12.07.2015 Views

special issue for the 18 nordic seminar on computational mechanics ...

special issue for the 18 nordic seminar on computational mechanics ...

special issue for the 18 nordic seminar on computational mechanics ...

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

VOL. 38, 2005, Nro 3SPECIAL ISSUE FOR THE <str<strong>on</strong>g>18</str<strong>on</strong>g> TH NORDIC SEMINAR ONCOMPUTATIONAL MECHANICSOCTOBER, 27 TH – 30 TH 2005RAKENTEIDEN MEKANIIKAN SEURA RYFINNISH ASSOCITATION FOR STRUCTURAL MECHANICS1


R A K E N T E I D E N M E K A N I I K A N S E U R A R.Y.FINNISH ASSOCIATION FOR STRUCTURAL MECHANICSJOHTOKUNTAADMINISTRATIVE BOARDJUHA PAAVOLA, prof. (puheenjohtaja), TKK/Rakenteiden mekaniikkaTAPIO AHO, dipl. ins., Ins.tsto Magnus Malmberg OyJOUNI FREUND, tekn.tri, TKK/LujuusoppiJUHANI KOSKI, prof., TTY/Tekn. mek. ja optimointiKARI KOLARI, dipl. ins., TKK/LujuusoppiREIJO LINDGREN, dipl. ins., CSC-Tieteellinen laskentaSEPPO ORIVUORI, tekn.lis, Enprima OyILMO SIPILÄ, dipl. ins., Ins.tsto Ilmo SipiläJUKKA TUHKURI, prof., TKK/LujuusoppiMATTI RANTA, prof., kunniapuheenjohtajaTOIMISTOOFFICESAMI PAJUNEN, asiamies, puh. 040 900 4501ELSA NISSINEN-NARBRO, kanslisti/jäsenasiat, puh. (09) 451 3701JÄSENETMEMBERSHENKILÖJÄSENET 176OPISKELIJAJÄSENET 3YHTEISÖJÄSENET:Aaro Koh<strong>on</strong>en OyFinnmap C<strong>on</strong>sulting OyIns.tsto JP-Kakko OyIns.tsto Magnus Malmberg OyIns. tsto P<strong>on</strong>tek OyIns.tsto Pöysälä & Sandberg OyTKK/LaivalaboratorioKCI K<strong>on</strong>ecranes Internati<strong>on</strong>al PlcK<strong>on</strong>ecranes VLC OyKPM-Engineering OyNokian Renkaat OyjOptiplan OySuomalainen Insinööritoimisto SITO OyPohjois-Karjalan AMKOSOITE:3826Teknillinen korkeakoulu, Rakennus- ja ympäristötekniikan osasto,Rakentajanaukio 4 A, PL 2100, 02015 TKK, puh. (09) 451 3701, telefax (09) 451ADDRESS: Helsinki University of Technology, Department of Civil and Envir<strong>on</strong>mentalEngineering, Rakentajanaukio 4 A, P.O.Box 2100, FIN-02015 HUT, Finland.tel. (358-9) 451 3701, telefax (358-9) 451 3826http://rmseura.tkk.fi/


www.ruukki.comIf you see <str<strong>on</strong>g>the</str<strong>on</strong>g> nameRuukki instead ofRautaruukki, Rannila,Fundia Rein<str<strong>on</strong>g>for</str<strong>on</strong>g>cing,Gasell or Asva, you areactually seeing more.


Call <str<strong>on</strong>g>for</str<strong>on</strong>g> papersAccidents and safety in c<strong>on</strong>structi<strong>on</strong> sectorC<strong>on</strong>structi<strong>on</strong>SAFETYMay10-12, 2006Helsinki, Finland2006Finnish Associati<strong>on</strong> of Civil EngineersThe c<strong>on</strong>structi<strong>on</strong> industry is <strong>on</strong>e of <str<strong>on</strong>g>the</str<strong>on</strong>g>most hazardous workplaces in <str<strong>on</strong>g>the</str<strong>on</strong>g> world.Mistakes during c<strong>on</strong>structi<strong>on</strong> often leadto very negative and unwanted resultslater - to loss of property or even humanlives. Such situati<strong>on</strong>s may be caused ei<str<strong>on</strong>g>the</str<strong>on</strong>g>rby natural disasters and envir<strong>on</strong>mentalchanges or human errors, whe<str<strong>on</strong>g>the</str<strong>on</strong>g>rdeliberate or involuntary.The Finnish c<strong>on</strong>structi<strong>on</strong> industry, <str<strong>on</strong>g>special</str<strong>on</strong>g>istorganizati<strong>on</strong>s and authorities havediscussed ways to improve <str<strong>on</strong>g>the</str<strong>on</strong>g> situati<strong>on</strong>and found exchange of in<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>, circulati<strong>on</strong>of best practices, learning fromcases and brainstorming with colleaguesand stakeholders to be <strong>on</strong>e good way toproceed. The Finnish Associati<strong>on</strong> of CivilEngineers RIL, as an impartial networkof experts, has decided to open a timewindow and plat<str<strong>on</strong>g>for</str<strong>on</strong>g>m <str<strong>on</strong>g>for</str<strong>on</strong>g> an open discussi<strong>on</strong>and exchange of views betweenEuropean, Finnish and global industrymembers by organizing a c<strong>on</strong>ferencewhere <str<strong>on</strong>g>the</str<strong>on</strong>g>se <str<strong>on</strong>g>issue</str<strong>on</strong>g>s can be presented anddiscussed .This is an open call <str<strong>on</strong>g>for</str<strong>on</strong>g> experts,practi<strong>on</strong>ers, researchers and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r professi<strong>on</strong>alsdealing with structural andoccupati<strong>on</strong>al safety to step ahead, exchange<str<strong>on</strong>g>the</str<strong>on</strong>g>ir knowledge and in<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>about <str<strong>on</strong>g>the</str<strong>on</strong>g>se important <str<strong>on</strong>g>issue</str<strong>on</strong>g>s and tolearn, how to make c<strong>on</strong>structi<strong>on</strong> industrya safe industry and built envir<strong>on</strong>menta safe place to live!More in<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>:www.ril.fi/safety2006or kaisa.venalainen@ril.fi


PrefaceThese proceedings c<strong>on</strong>tain <str<strong>on</strong>g>the</str<strong>on</strong>g> papers presented at <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>18</str<strong>on</strong>g> th Nordic Seminar <strong>on</strong>Computati<strong>on</strong>al Mechanics, held at Silja Serenade ferry travelling between Helsinki andStockholm, <str<strong>on</strong>g>the</str<strong>on</strong>g> Capitals of Finland and Sweden, and hosted by Helsinki University ofTechnology, Espoo, Finland, <strong>on</strong> 27-30 October 2005.The <str<strong>on</strong>g>seminar</str<strong>on</strong>g>s are organized annually by <str<strong>on</strong>g>the</str<strong>on</strong>g> Nordic Associati<strong>on</strong> of Computati<strong>on</strong>alMechanics (NoACM). The NoACM was founded in 1988 with <str<strong>on</strong>g>the</str<strong>on</strong>g> objective tostimulate and promote research and practice in computati<strong>on</strong>al <strong>mechanics</strong>, to foster <str<strong>on</strong>g>the</str<strong>on</strong>g>interchange of ideas am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> various fields c<strong>on</strong>tributing to computati<strong>on</strong>al <strong>mechanics</strong>,and provide <str<strong>on</strong>g>for</str<strong>on</strong>g>ums and meetings <str<strong>on</strong>g>for</str<strong>on</strong>g> disseminati<strong>on</strong> of knowledge in computati<strong>on</strong>al<strong>mechanics</strong>. Younger researchers, including doctorate students etc. are e<str<strong>on</strong>g>special</str<strong>on</strong>g>lyencouraged to participate at <str<strong>on</strong>g>the</str<strong>on</strong>g>se <str<strong>on</strong>g>seminar</str<strong>on</strong>g>s. The member countries of NoACM are <str<strong>on</strong>g>the</str<strong>on</strong>g>Nordic countries (Denmark, Finland, Iceland, Norway and Sweden) and <str<strong>on</strong>g>the</str<strong>on</strong>g> Balticcountries (Est<strong>on</strong>ia, Latvia and Lithuania). NoACM is a subchapter of <str<strong>on</strong>g>the</str<strong>on</strong>g> Internati<strong>on</strong>alOrganizati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> Computati<strong>on</strong>al Mechanics (IAC) and <str<strong>on</strong>g>the</str<strong>on</strong>g> European Community <strong>on</strong>Computati<strong>on</strong>al Methods in Applied Sciences (ECCOMAS).The resp<strong>on</strong>sibility <str<strong>on</strong>g>for</str<strong>on</strong>g> organizing this year’s <str<strong>on</strong>g>seminar</str<strong>on</strong>g> was assigned by NoACM toLaboratories of Structural Mechanics and Mechanics of Materials, Helsinki Universityof Technology. Traditi<strong>on</strong>ally, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>seminar</str<strong>on</strong>g>s have been organized in academic universitycircumstances. To reserve <str<strong>on</strong>g>for</str<strong>on</strong>g> participants more time to have with each o<str<strong>on</strong>g>the</str<strong>on</strong>g>r and toprovide <str<strong>on</strong>g>the</str<strong>on</strong>g> comm<strong>on</strong> time with more com<str<strong>on</strong>g>for</str<strong>on</strong>g>ts, this time <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>seminar</str<strong>on</strong>g> will be arranged in<str<strong>on</strong>g>the</str<strong>on</strong>g> ferry. The <str<strong>on</strong>g>seminar</str<strong>on</strong>g> c<strong>on</strong>tains five invited lectures and 38 c<strong>on</strong>tributed presentati<strong>on</strong>sdivided into 10 separate sessi<strong>on</strong>s of which some are parallel <strong>on</strong>es. In this volume, <str<strong>on</strong>g>the</str<strong>on</strong>g>invited keynote lectures are placed first and after that comes <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tributed papers in<str<strong>on</strong>g>the</str<strong>on</strong>g> order of <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>seminar</str<strong>on</strong>g> program.On behalf of <str<strong>on</strong>g>the</str<strong>on</strong>g> organizers, we’d like express our gratitude to all c<strong>on</strong>tributors of <str<strong>on</strong>g>the</str<strong>on</strong>g><str<strong>on</strong>g>seminar</str<strong>on</strong>g>, <str<strong>on</strong>g>the</str<strong>on</strong>g> invited and c<strong>on</strong>tributed speakers <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir ef<str<strong>on</strong>g>for</str<strong>on</strong>g>t in preparing talks,presentati<strong>on</strong>s and papers, and to those all who have helped in practical arrangements.Finally, we thank all <str<strong>on</strong>g>the</str<strong>on</strong>g> sp<strong>on</strong>sors, Ruukki, KCI K<strong>on</strong>ecranes PLC, VTT-TechnicalResearch Centre of Finland, and Finnish Associati<strong>on</strong> of Civil Engineers, who havehelped us to make this <str<strong>on</strong>g>seminar</str<strong>on</strong>g> true. Particularly, <str<strong>on</strong>g>the</str<strong>on</strong>g> Finnish Associati<strong>on</strong> of StructuralMechanics, deserves to be menti<strong>on</strong>ed <str<strong>on</strong>g>for</str<strong>on</strong>g> serving a great <str<strong>on</strong>g>for</str<strong>on</strong>g>um to publish <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>seminar</str<strong>on</strong>g>abstracts in <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>special</str<strong>on</strong>g> <str<strong>on</strong>g>issue</str<strong>on</strong>g> devoted <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>seminar</str<strong>on</strong>g>.Espoo, 21 October 2005The editors


Program CommitteeKjell Magne Mathisen, NorwayTr<strong>on</strong>d Kvamsdal, NorwayAnders Erikss<strong>on</strong>, SwedenGöran Sandberg, SwedenRoland Rikards, Latvia ( Baltic countries )Juha Paavola, FinlandJouni Freund, FinlandNiels Olhoff, DenmarkJens Sørensen, DenmarkLocal Organizing CommitteeJuha PaavolaJouni FreundEnnio ZuccaroNSCM<str<strong>on</strong>g>18</str<strong>on</strong>g> secretariatEnnio ZuccaroLaboratory of Structural MechanicsHelsinki University of TechnologyPO Box 210002015 TKKFINLANDPh<strong>on</strong>e: +358 9 451 3711Fax: +358 9 451 3826


Table of c<strong>on</strong>tentsKeynote lecturesJukka Tuhkuri Discrete element simulati<strong>on</strong>s in ice engineering 1Jens Wal<str<strong>on</strong>g>the</str<strong>on</strong>g>r Numerical Simulati<strong>on</strong> of Nano-, Meso, Macro- and Multiscale Fluid 9DynamicKnut-Andreas Lie Multiscale methods <str<strong>on</strong>g>for</str<strong>on</strong>g> flow in porous media 19Ragnar Larss<strong>on</strong> Inverse Disc<strong>on</strong>tinuity Formulati<strong>on</strong> of Fracture 27Tarmo Soomere Less<strong>on</strong>s in wave <str<strong>on</strong>g>the</str<strong>on</strong>g>ory from <str<strong>on</strong>g>the</str<strong>on</strong>g> Indian Ocean Tsunami of Millenniumand from <str<strong>on</strong>g>the</str<strong>on</strong>g> Baltic Sea Storm Surge of Century31Parallel sessi<strong>on</strong> I : fractureJaan Lellep Inelastic c<strong>on</strong>ical shells with cracks 24Mikko Lyly Simulati<strong>on</strong> of quasi-static crack growth by using <str<strong>on</strong>g>the</str<strong>on</strong>g> method 37Timo Saksala Explicit FE-procedure <str<strong>on</strong>g>for</str<strong>on</strong>g> Numerical Modeling of Rock Fracture underDynamic Indentati<strong>on</strong>41Parallel sessi<strong>on</strong> I : applicati<strong>on</strong>sMats Lars<strong>on</strong> Residual Based Approximati<strong>on</strong>s of Fine Scales in Variati<strong>on</strong>al Multiscale 45Approximati<strong>on</strong>s of Navier-Stokes Equati<strong>on</strong>sMats Lars<strong>on</strong> Adaptive Simulati<strong>on</strong> of Multiphysics Problems 47Tr<strong>on</strong>d Kvamsdal Algorithms <str<strong>on</strong>g>for</str<strong>on</strong>g> fluid-structure interacti<strong>on</strong> of flow around two or morecylinders with large relative moti<strong>on</strong>s.49Ordinary sessi<strong>on</strong> IAnders Kristensen Finite element analysis of jar c<strong>on</strong>necti<strong>on</strong>s : Modeling c<strong>on</strong>siderati<strong>on</strong>s 51Kilwa Ärölä De<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> of a Paper Roll Loaded Against a Nip Roller 55Tellervo Brandt Comparis<strong>on</strong> between Approaches to Explicit Filtering in Large EddySimulati<strong>on</strong> 59FeliksasMa<str<strong>on</strong>g>the</str<strong>on</strong>g>matica Modelling of Biosensors with Per<str<strong>on</strong>g>for</str<strong>on</strong>g>ated and Selective 63Ivanauskas MembranesJohn Öström Modeling Aircraft Ground Behavior into a Flight Simulati<strong>on</strong> 67Parallel sessi<strong>on</strong> II : numericsAntti Niemi Benchmark study: MITC4-S and boundary layer-type de<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>s 71Jarkko Niiranen Computati<strong>on</strong>al results <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> superc<strong>on</strong>vergence and postprocessing of 75MITC plate elementsJuhani Pitkäranta Locking-Free Plate Elements at Free Boundary 79Gunnar Tibert Finding <str<strong>on</strong>g>the</str<strong>on</strong>g> most efficient rotati<strong>on</strong>-free triangular shell element 83Marcus Rüter A Posteriori Error Estimates in Linear Elastic Fracture Mechanics based<strong>on</strong> Different FE-Soluti<strong>on</strong> Spaces <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Primal and <str<strong>on</strong>g>the</str<strong>on</strong>g> Dual Problem87Parallel sessi<strong>on</strong> II : applicati<strong>on</strong>sPentti Varpasuo FPK-equati<strong>on</strong> soluti<strong>on</strong>s <str<strong>on</strong>g>for</str<strong>on</strong>g> stochastic structural resp<strong>on</strong>se 91Helle Hein The Effect of Delaminati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Natural Frequencies of <str<strong>on</strong>g>the</str<strong>on</strong>g> Composite 97Beams <strong>on</strong> Two-Parameter Foundati<strong>on</strong>Reetta Karjalainen Fatigue life predicti<strong>on</strong> of polymer covered roll 101Lena Strömberg Extensi<strong>on</strong> of ASME regulatory <str<strong>on</strong>g>for</str<strong>on</strong>g> validati<strong>on</strong> of dynamical calculati<strong>on</strong> 105when deviati<strong>on</strong>s in as-buildtJani Paavilainen Forces Between Joined Discrete Particles in Discrete Element Method 109


Parallel sessi<strong>on</strong> III : numericsMika Juntunen A Finite Element Method <str<strong>on</strong>g>for</str<strong>on</strong>g> General Boundary C<strong>on</strong>diti<strong>on</strong> 113Sergey Korotov New Tecnologies <str<strong>on</strong>g>for</str<strong>on</strong>g> C<strong>on</strong>trol of Local Errors in Engineering 117Computati<strong>on</strong>s by FEMSanna Mönkölä Soluti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> Helmholtz equati<strong>on</strong> with c<strong>on</strong>trollability and spectralelement methods121Parallel sessi<strong>on</strong> III : educati<strong>on</strong>Jouni Freund Vectors and tensors with matrix manipulati<strong>on</strong>s 125Juha Paavola Virtual Work, Lagranges Equati<strong>on</strong>s and Finite Elements 129Lena Strömberg Inertia and related topics of educati<strong>on</strong> in <strong>mechanics</strong> 133Parallel sessi<strong>on</strong> IV : materialsAnders Lyckegaard Stress evaluati<strong>on</strong> in sandwich structures near tri-material wedge 135Tuomas Peräkylä Identificati<strong>on</strong> of Material Parameters of a Polymer 139Lena Strömberg N<strong>on</strong>-local plasticity model <str<strong>on</strong>g>for</str<strong>on</strong>g> fibre rein<str<strong>on</strong>g>for</str<strong>on</strong>g>ced c<strong>on</strong>crete 143Antti-Jussi Vuotikka Time-Temperature Superpositi<strong>on</strong> Method <str<strong>on</strong>g>for</str<strong>on</strong>g> Polyester Resin 149Johan Clausen Slope safety calculati<strong>on</strong> with a n<strong>on</strong>-linear Mohr criteri<strong>on</strong> using finiteelement method153Parallel sessi<strong>on</strong> IV : applicati<strong>on</strong>sJohnny Jacobsen Shape Optimisati<strong>on</strong> of Core Interfaces in Sandwich Structures 157Sergey Sorokin On wave attenuati<strong>on</strong> in sandwich plates loaded by a layer of viscous fluid 161Gunnar Tibert Flexibility Evaluati<strong>on</strong> of Prestressed Kinematically Indeterminate 165FrameworksJukka Toivanen On shape sensitivity analysis with unstructured grids 169Jussi Jalkanen Space Frame Optimizati<strong>on</strong> Using PSO 173Seminar closureBastian Ebbecke Simulati<strong>on</strong> of Stress Adaptive B<strong>on</strong>e Remodelling 177Index of authorsList of participantsSeminar programme


Discrete Element Simulati<strong>on</strong>s in Ice EngineeringJukka TuhkuriLaboratory <str<strong>on</strong>g>for</str<strong>on</strong>g> Mechanics of MaterialsHelsinki University of Technology, Espoo, Finlande–mail: jukka.tuhkuri@tkk.fiSummary The ice load <strong>on</strong> an engineering structure depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> de<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> and failure process ofsea ice. As several ice features and ice failure processes are disc<strong>on</strong>tinuous in nature, it is tempting to study<str<strong>on</strong>g>the</str<strong>on</strong>g> ice load problem by using a disc<strong>on</strong>tinuous approach. Discrete element method (DEM) is <strong>on</strong>e of <str<strong>on</strong>g>the</str<strong>on</strong>g>techniques that model <str<strong>on</strong>g>the</str<strong>on</strong>g> dynamics of a system of discrete particles. This paper gives a review of a groupof ice problems and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir analysis with DEM.Introducti<strong>on</strong>Determinati<strong>on</strong> of ice loads <strong>on</strong> ships and offshore structures is an important technical challenge.Ice <str<strong>on</strong>g>for</str<strong>on</strong>g>ces acting <strong>on</strong> a structure are due to relative movement between <str<strong>on</strong>g>the</str<strong>on</strong>g> structure and ice and <str<strong>on</strong>g>the</str<strong>on</strong>g>sequential failure process of <str<strong>on</strong>g>the</str<strong>on</strong>g> ice feature. Typical sea ice features are sheets of level ice, ridgesand rubble fields. Both ridges and rubble fields are piles of ice blocks, but ridges have an el<strong>on</strong>gated<str<strong>on</strong>g>for</str<strong>on</strong>g>m. Ridges and rubble fields <str<strong>on</strong>g>for</str<strong>on</strong>g>m when two ice sheets, driven by winds and currents, collide. In<str<strong>on</strong>g>the</str<strong>on</strong>g> Baltic, ridges more than 10 meters deep are comm<strong>on</strong>.A central hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis in traditi<strong>on</strong>al solid <strong>mechanics</strong> states that a body under c<strong>on</strong>siderati<strong>on</strong> is c<strong>on</strong>tinuousand remains c<strong>on</strong>tinuous under <str<strong>on</strong>g>the</str<strong>on</strong>g> acti<strong>on</strong> of external <str<strong>on</strong>g>for</str<strong>on</strong>g>ces. However, ice <strong>mechanics</strong> is <strong>on</strong>eof <str<strong>on</strong>g>the</str<strong>on</strong>g> engineering fields where this c<strong>on</strong>tinuum descripti<strong>on</strong> may not be <str<strong>on</strong>g>the</str<strong>on</strong>g> most appropriate, anda disc<strong>on</strong>tinuum approach should be used instead. Figure 1 shows two important ice engineeringproblems. The key features of <str<strong>on</strong>g>the</str<strong>on</strong>g> ice load cases shown are <str<strong>on</strong>g>the</str<strong>on</strong>g> disc<strong>on</strong>tinuous nature of both <str<strong>on</strong>g>the</str<strong>on</strong>g>pile of ice blocks and <str<strong>on</strong>g>the</str<strong>on</strong>g> failure process of ice. When an ice sheet loads a structure as in Figure1(a), <str<strong>on</strong>g>the</str<strong>on</strong>g> originally intact ice sheet breaks into discrete ice blocks which accumulate in <str<strong>on</strong>g>the</str<strong>on</strong>g> icestructureinterface and thus affect <str<strong>on</strong>g>the</str<strong>on</strong>g> failure process. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, when a structure indentsa ridge or an ice rubble pile as in Figure 1(b), <str<strong>on</strong>g>the</str<strong>on</strong>g> load <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> structure is due to rearrangement of<str<strong>on</strong>g>the</str<strong>on</strong>g> discrete ice blocks, in additi<strong>on</strong> to possible failure of <str<strong>on</strong>g>the</str<strong>on</strong>g> ice blocks.(a)Figure 1: (a) Sketch of en ice sheet failure against an inclined marine structure. (b) Snapshot of a DEMsimulati<strong>on</strong> of an indentor moving down into a floating layer of ice blocks [1].The discrete element method (DEM) is a numerical tool used to simulate a system of particles.DEM is based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>cept that individual material elements are c<strong>on</strong>sidered to be separate and,(b)1


if c<strong>on</strong>nected, are c<strong>on</strong>nected al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g>ir boundaries by appropriate interacti<strong>on</strong> laws. An importantaspect of <str<strong>on</strong>g>the</str<strong>on</strong>g> discrete element method is that <str<strong>on</strong>g>the</str<strong>on</strong>g> particles may fracture and fragment, thusincreasing <str<strong>on</strong>g>the</str<strong>on</strong>g> total number of bodies during a simulati<strong>on</strong>. In a discrete element simulati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g>interacti<strong>on</strong> and behavior of individual particles will result into emergent physical properties of <str<strong>on</strong>g>the</str<strong>on</strong>g>particle assembly. A DE approach can be useful in cases where <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>stitutive behavior of a particleassembly is not known. In additi<strong>on</strong> to ice <strong>mechanics</strong>, DEM has been applied to de<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>of granular materials, rock <strong>mechanics</strong>, fragmentati<strong>on</strong> of solids, as well as structural failure andcollapse [2][3][4]. This paper first will introduce <str<strong>on</strong>g>the</str<strong>on</strong>g> discrete element method and <str<strong>on</strong>g>the</str<strong>on</strong>g>n describesome engineering problems analysed with DEM. The goal is not to give an extensive literaturereview, but to highlight a few important applicati<strong>on</strong>s.The discrete element methodIn essence, a discrete element simulati<strong>on</strong> is a computer program that models <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>linear dynamicsof a system of particles. The <str<strong>on</strong>g>for</str<strong>on</strong>g>ces <strong>on</strong> each particle are calculated at each time step and <str<strong>on</strong>g>the</str<strong>on</strong>g>particles are moved to new locati<strong>on</strong>s with new velocities that depend <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>ces. Newt<strong>on</strong>ian<strong>mechanics</strong> is assumed to describe <str<strong>on</strong>g>the</str<strong>on</strong>g> particle moti<strong>on</strong>s. A DEM program has <str<strong>on</strong>g>the</str<strong>on</strong>g> following tasks:1. Store <str<strong>on</strong>g>the</str<strong>on</strong>g> positi<strong>on</strong>, orientati<strong>on</strong>, velocity, and shape of each particle.2. Find <str<strong>on</strong>g>the</str<strong>on</strong>g> neighboring particles.3. Find <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tact geometry (overlapping areas) between <str<strong>on</strong>g>the</str<strong>on</strong>g> neighboring particles.4. Determine <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tact <str<strong>on</strong>g>for</str<strong>on</strong>g>ces between particles, i.e. add <str<strong>on</strong>g>the</str<strong>on</strong>g> physical properties of <str<strong>on</strong>g>the</str<strong>on</strong>g> particlesinto <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong>.5. Determine whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r any particle will fracture into new particles.6. Solve <str<strong>on</strong>g>the</str<strong>on</strong>g> equati<strong>on</strong>s of moti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> particles and move each to a new positi<strong>on</strong> with a newvelocity and orientati<strong>on</strong>.7. Analyse <str<strong>on</strong>g>the</str<strong>on</strong>g> variables of interest and c<strong>on</strong>struct a visual record of <str<strong>on</strong>g>the</str<strong>on</strong>g> systems moti<strong>on</strong>.The sec<strong>on</strong>d and third tasks, dealing both with c<strong>on</strong>tact detecti<strong>on</strong>, are time c<strong>on</strong>suming. For radiallysymmetric particles (disks and spheres) it is a trivial task, but <str<strong>on</strong>g>for</str<strong>on</strong>g> polyg<strong>on</strong>al or polyhedral particles<str<strong>on</strong>g>the</str<strong>on</strong>g> task is a complex exercise in computati<strong>on</strong>al geometry. Presumably <str<strong>on</strong>g>for</str<strong>on</strong>g> this reas<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> majorityof DE simulati<strong>on</strong>s have been per<str<strong>on</strong>g>for</str<strong>on</strong>g>med by using disks or spheres. However, in many physicalproblems <str<strong>on</strong>g>the</str<strong>on</strong>g> particles are not symmetric and <str<strong>on</strong>g>the</str<strong>on</strong>g> particle shape is an important feature of a granularassembly [5][6][1].The fourth task is to determine <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tact <str<strong>on</strong>g>for</str<strong>on</strong>g>ces between particles. The traditi<strong>on</strong>al method inDEM has been to treat each particle as a rigid body, calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> overlap of <str<strong>on</strong>g>the</str<strong>on</strong>g> bodies and torelate <str<strong>on</strong>g>the</str<strong>on</strong>g> overlap depth δ with c<strong>on</strong>tact <str<strong>on</strong>g>for</str<strong>on</strong>g>ce by using simple spring and dashpot models. Forexample, <str<strong>on</strong>g>the</str<strong>on</strong>g> normal c<strong>on</strong>tact <str<strong>on</strong>g>for</str<strong>on</strong>g>ce F n in compressi<strong>on</strong> is <str<strong>on</strong>g>the</str<strong>on</strong>g>nF n = k n δ + c n ˙δ (1)where k n is <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tact stiffness and c n is <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tact damping. This widely used model is somewhatc<strong>on</strong>troversial, because it is not clear what k n and c n are. For elastic spheres, k n can be2


defined by using <str<strong>on</strong>g>the</str<strong>on</strong>g> Hertz c<strong>on</strong>tact model, but <str<strong>on</strong>g>for</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r particle shapes, no general k n exist. Thus,a more recent approach is to use a combined finite-discrete element method where each particle ismodelled by using FEM [4][7].The c<strong>on</strong>tact <str<strong>on</strong>g>for</str<strong>on</strong>g>ce in Equati<strong>on</strong> 1 is <str<strong>on</strong>g>for</str<strong>on</strong>g> compressi<strong>on</strong> <strong>on</strong>ly. In problems dealing with an assembly ofdiscrete particles, <str<strong>on</strong>g>the</str<strong>on</strong>g> normal <str<strong>on</strong>g>for</str<strong>on</strong>g>ce in tensi<strong>on</strong> vanishes. However, also tensile c<strong>on</strong>tact <str<strong>on</strong>g>for</str<strong>on</strong>g>ces canbe easily taken into account in DEM.Research of ice engineering problems with DEMProblems dealing with ice fields comprising of discrete ice floesThe early applicati<strong>on</strong>s of DEM in ice problems c<strong>on</strong>centrated in modelling <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>vergent behaviorof systems of circular ice floes in two dimensi<strong>on</strong>s (2D) [6] [8]. In <str<strong>on</strong>g>the</str<strong>on</strong>g>se studies, <str<strong>on</strong>g>the</str<strong>on</strong>g> goal was toexamine <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>stitutive equati<strong>on</strong>s of ice cover in large scale. Engineering applicati<strong>on</strong>s of thisproblem include simulati<strong>on</strong>s of river ice transport phenomena [9], <str<strong>on</strong>g>for</str<strong>on</strong>g>ces exerted <strong>on</strong> a boom whenit is pulled through a broken ice sheet [10] and <str<strong>on</strong>g>the</str<strong>on</strong>g> behavior of a ship moored in broken ice (Figure2) [11]. Later, three dimensi<strong>on</strong>al (3D) simulati<strong>on</strong>s have shown that <str<strong>on</strong>g>the</str<strong>on</strong>g> floes start to overlap eacho<str<strong>on</strong>g>the</str<strong>on</strong>g>r when <str<strong>on</strong>g>the</str<strong>on</strong>g> floes are packed <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> water surface at an average c<strong>on</strong>centrati<strong>on</strong> of about 80 %by area [12]. In o<str<strong>on</strong>g>the</str<strong>on</strong>g>r words, when <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> reaches 80 %, <str<strong>on</strong>g>the</str<strong>on</strong>g> problem becomes 3D andcannot be modelled with 2D models.Figure 2: Snapshot of a 2D DEM simulati<strong>on</strong> of a ship (left) moored in broken ice moved by a current [11].Figure 3 shows a snapshot from 3D ice floe field simulati<strong>on</strong>s in which a floating layer of circularfloes, c<strong>on</strong>fined in a rectangular channel, was compressed by a pusher moving at a c<strong>on</strong>stant speed[12]. The accuracy of <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong>s was assessed by comparis<strong>on</strong> with a series of similar physicalexperiments per<str<strong>on</strong>g>for</str<strong>on</strong>g>med in a refrigerated basin. Figure 4(a) shows <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>ces <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> pusher obtainedin <str<strong>on</strong>g>the</str<strong>on</strong>g> experiments and simulati<strong>on</strong>s with two ice thicknesses. Three distinct regi<strong>on</strong>s are evident in<str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>ce-displacement, F ∗ (X ∗ ), graphs. During <str<strong>on</strong>g>the</str<strong>on</strong>g> first period (X ∗ < 6), <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>ces increase as<str<strong>on</strong>g>the</str<strong>on</strong>g> floes are herded toward <str<strong>on</strong>g>the</str<strong>on</strong>g> far end of <str<strong>on</strong>g>the</str<strong>on</strong>g> channel. The pusher <str<strong>on</strong>g>for</str<strong>on</strong>g>ce at X ∗ = 6 represents<str<strong>on</strong>g>the</str<strong>on</strong>g> strength of <str<strong>on</strong>g>the</str<strong>on</strong>g> 2D c<strong>on</strong>solidated surface layer of horiz<strong>on</strong>tal floes. During <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d period6 < X ∗ < 35, <str<strong>on</strong>g>the</str<strong>on</strong>g> F ∗ (X ∗ )-record is characterised by <str<strong>on</strong>g>the</str<strong>on</strong>g> resistance of <str<strong>on</strong>g>the</str<strong>on</strong>g> floes to rotati<strong>on</strong> andrafting, but also to fricti<strong>on</strong>al c<strong>on</strong>tact with <str<strong>on</strong>g>the</str<strong>on</strong>g> channel sides. The third period, X ∗ > 35 beginswhen <str<strong>on</strong>g>the</str<strong>on</strong>g> entire initial surface layer of floes has failed. Following this comparis<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> computermodel was used to explore <str<strong>on</strong>g>the</str<strong>on</strong>g> effect of variati<strong>on</strong>s in channel length and width, <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio of floediameter to thickness, floe <strong>on</strong> floe fricti<strong>on</strong> coefficients, and <str<strong>on</strong>g>the</str<strong>on</strong>g> distributi<strong>on</strong> of floe diameters <strong>on</strong><str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>ce required to compress <str<strong>on</strong>g>the</str<strong>on</strong>g> floes. As an example, <str<strong>on</strong>g>the</str<strong>on</strong>g> fricti<strong>on</strong>al <str<strong>on</strong>g>for</str<strong>on</strong>g>ce at <str<strong>on</strong>g>the</str<strong>on</strong>g> channel sides,3


Figure 3: Snapshot of a 3D DEM simulati<strong>on</strong> of a pusher (right) compressing a floating layer of ice floes[12].which is an artifact of <str<strong>on</strong>g>the</str<strong>on</strong>g> experimental setup and does not appear in nature, can be removed in <str<strong>on</strong>g>the</str<strong>on</strong>g>DE simulati<strong>on</strong>s by using periodic boundary c<strong>on</strong>diti<strong>on</strong>s. Figure 4(b) shows <str<strong>on</strong>g>the</str<strong>on</strong>g> simulated F ∗ (X ∗ )-record <str<strong>on</strong>g>for</str<strong>on</strong>g> two channel lengths L ∗ with periodic boundary c<strong>on</strong>diti<strong>on</strong>s. Comparis<strong>on</strong> between <str<strong>on</strong>g>the</str<strong>on</strong>g>results shown in Figures 4(a) and 4(b) suggest that <str<strong>on</strong>g>the</str<strong>on</strong>g> positive slope in <str<strong>on</strong>g>the</str<strong>on</strong>g> F ∗ (X ∗ )-record at5 < X ∗ < 35 in Figure 4(a) is caused by <str<strong>on</strong>g>the</str<strong>on</strong>g> channel edge fricti<strong>on</strong>.A 3D DEM simulati<strong>on</strong> of an ice floe field has also been used to model ship channel ice resistance[13]. That was d<strong>on</strong>e by replacing <str<strong>on</strong>g>the</str<strong>on</strong>g> pusher shown in Figure 3 by a ship shaped object.The mechanical properties of ice ridge keels are important in<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> ridge load calculati<strong>on</strong>s.For over a decade, ice rubble problems have been studied with DEM in 2D [6] [14][1]. Snapshotof a simulati<strong>on</strong> of ridge keel punch test was shown in Figure 1(b) and Figure 5 shows <str<strong>on</strong>g>the</str<strong>on</strong>g><str<strong>on</strong>g>for</str<strong>on</strong>g>ce-displacement graph of this simulati<strong>on</strong>, toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with results obtained by using o<str<strong>on</strong>g>the</str<strong>on</strong>g>r particleshapes. These simulati<strong>on</strong>s suggest that <str<strong>on</strong>g>the</str<strong>on</strong>g> ridge keel indentati<strong>on</strong> load is highest <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rubble pile<str<strong>on</strong>g>for</str<strong>on</strong>g>med from rectangular particles and lowest <str<strong>on</strong>g>for</str<strong>on</strong>g> a pile <str<strong>on</strong>g>for</str<strong>on</strong>g>med from circular particles. However,<str<strong>on</strong>g>the</str<strong>on</strong>g> shape of <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>ce-displacement graph appears not to be str<strong>on</strong>gly affected by <str<strong>on</strong>g>the</str<strong>on</strong>g> particle shape.The differences in ice ridge analyses, per<str<strong>on</strong>g>for</str<strong>on</strong>g>med by using a disc<strong>on</strong>tinuum approach (DEM) or amore traditi<strong>on</strong>al c<strong>on</strong>tinuum approach, can now be highlighted. In a DE model, <str<strong>on</strong>g>the</str<strong>on</strong>g> ridge behavioris defined by local scale parameters through de<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>, failure and interacti<strong>on</strong> of individual iceblocks. These local scale parameters are, <str<strong>on</strong>g>for</str<strong>on</strong>g> example, <str<strong>on</strong>g>the</str<strong>on</strong>g> elastic modulus E of ice and <str<strong>on</strong>g>the</str<strong>on</strong>g> ice-icefricti<strong>on</strong> coefficient µ. The traditi<strong>on</strong>al way to study ice ridge loads is to model <str<strong>on</strong>g>the</str<strong>on</strong>g> ice mass withmodels based <strong>on</strong> soil <strong>mechanics</strong>. For example, in <str<strong>on</strong>g>the</str<strong>on</strong>g> Mohr-Coulomb model <str<strong>on</strong>g>the</str<strong>on</strong>g> ridge strength isdefined with fricti<strong>on</strong> angle φ and cohesi<strong>on</strong> c. These parameters describe behavior of <str<strong>on</strong>g>the</str<strong>on</strong>g> ridge asa whole. It is reas<strong>on</strong>able to assume that if <str<strong>on</strong>g>the</str<strong>on</strong>g> number of ice floes in a ridge is high enough, <str<strong>on</strong>g>the</str<strong>on</strong>g>c<strong>on</strong>tinuum approach should give acceptable results. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> minimum number of ice blocksrequired to fulfill <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinuum approach is not known. Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r point of interest is to c<strong>on</strong>sider<str<strong>on</strong>g>the</str<strong>on</strong>g> parameters describing ridge behavior in <str<strong>on</strong>g>the</str<strong>on</strong>g> two approaches. Currently, it is not totally clearwhat are <str<strong>on</strong>g>the</str<strong>on</strong>g> most important local scale parameters (µ, E, block shape, etc.), nor it is known whatare <str<strong>on</strong>g>the</str<strong>on</strong>g> relati<strong>on</strong>ships between <str<strong>on</strong>g>the</str<strong>on</strong>g> local scale parameters and <str<strong>on</strong>g>the</str<strong>on</strong>g> Mohr-Coulomb model.4


(a)Figure 4: (a) N<strong>on</strong>dimensi<strong>on</strong>al pusher <str<strong>on</strong>g>for</str<strong>on</strong>g>ce versus displacement as measured in experiments (model) andsimulati<strong>on</strong>s (simul) shown in Figure 2. h is ice thickness. (b) N<strong>on</strong>dimensi<strong>on</strong>al pusher <str<strong>on</strong>g>for</str<strong>on</strong>g>ce versus n<strong>on</strong>dimensi<strong>on</strong>alpusher displacement <str<strong>on</strong>g>for</str<strong>on</strong>g> two channel lengths L ∗ with periodic boundary c<strong>on</strong>diti<strong>on</strong>s [12].(b)Problems dealing with ice sheetsThe failure of ice cover against a marine structure is a fragmentati<strong>on</strong> process where a solid disintegratesinto discrete particles which <str<strong>on</strong>g>the</str<strong>on</strong>g>n interact with each o<str<strong>on</strong>g>the</str<strong>on</strong>g>r and pile-up against <str<strong>on</strong>g>the</str<strong>on</strong>g> structure(Figure 1(a)). DEM appears to be well suited to this kind of problems, but <strong>on</strong>ly a few studies havebeen per<str<strong>on</strong>g>for</str<strong>on</strong>g>med, e.g. [15][16]. Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r ice pile-up process is ridging. Ice ridges <str<strong>on</strong>g>for</str<strong>on</strong>g>m when twoice sheets are driven toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r, ice blocks break off <str<strong>on</strong>g>the</str<strong>on</strong>g> sheets and pile-up to <str<strong>on</strong>g>for</str<strong>on</strong>g>m a ridge. Ridge<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> from two thin sheets [17] as well as from a thin sheet breaking against a thick sheet [<str<strong>on</strong>g>18</str<strong>on</strong>g>]have been studied with DEM. Rafting is a process closely related to ridging. Rafting is <str<strong>on</strong>g>the</str<strong>on</strong>g> simpleoverriding of <strong>on</strong>e ice sheet by ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r ice sheet.From an engineering point of view, ridging and rafting are important processes, as <str<strong>on</strong>g>the</str<strong>on</strong>g>y define <str<strong>on</strong>g>the</str<strong>on</strong>g>horiz<strong>on</strong>tal <str<strong>on</strong>g>for</str<strong>on</strong>g>ce an ice sheet can transmit. In o<str<strong>on</strong>g>the</str<strong>on</strong>g>r words, ridging and rafting define <str<strong>on</strong>g>the</str<strong>on</strong>g> horiz<strong>on</strong>talstrength of an ice sheet and thus give an upper limit <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ice load <strong>on</strong> a marine structure.Figure 6 shows snapshots from DEM simulati<strong>on</strong> showing rafted and ridged ice. In that two dimensi<strong>on</strong>alsimulati<strong>on</strong> [17], two identical ice sheets were pushed toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r. Each ice sheet was composedof two thicknesses of ice and <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio of thicknesses was varied to obtain degrees of inhomogeneity.Again, <str<strong>on</strong>g>the</str<strong>on</strong>g> accuracy of <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong>s was assessed by comparis<strong>on</strong> with a series of similarphysical model scale experiments. Both <str<strong>on</strong>g>the</str<strong>on</strong>g> experiments and <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong>s showed that homogeneousice sheets tend to raft and inhomogeneous ice sheets tend to <str<strong>on</strong>g>for</str<strong>on</strong>g>m ridges. Following <str<strong>on</strong>g>the</str<strong>on</strong>g>comparis<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> computer model was used to per<str<strong>on</strong>g>for</str<strong>on</strong>g>m simulati<strong>on</strong>s to study <str<strong>on</strong>g>the</str<strong>on</strong>g> ridging and rafting<str<strong>on</strong>g>for</str<strong>on</strong>g>ces and to systematically explore <str<strong>on</strong>g>the</str<strong>on</strong>g> effect of <str<strong>on</strong>g>the</str<strong>on</strong>g> thickness and thickness inhomogeneity <strong>on</strong><str<strong>on</strong>g>the</str<strong>on</strong>g> likelihood of occurrence of ridging and rafting. Compared to <str<strong>on</strong>g>the</str<strong>on</strong>g> physical experiments, <str<strong>on</strong>g>the</str<strong>on</strong>g>DE simulati<strong>on</strong>s provided a low cost alternative to systematic parametric studies. In additi<strong>on</strong>, withsimulati<strong>on</strong>s it is easier to isolate <str<strong>on</strong>g>the</str<strong>on</strong>g> effect of a single variable in a physical process. Comparis<strong>on</strong>of <str<strong>on</strong>g>the</str<strong>on</strong>g> measured and calculated <str<strong>on</strong>g>for</str<strong>on</strong>g>ces (Figure 7) showed that <str<strong>on</strong>g>the</str<strong>on</strong>g> average simulati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g>ces underestimated<str<strong>on</strong>g>the</str<strong>on</strong>g> average experimental <str<strong>on</strong>g>for</str<strong>on</strong>g>ces by about 50 %. This difference is most likely due to <str<strong>on</strong>g>the</str<strong>on</strong>g>two dimensi<strong>on</strong>ality of <str<strong>on</strong>g>the</str<strong>on</strong>g> computer model, and highlights <str<strong>on</strong>g>the</str<strong>on</strong>g> need <str<strong>on</strong>g>for</str<strong>on</strong>g> 3D simulati<strong>on</strong> tools.5


