />

south of the Lapl<strong>and</strong> Granulite Belt, II) high pressure<br />

mid-amphibolite facies rocks south of the zone<br />

I, characterised by garnet-kyanite-biotite-muscovite<br />

assemblages with local migmatisation <strong>in</strong> metapelites,<br />

<strong>and</strong> garnet-hornblende-plagioclase assemblages <strong>in</strong><br />

mafic rocks, III) low-pressure mid-amphibolite facies<br />

rocks south of the zone II, with garnet-<strong>and</strong>alusite-staurolite-chlorite-muscovite<br />

assemblages with<br />

retrograde chloritoid <strong>and</strong> kyanite <strong>in</strong> metapelites,<br />

<strong>and</strong> hornblende-plagioclase-quartz±garnet <strong>in</strong> metabasites,<br />

IV) greenschist facies rocks of the Central<br />

Epigenetic Au deposits <strong>in</strong> northern<br />

Fennosc<strong>and</strong>ian shield<br />

Pasi Eilu<br />

Geological Survey of F<strong>in</strong>l<strong>and</strong>, Espoo, F<strong>in</strong>l<strong>and</strong><br />

Olof Mart<strong>in</strong>sson<br />

Luleå University of Technology, Luleå, Sweden<br />

Epigenetic sulphide deposits <strong>in</strong> the northern part of<br />

the Fennosc<strong>and</strong>ian Shield have an extensive variation<br />

<strong>in</strong> the style of m<strong>in</strong>eralisation, alteration, metal<br />

association, <strong>and</strong> host rock. Most deposits occur <strong>in</strong><br />

(1) Palaeoproterozoic greenstones <strong>in</strong> the Central<br />

Lapl<strong>and</strong> <strong>and</strong> Kuusamo belts <strong>in</strong> F<strong>in</strong>l<strong>and</strong>, but also <strong>in</strong><br />

Sweden <strong>and</strong> Norway, <strong>and</strong> <strong>in</strong> (2) Svecofennian rocks<br />

of the Porphyrite <strong>and</strong> Kiirunavaara Groups <strong>in</strong> Sweden.<br />

Due to their variable <strong>and</strong> overlapp<strong>in</strong>g features<br />

(Table 1), several genetic types have been proposed<br />

for them (Ojala et al. 2007). Here, we only discuss<br />

deposit types detected <strong>in</strong> the area covered by the<br />

present field excursion (Table 1).<br />

Many parameters used to describe ore occurrences<br />

are identical when e.g. IOCG <strong>and</strong> orogenic<br />

<strong>gold</strong> m<strong>in</strong>eralisation is compared. For <strong>in</strong>stance,<br />

Lapl<strong>and</strong> Greenstone Belt, with f<strong>in</strong>e-gra<strong>in</strong>ed white<br />

mica-chlorite-biotite-albite-quartz <strong>in</strong> metapelites,<br />

<strong>and</strong> act<strong>in</strong>olite-albite-chlorite-epidote-carbonate <strong>in</strong><br />

metabasites, V) prograde metamorphism south of<br />

the zone IV from lower-amphibolite (<strong>and</strong>alusitekyanite-staurolite-muscovite-chlorite±chloritoid<br />

schists), to mid-amphibolite facies (kyanite-<strong>and</strong>alusite-staurolite-biotite-muscovite<br />

gneisses, <strong>and</strong> upper<br />

amphibolite facies garnet-sillimanite-biotite gneisses,<br />

VI) amphibolite facies pluton-derived metamorphism<br />

related with heat flow from central <strong>and</strong> western<br />

Lapl<strong>and</strong> granitoids.<br />

The present structural geometry shows an<br />

<strong>in</strong>verted gradient where pressure <strong>and</strong> temperature<br />

<strong>in</strong>crease upwards <strong>in</strong> the present tectonostratigraphy<br />

from greenschist facies <strong>in</strong> the zone IV through<br />

garnet-<strong>and</strong>alusite-staurolite grade <strong>in</strong> the zone III<br />

<strong>and</strong> garnet-kyanite grade amphibolite facies <strong>in</strong> the<br />

zone II to granulite facies <strong>in</strong> the zone I. The <strong>in</strong>verted<br />

gradient could be expla<strong>in</strong>ed by crustal thicken<strong>in</strong>g<br />

caused by overthrust of the hot granulite complex<br />

onto the lower grade rocks. Metamorphism <strong>in</strong> the<br />

Lapl<strong>and</strong> Granulite Belt occurred at 1.91–1.88 Ga<br />

(Tuisku & Huhma 2006), but the present metamorphic<br />

structure <strong>in</strong> central F<strong>in</strong>nish Lapl<strong>and</strong> may record<br />

later, postmetamorphic thrust<strong>in</strong>g <strong>and</strong> fold<strong>in</strong>g events<br />

(Hölttä et al. 2007).<br />

features of the orogenic <strong>gold</strong> occurrences observed<br />

<strong>in</strong> F<strong>in</strong>l<strong>and</strong> <strong>in</strong>clude 1) proximal to distal carbonatisation<br />

<strong>and</strong> proximal sericitisation <strong>and</strong> biotitisation, 2)<br />

PT conditions at 300–500°C <strong>and</strong> 1–3 kbar, 3) pyrite,<br />

pyrrhotite <strong>and</strong> arsenopyrite be<strong>in</strong>g the ma<strong>in</strong> ore m<strong>in</strong>erals,<br />

4) consistent enrichment of Ag, Au, As, CO 2,<br />

K, Rb, S, Sb, <strong>and</strong> Te, 5) a low-sal<strong>in</strong>ity aqueous fluid,<br />

<strong>and</strong> 6) any primary rock type with<strong>in</strong> the greenstone<br />

belts could act as host rock (Väisänen 2002, Eilu et<br />

al. 2007, Hulkki & Ke<strong>in</strong>änen 2007, Patison 2007).<br />

In several cases, the host rocks have also been albitised<br />

<strong>and</strong> carbonatised before <strong>gold</strong> m<strong>in</strong>eralisation<br />

(Hulkki & Ke<strong>in</strong>änen 2007, Patison 2007). This prem<strong>in</strong>eralisation<br />

alteration has prepared ground for<br />

m<strong>in</strong>eralisation by mak<strong>in</strong>g competent rocks from soft<br />

units, produc<strong>in</strong>g rocks which will break under deformation<br />

<strong>and</strong>, hence, give locations for the orogenic<br />

fluids to precipitate <strong>gold</strong>. When compar<strong>in</strong>g IOCG<br />

type m<strong>in</strong>eralisation with the listed features, the difference<br />

is <strong>in</strong> IOCG fluids be<strong>in</strong>g more sal<strong>in</strong>e, alteration<br />

of a more complex multi-stage type, <strong>and</strong> also<br />

other metals <strong>in</strong> addition to <strong>gold</strong> be<strong>in</strong>g enriched to potential<br />

commodities. It must also be emphasised that<br />

several orogenic <strong>gold</strong> occurrences <strong>in</strong> the northern<br />

Fennosc<strong>and</strong>ian shield st<strong>and</strong> out as be<strong>in</strong>g based-metal<br />

enriched. The latter, which are referred to as “atypi-<br />

17


18<br />

cal orogenic <strong>gold</strong>” below, follow<strong>in</strong>g the def<strong>in</strong>ition<br />

by Goldfarb et al. (2001), are different to <strong>gold</strong>-only<br />

systems <strong>in</strong> particular with respect to hav<strong>in</strong>g been, at<br />

least partially, formed from medium-sal<strong>in</strong>ity fluids.<br />

Table 1. Gold <strong>and</strong> <strong>gold</strong>-base metal deposits <strong>in</strong> the Central Lapl<strong>and</strong> greenstone belt with a resource estimate. The data are from the FINGOLD<br />

database (Eilu & Pankka 2009) <strong>and</strong> the Fennosc<strong>and</strong>ian Ore Deposit Database (2010). M<strong>in</strong><strong>in</strong>g by the end of 2010, <strong>and</strong> tonnages <strong>and</strong> grades<br />

as reported by the <strong>m<strong>in</strong><strong>in</strong>g</strong> companies. Size <strong>in</strong>dicates global resource + m<strong>in</strong>ed <strong>in</strong> millions of tonnes of ore.<br />

Deposit Size M<strong>in</strong>ed Au Co Cu Ni Host Sit<strong>in</strong>g of <strong>gold</strong><br />

(Mt) (Mt) g/t % % % rocks 1<br />

Orogenic <strong>gold</strong> deposit<br />

Hirvilanmaa 0.11 2.9 Komatiite Free native with pyrite <strong>and</strong> tellurides<br />

Kaaresselkä 0.3 5 nr Mafic tuffite Free native assoc. with gangue <strong>and</strong><br />

sulphides<br />

Kuotko 1.116 3.4 Mafic volc rocks Free native assoc. with arsenopyrite<br />

<strong>and</strong> pyrite<br />

Kutuvuoma 0.068 0.02 6.7 Komatiite, Phyllite Free native assoc. with arsenopyrite<br />

<strong>and</strong> pyrite<br />

Louk<strong>in</strong>en 2 0.114 0.5 nr 0.45 Komatiite Free native + <strong>in</strong>clusions <strong>in</strong> sulphides<br />

Soretialehto 0.013 3.5 Komatiite Free native assoc. with quartz<br />

<strong>and</strong> pyrite<br />

Kittilä M<strong>in</strong>e<br />

(Suurikuusikko) 58.46 2.24 3.74 Mafic volc rocks, Refractory <strong>in</strong> arsenopyrite <strong>and</strong> pyrite<br />

Phyllite<br />

Saattopora Au 3 2.163 2.163 2.9 0.25 Intermed tuffite Free native assoc. with gangue<br />

<strong>and</strong> sulphides<br />

Syngenetic Cu overpr<strong>in</strong>ted by orogenic <strong>gold</strong> or orogenic <strong>gold</strong> with an anomalous metal association<br />

Riikonkoski 9.45 nr 0.45 Intermed tuffite Associated with chalcopyrite?<br />

Saattopora Cu 11.6 0.25 0.01 0.62 0.1 Intermed tuffite Associated with chalcopyrite?<br />

Orogenic or syngenetic<br />

Pahtavaara Au 4.3 3.5 2.7 Komatiite Free native assoc. with gangue<br />

nr Not reported <strong>in</strong> resource estimate, but analysed drill <strong>in</strong>tercepts <strong>in</strong>dicate that the deposit conta<strong>in</strong>s, at least <strong>in</strong> parts, several g/t<br />

<strong>gold</strong> (if Cu reported) or 0.1−2 % copper (if Au reported).<br />

1 All host rocks are metamorphosed; hence, the prefix meta is implied but omitted.<br />

2 Four or five ore bodies known, some probably with higher <strong>gold</strong> <strong>and</strong> lower base metal grades, but only one with a reported<br />

resource estimate.<br />

3 Only the m<strong>in</strong>ed tonnage has been reported; there probably are resources at depth, but their volume is unknown.


Epigenetic <strong>gold</strong> m<strong>in</strong>eralisation <strong>in</strong><br />

central <strong>and</strong> SW F<strong>in</strong>nish Lapl<strong>and</strong><br />

More than 60 drill<strong>in</strong>g-<strong>in</strong>dicated, epigenetic <strong>gold</strong><br />

occurrences have been discovered <strong>in</strong> the Palaeoproterozoic<br />

greenstone belts <strong>in</strong> the central <strong>and</strong> SW<br />

F<strong>in</strong>nish Lapl<strong>and</strong>. Suurikuusikko (Kittilä M<strong>in</strong>e, Table<br />

1), be<strong>in</strong>g the largest deposit so far discovered,<br />

is a classic example of a <strong>gold</strong>-only orogenic deposit<br />

hosted by a N-trend<strong>in</strong>g shear zone <strong>in</strong> lower-greenschist<br />

facies greenstones (Eilu & Pankka 2009).<br />

Nearly all occurrences <strong>in</strong> Central Lapl<strong>and</strong><br />

probably belong to the orogenic category <strong>in</strong> the<br />

sense the deposit class is def<strong>in</strong>ed by Groves et al.<br />

(1998) <strong>and</strong> Goldfarb et al. (2001). For example,<br />

more than 30 drill<strong>in</strong>g-<strong>in</strong>dicated deposits <strong>and</strong> occurrences<br />

are <strong>in</strong> the Sirkka Shear Zone <strong>and</strong> subsidiary<br />

faults branch<strong>in</strong>g from this crustal-scale, >100 km<br />

long, structural break with<strong>in</strong> the Central Lapl<strong>and</strong><br />

greenstone belt <strong>in</strong> F<strong>in</strong>l<strong>and</strong> (Eilu et al. 2007). Locally,<br />

the two most significant controls to m<strong>in</strong>eralisation<br />

are structure <strong>and</strong> rock type: the ore bodies typically<br />

are hosted by the local dilatational sites <strong>and</strong> by the<br />

locally most competent lithological units. For many<br />

Pahtavaara Gold M<strong>in</strong>e<br />

Nicole L. Patison<br />

Agnico-Eagle F<strong>in</strong>l<strong>and</strong>, Kittilä, F<strong>in</strong>l<strong>and</strong><br />

V. Juhani Ojala<br />

Store Norske Gull AS, Longyearbyen, Norway<br />

Pasi Eilu<br />

Geological Survey of F<strong>in</strong>l<strong>and</strong>, Espoo, F<strong>in</strong>l<strong>and</strong><br />

Introduction<br />

Pahtavaara is an active <strong>gold</strong> m<strong>in</strong>e with a total <strong>in</strong> situ<br />

size estimate of 12.5 t <strong>gold</strong> (production + resource,<br />

as of January <strong>2011</strong>; F<strong>in</strong>nish M<strong>in</strong>istry of Employment<br />

<strong>and</strong> the Economy official statistics, Lappl<strong>and</strong><br />

Goldm<strong>in</strong>ers <strong>2011</strong>. Initial production took place dur<strong>in</strong>g1996–2000<br />

<strong>and</strong> the m<strong>in</strong>e was reopened <strong>in</strong> 2003<br />

(Eilu & Pankka 2009). The deposit is hosted by an<br />

altered komatiitic sequence at the eastern part of the<br />

Central Lapl<strong>and</strong> greenstone belt (Fig. 2 <strong>in</strong> Introduction<br />

