12.07.2015 Views

Intersection theory on moduli spaces of curves ... - User Web Pages

Intersection theory on moduli spaces of curves ... - User Web Pages

Intersection theory on moduli spaces of curves ... - User Web Pages

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

1.2. <str<strong>on</strong>g>Intersecti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>theory</str<strong>on</strong>g> <strong>on</strong> <strong>moduli</strong> <strong>spaces</strong> 25and c<strong>on</strong>sider the generating functi<strong>on</strong> F(t) = 〈exp(t · τ)〉. Here, the expressi<strong>on</strong> is to be expandedas a Taylor series using multilinearity in the variables t 0 , t 1 , t 2 , . . .. Equivalently, defineF(t 0 , t 1 , t 2 , . . .) = ∑d∞∏k=0t d kkd k ! 〈τd 00 τd 11 τd 22 . . .〉where the summati<strong>on</strong> is over all sequences d = (d 0 , d 1 , d 2 , . . .) <strong>of</strong> n<strong>on</strong>-negative integers withfinitely many n<strong>on</strong>-zero terms. Witten c<strong>on</strong>jectured that the formal series U = ∂2 Fsatisfiesthe KdV hierarchy <strong>of</strong> partial differential equati<strong>on</strong>s. More explicitly, Witten’s c<strong>on</strong>jecture canbe stated as follows.Theorem 1.19 (Witten’s c<strong>on</strong>jecture). The generating functi<strong>on</strong> F satisfies the following partial differentialequati<strong>on</strong> for every n<strong>on</strong>-negative integer n.(2n + 1) ∂3 F∂t n ∂t 2 0( ∂=2 ) ( ) ( ) ( )F ∂ 3 F ∂∂t n−1 ∂t 0 ∂t 3 + 3 F ∂ 2 F20∂t n−1 ∂t 2 0∂t 2 + 1 ∂ 5 F40∂t n−1 ∂t 4 0∂t 2 0Given Witten’s c<strong>on</strong>jecture, the string equati<strong>on</strong> and the base case 〈τ0 3 〉 = 1, every intersecti<strong>on</strong>number <strong>of</strong> psi-classes can be obtained. The following example dem<strong>on</strong>strates this via the calculati<strong>on</strong><strong>of</strong> 〈τ 1 〉.Example 1.20. Observe that∂ n F∂t α1 ∂t α2 · · · ∂t αn∣ ∣∣∣t=0= 〈τ α1 τ α2 . . . τ αn 〉,and c<strong>on</strong>sider the equati<strong>on</strong> in Witten’s c<strong>on</strong>jecture with n = 3 evaluated at t = 0. This yieldsthe equality 7〈τ 2 0 τ 3〉 = 〈τ 0 τ 2 〉〈τ 3 0 〉 + 2〈τ2 0 τ 2〉〈τ 2 0 〉 + 1 4 〈τ4 0 τ 2〉. Now use the fact that 〈τ 2 0 〉 = 0and the base case 〈τ0 3〉 = 1 to reduce the relati<strong>on</strong> to 7〈τ2 0 τ 3〉 = 〈τ 0 τ 2 〉 + 1 4 〈τ4 0 τ 2〉. Applyingthe string equati<strong>on</strong> to each term, we obtain 7〈τ 1 〉 = 〈τ 1 〉 + 1 4 〈τ3 0〉 from which it follows that〈τ 1 〉 =24 1 〈τ3 0 〉 = 24 1 . Note that this is in agreement with the calculati<strong>on</strong> <strong>of</strong> 〈τ 1〉 in Example 1.16.A thorough analysis <strong>of</strong> the KdV hierarchy allows Witten’s c<strong>on</strong>jecture to be stated in an alternativeway. Define the sequence <strong>of</strong> Virasoro operators byV −1 = − 1 2∂∂t 0+ 1 2and for positive integers n,(2n + 3)!!V n = −2∂+∂t n+1∞∂∑ t k+1 + t2 0∂tk=0 k 4 , V 0 = − 3 2∞∑k=0(2k + 2n + 1)!!2(2k − 1)!!t k∂+∂t k+n∂∂t 1+ 1 2∑k 1 +k 2 =n−1∞∑k=0∂(2k + 1)t k + 1∂t k 48 ,(2k 1 + 1)!!(2k 2 + 1)!!4∂ 2∂t k1 ∂t k2.The operators are named so because they span a subalgebra <strong>of</strong> the Virasoro Lie algebra. It is

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!