F [kN/m]15105Rect. 1:6Rect. 1:3SquaresDisks00 0.5 1 1.5 2 2.5 3δ [m]Figure 5: Force-displacement records from punch test simulati<strong>on</strong>s, shown in Figure 1(b), with differentparticle shapes [1].(a)Figure 6: Scenes from a DEM simulati<strong>on</strong> showing (a) rafted and (b) ridged ice [17].(b)Summary and discussi<strong>on</strong>In this paper <str<strong>on</strong>g>the</str<strong>on</strong>g> discrete element method and some typical problems in ice engineering have beenshortly reviewed. It was argued that <str<strong>on</strong>g>the</str<strong>on</strong>g>re are ice engineering problems which should be analysedby using a disc<strong>on</strong>tinuous approach, ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than <str<strong>on</strong>g>the</str<strong>on</strong>g> more traditi<strong>on</strong>al c<strong>on</strong>tinuum approach. First,several ice features comprise of discrete ice floes and, in additi<strong>on</strong>, often <str<strong>on</strong>g>the</str<strong>on</strong>g> individual ice floesare large compared to <str<strong>on</strong>g>the</str<strong>on</strong>g> size of <str<strong>on</strong>g>the</str<strong>on</strong>g> ice feature. As an example, an ice ridge may be <str<strong>on</strong>g>for</str<strong>on</strong>g>medthrough stacking of less that ten layers of ice. Sec<strong>on</strong>d, <str<strong>on</strong>g>the</str<strong>on</strong>g> ice failure process is a disc<strong>on</strong>tinuousfragmentati<strong>on</strong> process. An example of this kind of problem is failure of an ice cover against astructure.The studies reviewed have dem<strong>on</strong>strated <str<strong>on</strong>g>the</str<strong>on</strong>g> usefulness of DEM in ice engineering. DEM can beused in similar tasks than model scale experiments but, more importantly, DEM can be effectivelyused to study <str<strong>on</strong>g>the</str<strong>on</strong>g> effects of changing a single parameter.While DEM is well established and has been applied to different kinds of problems, <str<strong>on</strong>g>the</str<strong>on</strong>g> applicati<strong>on</strong>of DEM is still expanding, probably because of <str<strong>on</strong>g>the</str<strong>on</strong>g> increase in available computing power. One of<str<strong>on</strong>g>the</str<strong>on</strong>g> interesting new trends in DEM is <str<strong>on</strong>g>the</str<strong>on</strong>g> development of combined finite-discrete element method[4], where each discrete element is modelled with FEM. While this is computati<strong>on</strong>ally demanding,it offers possibilities to model <str<strong>on</strong>g>the</str<strong>on</strong>g> particle-particle c<strong>on</strong>tacts in a more rigorous way than can bed<strong>on</strong>e with a spring and dashpot model, see Equati<strong>on</strong> 1.6


Figure 7: Force-displacement records from 3D physical experiments (model tests) and similar 2D ridgesimulati<strong>on</strong>s shown in Figure 5(b) [17].References[1] J. Tuhkuri and A. Polojärvi. Effect of particle shape in 2D ridge keel de<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> simulati<strong>on</strong>s. In Proc.<str<strong>on</strong>g>18</str<strong>on</strong>g>th Int. C<strong>on</strong>f. <strong>on</strong> Port and Ocean Engineering Under Arctic C<strong>on</strong>diti<strong>on</strong>s (POAC’05), Potsdam, NewYork, USA, Vol. 2, pp. 939-948, (2005).[2] P.A. Cundall and O.D.L. Strack. A discrete numerical model <str<strong>on</strong>g>for</str<strong>on</strong>g> granular assemblies. Geotechnique,bf 29, 47–65, (1979).[3] O.R. Walt<strong>on</strong>. Explicit particle dynamics model <str<strong>on</strong>g>for</str<strong>on</strong>g> granular materials. In Proc. of 4th Int. C<strong>on</strong>f. <strong>on</strong>Numerical Methods in Geo<strong>mechanics</strong>, Edm<strong>on</strong>t<strong>on</strong>, Canada, 8 p. (1982).[4] A. Munjiza. The Combined Finite-Discrete Element Method. Wiley, (2004).[5] P.W. Cleary and M.L. Sawley. DEM modelling of industrial granular flows: 3D case studies and <str<strong>on</strong>g>the</str<strong>on</strong>g>effect of particle shape <strong>on</strong> hopper discharge. Applied Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical Modelling, 26, 89–111, (2002).[6] M.A. Hopkins and W.D. Hibler. On <str<strong>on</strong>g>the</str<strong>on</strong>g> strength of geophysical scale ice rubble. Cold Regi<strong>on</strong>s Scienceand Technology, 19, 201–212, (1991).[7] A. Polojärvi. Combined Finite-Discrete Element Method in 3D Ridge Keel De<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> Simulati<strong>on</strong>s.Thesis <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> degree of M.Sc. (Eng.). Helsinki Univ. of Technology, Faculty of Mechanical Engineering,86 p. (2005).[8] M. Sayed, V.R. Neralla and S.B Savage. Yield c<strong>on</strong>diti<strong>on</strong>s of an assembly of discrete ice floes. In. Proc.of <str<strong>on</strong>g>the</str<strong>on</strong>g> 5th Int. Offshore and Polar Engineering C<strong>on</strong>ference, The Hague, The Ne<str<strong>on</strong>g>the</str<strong>on</strong>g>rlands, Vol. II, pp.330-335, (1995).[9] M. Babic, H.T. Shen and G. Bjedov. Discrete element simulati<strong>on</strong>s of river ice transport. In. Proc. ofIAHR Symposium <strong>on</strong> Ice, Espoo, Finland, Vol. 1, pp. 564–574, (1990).[10] S. Løset. Discrete element modelling of a broken ice field, Parts I & II. Cold Regi<strong>on</strong>s Science andTechnology, 22, 339–360, (1994).[11] E. Hansen. A discrete element model to study marginal ice z<strong>on</strong>e dynamics and <str<strong>on</strong>g>the</str<strong>on</strong>g> behaviour of vesselsmoored in broken ice. Dept. of Marine Hydrodynamics, Norvegian Univ. of Science and Technology,MTA-report 1998:124, 159 p. (1998).7


[12] M.A. Hopkins and J. Tuhkuri. Compressi<strong>on</strong> of floating ice fields. Journal of Geophysical Research,104, 15,815–15,825, (1999).[13] R. Haukioja. Simulati<strong>on</strong> of ships channel ice resistance. Thesis <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> degree of M.Sc. (Eng.).Helsinki Univ. of Technology, Faculty of Mechanical Engineering, 74 p. (2000).[14] E. Evgin, R.M.W. Frederking and C. Zhan. Distinct element modelling of ice ridge <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>. InProc. 11th OMAE Symp., Calgary, Canada, Vol. IV, pp. 255-260, (1992).[15] E. Evgin and C. Zhan. Distinct element modelling in ice <strong>mechanics</strong>. Dept. of Civil Engineering,University of Ottawa, Report from Finnish/Canadian Joint Research Project No. 5., 80 p. (1991).[16] M.A. Hopkins and W.D. Hibler. Onshore ice pile-up: a comparis<strong>on</strong> between experiments and simulati<strong>on</strong>s.Cold Regi<strong>on</strong>s Science and Technology, 26, 205–214, (1997).[17] M.A. Hopkins, J. Tuhkuri and M. Lensu. Rafting and ridging of thin ice sheets. Journal of GeophysicalResearch, 104, 13,605–13,613, (1999).[<str<strong>on</strong>g>18</str<strong>on</strong>g>] M.A. Hopkins. On <str<strong>on</strong>g>the</str<strong>on</strong>g> ridging of intact lead ice. Journal of Geophysical Research, 99, 16,351–16,360,(1994).8


Numerical Simulati<strong>on</strong> of Nano-, Meso-, MacroandMultiscale Fluid DynamicsJ. H. Wal<str<strong>on</strong>g>the</str<strong>on</strong>g>rDepartment of Mechanical Engineering, Fluid Mechanics Secti<strong>on</strong>Danish Technical University, Kgs. Lyngby, Denmarke–mail: jhw@mek.dtu.dkalso at: Institute of Computati<strong>on</strong>al ScienceETH Zürich, CH-8092, Switzerlande–mail: wal<str<strong>on</strong>g>the</str<strong>on</strong>g>r@inf.ethz.chP. KoumoutsakosInstitute of Computati<strong>on</strong>al ScienceETH Zürich, CH-8092, Switzerlande–mail: petros@inf.ethz.chSummary We present algorithms and numerical simulati<strong>on</strong>s of fluid flow at <str<strong>on</strong>g>the</str<strong>on</strong>g> nano-, meso- and macroscale.The techniques involve n<strong>on</strong>equilibrium molecular dynamics simulati<strong>on</strong>s of fluids in nanoscale c<strong>on</strong>finement,dissipative particle dynamics <str<strong>on</strong>g>for</str<strong>on</strong>g> fluids at <str<strong>on</strong>g>the</str<strong>on</strong>g> mesoscale, and smooth particle hydrodynamics and particlevortex methods <str<strong>on</strong>g>for</str<strong>on</strong>g> compressible and incompressible macroscale fluid dynamics. We couple <str<strong>on</strong>g>the</str<strong>on</strong>g> nano- andmacroscale descripti<strong>on</strong>s using a Schwarz alternating procedure and effective boundary wall <str<strong>on</strong>g>for</str<strong>on</strong>g>ces to minimize<str<strong>on</strong>g>the</str<strong>on</strong>g> artifacts introduced by <str<strong>on</strong>g>the</str<strong>on</strong>g> interface between <str<strong>on</strong>g>the</str<strong>on</strong>g> two regi<strong>on</strong>s. This procedure is extended to <str<strong>on</strong>g>the</str<strong>on</strong>g>mesoscale model and includes <str<strong>on</strong>g>the</str<strong>on</strong>g> inherent fluctuati<strong>on</strong>s at this length scale. A unifying particle descripti<strong>on</strong>is used thoughout in <str<strong>on</strong>g>the</str<strong>on</strong>g> framework of massively parallel hybrid particle-mesh library.Introducti<strong>on</strong>Particle methods provide a powerful, unifying descripti<strong>on</strong> of discrete and c<strong>on</strong>tinuum <strong>mechanics</strong>[17] with applicati<strong>on</strong>s that that range from atomistic systems using molecular dynamics (MD)simulati<strong>on</strong>s, through agglomerati<strong>on</strong>s of atoms and molecules at meso-scopic time and lengthscales using dissipatitive particle dynamics (DPD), and c<strong>on</strong>tinuum descripti<strong>on</strong> of fluid and solid<strong>mechanics</strong> using vortex particle method (VM) and smooth particle hydrodynamics (SPH), to planetarysystems invoking Barnes-Hut [1] and hybrid particle-mesh methods [13].The kinematic relati<strong>on</strong>s governing <str<strong>on</strong>g>the</str<strong>on</strong>g>se different systems share many comm<strong>on</strong> features and mayoften be described in terms of short- and l<strong>on</strong>g-range interacti<strong>on</strong> potentials. The latter includes <str<strong>on</strong>g>the</str<strong>on</strong>g>omnipresent potential governing electrostatics, gravitati<strong>on</strong>, and “induced fluid moti<strong>on</strong>” in vortexparticle methods. The computati<strong>on</strong>al cost associated with <str<strong>on</strong>g>the</str<strong>on</strong>g> evaluati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> -potential<str<strong>on</strong>g>for</str<strong>on</strong>g>mally scales as ¡£¢¥¤ , where ¡£¢¥¤ denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> number of computati<strong>on</strong>al elements/particles, and¦¨§©£ ©severely limits <str<strong>on</strong>g>the</str<strong>on</strong>g> computati<strong>on</strong>al efficiency of <str<strong>on</strong>g>the</str<strong>on</strong>g>se methods. Fast Multipole Methods (FMM)[12] have been developed to reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> computati<strong>on</strong>al cost ¦¨§© to <str<strong>on</strong>g>for</str<strong>on</strong>g>mally , while retaining<str<strong>on</strong>g>the</str<strong>on</strong>g> flexibility ¦¨§©£ of <str<strong>on</strong>g>the</str<strong>on</strong>g> algorithm, but carries in general a large prefactor, currently ¡limitingthis ¦¨§ method to . Hybrid partcle-mesh methods overlay <str<strong>on</strong>g>the</str<strong>on</strong>g> particle domain with a regularmesh to obtain soluti<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> partial differential equati<strong>on</strong> corresp<strong>on</strong>ding to <str<strong>on</strong>g>the</str<strong>on</strong>g> particular interacti<strong>on</strong>potential [15]. This method achieves significantly higher serial and parallel efficiency thanFMM cf. [8, 24], but are currently limited to problems in simple geometries. We employ <str<strong>on</strong>g>the</str<strong>on</strong>g>sehybrid methods to study fluids at <str<strong>on</strong>g>the</str<strong>on</strong>g> nano-, meso-, and macroscale, specifically <str<strong>on</strong>g>the</str<strong>on</strong>g> influence ofc<strong>on</strong>finement <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> validity of <str<strong>on</strong>g>the</str<strong>on</strong>g> no-slip velocity boundary c<strong>on</strong>diti<strong>on</strong>s.The objective of <str<strong>on</strong>g>the</str<strong>on</strong>g> present paper is two-fold. First we describe simulati<strong>on</strong>s of flow at <str<strong>on</strong>g>the</str<strong>on</strong>g> nanoandmeso-scale, and dem<strong>on</strong>strate techniques that allow us to couple <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> different time andlenght scales. Sec<strong>on</strong>d, we outline <str<strong>on</strong>g>the</str<strong>on</strong>g> main elements of <str<strong>on</strong>g>the</str<strong>on</strong>g> parallelisati<strong>on</strong> of a hybrid particlemeshlibrary [24] designed <str<strong>on</strong>g>for</str<strong>on</strong>g> multi-scale problems.9


¤""Nano-scale fluid <strong>mechanics</strong>The understanding of <str<strong>on</strong>g>the</str<strong>on</strong>g> static and dynamic behaviour of fluids at solid interfaces is central <str<strong>on</strong>g>for</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> modeling and simulati<strong>on</strong> of fluid <strong>mechanics</strong> problems. For nanoscale systems this is particularimportant as <str<strong>on</strong>g>the</str<strong>on</strong>g> no-slip boundary c<strong>on</strong>diti<strong>on</strong> ( ¢¡¤£¦¥¨§© ¥¨§ ) usually assumed in macroscale fluid<strong>mechanics</strong> is know to fail. Thus a finite fluid “slip” velocity (© ¡£¥§ ¥§ ) has beenobserved in experiments of water in hydrophobic capillaries [14, 25, 7, 3], whereas <str<strong>on</strong>g>the</str<strong>on</strong>g> amountof slip at hydrophilic surfaces remains less clear [6, 26]. The slip is traditi<strong>on</strong>ally modeled by <str<strong>on</strong>g>the</str<strong>on</strong>g>Navier slip c<strong>on</strong>diti<strong>on</strong> [<str<strong>on</strong>g>18</str<strong>on</strong>g>]:"$#% (1)where denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> slip length, and<str<strong>on</strong>g>the</str<strong>on</strong>g> normal comp<strong>on</strong>ent of <str<strong>on</strong>g>the</str<strong>on</strong>g> velocity gradient at <str<strong>on</strong>g>the</str<strong>on</strong>g>"&#surface.We study this model using large scale parallel molecular dynamics (MD) simulati<strong>on</strong>s of can<strong>on</strong>icalflow problems including <str<strong>on</strong>g>the</str<strong>on</strong>g> flow past a circular cylinder, and here described by water moleculespassing <str<strong>on</strong>g>the</str<strong>on</strong>g> surface of a carb<strong>on</strong> nanotube [27]. The water is modeled by <str<strong>on</strong>g>the</str<strong>on</strong>g> SPC/E model [4]with a potential acting between <str<strong>on</strong>g>the</str<strong>on</strong>g> partial charges located at <str<strong>on</strong>g>the</str<strong>on</strong>g> atomic sites, and a 12-6Lennard-J<strong>on</strong>es potential ¡£¢¥¤ ) between <str<strong>on</strong>g>the</str<strong>on</strong>g> oxygen atoms(' ©! -/.$0¤(12.$0¤3145(2)' §(©*),+and denote <str<strong>on</strong>g>the</str<strong>on</strong>g> energy and length scale of <str<strong>on</strong>g>the</str<strong>on</strong>g> potential. The interacti<strong>on</strong> between <str<strong>on</strong>g>the</str<strong>on</strong>g> water and+<str<strong>on</strong>g>the</str<strong>on</strong>g> 2.5 nm diameter rigid carb<strong>on</strong> nanotube mounted at <str<strong>on</strong>g>the</str<strong>on</strong>g> center of computati<strong>on</strong>al box is givenby a Lennard-J<strong>on</strong>es potential (Eq. (2)) acting between <str<strong>on</strong>g>the</str<strong>on</strong>g> oxygen and carb<strong>on</strong> atoms.0A flow is imposed in <str<strong>on</strong>g>the</str<strong>on</strong>g> stream- and spanwize directi<strong>on</strong>s using an adaptive body <str<strong>on</strong>g>for</str<strong>on</strong>g>ce acting <strong>on</strong><str<strong>on</strong>g>the</str<strong>on</strong>g> waters upstream of <str<strong>on</strong>g>the</str<strong>on</strong>g> carb<strong>on</strong> carb<strong>on</strong> nanotube. Periodic boundary c<strong>on</strong>diti<strong>on</strong>s are imposed inall spatial directi<strong>on</strong> and effective model <str<strong>on</strong>g>the</str<strong>on</strong>g> flow past an array of carb<strong>on</strong> nanotubes.The time average density and velocity profiles (Fig. 1) are sampled after <str<strong>on</strong>g>the</str<strong>on</strong>g> decay of <str<strong>on</strong>g>the</str<strong>on</strong>g> initialtransient at 40 ps, and throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> remaining 340 ps of <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong>. The density profile(Fig. 1a) display a layering characteristic of water at a hydrophobic surface, and <str<strong>on</strong>g>the</str<strong>on</strong>g>¡76$8tangentialvelocity profile (Fig. 1b) a negligible slip ¦¨§ length of [27]. C<strong>on</strong>versely, <str<strong>on</strong>g>the</str<strong>on</strong>g> slip6$8lengthin <str<strong>on</strong>g>the</str<strong>on</strong>g> directi<strong>on</strong> al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> axis of <str<strong>on</strong>g>the</str<strong>on</strong>g> carb<strong>on</strong> nanotube (Fig. 9:9 1c) is indicating that <str<strong>on</strong>g>the</str<strong>on</strong>g> sliplength is not a material property of <str<strong>on</strong>g>the</str<strong>on</strong>g> fluid-solid interface, but depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> particular flowc<strong>on</strong>figurati<strong>on</strong>. Work in <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> way to derive alternative slip models and will be report at <str<strong>on</strong>g>the</str<strong>on</strong>g>meeting.Multiscale simulati<strong>on</strong>s of nanoscale flow problemsDirect numerical simulati<strong>on</strong> of nanoscale flows through MD simulati<strong>on</strong>s is computati<strong>on</strong>ally expensive,and presents a level of detail <strong>on</strong>ly required in a specific regi<strong>on</strong>s of interest e.g., in <str<strong>on</strong>g>the</str<strong>on</strong>g>vicinity of <str<strong>on</strong>g>the</str<strong>on</strong>g> fluid-solid interface. The remaining part of <str<strong>on</strong>g>the</str<strong>on</strong>g> computati<strong>on</strong>al domain may be describedby c<strong>on</strong>tinuum models, here <str<strong>on</strong>g>the</str<strong>on</strong>g> Navier-Stokes equati<strong>on</strong>s, and provides orders of magnitudeimprovement in <str<strong>on</strong>g>the</str<strong>on</strong>g> computati<strong>on</strong>al efficiency. The implementati<strong>on</strong> of such a multiscale schemerequires <str<strong>on</strong>g>the</str<strong>on</strong>g> coupling of mass and momentum fluxes across <str<strong>on</strong>g>the</str<strong>on</strong>g> interfaces between <str<strong>on</strong>g>the</str<strong>on</strong>g> atomistic(;< ) and c<strong>on</strong>tinuum domains (;>= ) cf. Fig. 2. A Schwarz alternating procedure is employed to ensure<str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>servati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> fluxes across <str<strong>on</strong>g>the</str<strong>on</strong>g> overlap regi<strong>on</strong> between <str<strong>on</strong>g>the</str<strong>on</strong>g> two systems cf. Ref. [28].The iterati<strong>on</strong>s proceed by sampling <str<strong>on</strong>g>the</str<strong>on</strong>g> atomistic system at <str<strong>on</strong>g>the</str<strong>on</strong>g> boundary of <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinuum systemto provides boundary c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinuum solver. The c<strong>on</strong>tinuum system is solved tosteady-state and provides at <str<strong>on</strong>g>the</str<strong>on</strong>g> boundary to <str<strong>on</strong>g>the</str<strong>on</strong>g> atomistic system an updated flux of mass andmomentum. The mass flux is imposed by introducing or removing atoms in <str<strong>on</strong>g>the</str<strong>on</strong>g> vicinity of <str<strong>on</strong>g>the</str<strong>on</strong>g>interface. The inserti<strong>on</strong> of atoms into a dense fluid is n<strong>on</strong>-trivial and achieved using <str<strong>on</strong>g>the</str<strong>on</strong>g> Usheralgorithm cf. [9]. The c<strong>on</strong>vective momentum flux is imposed by adjusting <str<strong>on</strong>g>the</str<strong>on</strong>g> mean velocity of10


"==


¦ ¥20.0(kJ (mol nm)PSfrag ¢¤£replacements15.010.05.00.0-5.00.0 0.2 0.4 0.6 0.8 1.0¤¡§©¨ ©¡ ¥ and at temperature Figure 3: Effective boundary <str<strong>on</strong>g>for</str<strong>on</strong>g>ce <strong>on</strong> a Lennard-J<strong>on</strong>es particle located at a distance from <str<strong>on</strong>g>the</str<strong>on</strong>g>boundary of an atomistic system of density K. Displayed are<str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>stant <str<strong>on</strong>g>for</str<strong>on</strong>g>ce used in Ref. [20] (– –), a diverging <str<strong>on</strong>g>for</str<strong>on</strong>g>ce [19] (– –), and <str<strong>on</strong>g>the</str<strong>on</strong>g> measured <str<strong>on</strong>g>for</str<strong>on</strong>g>ce used in <str<strong>on</strong>g>the</str<strong>on</strong>g>present study ( ).(nm]<str<strong>on</strong>g>the</str<strong>on</strong>g> atoms in <str<strong>on</strong>g>the</str<strong>on</strong>g> overlap regi<strong>on</strong> (Fig. 2) while assuring <str<strong>on</strong>g>the</str<strong>on</strong>g> desired temperature through a rescalingof <str<strong>on</strong>g>the</str<strong>on</strong>g> velocity fluctuati<strong>on</strong>s. The c<strong>on</strong>servati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> flux of mass and c<strong>on</strong>vective momentum<str<strong>on</strong>g>the</str<strong>on</strong>g>re<str<strong>on</strong>g>for</str<strong>on</strong>g>e secures a proper ideal gas pressure in <str<strong>on</strong>g>the</str<strong>on</strong>g> atomistic system. The n<strong>on</strong>-ideal virial pressurec<strong>on</strong>tributi<strong>on</strong> is imposed through wall potential functi<strong>on</strong>s [28] measured in a separate simulati<strong>on</strong>cf. Fig. 3.Figure 4 compares <str<strong>on</strong>g>the</str<strong>on</strong>g> results obtained <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> flow of arg<strong>on</strong> past a carb<strong>on</strong> nanotube using a fullyatomistic simulati<strong>on</strong>s (Fig. 4a,c) with <str<strong>on</strong>g>the</str<strong>on</strong>g> multiscale algorithm (Fig. 4b,d) [28]. Disregarding <str<strong>on</strong>g>the</str<strong>on</strong>g>fluctuati<strong>on</strong>s inherent of <str<strong>on</strong>g>the</str<strong>on</strong>g> atomistic system, <str<strong>on</strong>g>the</str<strong>on</strong>g> agreement of streamlines and flow speeds isexcellent. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r details of <str<strong>on</strong>g>the</str<strong>on</strong>g> method and validati<strong>on</strong>s studies may be found in Ref. [28].Dissipative Particle DynamicsA c<strong>on</strong>tinuum, Navier-Stokes descripti<strong>on</strong> of nanoscale flows lack <str<strong>on</strong>g>the</str<strong>on</strong>g> fluctuati<strong>on</strong>s inherent at thislength scale see e.g., Fig. 4, and may in a multiscale algorithm artificially suppress <str<strong>on</strong>g>the</str<strong>on</strong>g> fluctuati<strong>on</strong>sof <str<strong>on</strong>g>the</str<strong>on</strong>g> atomistic system, hence reducing <str<strong>on</strong>g>the</str<strong>on</strong>g> fluid temperature [11]. To prevent this we c<strong>on</strong>sidermodeling <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinuum using <str<strong>on</strong>g>the</str<strong>on</strong>g> method of dissipative particle dynamics (DPD). In this modelclusters of atoms and molecules are modeled as a single DPD-particle and are assumed to interactvia pair potentials c<strong>on</strong>sisting of c<strong>on</strong>servative, stochastic, and dissipative <str<strong>on</strong>g>for</str<strong>on</strong>g>ces cf. [16, 10].Previous DPD studies have mainly c<strong>on</strong>sidered fluids in periodic system, and have modeled solidwalls by layers of immobile “solid” particles combined with hard walls and reflecti<strong>on</strong> schemesto prevent leakage of fluid particles out of <str<strong>on</strong>g>the</str<strong>on</strong>g> system. The desired behaviour of such a wallmodel depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> length scale of <str<strong>on</strong>g>the</str<strong>on</strong>g> system. Most problems currently addressed by DPDsimulati<strong>on</strong>s are per<str<strong>on</strong>g>for</str<strong>on</strong>g>med at a length scale where molecular effecs of <str<strong>on</strong>g>the</str<strong>on</strong>g> wall <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> fluid sholdbe negligible, including <str<strong>on</strong>g>the</str<strong>on</strong>g> near wall density fluctuati<strong>on</strong>s observed in Fig. 1a. However, presentDPD wall models do not prevent such fluctuati<strong>on</strong> cf. Fig. 5a. and to minimize <str<strong>on</strong>g>the</str<strong>on</strong>g>se artifacts,we propose to extend <str<strong>on</strong>g>the</str<strong>on</strong>g> effective wall potential introduced in <str<strong>on</strong>g>the</str<strong>on</strong>g> previous secti<strong>on</strong> [28] to <str<strong>on</strong>g>the</str<strong>on</strong>g>method of dissipative particle dynamics. The extensi<strong>on</strong> involves sampling of <str<strong>on</strong>g>the</str<strong>on</strong>g> individual <str<strong>on</strong>g>for</str<strong>on</strong>g>cecomp<strong>on</strong>ents in both <str<strong>on</strong>g>the</str<strong>on</strong>g> normal and tangential directi<strong>on</strong>s cf. Fig. 6, <str<strong>on</strong>g>the</str<strong>on</strong>g> latter to ensure satisfacti<strong>on</strong>of <str<strong>on</strong>g>the</str<strong>on</strong>g> no-slip c<strong>on</strong>diti<strong>on</strong> [22, 29, 21].PPM - A General Purpose Hybrid Parallel-Mesh LibraryIn an ef<str<strong>on</strong>g>for</str<strong>on</strong>g>t to dissiminate particle methods and to improve <str<strong>on</strong>g>the</str<strong>on</strong>g>ir computati<strong>on</strong>al efficiency weare currently implementing a general purpose hybrid particle-mesh library — <str<strong>on</strong>g>the</str<strong>on</strong>g> PPM-librarycf. [24]. The <str<strong>on</strong>g>for</str<strong>on</strong>g>malism of particle methods was recently reviewed by Koumoutsakos [17] andamounts to tracking <str<strong>on</strong>g>the</str<strong>on</strong>g> dynamics © of particles carrying physical properties of <str<strong>on</strong>g>the</str<strong>on</strong>g> system that isbeing simulated. The dynamics of <str<strong>on</strong>g>the</str<strong>on</strong>g> particles are Ordinary Differential Equati<strong>on</strong>s (ODEs) that12


¦¥§(a)(b)PSfrag replacements(c)(d)Figure 4: Multiscale simulati<strong>on</strong>s of liquid arg<strong>on</strong> flowing part a carb<strong>on</strong> nanotube [28]. (a) Computati<strong>on</strong>aldomain <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reference soluti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> flow of arg<strong>on</strong> around a carb<strong>on</strong> nanotube using a purely atomisticdescripti<strong>on</strong>. (b) Hybrid atomistic/c<strong>on</strong>tinuum computati<strong>on</strong>al domain. Both computati<strong>on</strong>al domains have anextent ¨¡ ¢¡ of. (c) Velocity field <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reference soluti<strong>on</strong> averaged over 4 ns. The white lines arestreamlines, and <str<strong>on</strong>g>the</str<strong>on</strong>g> black lines are c<strong>on</strong>tours of <str<strong>on</strong>g>the</str<strong>on</strong>g> (¢ £¤¢ speed ). (d) Velocity field of <str<strong>on</strong>g>the</str<strong>on</strong>g> hybrid soluti<strong>on</strong>after 50 iterati<strong>on</strong>s. The black square denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> locati<strong>on</strong> ' % of . The soluti<strong>on</strong> $ % in is averaged over 10iterati<strong>on</strong>s.PSfrag replacements3.23.13PSfrag replacements1.11.051Sfrag replacements2.92.80.95(a)2.70 2 4 6 8 10(b)0.90 2 4 6 8 10Figure 5: DPD simulati<strong>on</strong>s of a fluid at rest and c<strong>on</strong>fined between two wall. From left to right is shown(a0 <str<strong>on</strong>g>the</str<strong>on</strong>g> density profile obtained in Ref. [21], and <str<strong>on</strong>g>the</str<strong>on</strong>g> present density (b) and temperature profiles (c). Thefluctuati<strong>on</strong>s observed in <str<strong>on</strong>g>the</str<strong>on</strong>g> present model is 6 % and 2 % <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> temperature and density.(c)13


¢¤©¨2©¨2©¨<str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> field equati<strong>on</strong>: © (7)215105PSfrag replacementsPSfrag replacements00 0.2 0.4 0.6 0.8 1Figure 6: The ensemble average normal and tangential <str<strong>on</strong>g>for</str<strong>on</strong>g>ces acting <strong>on</strong> DPD at a distance, from <str<strong>on</strong>g>the</str<strong>on</strong>g>fictitious wall. The <strong>on</strong>ly n<strong>on</strong>-zero comp<strong>on</strong>ents Left: <str<strong>on</strong>g>the</str<strong>on</strong>g> green curve show <str<strong>on</strong>g>the</str<strong>on</strong>g> normal comp<strong>on</strong>ent of <str<strong>on</strong>g>the</str<strong>on</strong>g>c<strong>on</strong>servative <str<strong>on</strong>g>for</str<strong>on</strong>g>ce, and <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> right <str<strong>on</strong>g>the</str<strong>on</strong>g> tangential comp<strong>on</strong>ents of <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>servative (blue), dissipative (green),and stochastic (light blue) <str<strong>on</strong>g>for</str<strong>on</strong>g>ces. The <strong>on</strong>ly n<strong>on</strong>-zero mean <str<strong>on</strong>g>for</str<strong>on</strong>g>ces are <str<strong>on</strong>g>the</str<strong>on</strong>g> tangential dissipative <str<strong>on</strong>g>for</str<strong>on</strong>g>ce (green)and <str<strong>on</strong>g>the</str<strong>on</strong>g> normal comp<strong>on</strong>ent of <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>servative <str<strong>on</strong>g>for</str<strong>on</strong>g>ce.determine <str<strong>on</strong>g>the</str<strong>on</strong>g> trajectories of <str<strong>on</strong>g>the</str<strong>on</strong>g> particles and <str<strong>on</strong>g>the</str<strong>on</strong>g> evoluti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g>ir properties:¡£¢¥¤© §¢¥¤%¦3© ¡§¦§¢¤%¢ ¤% % (3) ¤ ¡© ¡§¦(5)§¢¤%¢ ¤% % (4)where ¢¤ denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> positi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> -th particle,¤its velocity, and ¤<str<strong>on</strong>g>the</str<strong>on</strong>g> vector of propertiessuch as c<strong>on</strong>centrati<strong>on</strong>, charge, vorticity, or temperature. The dynamics of <str<strong>on</strong>g>the</str<strong>on</strong>g> simulated physicalsystem are represented by <str<strong>on</strong>g>the</str<strong>on</strong>g> functi<strong>on</strong>s and that represent soluti<strong>on</strong>s of <str<strong>on</strong>g>the</str<strong>on</strong>g> field equati<strong>on</strong>s(such as <str<strong>on</strong>g>the</str<strong>on</strong>g> Poiss<strong>on</strong> equati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> velocity-vorticity <str<strong>on</strong>g>for</str<strong>on</strong>g>mulati<strong>on</strong>s of <str<strong>on</strong>g>the</str<strong>on</strong>g> Navier-Stokes equati<strong>on</strong>sin VM) or integral representati<strong>on</strong>s of diffential operators (such as Laplacian operators in SPH).In Particle-Mesh (PM) methods, <str<strong>on</strong>g>the</str<strong>on</strong>g> functi<strong>on</strong>s and are evaluated <strong>on</strong> a mesh through <str<strong>on</strong>g>the</str<strong>on</strong>g>corresp<strong>on</strong>ding field equati<strong>on</strong>. The hybrid method requires:<str<strong>on</strong>g>the</str<strong>on</strong>g> interpolati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> ¤carried by <str<strong>on</strong>g>the</str<strong>on</strong>g> particles from <str<strong>on</strong>g>the</str<strong>on</strong>g> irregular particle locati<strong>on</strong>s <strong>on</strong>to<str<strong>on</strong>g>the</str<strong>on</strong>g> regular mesh ( points )§¢ ¢¥¤ ¤% (6)where denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> interpolati<strong>on</strong> functi<strong>on</strong>.¤ wheredenotes <str<strong>on</strong>g>the</str<strong>on</strong>g> diffential operator, and <str<strong>on</strong>g>the</str<strong>on</strong>g> field quantity <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> mesh.14


2<str<strong>on</strong>g>the</str<strong>on</strong>g> interpolati<strong>on</strong> of from <str<strong>on</strong>g>the</str<strong>on</strong>g> mesh to <str<strong>on</strong>g>the</str<strong>on</strong>g> particle locati<strong>on</strong>s ( ¤ ):¤¡ © and ¢ is <str<strong>on</strong>g>the</str<strong>on</strong>g> number of mesh points.§¢ ¢ ¤ % (8)The accuracy of <str<strong>on</strong>g>the</str<strong>on</strong>g> method depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> smoothness of and , <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> interpolati<strong>on</strong> functi<strong>on</strong>( ), and <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> discretizati<strong>on</strong> scheme ( ) employed <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> field equati<strong>on</strong>.The parallel implementati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> algorithm is complicated by several factors:<str<strong>on</strong>g>the</str<strong>on</strong>g> simultaneous presence of particles and meshes prohibits a single optimal way of parallelizati<strong>on</strong>— <str<strong>on</strong>g>the</str<strong>on</strong>g> computati<strong>on</strong>al cost associated with <str<strong>on</strong>g>the</str<strong>on</strong>g> interpolati<strong>on</strong> steps and <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong>of <str<strong>on</strong>g>the</str<strong>on</strong>g> field equati<strong>on</strong> are of equal magnitude.complex-shaped computati<strong>on</strong>al domains and str<strong>on</strong>g particle inhomogeneities require spatiallyadaptive domaindecompositi<strong>on</strong>s.particle moti<strong>on</strong> may invalidate <str<strong>on</strong>g>the</str<strong>on</strong>g> domain decompositi<strong>on</strong> and cause rising load imbalance,and inter-particle relati<strong>on</strong>s (e.g., chemical b<strong>on</strong>ds in MD) c<strong>on</strong>strain decompositi<strong>on</strong>s and dataassignment.The library attains it efficiency using structured, uni<str<strong>on</strong>g>for</str<strong>on</strong>g>m cartesian meshes <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g>field equati<strong>on</strong>s. As a result, <str<strong>on</strong>g>the</str<strong>on</strong>g> physical and computati<strong>on</strong>al domains are rectangular or cuboidal intwo and three dimensi<strong>on</strong>s. Complex geometries are handled by immersed boundaries, through <str<strong>on</strong>g>the</str<strong>on</strong>g>use of source terms in <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding field equati<strong>on</strong>s, or through boundary element techniques.Adaptive meshing capabilities are possible using AMR c<strong>on</strong>cepts as adapted to particle methods[5].The simultaneous presence of particles and meshes require several different c<strong>on</strong>current domaindecompositi<strong>on</strong>s. These decomposti<strong>on</strong>s are assumed to decompose <str<strong>on</strong>g>the</str<strong>on</strong>g> computati<strong>on</strong>al domain intorectangular or cuboidal sub-domains with a sufficient granularity to secure adequate load balancewhile limiting <str<strong>on</strong>g>the</str<strong>on</strong>g> number of sub-domains to a minimum. The c<strong>on</strong>current presence of differentdecompositi<strong>on</strong>s allows to per<str<strong>on</strong>g>for</str<strong>on</strong>g>m each step of <str<strong>on</strong>g>the</str<strong>on</strong>g> computati<strong>on</strong>al algorithm in its optimal envir<strong>on</strong>mentwith respect to load balance and <str<strong>on</strong>g>the</str<strong>on</strong>g> computati<strong>on</strong>al-to-communicat<strong>on</strong> ratio. For <str<strong>on</strong>g>the</str<strong>on</strong>g> actualcomputati<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g> individual sub-domains are treated as independent problems and extended withghost mesh layers and ghost particles to allow <str<strong>on</strong>g>for</str<strong>on</strong>g> communicati<strong>on</strong> between <str<strong>on</strong>g>the</str<strong>on</strong>g>m.Figure 7 shows a domain decomposti<strong>on</strong> of a cellular compartent (<str<strong>on</strong>g>the</str<strong>on</strong>g> Endoplasmic Reticulum)using <str<strong>on</strong>g>the</str<strong>on</strong>g> PPM-library [23]. The decompositi<strong>on</strong> is per<str<strong>on</strong>g>for</str<strong>on</strong>g>med using recursive orthog<strong>on</strong>al bisecti<strong>on</strong>in and directi<strong>on</strong>s.SummaryWe have presented numerical simulati<strong>on</strong>s of fluid flow at <str<strong>on</strong>g>the</str<strong>on</strong>g> nano-, meso- and macro-scale. Theatomistic descripti<strong>on</strong> have dem<strong>on</strong>strated that <str<strong>on</strong>g>the</str<strong>on</strong>g> classical Navier slip model result in a flow dependentslip length. We have extended current multiscale algorithms with effective boundarypotentials to remove artifacts introduce at <str<strong>on</strong>g>the</str<strong>on</strong>g> interface between <str<strong>on</strong>g>the</str<strong>on</strong>g> different nano- and macroscopicdescripti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> flow. A similar procedure has fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore been applied to <str<strong>on</strong>g>the</str<strong>on</strong>g> method ofdissipative particle dynamics. Finally, we have outlines elements of a parallel implementati<strong>on</strong> ofhybrid particle-mesh algorithms <str<strong>on</strong>g>for</str<strong>on</strong>g> efficient simulati<strong>on</strong>s using particles.AcknowledgementsThe authors gratefully acknowledge <str<strong>on</strong>g>the</str<strong>on</strong>g> PPM implementati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> DPD method by A. Altenhoff,simulati<strong>on</strong>s of slip in atomistic system by A. Kotsalis and T. Werder, and co-developed of <str<strong>on</strong>g>the</str<strong>on</strong>g>PPM-library by M. Bergdorf, A. Kotsalis, S. Hieber, and I. Sbalzarini. Computer resources wereprovided by <str<strong>on</strong>g>the</str<strong>on</strong>g> Swiss Nati<strong>on</strong>al Supercomputer Center (CSCS).15


Figure 7: Top view of <str<strong>on</strong>g>the</str<strong>on</strong>g> computati<strong>on</strong>al domain (left panel) used <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> study of diffusi<strong>on</strong> in cellularcompartments [23]. The resulting PPM domain decompositi<strong>on</strong> (right panel) using recursive orthog<strong>on</strong>albisecti<strong>on</strong> in ¡ and (¢ directi<strong>on</strong>s directi<strong>on</strong> fixed) <strong>on</strong> 242 processors. Rectangles show <str<strong>on</strong>g>the</str<strong>on</strong>g> 9311 PPM subdomains,color codes processor affiliati<strong>on</strong>. The peripheral el<strong>on</strong>gated domains are a result of <str<strong>on</strong>g>the</str<strong>on</strong>g> recursiveorthog<strong>on</strong>al bisecti<strong>on</strong> decompositi<strong>on</strong>.References¥¤§¦©¨ ¤[1] J. Barnes and P. £Hut. A hierarchical <str<strong>on</strong>g>for</str<strong>on</strong>g>ce-calculati<strong>on</strong> algorithm. Nature, 324(4):446–449, 1986.[2] G. K. Batchelor. An Introducti<strong>on</strong> To Fluid Dynamics. Cambridge University Press, 1 editi<strong>on</strong>, 1967.[3] J. Baudry, E. Charlaix, A. T<strong>on</strong>ck, and D. Mazuyer. Experimental evidence <str<strong>on</strong>g>for</str<strong>on</strong>g> a large slip effect at an<strong>on</strong>wetting fluid-solid interface. Langmuir, 17:5232–5236, 2001.[4] H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma. The missing term in effective pair potentials.J. Phys. Chem., 91:6269–6271, 1987.[5] M. Bergdorf, G.-H. Cottet, and P. Koumoutsakos. Multilevel adaptive particle methods <str<strong>on</strong>g>for</str<strong>on</strong>g>c<strong>on</strong>vecti<strong>on</strong>-diffusi<strong>on</strong> equati<strong>on</strong>s. Multiscale Model. Simul., 4(1):328–357, 2005.[6] E. B<strong>on</strong>accurso, M. Kappl, and H.-J. Butt. Hydrodynamic <str<strong>on</strong>g>for</str<strong>on</strong>g>ce measurements: Boundary slip ofwater <strong>on</strong> hydrophilic surfaces and electrokinetic effects. Phys. Rev. Lett., 88(7):076103, 2002.[7] N. V. Churaev, V. D. Sobolev, and A. N. Somov. Slippage of liquids over lyophobic solid surfaces. J.Coll. Interface Sci., 97(2):574–581, 1984.[8] G.-H. Cottet and P. P<strong>on</strong>cet. Advances in direct numerical simulati<strong>on</strong> of 3D wall-bounded flows byvortex-in-cell methods. J. Comput. Phys., 193:136–158, 2003.[9] R. Delgado-Buscali<strong>on</strong>i and P. V. Coveney. USHER: An algorithm <str<strong>on</strong>g>for</str<strong>on</strong>g> particle inserti<strong>on</strong> in dense fluids.J. Chem. Phys., 119(2):978–987, 2003.[10] P. Espanol. Hydrodynamics from dissipative particle dynamics. Phys. Rev. E, 52(2):1734–1742, 1995.[11] E. G. Flekkøy, J. Feder, and G. Wagner. Coupling particles and fields in a diffusive hybrid model.Phys. Rev. E, 64:066302–1–066302–7, 2001.[12] L. Greengard and V. Rokhlin. A fast algorithm <str<strong>on</strong>g>for</str<strong>on</strong>g> particle simulati<strong>on</strong>s. J. Comput. Phys., 73:325–348,1987.[13] F. H. Harlow. Particle-in-cell computing method <str<strong>on</strong>g>for</str<strong>on</strong>g> fluid dynamics. Methods Comput. Phys., 3:319–343, 1964.[14] H. Helmholtz and G. v<strong>on</strong> Piotrowski. Über Reibung tropfbarer Fl üssigkeiten. Sitzungsberichte derKaiserlich Akademie der Wissenschaften, 40:607–658, <str<strong>on</strong>g>18</str<strong>on</strong>g>60.[15] R. W. Hockney and J. W. Eastwood. Computer Simulati<strong>on</strong> Using Particles. Institute of PhysicsPublishing, Bristol, PA, USA, 2 editi<strong>on</strong>, 1988.[16] P. J. Hoogerbrugge and J. M. V. A. Koelman. Simulating microscopic hydrodynamics phenomenawith dissipative particle dynamics. Europhys. Lett., 19(3):155–160, 1992.[17] P. Koumoutsakos. Multiscale flow simulati<strong>on</strong>s using particles. Annu. Rev. Fluid Mech., 37:457–487,2005.[<str<strong>on</strong>g>18</str<strong>on</strong>g>] C. L. M. H. Navier. Memoire sur les lois du mouvement des fluides. Mem. Acad. R. Sci. Inst. Fr.,16