<strong>and</strong> Fig. 4 below). It comprises of a swarm of<br />

subparallel lodes; nearly all <strong>gold</strong> is free native. It<br />

has many of the alteration characteristics of amphibolite-facies<br />

orogenic <strong>gold</strong> deposits <strong>and</strong> an obvious<br />

structural control, but has an anomalous barite-<strong>gold</strong><br />

lodes, part of the local control is <strong>in</strong>tersection of two<br />

faults or a fault along boundary between lithological<br />

units with contrast<strong>in</strong>g competence (Sorjonen-Ward<br />

et al. 2003, Holma & Ke<strong>in</strong>änen 2007, Patison 2007,<br />

Saalmann & Niiranen 2010). Fluid compositions<br />

(Billström et al. <strong>in</strong> press) suggest variable, mixed,<br />

orig<strong>in</strong>s for volatiles <strong>and</strong> metals with no obvious <strong>in</strong>dications<br />

of a local source. These features are present<br />

for both the <strong>gold</strong>-only <strong>and</strong> the anomalous metal<br />

association (typically Au-Cu) subtypes. Obvious<br />

IOCG-type deposits have been detected only <strong>in</strong> the<br />

westernmost F<strong>in</strong>nish Lapl<strong>and</strong>, <strong>in</strong> the western marg<strong>in</strong><br />

of the Central Lapl<strong>and</strong> greenstone belt. The IOCG<br />

deposits are covered by another field excursion of<br />

the <strong>IAGS</strong> congress <strong>and</strong>, hence, not discussed here.<br />

A possible exception to the orogenic type<br />

of <strong>gold</strong> m<strong>in</strong>eralisation with<strong>in</strong> the Central Lapl<strong>and</strong><br />

greenstone belt is represented by the Pahtavaara<br />

<strong>gold</strong> deposit. Pahtavaara has an anomalous barite<strong>gold</strong><br />

association <strong>and</strong> a very high f<strong>in</strong>eness (>99.5%<br />

Au) of the <strong>gold</strong>. Furthermore, the geometry of<br />

high-grade quartz-barite lenses <strong>and</strong> amphibole<br />

rock bodies relative to biotite-rich alteration zones<br />

is anomalous to an orogenic or an IOCG deposit.<br />

association <strong>and</strong> a very high f<strong>in</strong>eness (>99.5 % Au)<br />

of <strong>gold</strong> (Kojonen & Johanson 1988, Korkiakoski<br />

1992). The geometry of high-grade quartz-barite<br />

lenses <strong>and</strong> amphibole rock bodies relative to biotiterich<br />

alteration zones is also anomalous, as is the δ 13 C<br />

of alteration carbonate m<strong>in</strong>erals. Pahtavaara is best<br />

<strong>in</strong>terpreted as a metamorphosed seafloor alteration<br />

system with ore lenses as either carbonate- <strong>and</strong> barite-bear<strong>in</strong>g<br />

cherts or quartz-carbonate-barite ve<strong>in</strong>s<br />

(David Groves, pers. comm. 2006). The <strong>gold</strong> may<br />

have been <strong>in</strong>troduced later, but its gra<strong>in</strong> size, textural<br />

position (nearly all is free, native, <strong>and</strong> occurs<br />

with silicates, not sulphides) <strong>and</strong> high f<strong>in</strong>eness po<strong>in</strong>t<br />

to a pre-peak metamorphic tim<strong>in</strong>g which is highly<br />

anomalous for orogenic <strong>gold</strong>.<br />

Geology <strong>and</strong> hydrothermal alteration<br />

The follow<strong>in</strong>g description is extracted from<br />

Korkiakoski (1992) unless otherwise is <strong>in</strong>dicated.<br />

Pahtavaara <strong>gold</strong> m<strong>in</strong>e is hosted by the predom<strong>in</strong>antly<br />

pyroclastic Sattasvaara komatiite complex with<strong>in</strong><br />

the Sattasvaara Formation of the Central Lapl<strong>and</strong><br />

greenstone belt. There is no reliable radiometric age<br />

data of the volcanic rocks of the Sattasvaara Formation<br />

<strong>in</strong> F<strong>in</strong>l<strong>and</strong>, but one of its branches cont<strong>in</strong>ues far<br />

<strong>in</strong> northern Norway where Krill et al. (1985) have<br />

19


20<br />

reported a Sm-Nd age of 2085±85 Ma from the<br />

komatiites. The present m<strong>in</strong>eral compositions of<br />

the least altered komatiites are serpent<strong>in</strong>e-chloritetremolite-antophyllite<br />

<strong>and</strong> tremolite-antophyllite result<strong>in</strong>g<br />

from regional upper-greenschist facies metamorphism<br />

(Hulkki 1990, Korkiakoski 1992). The<br />

<strong>in</strong>tensely altered rocks form a subvertically dipp<strong>in</strong>g<br />

alteration doma<strong>in</strong> about 100 m x 500 m <strong>in</strong> horizontal<br />

extent (Fig. 5), comprised of two heterogeneous <strong>and</strong> <strong>in</strong>-<br />

Fig. 4. Geology around the Pahtavaara <strong>gold</strong> m<strong>in</strong>e, based on the current GTK digital bedrock<br />

database (compiled by Vesa Nykänen, GTK).<br />

tercalated lithological types: (1) biotite schists with<br />

talc-carbonate ± pyrite ± magnetite ve<strong>in</strong>s, <strong>and</strong> (2)<br />

coarse-gra<strong>in</strong>ed <strong>and</strong> non-schistose amphibole rocks<br />

with associated quartz±barite ve<strong>in</strong>s <strong>and</strong> pods. The<br />

ore <strong>and</strong> the <strong>in</strong>tensely altered rocks are with<strong>in</strong> a discont<strong>in</strong>uous,<br />

about 8 km long, generally E-W trend<strong>in</strong>g<br />

“skarn” zone characterised by the m<strong>in</strong>eral assemblage<br />

chlorite-calcite-talc-tremolite ± albite (Hulkki<br />

1990, K. Niiranen, pers. comm. 1998).


Fig. 5. Geological maps of the Pahtavaara M<strong>in</strong>e open pit (compiled by N. Patison <strong>in</strong> 2000). North up.<br />

21


22<br />

The least altered amphibole-chlorite schists correspond<br />

compositionally to Geluk-type (Korkiakoski<br />

1992) basaltic komatiites. The orig<strong>in</strong>al komatiitic<br />

nature of the altered rocks is <strong>in</strong>dicated by (1) the<br />

similarity <strong>in</strong> homogeneous immobile element ratios<br />

(Al/Ti) compared to those of less altered type, (2)<br />

m<strong>in</strong>eralogical <strong>and</strong> geochemical gradations between<br />

the types, <strong>and</strong> (3) similar REE patterns to those of<br />

the Sattasvaara komatiites.<br />

Mass balance calculations have shown that<br />

biotite schists have been enriched <strong>in</strong> CO 2, K, Fe, Au,<br />

Ba, S, W, Te, Sr, <strong>and</strong> Mn, <strong>and</strong> depleted <strong>in</strong> Mg, Ca,<br />

Co, Si, <strong>and</strong> Zn, accompanied by a 10–30 % decrease<br />

<strong>in</strong> net volume. Amphibole rocks record a marked <strong>in</strong>crease<br />

<strong>in</strong> volume, with ga<strong>in</strong>s <strong>in</strong> Ca, Si, Au, Na, Ba,<br />

Te, S, W, Sr <strong>and</strong> P, <strong>and</strong> losses <strong>in</strong> CO 2, Co, Mg, Fe<br />

<strong>and</strong> Zn.<br />

The two major altered rock types reflect two<br />

stages of hydrothermal alteration (Fig. 5) which, on<br />

the basis of textural <strong>and</strong> geochemical evidence, <strong>in</strong>clude:<br />

(1) earlier biotitisation (K alteration), <strong>and</strong> (2)<br />

later amphibole overgrowth (Ca-Si alteration). The<br />

former has been <strong>in</strong>terpreted to have taken place dur<strong>in</strong>g<br />

or immediately after the peak of regional metamorphism,<br />

<strong>and</strong> dur<strong>in</strong>g ductile deformation. Its distribution<br />

was controlled by a comb<strong>in</strong>ation of high<br />

permeability <strong>in</strong> the orig<strong>in</strong>ally pyroclastic komatiites,<br />

<strong>and</strong> NE-SW trend<strong>in</strong>g deformation zones. Later amphibole<br />

growth was related to the NNE-trend<strong>in</strong>g<br />

shear<strong>in</strong>g result<strong>in</strong>g <strong>in</strong> the formation of zones of dilation<br />

<strong>in</strong>to which hydrothermal fluids were focused<br />

under conditions straddl<strong>in</strong>g the brittle-ductile transition.<br />

Note, that this <strong>in</strong>terpretation of tim<strong>in</strong>g of alteration<br />

by Korkiakoski (1992) is <strong>in</strong> contrast to the<br />

recent suggestions of premetamorphic alteration described<br />

<strong>in</strong> the section Introduction, above.<br />

M<strong>in</strong><strong>in</strong>g<br />

The <strong>gold</strong> ore at Pahtavaara forms narrow lodes generally<br />

5–10 m wide, trend<strong>in</strong>g almost E-W <strong>and</strong> dipp<strong>in</strong>g<br />

northwards at about 70–80° (Fig. 6). For <strong>m<strong>in</strong><strong>in</strong>g</strong>,<br />

the ore has been divided <strong>in</strong>to the A+, A- <strong>and</strong> E-<br />

zones. The A- zone ores are characterised by biotitetalc<br />

breccias that are typically surrounded by a more<br />

massive tremolitic amphibole rock charac terised<br />

by irregular dilatational arrays of barite-carbonatequartz<br />

ve<strong>in</strong>s. The A+ zone conta<strong>in</strong>s abundant barite<br />

<strong>and</strong> the A- zone ve<strong>in</strong>s also typically conta<strong>in</strong> barite,<br />

<strong>in</strong> addition to quartz <strong>and</strong> carbonate. The E- zone<br />

comprises smaller lodes associated with quartz-carbonate-barite<br />

ve<strong>in</strong>s trend<strong>in</strong>g predom<strong>in</strong>antly E-W <strong>and</strong><br />

NNW-SSE. Presently, the ore is m<strong>in</strong>ed by sub-level<br />

cav<strong>in</strong>g (www.lappl<strong>and</strong><strong>gold</strong>m<strong>in</strong>ers.se). The only economically<br />

recoverable metal is <strong>gold</strong>, sulphides be<strong>in</strong>g<br />

relatively rare, with pyrite be<strong>in</strong>g the most abun-<br />

dant, compris<strong>in</strong>g about 1 % of the ore. Magnetite<br />

can constitute up to 5–10% of ore grade material,<br />

particularly <strong>in</strong> the biotite schists. Gold is free mill<strong>in</strong>g,<br />

occurs as discrete gra<strong>in</strong>s, highly variable <strong>in</strong> size,<br />

between silicate gra<strong>in</strong>s <strong>and</strong> along fracture surfaces;<br />

some 50–60 % of <strong>gold</strong> gra<strong>in</strong>s are less than 50 μm<br />

<strong>in</strong> diameter. In addition to pyrite <strong>and</strong> <strong>gold</strong>, trace<br />

amounts of chalcopyrite, rutile, chromite, haematite,<br />

pentl<strong>and</strong>ite, pyrrhotite, violarite, millerite, cubanite,<br />

<strong>gold</strong>, clausthalite, merenskyite have been detected <strong>in</strong><br />

the ore (Hulkki 1990, Korkiakoski 1992, Kojonen &<br />

Johanson 1988).<br />

As the <strong>gold</strong> occurs <strong>in</strong> free gra<strong>in</strong>s, concentration<br />

can take place us<strong>in</strong>g a gravity circuit <strong>and</strong> a flotation<br />

circuit, as described <strong>in</strong> the Lappl<strong>and</strong> Goldm<strong>in</strong>ers<br />

web page (www.lappl<strong>and</strong><strong>gold</strong>m<strong>in</strong>ers.se): “The<br />

ore is first crushed <strong>and</strong> then ground down <strong>in</strong>to a 1.5<br />

mm gra<strong>in</strong> size. This f<strong>in</strong>ely-ground material goes<br />

through a cyclone, where heavier material cont<strong>in</strong>ues<br />

on to a cone separator. Then the material cont<strong>in</strong>ues<br />

through a magnetic separator <strong>and</strong> spiral separators<br />

before com<strong>in</strong>g out onto the concentrat<strong>in</strong>g table. The<br />

lighter material cont<strong>in</strong>ues after the cyclone to a flotation<br />

circuit. The f<strong>in</strong>al product is three different concentrates:<br />

gravitation concentrate, middl<strong>in</strong>g concentrate<br />

<strong>and</strong> flotation concentrate. Concentration has a<br />

capacity of 1,500 tons of raw ore/day.”<br />

Fig. 6. Open pits (brown), underground drives (blue) <strong>and</strong> ore<br />

bodies as of December 2010 <strong>in</strong> the Pahtavaara <strong>gold</strong> m<strong>in</strong>e. View<br />

to the NE. Image courtesy Lappl<strong>and</strong> Goldm<strong>in</strong>ers AB.


Mustajärvi (Ahvenjärvi)<br />

regolith <strong>gold</strong> project<br />

Pasi Eilu (GTK)<br />

Geological sett<strong>in</strong>g<br />

Mustajärvi (Fig. 7) is a Palaeoproterozoic orogenic<br />

<strong>gold</strong> occurrence <strong>in</strong> the marg<strong>in</strong> of the Virttiövaara<br />

Formation of the Vuojärvi Group rocks of the Central<br />

Lapl<strong>and</strong> greenstone belt. It is characterised by<br />

carbonate-quartz <strong>and</strong> tourmal<strong>in</strong>e-carbonate-quartz<br />

ve<strong>in</strong>s <strong>in</strong> albitised schists. The host rocks are metamorphosed<br />

to lower- or mid-greenschist facies. The<br />

occurrence is controlled by a NE-trend<strong>in</strong>g shear<br />

zone possibly branch<strong>in</strong>g from the WNW-trend<strong>in</strong>g<br />

Sirkka shear zone (V.J. Ojala, pers. comm. <strong>2011</strong>).<br />

Native <strong>gold</strong> is present <strong>in</strong> quartz ve<strong>in</strong>s <strong>and</strong> their alteration<br />

haloes. Deposit is covered by few metres<br />

of glacial overburden which has ore grades <strong>in</strong><br />

places. Top of the m<strong>in</strong>eralisation is oxidised for a<br />

few metres <strong>and</strong> supergene enrichment has occurred<br />

<strong>in</strong> weathered bedrock (saprock) with grades up to<br />

tens of grams Au (H. Siitonen pers com. <strong>2011</strong>).<br />

Fig. 7. Geology around the Mustajärvi <strong>gold</strong> occurrence <strong>in</strong> the central parts of the Sirkka shear zone, Central Lapl<strong>and</strong><br />

greenstone belt. The Mustajärvi occurrence is at 67.609°N, 25.3009°E (WGS84). Geological map is derived on the<br />

current GTK digital bedrock map database.<br />

23


24<br />

Exploration<br />

The first <strong>in</strong>dication of <strong>gold</strong> <strong>in</strong> the area, detcetd <strong>in</strong> late<br />

