12.07.2015 Views

Dependence of non-continuous random variables

Dependence of non-continuous random variables

Dependence of non-continuous random variables

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Fallacies <strong>Dependence</strong> Concordance Measures Problems & References Appendix<strong>Dependence</strong> <strong>of</strong> <strong>non</strong>-<strong>continuous</strong> <strong>random</strong> <strong>variables</strong>Johanna NešlehováDepartment <strong>of</strong> MathematicsETH ZurichSwitzerlandwww.math.ethz.ch/~johannaAugust 31, 2005J. Nešlehová ETH Zurich<strong>Dependence</strong> <strong>of</strong> <strong>non</strong>-<strong>continuous</strong> <strong>random</strong> <strong>variables</strong>


Fallacies <strong>Dependence</strong> Concordance Measures Problems & References AppendixMotivationConsider• Two possibly dependent loss types andN i (T) = number <strong>of</strong> losses <strong>of</strong> type i within the year T• <strong>Dependence</strong> structures <strong>of</strong> the pair <strong>of</strong> <strong>non</strong> <strong>continuous</strong> <strong>random</strong><strong>variables</strong>(N 1 (T),N 2 (T))Other examples• Counting <strong>random</strong> <strong>variables</strong> like claim/loss frequencies ornumber <strong>of</strong> defaults in a portfolio• Variables with jumps like losses censored by a certain thresholdJ. Nešlehová ETH Zurich<strong>Dependence</strong> <strong>of</strong> <strong>non</strong>-<strong>continuous</strong> <strong>random</strong> <strong>variables</strong>


Fallacies <strong>Dependence</strong> Concordance Measures Problems & References AppendixDistributions with <strong>continuous</strong> marginals• Notation: (X,Y ) ∼ F with marginals F 1 and F 2F 1 and F 2 <strong>continuous</strong>1. There exists a unique copula C such thatF(x,y) = C(F 1 (x),F 2 (y)) (Sklar’s theorem)2. Modeling <strong>of</strong> the marginals and the copula can be doneseparately3. C captures dependence properties which are invariat under a.s.strictly increasing transformations <strong>of</strong> the marginals4. Scale and translation invariant measures <strong>of</strong> dependence arefunctions <strong>of</strong> C alone➠ C is the (scale and location invariant) dependence structureJ. Nešlehová ETH Zurich<strong>Dependence</strong> <strong>of</strong> <strong>non</strong>-<strong>continuous</strong> <strong>random</strong> <strong>variables</strong>


Fallacies <strong>Dependence</strong> Concordance Measures Problems & References AppendixPathological Example2/3q1/31/3 p 2/3J. Nešlehová ETH Zurich<strong>Dependence</strong> <strong>of</strong> <strong>non</strong>-<strong>continuous</strong> <strong>random</strong> <strong>variables</strong>


Fallacies <strong>Dependence</strong> Concordance Measures Problems & References AppendixPathological Example2/3q1/3• (p,q) ∈ [0,1/3] × [0,1/3]:perfect positive dependence• (p,q) = (1/ √ 3,1/ √ 3):independence• (p,q) ∈ [2/3,1] × [2/3,1]:perfect negative dependence1/3 p 2/3J. Nešlehová ETH Zurich<strong>Dependence</strong> <strong>of</strong> <strong>non</strong>-<strong>continuous</strong> <strong>random</strong> <strong>variables</strong>


Fallacies <strong>Dependence</strong> Concordance Measures Problems & References AppendixFurther Pitfalls• The copula is not unique; i.e. several possible copulas exist• The dependence structures <strong>of</strong> F are generally not the same asthe dependence structures <strong>of</strong> the possible copulasF(x,y) ≤ F ∗ (x,y) ∀x,y ∈ R ⇏ C(u,v) ≤ C ∗ (u,v) ∀u,v ∈ [0,1]• Possible copulas remain invariant under strictly increasing and<strong>continuous</strong> transformations, but do not necessarily change inthe same way as the unique copula in the “<strong>continuous</strong>” case ifat least one <strong>of</strong> the transformations is decreasing• Weak convergence <strong>of</strong> F n does not imply the point-wiseconvergence <strong>of</strong> the corresponding possible copulas• Any measure <strong>of</strong> association which depends only on the copula<strong>of</strong> F is a constantJ. Nešlehová ETH Zurich<strong>Dependence</strong> <strong>of</strong> <strong>non</strong>-<strong>continuous</strong> <strong>random</strong> <strong>variables</strong>