6:389–440, <str<strong>on</strong>g>18</str<strong>on</strong>g>27.[19] X. B. Nie, S. Y. Chen, W. N. E, and M. O. Robbins. A c<strong>on</strong>tinuum and molecular dynamics hybridmethod <str<strong>on</strong>g>for</str<strong>on</strong>g> micro- and nano-fluid flow. J. Fluid Mech., 500:55–64, 2004.[20] S. T. O’C<strong>on</strong>nell and P. A. Thomps<strong>on</strong>. Molecular dynamics-c<strong>on</strong>tinuum hybrid computati<strong>on</strong>s: A tool<str<strong>on</strong>g>for</str<strong>on</strong>g> studying complex fluid flow. Phys. Rev. E, 52(6):R5792–R5795, 1995.[21] I. V. Pivkin and G. E. Karniadakis. A new method to impose no-slip boundary c<strong>on</strong>diti<strong>on</strong>s in dissipativeparticle dynamics. J. Comput. Phys., 207:114–128, 2005.[22] M. Revenga, I. Zúñiga, and P. Espanol. Boundary models in DPD. Int. J. Mod. Phy. C, 9(8):1319–1328, 1998.[23] I. F. Sbalzarini, A. Mezzacasa, A. Helenius, and P. Koumoutsakos. Organelle shape has an influence<strong>on</strong> fluorescence recovery results. Mol. Biol. Cell, 13:1554, 2002.[24] I. F. Sbalzarini, J. H. Wal<str<strong>on</strong>g>the</str<strong>on</strong>g>r, M. Bergdorf, S. E. Hieber, E. M. Kotsalis, and P. Koumoutsakos. PPM– a highly efficient parallel particle-mesh library <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong> of c<strong>on</strong>tinuum systems. J. Comput.Phys., submitted, 2005.[25] E. Schnell. Slippage of water over n<strong>on</strong>wettable surfaces. J. Appl. Phys., 27(10):1149–1152, 1956.[26] O. I. Vinogradova and G. E. Yakubov. Dynamic effects <strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g>ce measurements. 2. Lubricati<strong>on</strong> and<str<strong>on</strong>g>the</str<strong>on</strong>g> atomic <str<strong>on</strong>g>for</str<strong>on</strong>g>ce microscope. Langmuir, 19:1227–1234, 2003.[27] J. H. Wal<str<strong>on</strong>g>the</str<strong>on</strong>g>r, T. Werder, R. L. Jaffe, and P. Koumoutsakos. Hydrodynamic properties of carb<strong>on</strong>nanotubes. Phys. Rev. E, 69:062201, 2004.[28] T. Werder, J. H. Wal<str<strong>on</strong>g>the</str<strong>on</strong>g>r, and P. Koumoutsakos. Hybrid atomistic-c<strong>on</strong>tinuum method <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong>of dense fluid flows. J. Comput. Phys., 205:373–390, 2005.[29] S. M. Willemsen, H. C. J. Hoefsloot, and P. D. Iedema. No-slip boundary c<strong>on</strong>diti<strong>on</strong>s in dissipativeparticle dynamics. Int. J. Mod. Phy. C, 11(5):881–890, 2000.17


Multiscale Methods <str<strong>on</strong>g>for</str<strong>on</strong>g> Flow in Porous MediaKnut–Andreas Lie ∗ , Jørg E. Aarnes, Vegard Kippe, and Stein KrogstadDepartment Applied Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>maticsSINTEF ICT, Oslo, Norwaye–mail: Knut-Andreas.Lie@sintef.noSummary We present a hierarchical multiscale method <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> numerical soluti<strong>on</strong> of two-phase flow instr<strong>on</strong>gly heterogeneous porous media. The method is based up<strong>on</strong> a mixed finite-element <str<strong>on</strong>g>for</str<strong>on</strong>g>mulati<strong>on</strong>, wherebasis functi<strong>on</strong>s are computed numerically <strong>on</strong> a coarse grid to correctly and accurately account <str<strong>on</strong>g>for</str<strong>on</strong>g> subscalepermeability variati<strong>on</strong>s from an underlying (fine-scale) geomodel.Introducti<strong>on</strong>Natural porous rock <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>s are heterogeneous at all length scales. When modelling fluidflow in porous <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>s, it is generally not possible to account <str<strong>on</strong>g>for</str<strong>on</strong>g> all pertinent scales, from <str<strong>on</strong>g>the</str<strong>on</strong>g>micrometre scale of pore channels to <str<strong>on</strong>g>the</str<strong>on</strong>g> kilometre scale of <str<strong>on</strong>g>the</str<strong>on</strong>g> full reservoir. Instead, <strong>on</strong>e hasto create models <str<strong>on</strong>g>for</str<strong>on</strong>g> studying phenomena occurring at a reduced span of length scale, and anymodelling attempt should <str<strong>on</strong>g>the</str<strong>on</strong>g>re<str<strong>on</strong>g>for</str<strong>on</strong>g>e generally be accompanied by appropriate rescaling (up- anddownscaling) techniques.Here we focus <strong>on</strong> how to incorporate fine-scale features from a detailed geomodel into flow simulati<strong>on</strong>s<strong>on</strong> a reservoir scale. Whereas industry-standard geomodels may c<strong>on</strong>tain between 10 6 –10 9grid cells, commercial reservoir simulators are typically capable of simulating models with 10 4 –10 6 degrees of freedom. A large activity is <str<strong>on</strong>g>the</str<strong>on</strong>g>re<str<strong>on</strong>g>for</str<strong>on</strong>g>e devoted to upscaling/downscaling between adetailed reservoir model and a coarser simulati<strong>on</strong> model.We present an alternative approach based <strong>on</strong> a multiscale <str<strong>on</strong>g>for</str<strong>on</strong>g>mulati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> pressure and flow velocities,where <str<strong>on</strong>g>the</str<strong>on</strong>g> global flow is computed <strong>on</strong> a coarse grid and fine-scale heterogeneity is accounted<str<strong>on</strong>g>for</str<strong>on</strong>g> through a set of generalised, heterogeneous basis functi<strong>on</strong>s. The basis functi<strong>on</strong>s are computednumerically by solving local flow problems (as is d<strong>on</strong>e in many flow-based upscaling methods),and when included in <str<strong>on</strong>g>the</str<strong>on</strong>g> coarse-grid equati<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g> basis functi<strong>on</strong>s ensure that <str<strong>on</strong>g>the</str<strong>on</strong>g> global equati<strong>on</strong>sare c<strong>on</strong>sistent with <str<strong>on</strong>g>the</str<strong>on</strong>g> local properties of <str<strong>on</strong>g>the</str<strong>on</strong>g> underlying differential operators. Severaldifferent multiscale methods have been proposed, including <str<strong>on</strong>g>the</str<strong>on</strong>g> multiscale mixed finite-elementmethod (MsMFEM) [2], <str<strong>on</strong>g>the</str<strong>on</strong>g> multiscale finite-volume method [9], and numerical subgrid upscaling[6]. Comm<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> all three methods is that <str<strong>on</strong>g>the</str<strong>on</strong>g>y produce mass-c<strong>on</strong>servative soluti<strong>on</strong>s both <strong>on</strong><str<strong>on</strong>g>the</str<strong>on</strong>g> coarse grid and <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> underlying fine grid, and <str<strong>on</strong>g>the</str<strong>on</strong>g>y may thus be used ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r as very robustupscaling methods or as efficient fine-scale solvers.Multiscale Mixed Finite ElementsThe Two-Phase Flow ModelWe c<strong>on</strong>sider incompressible flow of two phases (water and oil). For simplicity, we neglect <str<strong>on</strong>g>the</str<strong>on</strong>g>effects of gravity and capillary <str<strong>on</strong>g>for</str<strong>on</strong>g>ces. The flow equati<strong>on</strong>s can <str<strong>on</strong>g>the</str<strong>on</strong>g>n be <str<strong>on</strong>g>for</str<strong>on</strong>g>mulated as an ellipticequati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure p and total velocity v,v = −(λ w + λ o )K∇p, ∇ · v = q. (1)Here q is a source term representing injecti<strong>on</strong> and producti<strong>on</strong> wells, K is <str<strong>on</strong>g>the</str<strong>on</strong>g> rock permeability(i.e., <str<strong>on</strong>g>the</str<strong>on</strong>g> ability to transmit fluids), and λ α = k r α/µ α is <str<strong>on</strong>g>the</str<strong>on</strong>g> mobility of phase α, where µ α isviscosity of phase α and k r α = k r α(S) is <str<strong>on</strong>g>the</str<strong>on</strong>g> relative permeability, i.e., <str<strong>on</strong>g>the</str<strong>on</strong>g> reduced ability of <str<strong>on</strong>g>the</str<strong>on</strong>g>rock to transmit fluids due to <str<strong>on</strong>g>the</str<strong>on</strong>g> presence of o<str<strong>on</strong>g>the</str<strong>on</strong>g>r phases. The saturati<strong>on</strong> S denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> volumefracti<strong>on</strong> of water and is described by <str<strong>on</strong>g>the</str<strong>on</strong>g> transport equati<strong>on</strong>φ∂ t S + v · ∇f(S) = q s , (2)where φ is <str<strong>on</strong>g>the</str<strong>on</strong>g> rock porosity and f = λ w /(λ o + λ w ) is <str<strong>on</strong>g>the</str<strong>on</strong>g> fracti<strong>on</strong>al flow functi<strong>on</strong>.19


T iT jFigure 1: A general coarse grid overlying a uni<str<strong>on</strong>g>for</str<strong>on</strong>g>m fine grid with <str<strong>on</strong>g>the</str<strong>on</strong>g> grey area giving <str<strong>on</strong>g>the</str<strong>on</strong>g> support of basisfuncti<strong>on</strong> ψ ij .Mixed Finite ElementsThe mixed finite-element discretisati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure equati<strong>on</strong> (1) in a domain Ω seeks a pair(v, p) ∈ U × V , where U and V are finite-dimensi<strong>on</strong>al subspaces of H0 div(Ω)and L2 (Ω), respectively,such that∫∫v · (λK) −1 u dx − p∇ · u dx = 0, <str<strong>on</strong>g>for</str<strong>on</strong>g> all u ∈ U, (3)Ω∫Ω∫l∇ · v dx = ql dx, <str<strong>on</strong>g>for</str<strong>on</strong>g> all l ∈ V. (4)ΩThus letting {ψ i } and {φ k } be bases <str<strong>on</strong>g>for</str<strong>on</strong>g> U ⊂ H div0 (Ω) and V ⊂ L2 (Ω), we obtain approximati<strong>on</strong>sv = ∑ v i ψ i and p = ∑ p k φ k , where <str<strong>on</strong>g>the</str<strong>on</strong>g> coefficients v = {v i } and p = {p k } solve a linearsystem of <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>m [ B CC T Owhere∫b ij =Ω] [∫ψ i · (λK) −1 ψ j dx, c ik =v−pΩ] [0=q], (5)∫φ k ∇ · ψ i dx, and q k =Ωφ k q dx.Multiscale Basis Functi<strong>on</strong>sIn a standard discretisati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> spaces U and V typically c<strong>on</strong>sist of low-order piecewise polynomials.In <str<strong>on</strong>g>the</str<strong>on</strong>g> multiscale methods, U and V are given by <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong> of local flow problems. LetK = {K m } be a partiti<strong>on</strong>ing of Ω into mutually disjoint grid cells. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, let T = {T i }be a coarser partiti<strong>on</strong>ing of Ω, in such a way that whenever K m ∩ T i ≠ 0 <str<strong>on</strong>g>the</str<strong>on</strong>g>n K m ⊂ T i ; seeFigure 1. Let Γ ij denote <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>-degenerate interfaces Γ ij = ∂T i ∩ ∂T j . For each Γ ij we assigna basis functi<strong>on</strong> ψ ij ∈ U ms , and <str<strong>on</strong>g>for</str<strong>on</strong>g> each T i we assign a basis functi<strong>on</strong> φ i ∈ V .The basis functi<strong>on</strong> ψ ij is obtained by <str<strong>on</strong>g>for</str<strong>on</strong>g>cing a unit displacement from cell T i to T j ; that is, bysolving,{wi (x), <str<strong>on</strong>g>for</str<strong>on</strong>g> x ∈ Tψ ij = −λK∇φ ij , ∇ · ψ ij =i ,(6)−w j (x), <str<strong>on</strong>g>for</str<strong>on</strong>g> x ∈ T j ,with ψ · ν = 0 <strong>on</strong> ∂Ω ij , where ν is <str<strong>on</strong>g>the</str<strong>on</strong>g> outward-pointing unit normal to ∂Ω ij pointing from T ito T j . For cells c<strong>on</strong>taining a well (i.e., <str<strong>on</strong>g>for</str<strong>on</strong>g> all T i <str<strong>on</strong>g>for</str<strong>on</strong>g> which ∫ T iq ≠ 0), <str<strong>on</strong>g>the</str<strong>on</strong>g> weight functi<strong>on</strong> w i isgiven byq(x)w i (x) = ∫T iq(ξ) dξ . (7)This choice ensures a c<strong>on</strong>servative approximati<strong>on</strong> of v <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> fine grid. For all o<str<strong>on</strong>g>the</str<strong>on</strong>g>r cells, wechoose w i (x) = 1/|T i or w i (x) = 1 m trace m(K(x))/|T i |. The corresp<strong>on</strong>ding basis functi<strong>on</strong>scan be seen as generalisati<strong>on</strong>s of <str<strong>on</strong>g>the</str<strong>on</strong>g> lowest-order Raviart–Thomas basis functi<strong>on</strong>s in a standardmixed method. Figure 2 illustrates <str<strong>on</strong>g>the</str<strong>on</strong>g> x-velocity basis functi<strong>on</strong>s in two different cases.20


Homogeneous coefficientsHeterogeneous coefficientsFigure 2: The x comp<strong>on</strong>ent of <str<strong>on</strong>g>the</str<strong>on</strong>g> velocity basis functi<strong>on</strong> associated with an edge between two cells ofdifferent size <str<strong>on</strong>g>for</str<strong>on</strong>g> a homogeneous and a heterogeneous permeability field, respectively.Producer A6050InjectorProducer D40302010Tarbert20 40 60 80 100 120 140 160 <str<strong>on</strong>g>18</str<strong>on</strong>g>0 200 220Producer BUpper Ness60504030Producer C201020 40 60 80 100 120 140 160 <str<strong>on</strong>g>18</str<strong>on</strong>g>0 200 220Figure 3: Schematic of <str<strong>on</strong>g>the</str<strong>on</strong>g> SPE10 reservoir model. The reservoir dimensi<strong>on</strong>s are 1200×2200×170 ft., and<str<strong>on</strong>g>the</str<strong>on</strong>g> model c<strong>on</strong>sists of 60 × 220 × 85 grid cells. The top and bottom plots to <str<strong>on</strong>g>the</str<strong>on</strong>g> right depict <str<strong>on</strong>g>the</str<strong>on</strong>g> logarithmof <str<strong>on</strong>g>the</str<strong>on</strong>g> horiz<strong>on</strong>tal permeability in <str<strong>on</strong>g>the</str<strong>on</strong>g> top layer of <str<strong>on</strong>g>the</str<strong>on</strong>g> Tarbert <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> bottom layer of <str<strong>on</strong>g>the</str<strong>on</strong>g> UpperNess <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>.Discussi<strong>on</strong>In this secti<strong>on</strong> we show that MsMFEM: (i) is an accurate and robust alternative to upscaling; (ii)is efficient when used as an approximate fine-scale solver <str<strong>on</strong>g>for</str<strong>on</strong>g> dynamic flow cases; and (iii) is veryflexible with respect to <str<strong>on</strong>g>the</str<strong>on</strong>g> choice of coarse grid cells, given an appropriate fine-grid solver.Accuracy and Robustness — 10 th SPE Comparative Soluti<strong>on</strong> ProjectModel 2 from SPE10 [7] was designed as a benchmark <str<strong>on</strong>g>for</str<strong>on</strong>g> various upscaling techniques andc<strong>on</strong>sists of two different rock <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>s; see Figure 3. Both <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>s are highly heterogeneous,with permeability variati<strong>on</strong>s of more than eight orders of magnitude, but are qualitatively different.The shallow-marine Tarbert <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> is smooth, and <str<strong>on</strong>g>the</str<strong>on</strong>g>re<str<strong>on</strong>g>for</str<strong>on</strong>g>e not too hard to upscale. Thefluvial Upper Ness <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> c<strong>on</strong>tains intertwined networks of high-permeability channels andposes severe challenges to any numerical method.In Figure 4 we compare producti<strong>on</strong> curves from a MsMFEM simulati<strong>on</strong> with a reference soluti<strong>on</strong>obtained by direct simulati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> full model. For <str<strong>on</strong>g>the</str<strong>on</strong>g> MsMFEM simulati<strong>on</strong> we used a5 × 11 × 17 coarse grid and computed <str<strong>on</strong>g>the</str<strong>on</strong>g> fluid transport <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> fine grid using fluxes from <str<strong>on</strong>g>the</str<strong>on</strong>g>corresp<strong>on</strong>ding subscale velocity field. For comparis<strong>on</strong>, we also include results obtained from aupscaling/downscaling approach [8]. The MsMFEM is able to accurately reproduce <str<strong>on</strong>g>the</str<strong>on</strong>g> flow in<str<strong>on</strong>g>the</str<strong>on</strong>g> fine-scale channels and <str<strong>on</strong>g>the</str<strong>on</strong>g>re<str<strong>on</strong>g>for</str<strong>on</strong>g>e matches <str<strong>on</strong>g>the</str<strong>on</strong>g> reference curves almost exactly. The upscaling/downscalingapproach, <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, does not properly account <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> coupling betweensmall-scale and large-scale effects and <str<strong>on</strong>g>the</str<strong>on</strong>g>re<str<strong>on</strong>g>for</str<strong>on</strong>g>e fails to reproduce <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> curves of <str<strong>on</strong>g>the</str<strong>on</strong>g>21


1Producer A1Producer B0.80.8Watercut0.60.4Watercut0.60.40.2ReferenceMsMFEMNested Gridding00 500 1000 1500 2000Time (days)0.2ReferenceMsMFEMNested Gridding00 500 1000 1500 2000Time (days)1Producer C1Producer D0.80.8Watercut0.60.4Watercut0.60.40.2ReferenceMsMFEMNested Gridding00 500 1000 1500 2000Time (days)0.2ReferenceMsMFEMNested Gridding00 500 1000 1500 2000Time (days)Figure 4: Water-cut curves after 2000 days of producti<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> SPE10 benchmark.Figure 5: MsMFEM soluti<strong>on</strong>s <str<strong>on</strong>g>for</str<strong>on</strong>g> varying coarse grids <strong>on</strong> layer 85 from <str<strong>on</strong>g>the</str<strong>on</strong>g> SPE10 benchmark. In <str<strong>on</strong>g>the</str<strong>on</strong>g> leftcolumn, <str<strong>on</strong>g>the</str<strong>on</strong>g> coarse-grid fluxes are used to compute fluid transport, and in <str<strong>on</strong>g>the</str<strong>on</strong>g> right column, <str<strong>on</strong>g>the</str<strong>on</strong>g> subgridfluxes are used to compute <str<strong>on</strong>g>the</str<strong>on</strong>g> transport <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> original grid.22


8 x 107 Fine scale soluti<strong>on</strong>7Computati<strong>on</strong> of basis functi<strong>on</strong>sSoluti<strong>on</strong> of global system654↓32108x8x8 16x16x16 32x32x32 64x64x64Figure 6: Computati<strong>on</strong>al work (idealised) <str<strong>on</strong>g>for</str<strong>on</strong>g> different coarse grids, assuming a Cartesian 128 × 128 × 128grid <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> fine-scale.individual wells correctly. See [3] <str<strong>on</strong>g>for</str<strong>on</strong>g> a more thorough discussi<strong>on</strong>.Next, we c<strong>on</strong>sider flow in <str<strong>on</strong>g>the</str<strong>on</strong>g> bottom layer computed using three different coarse grids with12 × 44 cells, 6 × 22 cells, and 3 × 11 cells. Figure 5 compares saturati<strong>on</strong> profiles obtainedusing <str<strong>on</strong>g>the</str<strong>on</strong>g> coarse-grid fluxes obtained by MsMFEM, and saturati<strong>on</strong> profiles obtained <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> fine60×220 grid using <str<strong>on</strong>g>the</str<strong>on</strong>g> subgrid fluxes. The figure shows that <str<strong>on</strong>g>the</str<strong>on</strong>g> resoluti<strong>on</strong> is improved remarkablyby utilising <str<strong>on</strong>g>the</str<strong>on</strong>g> inherent subgrid resoluti<strong>on</strong> ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than using MsMFEM as an advanced upscalingmethod. Moreover, it is evident that MsMFEM is robust with respect to <str<strong>on</strong>g>the</str<strong>on</strong>g> size of <str<strong>on</strong>g>the</str<strong>on</strong>g> coarse grid.Computati<strong>on</strong>al EfficiencyDepending <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>linearity of <str<strong>on</strong>g>the</str<strong>on</strong>g> system (1)–(2), <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure p may need to be recomputedseveral times throughout a simulati<strong>on</strong>. In fact, <str<strong>on</strong>g>the</str<strong>on</strong>g> number of pressure solves in a typical flowcase of water injecti<strong>on</strong> into a oil reservoir is of <str<strong>on</strong>g>the</str<strong>on</strong>g> order O(10 2 ). The key to <str<strong>on</strong>g>the</str<strong>on</strong>g> computati<strong>on</strong>alefficiency of <str<strong>on</strong>g>the</str<strong>on</strong>g> MsMFEM is <str<strong>on</strong>g>the</str<strong>on</strong>g> following observati<strong>on</strong>: be<str<strong>on</strong>g>for</str<strong>on</strong>g>e <str<strong>on</strong>g>the</str<strong>on</strong>g> water fr<strong>on</strong>t has swept througha coarse block T i , <str<strong>on</strong>g>the</str<strong>on</strong>g> coefficient λ(S)K(x) in (6) is c<strong>on</strong>stant (since S is c<strong>on</strong>stant), and after <str<strong>on</strong>g>the</str<strong>on</strong>g>waterfr<strong>on</strong>t has left <str<strong>on</strong>g>the</str<strong>on</strong>g> grid block, λ(S) increases slowly. After <str<strong>on</strong>g>the</str<strong>on</strong>g> initial pressure solve, <strong>on</strong>lya few basis functi<strong>on</strong>s ψ ij close to <str<strong>on</strong>g>the</str<strong>on</strong>g> water fr<strong>on</strong>t need to be recomputed [2], unless <str<strong>on</strong>g>the</str<strong>on</strong>g>re is anabrupt change in <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure field due to e.g., changing well c<strong>on</strong>figurati<strong>on</strong>s.In Figure 6 we have plotted <str<strong>on</strong>g>the</str<strong>on</strong>g> computati<strong>on</strong>al cost <str<strong>on</strong>g>for</str<strong>on</strong>g> MsMFEM <str<strong>on</strong>g>for</str<strong>on</strong>g> different coarse grids comparedwith <str<strong>on</strong>g>the</str<strong>on</strong>g> cost of a direct soluti<strong>on</strong> <strong>on</strong> a uni<str<strong>on</strong>g>for</str<strong>on</strong>g>m Cartesian grid with 128 3 grid blocks. Thefigure shows that <str<strong>on</strong>g>the</str<strong>on</strong>g> MsMFEM may not necessarily be more efficient than direct fine-scale soluti<strong>on</strong><str<strong>on</strong>g>for</str<strong>on</strong>g> a single pressure solve, but it is also clear that <str<strong>on</strong>g>the</str<strong>on</strong>g> work associated with determiningbasis functi<strong>on</strong>s dominates <str<strong>on</strong>g>the</str<strong>on</strong>g> work associated with solving <str<strong>on</strong>g>the</str<strong>on</strong>g> global system. Hence, <str<strong>on</strong>g>for</str<strong>on</strong>g> a fullsimulati<strong>on</strong>, where a minor fracti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> basis functi<strong>on</strong>s need to be updated in each pressuresolve, <str<strong>on</strong>g>the</str<strong>on</strong>g> MsMFEM provides a potentially very large speedup. Moreover, since all basis functi<strong>on</strong>can be computed independent of each o<str<strong>on</strong>g>the</str<strong>on</strong>g>r, <str<strong>on</strong>g>the</str<strong>on</strong>g> MsMFEM has an inherent parallelism that can beexploited to speed up <str<strong>on</strong>g>the</str<strong>on</strong>g> computati<strong>on</strong>s.FlexibilityA major advantage with <str<strong>on</strong>g>the</str<strong>on</strong>g> multiscale mixed <str<strong>on</strong>g>for</str<strong>on</strong>g>mulati<strong>on</strong> is <str<strong>on</strong>g>the</str<strong>on</strong>g> flexibility with respect to grids.A bit simplified this can be stated as follows: given an appropriate solver <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> fine grid system,<str<strong>on</strong>g>the</str<strong>on</strong>g> multiscale method can be <str<strong>on</strong>g>for</str<strong>on</strong>g>mulated and basis functi<strong>on</strong>s can be computed <strong>on</strong> (almost) anycoarse grid where each grid block c<strong>on</strong>sists of an arbitrary collecti<strong>on</strong> of c<strong>on</strong>nected fine-grid cells.Moreover, numerous numerical tests show that MsMFEM is not very sensitive to <str<strong>on</strong>g>the</str<strong>on</strong>g> shape of<str<strong>on</strong>g>the</str<strong>on</strong>g> coarse cells and accurate results are obtained <str<strong>on</strong>g>for</str<strong>on</strong>g> grids c<strong>on</strong>taining blocks with pretty ‘exotic’shapes [5]. This means that <str<strong>on</strong>g>the</str<strong>on</strong>g> process of generating a coarse simulati<strong>on</strong> grid from a complex23


Figure 7: Comparis<strong>on</strong> of flow velocity obtained direct simulati<strong>on</strong> <strong>on</strong> an unstructured triangular grid and byMsMFEM <strong>on</strong> an unstructured coarse grid.Figure 8: A coarse grid defined <strong>on</strong> top of a structured corner-point fine grid. The cells in <str<strong>on</strong>g>the</str<strong>on</strong>g> coarse grid aregiven by different colours.geomodel can be greatly simplified, regardless of whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g> fine grid is fully unstructured or isa structured corner-point grid with geometrical complicati<strong>on</strong>s due to faults, throws, and erodedcells.We end <str<strong>on</strong>g>the</str<strong>on</strong>g> paper by showing a few grid models to support <str<strong>on</strong>g>the</str<strong>on</strong>g> claim of <str<strong>on</strong>g>the</str<strong>on</strong>g> great flexibilityinherent in MsMFEM. As <str<strong>on</strong>g>the</str<strong>on</strong>g> first example we c<strong>on</strong>sider an unstructured triangular fine grid in 2D.The coarse grid blocks in Figure 7 are <str<strong>on</strong>g>for</str<strong>on</strong>g>med as collecti<strong>on</strong>s of fine-grid cells and can thus havealmost arbitrary polyg<strong>on</strong>al shape. The resulting grid c<strong>on</strong>tains cells that are (almost) triangular,quadrilateral, pentag<strong>on</strong>al, and hexag<strong>on</strong>al. By using unstructured triangular fine grids, it is easy toadapt both <str<strong>on</strong>g>the</str<strong>on</strong>g> fine grid and <str<strong>on</strong>g>the</str<strong>on</strong>g> coarse grid to complex external and internal boundaries.As a next example, Figure 8 shows a vertical well penetrating a structured corner-point grid wi<str<strong>on</strong>g>the</str<strong>on</strong>g>roded layers. On <str<strong>on</strong>g>the</str<strong>on</strong>g> coarse grid, <str<strong>on</strong>g>the</str<strong>on</strong>g> well is c<strong>on</strong>fined to a single cell c<strong>on</strong>sisting of all cells in<str<strong>on</strong>g>the</str<strong>on</strong>g> fine grid penetrated by <str<strong>on</strong>g>the</str<strong>on</strong>g> well. Moreover, notice <str<strong>on</strong>g>the</str<strong>on</strong>g> single neighbouring block shaped like a’cylinder’ with a hole.Finally, Figure 9 shows a subsecti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> SPE10 model, in which we have inserted a few flowbarriers with very low permeability. In [5] it was shown that MsMFEM becomes inaccurate ifcoarse grid cells are cut into two (or more) n<strong>on</strong>-communicating parts by a flow barrier. Fortunately,this can be automatically detected when generating basis functi<strong>on</strong>s, and <str<strong>on</strong>g>the</str<strong>on</strong>g> resoluti<strong>on</strong> can24


Figure 9: The upper row shows <str<strong>on</strong>g>the</str<strong>on</strong>g> permeability field (right), and <str<strong>on</strong>g>the</str<strong>on</strong>g> interior barriers (left). The lower rowshows a hierarchically refined grid (left), <str<strong>on</strong>g>the</str<strong>on</strong>g> barrier grid (middle), and a coarse grid block in <str<strong>on</strong>g>the</str<strong>on</strong>g> barriergrid (right).be improved by using some <str<strong>on</strong>g>for</str<strong>on</strong>g>m of grid refinement. The figure shows two different approaches:(i) structured, hierarchical refinement, and (ii) direct incorporati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> flow barriers as extracoarse grid blocks intersecting a uni<str<strong>on</strong>g>for</str<strong>on</strong>g>m 3 × 5 × 2 grid. This results in ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r exotic coarse cells,e.g., as shown in <str<strong>on</strong>g>the</str<strong>on</strong>g> figure, where <str<strong>on</strong>g>the</str<strong>on</strong>g> original rectangular cell c<strong>on</strong>sisting of 10 × 16 × 5 finecells is almost split in two by <str<strong>on</strong>g>the</str<strong>on</strong>g> barrier, and <str<strong>on</strong>g>the</str<strong>on</strong>g> resulting coarse cell is <strong>on</strong>ly c<strong>on</strong>nected througha single cell in <str<strong>on</strong>g>the</str<strong>on</strong>g> fine grid. Although <str<strong>on</strong>g>the</str<strong>on</strong>g> number of grid cells in <str<strong>on</strong>g>the</str<strong>on</strong>g> barrier grid is five timesless than <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> hierarchically refined grid, <str<strong>on</strong>g>the</str<strong>on</strong>g> errors in <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> curves are comparable,indicating that MsMFEM is robust with respect to <str<strong>on</strong>g>the</str<strong>on</strong>g> shape of <str<strong>on</strong>g>the</str<strong>on</strong>g> coarse cells.C<strong>on</strong>cluding remarksThe research has been funded by <str<strong>on</strong>g>the</str<strong>on</strong>g> Research Council of Norway through c<strong>on</strong>tracts 158908/I30,152732/S30, and 162606/V30.References[1] Reservoir Simulati<strong>on</strong> <strong>on</strong> a Geological Scale, http://www.math.sintef.no/GeoScale/.[2] J. E. Aarnes. On <str<strong>on</strong>g>the</str<strong>on</strong>g> use of a mixed multiscale finite element method <str<strong>on</strong>g>for</str<strong>on</strong>g> greater flexibility andincreased speed or improved accuracy in reservoir simulati<strong>on</strong>. Multiscale Model. Simul., 2(3), 421–439, (2004).[3] J. E. Aarnes, V. Kippe, and K.-A. Lie. Mixed multiscale finite elements and streamline methods <str<strong>on</strong>g>for</str<strong>on</strong>g>reservoir simulati<strong>on</strong> of large geomodels. Adv. Water Resources, 28(3), 257–271, (2005).[4] J. E. Aarnes, V. Kippe, and K.-A. Lie. Multiscale methods and streamline simulati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> rapid reservoirper<str<strong>on</strong>g>for</str<strong>on</strong>g>mance predicti<strong>on</strong>. In A. Di Bucchianico, R. M. M. Mat<str<strong>on</strong>g>the</str<strong>on</strong>g>ij, and M. A. Peletier, editors,Progress in Industrial Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics at ECMI 2004, Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics in Industry. Springer Verlag (2006).[5] J. E. Aarnes, S. Krogstad, and K.-A. Lie A hierarchical multiscale method <str<strong>on</strong>g>for</str<strong>on</strong>g> two-phase flow basedup<strong>on</strong> mixed finite elements and n<strong>on</strong>uni<str<strong>on</strong>g>for</str<strong>on</strong>g>m coarse grids. Multiscale Model. Simul., submitted.[6] T. Arbogast. Numerical subgrid upscaling of two-phase flow in porous media. In Z. Chen et al,editors, Numerical Treatment of Multiphase Flows in Porous Media, Lecture Notes in Physics, vol.552, pages 35–49, Springer Verlag, (2000).[7] M. A. Christie and M. J. Blunt. Tenth SPE comparative soluti<strong>on</strong> project: A comparis<strong>on</strong> of upscalingtechniques. SPE Res. Eng. Eval., 4, 308–317, (2001), http://www.spe.org/csp/.[8] Y. Gautier, M. J. Blunt, and M. A. Christie. Nested gridding and streamline-based simulati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> fastreservoir per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance predicti<strong>on</strong>. Comp. Geosci., 3, 295–320, (1999).[9] P. Jenny, S. H. Lee, and H. A. Tchelepi. Multi-scale finite-volume method <str<strong>on</strong>g>for</str<strong>on</strong>g> elliptic problems insubsurface flow simulati<strong>on</strong>. J. Comp. Phys., <str<strong>on</strong>g>18</str<strong>on</strong>g>7, 47–67, (2003).25


Inverse Disc<strong>on</strong>tinuity Formulati<strong>on</strong> of FractureM. Fagerström and R. Larss<strong>on</strong> ⋆Department of Applied MechanicsChalmers University of Technology, Göteborg, Swedene-mail: ragnar@chalmers.seSummary The focus of this c<strong>on</strong>tributi<strong>on</strong> is <strong>on</strong> dynamic crack propagati<strong>on</strong> modelling, introducing <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>oreticalc<strong>on</strong>tinuum mechanical framework and presenting two simple models <str<strong>on</strong>g>for</str<strong>on</strong>g> crack propagati<strong>on</strong>. Alsoparticular aspects of <str<strong>on</strong>g>the</str<strong>on</strong>g> numerical implementati<strong>on</strong> is c<strong>on</strong>sidered.Introducti<strong>on</strong>In this c<strong>on</strong>tributi<strong>on</strong>, we discuss a finite de<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> FE-model <str<strong>on</strong>g>for</str<strong>on</strong>g> crack propagati<strong>on</strong> based <strong>on</strong><str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>cept of partiti<strong>on</strong> of unity, originally introduced by Melenk and Babuška [1], and <str<strong>on</strong>g>the</str<strong>on</strong>g> developmentsby Wells et al. [2]. The main c<strong>on</strong>cept is to c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> total de<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> map as asuperpositi<strong>on</strong> of two fields, <strong>on</strong>e c<strong>on</strong>tinuous and <strong>on</strong>e disc<strong>on</strong>tinuous, leading to a coupled system ofequilibrium equati<strong>on</strong>s to be solved using a m<strong>on</strong>olithic approach.To model <str<strong>on</strong>g>the</str<strong>on</strong>g> fracture behaviour of <str<strong>on</strong>g>the</str<strong>on</strong>g> material, we distinguish between two different models.Firstly, a cohesive z<strong>on</strong>e model of damage-plasticity type is <str<strong>on</strong>g>for</str<strong>on</strong>g>mulated in <str<strong>on</strong>g>the</str<strong>on</strong>g> reference c<strong>on</strong>figurati<strong>on</strong>,relating <str<strong>on</strong>g>the</str<strong>on</strong>g> cohesive Mandel tracti<strong>on</strong> to a material ’jump’, which in turn is related to <str<strong>on</strong>g>the</str<strong>on</strong>g>direct (spatial) disc<strong>on</strong>tinuity 1 . Sec<strong>on</strong>dly, <str<strong>on</strong>g>the</str<strong>on</strong>g> Material Crack Driving Force (MCDF) model is <str<strong>on</strong>g>for</str<strong>on</strong>g>mulatedas a generalised Griffith criteri<strong>on</strong> based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> material crack driving <str<strong>on</strong>g>for</str<strong>on</strong>g>ce, identified asa reacti<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g>ce at <str<strong>on</strong>g>the</str<strong>on</strong>g> crack tip in <str<strong>on</strong>g>the</str<strong>on</strong>g> inverse disc<strong>on</strong>tinuity problem [4], energy c<strong>on</strong>jugated with<str<strong>on</strong>g>the</str<strong>on</strong>g> virtual crack extensi<strong>on</strong>. Both models are compared and discussed with respect to structuralresp<strong>on</strong>se, efficiency, aspects of implementati<strong>on</strong> etc.Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, we extend <str<strong>on</strong>g>the</str<strong>on</strong>g> model to account also <str<strong>on</strong>g>for</str<strong>on</strong>g> dynamical effects, e.g. rapid transientloading which is of great importance in many manufacturing applicati<strong>on</strong>s and impact loading situati<strong>on</strong>s.The intenti<strong>on</strong> is to build a <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical and numerical foundati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r analyses ofimportant dynamic phenomena such as crack arrest, crack branching and rate dependent cohesivebehaviour am<strong>on</strong>g o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs. The introducti<strong>on</strong> of inertia effects also rises interesting questi<strong>on</strong>sregarding <str<strong>on</strong>g>the</str<strong>on</strong>g> numerical treatment in terms of efficient and stable time integrati<strong>on</strong> algorithms.KinematicsAs a basis <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> kinematical descripti<strong>on</strong>, we c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> direct de<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> map which mapspoints in <str<strong>on</strong>g>the</str<strong>on</strong>g> material reference c<strong>on</strong>figurati<strong>on</strong>, X ∈ B 0 , <strong>on</strong>to points in <str<strong>on</strong>g>the</str<strong>on</strong>g> de<str<strong>on</strong>g>for</str<strong>on</strong>g>med spatial c<strong>on</strong>figurati<strong>on</strong>,x ∈ B asϕ [X, t] = ϕ c [X, t] + H S [S [X]] d[X, t] with d = x − x c (1)1 The <str<strong>on</strong>g>for</str<strong>on</strong>g>mulati<strong>on</strong> in terms of <str<strong>on</strong>g>the</str<strong>on</strong>g> Mandel tracti<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> material jump is made to ensure material frame indifferenceof <str<strong>on</strong>g>the</str<strong>on</strong>g> model, cf. [3]27


where H S [S [X]] is <str<strong>on</strong>g>the</str<strong>on</strong>g> Heaviside functi<strong>on</strong> centered at <str<strong>on</strong>g>the</str<strong>on</strong>g> internal (closed) disc<strong>on</strong>tinuity boundary,Γ S , shown in Fig. 1. The argument S [X] is defined asS [X]0 X∈D + 0with N =∂S [X]∂X X∈Γ S, ‖N‖ = 1 (2)where N is <str<strong>on</strong>g>the</str<strong>on</strong>g> normal vector to Γ S pointing into <str<strong>on</strong>g>the</str<strong>on</strong>g> regi<strong>on</strong> D 0 + . Note that <str<strong>on</strong>g>the</str<strong>on</strong>g> disc<strong>on</strong>tinuous part,d, is defined <strong>on</strong> a subregi<strong>on</strong> D 0 of B 0 (grey area) with assumed Dirichlet boundary c<strong>on</strong>diti<strong>on</strong>sal<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> boundary ∂D 0 + \Γ S.Figure 1: Kinematical representati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> disc<strong>on</strong>tinuous direct moti<strong>on</strong> problem.The pertinent de<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> gradient becomesF = ϕ ⊗ ∇ X = F c + H S F d + δ S d ⊗ N with F c = ϕ c ⊗ ∇ X and F d = d ⊗ ∇ X (3)where δ S [S[X]] is <str<strong>on</strong>g>the</str<strong>on</strong>g> Dirac delta functi<strong>on</strong>.Governing equati<strong>on</strong>s and soluti<strong>on</strong> strategyTo arrive at <str<strong>on</strong>g>the</str<strong>on</strong>g> coupled equilibrium equati<strong>on</strong>s, we first c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> str<strong>on</strong>g <str<strong>on</strong>g>for</str<strong>on</strong>g>m of <str<strong>on</strong>g>the</str<strong>on</strong>g> equati<strong>on</strong> ofmoti<strong>on</strong>ρ 0 ü − Σ t 1 · ∇ X = b mec (4)with Σ t 1 being <str<strong>on</strong>g>the</str<strong>on</strong>g> first Piola-Kirchhoff stress tensor and b mec <str<strong>on</strong>g>the</str<strong>on</strong>g> (applied) <strong>mechanics</strong> body <str<strong>on</strong>g>for</str<strong>on</strong>g>cesand where <str<strong>on</strong>g>the</str<strong>on</strong>g> accelerati<strong>on</strong> ü can be subdivided (due to <str<strong>on</strong>g>the</str<strong>on</strong>g> present kinematical representati<strong>on</strong>) asü = ¨ϕ c + H S¨d (5)From Eq. 4, <str<strong>on</strong>g>the</str<strong>on</strong>g> standard (c<strong>on</strong>tinuous) <str<strong>on</strong>g>for</str<strong>on</strong>g>m of <str<strong>on</strong>g>the</str<strong>on</strong>g> principle of virtual work can easily be established,which in turn may be re<str<strong>on</strong>g>for</str<strong>on</strong>g>mulated to <str<strong>on</strong>g>the</str<strong>on</strong>g> final coupled c<strong>on</strong>tinuous/disc<strong>on</strong>tinuous <str<strong>on</strong>g>for</str<strong>on</strong>g>m byinserti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> disc<strong>on</strong>tinuous kinematical representati<strong>on</strong> in Eqs. 1 and 3:∫∫∫∫(C): Σ t 1 : ∆F c dV = ∆ϕ c · t 1 dΓ + ∆ϕ c · b mec dV − ρ 0 ∆ϕ c · üdV (6)V 0 Γ 0 V 0 B∫∫∫0∫(D): H S Σ t 1 : ∆F d dV + ∆d · t 1 dΓ = H S ∆d · b mec dV − H S ρ 0 ∆d · üdV (7)D 0 Γ S D 0 D 0Fracture modellingWe will present and compare two different models, a cohesive z<strong>on</strong>e model and <str<strong>on</strong>g>the</str<strong>on</strong>g> Material CrackDriving Force model.28