1980’s, was an Au anomaly <strong>in</strong> regional reconnais-<br />

sance survey by GTK. This led Outokumpu to the<br />

area <strong>in</strong> 1990. The Outokumpu <strong>exploration</strong> effort <strong>in</strong>cluded<br />

detailed heavy m<strong>in</strong>eral <strong>and</strong> geochemical survey<br />

on till, ground magnetic <strong>and</strong> IP survey, trench<strong>in</strong>g<br />

<strong>and</strong> diamond drill<strong>in</strong>g (Hugg 1996). The drill<strong>in</strong>g campaign<br />

<strong>in</strong>cluded 12 holes, <strong>in</strong> total of 706 m, <strong>and</strong> led to<br />

the discovery of the occurrence <strong>in</strong> 1991. Even though<br />

“up to several tens of ppm Au <strong>in</strong> short <strong>in</strong>tercepts <strong>in</strong><br />

fresh bedrock <strong>and</strong> <strong>in</strong> the regolith” was detected, <strong>exploration</strong><br />

did not show <strong>in</strong>dications of a larger occurrence,<br />

<strong>and</strong> Outokumpu gave up the tenement by 1996<br />

(Hugg 1996). Best section <strong>in</strong>tercepted was 2.7 m @<br />

14.6 ppm Au (Korkalo 2006). No further <strong>exploration</strong><br />

of the primary bedrock m<strong>in</strong>eralisation has been<br />

performed at Mustajärvi or its immediate vic<strong>in</strong>ity.<br />

Kittilä m<strong>in</strong>e (Suurikuusikko deposit)<br />

Nicole L. Patison<br />

Agnico-Eagle F<strong>in</strong>l<strong>and</strong>, Kittilä, F<strong>in</strong>l<strong>and</strong><br />

Introduction<br />

The orogenic Suurikuusikko <strong>gold</strong> deposit is with<strong>in</strong><br />

the Palaeoproterozoic Central Lapl<strong>and</strong> greenstone<br />

belt, approximately 50 km northeast of the town of<br />

Kittilä <strong>in</strong> F<strong>in</strong>nish Lapl<strong>and</strong> (Fig. 2 <strong>in</strong> the <strong>in</strong>troduction<br />

of this excursion guide). The host rocks, tim<strong>in</strong>g<br />

of ore formation relative to regional deformation,<br />

metamorphic grade, alteration assemblages<br />

present, <strong>and</strong> structurally controlled nature of the<br />

deposit make it analogous to better known deposits<br />

<strong>in</strong> greenstone belts throughout the world (e.g., Yilgarn<br />

of Australia <strong>and</strong> Superior Prov<strong>in</strong>ce of Canada).<br />

At Suurikuusikko, the <strong>gold</strong> is refractory, occurr<strong>in</strong>g<br />

with<strong>in</strong> arsenopyrite (>70 %) <strong>and</strong> arsenian pyrite as<br />

lattice-bound <strong>gold</strong> or sub-microscopic <strong>in</strong>clusions.<br />

A <strong>m<strong>in</strong><strong>in</strong>g</strong> operation at Suurikuusikko, the<br />

Kittilä M<strong>in</strong>e, started <strong>in</strong> 2008 then target<strong>in</strong>g a <strong>gold</strong> resource<br />

of 16 million tonnes (2.6 million ounces) averag<strong>in</strong>g<br />

5.1 g/t <strong>gold</strong> (Agnico-Eagle 2007). Until the<br />

end of 2010, 2 Mt of ore was m<strong>in</strong>ed <strong>and</strong> more than 6<br />

t of <strong>gold</strong> produced. The present proven <strong>and</strong> probable<br />

<strong>gold</strong> reserves total approximately 4.9 million ounces<br />

from 32.7 million tonnes grad<strong>in</strong>g 4.6 g/t (Agnico-<br />

Eagle <strong>2011</strong>). Ore <strong>in</strong>tersections have very even grade<br />

distribution due to the ‘dissem<strong>in</strong>ated sulphide-like’<br />

nature of the ore. Table 2 shows examples of typical<br />

M<strong>in</strong><strong>in</strong>g<br />

Glacial overburden <strong>and</strong> weathered bedrock part of<br />

the Mustajärvi deposit has been exploited <strong>in</strong>termittently,<br />

<strong>in</strong> a small scale, s<strong>in</strong>ce 2002 by the company<br />

Gold M<strong>in</strong>e Siitonen & Saiho AY. Unweathered ore<br />

has not been m<strong>in</strong>ed. No resource estimate is available<br />

from the occurrence.<br />

Table 2. Kittilä M<strong>in</strong>e.<br />

Examples of <strong>gold</strong> <strong>in</strong>tercepts from drill core.<br />

Zone Drill hole M<strong>in</strong>eralised Averaged<br />

number section grade of<br />

legnth (m) section<br />

g/t (Au)<br />

Ketola 02114 6.40 4.20<br />

Ketola 02107 7.00 11.10<br />

Ketola 02107 3.20 7.10<br />

Ketola 02104 10.70 4.00<br />

Etelä R407 7.00 7.50<br />

Etelä 01802 5.60 8.60<br />

Etelä 02039 8.10 9.50<br />

Ma<strong>in</strong> R473 14.00 10.40<br />

Ma<strong>in</strong> R504 10.80 9.10<br />

Ma<strong>in</strong> 00717 14.30 10.60<br />

Ma<strong>in</strong> R478 18.20 5.10<br />

Ma<strong>in</strong> 99002 18.20 16.50<br />

Ma<strong>in</strong> R479 26.80 17.30<br />

Ma<strong>in</strong> 00730 18.90 9.10<br />

Ma<strong>in</strong> 98004 29.60 11.90<br />

Ma<strong>in</strong> 00903 46.20 8.90<br />

ore <strong>in</strong>tercepts <strong>in</strong> drill core. The deposit still is open<br />

along strike at both ends, <strong>and</strong> at depth; presently, the<br />

deepest ore-grade <strong>in</strong>tersection (6 m @ 9.5 g/t Au) is<br />

about 1200 m below the surface (Agnico-Eagle <strong>2011</strong>).<br />

Exploration history<br />

Visible <strong>gold</strong> was discovered SSW of Suurikuusikko<br />

by the Geological Survey of F<strong>in</strong>l<strong>and</strong> (GTK) <strong>in</strong> 1986<br />

(Härkönen & Ke<strong>in</strong>änen 1989). Subsequent groundgeophysical<br />

surveys <strong>and</strong> geochemical sampl<strong>in</strong>g<br />

lead to the identification of the Kiistala Shear Zone<br />

(KiSZ), the deposit’s host structure. Suurikuusikko


was discovered <strong>in</strong> 1986 dur<strong>in</strong>g diamond drill<strong>in</strong>g by<br />

GTK. A total of 77 diamond drill holes (9,320 metres)<br />

were completed by GTK, outl<strong>in</strong><strong>in</strong>g a resource<br />

of 1.5 Mt with an average grade of 5.9 g/t (285,000<br />

ounces of <strong>gold</strong>) by 1997 (Parkk<strong>in</strong>en 1997). In April<br />

1998, the deposit was acquired by Riddarhyttan<br />

Resources AB <strong>and</strong> the company’s <strong>exploration</strong> activities<br />

<strong>in</strong>creased the resource size to over 2 million<br />

ounces of <strong>gold</strong> (Bartlett 2002). Ore-grade m<strong>in</strong>eralisation<br />

was found over a five-kilometre strike length<br />

of the KiSZ <strong>in</strong> similar structural <strong>and</strong> stratigraphic<br />

positions. M<strong>in</strong>e feasibility studies on Suurikuusikko<br />

began <strong>in</strong> w<strong>in</strong>ter 2000. In 2004, Agnico-Eagle<br />

M<strong>in</strong>es Limited acquired a 14 % ownership <strong>in</strong>terest<br />

<strong>in</strong> Riddarhyttan, <strong>and</strong> <strong>in</strong> 2005 acquired the rema<strong>in</strong><strong>in</strong>g<br />

Riddarhyttan shares. In June 2006, a decision<br />

was made to beg<strong>in</strong> m<strong>in</strong>e development. The Kittilä<br />

M<strong>in</strong>e achieved commercial production <strong>in</strong> May 2009.<br />

Geology<br />

Fig. 8. Geology <strong>in</strong> the vic<strong>in</strong>ity of the Kittilä M<strong>in</strong>e <strong>and</strong> KiSZ.<br />

Geological map is derived on the current GTK digital bedrock map database.<br />

Suurikuusikko occurs with<strong>in</strong> greenschist-facies<br />

metavolcanic rocks of the ca. 2.0 Ga Kittilä Group<br />

(Fig. 8; Lehtonen et al. 1998). Geochemical heterogeneity<br />

among the Kittilä Group rocks has been<br />

<strong>in</strong>terpreted to <strong>in</strong>dicate that the Group is a composite<br />

of arc terranes <strong>and</strong> oceanic plateaux amalgamated<br />

dur<strong>in</strong>g oceanic convergence (Hanski & Huhma<br />

2005). Significant variations <strong>in</strong> metamorphic<br />

grade with<strong>in</strong> the Group also suggest that a number<br />

of dist<strong>in</strong>ct lithological elements could be present<br />

with<strong>in</strong> the area currently mapped as Kittilä Group,<br />

<strong>and</strong> seismic surveys across central Lapl<strong>and</strong> <strong>in</strong>dicate<br />

a number of dist<strong>in</strong>ct crustal blocks (Patison et<br />

al. 2006b). The maximum current thickness of the<br />

Kittilä Group is between six <strong>and</strong> seven kilometres<br />

(Luosto et al. 1989) <strong>in</strong> the Kittilä M<strong>in</strong>e area.<br />

25


26<br />

The m<strong>in</strong>eralisation typically occurs <strong>in</strong> a transitional<br />

formation between two thick (several 100 metres)<br />

mafic lava sequences (Figs. 9 <strong>and</strong> 10). The N- to<br />

NNE-trend<strong>in</strong>g host structure (KiSZ) for the deposit<br />

co<strong>in</strong>cides with this contact between western <strong>and</strong><br />

eastern lava packages. In the area of the ‘Ma<strong>in</strong>’ ore<br />

zone, host rocks change from mafic pillow <strong>and</strong> massive<br />

lavas west of the m<strong>in</strong>eralised zones to mafic<br />

transitional to <strong>in</strong>termediate lavas (<strong>and</strong>esite flows of<br />

Powell 2001) <strong>and</strong> m<strong>in</strong>or pyroclastic material with<strong>in</strong><br />

m<strong>in</strong>eralised zones. Graphitic sedimentary <strong>in</strong>tercalations<br />

conta<strong>in</strong><strong>in</strong>g chert, argillitic material <strong>and</strong> BIF occur<br />

with<strong>in</strong> the mafic volcanic sequence at the eastern<br />

marg<strong>in</strong> of m<strong>in</strong>eralised zones, followed further east by<br />

mafic lava packages <strong>and</strong> ultramafic volcanic rocks.<br />

The extent of <strong>in</strong>termediate <strong>and</strong> felsic rock compositions<br />

<strong>in</strong> the deposit is presently under <strong>in</strong>vestigation.<br />

The variation <strong>in</strong> appearance (<strong>and</strong> hence the logg<strong>in</strong>g<br />

<strong>and</strong> mapp<strong>in</strong>g term<strong>in</strong>ology for rock compositions<br />

used here) may also alternatively result from progressive<br />

alteration of mafic rocks. Most ore is hosted<br />

by mafic rocks <strong>and</strong> those mapped as <strong>in</strong>termediate or<br />

felsic volcanic rocks. Metasedimentary units <strong>in</strong>clud<strong>in</strong>g<br />

BIF typically have low to no <strong>gold</strong> grade, <strong>and</strong> the<br />

ultramafic rocks are unm<strong>in</strong>eralised.<br />

Fig. 9. Total magnetic field (left) <strong>and</strong> electromagnetic (sl<strong>in</strong>gram out-of-phase, right) images for the southern part of the Suurikuusikko<br />

area, <strong>in</strong> 200 m grid. The blue colour represents magnetic lows <strong>and</strong> conductivity highs <strong>in</strong> figures on left <strong>and</strong> right, respectively. Names<br />

refer to <strong>in</strong>dividual ore zones.


Fig. 10. Pit map from Suurikuusikko show<strong>in</strong>g the ma<strong>in</strong> rock types <strong>and</strong> structures, <strong>in</strong> 10 m grid (after Patison et al. 2006b). The grade<br />

estimates shown are visual estimates based on arsenopyrite abundance. Exposure of the deposit prior to 2007 was limited ma<strong>in</strong>ly to<br />

the two pits shown <strong>in</strong> this figure.<br />

27


28<br />

Orogenic events relat<strong>in</strong>g to CLGB development<br />

generated several phases of deformation. The earliest<br />

deformation phases preserved (D1, D2) <strong>in</strong>volved<br />

roughly synchronous N- to NNE- <strong>and</strong> S- to SWdirected<br />

thrust<strong>in</strong>g at the southern <strong>and</strong> northeastern<br />

marg<strong>in</strong>s of the CLGB (Ward et al. 1989). Northwest-,<br />

N-, <strong>and</strong> NE-trend<strong>in</strong>g D3 strike-slip shear zones, <strong>in</strong>clud<strong>in</strong>g<br />

the KiSZ host<strong>in</strong>g the Suurikuusikko deposit,<br />

cut early fold<strong>in</strong>g <strong>and</strong> thrust<strong>in</strong>g, but may also reflect<br />

reactivation of older structures. Post-D3 events are<br />

limited to brittle, low-displacement faults.<br />

Representative structural data for the deposit<br />

are shown <strong>in</strong> Fig. 11. The Kiistala Shear Zone<br />

has a strike length of at least 25 kilometres (Fig. 8).<br />

The dip of this shear zone <strong>in</strong> the Suurikuusikko area<br />

is steeply east to sub-vertical (Figs. 11b <strong>and</strong> 11c).<br />

Known m<strong>in</strong>eralisation occurs with<strong>in</strong> N-trend<strong>in</strong>g <strong>and</strong><br />

less frequently NE-trend<strong>in</strong>g (e.g., Ketola ore bodies,<br />

Fig. 9) shear zone segments. The KiSZ is a complex<br />

structure, record<strong>in</strong>g several phases of movement.<br />

Most deformation has occurred by flatten<strong>in</strong>g accompanied<br />

by some strike-slip movement. Aeromagnet<br />

ic images of the KiSZ <strong>in</strong>dicate early s<strong>in</strong>istral strikeslip<br />

movement along the zone. Immediately above<br />

the widest m<strong>in</strong>eralised zones, late dextral strike-slip<br />

movements are recorded on shear planes bound<strong>in</strong>g<br />

m<strong>in</strong>eralised zones. It is not yet clear if the tim<strong>in</strong>g of<br />

m<strong>in</strong>eralisation co<strong>in</strong>cides with a comb<strong>in</strong>ation of early<br />