Fallacies <strong>Dependence</strong> Concordance Measures Problems & References AppendixKendall’s Tau and Spearman’s rho in the”Non-Continuous” Case?”Naive” Idea: work with some <strong>of</strong> the <strong>non</strong> unique fitting copulaBut: fitting copulas can differ considerably.• For independent Bernoulli <strong>random</strong> <strong>variables</strong> X and Y◮ τ(X, Y ) ∈ [−3/4, 3/4]◮ ρ(X, Y ) ∈ [−13/16, 13/16]• for comonotonic Bernoulli <strong>random</strong> <strong>variables</strong> X and Y◮ τ(X, Y ) ∈ [0, 1]◮ ρ(X, Y ) ∈ [1/2, 1]Because: Difference between the probability <strong>of</strong> concordance anddiscordance ≠ 4 ∫ C(u,v)dC ∗ (u,v) − 1J. Nešlehová ETH Zurich<strong>Dependence</strong> <strong>of</strong> <strong>non</strong>-<strong>continuous</strong> <strong>random</strong> <strong>variables</strong>


Fallacies <strong>Dependence</strong> Concordance Measures Problems & References AppendixSome Starting Points• Investigation <strong>of</strong> the family <strong>of</strong> possible copulas correspondingto a fixed bivariate distribution◮ In particular search for a suitable extension strategy whichwould produce a copula capturing the dependence structures<strong>of</strong> the joint distribution function• Investigation <strong>of</strong> possible bivariate distributions obtained froma fixed copula and marginals which follow some specifieddistribution (up to parameters), such as Poisson, binomial orBernoulliJ. Nešlehová ETH Zurich<strong>Dependence</strong> <strong>of</strong> <strong>non</strong>-<strong>continuous</strong> <strong>random</strong> <strong>variables</strong>


Fallacies <strong>Dependence</strong> Concordance Measures Problems & References AppendixThe ”Standard” Extension StrategyC(0.4, 0.4) = 0C(0.4, 0.4) = 0.16C(0.4, 0.4) = 0.31110.80.80.80.60.60.6yyy0.40.40.40.20.20.2000.20.40.60.81000.20.40.60.81000.20.40.60.81xxxThe Standard Extension C S• The standard extension copula <strong>of</strong> Schweizer and Sklar• C S corresponds to the linear interpolation <strong>of</strong> the uniquesubcopula as well as the unique copula <strong>of</strong> the smoothed jdfJ. Nešlehová ETH Zurich<strong>Dependence</strong> <strong>of</strong> <strong>non</strong>-<strong>continuous</strong> <strong>random</strong> <strong>variables</strong>


Fallacies <strong>Dependence</strong> Concordance Measures Problems & References AppendixSome Selected Properties <strong>of</strong> C SPros• X and Y are independent if and only if C S is theindependence copula• (X ∗ ,Y ∗ ) more concordant than (X,Y ) if and only ifC S (u,v) ≤ CS ∗ (u,v) for all u,v ∈ [0,1]• C S reacts on monotone transformations <strong>of</strong> the marginals asthe unique copula in the “<strong>continuous</strong>” caseCons• If X and Y are perfect monotonic dependent, C S does notcoincide with the Fréchet-Hoeffding bounds• Weak convergence does not imply the point-wise convergence<strong>of</strong> the C S ’sJ. Nešlehová ETH Zurich<strong>Dependence</strong> <strong>of</strong> <strong>non</strong>-<strong>continuous</strong> <strong>random</strong> <strong>variables</strong>


Fallacies <strong>Dependence</strong> Concordance Measures Problems & References AppendixTowards Kendall’s Tau and Spearman’s RhoDifference between the probabilities <strong>of</strong> concordance anddiscordance equals 4 ∫ C S (u,v)dC S ∗ (u,v) − 1Consider• Kendall’s tau: ˜τ(C S ) = 4• Spearman’s rho: ˜ρ(C S ) = 12However∫ 1 ∫ 100∫ 1 ∫ 1• ˜τ and ˜ρ do not reach the bounds 1 and −10C S (u,v) dC S (u,v) − 10[C S (u,v) − uv] du dv• Exact bounds <strong>of</strong> ˜τ and ˜ρ are complicated and do not have thesame absolute valueJ. Nešlehová ETH Zurich<strong>Dependence</strong> <strong>of</strong> <strong>non</strong>-<strong>continuous</strong> <strong>random</strong> <strong>variables</strong>


Fallacies <strong>Dependence</strong> Concordance Measures Problems & References AppendixExact Bounds for Kendall’s Tau and Spearman’s Rho1.51.5110.50.5000.20.4x0.60.8000.20.4x0.60.8-0.5-0.5-1-1|˜τ(M S )/˜τ(W S )| for Binomialdistributions F 1 = B(n, 0.4) andF 2 = B(n, x) with n =1,4 and 10.|˜ρ(M S )/˜ρ(W S )| for Binomialdistributions F 1 = B(n, 0.4) andF 2 = B(n, x) with n =1,4 and 10.J. Nešlehová ETH Zurich<strong>Dependence</strong> <strong>of</strong> <strong>non</strong>-<strong>continuous</strong> <strong>random</strong> <strong>variables</strong>