Cohesive z<strong>on</strong>e modelTo model <str<strong>on</strong>g>the</str<strong>on</strong>g> stress degradati<strong>on</strong> al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> internal interface Γ S , we <str<strong>on</strong>g>for</str<strong>on</strong>g>mulate a cohesive damageplasticitymodel based <strong>on</strong> previous works [4,5], thus <str<strong>on</strong>g>the</str<strong>on</strong>g> nominal tracti<strong>on</strong> vector is defined interms of an effective nominal tracti<strong>on</strong> ˆt 1 and a damage variable 0 ≤ α ≤ 1 as t 1 = (1 − α)ˆt 1 .Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, this effective nominal tracti<strong>on</strong> is related to <str<strong>on</strong>g>the</str<strong>on</strong>g> effective Mandel tracti<strong>on</strong> ˆQ via ˆt 1 =F −tc · ˆQ. Finally, ˆQ is expressed in terms of a material jump J = F −1c ·d as ˆQ = K ·(J −J p ) =K · J e where K is a stiffness parameter <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> interface and where J p and J e are <str<strong>on</strong>g>the</str<strong>on</strong>g> plasticand elastic part of <str<strong>on</strong>g>the</str<strong>on</strong>g> material jump respectively. The evoluti<strong>on</strong> laws <str<strong>on</strong>g>for</str<strong>on</strong>g> J p an α are <str<strong>on</strong>g>the</str<strong>on</strong>g>n definedsuch that <str<strong>on</strong>g>the</str<strong>on</strong>g> resulting relati<strong>on</strong> between t 1 and d is according to Fig. 2.σ fd e d pFigure 2: Relati<strong>on</strong> between nominal interface tracti<strong>on</strong> and disc<strong>on</strong>tinuity.Material Crack Driving Force model (MCDF)The sec<strong>on</strong>d model proposed is based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> MCDF, P , identified in <str<strong>on</strong>g>the</str<strong>on</strong>g> inverse disc<strong>on</strong>tinuityproblem [4] as a reacti<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g>ce at <str<strong>on</strong>g>the</str<strong>on</strong>g> crack tip, energy c<strong>on</strong>jugated with <str<strong>on</strong>g>the</str<strong>on</strong>g> virtual crack extensi<strong>on</strong>.Interesting properties of this <str<strong>on</strong>g>for</str<strong>on</strong>g>ce is that <str<strong>on</strong>g>the</str<strong>on</strong>g> magnitude corresp<strong>on</strong>ds to <str<strong>on</strong>g>the</str<strong>on</strong>g> value of <str<strong>on</strong>g>the</str<strong>on</strong>g> J-integraland that <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>ce is aligned in <str<strong>on</strong>g>the</str<strong>on</strong>g> directi<strong>on</strong> of maximum energy release. Hence, a fracture criteri<strong>on</strong>may be <str<strong>on</strong>g>for</str<strong>on</strong>g>mulated such that <str<strong>on</strong>g>the</str<strong>on</strong>g> crack is propagated in <str<strong>on</strong>g>the</str<strong>on</strong>g> directi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>ce when<str<strong>on</strong>g>the</str<strong>on</strong>g> magnitude exceeds a critical value. The drawback of this model is <str<strong>on</strong>g>the</str<strong>on</strong>g> large mesh sensitivity.However <str<strong>on</strong>g>the</str<strong>on</strong>g>re are techniques to decrease this dependence, e.g. domain integral methods orequivalent.Numerical exampleTo illustrate <str<strong>on</strong>g>the</str<strong>on</strong>g> capabilities of <str<strong>on</strong>g>the</str<strong>on</strong>g> proposed model, we study a simple numerical example in termsof a DCB-test with a pre-defined fracture interface (modelled through <str<strong>on</strong>g>the</str<strong>on</strong>g> finite elements), shownin Fig. 3a, loaded with an increasing loading rate: quasi static (no dynamic effects), ṙ = 5,10 and 15 m/s. The coupled c<strong>on</strong>tinuous/disc<strong>on</strong>tinuous problem is discretised using standard finiteelement approximati<strong>on</strong>s <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> two fields and solved with an implicit Newmark-β time integrati<strong>on</strong>scheme. Moreover, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinuous material resp<strong>on</strong>se is c<strong>on</strong>sidered Neo-Hookean with E = 3.24GPa and ν = 0.35 and <str<strong>on</strong>g>the</str<strong>on</strong>g> fracture process is governed by <str<strong>on</strong>g>the</str<strong>on</strong>g> proposed cohesive z<strong>on</strong>e model withmode I fracture energy G I f = 100 N/m and failure stress σ f = 20 MPa. In Fig. 3b, <str<strong>on</strong>g>the</str<strong>on</strong>g> damage29


distributi<strong>on</strong> al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> internal interface at <str<strong>on</strong>g>the</str<strong>on</strong>g> final load step, corresp<strong>on</strong>ding to r = 0.04 mm, ispresented <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> different loading rates.10.90.80.7quasi static5 m/s10 m/s15 m/sa) b)damage0.60.50.40.30.20.100 0.5 1 1.5 2positi<strong>on</strong> al<strong>on</strong>g interface [m]x 10 −3Figure 3: a) Modelled DCB with h=1mm, L=2mm and a thickness of 1mm. b) Damage distributi<strong>on</strong> al<strong>on</strong>gΓ S <str<strong>on</strong>g>for</str<strong>on</strong>g> different loading ratesReferences[1] J.M. Melenk and I. Babuška. The partiti<strong>on</strong> of unity finite element method: Basic <str<strong>on</strong>g>the</str<strong>on</strong>g>ory and applicati<strong>on</strong>s.Comp. Meth. Appl. Mech. Engng., 139:289–314, 1996.[2] G.N. Wells, R. de Borst, and L.J. Sluys. A c<strong>on</strong>sistent geometrically n<strong>on</strong>-linear approach <str<strong>on</strong>g>for</str<strong>on</strong>g> delaminati<strong>on</strong>.Int. J. Num. Meth. Engng., 54:1333–1355, 2002.[3] M. Fagerström and R. Larss<strong>on</strong>. Theory and numerics <str<strong>on</strong>g>for</str<strong>on</strong>g> finite de<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> fracture modelling usingstr<strong>on</strong>g disc<strong>on</strong>tinuities. Int. J. Num. Meth. Engng. Accepted 2005[4] R. Larss<strong>on</strong> and M. Fagerström. A framework <str<strong>on</strong>g>for</str<strong>on</strong>g> fracture modelling based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> material <str<strong>on</strong>g>for</str<strong>on</strong>g>cesc<strong>on</strong>cept with XFEM kinematics. Int. J. Num. Meth. Engng., 62:1763–1788, 2005.[5] R. Larss<strong>on</strong> and N. Janss<strong>on</strong>. Geometrically n<strong>on</strong>-linear damage interface based <strong>on</strong> regularized str<strong>on</strong>gdisc<strong>on</strong>tinuity. Int. J. Num. Meth. Engng., 54:473–497, 2002.30


Less<strong>on</strong>s in wave <str<strong>on</strong>g>the</str<strong>on</strong>g>ory from <str<strong>on</strong>g>the</str<strong>on</strong>g> Indian Ocean Tsunami ofMillennium and from <str<strong>on</strong>g>the</str<strong>on</strong>g> Baltic Sea Storm Surge of CenturyTarmo SoomereCentre <str<strong>on</strong>g>for</str<strong>on</strong>g> N<strong>on</strong>-linear Studies, Institute of CyberneticsTallinn University of Technology, Akadeemia tee 21, 126<str<strong>on</strong>g>18</str<strong>on</strong>g> Tallinn,e-mail: soomere@cs.ioc.eeWe look at <str<strong>on</strong>g>the</str<strong>on</strong>g> catastrophic tsunami, at <str<strong>on</strong>g>the</str<strong>on</strong>g> frightening storm surge and at extreme wind wavec<strong>on</strong>diti<strong>on</strong>s from simple linear and weakly n<strong>on</strong>linear viewpoints. All <str<strong>on</strong>g>the</str<strong>on</strong>g> phenomena reflect <str<strong>on</strong>g>the</str<strong>on</strong>g>possibility of wave propagati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> water surface. Tsunami and storm surge are visually verysimilar to each o<str<strong>on</strong>g>the</str<strong>on</strong>g>r <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> open sea, but <str<strong>on</strong>g>the</str<strong>on</strong>g> properties of <str<strong>on</strong>g>the</str<strong>on</strong>g>ir trans<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> in shallow areas andnear coastline differ radically. Although <str<strong>on</strong>g>the</str<strong>on</strong>g> linear <str<strong>on</strong>g>the</str<strong>on</strong>g>ory in many cases fails to correctly representquantitative properties of <str<strong>on</strong>g>the</str<strong>on</strong>g>se phenomena, it still allows systematic descripti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g>ir mostimportant features <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> level of elementary ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics.The extreme devastati<strong>on</strong> caused by <str<strong>on</strong>g>the</str<strong>on</strong>g> Indian Ocean Tsunami is mostly caused by a rare character of<str<strong>on</strong>g>the</str<strong>on</strong>g> underlying earthquake. In particular, specific geometric features of <str<strong>on</strong>g>the</str<strong>on</strong>g> rupture and <str<strong>on</strong>g>the</str<strong>on</strong>g> resultingwave pattern well explain why this tsunami was particularly hazardous in Sri Lanka and India, andwhy it remained compact until <str<strong>on</strong>g>the</str<strong>on</strong>g> African coast.Storm surges in many cases can also be c<strong>on</strong>sidered as simple (linear) superpositi<strong>on</strong> of different factors.The extreme storm surge in Est<strong>on</strong>ia and Finland during windstorm Erwin/Gudrun (January 2005) canbe mostly explained by an (un)<str<strong>on</strong>g>for</str<strong>on</strong>g>tunate coincidence of relatively uncomm<strong>on</strong> factors.Finally, we shortly discuss excepti<strong>on</strong>al wave c<strong>on</strong>diti<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn Baltic Proper during thiswindstorm. The measured wave heights were relatively modest—maximum significant wave height7.2 m—<strong>on</strong>ly because <str<strong>on</strong>g>the</str<strong>on</strong>g> most rough seas occurred remote from <str<strong>on</strong>g>the</str<strong>on</strong>g> wave sensors. Wave modelsindicate that <str<strong>on</strong>g>the</str<strong>on</strong>g> largest waves occurred off <str<strong>on</strong>g>the</str<strong>on</strong>g> coasts of Saaremaa and Latvia where <str<strong>on</strong>g>the</str<strong>on</strong>g> significantwave height probably exceeded 10 m. Excepti<strong>on</strong>ally l<strong>on</strong>g waves with peak periods up to 12 s alsooccurred in <str<strong>on</strong>g>the</str<strong>on</strong>g> central part of <str<strong>on</strong>g>the</str<strong>on</strong>g> Gulf of Finland owing to a specific combinati<strong>on</strong> of <str<strong>on</strong>g>for</str<strong>on</strong>g>cing factorsand <str<strong>on</strong>g>the</str<strong>on</strong>g> geometry of <str<strong>on</strong>g>the</str<strong>on</strong>g> Baltic Sea.31


Inelastic c<strong>on</strong>ical shells with cracksJaan Lellep* and Ella PumanInstitute of Applied Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics,University of Tartu, Est<strong>on</strong>iae-mail: jaan.lellep@ut.ee; ella.puman@ut.eeSummary C<strong>on</strong>ical shells of piece wise c<strong>on</strong>stant thickness made of a metallic material are c<strong>on</strong>sidered. Theshell wall is welded to a rigid central boss whereas <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>necti<strong>on</strong> between <str<strong>on</strong>g>the</str<strong>on</strong>g> shell and <str<strong>on</strong>g>the</str<strong>on</strong>g> boss isweakened with a stable crack. The designs with <str<strong>on</strong>g>the</str<strong>on</strong>g> maximal load carrying capacity are established undergiven material c<strong>on</strong>sumpti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> shell. Material of <str<strong>on</strong>g>the</str<strong>on</strong>g> shell wall obeys v<strong>on</strong> Mises yield c<strong>on</strong>diti<strong>on</strong>.Introducti<strong>on</strong>Thin walled circular c<strong>on</strong>ical shells under external pressure are of interest in ocean engineering.Also, circular c<strong>on</strong>ical shells welded to a cylindrical upper secti<strong>on</strong> are used as superstructures<str<strong>on</strong>g>for</str<strong>on</strong>g> elevated water tanks. The steel vessel is expected to with stand to <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure of water.This involves <str<strong>on</strong>g>the</str<strong>on</strong>g> necessity of limit design.Limit analysis and design of circular c<strong>on</strong>ical shells subjected to <str<strong>on</strong>g>the</str<strong>on</strong>g> lateral distributed loadingand shells loaded by a rigid central boss have been studied by several authors. Varioussoluti<strong>on</strong>s developed under different assumpti<strong>on</strong>s regarding to loading c<strong>on</strong>diti<strong>on</strong>s and yieldsurface can be found in m<strong>on</strong>ograph books by Hodge [4], Chakrabarty [2] and o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs.In <str<strong>on</strong>g>the</str<strong>on</strong>g> previous paper by authors (Lellep and Puman [6]) problems of optimizati<strong>on</strong> of c<strong>on</strong>icalshells made of an ideal plastic Tresca material were c<strong>on</strong>sidered. In <str<strong>on</strong>g>the</str<strong>on</strong>g> present paper c<strong>on</strong>icalshells with part through cracks are studied in <str<strong>on</strong>g>the</str<strong>on</strong>g> case of Mises material.Figure 1: C<strong>on</strong>ical shell with crack loaded by <str<strong>on</strong>g>the</str<strong>on</strong>g> central bossFormulati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> problemLet us c<strong>on</strong>sider a c<strong>on</strong>ical shell with <str<strong>on</strong>g>the</str<strong>on</strong>g> rigid central boss of radius a. The shell is simplysupported at <str<strong>on</strong>g>the</str<strong>on</strong>g> outer edge of radius R and clamped at <str<strong>on</strong>g>the</str<strong>on</strong>g> inner edge (Fig. 1). The shell isloaded through <str<strong>on</strong>g>the</str<strong>on</strong>g> rigid boss at its vertex by <str<strong>on</strong>g>the</str<strong>on</strong>g> load P.It is assumed that <str<strong>on</strong>g>the</str<strong>on</strong>g> thickness of <str<strong>on</strong>g>the</str<strong>on</strong>g> shell is piece wise c<strong>on</strong>stant, e.g.h h j(1)33


<str<strong>on</strong>g>for</str<strong>on</strong>g> r a, where j 0, , n.j a j 1It is stated that a0 = a, an+1 = R. The number n is assumed to be fixed. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> parametersai (i = 1,...,n) and hj (j = 0,...,n) are unknown c<strong>on</strong>stants which will be defined so that <str<strong>on</strong>g>the</str<strong>on</strong>g> costfuncti<strong>on</strong> will attain its minimal value.Although we c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> internal edge of <str<strong>on</strong>g>the</str<strong>on</strong>g> shell as a clamped edge <str<strong>on</strong>g>the</str<strong>on</strong>g> b<strong>on</strong>d between <str<strong>on</strong>g>the</str<strong>on</strong>g>shell and <str<strong>on</strong>g>the</str<strong>on</strong>g> boss is not an ideal <strong>on</strong>e. We assume that at r = a a stable crack of c<strong>on</strong>stant depth cis located. The circular crack of radius a emanating from <str<strong>on</strong>g>the</str<strong>on</strong>g> lower part of <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>necti<strong>on</strong>between <str<strong>on</strong>g>the</str<strong>on</strong>g> shell and <str<strong>on</strong>g>the</str<strong>on</strong>g> boss, respectively, is to be classified as a part-through surface crack.Similar cracks of depth cj are located at r = aj (j = 0,...,n) as well.As <str<strong>on</strong>g>the</str<strong>on</strong>g> perfomance index will be ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g> limit load or <str<strong>on</strong>g>the</str<strong>on</strong>g> weight (or, material volume) of <str<strong>on</strong>g>the</str<strong>on</strong>g>shell. The material volume of <str<strong>on</strong>g>the</str<strong>on</strong>g> shell corresp<strong>on</strong>ding to <str<strong>on</strong>g>the</str<strong>on</strong>g> thickness distributi<strong>on</strong> (1) isn2 2V hjaj 1 aj(2)cosHere stands <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> angle of inclinati<strong>on</strong> of a generator of <str<strong>on</strong>g>the</str<strong>on</strong>g> shell.The material of <str<strong>on</strong>g>the</str<strong>on</strong>g> shell is assumed to be an ideal plastic <strong>on</strong>e. When minimizing <str<strong>on</strong>g>the</str<strong>on</strong>g> costfuncti<strong>on</strong> (2) it is expected that <str<strong>on</strong>g>the</str<strong>on</strong>g> load carrying capacity of <str<strong>on</strong>g>the</str<strong>on</strong>g> shell is fixed. Alternatively,when maximizing <str<strong>on</strong>g>the</str<strong>on</strong>g> load carrying capacity <str<strong>on</strong>g>the</str<strong>on</strong>g> amount of <str<strong>on</strong>g>the</str<strong>on</strong>g> material, or volume of <str<strong>on</strong>g>the</str<strong>on</strong>g>material is assumed to be bounded. Material of <str<strong>on</strong>g>the</str<strong>on</strong>g> shell obeys v<strong>on</strong> Mises yield c<strong>on</strong>diti<strong>on</strong>.Basic equati<strong>on</strong>sThe stress comp<strong>on</strong>ents to be incorporated in <str<strong>on</strong>g>the</str<strong>on</strong>g> study are <str<strong>on</strong>g>the</str<strong>on</strong>g> membrane <str<strong>on</strong>g>for</str<strong>on</strong>g>ces N1, N2 andbending moments M1, M2. Corresp<strong>on</strong>ding de<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> comp<strong>on</strong>ents are 1, 2 and 1, 2.We assume that <str<strong>on</strong>g>the</str<strong>on</strong>g> metallic material of shells can be modelled as an ideal rigid-plastic materialobeying v<strong>on</strong> Mises yield criteri<strong>on</strong> and associated flow law. On <str<strong>on</strong>g>the</str<strong>on</strong>g> plane of principal stresses 1 , 2 <str<strong>on</strong>g>the</str<strong>on</strong>g> ellipse of Mises circumscribes <str<strong>on</strong>g>the</str<strong>on</strong>g> hexag<strong>on</strong> of Tresca. Here 0 stands <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> yieldstress of <str<strong>on</strong>g>the</str<strong>on</strong>g> material. Parametrical equati<strong>on</strong>s of <str<strong>on</strong>g>the</str<strong>on</strong>g> exact yield surface in <str<strong>on</strong>g>the</str<strong>on</strong>g> space ofgeneralized stresses were derived by A. Iljushin. Due to its complexity <str<strong>on</strong>g>the</str<strong>on</strong>g> exact yield surface isunsuitable <str<strong>on</strong>g>for</str<strong>on</strong>g> practical calculati<strong>on</strong>s in particular cases.It was shown by several authors (Robins<strong>on</strong> [7], Haydl and Sherbourne [3]) that a n<strong>on</strong>-linearapproximati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> exact yield surface1 22 1 22N1 N1N2 N2 M1 M1M2 M2 1 02 2(3)NMjjleads to reas<strong>on</strong>able assessments of <str<strong>on</strong>g>the</str<strong>on</strong>g> limit load in <str<strong>on</strong>g>the</str<strong>on</strong>g> lower bound analysis. Theapproximati<strong>on</strong> (6) will be used in <str<strong>on</strong>g>the</str<strong>on</strong>g> present study, as well. In (6) Mj and Nj stand <str<strong>on</strong>g>for</str<strong>on</strong>g> plasticlimit moment and limit <str<strong>on</strong>g>for</str<strong>on</strong>g>ce <str<strong>on</strong>g>for</str<strong>on</strong>g> a secti<strong>on</strong> with thickness h j , respectively.It will be c<strong>on</strong>venient to carry out <str<strong>on</strong>g>the</str<strong>on</strong>g> optimizati<strong>on</strong> procedure in terms of dimensi<strong>on</strong>lessquantities defined byj 034


nr ,R1,2NN1,2*,jmajR1,2,MMP M*cos V cos q , v 222RN*sin RN*sin h*RHere M* and N* stand <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> yield moment and yield <str<strong>on</strong>g>for</str<strong>on</strong>g>ce associated with <str<strong>on</strong>g>the</str<strong>on</strong>g> reference shellwith thickness h* .j1,2*,2hhj*,kWw RMaking use of notati<strong>on</strong>s (4) <strong>on</strong>e can present equilibrium equati<strong>on</strong>s as n n 0,k1 2From (3) <strong>on</strong>e can determine making use of (4)12M*RNm m 1 n q 01*,cossin22Uu ,Rm12 3 2 2 2m2 j m1 n1 n2 n1n(6)22 4Substituting (6) in (5) yields <str<strong>on</strong>g>the</str<strong>on</strong>g> set of equati<strong>on</strong>sn1n2n1 , m1n11 2 3 2 2 2 1 q (7)m1 j m1 n1 n2 n1n2 1 ,2k 4 k q 0The last equati<strong>on</strong> in (7) is a natural c<strong>on</strong>sequence of <str<strong>on</strong>g>the</str<strong>on</strong>g> matter that q = c<strong>on</strong>st. . Here andhence<str<strong>on</strong>g>for</str<strong>on</strong>g>th primes denote <str<strong>on</strong>g>the</str<strong>on</strong>g> differentiati<strong>on</strong> with respect to <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong>less variable .The methods of <str<strong>on</strong>g>the</str<strong>on</strong>g> ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical <str<strong>on</strong>g>the</str<strong>on</strong>g>ory of optimal c<strong>on</strong>trol will be used whereas n1, m1 and qwill be c<strong>on</strong>sidered as state variables and n2, m2 as c<strong>on</strong>trol variables. The quantities j and j aretreated as c<strong>on</strong>centrated parameters. Foundati<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trol <str<strong>on</strong>g>the</str<strong>on</strong>g>ory can be found in books byBrys<strong>on</strong> and Ho [1], Hocking [5].The system of equati<strong>on</strong>s (7) is solved numerically. The distributi<strong>on</strong> of bending moments isdepicted in Fig. 2.C<strong>on</strong>cluding remarksCalculati<strong>on</strong>s have been carried out <str<strong>on</strong>g>for</str<strong>on</strong>g> shells with <strong>on</strong>e or two steps in <str<strong>on</strong>g>the</str<strong>on</strong>g> thickness. Numericalresults revealed <str<strong>on</strong>g>the</str<strong>on</strong>g> ability of <str<strong>on</strong>g>the</str<strong>on</strong>g> optimized shell to with stand loads which are much higher incomparis<strong>on</strong> to that of shells of c<strong>on</strong>stant thickness. The efficiency of <str<strong>on</strong>g>the</str<strong>on</strong>g> design depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>parameter k and <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio of <str<strong>on</strong>g>the</str<strong>on</strong>g> internal and external radius, respectively. For instance, ifk = 0,3 and = 0,55 <str<strong>on</strong>g>the</str<strong>on</strong>g> redistributi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> material in <str<strong>on</strong>g>the</str<strong>on</strong>g> framework of designs with asingle step gives up to 5% higher limit load. For greater values of <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> efficiency of <str<strong>on</strong>g>the</str<strong>on</strong>g>design is higher (up to 20% if = 0,95 and 0 = 1,2).,(4)(5)35


c0c0,1c0,4Figure 2: Bending moment distributi<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> k = 0,3 and α 0 = 0,55.AcknowledgementsThe support of Est<strong>on</strong>ian Science Foundati<strong>on</strong> through <str<strong>on</strong>g>the</str<strong>on</strong>g> Grant No 5693 is gratefullyacknowledged.References[1] A. Brys<strong>on</strong> and Yu-Chi Ho. Applied Optimal C<strong>on</strong>trol. New York, Wiley, (1975).[2] J. Chakrabarty. Applied Plasticity. Berlin, New York, Springer, (2000).[3] H.M. Haydl and A.N. Sherbourne. Some approximati<strong>on</strong>s to <str<strong>on</strong>g>the</str<strong>on</strong>g> Ilyushin yield surface <str<strong>on</strong>g>for</str<strong>on</strong>g> circularplates and cylindrical shells. ZAMM, 59, 131-132, (1979).[4] P.G. Hodge. Limit Analysis of Rotati<strong>on</strong>ally Symmetric Plates and Shells. Englewood Cliffs,Prentice Hall, (1963).[5] L.M. Hocking. Optimal C<strong>on</strong>trol. An Introducti<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> Theory with Applicati<strong>on</strong>s. Ox<str<strong>on</strong>g>for</str<strong>on</strong>g>d,Clarend<strong>on</strong> Press, (2001).[6] J. Lellep and E. Puman. Optimizati<strong>on</strong> of plastic c<strong>on</strong>ical shells loaded by a rigid central boss. Int. J.Solids Struct., 37, 2695-2708, (2000).[7] M. Robins<strong>on</strong>. An evaluati<strong>on</strong> of errors in <str<strong>on</strong>g>the</str<strong>on</strong>g> yield surface <str<strong>on</strong>g>for</str<strong>on</strong>g> a rotati<strong>on</strong>ally symmetric thin shell dueto neglecting transverse normal stresses and shell curvature. Int. J. Mech. Sci., 42 (6), 1087-1095,(2000).36


Simulati<strong>on</strong> of quasi–static crack growth by using <str<strong>on</strong>g>the</str<strong>on</strong>g> ϑ methodGiovanni FormicaDepartment of Structural EngineeringUniversity of Roma 3, Roma, Italye–mail: <str<strong>on</strong>g>for</str<strong>on</strong>g>mica@unical.itStefania FortinoLaboratory of Structural MechanicsHelsinki University of Technology, Espoo, Finlande–mail: stefania.<str<strong>on</strong>g>for</str<strong>on</strong>g>tino@tkk.fiMikko Lyly*CSC - Scientific Computing Ltd.,Espoo, Finlande–mail: mikko.lyly@csc.fiSummary This work presents an algorithm <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> automatic simulati<strong>on</strong> of quasi–static crack growth inlinear elastic bodies with existing cracks. The algorithm, based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> so-called ϑ method, provides <str<strong>on</strong>g>the</str<strong>on</strong>g>load vs. crack extensi<strong>on</strong> curves in <str<strong>on</strong>g>the</str<strong>on</strong>g> case of stable rectilinear crack propagati<strong>on</strong>. Some results <str<strong>on</strong>g>for</str<strong>on</strong>g> 2Dproblems of linear elastic fracture (LEFM) are reported.Introducti<strong>on</strong>The evaluati<strong>on</strong> of crack growth in brittle and quasibrittle bodies with existing cracks is a fundamentaltopic when <str<strong>on</strong>g>the</str<strong>on</strong>g> structural reliability related to a certain crack length has to be studied. Inparticular, <str<strong>on</strong>g>the</str<strong>on</strong>g> crack length extensi<strong>on</strong> under a certain load increment is an important variable tobe analyzed during a given loading process [1]. In this c<strong>on</strong>text, <str<strong>on</strong>g>the</str<strong>on</strong>g> Griffith energy release ratestill represent a str<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical tool <str<strong>on</strong>g>for</str<strong>on</strong>g> establishing <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>set of crack growth in LEFM. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore,several criteria <str<strong>on</strong>g>for</str<strong>on</strong>g> determining <str<strong>on</strong>g>the</str<strong>on</strong>g> directi<strong>on</strong> of crack propagati<strong>on</strong> under various modeloading can be found in <str<strong>on</strong>g>the</str<strong>on</strong>g> fracture <strong>mechanics</strong> literature ([2]). Instead, as already observed in[3], a general <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical model <str<strong>on</strong>g>for</str<strong>on</strong>g> calculating <str<strong>on</strong>g>the</str<strong>on</strong>g> increments of crack growth during a loadingprocess does not exist yet. This limit still characterizes <str<strong>on</strong>g>the</str<strong>on</strong>g> computer codes <str<strong>on</strong>g>for</str<strong>on</strong>g> simulati<strong>on</strong> of crackpropagati<strong>on</strong> in linear elastic fracture (see references in [3]). In <str<strong>on</strong>g>the</str<strong>on</strong>g> present work we propose a newapproach <str<strong>on</strong>g>for</str<strong>on</strong>g> quasi–static crack growth simulati<strong>on</strong> based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> so–called ϑ method originallyintroduced by Destuynder and Djaoua in [4].The basic idea of <str<strong>on</strong>g>the</str<strong>on</strong>g> ϑ method is to trans<str<strong>on</strong>g>for</str<strong>on</strong>g>m <str<strong>on</strong>g>the</str<strong>on</strong>g> variables of <str<strong>on</strong>g>the</str<strong>on</strong>g> current c<strong>on</strong>figurati<strong>on</strong> in a<strong>on</strong>e-to-<strong>on</strong>e manner to <str<strong>on</strong>g>the</str<strong>on</strong>g> variables of <str<strong>on</strong>g>the</str<strong>on</strong>g> perturbed equilibrium problem. All physical quantitiesof <str<strong>on</strong>g>the</str<strong>on</strong>g> perturbed c<strong>on</strong>figurati<strong>on</strong> are <str<strong>on</strong>g>the</str<strong>on</strong>g>n rewritten in <str<strong>on</strong>g>the</str<strong>on</strong>g> current. The method introduces anenergetic domain parameter known in literature as <str<strong>on</strong>g>the</str<strong>on</strong>g> Gθ and characterized by a smooth valuevector functi<strong>on</strong> ϑ defined al<strong>on</strong>g a known directi<strong>on</strong> of crack growth in a subdomain of <str<strong>on</strong>g>the</str<strong>on</strong>g> currentc<strong>on</strong>figurati<strong>on</strong> (see [4]).In <str<strong>on</strong>g>the</str<strong>on</strong>g> present paper, successive Gϑ–based crack growth problems written in <str<strong>on</strong>g>the</str<strong>on</strong>g> current c<strong>on</strong>figurati<strong>on</strong>furnish <str<strong>on</strong>g>the</str<strong>on</strong>g> increments of crack growth relative to given load increments. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, ateach load step <str<strong>on</strong>g>the</str<strong>on</strong>g> equilibrium is imposed in <str<strong>on</strong>g>the</str<strong>on</strong>g> current c<strong>on</strong>figurati<strong>on</strong> with updated crack length.For sake of simplicity, <str<strong>on</strong>g>the</str<strong>on</strong>g> method is defined <str<strong>on</strong>g>for</str<strong>on</strong>g> cases of stable rectilinear crack growth but it canbe extended to curvilinear crack propagati<strong>on</strong> in n<strong>on</strong>linear materials. The proposed algorithm isimplemented by using <str<strong>on</strong>g>the</str<strong>on</strong>g> computati<strong>on</strong>al tools of <str<strong>on</strong>g>the</str<strong>on</strong>g> computer code ELMER (CSC - ScientificComputing LTD., Espoo, Finland). Remeshing and a standard FEM discretizati<strong>on</strong> are employed.Some results <str<strong>on</strong>g>for</str<strong>on</strong>g> rectilinear crack growth in case of plane strain are presented.37


The ϑ methodIn this secti<strong>on</strong> we briefly recall <str<strong>on</strong>g>the</str<strong>on</strong>g> ϑ method by analyzing <str<strong>on</strong>g>the</str<strong>on</strong>g> rectilinear crack growth of a two–dimensi<strong>on</strong>al elastic cracked body of unit thickness subjected to a load process (see Figure 1).The Destuynder ϑ method introduces a linear perturbati<strong>on</strong> from <str<strong>on</strong>g>the</str<strong>on</strong>g> current c<strong>on</strong>figurati<strong>on</strong> Ω to <str<strong>on</strong>g>the</str<strong>on</strong>g>updated domain Ω δa :F δa x = x + δa ϑ(x) , ∀x ∈ Ω (1)where ϑ represents a smooth vector valued functi<strong>on</strong> defined in Ω such that |ϑ| =1at <str<strong>on</strong>g>the</str<strong>on</strong>g> cracktip and ϑ =0<strong>on</strong> ∂Ω\S f .ΩΩFigure 1: Current (Ω) and perturbed (Ω δa ) cracked domains; S f = boundary with applied <str<strong>on</strong>g>for</str<strong>on</strong>g>ces; S u =boundary with applied displacements; λ=c<strong>on</strong>trol parameter; ˆf= fixed load; δλˆf= load increment; δa > 0 =crack length increment; ϑ = vector field. Homogeneous material; no tracti<strong>on</strong> al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> surface of <str<strong>on</strong>g>the</str<strong>on</strong>g> crack;body <str<strong>on</strong>g>for</str<strong>on</strong>g>ces neglected.The trans<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> F δa permits to rewrite each functi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> updated domain as an associatedfuncti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> current c<strong>on</strong>figurati<strong>on</strong> (see details in [4]). By approximating <str<strong>on</strong>g>the</str<strong>on</strong>g> determinant of <str<strong>on</strong>g>the</str<strong>on</strong>g>Jacobian of F δa and <str<strong>on</strong>g>the</str<strong>on</strong>g> inverse of <str<strong>on</strong>g>the</str<strong>on</strong>g> Jacobian as| J δa |≈ 1+δa (divϑ), (J δa ) −T ≈ 1 − δa (∇ϑ) T (2)<str<strong>on</strong>g>the</str<strong>on</strong>g> associated soluti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>figurati<strong>on</strong> Ω, written in terms of displacements and stresses, is:u δa = u 0 + δu + R u , σ δa = σ 0 + δσ + R σ (3)where (u 0 , σ 0 ) represents <str<strong>on</strong>g>the</str<strong>on</strong>g> elastic soluti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> equilibrium problem in <str<strong>on</strong>g>the</str<strong>on</strong>g> current c<strong>on</strong>figurati<strong>on</strong>and δa −1 (||R u || V + ||Rσ|| Σ ) → 0 as δa → 0. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore <str<strong>on</strong>g>the</str<strong>on</strong>g> increments (δu,δσ) are<str<strong>on</strong>g>the</str<strong>on</strong>g> unique soluti<strong>on</strong> in V×Σ of <str<strong>on</strong>g>the</str<strong>on</strong>g> following problem (see proof in [4] <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> case of null loadincrements):{ ∫∫Ω δσ : ∇v − δa ∫ Ω s 0 : ∇v = δλ ∫ S fˆf · v ∀v ∈ VΩ C δσ : τ − ∫ Ω τ : ∇δu − δa ∫ Ω r (4)0 : τ =0 ∀τ ∈ Σwhere <str<strong>on</strong>g>the</str<strong>on</strong>g> spaces V and Σ are, respectively, V = {v ∈ (H 1 (Ω)) 2 , v =0 <strong>on</strong> S u } and Σ={τ ∈(L 2 (Ω)) 4 , τ T = τ } while s 0 = σ 0 ∇ϑ T − (divϑ)σ 0 and r 0 = − 1 2 (∇u 0∇ϑ +(∇u 0 ∇ϑ) T ).As a direct result, <str<strong>on</strong>g>the</str<strong>on</strong>g> method introduces <str<strong>on</strong>g>the</str<strong>on</strong>g> so called Gϑ parameter:∫∫Gϑ = 1 s 0 : ∇u 0 − 1 r 0 : σ 0 (5)2 Ω 2 ΩThis parameter has <str<strong>on</strong>g>the</str<strong>on</strong>g> same meaning as <str<strong>on</strong>g>the</str<strong>on</strong>g> Griffith energy release rate in LEFM and coincideswith <str<strong>on</strong>g>the</str<strong>on</strong>g> Rice J integral <str<strong>on</strong>g>for</str<strong>on</strong>g> all subdomains Ω ϑ ∈ Ω (see [4]). Then, <str<strong>on</strong>g>the</str<strong>on</strong>g> choice of ϑ has <str<strong>on</strong>g>the</str<strong>on</strong>g> samemeaning as that of <str<strong>on</strong>g>the</str<strong>on</strong>g> path al<strong>on</strong>g which <str<strong>on</strong>g>the</str<strong>on</strong>g> J integral functi<strong>on</strong> is integrated.38


A Gϑ-based crack growth <str<strong>on</strong>g>for</str<strong>on</strong>g>mulati<strong>on</strong>From a <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical point of view, <str<strong>on</strong>g>the</str<strong>on</strong>g> new idea of this work is to use domain trans<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> (1)<str<strong>on</strong>g>for</str<strong>on</strong>g> solving a problem of crack growth during a load process. At this aim, <str<strong>on</strong>g>the</str<strong>on</strong>g> Gϑ(u, σ) of <str<strong>on</strong>g>the</str<strong>on</strong>g>perturbed c<strong>on</strong>figurati<strong>on</strong> Ω δa , taking into account (3), after some manipulati<strong>on</strong>s can be written in<str<strong>on</strong>g>the</str<strong>on</strong>g> current c<strong>on</strong>figurati<strong>on</strong> Ω asGϑ(u 0 + δu, σ 0 + δσ) ≈ Gϑ(u 0 , σ 0 )+δGϑ (6)where δGϑ = ∫ Ω s 0 : ∇δu − ∫ Ω r 0 : δσ.In <str<strong>on</strong>g>the</str<strong>on</strong>g> case of flat resistance curves and stable quasi–static crack growth, <str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong>smust be locally satisfied <str<strong>on</strong>g>for</str<strong>on</strong>g> each load increment (see [2]):Gϑ = G f , δGϑ =0 (7)where G f represents <str<strong>on</strong>g>the</str<strong>on</strong>g> fracture energy. For sake of simplicity, <str<strong>on</strong>g>the</str<strong>on</strong>g> unknowns of <str<strong>on</strong>g>the</str<strong>on</strong>g> incrementalproblem and of c<strong>on</strong>diti<strong>on</strong> δGϑ =0are reduced to (δu,δa). Then, we have δσ = E[ε(δu)+δa r 0 ]where E is <str<strong>on</strong>g>the</str<strong>on</strong>g> elasticity tensor and ε <str<strong>on</strong>g>the</str<strong>on</strong>g> strain tensor. Finally, <str<strong>on</strong>g>the</str<strong>on</strong>g> following system is obtained:⎧ ∫⎨Ω E ε(δu) :ε(v) − δa ∫ Ω t 0 : ∇v = δλ ∫ S fˆf · v∀v ∈ V ; δa > 0⎩− ∫ Ω t 0 : ∇δu + δa ∫ (8)Ω Er 0 : r 0 =0where t 0 = s 0 − Er 0 . The system provides <str<strong>on</strong>g>the</str<strong>on</strong>g> crack length increment δa. In operator <str<strong>on</strong>g>for</str<strong>on</strong>g>m wehave: [ ][ ] [ ]A BT δu F= dλ(9)B C δa 0Starting from a state defined by <str<strong>on</strong>g>the</str<strong>on</strong>g> index i =0, <str<strong>on</strong>g>the</str<strong>on</strong>g> proposed algorithm <str<strong>on</strong>g>for</str<strong>on</strong>g> crack growth ischaracterized by successive analyses c<strong>on</strong>sisting of <str<strong>on</strong>g>the</str<strong>on</strong>g> following steps:1. Linear elastic analysis <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cracked body of domain Ω i subjected to <str<strong>on</strong>g>the</str<strong>on</strong>g> load factor λ i .Inoperator <str<strong>on</strong>g>for</str<strong>on</strong>g>m we have:A i u i = λ i F (10)2. Evaluati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> crack increment in <str<strong>on</strong>g>the</str<strong>on</strong>g> updated c<strong>on</strong>figurati<strong>on</strong> Ω δai trough <str<strong>on</strong>g>the</str<strong>on</strong>g> equati<strong>on</strong>obtained by solving system (9):δa i =1 dλ iB T B Ti A−1iiB i − C i λ u i (11)i3. Updating of <str<strong>on</strong>g>the</str<strong>on</strong>g> new current c<strong>on</strong>figurati<strong>on</strong> Ω i+1 and remeshing.4. Updating of <str<strong>on</strong>g>the</str<strong>on</strong>g> load factor:λ i+1 := λ i + dλ i (12)Results and c<strong>on</strong>cluding remarksThe presented approach is implemented by using <str<strong>on</strong>g>the</str<strong>on</strong>g> computati<strong>on</strong>al tools of <str<strong>on</strong>g>the</str<strong>on</strong>g> FEM computercode ELMER (CSC - Scientific Computing Ltd., Espoo, Finland). During crack propagati<strong>on</strong>,remeshing is per<str<strong>on</strong>g>for</str<strong>on</strong>g>med. In this secti<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> rectilinear crack propagati<strong>on</strong> in a rectangular crackedplate in plane strain is analyzed (see Figure 2 <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> details). The proposed algorithm provides<str<strong>on</strong>g>the</str<strong>on</strong>g> curve load vs. crack length during crack growth.In order to directly extend <str<strong>on</strong>g>the</str<strong>on</strong>g> method to curvilinear crack growth, <str<strong>on</strong>g>the</str<strong>on</strong>g> simplest way is to represent<str<strong>on</strong>g>the</str<strong>on</strong>g> curvilinear path by means of a linear piecewise curve. Then, <str<strong>on</strong>g>the</str<strong>on</strong>g> described algorithm can be39


used <str<strong>on</strong>g>for</str<strong>on</strong>g> determining <str<strong>on</strong>g>the</str<strong>on</strong>g> crack growth increments al<strong>on</strong>g each line of <str<strong>on</strong>g>the</str<strong>on</strong>g> curve after calculating <str<strong>on</strong>g>the</str<strong>on</strong>g>directi<strong>on</strong> of crack extensi<strong>on</strong> by using <strong>on</strong>e of <str<strong>on</strong>g>the</str<strong>on</strong>g> methods existing in literature (see [2]). A morerigorous approach should take into account <str<strong>on</strong>g>the</str<strong>on</strong>g> real shape of <str<strong>on</strong>g>the</str<strong>on</strong>g> path and define <str<strong>on</strong>g>the</str<strong>on</strong>g> directi<strong>on</strong> ofcrack growth like a variable of <str<strong>on</strong>g>the</str<strong>on</strong>g> problem. A <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical <str<strong>on</strong>g>for</str<strong>on</strong>g>mulati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> differentiating energyfuncti<strong>on</strong>als with respect to <str<strong>on</strong>g>the</str<strong>on</strong>g> crack length in case of curvilinear cracks was presented in [5].Anyway, also in that work <str<strong>on</strong>g>the</str<strong>on</strong>g> shape of <str<strong>on</strong>g>the</str<strong>on</strong>g> path had to be known be<str<strong>on</strong>g>for</str<strong>on</strong>g>e calculating <str<strong>on</strong>g>the</str<strong>on</strong>g> derivativeof <str<strong>on</strong>g>the</str<strong>on</strong>g> functi<strong>on</strong>als.The approach presented in this paper is also very suitable to be extended to elastic–plastic materialsas suggested in [6].1.00.8load factor0.60.40.20.03.5 4.5 5.5 6.5crack lengthFigure 2: Edge cracked plate clamped <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> bottom and loaded by a uni<str<strong>on</strong>g>for</str<strong>on</strong>g>m tracti<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> top: dimensi<strong>on</strong>s= 7 × 14; E= 30×10 6 ; ν=0.25; initial tracti<strong>on</strong>= 1.0; initial crack length=3.5; final crack length= 6.5.SI units. Plane strain state. Quadratic triangular FE. Displacements and final mesh (left). Curve load vs.crack length (right).References[1] Xi Y, Bažant ZP. Random growth of crack with R-curve: Markov process model. Eng. Frac. Mech.1997;57:593–608.[2] Bažant ZP, Planas J. Fracture and size effect in C<strong>on</strong>crete and O<str<strong>on</strong>g>the</str<strong>on</strong>g>r Quasibrittle Materials. CRCPress, 1998.[3] Fortino S, Bilotta A. Evaluati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> amount of crack growth in 2D LEFM problem. Eng. Frac.Mech., 71, 2004: 1403–1419.[4] Destuynder P, Djaoua M. Sur une interpré tati<strong>on</strong> mathé matique de l’inté grale de Rice en Thé orie dela Rupture Fragile. Math. Meth. in <str<strong>on</strong>g>the</str<strong>on</strong>g> Appl. Sci., 3, 1981: 70–87.[5] Rudoy EM. Differentiati<strong>on</strong> of energy functi<strong>on</strong>als in two-dimensi<strong>on</strong>al elasticity <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>for</str<strong>on</strong>g> solids withcurvilinear cracks. Journal of Appl. Mech. and Tech. Phys., 45 (6), 2004: 843–852.[6] Fortino S, Formica G, Lyly M. A Gϑ-based method <str<strong>on</strong>g>for</str<strong>on</strong>g> simulating crack growth in ductile materials.Proceedings of <str<strong>on</strong>g>the</str<strong>on</strong>g> VIII Internati<strong>on</strong>al C<strong>on</strong>ference <strong>on</strong> Computati<strong>on</strong>al Plasticity Fundamentals andApplicati<strong>on</strong>s (ECCOMAS), Barcel<strong>on</strong>a, Spain, September 5-8, 2005.40