<strong>and</strong> late shear<strong>in</strong>g or only to the later dextral shear<strong>in</strong>g<br />

event which now del<strong>in</strong>eates the limits of <strong>gold</strong> m<strong>in</strong>eralisation<br />

<strong>in</strong> most ore zones. An apparent correlation<br />

exists between po<strong>in</strong>ts of more <strong>in</strong>tense shear<strong>in</strong>g<br />

with<strong>in</strong> the KiSZ <strong>and</strong> the amount of <strong>gold</strong> present <strong>in</strong><br />

host rocks (Fig. 12).<br />

The envelopes of ore bodies strike N <strong>and</strong><br />

have a moderate N plunge. The control on the northerly<br />

plunge is not completely resolved: factors to be<br />

explored <strong>in</strong>clude the role of <strong>in</strong>tersections between<br />

multiple shear planes, <strong>and</strong> of the <strong>in</strong>tersections of<br />

depositional surfaces <strong>and</strong> shear planes. The orientation<br />

of regional fold axes (similar to axes <strong>in</strong> Fig.<br />

11a) may also have a role <strong>in</strong> deter<strong>m<strong>in</strong><strong>in</strong>g</strong> favourable<br />

sites for m<strong>in</strong>eralisation dur<strong>in</strong>g shear<strong>in</strong>g. Sulphides<br />

<strong>and</strong> host rocks show some evidence for deformation<br />

relat<strong>in</strong>g to post-m<strong>in</strong>eralisation movements on host<br />

shear planes. Post-m<strong>in</strong>eralisation brittle faults crosscut<br />

m<strong>in</strong>eralised zones but are not known to cause<br />

significant displacement of ore lenses.<br />

Fig. 11. These stereoplots show the orientations of deformation features observed for Suurikuusikko (ordered from oldest to youngest).<br />

Figure 11a, top left, shows bedd<strong>in</strong>g (dots), the trend of the typical regional foliation (l<strong>in</strong>es) formed prior to movements of the KiSZ<br />

related to m<strong>in</strong>eralisation, <strong>and</strong> fold axes measured <strong>in</strong> the deposit area (stars). Figures 11b (top right) <strong>and</strong> 11c (bottom left) show the<br />

orientation of the ‘graphitic’ shear zones (e.g., Figure 10) associated with the KFZ <strong>and</strong> ore zones. Figure 11d (bottom right), shows<br />

the common orientation of post-m<strong>in</strong>eralisation faults, although NE- (e.g., Fig. 11a) <strong>and</strong> E-strik<strong>in</strong>g faults <strong>and</strong> ve<strong>in</strong>s are also seen. Plots<br />

are lower hemisphere projections on equal area nets; po<strong>in</strong>t symbols are poles to planes with frequency contours, stars <strong>in</strong> Figure 11a are<br />

plung<strong>in</strong>g l<strong>in</strong>es; l<strong>in</strong>es are planes). Plots after Patison et al. (2006b) <strong>and</strong> Patison (2001).


Fig. 12. These figures show 3D solid geology models for the deposit completed<br />

<strong>in</strong> 2004 (Patison 2006b). In both figures the coloured solids are assay-based<br />

ore solids for <strong>gold</strong> grade (≥ 1 g/t Au). The brown solid is a solid of the host<br />

shear zone constructed to show zones were deformation <strong>in</strong>tensity is highest.<br />

Figure on right (near plan view with slight N plunge) <strong>and</strong> figure above (vertical<br />

section) show the shear-bound nature of the ore zones. Sheared bedd<strong>in</strong>g<br />

contacts which are also m<strong>in</strong>eralised (unm<strong>in</strong>eable grades at the time of model<br />

creation) are illustrated by the moderately east-dipp<strong>in</strong>g solids. Truncation by<br />

cross faults is also evident <strong>in</strong> the plan view figure.<br />

29


30<br />

Alteration <strong>in</strong> <strong>and</strong> around the deposit appears typical<br />

for deposits of this type. Visually, <strong>in</strong>tense carbonate<br />

<strong>and</strong> albite alteration are associated with <strong>gold</strong>-rich arsenopyrite<br />

<strong>and</strong> pyrite. Albite occurs as a matrix overpr<strong>in</strong>t<br />

that typically extends less than two metres <strong>in</strong>to<br />

barren rock, <strong>and</strong> as brecciat<strong>in</strong>g micro ve<strong>in</strong>lets. Barren<br />

carbonate alteration <strong>in</strong>cludes distal calcite ve<strong>in</strong>s,<br />

<strong>and</strong> dolomite/ankerite ve<strong>in</strong>s <strong>and</strong> <strong>in</strong>fill<strong>in</strong>g tectonic<br />

<strong>and</strong>/or hydrothermal breccia proximal <strong>and</strong> with<strong>in</strong> ore<br />

zones, respectively. Table 3 presents a summary of<br />

progressive alteration of mafic pillow lavas. Absent<br />

form this table is amorphous carbon. The abundance<br />

of this ‘graphitic’ carbon correlates with the <strong>in</strong>tense<br />

shear<strong>in</strong>g that bounds most m<strong>in</strong>eralised zones. The<br />

presence of such carbon suggests extremely reduc<strong>in</strong>g<br />

fluid conditions dur<strong>in</strong>g shear<strong>in</strong>g <strong>and</strong> possibly<br />

m<strong>in</strong>eralisation. Gold-bear<strong>in</strong>g sulphides commonly<br />

nucleated on shear planes, stylolitic cleavage,<br />

<strong>and</strong> fractures bear<strong>in</strong>g amorphous carbon (Fig. 13).<br />

Carbon isotope data <strong>in</strong>dicates that this material is<br />

sourced from carbon-rich sediments with<strong>in</strong> the host<br />

sequence (Patison, unpublished data). Argillite-rich<br />

units <strong>in</strong>tercalated with volcaniclastic material have<br />

high primary carbon contents, <strong>and</strong> may have been<br />

chemically important for localis<strong>in</strong>g <strong>gold</strong>-rich phases<br />

given the association between amorphous carbon<br />

<strong>and</strong> m<strong>in</strong>eralisation. Other alteration <strong>and</strong> ore m<strong>in</strong>eral<br />

phases <strong>in</strong>clude rutile <strong>and</strong> less abundant sericite,<br />

tetrahedrite, chalcopyrite, gersdorffite, chalcocite,<br />

sphalerite, bornite, chromite, galena, talnakhite, <strong>and</strong><br />

Fe-hydroxides (the latter produced by weather<strong>in</strong>g) <strong>in</strong><br />

vary<strong>in</strong>g abundances (Chernet et al. 2000).<br />

Table 3. Alteration m<strong>in</strong>erals present <strong>in</strong> progressively altered mafic pillow lava. The data used are modal weight percentages of m<strong>in</strong>eral<br />

phases calculated us<strong>in</strong>g M<strong>in</strong>eral Liberation Analysis data collected at GTK. The thickness of l<strong>in</strong>e is proportional to the relative volume<br />

of each m<strong>in</strong>eral present <strong>in</strong> the sample. A mafic pillow lava sequence was used for this example to ensure a constant rock type, although<br />

pillow lavas do not host significant volumes of ore. The ‘felsic’ m<strong>in</strong>eralised sample is <strong>in</strong>cluded for comparison <strong>and</strong> may, <strong>in</strong> fact, be the<br />

most altered end-member of a mafic rock alteration sequence.<br />

Alteration Zone Distal Intermediate Proximal / Ore Ore Ore<br />

Rock type Mafic Mafic Mafic Mafic ‘Felsic’<br />

pillow lava pillow lava pillow lava pillow lava<br />

Sample F5-001 F5-007 00404 189.90 F5-003 F5-002<br />

SILICATES<br />

Act<strong>in</strong>olite<br />

Epidote<br />

Titanite<br />

Chlorite<br />

Muscovite<br />

Albite<br />

Microcl<strong>in</strong>e<br />

Plagioclase<br />

Cl<strong>in</strong>opyroxene (matrix)<br />

Quartz<br />

CARBONATES<br />

Calcite<br />

Dolomite<br />

PHOSPHATES<br />

Apatite<br />

OXIDES<br />

Rutile<br />

SULPHIDES<br />

Arsenopyrite<br />

Pyrite<br />

Pyrrhotite<br />

GOLD GRADE (g/t) 0 0 5.16 3.3 8.71


The <strong>gold</strong>-rich sulphides appear to have a late tim<strong>in</strong>g<br />

with<strong>in</strong> the paragenetic sequence. The majority (71<br />

%) of <strong>gold</strong> occurs with<strong>in</strong> arsenopyrite, <strong>and</strong> visible<br />

arsenopyrite is a reliable <strong>in</strong>dication of the presence<br />

of <strong>gold</strong> with<strong>in</strong> samples. Rema<strong>in</strong><strong>in</strong>g <strong>gold</strong> occurs <strong>in</strong> arsenian<br />

pyrite (22 % of <strong>gold</strong>), <strong>and</strong> <strong>in</strong>frequently as free<br />

<strong>gold</strong> (Kojonen & Johanson 1999). Sub-microscopic<br />

<strong>gold</strong> is found as <strong>in</strong>clusions or solid-solution lattice<br />

substitutions with<strong>in</strong> arsenopyrite <strong>and</strong> pyrite (Chernet<br />

et al. 2000). Gold as <strong>in</strong>clusions is common <strong>in</strong> pyrite<br />

but rare <strong>in</strong> arsenopyrite (typical gra<strong>in</strong> size from


32<br />

Hanhimaa <strong>gold</strong> project<br />

Matti Talikka<br />

Polar M<strong>in</strong><strong>in</strong>g, Espoo, F<strong>in</strong>l<strong>and</strong><br />

Pasi Eilu<br />

Geological Survey of F<strong>in</strong>l<strong>and</strong>, Espoo, F<strong>in</strong>l<strong>and</strong><br />

Dragon M<strong>in</strong><strong>in</strong>g holds ground along the Hanhimaa<br />

shear zone (HSZ) <strong>in</strong> the Central Lapl<strong>and</strong> greenstone<br />

belt. The HSZ is located 10 km to the west of, <strong>and</strong><br />

parallel to, the Kiistala shear zone, which hosts<br />

the Kittilä <strong>gold</strong> m<strong>in</strong>e (Fig. 14). So far, three <strong>gold</strong><br />

occurrences, Kiimalaki, Kellolaki <strong>and</strong> Kiimakuusikko,<br />

have been identified <strong>in</strong> the northern portion of the<br />

HSZ, whereas a number of <strong>gold</strong> <strong>in</strong>dications rema<strong>in</strong><br />

untested throughout the Hanhimaa project area.<br />

The <strong>gold</strong> potential of the Hanhimaa area was first<br />

identified <strong>in</strong> 2002 by Outokumpu when <strong>in</strong>dications<br />

of <strong>gold</strong> were found through till-geochemical survey<br />

<strong>and</strong> trench<strong>in</strong>g (Dragon M<strong>in</strong><strong>in</strong>g <strong>2011</strong>a). S<strong>in</strong>ce then,<br />

three <strong>gold</strong> prospects have been located with<strong>in</strong> the<br />

100–200 m wide doma<strong>in</strong> of strongly sheared <strong>and</strong><br />

hydrothermally altered rocks, <strong>in</strong> the northern part<br />

of the more than 20 kilometre long, north-south<br />

trend<strong>in</strong>g HSZ. S<strong>in</strong>ce 2003, 5.5 km of diamond drill<strong>in</strong>g<br />

has been completed <strong>in</strong> the Kiimalaki, Kellolaki<br />

<strong>and</strong> Kiimakuusikko occurrences at shallow depths.<br />

Fig. 14. Location of the Hanhimaa shear zone, metal m<strong>in</strong>es,<br />

drill<strong>in</strong>g-<strong>in</strong>dicated <strong>gold</strong> occurrences, <strong>and</strong> <strong>exploration</strong> projects by<br />

Dragon M<strong>in</strong><strong>in</strong>g (red labels) <strong>in</strong> the region (www.dragon-<strong>m<strong>in</strong><strong>in</strong>g</strong>.<br />

com.au). Pale yellow doma<strong>in</strong>s <strong>in</strong>dicate major m<strong>in</strong>eralised shear<br />

zones; green <strong>and</strong> grey l<strong>in</strong>es conta<strong>in</strong> roads. North up.


Geological sett<strong>in</strong>g<br />

The bedrock of the Hanhimaa region comprises<br />

metavolcanic <strong>and</strong> metasedimentary rocks of the<br />

Kittilä Group of the Central Lapl<strong>and</strong> Greenstone<br />

Belt (Fig. 15). A major north-south trend<strong>in</strong>g, subvertical<br />

structural feature, which extends over 20<br />

kilometres <strong>in</strong> length, the HSZ, runs parallel to the<br />

Kiistala Shear Zone 10 kilometres to the east. The<br />

HSZ probably provided a conduit for an extensive<br />

fluid system, which lead to the formation of the vast<br />

hydrothermally altered doma<strong>in</strong>(s) <strong>and</strong> the m<strong>in</strong>eralis<strong>in</strong>g<br />

event(s).<br />

The hydrothermally altered doma<strong>in</strong> is known<br />

to follow the strike of the HSZ over several kilometres.<br />

The Kiimakuusikko, Kiimalaki <strong>and</strong> Kellolaki<br />

<strong>gold</strong> occurrences are hosted by a 100–300 m wide<br />

doma<strong>in</strong> of strongly sheared, multiply altered, greenstones<br />

<strong>and</strong> felsic dykes <strong>in</strong> the northern part of the HSZ<br />

(Dragon M<strong>in</strong><strong>in</strong>g <strong>2011</strong>a, <strong>2011</strong>b, Saalmann & Niiranen<br />

2010). The occurrences display the characteristic<br />

alteration assemblage (chlorite-carbonate-sericite),<br />

quartz ve<strong>in</strong><strong>in</strong>g (Fig. 16) <strong>and</strong> associated m<strong>in</strong>eralogy<br />

(Kiimalaki: pyrite with m<strong>in</strong>or arsenopyrite <strong>and</strong> chalcopyrite)<br />

of a structurally-controlled orogenic <strong>gold</strong><br />

m<strong>in</strong>eralised system that formed under lower- to midgreenschist<br />

facies conditions (Kämärä<strong>in</strong>en <strong>2011</strong>). At<br />

Kiimakuusikko, the ore m<strong>in</strong>erals detected <strong>in</strong>clude<br />

arsenopyrite, chalcopyrite, pyrite, pyrrhotite, galena,<br />

sphalerite <strong>and</strong> stibnite (Kämärä<strong>in</strong>en <strong>2011</strong>) <strong>in</strong>dicat<strong>in</strong>g<br />

an anomalous metal association for the orogenic<br />

<strong>gold</strong> occurrence.<br />

Fig. 16. High-grade <strong>gold</strong> m<strong>in</strong>eralisation <strong>in</strong> quartz-carbonate ve<strong>in</strong><br />