Fallacies <strong>Dependence</strong> Concordance Measures Problems & References AppendixLess Sharp Bounds for Kendall’s Tau and Spearman’s Rho1. |˜τ(X,Y )| ≤ √ 1 − E ∆F 1 (X) √ 1 − E∆F 2 (Y ). The boundsare attained if Y = T(X) a.s. where T is a strictly monotoneand <strong>continuous</strong> transformation on the range <strong>of</strong> X.2. |˜ρ(X,Y )| ≤ √ 1 − E ∆F 1 (X) 2√ 1 − E ∆F 2 (Y ) 2 . The boundsare attained if Y = T(X) a.s. where T is a strictly monotoneand <strong>continuous</strong> transformation on the range <strong>of</strong> X.J. Nešlehová ETH Zurich<strong>Dependence</strong> <strong>of</strong> <strong>non</strong>-<strong>continuous</strong> <strong>random</strong> <strong>variables</strong>


Fallacies <strong>Dependence</strong> Concordance Measures Problems & References AppendixKendall’s Tau and Spearman’s Rho for Non-ContinuousRandom Variables1∫ ∫ 14 C S (u,v) dC S (u,v) − 10 0τ(X,Y ) = √[1 − E ∆F1 (X)][1 − E∆F 2 (Y )](∫1∫ 1 (12 CS (u,v) − uv ) )du dv0 0ρ(X,Y ) = √[1 − E ∆F1 (X) 2 ][1 − E∆F 2 (Y ) 2 ]• τ and ρ satisfy (modified) axioms <strong>of</strong> concordance measures• Bounds are attained if X a.s. = T(Y ) for T <strong>continuous</strong> andstrictly monotone• τ and ρ are the sample versions for empirical distributionsJ. Nešlehová ETH Zurich<strong>Dependence</strong> <strong>of</strong> <strong>non</strong>-<strong>continuous</strong> <strong>random</strong> <strong>variables</strong>


Fallacies <strong>Dependence</strong> Concordance Measures Problems & References Appendixτ, ρ and ϱ for Binomial Distributions1110.80.80.80.60.60.60.40.40.40.20.20.200.20.40.60.8 10 0.2 0.40.60.8100.20.40.60.8 1xxxF 1 = B(2, 0.4), F 2 = B(2, x).x0 0.2 0.4 0.6 0.8 1F 1 = B(4, 0.4), F 2 = B(4, x).x0 0.2 0.4 0.6 0.8 1F 1 = B(10, 0.4), F 2 = B(10, x).x0 0.2 0.4 0.6 0.8 1-0.2-0.2-0.2-0.4-0.4-0.4-0.6-0.6-0.6-0.8-0.8-0.8-1-1-1J. Nešlehová F 1 = B(2, 0.4), F 2 = B(2, x). F 1 = B(4, 0.4), F 2 = B(4, x). F 1 = B(10, 0.4), F 2 = B(10, ETHx).Zurich<strong>Dependence</strong> <strong>of</strong> <strong>non</strong>-<strong>continuous</strong> <strong>random</strong> <strong>variables</strong>


Fallacies <strong>Dependence</strong> Concordance Measures Problems & References AppendixSome Problems• Modeling: dependence properties <strong>of</strong> a familyH = {C(F,G) : F ∈ F,G ∈ G}Kendall’s tau0.0 0.1 0.2 0.3 0.4 0.5Kendall’s tau0.0 0.1 0.2 0.3 0.4 0.5Kendall’s tau0.0 0.1 0.2 0.3 0.4 0.50.0 0.2 0.4 0.6 0.8 1.0q0.0 0.2 0.4 0.6 0.8 1.0q0 100 200 300qKendall’s tau for binomial marginals and a Gauss copula (solidline), Frank copula (short-dashed line), Gumbel copula (dottedline), and Fréchet copula (long-dashed line).J. Nešlehová ETH Zurich<strong>Dependence</strong> <strong>of</strong> <strong>non</strong>-<strong>continuous</strong> <strong>random</strong> <strong>variables</strong>


Fallacies <strong>Dependence</strong> Concordance Measures Problems & References AppendixSome Theory Behind: <strong>Dependence</strong> Structure in theNon-Continous CaseIn the <strong>continuous</strong> case: C is the cdf. <strong>of</strong> the transformed vector(F 1 (X),F 2 (Y )).Idea: In the <strong>non</strong>-<strong>continuous</strong> case, use a different transformation <strong>of</strong>the marginals:ψ(x,u) := P[X < x] + uP[X = x] = F(x−) + u∆F(x)Result: for a <strong>random</strong> vector (U,V) with uniform marginals whichis independent <strong>of</strong> (X,Y ), (ψ(X,U),ψ(Y ,V)) has uniformmarginals and the corresponding unique copula is a possible copula<strong>of</strong> (X,Y ).Moreover: different dependence structure <strong>of</strong> (U,V) leads todifferent possible copulas <strong>of</strong> (X,Y).J. Nešlehová ETH Zurich<strong>Dependence</strong> <strong>of</strong> <strong>non</strong>-<strong>continuous</strong> <strong>random</strong> <strong>variables</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!