Explicit FE-procedure <str<strong>on</strong>g>for</str<strong>on</strong>g> Numerical Modeling of RockFracture under Dynamic Indentati<strong>on</strong>Timo SaksalaInstitute of Applied Mechanics and Optimizati<strong>on</strong>Tampere University of Technology, Tampere, Finlande-mail: timo.saksala@tut.fiSummary An explicit FE-procedure <str<strong>on</strong>g>for</str<strong>on</strong>g> modeling rock failure process under dynamic indentati<strong>on</strong> ispresented. The basic ideas, with some modificati<strong>on</strong>s, of <str<strong>on</strong>g>the</str<strong>on</strong>g> recently developed numerical code <str<strong>on</strong>g>for</str<strong>on</strong>g>simulating <str<strong>on</strong>g>the</str<strong>on</strong>g> quasi-static rock failure named RFPA are combined here with an explicit time integrator<str<strong>on</strong>g>for</str<strong>on</strong>g> simulating <str<strong>on</strong>g>the</str<strong>on</strong>g> dynamic failure. The impact of <str<strong>on</strong>g>the</str<strong>on</strong>g> indenter is modeled by imposing <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tactc<strong>on</strong>straints with <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>ward increment Lagrange multiplier method. A numerical example is solved.Introducti<strong>on</strong>Numerical modeling of <str<strong>on</strong>g>the</str<strong>on</strong>g> brittle fracture is an important task in rock engineering. Engineers<str<strong>on</strong>g>the</str<strong>on</strong>g>rein are interested in modeling <str<strong>on</strong>g>the</str<strong>on</strong>g> rock failure process, e.g., during percussive drilling. Thispaper presents an explicit procedure <str<strong>on</strong>g>for</str<strong>on</strong>g> FE-modeling of rock failure under dynamic indentati<strong>on</strong>which process is essential in percussive drilling. This work is a c<strong>on</strong>tinuati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> author’swork presented in [1] where an explicit FE-procedure <str<strong>on</strong>g>for</str<strong>on</strong>g> modeling <str<strong>on</strong>g>the</str<strong>on</strong>g> stress wave propagati<strong>on</strong>due to impact of a pist<strong>on</strong> in a domain with n<strong>on</strong>-reflecting boundaries was presented. In thiswork <str<strong>on</strong>g>the</str<strong>on</strong>g> method presented in [1] is combined with <str<strong>on</strong>g>the</str<strong>on</strong>g> rock fracture model of a recentlydeveloped numerical code RFPA (Rock Failure Process Analysis Code) (Tang [2], Zhu & Tang[3]) resulting in an explicit code where <str<strong>on</strong>g>the</str<strong>on</strong>g> impact of <str<strong>on</strong>g>the</str<strong>on</strong>g> indenter is modeled by c<strong>on</strong>sidering itas a de<str<strong>on</strong>g>for</str<strong>on</strong>g>mable body. The basic ideas of RFPA utilized here are as follows: The heterogeneityof rock is c<strong>on</strong>sidered by assuming <str<strong>on</strong>g>the</str<strong>on</strong>g> material parameters to be c<strong>on</strong><str<strong>on</strong>g>for</str<strong>on</strong>g>med to <str<strong>on</strong>g>the</str<strong>on</strong>g> Weibulldistributi<strong>on</strong>. Progressive failure and <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>stitutive law <str<strong>on</strong>g>for</str<strong>on</strong>g> mesoscopic elements are modeledwithin <str<strong>on</strong>g>the</str<strong>on</strong>g> framework of damage <strong>mechanics</strong>. The Mohr-Coulomb criteri<strong>on</strong> with tensile cut off(Rankine criteri<strong>on</strong>) is used as <str<strong>on</strong>g>the</str<strong>on</strong>g> crack initiati<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>. Cracking is similar to <str<strong>on</strong>g>the</str<strong>on</strong>g> smearedcrack models. In this study <str<strong>on</strong>g>the</str<strong>on</strong>g> crack model of RFPA is modified at <str<strong>on</strong>g>the</str<strong>on</strong>g> element level so that <str<strong>on</strong>g>the</str<strong>on</strong>g>tensile crack is orientated orthog<strong>on</strong>ally to <str<strong>on</strong>g>the</str<strong>on</strong>g> greatest principal stress.Statistical modeling of rock heterogeneityAccording to Tang [2], <str<strong>on</strong>g>the</str<strong>on</strong>g> global n<strong>on</strong>linear behavior of brittle materials can be simulated bylinear finite elements with heterogeneous material properties. In RFPA <str<strong>on</strong>g>the</str<strong>on</strong>g>se properties,including compressive and tensile strengths σ c ,σ t , Young’s modulus E, and Poiss<strong>on</strong>’s ratio ν (inthis study <str<strong>on</strong>g>the</str<strong>on</strong>g> density ρ also) are assumed to c<strong>on</strong><str<strong>on</strong>g>for</str<strong>on</strong>g>m to <str<strong>on</strong>g>the</str<strong>on</strong>g> Weibull distributi<strong>on</strong>, <str<strong>on</strong>g>for</str<strong>on</strong>g> which <str<strong>on</strong>g>the</str<strong>on</strong>g>density and distributi<strong>on</strong> functi<strong>on</strong>s are, respectivelym−1m ⎛ u ⎞ ⎛ u ⎞⎛ u ⎞f ( u)=Q uu⎜= −u⎟ exp⎜ −u⎟ , ( ) 1 exp⎜ −u⎟ . (1)0 ⎝ 0 ⎠ ⎝ 0 ⎠⎝ 0 ⎠Interpretati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> Weibull parameters in this c<strong>on</strong>text is that m is a homogeneity index <str<strong>on</strong>g>for</str<strong>on</strong>g>rock and u 0 is <str<strong>on</strong>g>the</str<strong>on</strong>g> mean value of, e.g. Young’s modulus. In order to generate Weibull distributedproperties <str<strong>on</strong>g>for</str<strong>on</strong>g> a rock sample, a single number (Q(u) in (1)) from uni<str<strong>on</strong>g>for</str<strong>on</strong>g>mly distributed randomdata between 0 and 1 is assigned to each element of <str<strong>on</strong>g>the</str<strong>on</strong>g> mesh. This is d<strong>on</strong>e separately <str<strong>on</strong>g>for</str<strong>on</strong>g> eachmaterial parameter. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding material parameter u is solved from <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>dequati<strong>on</strong> (1). The element size accepted, based <strong>on</strong> laboratory experiments, <str<strong>on</strong>g>for</str<strong>on</strong>g> obtaining goodresults is 1mm×1mm (in plane) [3].mm41


C<strong>on</strong>stitutive-damage mechanical model <str<strong>on</strong>g>for</str<strong>on</strong>g> elementsIt is assumed that rock behaves like brittle material under loading and, thus, linear damage<strong>mechanics</strong> can be used <str<strong>on</strong>g>for</str<strong>on</strong>g> describing <str<strong>on</strong>g>the</str<strong>on</strong>g> gradual failure process. During <str<strong>on</strong>g>the</str<strong>on</strong>g> degradati<strong>on</strong> of anelement, <str<strong>on</strong>g>the</str<strong>on</strong>g> Young’s modulus (and strength of rock) is defined as [4]E = ( 1 − D)E0,(2)where D is <str<strong>on</strong>g>the</str<strong>on</strong>g> isotropic damage variable and E 0 is <str<strong>on</strong>g>the</str<strong>on</strong>g> Young’s modulus of intact rock. Theuniaxial c<strong>on</strong>stitutive law <str<strong>on</strong>g>for</str<strong>on</strong>g> a finite element is illustrated in Fig. 1 (a) [3]σ tσε c0σ trεσ cr ε t0σ cε tut, σ 2 n, σ 1⎡α E ω⎢tn =⎢⎣ω =(1−ν)(1−D)ν (1−D)ν (1−D)E(1+ν )(1−2ν)0(1−D)(1−2ν)2(a)(b)Figure 1: Uniaxial c<strong>on</strong>stitutive law of element (a) and aligned crack model with local coordinates (b)0(1−ν)00⎤⎥⎥⎦In Fig. 1 (a) σ t , σ c denote <str<strong>on</strong>g>the</str<strong>on</strong>g> compressive and tensile strengths of rock, respectively, and σ tr , σ crdenote <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding residual strengths which <str<strong>on</strong>g>the</str<strong>on</strong>g> element still possess after <str<strong>on</strong>g>the</str<strong>on</strong>g> brittlefailure. The initiati<strong>on</strong> of failure is indicated by <str<strong>on</strong>g>the</str<strong>on</strong>g> Rankine and Mohr-Coulomb criteria <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>tensile and shear modes, respectively, asσ 1 ≤ σ t (tensile), σ 3 − kσ1 ≥ σ c , k = ( 1 + sinϕ)/(1 − sinϕ)(shear) (3)where σ 1 , σ 3 are <str<strong>on</strong>g>the</str<strong>on</strong>g> greatest and smallest principal stress, respectively, and ϕ is <str<strong>on</strong>g>the</str<strong>on</strong>g> fricti<strong>on</strong>angle of rock. Criteria (3) are checked at <str<strong>on</strong>g>the</str<strong>on</strong>g> center of each element. The damage variable iscalculated as follows [3]⎧0,ε eqv < ε t0⎪⎧0,ε3> εc0⎪ ε t0⎪D = ⎨1− λ , ε t0≤ ε eqv < ε tu (tensile), D = ⎨ ε(shear) (4)c0⎪ ε eqv⎪1−λ , ε3≤ εc0⎪⎩ ε3⎩1, ε eqv ≥ ε tuIn (4) λ is a residual strength coefficient defined as σ t /σ t0 = σ c /σ c0 = λ, ε tu is <str<strong>on</strong>g>the</str<strong>on</strong>g> ultimate tensilestrain defined as ε tu = ηε t0 , where ε t0 is <str<strong>on</strong>g>the</str<strong>on</strong>g> elastic limit strain (=σ t /E 0 ) and η is an ultimate straincoefficient [3]. In order to extend <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>stitutive law described in Fig. 1 (a) to multiaxial stressstates, <str<strong>on</strong>g>the</str<strong>on</strong>g> uniaxial strains in (4) are replaced by ε 3 (maximum compressive strain) [3],1ε ε and ε c = ( − σ c + kσ1 −ν( σ 2 + σ 1))(5)32eqv= ∑i= 10 E0where McAuley brackets have been used and k is as in (3). Since <str<strong>on</strong>g>the</str<strong>on</strong>g> damage process isirreversible <str<strong>on</strong>g>for</str<strong>on</strong>g> materials like rock, <str<strong>on</strong>g>the</str<strong>on</strong>g> damage variable cannot decrease. Thus, if <str<strong>on</strong>g>the</str<strong>on</strong>g> strain ε eqv ,at some strain states, is smaller than its maximal previously reached value, <str<strong>on</strong>g>the</str<strong>on</strong>g>n D is keptc<strong>on</strong>stant. The same applies to <str<strong>on</strong>g>the</str<strong>on</strong>g> strain ε 3 .In RFPA both <str<strong>on</strong>g>the</str<strong>on</strong>g> shear and tensile damage causes <str<strong>on</strong>g>the</str<strong>on</strong>g> degradati<strong>on</strong> of finite elements but <str<strong>on</strong>g>the</str<strong>on</strong>g>tensile failure is c<strong>on</strong>sidered as <str<strong>on</strong>g>the</str<strong>on</strong>g> main cause <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> crack initiati<strong>on</strong>. When <str<strong>on</strong>g>the</str<strong>on</strong>g> equivalent strainreaches <str<strong>on</strong>g>the</str<strong>on</strong>g> ultimate tensile strain limit, <str<strong>on</strong>g>the</str<strong>on</strong>g> element loses its ability to transfer stresses (D = 1)and it is treated as an “air element” but it is not removed from <str<strong>on</strong>g>the</str<strong>on</strong>g> mesh. This is <str<strong>on</strong>g>the</str<strong>on</strong>g> method,similar to <str<strong>on</strong>g>the</str<strong>on</strong>g> smeared crack models, how RFPA simulates crack initiati<strong>on</strong>, propagati<strong>on</strong> and42


interacti<strong>on</strong> of cracks. In this study <str<strong>on</strong>g>the</str<strong>on</strong>g> unilateral nature of damage is taken into account similarlyas in [4]. The deactivati<strong>on</strong> of damage is d<strong>on</strong>e independently <str<strong>on</strong>g>for</str<strong>on</strong>g> each principal stress as follows.σ = 2 G(1− H ( ε ) D)ε + 2Kν(1 − H ( ε ) D)ε , i = 1,2(6)iiiIn (6) ε V is <str<strong>on</strong>g>the</str<strong>on</strong>g> volumetric strain, G is <str<strong>on</strong>g>the</str<strong>on</strong>g> shear modulus, K = E/((1+ν)(1-2ν)), and H(•) is <str<strong>on</strong>g>the</str<strong>on</strong>g>Heaviside functi<strong>on</strong>. This method keeps <str<strong>on</strong>g>the</str<strong>on</strong>g> mapping between stresses and strains c<strong>on</strong>tinuous.In <str<strong>on</strong>g>the</str<strong>on</strong>g> above described model <str<strong>on</strong>g>the</str<strong>on</strong>g> macro crack is represented by c<strong>on</strong>necting arrays of fullydamaged elements. Thus <str<strong>on</strong>g>the</str<strong>on</strong>g> model doesn’t account <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> local orientati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> disc<strong>on</strong>tinuityat <str<strong>on</strong>g>the</str<strong>on</strong>g> (meso)element level. In <str<strong>on</strong>g>the</str<strong>on</strong>g> present approach <str<strong>on</strong>g>the</str<strong>on</strong>g> tensile crack is allowed to rotate locallyso that it is orthog<strong>on</strong>al to <str<strong>on</strong>g>the</str<strong>on</strong>g> greatest principal stress σ 1 as indicated in Fig. 1 (b). When <str<strong>on</strong>g>the</str<strong>on</strong>g>failure initiates its inclinati<strong>on</strong> angle α is kept fixed. This introduces anisotropy to <str<strong>on</strong>g>the</str<strong>on</strong>g> modelwhich is taken into account by trans<str<strong>on</strong>g>for</str<strong>on</strong>g>ming <str<strong>on</strong>g>the</str<strong>on</strong>g> elasticity matrix written in <str<strong>on</strong>g>the</str<strong>on</strong>g> local t,ncoordinate(see Fig. 1) system into <str<strong>on</strong>g>the</str<strong>on</strong>g> global coordinate system. In additi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> strain ε eqv in(4) is replaced by <str<strong>on</strong>g>the</str<strong>on</strong>g> strain normal to <str<strong>on</strong>g>the</str<strong>on</strong>g> crack. Thus, in this modified model <str<strong>on</strong>g>the</str<strong>on</strong>g> element isable to transfer stresses in <str<strong>on</strong>g>the</str<strong>on</strong>g> directi<strong>on</strong> normal to <str<strong>on</strong>g>the</str<strong>on</strong>g> crack <strong>on</strong>ly when crack is closing but in <str<strong>on</strong>g>the</str<strong>on</strong>g>tangential directi<strong>on</strong>, it transfers normal stresses as intact material.Explicit procedure <str<strong>on</strong>g>for</str<strong>on</strong>g> solving <str<strong>on</strong>g>the</str<strong>on</strong>g> dynamic indentati<strong>on</strong> problemIn order to simulate <str<strong>on</strong>g>the</str<strong>on</strong>g> crack propagati<strong>on</strong> in time domain <str<strong>on</strong>g>the</str<strong>on</strong>g> explicit modified Euler timeintegrator is chosen because it is readily compatible with <str<strong>on</strong>g>the</str<strong>on</strong>g> viscous n<strong>on</strong>-reflecting boundaryscheme and <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>ward increment Lagrange multiplier method which is employed <str<strong>on</strong>g>for</str<strong>on</strong>g> imposing<str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tact c<strong>on</strong>straints. Combining <str<strong>on</strong>g>the</str<strong>on</strong>g>se methods leads to <str<strong>on</strong>g>the</str<strong>on</strong>g> following equati<strong>on</strong>s <str<strong>on</strong>g>for</str<strong>on</strong>g> solving<str<strong>on</strong>g>the</str<strong>on</strong>g> incremental resp<strong>on</strong>se of <str<strong>on</strong>g>the</str<strong>on</strong>g> system [1].t ~~t −1T tt −1t t tu&&= u&&− M G λu&&= M ( fqp+ fqs− fint)t+∆tt tt+∆tt ttu&= u&+ ∆tu&&, where u~2~= u + ∆tu&+ ∆tu&&(7)VV2 −1T −1t+∆t( ∆tGM G ) ( Gu~− b)t+∆tt t 2 tu = u + ∆tu&+ ∆tu&&tλ =In (7), <str<strong>on</strong>g>the</str<strong>on</strong>g> denoti<strong>on</strong>s are: u is <str<strong>on</strong>g>the</str<strong>on</strong>g> nodal displacement vector, M is <str<strong>on</strong>g>the</str<strong>on</strong>g> lumped mass matrix, f qp ,f qs are <str<strong>on</strong>g>the</str<strong>on</strong>g> nodal <str<strong>on</strong>g>for</str<strong>on</strong>g>ce vectors (corresp<strong>on</strong>ding to <str<strong>on</strong>g>the</str<strong>on</strong>g> dilatati<strong>on</strong> and shear waves, respectively)integrated from <str<strong>on</strong>g>the</str<strong>on</strong>g> viscous type of n<strong>on</strong>-reflecting boundary c<strong>on</strong>diti<strong>on</strong>s, f int is <str<strong>on</strong>g>the</str<strong>on</strong>g> internal <str<strong>on</strong>g>for</str<strong>on</strong>g>cevector assembled from <str<strong>on</strong>g>the</str<strong>on</strong>g> element c<strong>on</strong>tributi<strong>on</strong>s f e int = t∫B T D(E(D))BdAu, G is <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tactc<strong>on</strong>straint matrix, λ is <str<strong>on</strong>g>the</str<strong>on</strong>g> lagrange multiplier vector which has <str<strong>on</strong>g>the</str<strong>on</strong>g> physical meaning of c<strong>on</strong>tact<str<strong>on</strong>g>for</str<strong>on</strong>g>ces in this c<strong>on</strong>text, and b is <str<strong>on</strong>g>the</str<strong>on</strong>g> initial distance between <str<strong>on</strong>g>the</str<strong>on</strong>g> indenter and rock.Numerical exampleThe presented procedure is dem<strong>on</strong>strated by solving <str<strong>on</strong>g>the</str<strong>on</strong>g> dynamic indentati<strong>on</strong> problem depictedin Fig. 2.Data <str<strong>on</strong>g>for</str<strong>on</strong>g> indenterData <str<strong>on</strong>g>for</str<strong>on</strong>g> rockv 043ρ = 7800 kg/m 3 ρ 0 = 2500 kg/m 3 , m ρ = 100ν = 0.3 ν 0 = 0.2, m ν = 100E = 200 GPa E 0 = 60 GPa, m E = 6v 0 = 6 m/s σ c0 = 100 MPa, m σ = 6σ t = 0.1σ c , ϕ = 30°,λ = 0.1, η = 5Figure 2: Illustrati<strong>on</strong> of dynamic indentati<strong>on</strong> problem and initial data


In order to simulate <str<strong>on</strong>g>the</str<strong>on</strong>g> infinity of rock viscous damper type n<strong>on</strong>-reflecting boundary c<strong>on</strong>diti<strong>on</strong>sare imposed <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> boundaries of <str<strong>on</strong>g>the</str<strong>on</strong>g> rock. The plane strain case is assumed, and <str<strong>on</strong>g>the</str<strong>on</strong>g> bilinearquadrilateral element is used in <str<strong>on</strong>g>the</str<strong>on</strong>g> generati<strong>on</strong> of a regular mesh c<strong>on</strong>sisting of 120×80 elements<str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rock and 20×30 <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> indenter. The size of each element is 1mm×1mm. The parametersη, λ and m (Fig. 1) are chosen so as to make <str<strong>on</strong>g>the</str<strong>on</strong>g> rock domain corresp<strong>on</strong>d to hard rock, e.g.granite. The tensile strengths of <str<strong>on</strong>g>the</str<strong>on</strong>g> elements are generated from <str<strong>on</strong>g>the</str<strong>on</strong>g> compressive strengths ofthose elements by multiplying <str<strong>on</strong>g>the</str<strong>on</strong>g> latter values by a factor 0.1. A time step ∆t = 8.2E-8s is usedin numerical simulati<strong>on</strong>s. Fig. 3 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> crack patterns simulated with <str<strong>on</strong>g>the</str<strong>on</strong>g> present approach.-203-20302.502.5202202401.5401.560160<str<strong>on</strong>g>18</str<strong>on</strong>g>00.5800.510020 40 60 80 100 120 1401000(a)(b)Figure 3: Simulated crack patterns without (a) and with <str<strong>on</strong>g>the</str<strong>on</strong>g> oriented crack (b)20 40 60 80 100 120 1400In Fig. (3) <str<strong>on</strong>g>the</str<strong>on</strong>g> black color corresp<strong>on</strong>ds to <str<strong>on</strong>g>the</str<strong>on</strong>g> intact rock, <str<strong>on</strong>g>the</str<strong>on</strong>g> dark gray (1 in color bar) to partlydamaged rock in tensile mode, <str<strong>on</strong>g>the</str<strong>on</strong>g> light gray (2 in color bar) to rock damaged in shear mode,and <str<strong>on</strong>g>the</str<strong>on</strong>g> white color to fully damaged rock (in tensile mode). It can be seen that <str<strong>on</strong>g>the</str<strong>on</strong>g> crack patternbetween <str<strong>on</strong>g>the</str<strong>on</strong>g> two models are very similar. Both of <str<strong>on</strong>g>the</str<strong>on</strong>g>m produce <str<strong>on</strong>g>the</str<strong>on</strong>g> Herzian c<strong>on</strong>e cracks, typical<str<strong>on</strong>g>for</str<strong>on</strong>g> right-angled indenters, and <str<strong>on</strong>g>the</str<strong>on</strong>g> vertical median cracks. Finally it is noted that virtually noshear failures occur which is due to <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that <str<strong>on</strong>g>the</str<strong>on</strong>g> compressive strength is 10 times higherthan <str<strong>on</strong>g>the</str<strong>on</strong>g> tensile strength.C<strong>on</strong>cluding remarksAn explicit FE-code <str<strong>on</strong>g>for</str<strong>on</strong>g> simulating <str<strong>on</strong>g>the</str<strong>on</strong>g> dynamic indentati<strong>on</strong>, which occurs e.g. in percussivedrilling, is developed in this work. The results of <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong>s show that <str<strong>on</strong>g>the</str<strong>on</strong>g> present model ispromising. The explicit approach to <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sidered problem is computati<strong>on</strong>ally cheap, not <strong>on</strong>lybecause of <str<strong>on</strong>g>the</str<strong>on</strong>g> lumped mass matrix approach but also because <str<strong>on</strong>g>the</str<strong>on</strong>g> resp<strong>on</strong>se of <str<strong>on</strong>g>the</str<strong>on</strong>g> structure needand can be calculated <strong>on</strong>ly within <str<strong>on</strong>g>the</str<strong>on</strong>g> reach of <str<strong>on</strong>g>the</str<strong>on</strong>g> propagating stress wave. It is also simple andthus allows easily <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> of simulating <str<strong>on</strong>g>the</str<strong>on</strong>g> whole percussive drilling processincluding <str<strong>on</strong>g>the</str<strong>on</strong>g> pist<strong>on</strong>, rods, couplings, and even some hydraulics.References[1] T. Saksala. Exact and Explicit FE-procedure <str<strong>on</strong>g>for</str<strong>on</strong>g> Modeling Stress Waves due to Impact in Domainwith N<strong>on</strong>-reflecting Boundary. In: Mathisen, K.M., Kvamsdal, T., Okstad, K.M. (eds.) Proceedingsof 16th Nordic Seminar <strong>on</strong> Computati<strong>on</strong>al Mechanics, Tr<strong>on</strong>dheim, Norway, 159-162 (2003).[2] C.A. Tang. Numerical Simulati<strong>on</strong> of Progressive Rock Failure and Associated Seismicity. Int. J.Rock Mech. Min. Sci., 34, 249-261, (1997).[3] W.C. Zhu and C.A. Tang. Micromechanical Model <str<strong>on</strong>g>for</str<strong>on</strong>g> Simulating <str<strong>on</strong>g>the</str<strong>on</strong>g> Fracture Process of Rock.Rock Mechanics and Rock Engineering, 37, 25-56, (2004).[4] J. Lemaitre. A Course <strong>on</strong> Damage Mechanics. Springer-Verlag, (1992).[5] S.Q. Kou et al. Rock Fragmentati<strong>on</strong> Mechanisms induced by a Drill Bit. Int. J. Rock Mech. Min.Sci., 41, Paper 2B11-SINOROCK2004 Symposium, (2004).44


Residual Based Approximati<strong>on</strong>s of Fine Scales in Variati<strong>on</strong>alMultiscale Approximati<strong>on</strong>s of Navier-Stokes Equati<strong>on</strong>sM. G. Lars<strong>on</strong> ∗Department of Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>maticsUmeå University, S-90<str<strong>on</strong>g>18</str<strong>on</strong>g>7, Umeå, Swedene–mail: mats − lars<strong>on</strong>@yahoo.comR. E. BensowDepartment of Naval ArchitectureChalmers University of Technology, S-41296, Göteborg, Swedene–mail: ribe@na.chalmers.seThe Variati<strong>on</strong>al Multiscale Method, see Hughes et al [2] provide a general framework <str<strong>on</strong>g>for</str<strong>on</strong>g> derivati<strong>on</strong>of multiscale methods where <str<strong>on</strong>g>the</str<strong>on</strong>g> effects of fine (unresolved) scales <strong>on</strong> coarse (resolved) scaleare accounted <str<strong>on</strong>g>for</str<strong>on</strong>g> through additi<strong>on</strong>al terms in <str<strong>on</strong>g>the</str<strong>on</strong>g> variati<strong>on</strong>al <str<strong>on</strong>g>for</str<strong>on</strong>g>mulati<strong>on</strong>. The additi<strong>on</strong>al termsinvolve <str<strong>on</strong>g>the</str<strong>on</strong>g> fine scale part of <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong>, which satisfies an equati<strong>on</strong> driven by <str<strong>on</strong>g>the</str<strong>on</strong>g> residual of<str<strong>on</strong>g>the</str<strong>on</strong>g> coarse scale part of <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong>. In <str<strong>on</strong>g>the</str<strong>on</strong>g> simplest case <str<strong>on</strong>g>the</str<strong>on</strong>g> fine scale part of <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong> canbe approximated by a suitable scaling of <str<strong>on</strong>g>the</str<strong>on</strong>g> residual. Some problems require, more refined approaches,where <str<strong>on</strong>g>the</str<strong>on</strong>g> fine scales are approximated using soluti<strong>on</strong>s to localized problems, see Lars<strong>on</strong>and Målqvist [4].In this talk we present recent results, see [1], <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Navier-Stokes equati<strong>on</strong>s where we c<strong>on</strong>siderfeedback to <str<strong>on</strong>g>the</str<strong>on</strong>g> coarse scales based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> fine scale velocity gradient. By taking <str<strong>on</strong>g>the</str<strong>on</strong>g> gradient of <str<strong>on</strong>g>the</str<strong>on</strong>g>Navier-Stokes equati<strong>on</strong>s we obtain an equati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> velocity gradient. We model <str<strong>on</strong>g>the</str<strong>on</strong>g> fine scalevelocity gradient in terms of <str<strong>on</strong>g>the</str<strong>on</strong>g> residual obtained when inserting <str<strong>on</strong>g>the</str<strong>on</strong>g> coarse scale velocity gradientinto this equati<strong>on</strong>. The method is illustrated in several applicati<strong>on</strong>s to realistic 3D turbulent flows.In particular, we show examples of <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>ce fields generated by <str<strong>on</strong>g>the</str<strong>on</strong>g> additi<strong>on</strong>al fine scale terms.The new additi<strong>on</strong>al terms are not c<strong>on</strong>structed in such a way that <str<strong>on</strong>g>the</str<strong>on</strong>g>y provide stabilizati<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g>method, <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trary, <str<strong>on</strong>g>the</str<strong>on</strong>g>y drive certain phenomena in <str<strong>on</strong>g>the</str<strong>on</strong>g> flow. For instance, <str<strong>on</strong>g>the</str<strong>on</strong>g> simplestpossible term modifies <str<strong>on</strong>g>the</str<strong>on</strong>g> vorticity vector with a vortex stretching term, which feed energy into<str<strong>on</strong>g>the</str<strong>on</strong>g> vortex. In fact, we may expect that discretizati<strong>on</strong> may introduce more viscosity into <str<strong>on</strong>g>the</str<strong>on</strong>g> modeland thus effects of <str<strong>on</strong>g>the</str<strong>on</strong>g> fine scales could in some situati<strong>on</strong>s be driving instead of stabilizing. Thisproperty is in sharp c<strong>on</strong>trast to standard stabilized methods such as <str<strong>on</strong>g>the</str<strong>on</strong>g> SUPG and GLS. The recentmethod of Hughes et al display similar properties, see [3].References[1] R.E. Bensow and M.G. Lars<strong>on</strong>. Turbulence Models based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Residual Variati<strong>on</strong>al MultiscaleMethod. Chalmers Finite Element Center Preprint, to appear 2005.[2] T.J.R. Hughes, G.R. Feijóo, L. Mazzei, and J.-B. Quincy. The Variati<strong>on</strong>al Multiscale Method—AParadigm <str<strong>on</strong>g>for</str<strong>on</strong>g> Computati<strong>on</strong>al Mechanics. Comput. Methods Appl. Mech. Engrg. 166, 3–24, (1998).[3] T.J.R. Hughes, V.M. Calo, and G. Scovazzi. Variati<strong>on</strong>al and Multiscale Methods in Turbulence. ICESReport 04-46, www.ices.utexas.edu.[4] M.G. Lars<strong>on</strong> and A. Målqvist. Adaptive Variati<strong>on</strong>al Multiscale Methods Based <strong>on</strong> A Posteriori ErrorEstimates: Energy Norm Estimates <str<strong>on</strong>g>for</str<strong>on</strong>g> Elliptic Problems. Chalmers Finite Element Center Preprint2004-<str<strong>on</strong>g>18</str<strong>on</strong>g>, www.phi.chalmers.se, submitted to SIAM J. Numer. Analysis.45


Adaptive simulati<strong>on</strong> of multiphysics problemsM. G. Lars<strong>on</strong> ∗ and F. Bengz<strong>on</strong>Department of Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>maticsUmeå University, S-90<str<strong>on</strong>g>18</str<strong>on</strong>g>7, Umeå, Swedene–mail: mats − lars<strong>on</strong>@yahoo.comIn this talk we outline a basic framework <str<strong>on</strong>g>for</str<strong>on</strong>g> adaptive simulati<strong>on</strong> of multiphysics problems. Weassume that we have access to solvers <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> different kinds of physics in <str<strong>on</strong>g>the</str<strong>on</strong>g> problem. A multiphysicssolver can <str<strong>on</strong>g>the</str<strong>on</strong>g>n be obtained by letting <str<strong>on</strong>g>the</str<strong>on</strong>g>se solvers communicate in a network. Thissituati<strong>on</strong> is typical in industrial and lab envir<strong>on</strong>ments where efficient solvers with detailed modelingof certain physical phenomena have been developed over <str<strong>on</strong>g>the</str<strong>on</strong>g> years. These solvers are <str<strong>on</strong>g>the</str<strong>on</strong>g>ncombined in multiphysics simulati<strong>on</strong>s.We develop a basic a posteriori error analysis <str<strong>on</strong>g>for</str<strong>on</strong>g> such networks of solvers. We assume thateach solver is adaptive and supports duality based a posteriori estimates <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> error in linearfuncti<strong>on</strong>als of <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong>. The error in <str<strong>on</strong>g>the</str<strong>on</strong>g> functi<strong>on</strong>al is basically estimated by terms accounting<str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> discretizati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> problem and <str<strong>on</strong>g>the</str<strong>on</strong>g> error in data to <str<strong>on</strong>g>the</str<strong>on</strong>g> problem. The discretizati<strong>on</strong> erroris c<strong>on</strong>trolled using standard adaptive mesh refinement based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> a posteriori error analysis.The data error can account <str<strong>on</strong>g>for</str<strong>on</strong>g> uncertainty in given data or may depend <strong>on</strong> ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r solver. In <str<strong>on</strong>g>the</str<strong>on</strong>g>latter case <str<strong>on</strong>g>the</str<strong>on</strong>g> data error can be c<strong>on</strong>trolled by sufficient accurate soluti<strong>on</strong> of that problem. Thisdependency between <str<strong>on</strong>g>the</str<strong>on</strong>g> problems in <str<strong>on</strong>g>the</str<strong>on</strong>g> network is captured and quantified by solving a specificsequence of dual problems.The basic <str<strong>on</strong>g>the</str<strong>on</strong>g>ory is illustrated <strong>on</strong> some examples including soluti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure equati<strong>on</strong> toge<str<strong>on</strong>g>the</str<strong>on</strong>g>rwith <str<strong>on</strong>g>the</str<strong>on</strong>g> transport equati<strong>on</strong> with applicati<strong>on</strong>s to oil reservoir simulati<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> heat equati<strong>on</strong>coupled with linear elasticity with applicati<strong>on</strong> to stresses caused by heat in gearbox casings.References[1] M.G. Lars<strong>on</strong>. A Framework <str<strong>on</strong>g>for</str<strong>on</strong>g> Adaptive Simulati<strong>on</strong> of Multiphysics Problems. Chalmers FiniteElement Center Preprint 2005, www.phi.chalmers.se.[2] M.G. Lars<strong>on</strong>, A. Målqvist and F. Bengz<strong>on</strong>. Simulati<strong>on</strong> of Oil Reservoirs Using Goal Oriented APosteriori Error Estimates and <str<strong>on</strong>g>the</str<strong>on</strong>g> Adaptive Variati<strong>on</strong>al Multiscale Method. Chalmers Finite ElementCenter Preprint 2005, www.phi.chalmers.se.47


Algorithms <str<strong>on</strong>g>for</str<strong>on</strong>g> fluid-structure interacti<strong>on</strong> of flow around two ormore cylinders with large relative moti<strong>on</strong>sByTr<strong>on</strong>d Kvamsdal 1 , Kjell Herfjord 2 , Knut M. Okstad 3 and Karstein Sørli 41 SINTEF ICT, Dept. of Applied Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics, N-7465 Tr<strong>on</strong>dheim, Tr<strong>on</strong>d.Kvamsdal@sintef.noNorsk Hydro Research Centre Bergen, P.O. Box 7190, N-5020 Bergen, Kjell.Herfjord@hydro.comFEDEM Technology AS, Vestre Rosten 78, N-7075 Tiller, Knut.M.Okstad@fedem.com4 SINTEF ICT, Dept. of Applied Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics, N-7465 Tr<strong>on</strong>dheim, Karstein.Sorli@sintef.noABSTRACTWe present herein methodology <str<strong>on</strong>g>for</str<strong>on</strong>g> handling fluid-structure interacti<strong>on</strong> involving hydrodynamicalflow around two or more cylinders. Due to vortex induced vibrati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> cylinders <str<strong>on</strong>g>the</str<strong>on</strong>g> relativemoti<strong>on</strong>s between <str<strong>on</strong>g>the</str<strong>on</strong>g>m may be large and even collisi<strong>on</strong> may occur. To handle such cases we havedeveloped tailored algorithms <str<strong>on</strong>g>for</str<strong>on</strong>g> mesh movement and remeshing that is robust and efficient. The fluidgrid is composed of a structured part around <str<strong>on</strong>g>the</str<strong>on</strong>g> cylinders taking care of <str<strong>on</strong>g>the</str<strong>on</strong>g> boundary layer and anunstructured part away from <str<strong>on</strong>g>the</str<strong>on</strong>g> cylinder that makes it possible to do automatic remeshing in a flexiblemanner. Special care is taken in <str<strong>on</strong>g>the</str<strong>on</strong>g> remeshing step in order to not perturb <str<strong>on</strong>g>the</str<strong>on</strong>g> fluid loads <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>cylinders due to interpolati<strong>on</strong> between <str<strong>on</strong>g>the</str<strong>on</strong>g> old and new mesh.We will focus <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> methodology and validate its per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance against high quality laboratory tests oftwo cylinders in a tandem set up. The computed resp<strong>on</strong>se of <str<strong>on</strong>g>the</str<strong>on</strong>g> cylinders and <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>dingcomputed fluid loads will be compared with <str<strong>on</strong>g>the</str<strong>on</strong>g> physical experiments. These tests are particularrelevant <str<strong>on</strong>g>for</str<strong>on</strong>g> analyzing <str<strong>on</strong>g>the</str<strong>on</strong>g> possibility <str<strong>on</strong>g>for</str<strong>on</strong>g> collisi<strong>on</strong>s of offshore risers or submerged pipelines which isimportant unresolved <str<strong>on</strong>g>issue</str<strong>on</strong>g>s <str<strong>on</strong>g>for</str<strong>on</strong>g> oil explorati<strong>on</strong> <strong>on</strong> deep water.49


Finite Element analysis of jar c<strong>on</strong>necti<strong>on</strong>s: Modeling c<strong>on</strong>siderati<strong>on</strong>sAnders Schmidt Kristensen*Esbjerg Technical InstituteAalborg University, Esbjerg, Denmarke–mail: ask@aaue.dkSigurd SolemTRACS In<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> Systems ApsVilslevvej 68, DK-6771 Grestedbroe–mail: sigurd@vdstracs.comKashif ToorTRACS In<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> Systems ApsVilslevvej 68, DK-6771 Grestedbroe–mail: kktoor@spemail.orgA new tool joint system is c<strong>on</strong>sidered. Traditi<strong>on</strong>ally <str<strong>on</strong>g>the</str<strong>on</strong>g>se rotary c<strong>on</strong>necti<strong>on</strong>s have been designed with<strong>on</strong>ly <strong>on</strong>e shoulder geometry. However, in order to increase <str<strong>on</strong>g>the</str<strong>on</strong>g> torque rating of <str<strong>on</strong>g>the</str<strong>on</strong>g> tool joint, a new designis introduced using two shoulders. This design allow reduced tool joint dimensi<strong>on</strong>s whereby down-holeequipment more easily can be fitted. In order to evaluate <str<strong>on</strong>g>the</str<strong>on</strong>g> validity of <str<strong>on</strong>g>the</str<strong>on</strong>g> design, finite element analysishave been per<str<strong>on</strong>g>for</str<strong>on</strong>g>med in ANSYS. The results obtained indicate that <str<strong>on</strong>g>the</str<strong>on</strong>g> new design is valid and fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r testscan be per<str<strong>on</strong>g>for</str<strong>on</strong>g>med.Introducti<strong>on</strong>In a drill string different comp<strong>on</strong>ents are c<strong>on</strong>nected by tool joints. The tool joints are rotary c<strong>on</strong>necti<strong>on</strong>swith a box member and a pin member. A typical drill string with such tool joints is shownin figure 1(Left) and in figure 2(Top). In order to maintain internal and external pressure in <str<strong>on</strong>g>the</str<strong>on</strong>g>drill pipe and transmit torque <str<strong>on</strong>g>the</str<strong>on</strong>g>se rotary shouldered c<strong>on</strong>necti<strong>on</strong>s (RSC) are pre-loaded by a socalledmake-up torque. In <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>venti<strong>on</strong>al c<strong>on</strong>necti<strong>on</strong> <strong>on</strong>ly <strong>on</strong>e shoulder is defined and <str<strong>on</strong>g>the</str<strong>on</strong>g> jointis c<strong>on</strong>ical with tapered threads as specified by [1], [2], [3], and [7].Figure 1: (Left) A c<strong>on</strong>venti<strong>on</strong>al rotary single shouldered c<strong>on</strong>necti<strong>on</strong> (RSC), i.e. a c<strong>on</strong>ical threaded c<strong>on</strong>necti<strong>on</strong>with tapered pin and box threads, and sealing shoulders. (Right) A rotary double shouldered c<strong>on</strong>necti<strong>on</strong>(RDSC).The new type of c<strong>on</strong>necti<strong>on</strong>, see figure 1(Right) and figure 2(Bottom), is not c<strong>on</strong>ical and two shouldersare defined. The new c<strong>on</strong>necti<strong>on</strong> is termed a rotary double shouldered c<strong>on</strong>necti<strong>on</strong> (RDSC) in<str<strong>on</strong>g>the</str<strong>on</strong>g> following.The shoulder in <str<strong>on</strong>g>the</str<strong>on</strong>g>se rotary c<strong>on</strong>necti<strong>on</strong>s functi<strong>on</strong> as a metal to metal seal <str<strong>on</strong>g>for</str<strong>on</strong>g> maintaining <str<strong>on</strong>g>the</str<strong>on</strong>g> pressuredown-hole. During operati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>necti<strong>on</strong> is subjected to various load systems, however,<str<strong>on</strong>g>the</str<strong>on</strong>g> main load systems are: tensile <str<strong>on</strong>g>for</str<strong>on</strong>g>ces and bending moments acts simultaneously with a hightorque, e.g. during directi<strong>on</strong>al drilling where <str<strong>on</strong>g>the</str<strong>on</strong>g> bore hole is deviated.The rotary c<strong>on</strong>necti<strong>on</strong>s with given dimensi<strong>on</strong>s depicted in 2 are selected <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> finite elementanalysis c<strong>on</strong>ducted. Material used <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>necti<strong>on</strong>s is AISI4145 with a yield limit Y m =124.73 × 10 3 [psi] and modulus of elasticity E = 29.8 × 10 6 [psi]. The new design RDSC allowa smaller wall thickness, pitch of thread, and root radius, thus, more design space <str<strong>on</strong>g>for</str<strong>on</strong>g> fitting51