<strong>in</strong> an <strong>exploration</strong> trench at Kellolaki. Field of view about 30 cm.<br />

Photo Pasi Eilu (GTK).<br />

Fig. 15. Geology around <strong>and</strong> the drill<strong>in</strong>g-<strong>in</strong>dicated <strong>gold</strong> occurrences<br />

<strong>in</strong> the HSZ (www.dragon-<strong>m<strong>in</strong><strong>in</strong>g</strong>.com.au).<br />

33


34<br />

Exploration<br />

Extensive regional geophysical <strong>and</strong> geochemical<br />

surveys have lead to the discovery of the three <strong>gold</strong><br />

occurrences over a 6 km strike length (Figs. 17–19).<br />

All occurrences are open along strike <strong>and</strong> at depth.<br />

At Kiimalaki, the subvertical <strong>gold</strong>-enriched zone lies<br />

<strong>in</strong> the centre of the hydrothermally altered doma<strong>in</strong>,<br />

cont<strong>in</strong>ues at least 250 m along strike <strong>and</strong> is open at<br />

depth. The best diamond-drill <strong>in</strong>tercepts obta<strong>in</strong>ed <strong>in</strong>clude<br />

11.70 m @ 4.48 g/t, 7.50 m @ 5.88 g/t, <strong>and</strong><br />

5.00 m @ 5.96 g/t Au. At Kellolaki, a profile of<br />

seven diamond drill holes across the hydrothermally<br />

altered doma<strong>in</strong> <strong>in</strong>tersected several-<strong>gold</strong> m<strong>in</strong>eralised<br />

zones return<strong>in</strong>g 8.00 m @ 1.95 g/t <strong>and</strong> 8.55 m @<br />

1.51 g/t Au. Six out of eight diamond drill holes at<br />

Kiimakuusikko returned significant <strong>gold</strong> grades, the<br />

best <strong>in</strong>tercept be<strong>in</strong>g 3.45 m @ 3.94 g/t Au. In addition,<br />

grab samples from <strong>exploration</strong> trenches at<br />

Kiimakuusikko have returned up to 3.82 g/t Au, 954<br />

g/t Ag, 0.36 % Cu, 8.09 % Pb, 0.42 % Zn <strong>and</strong> 1.97<br />

% Sb (Dragon M<strong>in</strong><strong>in</strong>g <strong>2011</strong>a). Such a metal association<br />

may suggest a syngenetic(?) base-metal m<strong>in</strong>eralisation<br />

overpr<strong>in</strong>ted by an orogenic <strong>gold</strong> system. In<br />

any case, the peak silver <strong>and</strong> base-metal contents are<br />

ma<strong>in</strong>ly <strong>in</strong> late quartz-carbonate ve<strong>in</strong>s.<br />

The discovery of the Kiimakuusikko <strong>gold</strong><br />

occurrence <strong>in</strong> 2008 underl<strong>in</strong>es the further potential<br />

for <strong>gold</strong> m<strong>in</strong>eralisation along the HSZ. Geochemical<br />

<strong>and</strong> geophysical surveys both north <strong>and</strong> south of<br />

the area of the known occurrences have identified<br />

a number of targets that warrant further test<strong>in</strong>g. In<br />

<strong>2011</strong>, the focus of <strong>exploration</strong> at Hanhimaa will be<br />

<strong>in</strong> drill<strong>in</strong>g the identified targets <strong>in</strong> order to establish<br />

a resource <strong>in</strong>ventory base from which the project can<br />

potentially advance from <strong>exploration</strong> to operational<br />

status.<br />

Fig. 17. Gold occurrences, target<br />

areas <strong>and</strong> geochemical <strong>exploration</strong><br />

data with<strong>in</strong> the Hanhimaa project<br />

area (www.dragon-<strong>m<strong>in</strong><strong>in</strong>g</strong>.com.<br />

au). Grid: F<strong>in</strong>nish national YKJ.<br />

Background: GTK low-altitude<br />

aeromagnetic survey data.


Fig. 18. Kiimalaki–Kellolaki area at Hanhimaa, with drill hole collars <strong>and</strong> geology (www.dragon-<strong>m<strong>in</strong><strong>in</strong>g</strong>.com.au).<br />

Grid: F<strong>in</strong>n<strong>in</strong>sh national KKJ.<br />

Fig. 19. Section along strike of the HSZ at Kiimalaki, with drill hole collars <strong>and</strong> <strong>gold</strong> grades (www.dragon-<strong>m<strong>in</strong><strong>in</strong>g</strong>.com.au).<br />

Grid: F<strong>in</strong>n<strong>in</strong>sh national KKJ.<br />

35


36<br />

Rompas Au-U prospect<br />

Michael Hudson, Terry Lees, Erkki Vanhanen,<br />

Lars Dahlenborg<br />

Mawson Resources Ltd, Vancouver, Canada<br />

Introduction<br />

The Rompas discovery is located at 66.45ºN,<br />

24.75ºE, some 50 km west of Rovaniemi <strong>in</strong> Lapl<strong>and</strong>,<br />

north F<strong>in</strong>l<strong>and</strong>. It is a new <strong>gold</strong> <strong>and</strong> uranium discovery<br />

made by Areva <strong>in</strong> 2008 which was acquired as<br />

part of the purchase of Areva’s F<strong>in</strong>nish <strong>exploration</strong><br />

portfolio by Mawson (Mawson Resources 2010).<br />

The discovery of uranium with bonanza <strong>gold</strong> grades<br />

was made dur<strong>in</strong>g follow up of radiometric anomalies.<br />

Mawson now holds a total of 837 claim applications<br />

for 75,298 hectares at the Rompas Project, mak<strong>in</strong>g this<br />

one of F<strong>in</strong>l<strong>and</strong>’s largest contiguous claim application<br />

areas. It encompasses a m<strong>in</strong>eralised camp, extend<strong>in</strong>g<br />

over a strike extent of 30 km also <strong>in</strong>clud<strong>in</strong>g the Mustamaa<br />

U <strong>and</strong> Rumavuoma Au-U prospects (Fig. 20).<br />

As Rompas conta<strong>in</strong>s high-grade uranium, appropriate<br />

safety precautions are <strong>in</strong> place <strong>and</strong> must be adhered<br />

to, <strong>and</strong> no samples are allowed to be collected without<br />

express permission of the Exploration Manager.<br />

Regional Geology<br />

The host sequence to the m<strong>in</strong>eralisation is the Palaeoproterozoic<br />

Peräpohja Schist Belt (PSB), dated<br />

at between 1.9 Ga <strong>and</strong> 2.4 Ga (Perttunen & Hanski<br />

2003). This belt comprises quartzites, mafic volcanic<br />

rocks <strong>and</strong> tuffs, carbonate rocks, <strong>and</strong> black shales all<br />

overla<strong>in</strong> by phyllites <strong>and</strong> mica schists. Rare granites<br />

<strong>in</strong>trude the sequence. The supracrustal rocks of<br />

the PSB are metamorphosed chiefly under uppergreenschist<br />

to lower-amphibolite facies conditions,<br />

comprise well-preserved volcano-sedimentary sequences<br />

deposited <strong>in</strong> <strong>in</strong>tracont<strong>in</strong>ental to open mar<strong>in</strong>e<br />

environments. These unconformably overlie the<br />

Archaean basement (>2.5 Ga) to the south, whereas<br />

north of Rompas the Central Lapl<strong>and</strong> Granite Complex<br />

conta<strong>in</strong>s granites <strong>and</strong> a high-grade metamorphic<br />

rock suite (Perttunen & Hanski 2003). The metamorphism<br />

is <strong>in</strong> part younger than the Rompas host rocks,<br />

which are up to amphibolite grade of metamorphism.<br />

Prospect Geology<br />

Rompas is a new <strong>gold</strong>-uranium discovery with bonanza<br />

grades with<strong>in</strong> a sampl<strong>in</strong>g footpr<strong>in</strong>t of 6.0 kilometres<br />

strike <strong>and</strong> 200–250 metres width. Dur<strong>in</strong>g<br />

2010, Mawson discovered 171 grab samples averaged<br />

1,127.9 g/t <strong>gold</strong> <strong>and</strong> 3.6 % uranium <strong>and</strong> ranged<br />

from 0.1 g/t to 22,723 g/t <strong>gold</strong> <strong>and</strong> 0 % to 47.9 %<br />

uranium <strong>and</strong> 80 channel samples which averaged<br />

0.59 metres @ 203.66 g/t <strong>gold</strong> <strong>and</strong> 0.73 % uranium<br />

(Figs. 21–23). Channel samples are considered representative<br />

of the <strong>in</strong>-situ m<strong>in</strong>eralisation sampled <strong>and</strong><br />

channel lengths quoted approximate the true width<br />

of m<strong>in</strong>eralisation, whereas grab samples are selective<br />

by nature <strong>and</strong> are unlikely to represent average<br />

grades on the property. Mawson samples were<br />

prepared by ALS Chemex Ltd’s laboratory <strong>in</strong> Piteå,<br />

Sweden <strong>and</strong> analysed by Au-ICP21, ME-MS41u,<br />

PGM-ICP27 <strong>and</strong> ME-MS61u techniques by ALS<br />

Chemex Ltd’s laboratory <strong>in</strong> Vancouver, Canada.<br />

These samples were taken from m<strong>in</strong>eralised<br />

structures, <strong>in</strong>clud<strong>in</strong>g shears, jogs, boud<strong>in</strong>s, ve<strong>in</strong>s <strong>and</strong><br />

ve<strong>in</strong> <strong>in</strong>tersections. In places, a number of structures<br />

appear to be en echelon with<strong>in</strong> the overall m<strong>in</strong>eralised<br />

envelope. M<strong>in</strong>eralisation so far discovered is<br />

clearly structurally controlled, but as yet no rationale<br />

is evident for the localisation of m<strong>in</strong>eralisation. In<br />

places, a number of structures appear to be en echelon<br />

with<strong>in</strong> the overall m<strong>in</strong>eralised envelope. Important<br />

host rocks so far detected <strong>in</strong>clude mafic volcanic<br />

<strong>and</strong> calc-silicate rocks (Fig. 20). A strong correlation<br />

exists between <strong>gold</strong> grades greater than 1 g/t<br />

<strong>and</strong> uranium greater than 40 g/t. It appears therefore<br />

that radiation spectrometry will prove an effective<br />

<strong>exploration</strong> <strong>and</strong> potential grade del<strong>in</strong>eation tool for<br />

future work at Rompas, <strong>in</strong> areas with shallow cover.<br />

Importantly, about 90 % of the prospect<br />

area is below soil <strong>and</strong> till cover which, at up to 5<br />

m thick, is too thick for the discovery of nearsurface<br />

radiometric occurrences. Beneath the till,<br />

bedrock is fresh or only slightly weathered, due to<br />

the scour<strong>in</strong>g effect of glaciations. M<strong>in</strong>eralisation<br />

locally shows effects of weather<strong>in</strong>g, but it is not<br />

believed to have caused redistribution of <strong>gold</strong> or<br />

uranium grades. Techniques other than radiation<br />

spectrometry will need to be used <strong>in</strong> these areas, <strong>and</strong><br />

there appears no reason why m<strong>in</strong>eralisation should<br />

not extend beneath areas of till <strong>and</strong> soil cover.


Fig. 20. Geological map of the Rompas region (copyright Mawson Resources Ltd).<br />

Coord<strong>in</strong>ates are accord<strong>in</strong>g to F<strong>in</strong>nish national YKJ grid.<br />

37


38<br />

Fig. 21. Low-altitude airborne magnetic map of the Rompas region. Flight altitude 30 m, l<strong>in</strong>e distance 50 m. Insets <strong>in</strong>dicate areas<br />

shown <strong>in</strong> Figures 22 <strong>and</strong> 23 (www.mawsonresources.com). Coord<strong>in</strong>ates are accord<strong>in</strong>g to F<strong>in</strong>nish national YKJ grid.


Fig. 22. North Rompas region with surface sampl<strong>in</strong>g data (www.mawsonresources.com). Numbers attached to sampl<strong>in</strong>g sites are,<br />

from left to right: channel length, Au <strong>in</strong> g/t, U <strong>in</strong> %. For legend, see Figure 21. Coord<strong>in</strong>ates are accord<strong>in</strong>g to F<strong>in</strong>nish national YKJ<br />

grid; north up.<br />

39


40<br />

Fig. 23. South Rompas region with surface sampl<strong>in</strong>g data (www.mawsonresources.com). Numbers attached to sampl<strong>in</strong>g sites are,<br />

from left to right: channel length, Au <strong>in</strong> g/t, U <strong>in</strong> %. For legend, see Figure 21. Coord<strong>in</strong>ates are accord<strong>in</strong>g to F<strong>in</strong>nish national YKJ<br />

grid; north up.