Figure 2: (Top) A RSC NC 50 with dimensi<strong>on</strong>s. (Bottom) A comparable RDSC with dimensi<strong>on</strong>s.down hole equipment compared to <str<strong>on</strong>g>the</str<strong>on</strong>g> load bearing capacity. Comparis<strong>on</strong> with design <str<strong>on</strong>g>for</str<strong>on</strong>g>mulasindicate that care must be taken when evaluating <str<strong>on</strong>g>the</str<strong>on</strong>g> stresses in a pre-tensi<strong>on</strong>ed threaded c<strong>on</strong>necti<strong>on</strong>.[8], [4], [6], and [5] suggest different approaches to determine <str<strong>on</strong>g>the</str<strong>on</strong>g> induced tensi<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g>c<strong>on</strong>necti<strong>on</strong>. Depending <strong>on</strong> how <str<strong>on</strong>g>the</str<strong>on</strong>g> fricti<strong>on</strong> is taken into account <str<strong>on</strong>g>the</str<strong>on</strong>g> results obtained from <str<strong>on</strong>g>the</str<strong>on</strong>g> design<str<strong>on</strong>g>for</str<strong>on</strong>g>mulas can vary significantly. There<str<strong>on</strong>g>for</str<strong>on</strong>g>e, <str<strong>on</strong>g>the</str<strong>on</strong>g> objective have been to gain c<strong>on</strong>fidence with<str<strong>on</strong>g>the</str<strong>on</strong>g> RDSC model with respect to <str<strong>on</strong>g>the</str<strong>on</strong>g> same modeling c<strong>on</strong>siderati<strong>on</strong>s, i.e. fricti<strong>on</strong> at <str<strong>on</strong>g>the</str<strong>on</strong>g> shoulders,as <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> RSC model which should be replaced. The finite element analysis programme ANSYSis used <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> numerical analysis.AnalysisThe load c<strong>on</strong>figurati<strong>on</strong> c<strong>on</strong>sidered is determined from [7] and is given as <str<strong>on</strong>g>the</str<strong>on</strong>g> make-up torque T mT m = SA [ p12 2π + R ]tfcosα + R zf(1)where <str<strong>on</strong>g>the</str<strong>on</strong>g> recommended stress level S = 0.6 × Y m = 74838[psi], A is <str<strong>on</strong>g>the</str<strong>on</strong>g> cross-secti<strong>on</strong>al area,p = 0.25[in] is <str<strong>on</strong>g>the</str<strong>on</strong>g> pitch or lead, f = 0.08 is <str<strong>on</strong>g>the</str<strong>on</strong>g> coefficient of fricti<strong>on</strong> between mating surfaces[2], and α = 60/2 = 30[ ◦ ] is <str<strong>on</strong>g>the</str<strong>on</strong>g> thread angle or pitch angle.The fricti<strong>on</strong> coefficient R t taking into account <str<strong>on</strong>g>the</str<strong>on</strong>g> fricti<strong>on</strong> at <str<strong>on</strong>g>the</str<strong>on</strong>g> thread surfaces is given asR t =C + (C − (L − 0.625) × tpr × 1/12)4where C = d p , tpr is <str<strong>on</strong>g>the</str<strong>on</strong>g> taper ratio, and L = 4.5[in] is <str<strong>on</strong>g>the</str<strong>on</strong>g> length of <str<strong>on</strong>g>the</str<strong>on</strong>g> thread.The fricti<strong>on</strong> coefficient R z taking into account <str<strong>on</strong>g>the</str<strong>on</strong>g> fricti<strong>on</strong> between <str<strong>on</strong>g>the</str<strong>on</strong>g> mating shoulder surfacesis given as R z = OD − Q c, where Q c = 5.3125[in] is <str<strong>on</strong>g>the</str<strong>on</strong>g> box counter-bore, and <str<strong>on</strong>g>the</str<strong>on</strong>g> outside4diameter OD = 6.625[in].For <str<strong>on</strong>g>the</str<strong>on</strong>g> RSC NC 50 d p = 6.625[in] and tpr = 2[in/ft], i.e. <str<strong>on</strong>g>the</str<strong>on</strong>g> torque is found to be T =21454[ft − lb] thus F z = 77720.15[lbs]. Tensi<strong>on</strong> induced P due to <str<strong>on</strong>g>the</str<strong>on</strong>g> applied torque P =(2)52


533 × 10 3 [lbs] = F y . The <str<strong>on</strong>g>for</str<strong>on</strong>g>ces F z and F y are applied as combined loading of <str<strong>on</strong>g>the</str<strong>on</strong>g> model andsoluti<strong>on</strong> is run <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> static case using axi-symmetry.For <str<strong>on</strong>g>the</str<strong>on</strong>g> new c<strong>on</strong>necti<strong>on</strong> RDSC d p = 5.68[in] and tpr = 0, F = 90650[lbs] = F z . Tensi<strong>on</strong>induced due to <str<strong>on</strong>g>the</str<strong>on</strong>g> applied torque P = 487 × 10 3 [lbs] = F y .ResultsThe resulting shear stress distributi<strong>on</strong> τ yz can seen from figure 3.Figure 3: (Left) The shear stress distributi<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> RSC NC 50. (Right) The shear stress distributi<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> RDSC model.As RSC NC 50 and <str<strong>on</strong>g>the</str<strong>on</strong>g> RDSC c<strong>on</strong>necti<strong>on</strong> have different thickness, <str<strong>on</strong>g>for</str<strong>on</strong>g> a good comparis<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>computati<strong>on</strong>al values are taken at <str<strong>on</strong>g>the</str<strong>on</strong>g> same distance from <str<strong>on</strong>g>the</str<strong>on</strong>g> centre of <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>necti<strong>on</strong>. Eight pointsare selected through <str<strong>on</strong>g>the</str<strong>on</strong>g> thickness of <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>necti<strong>on</strong> as depicted in figure 4.Figure 4: (Left) The through thickness v<strong>on</strong> Mises stress distributi<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> RSC NC 50. (Right) The throughthickness v<strong>on</strong> Mises stress distributi<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> RDSC model.Although <str<strong>on</strong>g>the</str<strong>on</strong>g> overall dimensi<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> RDSC have been reduced <str<strong>on</strong>g>the</str<strong>on</strong>g> effect of <str<strong>on</strong>g>the</str<strong>on</strong>g> double shoulderreduces <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum stress v<strong>on</strong> Mises.In order to evaluate <str<strong>on</strong>g>the</str<strong>on</strong>g> effect of <str<strong>on</strong>g>the</str<strong>on</strong>g> double shoulder fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r c<strong>on</strong>tact analyses have been per<str<strong>on</strong>g>for</str<strong>on</strong>g>med53


with ANSYS applying element types plane82, c<strong>on</strong>tact171, c<strong>on</strong>tact172, and target169. The resultingstress v<strong>on</strong> Mises distributi<strong>on</strong> is shown in figure 5Figure 5: (Left) The v<strong>on</strong> Mises stress distributi<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> RSC NC 50 resulting from a c<strong>on</strong>tact analysis.(Right) The v<strong>on</strong> Mises stress distributi<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> RDSC model resulting from a c<strong>on</strong>tact analysis.The c<strong>on</strong>tact analysis also indicates that <str<strong>on</strong>g>the</str<strong>on</strong>g> stress distributi<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> double shouldered c<strong>on</strong>necti<strong>on</strong>is more smooth and <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum stress level has been reduced.C<strong>on</strong>clusi<strong>on</strong>A RSC NC 50 and a RDSC have been compared using axi-symmetric finite element models. Theeffect of pre-tensi<strong>on</strong> is c<strong>on</strong>sidered using an induced tensi<strong>on</strong> combined with a make-up torque. Theresults indicates that <str<strong>on</strong>g>the</str<strong>on</strong>g> stresses in <str<strong>on</strong>g>the</str<strong>on</strong>g> RDSC model are reduced compared to <str<strong>on</strong>g>the</str<strong>on</strong>g> RSC NC 50,allowing a full-scale prototype of <str<strong>on</strong>g>the</str<strong>on</strong>g> RDSC model to be tested as <str<strong>on</strong>g>the</str<strong>on</strong>g> next step.References[1] API. Specificati<strong>on</strong>s <str<strong>on</strong>g>for</str<strong>on</strong>g> rotary drill stem elements. API spec. 7, 39th ed., 1997.[2] API. Recommeded practice <str<strong>on</strong>g>for</str<strong>on</strong>g> drill stem design and operating limits. API RP 7G, 16th ed., 1998.[3] S. Baragetti and A. Baryshnikov. Rotary shouldered thread c<strong>on</strong>necti<strong>on</strong>s: Working limits under combinedstatic loading. Transacti<strong>on</strong>s of ASME, vol. 123, 2001.[4] J. A. Collins. Mechanical Design of Machine Elements and Machines. John Wiley & S<strong>on</strong>s, ISBN:0-471-03307-3, 2003.[5] R. C. Juvinaal and K. M. Marshek. Fundmentals of Machine Comp<strong>on</strong>ent Design. John Wiley & S<strong>on</strong>s,ISBN: 0-471-24448-1, 3rd editi<strong>on</strong>, 2000.[6] P. Kempster and M. Dowell. Guidelines to derivati<strong>on</strong>s of bolt torque. 2002.[7] Everage S. D. Lee K. McCarthy, J. P. Applicati<strong>on</strong> of increased make up torque <strong>on</strong> api rotary shoulderedc<strong>on</strong>necti<strong>on</strong>s: Good man diagram vs strain life model. IADC/SPE 87190, 1990.[8] Joseph E. Shingley and Charles R. Mischke. Standard Handbook of Machine Design. MGraw-Hills,ISBN: 0-07-056958-4, 2nd editi<strong>on</strong>, 1996.54


De<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> of a Paper Roll Loaded Against a Nip RollerKilwa Ärölä ∗Laboratory <str<strong>on</strong>g>for</str<strong>on</strong>g> Mechanics of MaterialsHelsinki University of Technology, Espoo, Finlande–mail: kilwa.arola@tkk.fiRaimo v<strong>on</strong> HertzenLaboratory of Fatigue and StrengthLappeenranta University of Technology, Lappeenranta, Finlande–mail: raimo.v<strong>on</strong>.hertzen@lut.fiSummary An elastoplastic material model accounting <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> interlayer slippage of paper layers is used tostudy <str<strong>on</strong>g>the</str<strong>on</strong>g> de<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> of a paper roll compressed against a rigid nip roller. Calculated load–de<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>paths are compared to experimental results. It is found that <str<strong>on</strong>g>the</str<strong>on</strong>g> interlayer slippage in <str<strong>on</strong>g>the</str<strong>on</strong>g> nip area plays akey part in <str<strong>on</strong>g>the</str<strong>on</strong>g> de<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> mechanism of <str<strong>on</strong>g>the</str<strong>on</strong>g> roll.Introducti<strong>on</strong>Material c<strong>on</strong>stants <str<strong>on</strong>g>for</str<strong>on</strong>g> paper have been measured and reported by many authors [1], [2], [3].However, <str<strong>on</strong>g>the</str<strong>on</strong>g> elastic material parameters obtained from <str<strong>on</strong>g>the</str<strong>on</strong>g> tests are not directly applicable toa wound roll. A purely elastic c<strong>on</strong>tinuum model cannot correctly describe <str<strong>on</strong>g>the</str<strong>on</strong>g> layered structureof a paper roll and account <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> slippage of <str<strong>on</strong>g>the</str<strong>on</strong>g> paper layers during <str<strong>on</strong>g>the</str<strong>on</strong>g> de<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>. Thiscan be a real drawback, since <str<strong>on</strong>g>the</str<strong>on</strong>g> interlayer slippage can play a key role in <str<strong>on</strong>g>the</str<strong>on</strong>g> mechanism ofde<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> [4], [5]. This is e<str<strong>on</strong>g>special</str<strong>on</strong>g>ly true in <str<strong>on</strong>g>the</str<strong>on</strong>g> case of nip 1 loads when high local stressc<strong>on</strong>centrati<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> roll can occur.In this paper, an orthotropic elastoplastic material model, with <str<strong>on</strong>g>the</str<strong>on</strong>g> interlayer slippage described byplastic shear [6], is used to study <str<strong>on</strong>g>the</str<strong>on</strong>g> load–de<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> paths, permanent de<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>s and layer–to–layer slippage in a paper roll loaded against a nip roller. It is dem<strong>on</strong>strated that compressi<strong>on</strong>tests of paper rolls against solid nip rollers can be used in determining <str<strong>on</strong>g>the</str<strong>on</strong>g> material parameters ofpaper by fitting <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding computed and measured results. Using this approach, values<str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> radial and shear moduli of paper are determined. The model can correctly predict <str<strong>on</strong>g>the</str<strong>on</strong>g>permanent de<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>s and hysteresis found in experimental tests.C<strong>on</strong>stitutive model <str<strong>on</strong>g>for</str<strong>on</strong>g> layered structureThe detailed ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical <str<strong>on</strong>g>for</str<strong>on</strong>g>mulati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> model used in this work is given in [6]. The mainidea of <str<strong>on</strong>g>the</str<strong>on</strong>g> model is that <str<strong>on</strong>g>the</str<strong>on</strong>g> layered structure of <str<strong>on</strong>g>the</str<strong>on</strong>g> roll is embedded in <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>stitutive equati<strong>on</strong>defining <str<strong>on</strong>g>the</str<strong>on</strong>g> material resp<strong>on</strong>se. Larger elements of this jointed material, each spanning over severalhundreds of layers, can <str<strong>on</strong>g>the</str<strong>on</strong>g>n be used in <str<strong>on</strong>g>the</str<strong>on</strong>g> finite element model of <str<strong>on</strong>g>the</str<strong>on</strong>g> roll. The descripti<strong>on</strong>of slippage between <str<strong>on</strong>g>the</str<strong>on</strong>g> layers in <str<strong>on</strong>g>the</str<strong>on</strong>g> material is based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory of plasticity. Since <str<strong>on</strong>g>the</str<strong>on</strong>g> layersin a roll are closely spaced compared to <str<strong>on</strong>g>the</str<strong>on</strong>g> characteristic dimensi<strong>on</strong>s of <str<strong>on</strong>g>the</str<strong>on</strong>g> domain of <str<strong>on</strong>g>the</str<strong>on</strong>g> model,<str<strong>on</strong>g>the</str<strong>on</strong>g>y can be smeared into a c<strong>on</strong>tinuum with slip surfaces. The outcome was an elastoplastic jointedmaterial model <str<strong>on</strong>g>for</str<strong>on</strong>g> orthotropic materials with shear limits based <strong>on</strong> Coulomb fricti<strong>on</strong>. Finally, <str<strong>on</strong>g>the</str<strong>on</strong>g>model was implemented in ABAQUS/Standard finite element structural analysis software to per<str<strong>on</strong>g>for</str<strong>on</strong>g>m<str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong>s.Compressi<strong>on</strong> test and FE-modelIn <str<strong>on</strong>g>the</str<strong>on</strong>g> compressi<strong>on</strong> test a roll of catalog paper was compressed against a solid nip roller as shownin Fig. 1. Since <str<strong>on</strong>g>the</str<strong>on</strong>g> initial radial pressure distributi<strong>on</strong>, generated in <str<strong>on</strong>g>the</str<strong>on</strong>g> roll during winding, canhave a significant effect <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> slippage of <str<strong>on</strong>g>the</str<strong>on</strong>g> layers, it had to be taken into account. This pressuredistributi<strong>on</strong> was estimated using pull tab measurements. The indentati<strong>on</strong> δ, i.e., <str<strong>on</strong>g>the</str<strong>on</strong>g> relative1 <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tact regi<strong>on</strong> between <str<strong>on</strong>g>the</str<strong>on</strong>g> paper roll and nip roller55


Figure 1: Paper roll compressed against a nip roller. The radii of <str<strong>on</strong>g>the</str<strong>on</strong>g> roll and roller are r 1 and r 2 , respectively.§¢¦§¤¦displacement of <str<strong>on</strong>g>the</str<strong>on</strong>g> centres of <str<strong>on</strong>g>the</str<strong>on</strong>g> roll and roller, as well as <str<strong>on</strong>g>the</str<strong>on</strong>g> nip load P and paper to papercoefficient of fricti<strong>on</strong> µ pp were also measured.To model <str<strong>on</strong>g>the</str<strong>on</strong>g> compressi<strong>on</strong> test, a finite element simulati<strong>on</strong> of a hollow cylinder of orthotropicjointed material around a rigid core, representing <str<strong>on</strong>g>the</str<strong>on</strong>g> paper roll, compressed against a rigid rollerwas per<str<strong>on</strong>g>for</str<strong>on</strong>g>med. During <strong>on</strong>e load cycle <str<strong>on</strong>g>the</str<strong>on</strong>g> roller was first compressed against <str<strong>on</strong>g>the</str<strong>on</strong>g> roll and <str<strong>on</strong>g>the</str<strong>on</strong>g>nwithdrawn. A total of two load cycles were simulated. A two dimensi<strong>on</strong>al model under planestrain c<strong>on</strong>diti<strong>on</strong>s was used. Only <strong>on</strong>e half of <str<strong>on</strong>g>the</str<strong>on</strong>g> roll had to be modelled when using <str<strong>on</strong>g>the</str<strong>on</strong>g> appropriatesymmetry c<strong>on</strong>diti<strong>on</strong>s. Numerical studies indicated that <str<strong>on</strong>g>the</str<strong>on</strong>g> results were¢££¤¥¥ ¦§ £¤¥¥¢£ ¨© ¦§ ¥¤¡ ¨©¦§ § ¨ ¡• practically independent of <str<strong>on</strong>g>the</str<strong>on</strong>g> Poiss<strong>on</strong>’s ratios ν rθ , ν rz , ν θz and <str<strong>on</strong>g>the</str<strong>on</strong>g> coefficient of fricti<strong>on</strong>between <str<strong>on</strong>g>the</str<strong>on</strong>g> paper roll and nip roller µ pr . For <str<strong>on</strong>g>the</str<strong>on</strong>g> Poiss<strong>on</strong>’s ratios typical values from [7]were used.• <strong>on</strong>ly slightly dependent <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> elastic moduli E θ and E z . The modulus E θ was measured.A value typical <str<strong>on</strong>g>for</str<strong>on</strong>g> catalog paper was used <str<strong>on</strong>g>for</str<strong>on</strong>g> E z .The values <str<strong>on</strong>g>for</str<strong>on</strong>g> E r and G rθ were determined by fitting <str<strong>on</strong>g>the</str<strong>on</strong>g> calculated and measured results. Itshould be noted that values <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> shear modulus G rθ are rarely reported in existing literature, andyet it is an important parameter in modern winding models including <str<strong>on</strong>g>the</str<strong>on</strong>g> nip acti<strong>on</strong>. A summaryof <str<strong>on</strong>g>the</str<strong>on</strong>g> parameter values used in <str<strong>on</strong>g>the</str<strong>on</strong>g> ultimate calculati<strong>on</strong>s are given in Table 1.Table 1: Values of <str<strong>on</strong>g>the</str<strong>on</strong>g> parameters used in <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong>.circumferential and axial directi<strong>on</strong>s of <str<strong>on</strong>g>the</str<strong>on</strong>g> roll, respectively.The indices r, θ and z refer to <str<strong>on</strong>g>the</str<strong>on</strong>g> radial,Elastic moduli Poiss<strong>on</strong>’s ratios Shear modulus Coefficients of fricti<strong>on</strong>E r = 10.0 MPa ν rθ = −0.0055 G rθ = 42.0 MPa µ pp = 0.275E θ = 5100 MPa ν rz = −0.0035 µ pr = 0.4E z = 2600 MPa ν θz = 0.37ResultsThe indentati<strong>on</strong> δ as a functi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> nip load P is shown in Fig. 2. A preload of 1 kN/m wasapplied to remove <str<strong>on</strong>g>the</str<strong>on</strong>g> entrained air below <str<strong>on</strong>g>the</str<strong>on</strong>g> top layers of <str<strong>on</strong>g>the</str<strong>on</strong>g> paper roll and to set <str<strong>on</strong>g>the</str<strong>on</strong>g> zero point<str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> displacement. The calculated results (solid line) are in relatively good agreement with <str<strong>on</strong>g>the</str<strong>on</strong>g>56


experimental results (dotted line). Note that <str<strong>on</strong>g>the</str<strong>on</strong>g> loading and unloading do not happen al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g>same path. Instead, a hysteresis cycle can be seen and a permanent indentati<strong>on</strong> of approximately0.3 mm remains after <str<strong>on</strong>g>the</str<strong>on</strong>g> first load cycle. For comparis<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong> was repeated usinga purely elastic, orthotropic model <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> paper roll. The result is shown in Fig. 2 (dashedline). Obviously <str<strong>on</strong>g>the</str<strong>on</strong>g> elastic model cannot produce <str<strong>on</strong>g>the</str<strong>on</strong>g> hysteresis cycle and, thus, <str<strong>on</strong>g>the</str<strong>on</strong>g> loadingand unloading occur al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> same path. The elastic model is also more than 30% stiffer than <str<strong>on</strong>g>the</str<strong>on</strong>g>elastoplastic model. This can be understood, since in <str<strong>on</strong>g>the</str<strong>on</strong>g> plastic model layer–to–layer slippagesoftens <str<strong>on</strong>g>the</str<strong>on</strong>g> behaviour.1Indentati<strong>on</strong> δ [mm]0.80.60.4Experimental0.2Plastic modelElastic model01 2 3 4 5 6 7 8 9 10Nip load P [kN/m]Figure 2: Indentati<strong>on</strong> δ as a functi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> nip load P . Experimental results (circles and dotted line) andcalculated results obtained using <str<strong>on</strong>g>the</str<strong>on</strong>g> elastoplastic model (solid line) and elastic model (dashed line).Regi<strong>on</strong>s of interlayer slippageSince <str<strong>on</strong>g>the</str<strong>on</strong>g> interlayer slippage c<strong>on</strong>tributes significantly to <str<strong>on</strong>g>the</str<strong>on</strong>g> indentati<strong>on</strong>–load behaviour, it is interestingto see where <str<strong>on</strong>g>the</str<strong>on</strong>g> slippage occurs. The permanent plastic engineering shearing strain (orpermanent interlayer slippage) after two load cycles is shown in Fig. 3.Figure 3: Plastic engineering shearing strain (or interlayer slippage) in <str<strong>on</strong>g>the</str<strong>on</strong>g> paper roll after two completedload cycles. A close up of <str<strong>on</strong>g>the</str<strong>on</strong>g> nip regi<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> finite element mesh are shown <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> right. Only <str<strong>on</strong>g>the</str<strong>on</strong>g> lefthalf of <str<strong>on</strong>g>the</str<strong>on</strong>g> roll is shown.57


The area of high slippage is found <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> side of <str<strong>on</strong>g>the</str<strong>on</strong>g> nip regi<strong>on</strong> close to <str<strong>on</strong>g>the</str<strong>on</strong>g> roll surface, penetratingabout 40 mm into <str<strong>on</strong>g>the</str<strong>on</strong>g> roll. This can be expected, since this is <str<strong>on</strong>g>the</str<strong>on</strong>g> regi<strong>on</strong> of high shear stressesof cylindrical c<strong>on</strong>tact problems where shear stresses overcome <str<strong>on</strong>g>the</str<strong>on</strong>g> fricti<strong>on</strong>al <str<strong>on</strong>g>for</str<strong>on</strong>g>ces and slippageoccurs. Note also that in this regi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> radial compressive stresses are not as high as right below<str<strong>on</strong>g>the</str<strong>on</strong>g> nip area.C<strong>on</strong>cluding remarksAn orthotropic elastoplastic jointed material model accounting <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> slippage and separati<strong>on</strong> of<str<strong>on</strong>g>the</str<strong>on</strong>g> paper layers has been used to study <str<strong>on</strong>g>the</str<strong>on</strong>g> de<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> of a paper roll compressed against a niproller. The calculated results were compared to experimental data and a good corresp<strong>on</strong>dence wasfound. If o<str<strong>on</strong>g>the</str<strong>on</strong>g>r parameter values are known, <str<strong>on</strong>g>the</str<strong>on</strong>g> present model can also be utilized in an indirectmethod <str<strong>on</strong>g>for</str<strong>on</strong>g> determining <str<strong>on</strong>g>the</str<strong>on</strong>g> shear modulus G rθ of paper from roll compressi<strong>on</strong> tests. A directmeasurement of G rθ is difficult due to <str<strong>on</strong>g>the</str<strong>on</strong>g> thinness of paper. It was also shown that a purelyelastic model highly exaggerates <str<strong>on</strong>g>the</str<strong>on</strong>g> stiffness of <str<strong>on</strong>g>the</str<strong>on</strong>g> roll. In c<strong>on</strong>clusi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> interlayer slippageplays a key role in <str<strong>on</strong>g>the</str<strong>on</strong>g> de<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> mechanism of a paper roll, and it has to be taken into accountin <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong>s if accurate results are to be achieved.References[1] R.W. Mann, G.A. Baum and C.C. Habeger. Determinati<strong>on</strong> of all nine orthotropic elastic c<strong>on</strong>stants <str<strong>on</strong>g>for</str<strong>on</strong>g>machine–made paper. TAPPI Journal, 63, 163–166, (1980).[2] G.A. Baum, D.C. Brennan and C.C. Habeger. Orthotropic elastic c<strong>on</strong>stants of paper. TAPPI Journal,64, 97–101, (1981).[3] N. Stenberg, C. Fellers and S. Östlund. Measuring <str<strong>on</strong>g>the</str<strong>on</strong>g> stress–strain properties of paperboard in <str<strong>on</strong>g>the</str<strong>on</strong>g>thickness directi<strong>on</strong>. J. Pulp and Paper Sci., 27, 213–221, (2001).[4] J.D. McD<strong>on</strong>ald and A. Menard. Layer-to-layer slippage within paper rolls during winding, J. Pulp.Pap. Sci., 25, 148–153, (1999).[5] D. McD<strong>on</strong>ald, J. Hamel and A. Menard. Out–of–round paper rolls, In Proceedings of <str<strong>on</strong>g>the</str<strong>on</strong>g> 7th Int.C<strong>on</strong>ference <strong>on</strong> Web Handling, Oklahoma, (2003).[6] K. Ärölä and R. v<strong>on</strong> Hertzen. Modelling interlayer slippage in wound rolls. In A. Erikss<strong>on</strong>, J.Månss<strong>on</strong>, G. Tibert, editors, NSCM-17: Proceedings of <str<strong>on</strong>g>the</str<strong>on</strong>g> 17th Nordic Seminar <strong>on</strong> Computati<strong>on</strong>alMechanics, pages 124–127, Stockholm, (2004).[7] Q. Xia, M. Boyce and D. Parks. A c<strong>on</strong>stitutive model <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> anisotropic elastic–plastic de<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>of paper and paperboard. Int. J. Solids and Structures, 39, 4053–4071, (2002).58


Comparis<strong>on</strong> between Approaches to Explicit Filtering inLarge Eddy Simulati<strong>on</strong>Tellervo BrandtLaboratory of AerodynamicsHelsinki University of Technology, Espoo, Finlande-mail: tellervo.brandt@tkk.fiSummary In this paper, we discuss different approaches to explicit filtering in LES and <str<strong>on</strong>g>the</str<strong>on</strong>g> choice of <str<strong>on</strong>g>the</str<strong>on</strong>g>filter functi<strong>on</strong>. Explicit filtering of <str<strong>on</strong>g>the</str<strong>on</strong>g> whole velocity field fails to predict <str<strong>on</strong>g>the</str<strong>on</strong>g> flow statistics while filteringof <str<strong>on</strong>g>the</str<strong>on</strong>g> change in <str<strong>on</strong>g>the</str<strong>on</strong>g> velocity field or <strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>vecti<strong>on</strong> term of <str<strong>on</strong>g>the</str<strong>on</strong>g> Navier–Stokes equati<strong>on</strong>s behave better.Using a filter as close as possible to <str<strong>on</strong>g>the</str<strong>on</strong>g> spectral cut-off produces <str<strong>on</strong>g>the</str<strong>on</strong>g> best result. However, using explicitfiltering increases <str<strong>on</strong>g>the</str<strong>on</strong>g> effect of <str<strong>on</strong>g>the</str<strong>on</strong>g> modelling error <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> statistics.Introducti<strong>on</strong>In Large Eddy Simulati<strong>on</strong> (LES), <str<strong>on</strong>g>the</str<strong>on</strong>g> large scales of fluid moti<strong>on</strong> are solved from <str<strong>on</strong>g>the</str<strong>on</strong>g> Navier–Stokes equati<strong>on</strong>s, and a sub-grid scale (SGS) model is applied to describe <str<strong>on</strong>g>the</str<strong>on</strong>g> effect of <str<strong>on</strong>g>the</str<strong>on</strong>g> smallscales <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> large scales. When low-order (i.e. sec<strong>on</strong>d or fourth order) finite-difference-typemethods, where discretizati<strong>on</strong> is not per<str<strong>on</strong>g>for</str<strong>on</strong>g>med in <str<strong>on</strong>g>the</str<strong>on</strong>g> Fourier space, are applied, and <str<strong>on</strong>g>the</str<strong>on</strong>g> computati<strong>on</strong>algrid is let to define <str<strong>on</strong>g>the</str<strong>on</strong>g> separati<strong>on</strong> between resolved and SGS scales, <str<strong>on</strong>g>the</str<strong>on</strong>g> numerical errorbecomes a problem. It can be larger than <str<strong>on</strong>g>the</str<strong>on</strong>g> effect of <str<strong>on</strong>g>the</str<strong>on</strong>g> SGS model. Explicit filtering of <str<strong>on</strong>g>the</str<strong>on</strong>g>resolved flow field has been noticed to improve <str<strong>on</strong>g>the</str<strong>on</strong>g> situati<strong>on</strong> [1].Filtering of <str<strong>on</strong>g>the</str<strong>on</strong>g> whole velocity field in <str<strong>on</strong>g>the</str<strong>on</strong>g> end of each time step has been <str<strong>on</strong>g>the</str<strong>on</strong>g> traditi<strong>on</strong>al approach,but it has been criticised of leading to multiple filtering of <str<strong>on</strong>g>the</str<strong>on</strong>g> velocity field from <str<strong>on</strong>g>the</str<strong>on</strong>g> previoustime levels [2], and in a priori testing, it has lead to unphysical behaviour of <str<strong>on</strong>g>the</str<strong>on</strong>g> SGS term [3].Filtering of <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>-linear c<strong>on</strong>vecti<strong>on</strong> term of <str<strong>on</strong>g>the</str<strong>on</strong>g> Navier–Stokes equati<strong>on</strong>s has been suggested asan alternative approach [2]. The approach has been applied in actual simulati<strong>on</strong>s [4], and it hasgiven promising results also in a priori tests [3]. However, filtering of <strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>vecti<strong>on</strong> termbreaks <str<strong>on</strong>g>the</str<strong>on</strong>g> Galilean invariance. This can be recovered by using a filter as close as possible to <str<strong>on</strong>g>the</str<strong>on</strong>g>spectral cut-off filter or by proper SGS modelling.In this paper, we discuss different approaches to explicit filtering and compare between someexplicit filters. As <str<strong>on</strong>g>the</str<strong>on</strong>g> test case, we have a fully developed turbulent channel flow between twoinfinite parallel walls. The Reynolds number based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> fricti<strong>on</strong> velocity and <str<strong>on</strong>g>the</str<strong>on</strong>g> channel halfheightis Re τ = 395. This corresp<strong>on</strong>ds approximately to Re ≈ 6500 based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> mean velocity.Governing Equati<strong>on</strong>s and Applied Numerical MethodsIn LES of an incompressible flow, we solve <str<strong>on</strong>g>the</str<strong>on</strong>g> filtered Navier–Stokes equati<strong>on</strong>s, which are writtenhere in <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>-dimensi<strong>on</strong>al <str<strong>on</strong>g>for</str<strong>on</strong>g>m as:∂ũ i∂t = − ∂P∂x i− ∂ ˜p∂x i+(∂ − ũ i ũ j − τ ij + 1 ( ∂ũi+ ∂ũ ) )j, (1)∂x j Re τ ∂x j ∂x iwhere (x 1 , x 2 , x 3 ) = (x, y, z) refer to n<strong>on</strong>-dimensi<strong>on</strong>al streamwise, wall-normal and spanwisespatial coordinates, respectively, t to time, (ũ 1 , ũ 2 , ũ 3 ) = (u, v, w) to resolved velocity vector, ρto density, P to mean pressure, ˜p to fluctuating resolved pressure, and τ ij is a model <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> SGSstress tensor ũ i u j − ũ i ũ j . Here, <str<strong>on</strong>g>the</str<strong>on</strong>g> equati<strong>on</strong>s are scaled by <str<strong>on</strong>g>the</str<strong>on</strong>g> channel half-height, 0.5h, andfricti<strong>on</strong> velocity u τ = √ τ wall /ρ, and <str<strong>on</strong>g>the</str<strong>on</strong>g> Reynolds number is thus defined as Re τ = 0.5hu τ ρ/µ.The standard Smagorinsky model [5] is applied to model τ ij .In <str<strong>on</strong>g>the</str<strong>on</strong>g> present simulati<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d-order central-difference scheme was applied <strong>on</strong> a staggeredgrid system <str<strong>on</strong>g>for</str<strong>on</strong>g> spatial discretizati<strong>on</strong>. For time integrati<strong>on</strong>, a third-order, three-stage Runge–Kuttamethod was applied. For details of <str<strong>on</strong>g>the</str<strong>on</strong>g> methods see Ref. [6]. The applied resoluti<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g>domain size are given in Table 1.59


Table 1: Resoluti<strong>on</strong> and domain size of <str<strong>on</strong>g>the</str<strong>on</strong>g> applied LES grid.x z ylength of <str<strong>on</strong>g>the</str<strong>on</strong>g> domain (scaled by 0.5h) 6.0 3.2 2.0number of grid points 54 54 60size of <str<strong>on</strong>g>the</str<strong>on</strong>g> grid cell in wall units (∆ + ) 44 11 min 2, max 27wall units: x + = Re τ x, where x is scaled by <str<strong>on</strong>g>the</str<strong>on</strong>g> channel half-height.Different Approaches to Explicit FilteringOne step of <str<strong>on</strong>g>the</str<strong>on</strong>g> applied Runge-Kutta method may be written as:ũ n+1i= ũ n i + ∆t n ( c 1 ∆ũ n + c 2 ∆ũ n−1) , (2)where <str<strong>on</strong>g>the</str<strong>on</strong>g> superscript refers to time levels and c 1 and c 2 are <str<strong>on</strong>g>the</str<strong>on</strong>g> coefficients of <str<strong>on</strong>g>the</str<strong>on</strong>g> method. In <str<strong>on</strong>g>the</str<strong>on</strong>g>first applied approach to explicit filtering, <str<strong>on</strong>g>the</str<strong>on</strong>g> whole velocity field, ũ n+1i, is filtered in <str<strong>on</strong>g>the</str<strong>on</strong>g> end ofeach step. In this case, <str<strong>on</strong>g>the</str<strong>on</strong>g> velocity field ũ n i from <str<strong>on</strong>g>the</str<strong>on</strong>g> previous step will be multiply filtered. Thisleads to loss of in<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> if a filter o<str<strong>on</strong>g>the</str<strong>on</strong>g>r than sharp spectral cut-off is applied [2]. In <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>dapproach, <str<strong>on</strong>g>the</str<strong>on</strong>g> change in <str<strong>on</strong>g>the</str<strong>on</strong>g> velocity field, ∆ũ n i , is filtered, and in <str<strong>on</strong>g>the</str<strong>on</strong>g> third and fourth approaches,<strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>-linear c<strong>on</strong>vecti<strong>on</strong> term, ũ i ũ j , and <str<strong>on</strong>g>the</str<strong>on</strong>g> sum of n<strong>on</strong>-linear c<strong>on</strong>vecti<strong>on</strong> term and <str<strong>on</strong>g>the</str<strong>on</strong>g>SGS term, ũ i ũ j + τ ij , are filtered, respectively. The sec<strong>on</strong>d, third and fourth approach avoid <str<strong>on</strong>g>the</str<strong>on</strong>g>multiple filtering of <str<strong>on</strong>g>the</str<strong>on</strong>g> velocity field. In <str<strong>on</strong>g>the</str<strong>on</strong>g> fourth approach, also <str<strong>on</strong>g>the</str<strong>on</strong>g> possible higher frequenciesproduced by <str<strong>on</strong>g>the</str<strong>on</strong>g> SGS model are removed from <str<strong>on</strong>g>the</str<strong>on</strong>g> resolved field.Some Discrete FiltersWe apply altoge<str<strong>on</strong>g>the</str<strong>on</strong>g>r four discrete filters in this paper: <str<strong>on</strong>g>the</str<strong>on</strong>g> Trapezoidal and Simps<strong>on</strong> filters anda third and fifth order commutative filters from Ref. [7]. Here, filtering is applied <strong>on</strong>ly in <str<strong>on</strong>g>the</str<strong>on</strong>g>homogeneous directi<strong>on</strong>s, and thus <str<strong>on</strong>g>the</str<strong>on</strong>g> commutati<strong>on</strong> of filtering with differentiati<strong>on</strong> is not required.However, <str<strong>on</strong>g>the</str<strong>on</strong>g> commutative filters are closer to <str<strong>on</strong>g>the</str<strong>on</strong>g> spectral cut-off filter than <str<strong>on</strong>g>the</str<strong>on</strong>g> Trapezoidal andSimps<strong>on</strong> filters. The applied filters are described in Table 2.Table 2: Coefficients of <str<strong>on</strong>g>the</str<strong>on</strong>g> applied discrete filter functi<strong>on</strong>s. ũ i (x j ) = Σ K l=−K a lũ i (x j+l ).a 0 a ±1 a ±2 a ±3 a ±4 a ±5Trapezoidal 1/2 1/4Simps<strong>on</strong> 2/3 1/63rd order commut. 1/2 9/32 0 -1/325th order commut. 1/2 75/256 0 -25/512 0 3/256G1.210.80.60.40.20TrapezoidalSimps<strong>on</strong>3rd order commut.5th order commut.Spectral cut−off−0.20 0.2 0.4 0.6 0.8 1k ∆ /πResultsComparis<strong>on</strong> between <str<strong>on</strong>g>the</str<strong>on</strong>g> Filtering ApproachesIn cases discussed in this subsecti<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> third-order commutative filter was applied. Filtering of<str<strong>on</strong>g>the</str<strong>on</strong>g> whole velocity field in <str<strong>on</strong>g>the</str<strong>on</strong>g> end of each time step spoiled <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong>. The mean velocityand Reynolds stresses were overpredicted by more than 100% and even <str<strong>on</strong>g>the</str<strong>on</strong>g> total shear stress wasincorrectly predicted, and thus <str<strong>on</strong>g>the</str<strong>on</strong>g> mean momentum balance was not satisfied in <str<strong>on</strong>g>the</str<strong>on</strong>g> channel.Since <str<strong>on</strong>g>the</str<strong>on</strong>g> applied filter was not <str<strong>on</strong>g>the</str<strong>on</strong>g> spectral cut-off, multiple filtering of <str<strong>on</strong>g>the</str<strong>on</strong>g> velocity field resultedin excessive smoothing of <str<strong>on</strong>g>the</str<strong>on</strong>g> velocity field.The mean velocity profile, <str<strong>on</strong>g>the</str<strong>on</strong>g> deviatoric diag<strong>on</strong>al streamwise Reynolds stress and <str<strong>on</strong>g>the</str<strong>on</strong>g> SGS shearstress from <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r approaches are plotted in Figure 1. In <str<strong>on</strong>g>the</str<strong>on</strong>g> mean velocity profile, <str<strong>on</strong>g>the</str<strong>on</strong>g> slope60


is incorrect in all <str<strong>on</strong>g>the</str<strong>on</strong>g> cases. When ∆ũ i is filtered, <str<strong>on</strong>g>the</str<strong>on</strong>g> mean velocity is under-predicted and whenũ i ũ j or ũ i ũ j + τ ij are filtered, it is slightly over-predicted. The deviatoric diag<strong>on</strong>al Reynoldsstress is over-predicted in all <str<strong>on</strong>g>the</str<strong>on</strong>g> cases, and <str<strong>on</strong>g>the</str<strong>on</strong>g> approach where ∆ũ i in filtered is closest to <str<strong>on</strong>g>the</str<strong>on</strong>g>DNS results. The peak in <str<strong>on</strong>g>the</str<strong>on</strong>g> SGS shear stress increases in approaches where ũ i ũ j or ũ i ũ j + τ ijare filtered, but fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r away from <str<strong>on</strong>g>the</str<strong>on</strong>g> wall, it decreases in all <str<strong>on</strong>g>the</str<strong>on</strong>g> cases. Filtering of <str<strong>on</strong>g>the</str<strong>on</strong>g> SGS termhas no effect <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> statistics since <str<strong>on</strong>g>the</str<strong>on</strong>g> Smagorinsky model does not introduce new frequenciesin <str<strong>on</strong>g>the</str<strong>on</strong>g> resolved flow field. The situati<strong>on</strong> would be different if a scale-similarity-type model wasapplied.U +25201510no filter∆ uuuuu+τ5sgslog−lawu + =y +DNS01 10 100y +−u’u’*0−1−2−3−4−5−6no filter−7∆ u i filteredu i u j−8u i u j +τ ijDNS−90 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.42y/hτ 120.090.080.070.060.050.040.030.020.01no filter∆ u i filteredu i u ju i u j +τ ij00 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.42y/hFigure 1: Comparis<strong>on</strong> between <str<strong>on</strong>g>the</str<strong>on</strong>g> filtering approaches. Left: Mean velocity profile. Middle: Deviatoricdiag<strong>on</strong>al streamwise Reynolds stress −u ′ u ′∗ . Right: SGS shear stress τ 12 .Comparis<strong>on</strong> Between Different FiltersIn this subsecti<strong>on</strong>, we study <str<strong>on</strong>g>the</str<strong>on</strong>g> effect of <str<strong>on</strong>g>the</str<strong>on</strong>g> chosen filter <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> flow statistics using <str<strong>on</strong>g>the</str<strong>on</strong>g> approachwhere ũ i ũ j + τ ij is filtered. The mean velocity profile, <str<strong>on</strong>g>the</str<strong>on</strong>g> deviatoric streamwise Reynolds stressand <str<strong>on</strong>g>the</str<strong>on</strong>g> SGS shear stress are plotted in Figure 2. The slope of <str<strong>on</strong>g>the</str<strong>on</strong>g> mean velocity improves and<str<strong>on</strong>g>the</str<strong>on</strong>g> over-predicti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> mean velocity and <str<strong>on</strong>g>the</str<strong>on</strong>g> Reynolds stress decrease as a filter closer to <str<strong>on</strong>g>the</str<strong>on</strong>g>spectral cut-off is applied. The over-predicti<strong>on</strong> of both quantities is worst when <str<strong>on</strong>g>the</str<strong>on</strong>g> Trapezoidalfilter is applied. The peak in <str<strong>on</strong>g>the</str<strong>on</strong>g> SGS shear stress decreases as a filter closer to <str<strong>on</strong>g>the</str<strong>on</strong>g> spectral cut-offis applied.U +252015no filter10trapezoidalSimps<strong>on</strong>3rd order commut.55th order commut.log−lawu + =y +DNS01 10 100y +−u’u’*0−1−2−3−4−5−6no filtertrapezoidal−7Simps<strong>on</strong>3rd order commut.−85th order commut.DNS−90 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.42y/hτ 120.090.080.070.060.050.040.030.020.01no filtertrapezoidalSimps<strong>on</strong>3rd order commut.5th order commut.00 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.42y/hFigure 2: Comparis<strong>on</strong> between filters. Left: Mean velocity profile. Right: Deviatoric diag<strong>on</strong>al streamwiseReynolds stress −u ′ u ′∗ . Right: SGS shear stress τ 12 .Computati<strong>on</strong>al costIn <str<strong>on</strong>g>the</str<strong>on</strong>g> present case, taking <strong>on</strong>e step in <str<strong>on</strong>g>the</str<strong>on</strong>g> time integrati<strong>on</strong> method took <strong>on</strong> average 0.57 CPUsec<strong>on</strong>ds. When explicit filtering was applied, this took approximately 1.5 CPU sec<strong>on</strong>ds. The61


differences in CPU time between <str<strong>on</strong>g>the</str<strong>on</strong>g> applied filters were at maximum 0.05 CPU sec<strong>on</strong>ds per timestep.C<strong>on</strong>clusi<strong>on</strong>sIn this paper, we have discussed two aspects of explicit filtering in LES. Firstly, four approacheswere compared and sec<strong>on</strong>dly, four filters were tested using <strong>on</strong>e of <str<strong>on</strong>g>the</str<strong>on</strong>g> approaches. Filtering wasapplied <strong>on</strong>ly in <str<strong>on</strong>g>the</str<strong>on</strong>g> homogeneous directi<strong>on</strong>s, and <str<strong>on</strong>g>the</str<strong>on</strong>g> standard Smagorinsky model was applied.Explicit filtering of <str<strong>on</strong>g>the</str<strong>on</strong>g> whole velocity field seriously damaged <str<strong>on</strong>g>the</str<strong>on</strong>g> flow statistics, which was dueto <str<strong>on</strong>g>the</str<strong>on</strong>g> multiple filtering of <str<strong>on</strong>g>the</str<strong>on</strong>g> velocity from <str<strong>on</strong>g>the</str<strong>on</strong>g> previous time levels. This situati<strong>on</strong> can be avoided<strong>on</strong>ly if <str<strong>on</strong>g>the</str<strong>on</strong>g> spectral cut-off filter is applied.There were <strong>on</strong>ly small differences between <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r tested approaches, and all <str<strong>on</strong>g>the</str<strong>on</strong>g> studied statisticswere fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r away from DNS results than <str<strong>on</strong>g>the</str<strong>on</strong>g> traditi<strong>on</strong>al LES with no filtering. This can bedue to counteracti<strong>on</strong> between numerical and modelling errors, which has been noticed to lead to asituati<strong>on</strong> where a decrease in ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r <strong>on</strong>e can lead to increased total error [8]. Filtering of ∆ũ i producedresults closest to <str<strong>on</strong>g>the</str<strong>on</strong>g> DNS results. However, based <strong>on</strong> results of Ref. [4], it seems possiblethat using a mixed model with a scale-similarity term could change <str<strong>on</strong>g>the</str<strong>on</strong>g> situati<strong>on</strong>.The effect of <str<strong>on</strong>g>the</str<strong>on</strong>g> chosen explicit filter was studied using <str<strong>on</strong>g>the</str<strong>on</strong>g> approach where <str<strong>on</strong>g>the</str<strong>on</strong>g> resolved and<str<strong>on</strong>g>the</str<strong>on</strong>g> SGS c<strong>on</strong>vecti<strong>on</strong> terms are filtered. In this approach, using a filter as close as possible to <str<strong>on</strong>g>the</str<strong>on</strong>g>spectral cut-off minimises <str<strong>on</strong>g>the</str<strong>on</strong>g> error due to <str<strong>on</strong>g>the</str<strong>on</strong>g> broken Galilean invariance and <str<strong>on</strong>g>the</str<strong>on</strong>g> effect of filteringto <str<strong>on</strong>g>the</str<strong>on</strong>g> large scales. Here, it was noticed that as <str<strong>on</strong>g>the</str<strong>on</strong>g> applied filter approached <str<strong>on</strong>g>the</str<strong>on</strong>g> spectral cut-offfilter, <str<strong>on</strong>g>the</str<strong>on</strong>g> predicti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> slope of <str<strong>on</strong>g>the</str<strong>on</strong>g> mean-velocity profile and <str<strong>on</strong>g>the</str<strong>on</strong>g> peak of <str<strong>on</strong>g>the</str<strong>on</strong>g> Reynolds stresswere improved. The peak in <str<strong>on</strong>g>the</str<strong>on</strong>g> SGS stress decreased as <str<strong>on</strong>g>the</str<strong>on</strong>g> filter approached <str<strong>on</strong>g>the</str<strong>on</strong>g> spectral cut-off.The effect of <str<strong>on</strong>g>the</str<strong>on</strong>g> chosen filter was larger than <str<strong>on</strong>g>the</str<strong>on</strong>g> effect of <str<strong>on</strong>g>the</str<strong>on</strong>g> choice of <str<strong>on</strong>g>the</str<strong>on</strong>g> filtering approach.As a c<strong>on</strong>clusi<strong>on</strong>, it seems that just applying explicit filtering does not necessarily improve <str<strong>on</strong>g>the</str<strong>on</strong>g>simulati<strong>on</strong> results. As shown by <str<strong>on</strong>g>the</str<strong>on</strong>g> present results, <strong>on</strong>e has to pay attenti<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> choice of <str<strong>on</strong>g>the</str<strong>on</strong>g>filtering approach and e<str<strong>on</strong>g>special</str<strong>on</strong>g>ly to <str<strong>on</strong>g>the</str<strong>on</strong>g> filter. In additi<strong>on</strong>, since <str<strong>on</strong>g>the</str<strong>on</strong>g> effect of <str<strong>on</strong>g>the</str<strong>on</strong>g> model did not increasewhen <str<strong>on</strong>g>the</str<strong>on</strong>g> Smagorinsky model was applied, improved SGS modelling has to be c<strong>on</strong>sidered.Also, <str<strong>on</strong>g>the</str<strong>on</strong>g> increased computati<strong>on</strong> time is a drawback. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> clear benefit in explicit filteringis that <str<strong>on</strong>g>the</str<strong>on</strong>g> effect of <str<strong>on</strong>g>the</str<strong>on</strong>g> numerical error decreases. As l<strong>on</strong>g as it has a major role in <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong>results, <str<strong>on</strong>g>the</str<strong>on</strong>g> interpretati<strong>on</strong> of <str<strong>on</strong>g>for</str<strong>on</strong>g> example <str<strong>on</strong>g>the</str<strong>on</strong>g> behaviour of different SGS models is difficult.AcknowledgementsThis work has been funded by <str<strong>on</strong>g>the</str<strong>on</strong>g> Finnish CFD Graduate School. The computer capacity was partly providedby CSC. The applied channel-flow code is based <strong>on</strong> a code written by Dr. Boersma from TU Delft.References[1] A. G. Kravchenko and P. Moin. On <str<strong>on</strong>g>the</str<strong>on</strong>g> effect of numerical errors in large eddy simulati<strong>on</strong>s of turbulentflows. Journal of Computati<strong>on</strong>al Physics, 131:310–322, 1997.[2] T. S. Lund. On <str<strong>on</strong>g>the</str<strong>on</strong>g> use of discrete filters <str<strong>on</strong>g>for</str<strong>on</strong>g> large eddy simulati<strong>on</strong>. Center <str<strong>on</strong>g>for</str<strong>on</strong>g> Turbulence Research,Annual Research Briefs, pages 83–95, 1997. Stan<str<strong>on</strong>g>for</str<strong>on</strong>g>d University.[3] T. Brandt. Discretizati<strong>on</strong> errors in LES using sec<strong>on</strong>d-order central-difference scheme. In P. Neittaanmäki,T. Rossi, K. Majava, and O. Pir<strong>on</strong>neau, editors, European C<strong>on</strong>gress <strong>on</strong> Computati<strong>on</strong>al Methodsin Applied Sciences and Engineering, Jyväskylä, Finland, July 2004. ECCOMAS 2004.[4] J. Gullbrand. Grid-independent large-eddy simulati<strong>on</strong> in turbulent channel flow using threedimensi<strong>on</strong>alexplicit filtering. Center <str<strong>on</strong>g>for</str<strong>on</strong>g> Turbulence Research, Annual Research Briefs, pages 167–179, 2002. Stan<str<strong>on</strong>g>for</str<strong>on</strong>g>d University.[5] J. S. Smagorinsky. General circulati<strong>on</strong> experiments with <str<strong>on</strong>g>the</str<strong>on</strong>g> primitive equati<strong>on</strong>s, part I: The basicexperiment. M<strong>on</strong>thly Wea<str<strong>on</strong>g>the</str<strong>on</strong>g>r Review, 91:99–152, 1963.[6] T. Brandt. Studies <strong>on</strong> numerical errors in large eddy simulati<strong>on</strong>. Licentiate’s <str<strong>on</strong>g>the</str<strong>on</strong>g>sis, Helsinki Universityof Technology, August 2004. ISBN 951-22-7192-3.[7] O. V. Vasilyev, T. S. Lund, and P. Moin. A general class of commutative filters <str<strong>on</strong>g>for</str<strong>on</strong>g> LES in complexgeometries. Journal of Computati<strong>on</strong>al Physics, 146(1):82–104, October 1998.[8] B. Vreman, B. Geurts, and H. Kuerten. Comparis<strong>on</strong> of numerical schemes in large-eddy simulati<strong>on</strong> of<str<strong>on</strong>g>the</str<strong>on</strong>g> temporal mixing layer. Internati<strong>on</strong>al Journal <str<strong>on</strong>g>for</str<strong>on</strong>g> Numerical Methods in Fluids, 22:297, 1996.62


Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical Modelling of Biosensors with Per<str<strong>on</strong>g>for</str<strong>on</strong>g>ated andSelective MembranesFeliksas Ivanauskas ∗Institute of Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics and In<str<strong>on</strong>g>for</str<strong>on</strong>g>matics,Vilnius University, Vilnius, Lithuaniae–mail: feliksas.ivanauskas@maf.vu.ltRomas Bar<strong>on</strong>asFaculty of Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics and In<str<strong>on</strong>g>for</str<strong>on</strong>g>maticsVilnius University, Vilnius, Lithuaniae–mail: romas.bar<strong>on</strong>as@maf.vu.ltJuozas KulysDepartment of Chemistry and Bioengineering,Vilnius Gediminas Technical University, Vilnius, Lithuaniae–mail: juozas.kulys@fm.vtu.ltSummary This paper presents a two-dimensi<strong>on</strong>al-in-space ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical model of amperometricbiosensors with per<str<strong>on</strong>g>for</str<strong>on</strong>g>ated and selective membranes acting under internal and external diffusi<strong>on</strong>limitati<strong>on</strong>s. The model is based <strong>on</strong> n<strong>on</strong>-linear reacti<strong>on</strong>-diffusi<strong>on</strong> equati<strong>on</strong>s. Using numericalsimulati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> influence of <str<strong>on</strong>g>the</str<strong>on</strong>g> geometry of <str<strong>on</strong>g>the</str<strong>on</strong>g> biosensor as well as of <str<strong>on</strong>g>the</str<strong>on</strong>g> external diffusi<strong>on</strong> regi<strong>on</strong><strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> biosensor resp<strong>on</strong>se was investigated.Introducti<strong>on</strong>Biosensors are measuring devices that c<strong>on</strong>tain a biological entity [1]. The enzyme ina biosensor recognizes <str<strong>on</strong>g>the</str<strong>on</strong>g> substrate to be measured and specifically c<strong>on</strong>verts it into aproduct of <str<strong>on</strong>g>the</str<strong>on</strong>g> biochemical reacti<strong>on</strong>. The amperometric biosensors measure <str<strong>on</strong>g>the</str<strong>on</strong>g> faradiccurrent that arises <strong>on</strong> a working indicator electrode by direct electrochemical oxidati<strong>on</strong> orreducti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> product. The amperometric biosensors are known to be reliable, cheapand highly sensitive <str<strong>on</strong>g>for</str<strong>on</strong>g> envir<strong>on</strong>ment, clinical and industrial purposes [2].A practical biosensor c<strong>on</strong>tains a multilayer enzyme membrane [3]. The electrode actingas a transducer of <str<strong>on</strong>g>the</str<strong>on</strong>g> biosensor is covered by selective membrane, following a layer ofimmobilized enzyme and an outer per<str<strong>on</strong>g>for</str<strong>on</strong>g>ated membrane [4].The goal of this research was to build a model approaching <str<strong>on</strong>g>the</str<strong>on</strong>g> practical amperometricbiosensor and taking into account <str<strong>on</strong>g>the</str<strong>on</strong>g> geometry of <str<strong>on</strong>g>the</str<strong>on</strong>g> membrane per<str<strong>on</strong>g>for</str<strong>on</strong>g>ati<strong>on</strong>. Using computersimulati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> influence of <str<strong>on</strong>g>the</str<strong>on</strong>g> geometry of <str<strong>on</strong>g>the</str<strong>on</strong>g> biosensor as well as of <str<strong>on</strong>g>the</str<strong>on</strong>g> externaldiffusi<strong>on</strong> regi<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> biosensor resp<strong>on</strong>se was investigated. The simulati<strong>on</strong> was carriedout using <str<strong>on</strong>g>the</str<strong>on</strong>g> finite difference technique [5].Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical modelThe holes in <str<strong>on</strong>g>the</str<strong>on</strong>g> per<str<strong>on</strong>g>for</str<strong>on</strong>g>ated membrane were modelled by right cylinders. The holes are ofuni<str<strong>on</strong>g>for</str<strong>on</strong>g>m diameter and spacing, <str<strong>on</strong>g>for</str<strong>on</strong>g>ming a hexag<strong>on</strong>al pattern. Fig. 1a presents <str<strong>on</strong>g>the</str<strong>on</strong>g> biosensorschematically.The entire biosensor may be divided into equal hexag<strong>on</strong>al prisms with regular bases. Forsimplicity, it is reas<strong>on</strong>able to c<strong>on</strong>sider a circle whose area equals to that of <str<strong>on</strong>g>the</str<strong>on</strong>g> hexag<strong>on</strong> and63


a) b) Figure 1: A principal structure of <str<strong>on</strong>g>the</str<strong>on</strong>g> biosensor and <str<strong>on</strong>g>the</str<strong>on</strong>g> profile of <str<strong>on</strong>g>the</str<strong>on</strong>g> unit cell at Y-plane.to regard <strong>on</strong>e of <str<strong>on</strong>g>the</str<strong>on</strong>g> cylinders as a unit cell of <str<strong>on</strong>g>the</str<strong>on</strong>g> biosensor. Fig. 1b shows <str<strong>on</strong>g>the</str<strong>on</strong>g> profile of <str<strong>on</strong>g>the</str<strong>on</strong>g>unit of <str<strong>on</strong>g>the</str<strong>on</strong>g> biosensor. b 1 , b 2 −b 1 , b 3 −b 2 , b 4 −b 3 are <str<strong>on</strong>g>the</str<strong>on</strong>g> thicknesses of <str<strong>on</strong>g>the</str<strong>on</strong>g> selective membrane,basic enzyme layer, per<str<strong>on</strong>g>for</str<strong>on</strong>g>ated membrane and external diffusi<strong>on</strong> layer, respectively, a 2 is<str<strong>on</strong>g>the</str<strong>on</strong>g> radius of <str<strong>on</strong>g>the</str<strong>on</strong>g> base of <str<strong>on</strong>g>the</str<strong>on</strong>g> unit cell, a 1 is <str<strong>on</strong>g>the</str<strong>on</strong>g> radius of <str<strong>on</strong>g>the</str<strong>on</strong>g> holes. We also assume thatholes are filled with <str<strong>on</strong>g>the</str<strong>on</strong>g> enzyme.Let Ω 1 , Ω 2 , Ω 3 be open regi<strong>on</strong>s corresp<strong>on</strong>ding to <str<strong>on</strong>g>the</str<strong>on</strong>g> selective membrane, enzyme regi<strong>on</strong>,diffusi<strong>on</strong> layer, respectively, and Γ 2 - <str<strong>on</strong>g>the</str<strong>on</strong>g> boundary between of Ω 2 and Ω 3 ,Ω 1 = (0,a 2 ) × (0,b 1 ), Ω 2 = ((0,a 2 ) × (b 1 ,b 2 )) ∪ ((0,a 1 ) × [b 2 ,b 3 )) ,Ω 3 = (0,a 2 ) × (b 3 ,b 4 ), Γ 2 = [0,a 1 ] × b 3 .(1)The biosensor acti<strong>on</strong> is described by <str<strong>on</strong>g>the</str<strong>on</strong>g> reacti<strong>on</strong> - diffusi<strong>on</strong> system (t > 0)∂P 1∂t= D 1 ∆P 1 , (r,z) ∈ Ω 1 , (2)∂S 2∂t= D 2 ∆S 2 − V maxSK M + S 2,∂P 2∂t= D 2 ∆P 2 + V maxSK M + S 2, (r,z) ∈ Ω 2 , (3)∂S 3∂t= D 3 ∆S 3 ,∂P 3∂t= D 3 ∆P 3 , (r,z) ∈ Ω 3 , (4)where ∆ is <str<strong>on</strong>g>the</str<strong>on</strong>g> Laplacian in cylindrical coordinates, S i (r,z,t) is <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g>substrate in Ω i , i = 2,3, P j (r,z,t) is <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> reacti<strong>on</strong> product in Ω j ,j = 1,2,3, V max is <str<strong>on</strong>g>the</str<strong>on</strong>g> maximal enzymatic rate and K M is <str<strong>on</strong>g>the</str<strong>on</strong>g> Michaelis c<strong>on</strong>stant.Let Ω i be <str<strong>on</strong>g>the</str<strong>on</strong>g> closure of <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding open regi<strong>on</strong> Ω i , i = 1,2,3. The initial c<strong>on</strong>diti<strong>on</strong>s(t = 0) are as follows:S 2 (r,z,0) = 0, (r,z) ∈ Ω 2 \ Γ 2 , S 2 (r,z,0) = S 0 , (r,z) ∈ Γ 2 ,S 3 (r,z,0) = S 0 , (r,z) ∈ Ω 3 ,P i (r,z,0) = 0, (r,z) ∈ Ω i , i = 1,2,3.(5)The boundary and matching c<strong>on</strong>diti<strong>on</strong>s (t > 0) areP 1 (r,0,t) = 0, S 3 (r,b 4 ,t) = S 0 , P 3 (r,b 4 ,t) = 0,∂S 2∂z∣ = 0 r ∈ [0,a 2 ], (6)z=b164


∂P 1∣ = ∂P 1∣ = 0,∂r r=0 ∂r r=a2z ∈ [0,b 1 ], (7)∂P 2∣ = ∂S 2∣ = ∂P 2∣ = ∂S 2∣ = 0,∂r r=0 ∂r r=0 ∂r r=a2 ∂r r=a2z ∈ [b 1 ,b 2 ], (8)∂P 2∣ = ∂S 2∣ = ∂P 2∣ = ∂S 2∣ = 0,∂r r=0 ∂r r=0 ∂r r=a1 ∂r r=a1z ∈ [b 2 ,b 3 ], (9)∂P 3∣ = ∂S 3∣ = ∂P 3∣ = ∂S 3∣ = 0,∂r r=0 ∂r r=0 ∂r r=a2 ∂r r=a2z ∈ [b 3 ,b 4 ], (10)∂P 2∣ = ∂S 2∣ = ∂P 3∣ = ∂S 3∣ = 0,∂z z=b2 ∂z z=b2 ∂r z=b3 ∂r z=b3r ∈ [a 1 ,a 2 ], (11)∂P 1∂P 2D 1 ∣ = D 2 ∣ , P 1 (r,b 1 ,t) = P 2 (r,b 1 ,t), r ∈ [0,a 2 ], (12)∂z z=b1 ∂z z=b1∂P 2∂P 3D 2 ∣ = D 3 ∣ , P 2 (r,b 3 ,t) = P 3 (r,b 3 ,t), r ∈ [0,a 1 ], (13)∂z z=b3 ∂z z=b3∂S 2∂S 3D 2 ∣ = D 3 ∣ ,∂z z=b3 ∂z z=b3S 2 (r,b 3 ,t) = S 3 (r,b 3 ,t), r ∈ [0,a 1 ]. (14)The measured current depends up<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> flux of <str<strong>on</strong>g>the</str<strong>on</strong>g> reacti<strong>on</strong> product at <str<strong>on</strong>g>the</str<strong>on</strong>g> electrodesurface. The density i(t) of <str<strong>on</strong>g>the</str<strong>on</strong>g> current at time t can be obtained explicitly from Faraday’sand Fick’s lawsi(t) = n e FD 11πa 2 2∫ 2π ∫ a200∂P 1∂z∣ rdrdϕ, (15)z=0where n e is a number of electr<strong>on</strong>s involved in a charge transfer and F is Faraday c<strong>on</strong>stant.We assume, that <str<strong>on</strong>g>the</str<strong>on</strong>g> system (2)-(14) approaches an equilibrium or steady - state whent → ∞, i ∞ = limt→∞i(t).The problem was solved numerically using <str<strong>on</strong>g>the</str<strong>on</strong>g> finite difference technique [5]. We introduceda n<strong>on</strong>-uni<str<strong>on</strong>g>for</str<strong>on</strong>g>m discrete grid in all three directi<strong>on</strong>s: r, z and t. Using <str<strong>on</strong>g>the</str<strong>on</strong>g> alternating directi<strong>on</strong>method, an implicit finite difference scheme was built. The resulting systems of linearalgebraic equati<strong>on</strong>s were solved efficiently because of <str<strong>on</strong>g>the</str<strong>on</strong>g> tridiag<strong>on</strong>ality of <str<strong>on</strong>g>the</str<strong>on</strong>g>ir matrices.Results of calculati<strong>on</strong>sThe thickness δ = b 4 − b 3 of <str<strong>on</strong>g>the</str<strong>on</strong>g> external diffusi<strong>on</strong> layer is inversely proporti<strong>on</strong>al to <str<strong>on</strong>g>the</str<strong>on</strong>g>intensity of soluti<strong>on</strong> stirring [6]. To investigate <str<strong>on</strong>g>the</str<strong>on</strong>g> effect of <str<strong>on</strong>g>the</str<strong>on</strong>g> external diffusi<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>biosensor resp<strong>on</strong>se we calculated <str<strong>on</strong>g>the</str<strong>on</strong>g> normalized steady-state current,i N (δ) = i ∞(δ)i ∞ (0) , δ = b 4 − b 3 , δ ≥ 0, (16)where i ∞ (δ) is <str<strong>on</strong>g>the</str<strong>on</strong>g> steady-state biosensor current at given thickness δ of <str<strong>on</strong>g>the</str<strong>on</strong>g> diffusi<strong>on</strong> layer.Fig. 2 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> results of calculati<strong>on</strong>s.One can see in Fig. 2, i N is a m<strong>on</strong>ot<strong>on</strong>ous increasing functi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> thickness δ of <str<strong>on</strong>g>the</str<strong>on</strong>g>diffusi<strong>on</strong> layer in <str<strong>on</strong>g>the</str<strong>on</strong>g> cases of relatively large radius a 1 of <str<strong>on</strong>g>the</str<strong>on</strong>g> holes of <str<strong>on</strong>g>the</str<strong>on</strong>g> per<str<strong>on</strong>g>for</str<strong>on</strong>g>atedmembrane (a 1 > 0.2a 2 = 0.2µm). Due to <str<strong>on</strong>g>the</str<strong>on</strong>g> external diffusi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> biosensor current can65


i Na)654321123450 10 20 30 40 50 60 70 80 90 100δ, µmi Nb)87654321123450 10 20 30 40 50 60 70 80 90 100δ, µmFigure 2: The normalized steady-state current i N versus <str<strong>on</strong>g>the</str<strong>on</strong>g> thickness δ of <str<strong>on</strong>g>the</str<strong>on</strong>g> diffusi<strong>on</strong> layer atdifferent values of <str<strong>on</strong>g>the</str<strong>on</strong>g> radius a 1 of holes, a 1 = 1.0 (1), 0.8 (2), 0.6 (3), 0.4 (4), 0.2 (5)µm, S 0 : 100(a), 1 (b) µM, V max : 100 (a), 1 (b) µM/s, a 2 = 1, b 1 = 2, b 2 = 4, b 3 = 14 µm, D 1 = 1 µm 2 /s, D 2= 300 µm 2 /s, D 3 = 2D 2 , K M = 100 µM, n e = 2.vary even in an order of magitude. In <str<strong>on</strong>g>the</str<strong>on</strong>g> opposite case of relatively small radius a 1 ofholes <str<strong>on</strong>g>the</str<strong>on</strong>g> biosensor resp<strong>on</strong>se practically does not depend up<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> intensity of stirring ofanalyte (Fig. 2). This property is valid <str<strong>on</strong>g>for</str<strong>on</strong>g> wide rages of <str<strong>on</strong>g>the</str<strong>on</strong>g> substrate c<strong>on</strong>centrati<strong>on</strong> S 0and maximal enzymatic rate V max .C<strong>on</strong>cluding remarksThe ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical model (2)-(14) of operati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> amperometric biosensors with selectiveand per<str<strong>on</strong>g>for</str<strong>on</strong>g>ated membrane can be used to investigate pecularities of <str<strong>on</strong>g>the</str<strong>on</strong>g> biosensorresp<strong>on</strong>se in stirred and n<strong>on</strong> stirred analytes.In <str<strong>on</strong>g>the</str<strong>on</strong>g> case of relatively large radius of holes of <str<strong>on</strong>g>the</str<strong>on</strong>g> per<str<strong>on</strong>g>for</str<strong>on</strong>g>ated membrane, <str<strong>on</strong>g>the</str<strong>on</strong>g> steady-statecurrent is a m<strong>on</strong>ot<strong>on</strong>ous increasing functi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> thickness of <str<strong>on</strong>g>the</str<strong>on</strong>g> external diffusi<strong>on</strong> layerand that layer should be taken into c<strong>on</strong>siderati<strong>on</strong> when modelling <str<strong>on</strong>g>the</str<strong>on</strong>g> biosensor acti<strong>on</strong>(Fig. 2). In <str<strong>on</strong>g>the</str<strong>on</strong>g> case of relatively small radius of holes <str<strong>on</strong>g>the</str<strong>on</strong>g> biosensor resp<strong>on</strong>se practicallydoes not depend up<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> intensity of stirring of analyte (Fig. 2), and <str<strong>on</strong>g>the</str<strong>on</strong>g> external diffusi<strong>on</strong>layer may be neglected to model <str<strong>on</strong>g>the</str<strong>on</strong>g> operati<strong>on</strong> of biosensors with per<str<strong>on</strong>g>for</str<strong>on</strong>g>ated membrane.AcknowledgementThis work was partially supported by Lithuanian State Science and Studies Foundati<strong>on</strong>,project No. C-03048.References[1] F. Scheller and F. Schubert. Biosensors. Elsevier, Amsterdam, (1992).[2] U. Wollenberger, F. Lisdat and F.W. Scheller. Fr<strong>on</strong>tiers in Biosensorics 2. Practical Applicati<strong>on</strong>s.Birkhauser Verlag, Basel, (1997).[3] A.J. Baeumner, C. J<strong>on</strong>es, C.Y. W<strong>on</strong>g and A. Price. A generic sandwich-type biosensor withnanomolar detecti<strong>on</strong> limits. Anal. Bioanal. Chem., 387, 1587 – 1593, (2004).[4] T. Schulmeister and D. Pfeiffer. Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical modelling of amperometric enzyme electrodeswith per<str<strong>on</strong>g>for</str<strong>on</strong>g>ated membranes. Biosens. Bioelectr<strong>on</strong>., 8, 75 – 79, (1993).[5] A.A. Samarskii. The Theory of Difference Schemes. Marcel Dekker, New York-Basel, (2001).[6] R. Bar<strong>on</strong>as, F. Ivanauskas and J. Kulys. Computer simulati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> resp<strong>on</strong>se of amperometricbiosensors in stirred and n<strong>on</strong> stirred soluti<strong>on</strong>. N<strong>on</strong>linear Analysis: Modelling and C<strong>on</strong>trol, 8,3–<str<strong>on</strong>g>18</str<strong>on</strong>g>, (2003).66


Modeling Aircraft Ground Behavior into a Flight Simulati<strong>on</strong>John Öström*Laboratory of AerodynamicsHelsinki University of Technology, Espoo, Finlande-mail: john.ostrom@hut.fiMiika HaatioFinnair Oyj, Finlande-mail: miika.haatio@finnair.fiSummary This paper describes an aircraft ground behavior model of a Valmet Vinka –type light aircraftdeveloped <str<strong>on</strong>g>for</str<strong>on</strong>g> a Matlab/Simulink-based flight simulati<strong>on</strong> software. This simulati<strong>on</strong> could be used inpreliminary flight training in <str<strong>on</strong>g>the</str<strong>on</strong>g> Training Wing of <str<strong>on</strong>g>the</str<strong>on</strong>g> Finnish Air Force. The model was found out toper<str<strong>on</strong>g>for</str<strong>on</strong>g>m realistically despite simplificati<strong>on</strong>s and c<strong>on</strong>stants that had to be estimated due to lack of data.Introducti<strong>on</strong>Valmet Vinka light aircraft, shown in Fig. 1, is used <str<strong>on</strong>g>for</str<strong>on</strong>g> flight training in <str<strong>on</strong>g>the</str<strong>on</strong>g> Finnish Air Force.The Laboratory of Aerodynamics at Helsinki University of Technology is developing a newflight simulati<strong>on</strong> model of <str<strong>on</strong>g>the</str<strong>on</strong>g> aircraft that could replace <str<strong>on</strong>g>the</str<strong>on</strong>g> existing outdated analog simulators.The aircraft landing gear and ground behavior <str<strong>on</strong>g>for</str<strong>on</strong>g>m a part of <str<strong>on</strong>g>the</str<strong>on</strong>g> aircraft model so that taxiing,take-off and landing can be trained as well as up-and-away flying.Figure 1: Valmet Vinka light trainer aircraft.The aircraft model is developed into an in-house developed Matlab/Simulink-based flightsimulati<strong>on</strong> software HUTFLY2 described in reference [1]. The basic simulati<strong>on</strong> programincludes an atmospheric model, n<strong>on</strong>-linear six-degree-of-freedom rigid-body flat-ear<str<strong>on</strong>g>the</str<strong>on</strong>g>quati<strong>on</strong>s of moti<strong>on</strong>, determinati<strong>on</strong> of <str<strong>on</strong>g>for</str<strong>on</strong>g>ces and moments and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r comm<strong>on</strong> routines requiredby <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong>. The simulati<strong>on</strong> can be c<strong>on</strong>trolled using a joystick, a throttle and pedalsc<strong>on</strong>nected to <str<strong>on</strong>g>the</str<strong>on</strong>g> computer, and it can be run synchr<strong>on</strong>ized to real-time clock (“near real-time”).Virtual Reality Modeling Language (VRML) is used extensively in <str<strong>on</strong>g>the</str<strong>on</strong>g> visualizati<strong>on</strong>s.Matlab/Simulink can also be used to c<strong>on</strong>trol simulator cockpits and moti<strong>on</strong> plat<str<strong>on</strong>g>for</str<strong>on</strong>g>ms.There<str<strong>on</strong>g>for</str<strong>on</strong>g>e, <str<strong>on</strong>g>the</str<strong>on</strong>g> present simulati<strong>on</strong> could be used in flight training if an aircraft model is available<str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> applicati<strong>on</strong>.67


Landing gear and its modelingValmet Vinka has a fixed tricycle landing gear with a freely-castoring nose wheel. At lowspeeds <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ground, <str<strong>on</strong>g>the</str<strong>on</strong>g> steering is c<strong>on</strong>trolled using differential braking. As <str<strong>on</strong>g>the</str<strong>on</strong>g> speed buildsup, <str<strong>on</strong>g>the</str<strong>on</strong>g> rudder power becomes adequate <str<strong>on</strong>g>for</str<strong>on</strong>g> aerodynamic steering c<strong>on</strong>trol. The main landinggear legs are attached to a fuselage frame and <str<strong>on</strong>g>the</str<strong>on</strong>g> oil/nitrogen-filled shock absorbers to <str<strong>on</strong>g>the</str<strong>on</strong>g> legand <str<strong>on</strong>g>the</str<strong>on</strong>g> center beam of <str<strong>on</strong>g>the</str<strong>on</strong>g> aircraft. The firewall-attached nose-wheel strut steering angle islimited to ±15º, and a spring is used to keep <str<strong>on</strong>g>the</str<strong>on</strong>g> strut straight during flight. The strut has anoil/nitrogen-filled shock absorber as well. The landing gear layout and main comp<strong>on</strong>ents areshown in Fig. 2.FuselageattachmentLegShock absorberHingeFirewallTorque linkassemblyCenteringspringStrutBrakeFigure 2: Landing gear comp<strong>on</strong>ents.The ground behavior model is fully described in reference [2] and can <strong>on</strong>ly be discussed verybriefly in this c<strong>on</strong>text. The principle of <str<strong>on</strong>g>the</str<strong>on</strong>g> model is to first calculate virtual positi<strong>on</strong>s of <str<strong>on</strong>g>the</str<strong>on</strong>g>three tires corresp<strong>on</strong>ding to <str<strong>on</strong>g>the</str<strong>on</strong>g> fully extended gear flight geometry to be compared to <str<strong>on</strong>g>the</str<strong>on</strong>g>ground level at each simulati<strong>on</strong> time step. If some of <str<strong>on</strong>g>the</str<strong>on</strong>g> tires are below ground level, groundc<strong>on</strong>tact is detected, and landing gear calculati<strong>on</strong> is carried <strong>on</strong> fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r. The next step is to solve<str<strong>on</strong>g>the</str<strong>on</strong>g> true tire positi<strong>on</strong>s, landing gear shock absorber displacements and velocities using <str<strong>on</strong>g>the</str<strong>on</strong>g> solvedgear deflecti<strong>on</strong>s and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir previous values. The damper <str<strong>on</strong>g>for</str<strong>on</strong>g>ces can <str<strong>on</strong>g>the</str<strong>on</strong>g>n be calculated using anordinary spring-damper-equati<strong>on</strong> with n<strong>on</strong>-linear springs. The damping ratio of <str<strong>on</strong>g>the</str<strong>on</strong>g> dampers hadto be estimated from test simulati<strong>on</strong>s at maximum sink rates since <strong>on</strong>ly static test data wereavailable.The n<strong>on</strong>-trivial freely-castoring nose wheel is modeled using equati<strong>on</strong>( β ) + M ( & β ) + M ( α ) M ( & V )I & zβ= M+ /(1)1 234βIn Eq. 1, <str<strong>on</strong>g>the</str<strong>on</strong>g> first moment term (M 1 ) is <str<strong>on</strong>g>the</str<strong>on</strong>g> straightening spring moment due to steering angle β.The sec<strong>on</strong>d <strong>on</strong>e (M 2 ) is <str<strong>on</strong>g>the</str<strong>on</strong>g> combined damping effect of <str<strong>on</strong>g>the</str<strong>on</strong>g> strut bearings and <str<strong>on</strong>g>the</str<strong>on</strong>g> spring. Theterm M 3 is <str<strong>on</strong>g>the</str<strong>on</strong>g> moment due to tire de<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>. It depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> straightening moment due totire sliding angle α and moment due to tire cornering <str<strong>on</strong>g>for</str<strong>on</strong>g>ce and caster length of <str<strong>on</strong>g>the</str<strong>on</strong>g> strut. The tiresliding moment is n<strong>on</strong>-linear and takes <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum sliding angle into account. After <str<strong>on</strong>g>the</str<strong>on</strong>g>maximum sliding angle, <str<strong>on</strong>g>the</str<strong>on</strong>g> moments related to tire de<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> are <strong>on</strong>ly dependent <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>cornering <str<strong>on</strong>g>for</str<strong>on</strong>g>ce and caster length. The last term M 4 models <str<strong>on</strong>g>the</str<strong>on</strong>g> damping of <str<strong>on</strong>g>the</str<strong>on</strong>g> tire in groundc<strong>on</strong>tact and depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> velocity (V), steering angle, c<strong>on</strong>tact surface length and normal <str<strong>on</strong>g>for</str<strong>on</strong>g>ce.The inertial moment I z of <str<strong>on</strong>g>the</str<strong>on</strong>g> nose landing gear had to be estimated.68


The tire velocities are calculated in <str<strong>on</strong>g>the</str<strong>on</strong>g>ir own coordinate systems referred to <str<strong>on</strong>g>the</str<strong>on</strong>g> ground to beused in determining <str<strong>on</strong>g>the</str<strong>on</strong>g> coefficients of fricti<strong>on</strong> in l<strong>on</strong>gitudinal and lateral directi<strong>on</strong>s. The lateralmovement of <str<strong>on</strong>g>the</str<strong>on</strong>g> main wheels with aircraft vertical displacement is an important factor. Fricti<strong>on</strong>is naturally divided into rolling and sliding, but <str<strong>on</strong>g>the</str<strong>on</strong>g> tires have no <str<strong>on</strong>g>for</str<strong>on</strong>g>ward sliding fricti<strong>on</strong>, sincedue to simplificati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g>y are c<strong>on</strong>sidered to be <strong>on</strong>ly rolling. There<str<strong>on</strong>g>for</str<strong>on</strong>g>e, <str<strong>on</strong>g>the</str<strong>on</strong>g> brakes are alsosimplified to be anti-locking. A fricti<strong>on</strong> circle principle is used to limit <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum coefficientof fricti<strong>on</strong> during hard lateral maneuvering and braking. The coefficients are scaled to zerowhen velocity is zero to assure zero fricti<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g>ces at complete rest. The coefficients of fricti<strong>on</strong>are chosen <str<strong>on</strong>g>for</str<strong>on</strong>g> dry pavement, but can be scaled to simulate wet or icy runway c<strong>on</strong>diti<strong>on</strong>s.Finally, <str<strong>on</strong>g>the</str<strong>on</strong>g> fricti<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g>ces affecting <str<strong>on</strong>g>the</str<strong>on</strong>g> tires are calculated and combined with <str<strong>on</strong>g>the</str<strong>on</strong>g> normalsupporting <str<strong>on</strong>g>for</str<strong>on</strong>g>ces. These <str<strong>on</strong>g>for</str<strong>on</strong>g>ces are <str<strong>on</strong>g>the</str<strong>on</strong>g>n transferred into <str<strong>on</strong>g>the</str<strong>on</strong>g> center of gravity of <str<strong>on</strong>g>the</str<strong>on</strong>g> aircraftagain with a new coordinate trans<str<strong>on</strong>g>for</str<strong>on</strong>g>m. Dealing with multiple coordinate systems in six degreesof freedom unavoidably adds complexity into <str<strong>on</strong>g>the</str<strong>on</strong>g> model. The model has c<strong>on</strong>straints <strong>on</strong> hardlandings with too high rates of descent. The aircraft geometry is also taken into account to stopsimulati<strong>on</strong> in situati<strong>on</strong>s were o<str<strong>on</strong>g>the</str<strong>on</strong>g>r parts of <str<strong>on</strong>g>the</str<strong>on</strong>g> aircraft than <str<strong>on</strong>g>the</str<strong>on</strong>g> wheels have c<strong>on</strong>tact withground. The model also provides landing gear parameters into a VRML animati<strong>on</strong>, which wasalso used in validating <str<strong>on</strong>g>the</str<strong>on</strong>g> realism of <str<strong>on</strong>g>the</str<strong>on</strong>g> model.Simulati<strong>on</strong> resultsTo dem<strong>on</strong>strate <str<strong>on</strong>g>the</str<strong>on</strong>g> ground behavior model, results from a landing simulati<strong>on</strong> are presented inFig. 3. The landing at groundspeed of 30m/s was per<str<strong>on</strong>g>for</str<strong>on</strong>g>med with a -5° aircraft sideslip angle(nose right with respect to <str<strong>on</strong>g>the</str<strong>on</strong>g> velocity vector) to show n<strong>on</strong>-symmetric effects.1.561.44CG height [m]1.31.2Angle [°]20-2Main landing gear deflecti<strong>on</strong> angle [°]1.110 1 2 3 4 5Time [s]454035RightLeftNose wheel steering angle [°]φ-4θψ-60 1 2 3 4 5Time [s]0.20-0.2-0.4-0.6-0.8-1300 1 2 3 4 5Time [s]-1.20 0.5 1.0 1.5Time [s]Figure 3: Results from a landing with -5° sideslip angle.69


The first two frames of Fig. 3 show <str<strong>on</strong>g>the</str<strong>on</strong>g> height of <str<strong>on</strong>g>the</str<strong>on</strong>g> aircraft center of gravity and <str<strong>on</strong>g>the</str<strong>on</strong>g> Eulerangles that represent aircraft attitude. The roll angle Φ is positive right wing down, pitch angle θpositive nose up and azimuth angle ψ positive nose right. The two lower frames show <str<strong>on</strong>g>the</str<strong>on</strong>g> mainlanding gear deflecti<strong>on</strong> angles and <str<strong>on</strong>g>the</str<strong>on</strong>g> nose gear steering angle. The main landing gear angle is<str<strong>on</strong>g>the</str<strong>on</strong>g> angle between <str<strong>on</strong>g>the</str<strong>on</strong>g> aircraft symmetry plane and <str<strong>on</strong>g>the</str<strong>on</strong>g> landing gear leg viewed from <str<strong>on</strong>g>the</str<strong>on</strong>g> nose of<str<strong>on</strong>g>the</str<strong>on</strong>g> aircraft. This angle is about 30° when <str<strong>on</strong>g>the</str<strong>on</strong>g> main landing gear is unloaded and about 40°loaded <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ground with an aircraft weight of 1100kg. The nose wheel steering angle ispositive right.The main gear touches down at a center of gravity height of 1.35m and <str<strong>on</strong>g>the</str<strong>on</strong>g> nose gear a whilelater as seen from <str<strong>on</strong>g>the</str<strong>on</strong>g> main landing gear and nose wheel steering angle plots. As <str<strong>on</strong>g>the</str<strong>on</strong>g> aircraft hasnegative sideslip, <str<strong>on</strong>g>the</str<strong>on</strong>g> left shock absorber compresses more than <str<strong>on</strong>g>the</str<strong>on</strong>g> right <strong>on</strong>e and <str<strong>on</strong>g>the</str<strong>on</strong>g> aircraftbanks left as seen in frame two. The nose gear steers left towards <str<strong>on</strong>g>the</str<strong>on</strong>g> directi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> velocityvector as it touches <str<strong>on</strong>g>the</str<strong>on</strong>g> ground, but some oscillati<strong>on</strong>s are apparent. The aircraft rotates its noseup and wings level to a ground rest attitude. The azimuth and nose wheel steering anglesdecrease as <str<strong>on</strong>g>the</str<strong>on</strong>g> aircraft steers away <str<strong>on</strong>g>for</str<strong>on</strong>g>m <str<strong>on</strong>g>the</str<strong>on</strong>g> sideslip c<strong>on</strong>diti<strong>on</strong>. The attitude angles settle nicelyafter about 2 sec<strong>on</strong>ds of ground roll. The main landing gear angles settle to values slightly lessthan at rest since <str<strong>on</strong>g>the</str<strong>on</strong>g>re is still aerodynamic lift present.C<strong>on</strong>cluding remarksA series of simulati<strong>on</strong>s was per<str<strong>on</strong>g>for</str<strong>on</strong>g>med with <str<strong>on</strong>g>the</str<strong>on</strong>g> landing gear model to verify its per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance. Itwas observed that <str<strong>on</strong>g>the</str<strong>on</strong>g> model simulates <str<strong>on</strong>g>the</str<strong>on</strong>g> ground behavior of <str<strong>on</strong>g>the</str<strong>on</strong>g> aircraft realistically despite<str<strong>on</strong>g>the</str<strong>on</strong>g> fact that certain numeric values used in <str<strong>on</strong>g>the</str<strong>on</strong>g> model had to be estimated. The model is nowimplemented to <str<strong>on</strong>g>the</str<strong>on</strong>g> HUTFLY2 flight simulati<strong>on</strong> as part of <str<strong>on</strong>g>the</str<strong>on</strong>g> Valmet Vinka aircraft model.References[1] J. Öström. Developing a Low-Cost Flight Simulati<strong>on</strong> to Support Fatigue Analysis. AIAAModeling and Simulati<strong>on</strong> Technologies C<strong>on</strong>ference. AIAA 2004-5161, (2004).[2] M. Haatio. Modeling of aircraft ground behavior into a flight simulati<strong>on</strong> program.Master’s <str<strong>on</strong>g>the</str<strong>on</strong>g>sis. Espoo, Finland. Teknillinen korkeakoulu, (2004), (in Finnish).70