Geophysics (apart from radiation spectrometry) do<br />

not appear to be effective <strong>in</strong> locat<strong>in</strong>g the m<strong>in</strong>eralisation<br />

(Fig. 2). This is likely due to the lack of sulphides<br />

associated with the m<strong>in</strong>eralisation, <strong>and</strong> although<br />

there is some magnetite, there are also other magnetic<br />

units that mask any subtle magnetic response <strong>in</strong><br />

the area. Geochemistry of soils <strong>and</strong> till is potentially<br />

useful at def<strong>in</strong><strong>in</strong>g m<strong>in</strong>eralisation beneath shallow till<br />

cover. So far, several Au anomalies <strong>in</strong> soil <strong>and</strong> organics<br />

have been def<strong>in</strong>ed, but are yet to be drill tested.<br />

Three different scale surface geochemical<br />

surveys have been performed with<strong>in</strong> the area<br />

of <strong>in</strong>terest, of which 90–95 % is covered by till.<br />

These are 1) a regional C-horizon till geochemical<br />

survey collected over 500 km 2 with<strong>in</strong> the central<br />

northern part of the Peräpohja Schist Belt; 2)<br />

a semi-regional C-horizon till survey that concentrated<br />

over the ma<strong>in</strong> m<strong>in</strong>eralised trend with<strong>in</strong> an<br />

area of 150 km 2; <strong>and</strong> 3) a detailed local-scale survey<br />

over the immediate strike extent of the m<strong>in</strong>eralised<br />

zone. The local-scale survey consisted of<br />

three different sample media: C-horizon till, <strong>in</strong>-situ<br />

weathered bedrock samples, <strong>and</strong> organic samples.<br />

Results of the geochemical surveys show<br />

that there are discrete, coherent anomalies <strong>in</strong> all<br />

scales <strong>in</strong>spected, <strong>and</strong> some anomalies are directly<br />

related to m<strong>in</strong>eralisation. The geochemical pathf<strong>in</strong>der<br />

associations at Rompas are Au with Te, <strong>and</strong><br />

U with Se <strong>and</strong> REE; also, the sample media perform<br />

differently accord<strong>in</strong>g to the geomorphologic<br />

substrate. Although Rompas is at the very early<br />

stages of <strong>exploration</strong>, surface geochemical data corresponds<br />

well with known m<strong>in</strong>eralisation <strong>and</strong> is an<br />

effective <strong>exploration</strong> method to identify targets for<br />

further geochemical <strong>in</strong>-fill sampl<strong>in</strong>g <strong>and</strong> drill<strong>in</strong>g.<br />

M<strong>in</strong>eralisation appears to be hydrothermal <strong>in</strong><br />

nature <strong>and</strong> shear or fracture-controlled, hosted ma<strong>in</strong>ly<br />

by metavolcanic rocks which may, <strong>in</strong> part, be skarnified<br />

<strong>and</strong>/or hornfelsed. Uranium is found <strong>in</strong> the form<br />

of uran<strong>in</strong>ite. Native <strong>gold</strong> <strong>and</strong> uran<strong>in</strong>ite are generally<br />

identified at surface <strong>in</strong> limonitic fractures with<strong>in</strong> the<br />

metavolcanic host rocks. It seems that the target is<br />

a large, bulk-tonnage, <strong>and</strong> of shear or fracture-controlled<br />

nature, that is probably related to a buried<br />

<strong>in</strong>trusive that may be an apophyse or a down-dip extension<br />

of the granitoid complex that occurs just a<br />

few kilometres to the north of the property. The possibility<br />

of f<strong>in</strong>d<strong>in</strong>g potentially economic high-grade<br />

ve<strong>in</strong> structures must also be considered. Rompas can<br />

be classified as a U-Au skarn or metasomatic ve<strong>in</strong><br />

deposit <strong>in</strong> metasedimentary <strong>and</strong> igneous bedrock.<br />

Rompas is a part of a broader m<strong>in</strong>eralised<br />

trend, or camp. Rumavuoma, about 5 km south-east<br />

of Rompas (Fig. 20), is a lower-grade Au-U m<strong>in</strong>eralised<br />

trend. N<strong>in</strong>e historic samples taken by Areva NC<br />

with<strong>in</strong> an area of 3.5 kilometres by 400 metres assayed<br />

0.1–1.8 g/t <strong>gold</strong>, averaged 0.3 g/t <strong>gold</strong>, <strong>and</strong> 5–3860<br />

g/t (0.39 %) uranium <strong>and</strong> averaged 517 g/t uranium.<br />

Mustamaa is located approximately 30 km<br />

south, along strike, of the Rompas m<strong>in</strong>eralised trend.<br />

There, uranium is hosted by a phosphatic breccia<br />

unit. The breccia is conta<strong>in</strong>ed with<strong>in</strong> more than 500<br />

m long <strong>and</strong> up to 40 m wide apatite-bear<strong>in</strong>g dolomite<br />

unit. Better drill <strong>in</strong>tersections <strong>in</strong>clude: R13:<br />

55.4 m @ 0.03 % U 3O 8 from 104 m, <strong>in</strong>clud<strong>in</strong>g 4.1<br />

m @ 0.08 % U 3O 8 from 120 m, <strong>and</strong> R10: 18.1 m @<br />

0.03 % U 3O 8 from 65 m, <strong>in</strong>clud<strong>in</strong>g 8.4 m @ 0.04 %<br />

U 3O 8 from 73 m. Additionally at Mustamaa, a glacial<br />

boulder sampled by Mawson <strong>and</strong> located approximately<br />

500 m west of the drilled breccia unit assayed<br />

0.5 g/t <strong>gold</strong> <strong>and</strong> 165 g/t uranium. This boulder is not<br />

sourced from the breccia unit detected <strong>in</strong> the local<br />

bedrock suggest<strong>in</strong>g the potential for further <strong>gold</strong><br />

m<strong>in</strong>eralisation to be discovered between Rompas,<br />

Rumavuoma <strong>and</strong> Mustamaa.<br />

41


42<br />

References<br />

Agnico-Eagle 2007. Media release 21 December<br />

2007. Available at: www.agnico-eagle.com.<br />

Agnico-Eagle <strong>2011</strong>. Media release 28 April <strong>2011</strong>.<br />

Available at: www.agnico-eagle.com.<br />

Åhäll K.-I. & Larsson S.Å. 2000. Growth-related<br />

1.85–1.55 Ga magmatism <strong>in</strong> the Baltic Shield: a<br />

review address<strong>in</strong>g the tectonic characteristics of<br />

Svecofennian, TIB 1-related Gothian events. Geologiska<br />

Fören<strong>in</strong>gens i Stockholm Förh<strong>and</strong>l<strong>in</strong>gar 122,<br />

193–206.<br />

Ahl, M., Bergman, S., Bergström, U., Eliasson, T.,<br />

Ripa, M. & Weihed, P. 2001. Geochemical classification<br />

of plutonic rocks <strong>in</strong> central <strong>and</strong> northern Sweden.<br />

Sveriges Geologiska Undersökn<strong>in</strong>g, Rapporter<br />

och meddel<strong>and</strong>en 106. 82 p.<br />

Alapieti, T. & Laht<strong>in</strong>en, J.J. 2002. Plat<strong>in</strong>um-Group<br />

Element M<strong>in</strong>eralization <strong>in</strong> Layered Intrusions of<br />

Northern F<strong>in</strong>l<strong>and</strong> <strong>and</strong> the Kola Pen<strong>in</strong>sula, Russia.<br />

In: Cabri, L.J. (ed.), The Geology, Geochemistry,<br />

M<strong>in</strong>eralogy <strong>and</strong> M<strong>in</strong>eral Beneficiation of Plat<strong>in</strong>um-<br />

Group Elements. The Canadian Institute of M<strong>in</strong><strong>in</strong>g,<br />

Metallurgy <strong>and</strong> Petroleum Special Volume 54,<br />

507−546<br />

Alapieti, T., Filen, B., Laht<strong>in</strong>en, J., Lavrov, M.,<br />

Smolk<strong>in</strong>, V. & Voitsekhovsky, S. 1990. Early Proterozoic<br />

layered <strong>in</strong>trusions <strong>in</strong> the northeastern part<br />

of the Fennosc<strong>and</strong>ian Shield. M<strong>in</strong>eralogy <strong>and</strong> Petrology<br />

42, 1–22.<br />

Amel<strong>in</strong> Y.V., Heaman L.M. & Semenov V.S. 1995.<br />

U-Pb geochronology of layered mafic <strong>in</strong>trusions <strong>in</strong><br />

the eastern Baltic Shield: implications for the tim<strong>in</strong>g<br />

<strong>and</strong> duration of Paleoproterozoic cont<strong>in</strong>ental rift<strong>in</strong>g.<br />

Precambrian Research<br />

75, 31–46.<br />

Andersson U.B. 1991. Granitoid episodes <strong>and</strong> mafic-felsic<br />

magma <strong>in</strong>teraction <strong>in</strong> the Svecofennian of<br />

the Fennosc<strong>and</strong>ian shield, with ma<strong>in</strong> emphasis on<br />

the ca. 1.8 Ga plutonics. Precambrian Research 51,<br />

127–149.<br />

Bartlett, S. 2002. Suurikuusikko <strong>gold</strong> m<strong>in</strong>eral resources<br />

to 15 November 2002. Micon International<br />

Co. Ltd. Confidential <strong>in</strong>ternal memor<strong>and</strong>um.<br />

Bergman S., Kübler L. & Mart<strong>in</strong>sson O. 2001. Description<br />

of regional geological <strong>and</strong> geophysical maps<br />

of northern Norrbotten county. Sveriges Geologiska<br />

Undersökn<strong>in</strong>g, Ba 56. 110 p.<br />

Bergman, S., Persson, P-O. & Kübler, L. 2002. U-Pb<br />

titanite <strong>and</strong> zircon ages of the L<strong>in</strong>a granite at the type<br />

locality NW of Gällivare, northern Sweden. Sveriges<br />

Geologiska Undersökn<strong>in</strong>g, Research Paper C 834,<br />

12–17.<br />

Bergman, S., Billström K., Persson P.-O., Skiöld T.<br />

& Ev<strong>in</strong>s, P. 2006. U-Pb age evidence for repeated<br />

Palaeoproterozoic metamorphism <strong>and</strong> deformation<br />

near the Pajala shear zone <strong>in</strong> the northern Fennosc<strong>and</strong>ian<br />

Shield: Geologiska Fören<strong>in</strong>gens i Stockholm<br />

Förh<strong>and</strong>l<strong>in</strong>gar 128, 7–20.<br />

Berthelsen A & Marker M. 1986. 1.9–1.8 Ga old<br />

strike-slip megashears <strong>in</strong> the Baltic Shield, <strong>and</strong> their<br />

plate tectonic implications. Tectonophysics 128,<br />

163–181.<br />

Billström, K., Eilu, P., Mart<strong>in</strong>sson, O., Niiranen, T.,<br />

Broman, C., Weihed, P., Wanha<strong>in</strong>en, C. & Ojala, J.<br />

<strong>in</strong> press. IOCG <strong>and</strong> Related M<strong>in</strong>eral Deposits of the<br />

Northern Fennosc<strong>and</strong>ian Shield. In: Porter, T. (ed.)<br />

Hydrothermal Iron Oxide-Copper-Gold & Related<br />

Deposits: A Global Perspective, vol. 3. Advances <strong>in</strong><br />

the Underst<strong>and</strong><strong>in</strong>g of IOCG deposits. PGC Publish<strong>in</strong>g,<br />

Adelaide. 367-400.<br />

Chernet, T., Kojonen, K. & Pakkanen, L. 2000. Applied<br />

m<strong>in</strong>eralogical study on the near-surface Suurikuusikko<br />

refractory <strong>gold</strong> ore, Kittilä, western F<strong>in</strong>nish<br />

Lapl<strong>and</strong> (Phase I). Geological Survey of F<strong>in</strong>l<strong>and</strong>,<br />

Report M 19/2743/2000/1/10. 22 p.<br />

Dragon M<strong>in</strong><strong>in</strong>g Ltd <strong>2011</strong>a. Annual Report 2010.<br />

Perth, Australia. 108 p.<br />

Dragon M<strong>in</strong><strong>in</strong>g Ltd <strong>2011</strong>b. Hanhimaa Gold Project.<br />

Available at: www.dragon-<strong>m<strong>in</strong><strong>in</strong>g</strong>.com.au.<br />

Eilu, P. 1994. Hydrothermal alteration <strong>in</strong> volcanosedimentary<br />

associations <strong>in</strong> Central Lapl<strong>and</strong> greenstone<br />

belt. Geological Survey of F<strong>in</strong>l<strong>and</strong>, Bullet<strong>in</strong><br />

374. 145 p.<br />

Eilu, P. & Pankka, H. 2009. FINGOLD – A public<br />

database on <strong>gold</strong> deposits <strong>in</strong> F<strong>in</strong>l<strong>and</strong>. Geological<br />

Survey of F<strong>in</strong>l<strong>and</strong>, Digital Data Products 4. Optical<br />

disc (CD-ROM).<br />

Eilu P., Sorjonen-Ward, P., Nurmi, P. & Niiranen,<br />

T. 2003. Review of <strong>gold</strong> m<strong>in</strong>eralisation <strong>in</strong> F<strong>in</strong>l<strong>and</strong>.<br />

Economic Geology 98, 1329–1353.


Eilu, P., Pankka, H., Ke<strong>in</strong>änen, V., Kortela<strong>in</strong>en, V.,<br />

Niiranen, T. & Pulkk<strong>in</strong>en, E. 2007. Characteristics of<br />

<strong>gold</strong> m<strong>in</strong>eralisation <strong>in</strong> the greenstone belts of northern<br />

F<strong>in</strong>l<strong>and</strong>. Geological Survey of F<strong>in</strong>l<strong>and</strong>, Special<br />

Paper 44, 57–106.<br />

Fennosc<strong>and</strong>ian Ore Deposit Database 2010. Geological<br />

Survey of F<strong>in</strong>l<strong>and</strong> (GTK), Geological Survey<br />

of Norway (NGU), Geological Survey of Russia<br />

(VSEGEI), Geological Survey of Sweden (SGU),<br />

SC M<strong>in</strong>eral. Onl<strong>in</strong>e database, the latest update available<br />

at: http://en.gtk.fi/ExplorationF<strong>in</strong>l<strong>and</strong>/fodd.<br />

Frietsch, R., Tuisku, P., Mart<strong>in</strong>sson, O. & Perdahl,<br />

J-A. 1997. Early Proterozoic Cu-(Au) <strong>and</strong> Fe ore deposits<br />

associated with regional Na-Cl metasomatism<br />

<strong>in</strong> northern Fennosc<strong>and</strong>ia. Ore Geology Reviews 12,<br />

1–34.<br />

Gaál G. 1986. An outl<strong>in</strong>e of the Precambrian evolution<br />

of the Baltic Shield. Precambrian Research 35,<br />

15–52.<br />

Goldfarb, R.J., Groves, D.I. & Gardoll, S. 2001.<br />

Orogenic <strong>gold</strong> <strong>and</strong> geologic time: a global synthesis.<br />

Ore Geology Reviews 18, 1–75.<br />

Groves, D.I., Goldfarb, R.J., Gebre-Mariam, M.,<br />

Hagemann, S. & Robert, F. 1998. Orogenic <strong>gold</strong><br />

deposits: A proposed classification <strong>in</strong> the context<br />

of their crustal distribution <strong>and</strong> relationship to other<br />

<strong>gold</strong> deposit types. Ore Geology Reviews 13, 7–27.<br />

Hanski, E. & Huhma, H. 2005. Central Lapl<strong>and</strong><br />

greenstone belt. In: Leht<strong>in</strong>en, M., Nurmi, P.A. &<br />

Rämö, O.T. (eds.) Precambrian Geology of F<strong>in</strong>l<strong>and</strong><br />

– Key to the Evolution of the Fennosc<strong>and</strong>ian Shield.<br />

Elsevier B.V., Amsterdam. 139–194.<br />

Hanski, E., Huhma, H. & Vaasjoki, M. 2001. Geochronology<br />

of northern F<strong>in</strong>l<strong>and</strong>: a summary <strong>and</strong><br />

discussion. Geological Survey of F<strong>in</strong>l<strong>and</strong>, Special<br />

Paper 33, 255–279.<br />

Härkönen, I. & Ke<strong>in</strong>änen, V. 1989. Exploration of<br />

structurally controlled <strong>gold</strong> deposits <strong>in</strong> the Central<br />

Lapl<strong>and</strong> greenstone belt. Geological Survey of F<strong>in</strong>l<strong>and</strong>,<br />

Special Paper 10, 79–82.<br />

Hietanen A. 1975. Generation of potassium-poor<br />

magmas <strong>in</strong> the northern Sierra Nevada <strong>and</strong> the Svecofennian<br />

of F<strong>in</strong>l<strong>and</strong>. U.S. Geological Survey, Journal<br />

of Research 3, 631–645.<br />

Hiltunen, A. 1982. The Precambrian geology <strong>and</strong><br />

skarn iron ores of the Rautuvaara area, northern F<strong>in</strong>l<strong>and</strong>:<br />

Geological Survey of F<strong>in</strong>l<strong>and</strong>, Bullet<strong>in</strong> 318.<br />

133 p.<br />

Holma, M. & Ke<strong>in</strong>änen, V. 2007. The Levijärvi-<br />

Louk<strong>in</strong>en <strong>gold</strong> occurrence: An example of orogenic<br />

<strong>gold</strong> m<strong>in</strong>eralisation with atypical metal association..<br />

Geological Survey of F<strong>in</strong>l<strong>and</strong>, Special Paper 44,<br />

165–186.<br />

Hölttä, P., Väisänen, M., Väänänen, L. & Mann<strong>in</strong>en<br />

T. 2007. Paleoproterozoic metamorphism <strong>and</strong> deformation<br />

<strong>in</strong> Central F<strong>in</strong>nish Lapl<strong>and</strong>. Geological Survey<br />

of F<strong>in</strong>l<strong>and</strong>, Special Paper 44, 7−56.<br />

Hugg, R. 1996. Kaivosla<strong>in</strong> 19 §:n muka<strong>in</strong>en tutkimustyöselostus<br />

Mustajärvi nimisestä valtausalueesta<br />

kaiv.rek.nro 4798/1 Lap<strong>in</strong> läänissä Kittilän kunnassa.<br />

Outokumpu Oy Report 080/273405/REH/96.<br />

3 p., 5 App. (<strong>in</strong> F<strong>in</strong>nish)<br />

Huhma, H. 1986. Sm-Nd, U-Pb <strong>and</strong> Pb-Pb isotopic<br />

evidence for the orig<strong>in</strong> of the Early Proterozoic Svecokarelian<br />

crust <strong>in</strong> F<strong>in</strong>l<strong>and</strong>. Geological Survey of<br />

F<strong>in</strong>l<strong>and</strong>, Bullet<strong>in</strong> 337. 48 p.<br />

Huhma, H., Cliff, R.A., Perttunen, V. & Sakko, M.<br />

1990. Sm-Nd <strong>and</strong> Pb isotopic study of mafic rocks<br />

associated with early Proterozoic cont<strong>in</strong>ental rift<strong>in</strong>g:<br />

the Peräpohja schist belt <strong>in</strong> northern F<strong>in</strong>l<strong>and</strong>. Contributions<br />

to M<strong>in</strong>eralogy <strong>and</strong> Petrology 104, 369–379.<br />

Huhma, H., Mutanen, T. & Whitehouse, M. 2004.<br />

Oldest rocks of the Fennosc<strong>and</strong>ian Shield: The 3.5<br />

Ga Siurua trondhjemite gneiss <strong>in</strong> the Archaean<br />

Pudasjärvi Granu¬lite Belt, F<strong>in</strong>l<strong>and</strong>. Geologiska<br />

Fören<strong>in</strong>gens i Stockholm Förh<strong>and</strong>l<strong>in</strong>gar 126, 10.<br />

Hulkki, H. 1990. Sodankylän Sattasvaaran komatiittikompleks<strong>in</strong><br />

Au-kriitt<strong>in</strong>en muuttumisvyöhyke.<br />

MSc thesis. Department of Geology, University of<br />

Hels<strong>in</strong>ki. 190 p. (<strong>in</strong> F<strong>in</strong>nish)<br />

Hulkki, H. & Ke<strong>in</strong>änen, V. 2007. The alteration <strong>and</strong><br />

fluid <strong>in</strong>clusion characteristics of the Hirvilavanmaa<br />

<strong>gold</strong> deposit, Central Lapl<strong>and</strong> Greenstone Belt, F<strong>in</strong>l<strong>and</strong>.<br />

Geological Survey of F<strong>in</strong>l<strong>and</strong>, Special Paper<br />

44, 135–151.<br />

Ilj<strong>in</strong>a M. & Hanski E. 2005. Layered mafic <strong>in</strong>trusions<br />

of the Tornio–Näränkävaara belt. In: Leht<strong>in</strong>en,<br />

M., Nurmi, P.A., Rämö, O.T. (Eds.), Precambrian<br />

Geology of F<strong>in</strong>l<strong>and</strong> – Key to the Evolution of the<br />

Fennosc<strong>and</strong>ian Shield. Elsevier B.V., Amsterdam,<br />

101–138.<br />

43


44<br />

Kämärä<strong>in</strong>en, P. <strong>2011</strong>. Kittilä-ryhmän orogeenisten<br />

kultaesi<strong>in</strong>tymien tyypilliset piirteet. BSc thesis, Department<br />

of Geology, University of Turku. 40 p. (<strong>in</strong><br />

F<strong>in</strong>nish)<br />

Kathol B. & Mart<strong>in</strong>sson O. 1999. Bedrock map, 30J<br />

Rensjön, 1:50 000: Geological Survey of Sweden,<br />

Ai 132.<br />

Koist<strong>in</strong>en, T., Stephens, M.B., Bogatchev, V., Nordgulen,<br />

Ø., Wennerström, M. & Korhonen, J. (comp.)<br />

2001. Geological Map of the Fennosc<strong>and</strong>ian Shield,<br />

1:2,000,000. Espoo: Geological Survey of F<strong>in</strong>l<strong>and</strong>,<br />

Trondheim: Geological Survey of Norway, Uppsala:<br />

Geological Survey of Sweden, Moscow: M<strong>in</strong>istry of<br />

Natural Resources of Russia.<br />

Kojonen, K. & Johanson, B. 1988. Pahtavaaran Aumalmiaiheen<br />

malmim<strong>in</strong>eraaleista (Ore m<strong>in</strong>erals <strong>in</strong><br />

the Pahtavuoma deposit). Geological Survey of F<strong>in</strong>l<strong>and</strong>,<br />

Report M40/3714/-88/1/41.2. 2 p. (<strong>in</strong> F<strong>in</strong>nish)<br />

Kojonen, K. & Johanson, B. 1999. Determ<strong>in</strong>ation of<br />

refractory <strong>gold</strong> distribution by microanalysis, diagnostic<br />

leach<strong>in</strong>g <strong>and</strong> image analysis. M<strong>in</strong>eralogy <strong>and</strong><br />

Petrology 67, 1–19.<br />

Kont<strong>in</strong>en, A. 1987. An early Proterozoic ophiolite –<br />

the Jormua mafic-ultramafic complex, northeastern<br />

F<strong>in</strong>l<strong>and</strong>. Precambrian Research 35, 313–341.<br />

Korkalo, T. 2006. Gold <strong>and</strong> copper deposits <strong>in</strong> Central<br />

Lapl<strong>and</strong>, northern F<strong>in</strong>l<strong>and</strong>, with special reference<br />

to their <strong>exploration</strong> <strong>and</strong> exploitation. Acta<br />

Univ. Oulensis, A Scientiae Rerum Naturalium<br />

461. 122 p. Available at: http://herkules.oulu.fi/isbn951428108X/<br />

Korkiakoski, E. 1992. Geology <strong>and</strong> geochemistry of<br />

the metakomatiite hosted Pahtavaara <strong>gold</strong> deposit <strong>in</strong><br />

Sodankylä, northern F<strong>in</strong>l<strong>and</strong>, with emphasis on hydrothermal<br />

alteration. Geological Survey of F<strong>in</strong>l<strong>and</strong>,<br />

Bullet<strong>in</strong> 360. 96 p.<br />

Krill, A.G., Bergh, S., L<strong>in</strong>dahl, I., Mearns, E.W.,<br />

Often, M., Olerud, S., Olesen, O., S<strong>and</strong>stad, J.S.,<br />

Siedlecka, A. & Solli, A. 1985. Rb-Sr, U-Pb <strong>and</strong><br />

Sm-Nd isotopic dates from Precambrian rocks of<br />

F<strong>in</strong>nmark. Norges geologiske undersøkelse, Bullet<strong>in</strong><br />

403, 37–54.<br />

Kumpula<strong>in</strong>en, R.A. 2000. The Palaeoproterozoic<br />

sedimentary record of northernmost Norrbotten,<br />

Sweden. Geological Survey of Sweden, BRAP<br />

200030. 45 p.<br />

Laht<strong>in</strong>en, R., Korja, A. & Nironen, M. 2005. Palaeoproterozoic<br />

tectonic evolution. In: Leht<strong>in</strong>en,<br />

M., Nurmi, P.A. & Rämö, O.T. (eds.) Precambrian<br />

Geology of F<strong>in</strong>l<strong>and</strong> – Key to the Evolution of the<br />

Fennosc<strong>and</strong>ian Shield. Elsevier B.V., Amsterdam.<br />

481–532.<br />

Lappl<strong>and</strong> Goldm<strong>in</strong>ers <strong>2011</strong>. Media release 28 January<br />

<strong>2011</strong>.<br />

Lehtonen, M. I., Airo, M L., Eilu, P., Hanski, E.,<br />

Kortela<strong>in</strong>en, V., Lanne, E., Mann<strong>in</strong>en, T., Rastas,<br />

P., Räsänen, J. & Virransalo, P. 1998. Kittilän<br />

vihreäkivialueen geologia. Lap<strong>in</strong> vulkaniittiprojekt<strong>in</strong><br />

raportti. Summary: The stratigraphy, petrology <strong>and</strong><br />

geochemistry of the Kittilä greenstone area, northern<br />

F<strong>in</strong>l<strong>and</strong>. A report of the Lapl<strong>and</strong> Volcanite Project.<br />

Geological Survey of F<strong>in</strong>l<strong>and</strong>, Report of Investigation<br />

140. 144 p.<br />

Mänttäri, I. 1995. Lead isotope characteristics of epigenetic<br />

<strong>gold</strong> m<strong>in</strong>eralization <strong>in</strong> the Palaeoproterozoic<br />

Lapl<strong>and</strong> greenstone belt, northern F<strong>in</strong>l<strong>and</strong>: Geological<br />

Survey of F<strong>in</strong>l<strong>and</strong>, Bullet<strong>in</strong> 381. 70 p.<br />

Mart<strong>in</strong>sson O. 1997. Paleoproterozoic greenstones at<br />

Kiruna <strong>in</strong> northern Sweden: a product of cont<strong>in</strong>ental<br />

rift<strong>in</strong>g <strong>and</strong> associated mafic-ultramafic volcanism. In<br />

Mart<strong>in</strong>sson, O.: Tectonic sett<strong>in</strong>g <strong>and</strong> metallogeny of<br />

the Kiruna Greenstones. PhD thesis, Paper I, Luleå<br />

University of Technology, Sweden. 49 p.<br />

Mart<strong>in</strong>sson O., Vaasjoki M. & Persson P.-O. 1999.<br />

U-Pb zircon ages of Archaean to Palaeoproterozoic<br />

granitoids <strong>in</strong> the Torneträsk-Råstojaure area, northern<br />

Sweden. In S. Bergman, (Ed): Radiometric dat<strong>in</strong>g<br />

results 4. Sveriges Geologiska Undersökn<strong>in</strong>g C<br />

831, 70–90.<br />

Mawson Resources 2010. Media release 30 April<br />

2010. www.mawsonresources.com<br />

Mellqvist C., Öhl<strong>and</strong>er B., Weihed P. & Schöberg<br />

H. 2003. Some aspects on the subdivision of the<br />

Hapar<strong>and</strong>a <strong>and</strong> Jörn <strong>in</strong>trusive suites <strong>in</strong> northern Sweden.<br />

Geologiska Fören<strong>in</strong>gens I Stockholm Förh<strong>and</strong>l<strong>in</strong>gar<br />

125, 77–85.<br />

Mutanen, T. 1997. Geology <strong>and</strong> ore petrology of the<br />

Akanvaara <strong>and</strong> Koitela<strong>in</strong>en mafic layered <strong>in</strong>trusions<br />

<strong>and</strong> the Keivitsa-Satovaara layered complex, northern<br />

F<strong>in</strong>l<strong>and</strong>. Geological Survey of F<strong>in</strong>l<strong>and</strong>, Bullet<strong>in</strong><br />

395. 233 p.<br />

Nironen M. 1997. The Svecofennian orogen: a tectonic<br />

model. Precambrian Research 86, 21–44.


Nyström J.O. 1982. Post-Svecokarelian And<strong>in</strong>otype<br />

evolution <strong>in</strong> central Sweden. Geologische Rundschau<br />

71, 141–157.<br />

Ödman O. 1957. Beskrivn<strong>in</strong>g till Bergrundskarta<br />

över Norrbottens Län. Sveriges Geologiska Undersökn<strong>in</strong>g,<br />

Ca 41. 151 p. (with English summary).<br />

Offerberg J. 1967. Beskrivn<strong>in</strong>g till Bergrundskartbalden<br />

Kiruna NV, NO, SV, SO. Sveriges Geologiska<br />

Undersökn<strong>in</strong>g, Af 1–4. 146 p. (English summary)<br />

Öhl<strong>and</strong>er B. & Schöberg H. 1991. Character <strong>and</strong><br />

U-Pb zircon age of the Proterozoic Ale granite,<br />

northern Sweden. Geologiska Fören<strong>in</strong>gens i Stockholm<br />

Förh<strong>and</strong>l<strong>in</strong>gar 113, 105–112.<br />

Öhl<strong>and</strong>er B. & Skiöld T. 1994. Diversity of 1.8 Ga<br />

potassic granitoids along the edge of the Archaean<br />

craton <strong>in</strong> northern Sc<strong>and</strong><strong>in</strong>avia: a result of melt formation<br />

at various depths <strong>and</strong> from various sources.<br />

Lithos 33, 265–283.<br />

Öhl<strong>and</strong>er B., Skiöld T., Hamilton P.J. & Claesson<br />

L.-Å. 1987a. The western border of the Archaean<br />

prov<strong>in</strong>ce of the Baltic Shield: evidence from northern<br />

Sweden. Contribution to M<strong>in</strong>eralogy <strong>and</strong> Petrology<br />

95, 437–450.<br />

Öhl<strong>and</strong>er B., Hamilton P.J., Fallick A.E. & Wilson<br />

M.R. 1987b. Crustal reactivation <strong>in</strong> northern Sweden:<br />

the Vettasjärvi granite. Precambrian Research<br />

35, 277–293.<br />

Ojala, V.J., Weihed, P., Eilu, P. & Ilj<strong>in</strong>a, M. (eds.)<br />

2007. Metallogeny <strong>and</strong> tectonic evolution of the<br />

Northern Fennosc<strong>and</strong>ian Shield: Field trip guidebook.<br />

Geological Survey of F<strong>in</strong>l<strong>and</strong>, Guide 54. 97<br />

p.<br />

Olesen O. & S<strong>and</strong>stad J. S. 1993. Interpretation of<br />

the Proterozoic Kautoke<strong>in</strong>o Greenstone Belt, F<strong>in</strong>nmark,<br />

Norway from comb<strong>in</strong>ed geophysical <strong>and</strong> geological<br />

data. Norges Geologiske Undersøkn<strong>in</strong>g, Bullet<strong>in</strong><br />

425, 1–64.<br />

Parkk<strong>in</strong>en, J. 1997. The Suurikuusikko Gold Deposit.<br />

M<strong>in</strong>eral Resource Estimate. Geological Survey of<br />

F<strong>in</strong>l<strong>and</strong>, Report M 19/2743/97/1. 20 p.<br />

Patison, N.L. 2001. Structural <strong>and</strong> fluid chemical<br />

controls on <strong>gold</strong> m<strong>in</strong>eralisation <strong>in</strong> the Central Lapl<strong>and</strong><br />

Greenstone Belt, northern F<strong>in</strong>l<strong>and</strong>. Geological<br />

Survey of F<strong>in</strong>l<strong>and</strong>, Report M 16/2001/6. 5 p.<br />

Patison, N.J. 2007. Structural controls on <strong>gold</strong> m<strong>in</strong>eralisation<br />

<strong>in</strong> the Central Lapl<strong>and</strong> Greenstone Belt.<br />

Geological Survey of F<strong>in</strong>l<strong>and</strong>, Special Paper 44,<br />

105–122.<br />

Patison, N.L, Korja, A., Laht<strong>in</strong>en, R., Ojala, V.J.<br />

& the FIRE Work<strong>in</strong>g Group 2006a. FIRE seismic<br />

reflection profiles 4, 4A <strong>and</strong> 4B: Insights <strong>in</strong>to the<br />

Crustal Structure of Northern F<strong>in</strong>l<strong>and</strong> from Ranua<br />

to Näätämö. Geological Survey of F<strong>in</strong>l<strong>and</strong>, Special<br />

Paper 43, 161–222.<br />

Patison, N.L., Ojala V.J., Lampela R. 2006b. Kittilä<br />

M<strong>in</strong>e 2006. Pit Stereophotography <strong>and</strong> Mapp<strong>in</strong>g:<br />

Confidential report for Agnico-Eagle F<strong>in</strong>l<strong>and</strong>. Geological<br />

Survey of F<strong>in</strong>l<strong>and</strong>, Report R/764/41/2006.<br />

Pekkar<strong>in</strong>en L.J. & Lukkar<strong>in</strong>en H. 1991. Paleoproterozoic<br />

volcanism <strong>in</strong> the Kiihtelysvaara-Tohmajärvi<br />

district, eastern F<strong>in</strong>l<strong>and</strong>. Geological Survey of<br />

F<strong>in</strong>l<strong>and</strong>, Bullet<strong>in</strong> 357, 1–30.<br />

Perttunen, V. & Hanski, E. 2003. Explanation to<br />

the maps of Pre-Quaternary rocks, sheets 2631 <strong>and</strong><br />

2633, Törmäsjärvi <strong>and</strong> Koivu. Geological Survey of<br />

F<strong>in</strong>l<strong>and</strong>, Espoo. 92 p.<br />

Perttunen V. & Vaasjoki M. 2001. U-Pb geochronology<br />

of the Peräpohja schist belt, northwestern F<strong>in</strong>l<strong>and</strong>.<br />

Geological Survey of F<strong>in</strong>l<strong>and</strong>, Special Paper<br />

33, 45–84.<br />

Pharaoh, T. 1985. Volcanic <strong>and</strong> geochemical stratigraphy<br />

of the Nussir Group of Artic Norway – an<br />

early Proterozoic greenstone suite. Journal of Geol.<br />

Soc. London 142, 259–278.<br />

Pharaoh T.C. & Pearce J.A. 1984. Geochemical evidence<br />

for the geotectonic sett<strong>in</strong>g of early Proterozoic<br />

metavolcanic sequences <strong>in</strong> Lapl<strong>and</strong>. Precambrian<br />

Research 25, 283–308.<br />

Pharaoh T.C., Warren A. & Walsh N.J. 1987. Early<br />

Proterozoic metavolcanic suites of the northernmost<br />

part of the Baltic Shield. Geological Society Special<br />

Publication 33, 41–58.<br />

Powell, W. 2001. Petrographic Report on Suurikuusikko<br />

Rock Types. Confidential report for Riddarhyttan<br />

Resources AB. November 2001.<br />

45


46<br />

Rastas, P., Huhma, H., Hanski, E., Lehtonen, M.I.,<br />

Härkönen, I., Kortela<strong>in</strong>en, V., Mänttäri, I. & Paakkola,<br />

J. 2001. U-Pb isotopic studies on the Kittilä<br />

greenstone area, Central Lapl<strong>and</strong>, F<strong>in</strong>l<strong>and</strong>. Geological<br />

Survey of F<strong>in</strong>l<strong>and</strong>, Special Paper 33, 95–141.<br />

Rickard D.T. & Zweifel H. 1975. Genesis of Precambrian<br />

sulphide ores, Skellefte district, Sweden.<br />

Economic Geology 70, 255–274.<br />

Romer R.L., Mart<strong>in</strong>sson O. & Perdahl J.-A. 1994.<br />

Geochronology of the Kiruna iron ores <strong>and</strong> hydrothermal<br />

alterations. Economic Geology 89, 1249–<br />

1261.<br />

Saalmann, K. & Niiranen, T. 2010. Hydrothermal<br />

alteration <strong>and</strong> structural control on <strong>gold</strong> deposition<br />

<strong>in</strong> the Hanhimaa shear zone <strong>and</strong> western part of the<br />

Sirkka L<strong>in</strong>e. Geological Survey of F<strong>in</strong>l<strong>and</strong>,, Report<br />

M19/2741/2010/58. 30 p.<br />

Saverikko M. 1990. Komatiitic explosive volcanism<br />

<strong>and</strong> its tectonic sett<strong>in</strong>g <strong>in</strong> F<strong>in</strong>l<strong>and</strong>, the Fennosc<strong>and</strong>ian<br />

(Baltic) Shield. Bullet<strong>in</strong> of the Geological Society<br />

of F<strong>in</strong>l<strong>and</strong> 62, 3–38.<br />

Skiöld T. 1981. Radiometric ages of plutonic <strong>and</strong><br />

hypabyssal rocks from the Vittangi-Karesu<strong>and</strong>o<br />

area, northern Sweden: Geologiska Fören<strong>in</strong>gens i<br />

Stockholm Förh<strong>and</strong>l<strong>in</strong>gar 103, 317–329.<br />

Skiöld T. 1986. On the age of the Kiruna Greenstones,<br />

northern Sweden. Precambrian Research 32,<br />

35–44.<br />

Skiöld T. & Öhl<strong>and</strong>er B. 1989. Chronology <strong>and</strong> geochemistry<br />

of late Svecofennian processes <strong>in</strong> northern<br />

Sweden. Geologiska Fören<strong>in</strong>gens i Stockholm<br />

Förh<strong>and</strong>l<strong>in</strong>gar 111, 347–354.<br />

Sorjonen-Ward, P., Nironen, M. & Luukkonen, E.<br />

1997. Greenstone associations <strong>in</strong> F<strong>in</strong>l<strong>and</strong>. In: de<br />

Wit, M.J. & Ashwal, L.D. (eds.) Greenstone Belts.<br />

Clarendon Press, Oxford. 677–698.<br />

Sorjonen-Ward, P., Ojala, V.J. & Airo, M.-L. 2003.<br />

Structural modell<strong>in</strong>g <strong>and</strong> magmatic expression of<br />

hydrothermal alteration <strong>in</strong> the Paleoproterozoic<br />

Lapl<strong>and</strong> greenstone belt, northern Fennosc<strong>and</strong>ian<br />

Shield. In: D.G. Eliopoulos et al. (eds) M<strong>in</strong>eral Exploration<br />

<strong>and</strong> Susta<strong>in</strong>able Development. Proceed<strong>in</strong>gs<br />

of the Seventh Biennial SGA Meet<strong>in</strong>g, Athens,<br />

Greece, 24–28. August 2003. Millpress, Rotterdam.<br />

1107–1110.<br />

Tuisku P. 1985. The orig<strong>in</strong> of scapolite <strong>in</strong> the Central<br />

Lapl<strong>and</strong> schist area, northern F<strong>in</strong>l<strong>and</strong>, prelim<strong>in</strong>ary<br />

results. Geolog¬ical Survey of F<strong>in</strong>l<strong>and</strong> Bullet<strong>in</strong><br />

331, 159–173.<br />

Tuisku, P. & Huhma, H. 2006. Evolution of Migmatitic<br />

Granulite Complexes: Implications from Lapl<strong>and</strong><br />

Granulite Belt, Part II: Isotopic dat<strong>in</strong>g. Bullet<strong>in</strong><br />

of the Geological Society of F<strong>in</strong>l<strong>and</strong> 78, 143–175.<br />

Väänänen, J. & Lehtonen, M.I. 2001. U-Pb isotopic<br />

age determ<strong>in</strong>ations from the Kolari-Muonio area,<br />

western F<strong>in</strong>nish Lapl<strong>and</strong>. Geological Survey of F<strong>in</strong>l<strong>and</strong>,<br />

Special Paper 33, 85–93.<br />

Vanhanen, E. 2001. Geology, m<strong>in</strong>eralogy <strong>and</strong> geochemistry<br />

of the Fe-Co-Au-(U) deposits <strong>in</strong> the Paleoproterozoic<br />

Kuusamo Schist Belt, northeastern<br />

F<strong>in</strong>l<strong>and</strong>. Geological Survey of F<strong>in</strong>l<strong>and</strong>, Bullet<strong>in</strong> 399.<br />

229 p.<br />

Väisänen, M. 2002. Structural features <strong>in</strong> the Central<br />

Lapl<strong>and</strong> greenstone belt, northern F<strong>in</strong>l<strong>and</strong>. Geological<br />

Survey of F<strong>in</strong>l<strong>and</strong>, Report K 21.42/2002/3. 20 p.<br />

Vuollo J. 1994. Paleoproterozoic basic igneous<br />

events <strong>in</strong> eastern Fennosc<strong>and</strong>ian Shield between<br />

2.45 <strong>and</strong> 1.97 Ga. Acta Universitatis Ouluensis, Ser<br />

A no 250. 47 p.<br />

Wanha<strong>in</strong>en, C., Billström, K., Mart<strong>in</strong>sson, O., Ste<strong>in</strong>,<br />

H. & Nord<strong>in</strong>, R. 2005. 160 Ma of magmatic/hydrothermal<br />

activ¬ity <strong>in</strong> the Gällivare area: Re-Os dat<strong>in</strong>g<br />

of molybdenite <strong>and</strong> U-Pb dat<strong>in</strong>g of titanite from the<br />

Aitik Cu-Au-Ag deposit, northrn Sweden. M<strong>in</strong>eralium<br />

Deposita 40, 435–447.<br />

Ward, P., Härkönen, I. & Pankka, H.S. 1989. Structural<br />

studies <strong>in</strong> the Lapl<strong>and</strong> greenstone belt, northern<br />

F<strong>in</strong>l<strong>and</strong> <strong>and</strong> their application to <strong>gold</strong> m<strong>in</strong>eralization:<br />

Geological Survey of F<strong>in</strong>l<strong>and</strong>, Special Paper 10,<br />

71–78.<br />

Weihed P. 1992. Lithogeochemistry, metal <strong>and</strong> alteration<br />

zon<strong>in</strong>g <strong>in</strong> the Proterozoic Tallberg porphyry-type<br />

deposit, northern Sweden. Journal of Geochemical<br />

Exploration 42, 301–325.<br />

Weihed P. 2001. A review of Palaeoproterozoic <strong>in</strong>trusive<br />

hosted Cu-Au-Fe-oxide deposits <strong>in</strong> northern<br />

Sweden. Economic Geology Research 1, 4–32.


Weihed P., Billström K., Persson P.-O. & Bergman<br />

Weihed J. 2002. Relationship between 1.90–<br />

1.85 Ga accretionary processes <strong>and</strong> 1.82–1.80 Ga<br />

oblique subduction at the Karelian craton marg<strong>in</strong>,<br />

Fennosc<strong>and</strong>ian Shield. Geologiska Fören<strong>in</strong>gens i<br />

Stockholm Förh<strong>and</strong>l<strong>in</strong>gar 124, 163–180.<br />

Weihed, P., Arndt, N., Billström, C., Duchesne, J.C,<br />

Eilu, P., Mart<strong>in</strong>sson, O., Papunen, H. & Laht<strong>in</strong>en R.<br />

2005. Precambrian geodynamics <strong>and</strong> ore formation:<br />

the Fennosc<strong>and</strong>ian Shield. Ore Geology Reviews 27,<br />

273–322.<br />

Wikström A. & Persson P.-O. 1997a. Two Hapar<strong>and</strong>a<br />

type granodiorites with contrast<strong>in</strong>g ages <strong>in</strong> the<br />

southeastern part of Norrbotten, northern Sweden.<br />

In Th. Lundqvist (ed): Radiometric dat<strong>in</strong>g results 3.<br />

Sveriges Geologiska undersökn<strong>in</strong>g C 830, 73–80.<br />

Wikström, A. & Persson, P.-O. 1997b. U-Pb zircon<br />

<strong>and</strong> monazite dat<strong>in</strong>g of a L<strong>in</strong>a type leucogranite <strong>in</strong><br />

northern Sweden <strong>and</strong> its relationship to the Bothnian<br />

shear zone. In Th. Lundqvist (ed): Radiometric dat<strong>in</strong>g<br />

results 3. Sveriges Geologiska Undersökn<strong>in</strong>g C<br />

830, 81–87.<br />

Wilson M.R., Fallick A.E., Hamilton P.J. & Persson<br />

L. 1986. Magma sources for some mid-Proterozoic<br />

granitoids <strong>in</strong> SE Sweden: geochemical <strong>and</strong> isotope<br />

constra<strong>in</strong>ts. Geologiska Fören<strong>in</strong>gens i Stockholm<br />

Förh<strong>and</strong>l<strong>in</strong>gar 108, 79–91.<br />

Witschard F. 1984. The geological <strong>and</strong> tectonic evolution<br />

of the Precambrian of northern Sweden – a<br />

case for basement reactivation? Precambrian Research<br />

23, 273–315.<br />

Witschard F. 1996. Berggrundskartan 28 K Gällivare,<br />

1:50 000. Sveriges Geologiska undersökn<strong>in</strong>g<br />

Ai 98–101.<br />

47


ISBN 978-952-9618-80-4 (Pr<strong>in</strong>ted)<br />

ISBN 978-952-9618-81-1 (Pdf)<br />

ISSN 0783-1331

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!