A benchmark study: MITC4-S and boundary layer-typede<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>sAntti Niemi ∗ , Juhani Pitkäranta and Harri HakulaInstitute of Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>maticsHelsinki University of Technology, Espoo, Finlande–mail: antti.h.niemi@tkk.fiSummary We study <strong>on</strong>e of <str<strong>on</strong>g>the</str<strong>on</strong>g> open problems in <str<strong>on</strong>g>the</str<strong>on</strong>g> finite element modelling of shell de<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g>approximati<strong>on</strong> of boundary and interior layers. We c<strong>on</strong>sider here a <str<strong>on</strong>g>special</str<strong>on</strong>g> finite element c<strong>on</strong>structi<strong>on</strong>named MITC4-S in <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>text of a simplified shallow shell model. The element is closely related toengineering practice and is certainly <strong>on</strong>e of <str<strong>on</strong>g>the</str<strong>on</strong>g> best bilinear elements aimed <str<strong>on</strong>g>for</str<strong>on</strong>g> general shell analysis.Introducti<strong>on</strong>The phenomena of membrane and shear locking are known to impair various elements in <str<strong>on</strong>g>the</str<strong>on</strong>g>bending-dominated de<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> of a thin shell. The problem results from <str<strong>on</strong>g>the</str<strong>on</strong>g> inability of <str<strong>on</strong>g>the</str<strong>on</strong>g> standardfinite element subspace to satisfy <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s of vanishing shear and membrane strains. Toreduce <str<strong>on</strong>g>the</str<strong>on</strong>g> effects of <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sraints, <str<strong>on</strong>g>the</str<strong>on</strong>g> variati<strong>on</strong>al <str<strong>on</strong>g>for</str<strong>on</strong>g>mulati<strong>on</strong> is often modified by applying reducti<strong>on</strong>operators to <str<strong>on</strong>g>the</str<strong>on</strong>g> strains. The reducti<strong>on</strong>s must be designed very carefully to avoid <str<strong>on</strong>g>the</str<strong>on</strong>g> lossof stability in o<str<strong>on</strong>g>the</str<strong>on</strong>g>r (more comm<strong>on</strong>) de<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> states where <str<strong>on</strong>g>the</str<strong>on</strong>g> membrane and shear strainsplay a more dominant role. It is often argued that a finite element scheme that per<str<strong>on</strong>g>for</str<strong>on</strong>g>ms well inboth bending-dominated and membrane-dominated de<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>s would also per<str<strong>on</strong>g>for</str<strong>on</strong>g>m well in <str<strong>on</strong>g>the</str<strong>on</strong>g>so called intermediate cases where boundary layer-type de<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>s typically dominate. However,already in <str<strong>on</strong>g>the</str<strong>on</strong>g> Reissner-Mindlin plate model, <str<strong>on</strong>g>the</str<strong>on</strong>g>re are algorithms that are free of lockingwhen <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong> is smooth but cause error growth at a free boundary where <str<strong>on</strong>g>the</str<strong>on</strong>g> layer is knownto be str<strong>on</strong>g [3]. This “plate layer”, which has a very short range, is found also in shells, but asa result of curvature effects <str<strong>on</strong>g>the</str<strong>on</strong>g> shell layers may have significantly wider ranges [2]. There<str<strong>on</strong>g>for</str<strong>on</strong>g>e itseems to be necessary to isolate <str<strong>on</strong>g>the</str<strong>on</strong>g> layers and study <str<strong>on</strong>g>the</str<strong>on</strong>g>m as a separate problem.To investigate <str<strong>on</strong>g>the</str<strong>on</strong>g> numerical effects that arise in <str<strong>on</strong>g>the</str<strong>on</strong>g> FEM approximati<strong>on</strong> of shell layers, we havepresented a model problem with a c<strong>on</strong>centrated point load [1]. The problem setup is such thatreference soluti<strong>on</strong>s of arbitrary precisi<strong>on</strong> are computable using Fourier techniques. We focus herein particular to <str<strong>on</strong>g>the</str<strong>on</strong>g> approximati<strong>on</strong> of a point layer in an elliptic shell but also line layers generatedby <str<strong>on</strong>g>the</str<strong>on</strong>g> characteristic lines of a parabolic or a hyperbolic shell midsurface are studied.Our approach is based <strong>on</strong> a simplified shallow shell model and an interpretati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> bilinearMITC4 shell element in this c<strong>on</strong>text. The simplified <str<strong>on</strong>g>for</str<strong>on</strong>g>mulati<strong>on</strong>, named here MITC4-S, hasturned out to be very handy as it preserves <str<strong>on</strong>g>the</str<strong>on</strong>g> essential features of <str<strong>on</strong>g>the</str<strong>on</strong>g> original (degenerated)3D approach while making ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical error analysis possible to some extent, at least. In <str<strong>on</strong>g>the</str<strong>on</strong>g>present study we observe experimentally that <str<strong>on</strong>g>the</str<strong>on</strong>g> numerical modificati<strong>on</strong>s of MITC4-S unlock<str<strong>on</strong>g>the</str<strong>on</strong>g> standard bilinear element also when approximating layers although some traces of o<str<strong>on</strong>g>the</str<strong>on</strong>g>r sideeffects are found in <str<strong>on</strong>g>the</str<strong>on</strong>g> case of a point layer.The Reissner-Naghdi shallow shell modelThe de<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> shell is described in terms of a displacement field u = (u, v, w, θ, ψ)defined <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> shell midsurface ω. In additi<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> tangential displacements u, v and <str<strong>on</strong>g>the</str<strong>on</strong>g> transversedisplacement w, <str<strong>on</strong>g>the</str<strong>on</strong>g> vector field u c<strong>on</strong>sists of <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong>less rotati<strong>on</strong>s θ, ψ related to <str<strong>on</strong>g>the</str<strong>on</strong>g>transverse shear de<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>s. In our model <str<strong>on</strong>g>the</str<strong>on</strong>g> scaled strain energy of <str<strong>on</strong>g>the</str<strong>on</strong>g> shell with a c<strong>on</strong>stantthickness t may be expressed asA(u, u) = A m (u, u) + A s (u, u) + A b (u, u), (1)71


where <str<strong>on</strong>g>the</str<strong>on</strong>g> different bilinear <str<strong>on</strong>g>for</str<strong>on</strong>g>ms represent <str<strong>on</strong>g>the</str<strong>on</strong>g> porti<strong>on</strong>s of energy stored in membrane, transverseshear and bending de<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>s. They are defined as∫{A m (u, u) = ν(β11 + β 22 ) 2 + (1 ν)(β11 2 + 2β12 2 + β22) 2 } dω,ωA s (u, u) = 1 ν ∫{ 21+ 2 }2 dω,(2)2 ω∫{A b (u, u) = ν(κ11 + κ 22 ) 2 + (1 ν)(κ 2 11 + 2κ 2 12 + κ 2 22) } dω,t212ωwhere β ij , i, and κ ij are <str<strong>on</strong>g>the</str<strong>on</strong>g> membrane, transverse shear, and bending strains, respectively.In <str<strong>on</strong>g>the</str<strong>on</strong>g> following we assume that ω is a rectangular domain expressed in <str<strong>on</strong>g>the</str<strong>on</strong>g> coordinates x, y.We also assume that <str<strong>on</strong>g>the</str<strong>on</strong>g> curvature tensor {b ij } of <str<strong>on</strong>g>the</str<strong>on</strong>g> midsurface is c<strong>on</strong>stant and write a = b 11 ,b = b 22 , and c = b 12 = b 21 . The shell is <str<strong>on</strong>g>the</str<strong>on</strong>g>n called elliptic when ab c 2 > 0, parabolic whenab c 2 = 0, and hyperbolic when ab c 2 < 0. The above assumpti<strong>on</strong>s are valid <str<strong>on</strong>g>for</str<strong>on</strong>g> examplewhen <str<strong>on</strong>g>the</str<strong>on</strong>g> shell is shallow, i.e. <str<strong>on</strong>g>the</str<strong>on</strong>g> midsurface differs <strong>on</strong>ly slightly from a plane. In general <str<strong>on</strong>g>the</str<strong>on</strong>g>strain fields in Eqs. (2) depend <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> geometry of <str<strong>on</strong>g>the</str<strong>on</strong>g> shell. In <str<strong>on</strong>g>the</str<strong>on</strong>g> simplest case <strong>on</strong>e may setdω = dxdy and write <str<strong>on</strong>g>the</str<strong>on</strong>g> relati<strong>on</strong> between <str<strong>on</strong>g>the</str<strong>on</strong>g> strain and <str<strong>on</strong>g>the</str<strong>on</strong>g> displacement fields asβ 11 = ∂u∂x + aw, β 22 = ∂v∂y + bw, β 12 = 1 ( ∂u2 ∂y + ∂v )+ cw,∂xκ 111 = θ∂w∂x , 2 = ψ∂w∂y ,= ∂θ∂x , κ 22 = ∂ψ∂y , κ 12 = 1 2( ∂θ∂y + ∂ψ ).∂xIf L is a linear functi<strong>on</strong>al corresp<strong>on</strong>ding to <str<strong>on</strong>g>the</str<strong>on</strong>g> potential energy of <str<strong>on</strong>g>the</str<strong>on</strong>g> external load, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g>de<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> shell is obtained by minimizing <str<strong>on</strong>g>the</str<strong>on</strong>g> total energyover <str<strong>on</strong>g>the</str<strong>on</strong>g> kinematically admissible displacements u ∈ U.F(u) = 1 A(u, u) L(u) (4)2The model problemWe c<strong>on</strong>sider a model problem such that <str<strong>on</strong>g>the</str<strong>on</strong>g> shell is loaded in <str<strong>on</strong>g>the</str<strong>on</strong>g> transverse directi<strong>on</strong> with aperiodic and self-balancing point load of <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>m(3)f =F ∑ i,j( 1) i+j δ(x 2i)δ(y 2j), (5)where <str<strong>on</strong>g>the</str<strong>on</strong>g> load amplitude F > 0 is a c<strong>on</strong>stant (Fig. 1). The corresp<strong>on</strong>ding linear functi<strong>on</strong>al is <str<strong>on</strong>g>the</str<strong>on</strong>g>ngiven byL(u) = F ∑ ( 1) i+j w(2i, 2j). (6)i,j72


× • × • × •• × ⎧• ⎨ω × • ×2⎩× • × •} {{ }× •2• × • × • ×Figure 1: Periodic point loading: • ̂− ‘upwards’, × ̂− ‘downwards’.The proposed problem may be regarded as a generalizati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> classical pinched cylinderbenchmark test where two normal and equal point loads are applied centrally at <str<strong>on</strong>g>the</str<strong>on</strong>g> oppositesides of a cylindrical surface. The quality of approximate soluti<strong>on</strong>s is often measured by <strong>on</strong>lycomparing <str<strong>on</strong>g>the</str<strong>on</strong>g> transverse displacement under <str<strong>on</strong>g>the</str<strong>on</strong>g> point load to some reference value. We wouldlike to point out that this can be misleading since <str<strong>on</strong>g>the</str<strong>on</strong>g> exact value of <str<strong>on</strong>g>the</str<strong>on</strong>g> transverse deflecti<strong>on</strong> isinfinite at <str<strong>on</strong>g>the</str<strong>on</strong>g> load applicati<strong>on</strong> points if Reissner-Mindlin type kinematic assumpti<strong>on</strong> is made in<str<strong>on</strong>g>the</str<strong>on</strong>g> underlying shell model.Taking into account <str<strong>on</strong>g>the</str<strong>on</strong>g> strain expressi<strong>on</strong>s (3) and <str<strong>on</strong>g>the</str<strong>on</strong>g> specific nature of <str<strong>on</strong>g>the</str<strong>on</strong>g> load potential (6), wec<strong>on</strong>clude that in general <str<strong>on</strong>g>the</str<strong>on</strong>g> displacement field is of <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>m⎧u(x, y) = ∑ m,nv(x, y) = ∑ m,n⎪⎨w(x, y) = ∑ m,nθ(x, y) = ∑ m,n⎪⎩ψ(x, y) = ∑ m,n{Umn A sin mπx cos nπy2 2 + U mn B cos mπx2{Vmn A cos mπx sin nπy2 2 + V mn B sin mπx2W mn cos mπx2Θ mn sin mπx2Ψ mn cos mπx2cos nπy2 ,cos nπy2 ,sin nπy },2cos nπy },2(7)sin nπy2 .We also observe that <str<strong>on</strong>g>the</str<strong>on</strong>g> load is not able to excite Fourier modes with m or n even. C<strong>on</strong>sequently,we have to sum over odd indices <strong>on</strong>ly in <str<strong>on</strong>g>the</str<strong>on</strong>g> above expressi<strong>on</strong>s.To determine <str<strong>on</strong>g>the</str<strong>on</strong>g> unknown coefficients, we substitute <str<strong>on</strong>g>the</str<strong>on</strong>g> Ansatz (7) directly into <str<strong>on</strong>g>the</str<strong>on</strong>g> expressi<strong>on</strong>(4) <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> total energy and integrate <str<strong>on</strong>g>the</str<strong>on</strong>g> strain energy density over <strong>on</strong>e period ω as indicated by<str<strong>on</strong>g>the</str<strong>on</strong>g> dash line in Fig. 1. The soluti<strong>on</strong> is <str<strong>on</strong>g>the</str<strong>on</strong>g>n obtained by choosingz mn = ( U A mn V A mn U B mn V B mn W mn Θ mn Ψ mn)(8)to makeF(u, v, w, θ, ψ) = 1 ∑z T2mnA mn z mnm,n∑z T mnb = min! (9)m,n73


The symmetric matrix A mn is also positive definite and <str<strong>on</strong>g>the</str<strong>on</strong>g> load vector b is defined asb = 4F (0 0 0 0 1 0 0) . (10)We evaluated by symbolic computati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> entries of <str<strong>on</strong>g>the</str<strong>on</strong>g> matrix A mn as functi<strong>on</strong>s of <str<strong>on</strong>g>the</str<strong>on</strong>g> indicesm, n and <str<strong>on</strong>g>the</str<strong>on</strong>g> parameters ν, t, a, b, c. Symbolic expansi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong> z mn is also in <str<strong>on</strong>g>the</str<strong>on</strong>g> realmsof possibility but <str<strong>on</strong>g>the</str<strong>on</strong>g> expressi<strong>on</strong>s become so complicated that <str<strong>on</strong>g>the</str<strong>on</strong>g>ir applicability is questi<strong>on</strong>able.However, <str<strong>on</strong>g>the</str<strong>on</strong>g> numerical values of <str<strong>on</strong>g>the</str<strong>on</strong>g> Fourier coefficients are easily obtained by giving somevalues to <str<strong>on</strong>g>the</str<strong>on</strong>g> parameters and choosing suitable stopping indices <str<strong>on</strong>g>for</str<strong>on</strong>g> m, n.tAs an example we show in Fig. 2 <str<strong>on</strong>g>the</str<strong>on</strong>g> strain field e 12 = β 12 2 κ 12 in an elliptic shell (a = b = 1,c = 0) and compare it to <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e calculated by <str<strong>on</strong>g>the</str<strong>on</strong>g> MITC4-S algorithm.Figure 2: The tangential shear strain e 12 in an elliptic shell as given by <str<strong>on</strong>g>the</str<strong>on</strong>g> MITC4-S algorithm (right) andFourier analysis (left).References[1] A. Niemi, J. Pitkäranta, H. Hakula Benchmark computati<strong>on</strong>s <strong>on</strong> point-loaded shallow shells: Fouriervs. FEM Preprint submitted to Comput. Methods Appl. Mech. Engrg. 2005;[2] J. Pitkäranta, A.-M. Matache, C. Schwab Fourier mode analysis of layers in shallow shell de<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>sComput. Methods Appl. Mech. Engrg. 2001; 190:2943–2975.[3] J. Pitkäranta, M. Suri Upper and lower error bounds <str<strong>on</strong>g>for</str<strong>on</strong>g> plate-bending finite elements NumerischeMa<str<strong>on</strong>g>the</str<strong>on</strong>g>matik 2000; 84:611–648.74


Computati<strong>on</strong>al results <str<strong>on</strong>g>for</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> superc<strong>on</strong>vergence and postprocessing ofMITC plate elementsMikko LylyCSCScientific Computing Ltd., Espoo, Finlande–mail: mikko.lyly@csc.fiJarkko Niiranen ∗ and Rolf StenbergInstitute of Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>maticsHelsinki University of Technology, Espoo, Finlande–mail: jarkko.niiranen@tkk.fi, rolf.stenberg@tkk.fiSummary We summarize <str<strong>on</strong>g>the</str<strong>on</strong>g> main parts of <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical results introduced and analyzed in [5] <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>MITC plate elements [2], [4]. We also illustrate and verify <str<strong>on</strong>g>the</str<strong>on</strong>g> superc<strong>on</strong>vergence properties and <str<strong>on</strong>g>the</str<strong>on</strong>g> postprocessingmethod with various numerical computati<strong>on</strong>s.Introducti<strong>on</strong>The deflecti<strong>on</strong> approximati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> MITC plate elements [2], [4] is shown to be superc<strong>on</strong>vergentwith respect to a <str<strong>on</strong>g>special</str<strong>on</strong>g> interpolati<strong>on</strong> operator [5]. This property holds in <str<strong>on</strong>g>the</str<strong>on</strong>g> H 1 -norm and <str<strong>on</strong>g>the</str<strong>on</strong>g>interpolati<strong>on</strong> operator is closely related to <str<strong>on</strong>g>the</str<strong>on</strong>g> reducti<strong>on</strong> operator used in <str<strong>on</strong>g>the</str<strong>on</strong>g> MITC methods. Apart of <str<strong>on</strong>g>the</str<strong>on</strong>g> superc<strong>on</strong>vergence result is, roughly speaking, that <str<strong>on</strong>g>the</str<strong>on</strong>g> vertex values obtained with <str<strong>on</strong>g>the</str<strong>on</strong>g>MITC methods are superc<strong>on</strong>vergent. This may be an explanati<strong>on</strong> why <str<strong>on</strong>g>the</str<strong>on</strong>g>se methods have becomeso popular.By utilizing <str<strong>on</strong>g>the</str<strong>on</strong>g> superc<strong>on</strong>vergence property a postprocessing method has been introduced in [5]— to improve <str<strong>on</strong>g>the</str<strong>on</strong>g> accuracy of <str<strong>on</strong>g>the</str<strong>on</strong>g> deflecti<strong>on</strong> approximati<strong>on</strong>. The new approximati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>deflecti<strong>on</strong> is c<strong>on</strong>structed element by element which implies low computati<strong>on</strong>al costs. The newapproximati<strong>on</strong> is a piecewise polynomial of <strong>on</strong>e degree higher than <str<strong>on</strong>g>the</str<strong>on</strong>g> original <strong>on</strong>e.Here we first summarize <str<strong>on</strong>g>the</str<strong>on</strong>g> main parts of <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical results. Then we show various computati<strong>on</strong>alresults illustrating <str<strong>on</strong>g>the</str<strong>on</strong>g> superc<strong>on</strong>vergence properties of <str<strong>on</strong>g>the</str<strong>on</strong>g> original approximati<strong>on</strong> andc<strong>on</strong>firming <str<strong>on</strong>g>the</str<strong>on</strong>g> improved accuracy of <str<strong>on</strong>g>the</str<strong>on</strong>g> postprocessed approximati<strong>on</strong>. In <str<strong>on</strong>g>the</str<strong>on</strong>g> numerical tests bothuni<str<strong>on</strong>g>for</str<strong>on</strong>g>m and n<strong>on</strong>-uni<str<strong>on</strong>g>for</str<strong>on</strong>g>m meshes are used and cases with different kinds of boundary c<strong>on</strong>diti<strong>on</strong>sare studied.MITC finite elements <str<strong>on</strong>g>for</str<strong>on</strong>g> Reissner-Mindlin platesWe c<strong>on</strong>sider a linearly elastic and isotropic plate with <str<strong>on</strong>g>the</str<strong>on</strong>g> shear modulus G and <str<strong>on</strong>g>the</str<strong>on</strong>g> Poiss<strong>on</strong> ratioν. The midsurface of <str<strong>on</strong>g>the</str<strong>on</strong>g> unde<str<strong>on</strong>g>for</str<strong>on</strong>g>med plate is Ω ⊂ R 2 and <str<strong>on</strong>g>the</str<strong>on</strong>g> plate thickness t is c<strong>on</strong>stant.The boundary of <str<strong>on</strong>g>the</str<strong>on</strong>g> plate we divide into hard clamped, hard simply supported and free parts:∂Ω = Γ C ∪ Γ SS ∪ Γ F . The spaces of kinematically admissible deflecti<strong>on</strong>s and rotati<strong>on</strong>s are <str<strong>on</strong>g>the</str<strong>on</strong>g>nW = {v ∈ H 1 (Ω) | v |ΓC = 0, v |ΓSS = 0}, (1)V = {η ∈ [H 1 (Ω)] 2 | η |ΓC = 0, (η · τ ) |ΓSS= 0}, (2)where τ is <str<strong>on</strong>g>the</str<strong>on</strong>g> unit tangent to <str<strong>on</strong>g>the</str<strong>on</strong>g> boundary. For <str<strong>on</strong>g>the</str<strong>on</strong>g> analysis <str<strong>on</strong>g>the</str<strong>on</strong>g> problem is written in mixed <str<strong>on</strong>g>for</str<strong>on</strong>g>min which <str<strong>on</strong>g>the</str<strong>on</strong>g> shear <str<strong>on</strong>g>for</str<strong>on</strong>g>ce q = t −2 (∇w − β) is taken as an independent unknown in <str<strong>on</strong>g>the</str<strong>on</strong>g> spaceQ = [L 2 (Ω)] 2 [4], [5]. For <str<strong>on</strong>g>the</str<strong>on</strong>g> bilinear <str<strong>on</strong>g>for</str<strong>on</strong>g>m we define <str<strong>on</strong>g>the</str<strong>on</strong>g> bending part and <str<strong>on</strong>g>the</str<strong>on</strong>g> linear strain75


tensor:a(φ, η) = 1 {(ε(φ), ε(η)) +ν (div φ, div η)}, (3)6 1 − νε(η) = 1 2 (∇η + (∇η)T ). (4)We c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> triangular family but we emphasize that all <str<strong>on</strong>g>the</str<strong>on</strong>g> results are valid <str<strong>on</strong>g>for</str<strong>on</strong>g> quadrilateralfamilies as well. By C h we denote <str<strong>on</strong>g>the</str<strong>on</strong>g> triangulati<strong>on</strong> of Ω. As usual, we denote h = max K∈Ch h K ,where h K is <str<strong>on</strong>g>the</str<strong>on</strong>g> diameter of K. The space of polynomials of degree k <strong>on</strong> K is denoted by P k (K).By C we denote positive c<strong>on</strong>stants independent of <str<strong>on</strong>g>the</str<strong>on</strong>g> thickness t and <str<strong>on</strong>g>the</str<strong>on</strong>g> mesh size h.In <str<strong>on</strong>g>the</str<strong>on</strong>g> MITC methods [2], [4] <str<strong>on</strong>g>the</str<strong>on</strong>g> finite element subspaces W h ⊂ W and V h ⊂ V are defined <str<strong>on</strong>g>for</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> polynomial degree k ≥ 2 aswith <str<strong>on</strong>g>the</str<strong>on</strong>g> ”bubble space”W h = {w ∈ W | w |K ∈ P k (K) ∀K ∈ C h }, (5)V h = {η ∈ V | η |K ∈ [P k (K)] 2 ⊕ [B k+1 (K)] 2 ∀K ∈ C h }, (6)B k+1 (K) = {b = b 3 p | p ∈ ˜P k−2 (K), b 3 ∈ P 3 (K), b 3|E = 0 ∀E ⊂ ∂K}, (7)where ˜P k−2 (K) is <str<strong>on</strong>g>the</str<strong>on</strong>g> space of homogeneous polynomials of degree k − 2 <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> element K. Thediscrete shear space is <str<strong>on</strong>g>the</str<strong>on</strong>g> rotated Raviart-Thomas space of order k − 1,Q h = { r ∈ H(rot; Ω) | r |K ∈ [P k−1 (K)] 2 ⊕ (y, −x) ˜P k−1 (K) ∀K ∈ C h }. (8)The reducti<strong>on</strong> operator R h : H(rot; Ω) → Q h is defined locally, with R K = R h|K , through <str<strong>on</strong>g>the</str<strong>on</strong>g>c<strong>on</strong>diti<strong>on</strong>s〈(R K η − η) · τ E , p〉 E = 0 ∀p ∈ P k−1 (E) ∀E ⊂ ∂K, (9)(R K η − η, p) K = 0 ∀p ∈ [P k−2 (K)] 2 , (10)where E denotes an edge to K and τ E is <str<strong>on</strong>g>the</str<strong>on</strong>g> unit tangent to E. (·, ·) K and 〈·, ·〉 E are <str<strong>on</strong>g>the</str<strong>on</strong>g> L 2 -innerproducts.With <str<strong>on</strong>g>the</str<strong>on</strong>g>se assumpti<strong>on</strong>s and notati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> MITC finite element method <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Reissner-Mindlinplate model, under <str<strong>on</strong>g>the</str<strong>on</strong>g> transverse loading g ∈ H −1 (Ω), can be written in <str<strong>on</strong>g>the</str<strong>on</strong>g> following <str<strong>on</strong>g>for</str<strong>on</strong>g>m [4],[5]: Find <str<strong>on</strong>g>the</str<strong>on</strong>g> deflecti<strong>on</strong> w h ∈ W h and <str<strong>on</strong>g>the</str<strong>on</strong>g> rotati<strong>on</strong> β h ∈ V h such thata(β h , η) + 1 t 2 (R h(∇w h − β h ), R h (∇v − η)) = (g, v) ∀(v, η) ∈ W h × V h . (11)The discrete shear <str<strong>on</strong>g>for</str<strong>on</strong>g>ce is q h = t −2 R h (∇w h − β h ) ∈ Q h .Superc<strong>on</strong>vergence and postprocessingFor <str<strong>on</strong>g>the</str<strong>on</strong>g> superc<strong>on</strong>vergence result we need <str<strong>on</strong>g>the</str<strong>on</strong>g> classical quasi-optimal interpolati<strong>on</strong> operator I h :H s (Ω) → W h , s > 1, [5]: With a vertex a and an edge E of <str<strong>on</strong>g>the</str<strong>on</strong>g> triangle K, we define(v − I K v)(a) = 0 ∀a ∈ K, (12)〈v − I K v, p〉 E = 0 ∀p ∈ P k−2 (E) ∀E ⊂ K, (13)(v − I K v, p) K = 0 ∀p ∈ P k−3 (K), (14)with I K = I h|K ∀K ∈ C h . The key property <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> proof of <str<strong>on</strong>g>the</str<strong>on</strong>g> superc<strong>on</strong>vergence is <str<strong>on</strong>g>the</str<strong>on</strong>g> closec<strong>on</strong>necti<strong>on</strong> between <str<strong>on</strong>g>the</str<strong>on</strong>g> interpolati<strong>on</strong> and reducti<strong>on</strong> operators [5, Lemma 4.5]:R h ∇v = ∇I h v ∀v ∈ H s (Ω), s ≥ 2. (15)Then <str<strong>on</strong>g>the</str<strong>on</strong>g> following superc<strong>on</strong>vergence result holds [5, Theorem 4.1]:76


Theorem 1. There is a positive c<strong>on</strong>stant C such that‖∇(I h w−w h )‖ 0,K ≤ Ch K ‖β−β h ‖ 1,K +‖β−β h ‖ 0,K +t 2 ‖q−q h ‖ 0,K +t 2 ‖q−R h q‖ 0,K . (16)For <strong>on</strong>e element this gives a local improvement of order h K + t when comparing <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>vergencerate <str<strong>on</strong>g>for</str<strong>on</strong>g> ‖w h − I h w‖ 1 to <str<strong>on</strong>g>the</str<strong>on</strong>g> rates <str<strong>on</strong>g>for</str<strong>on</strong>g> both ‖w − w h ‖ 1 and ‖w − I h w‖ 1 [5, Theorem 3.2, Lemma4.2]. Since I h w interpolates w at <str<strong>on</strong>g>the</str<strong>on</strong>g> vertices (see Eq. (12)) this also gives an indicati<strong>on</strong> that <str<strong>on</strong>g>the</str<strong>on</strong>g>vertex values of w h c<strong>on</strong>verge with an improved speed.In <str<strong>on</strong>g>the</str<strong>on</strong>g> postprocessing we c<strong>on</strong>struct an improved approximati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> deflecti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> spaceW ∗ h = {v ∈ W | v |K ∈ P k+1 (K) ∀K ∈ C h }. (17)For <str<strong>on</strong>g>the</str<strong>on</strong>g> postprocessing we first introduce <str<strong>on</strong>g>the</str<strong>on</strong>g> interpolati<strong>on</strong> operator Ih ∗ : Hs (Ω) → Wh ∗ , s > 1, by<str<strong>on</strong>g>the</str<strong>on</strong>g> equati<strong>on</strong>s (12)—(14) with k + 1 in place of k. Thus, <str<strong>on</strong>g>the</str<strong>on</strong>g> interpolati<strong>on</strong> operators Ih ∗ and I h arehierarchical, and <str<strong>on</strong>g>the</str<strong>on</strong>g> local spaces <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> additi<strong>on</strong>al degrees of freedom are defined asŴ (K) = {v ∈ P k+1 (K) | I K v = 0, (v, p) K = 0 ∀p ∈ ˜P k−2 (K)}, (<str<strong>on</strong>g>18</str<strong>on</strong>g>)W (K) = {v ∈ P k+1 (K) | I K v = 0, 〈v, p〉 E = 0 ∀p ∈ ˜P k−1 (E) ∀E ⊂ K}. (19)Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, <str<strong>on</strong>g>the</str<strong>on</strong>g> space Q ∗ h follows <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> (8) and <str<strong>on</strong>g>the</str<strong>on</strong>g> operator R∗ h <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong>s (9) and(10), with k + 1 in place of k. Now <str<strong>on</strong>g>the</str<strong>on</strong>g> method is defined as follows [5]:Postprocessing scheme. For all <str<strong>on</strong>g>the</str<strong>on</strong>g> triangles K ∈ C h find <str<strong>on</strong>g>the</str<strong>on</strong>g> local postprocessed finite elementdeflecti<strong>on</strong> wh|K ∗ ∈ P k+1(K) = P k (K) ⊕ Ŵ (K) ⊕ W (K) such thatI h w ∗ h|K = w h|K, (20)〈∇wh ∗ · τ E, ∇ˆv · τ E 〉 E = 〈(β h + t 2 q h ) · τ E , ∇ˆv · τ E 〉 E ∀E ⊂ ∂K, ∀ˆv ∈ Ŵ (K), (21)(∇w ∗ h , ∇¯v) K = (β h + t 2 q h , ∇¯v) K ∀¯v ∈ W (K). (22)We note that <str<strong>on</strong>g>the</str<strong>on</strong>g> postprocessed deflecti<strong>on</strong> is c<strong>on</strong><str<strong>on</strong>g>for</str<strong>on</strong>g>ming since (β h + t 2 q h ) · τ is c<strong>on</strong>tinuous al<strong>on</strong>ginter element boundaries. For <str<strong>on</strong>g>the</str<strong>on</strong>g> method we have <str<strong>on</strong>g>the</str<strong>on</strong>g> following error estimate [5, Theorem 5.1]:Theorem 2. There is a positive c<strong>on</strong>stant C such that‖∇(w − w ∗ h )‖ 0,K≤ C ( h K ‖β − β h ‖ 1,K + ‖β − β h ‖ 0,K + t 2 ‖q − q h ‖ 0,K+ ‖∇(w − I ∗ h w)‖ 0,K + ‖β − R ∗ h β‖ 0,K + t 2 ‖q − R ∗ h q‖ 0,K + t 2 ‖q − R h q‖ 0,K).(23)Also this result is local and it is made up of two parts: The first part is related to <str<strong>on</strong>g>the</str<strong>on</strong>g> error of <str<strong>on</strong>g>the</str<strong>on</strong>g>original method and <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d part c<strong>on</strong>sists of interpolati<strong>on</strong> estimates — both parts giving animprovement by <str<strong>on</strong>g>the</str<strong>on</strong>g> factor h K + t compared to <str<strong>on</strong>g>the</str<strong>on</strong>g> original approximati<strong>on</strong>.Selected computati<strong>on</strong>al resultsOur numerical computati<strong>on</strong>s are per<str<strong>on</strong>g>for</str<strong>on</strong>g>med <str<strong>on</strong>g>for</str<strong>on</strong>g> a test problem <str<strong>on</strong>g>for</str<strong>on</strong>g> which an analytical soluti<strong>on</strong> hasbeen obtained in [1]. The domain is <str<strong>on</strong>g>the</str<strong>on</strong>g> semi-infinite regi<strong>on</strong> Ω = {(x, y) ∈ R 2 | y > 0} and <str<strong>on</strong>g>the</str<strong>on</strong>g>loading is g = 1 Gcos x. The Poiss<strong>on</strong> ratio is ν = 0.3, <str<strong>on</strong>g>the</str<strong>on</strong>g> shear modulus is G = 1/(2(1 + ν)),<str<strong>on</strong>g>the</str<strong>on</strong>g> shear corrector factor is κ = 1 and <str<strong>on</strong>g>the</str<strong>on</strong>g> thickness is t = 0.01. The boundary Γ = {(x, y) ∈R 2 | y = 0} is ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r hard simply supported or free. We have used both uni<str<strong>on</strong>g>for</str<strong>on</strong>g>m and n<strong>on</strong>-uni<str<strong>on</strong>g>for</str<strong>on</strong>g>mmeshes with quadratic (k = 2) and cubic (k = 3) elements.77


The numerical results are clearly in accordance with <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory: In <str<strong>on</strong>g>the</str<strong>on</strong>g> interior of <str<strong>on</strong>g>the</str<strong>on</strong>g> plate <str<strong>on</strong>g>the</str<strong>on</strong>g>c<strong>on</strong>vergence rate of <str<strong>on</strong>g>the</str<strong>on</strong>g> original finite element deflecti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> H 1 -norm is r ≈ k, and <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>vergencerate of <str<strong>on</strong>g>the</str<strong>on</strong>g> postprocessed finite element deflecti<strong>on</strong> is r ∗ ≈ k + 1 ≈ r + 1, as seen inFig. 1 (left). The behavior in <str<strong>on</strong>g>the</str<strong>on</strong>g> L 2 -norm looks very similar, although to rigorously prove <str<strong>on</strong>g>the</str<strong>on</strong>g>improvement in that case seems to be difficult. In <str<strong>on</strong>g>the</str<strong>on</strong>g> boundary regi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> free edge case <str<strong>on</strong>g>the</str<strong>on</strong>g>rate of c<strong>on</strong>vergence rapidly slows down <str<strong>on</strong>g>for</str<strong>on</strong>g> both <str<strong>on</strong>g>the</str<strong>on</strong>g> original and <str<strong>on</strong>g>the</str<strong>on</strong>g> postprocessed deflecti<strong>on</strong>, asproved in [6], [3]. But still, a significant accuracy improvement is obtained, e<str<strong>on</strong>g>special</str<strong>on</strong>g>ly <str<strong>on</strong>g>for</str<strong>on</strong>g> coarsemeshes and lower order elements. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, <str<strong>on</strong>g>the</str<strong>on</strong>g> superaccuracy of <str<strong>on</strong>g>the</str<strong>on</strong>g> vertex values is obvious,as seen in Fig. 1 (right).3 x 10−3Relative H 1 −error10 −210 −310 −410 −510 −610 −7Pointwise error al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> line y = π/4210−1−210 −810 0 10 1 10 210 −1 Number of elements in x−directi<strong>on</strong>−30 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6x−coordinateFigure 1: Left: Simply supported edge; Interior regi<strong>on</strong>; Uni<str<strong>on</strong>g>for</str<strong>on</strong>g>m mesh; H 1 - error with k = 2, 3(dashed line <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> original, solid line <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> postprocessed deflecti<strong>on</strong>).Right: Free edge; Boundary regi<strong>on</strong>; N<strong>on</strong>-uni<str<strong>on</strong>g>for</str<strong>on</strong>g>m mesh; Pointwise error al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> line y = π/4with k = 2 (dashed line <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> original, solid line <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> postprocessed deflecti<strong>on</strong>, triangles <str<strong>on</strong>g>for</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> vertex values).References[1] D. N. Arnold and R. S. Falk. Edge effects in <str<strong>on</strong>g>the</str<strong>on</strong>g> Reissner-Mindlin plate <str<strong>on</strong>g>the</str<strong>on</strong>g>ory. In A. K. Noor, T.Belytschko and J. C. Simo, editors, Analytic and Computati<strong>on</strong>al Models of Shells, pages 71—90,New York. ASME (1989).[2] K.-J. Ba<str<strong>on</strong>g>the</str<strong>on</strong>g>, F. Brezzi and M. Fortin. Mixed-interpolated elements <str<strong>on</strong>g>for</str<strong>on</strong>g> Reissner-Mindlin plates. Int.J. Num. Meths. Eng., 28, 1787—<str<strong>on</strong>g>18</str<strong>on</strong>g>01 (1989).[3] L. Beirão da Veiga. Finite element methods <str<strong>on</strong>g>for</str<strong>on</strong>g> a modified Reissner-Mindlin free plate model. SIAMJ. Num. Anal., 42, 1572—1591 (2004).[4] F. Brezzi, M. Fortin and R. Stenberg. Error analysis of mixed-interpolated elements <str<strong>on</strong>g>for</str<strong>on</strong>g> Reissner-Mindlin plates. Math. Mod. Meth. Appl. Sci., 1, 125—151 (1991).[5] M. Lyly, J. Niiranen and R. Stenberg. Superc<strong>on</strong>vergence and postprocessing of MITC plate elements.Research Reports A 474, Helsinki University of Technology, Institute of Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics, January 2005.http://math.tkk.fi/reports.[6] J. Pitkäranta and M. Suri. Design principles and error analysis <str<strong>on</strong>g>for</str<strong>on</strong>g> reduced-shear plate-bending finiteelements. Numer. Math., 75, 223—266 (1996).78


Locking-Free Plate Elements at Free BoundaryJuhani PitkärantaInsitute of Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>maticsHelsinki University of Technology, Espoo, Finlande–mail: juhani.pitkaranta@tkk.fiSummary We study here a <str<strong>on</strong>g>special</str<strong>on</strong>g> problem that arises in some locking-free finite elements <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Reissner-Mindlin plate model when part of <str<strong>on</strong>g>the</str<strong>on</strong>g> boundary of <str<strong>on</strong>g>the</str<strong>on</strong>g> plate is free. We dem<strong>on</strong>strate unexpected (thoughpredicted by <str<strong>on</strong>g>the</str<strong>on</strong>g>ory) local error growth when <str<strong>on</strong>g>the</str<strong>on</strong>g> mesh is coarse as compared with <str<strong>on</strong>g>the</str<strong>on</strong>g> thickness of <str<strong>on</strong>g>the</str<strong>on</strong>g> plate.Introducti<strong>on</strong>In plate bending problems based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Reissner-Mindlin model, standard finite elements areknown to suffer from shear locking at <str<strong>on</strong>g>the</str<strong>on</strong>g> limit of zero plate thickness. To avoid <str<strong>on</strong>g>the</str<strong>on</strong>g> effect, various<str<strong>on</strong>g>special</str<strong>on</strong>g> finite element <str<strong>on</strong>g>for</str<strong>on</strong>g>muati<strong>on</strong>s have been proposed. The generic idea in <str<strong>on</strong>g>the</str<strong>on</strong>g>se so called lockingfree<str<strong>on</strong>g>for</str<strong>on</strong>g>mulati<strong>on</strong>s is to impose some numerical shear reducti<strong>on</strong> within <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise usual energyprinciple. The reducti<strong>on</strong> is d<strong>on</strong>e by modifying <str<strong>on</strong>g>the</str<strong>on</strong>g> shear energy term elementwise, e.g. by localprojecti<strong>on</strong>s, selective underintegrati<strong>on</strong>, mixed interpolati<strong>on</strong>, numerical dampening factors, etc. Inthis paper we dem<strong>on</strong>strate that some of <str<strong>on</strong>g>the</str<strong>on</strong>g>se locking-free <str<strong>on</strong>g>for</str<strong>on</strong>g>mulati<strong>on</strong>s suffer from unexpectederror growth at a free boundary where <str<strong>on</strong>g>the</str<strong>on</strong>g> boundary layer is relatively str<strong>on</strong>g. Being absent in<str<strong>on</strong>g>the</str<strong>on</strong>g> standard FEM, <str<strong>on</strong>g>the</str<strong>on</strong>g> effect may be viewed as a backlash caused by shear reducti<strong>on</strong>. It appears<strong>on</strong> relatively coarse meshes where <str<strong>on</strong>g>the</str<strong>on</strong>g> mesh spacing is large compared with <str<strong>on</strong>g>the</str<strong>on</strong>g> thickness of <str<strong>on</strong>g>the</str<strong>on</strong>g>plate. It even appears (and is particularly unexpected) at <str<strong>on</strong>g>the</str<strong>on</strong>g> limit of zero thickness where <str<strong>on</strong>g>the</str<strong>on</strong>g>exact soluti<strong>on</strong> has no layer.The benchmark problemWe c<strong>on</strong>sider a square plate occupying <str<strong>on</strong>g>the</str<strong>on</strong>g> domain Ω = [0, 1] × [0, 1] × [ t/2, t/2] (t = dimensi<strong>on</strong>lessthickness) and <str<strong>on</strong>g>the</str<strong>on</strong>g> Reissner-Mindlin plate bending model where <str<strong>on</strong>g>the</str<strong>on</strong>g> energy of <str<strong>on</strong>g>the</str<strong>on</strong>g> plate isgiven by∫ 1 ∫ 1F(θ, ψ, w) = 1 [ ν(κ 11 + κ 22 ) 2 + (1 ν)(κ 2 11 + 2κ 2 12 + κ 2222)] dxdy0 0∫3(1 ν) 1 ∫ 1∫ 1 ∫ 1+t 2 ( 2 1 + 2 2) dxdy fw dxdy.00Here ν is <str<strong>on</strong>g>the</str<strong>on</strong>g> Poiss<strong>on</strong> ratio and κ ij and i stand <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> bending and transverse shear strains,respectively. The strains have <str<strong>on</strong>g>the</str<strong>on</strong>g>ir usual expressi<strong>on</strong>s in terms of θ, ψ (rotati<strong>on</strong>s) and w (transversedeflecti<strong>on</strong>). The transverse load f is chosen to be of <str<strong>on</strong>g>the</str<strong>on</strong>g> simple <str<strong>on</strong>g>for</str<strong>on</strong>g>mThe boundary c<strong>on</strong>diti<strong>on</strong>s are set as follows:0f(x, y) = F cos ky, k = 2π. (2)0(1)x = 0 :x = 1 :y = 0, 1 :freeclampedperiodicWith <str<strong>on</strong>g>the</str<strong>on</strong>g>se assumpti<strong>on</strong>s <str<strong>on</strong>g>the</str<strong>on</strong>g> problem reduses to <strong>on</strong>e dimensi<strong>on</strong> and is solvable exactly. The soluti<strong>on</strong>u = (θ, ψ, w) is of <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>mu = u l + u s , (3)79


orhhFigure 1: The finite element mesheswhere u s is smooth uni<str<strong>on</strong>g>for</str<strong>on</strong>g>mly in t, apart from a weak layer at x = 1, and u l is <str<strong>on</strong>g>the</str<strong>on</strong>g> dominant layerat <str<strong>on</strong>g>the</str<strong>on</strong>g> free boundary as given bywhere G is proporti<strong>on</strong>al to F and a = √ 12 + k 2 t 2 .u l = G (kt 2 sin ky, at cos ky, 0) e ax/t , (4)The finite element modelsWe ssume ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r a uni<str<strong>on</strong>g>for</str<strong>on</strong>g>m rectangular mesh with mesh spacing h or a triangular mesh obtainedby subdividing <str<strong>on</strong>g>the</str<strong>on</strong>g> rectangels into two triangles, see Fig. 1. We c<strong>on</strong>sider three locking-free plateelements of lowest order:E1 The bilinear MITC4/QUAD4 element — <strong>on</strong>e of <str<strong>on</strong>g>the</str<strong>on</strong>g> classics of finite element engineering.The shear reducti<strong>on</strong> is imposed ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r by mixed interpolati<strong>on</strong> or (equivalently) byanisotropic underintegrati<strong>on</strong>, see [1, 2]. For <str<strong>on</strong>g>the</str<strong>on</strong>g> error analysis, see [3] and <str<strong>on</strong>g>the</str<strong>on</strong>g> references<str<strong>on</strong>g>the</str<strong>on</strong>g>rein.E2 A modificati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> previous element. In additi<strong>on</strong> to shear reducti<strong>on</strong> <strong>on</strong>e imposes herenumerical shear dampening by factor t 2 /(h 2 + t 2 ) — an idea that dates back to [4]. Thecombinati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> two modificati<strong>on</strong>s is suggested by ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical error analysis, see [5]<str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> analysis in a slightly different c<strong>on</strong>text.E3 A triangular element proposed in [6]. In this <str<strong>on</strong>g>for</str<strong>on</strong>g>mulati<strong>on</strong>, which also originates from ma<str<strong>on</strong>g>the</str<strong>on</strong>g>maticalerror analysis, <str<strong>on</strong>g>the</str<strong>on</strong>g> usual linear element is enriched by cubic bubble functi<strong>on</strong>s <str<strong>on</strong>g>for</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> rotati<strong>on</strong>s and is used as n<strong>on</strong>c<strong>on</strong><str<strong>on</strong>g>for</str<strong>on</strong>g>ming element (with <str<strong>on</strong>g>the</str<strong>on</strong>g> dgrees of freedom at <str<strong>on</strong>g>the</str<strong>on</strong>g>midpoints of <str<strong>on</strong>g>the</str<strong>on</strong>g> sides) <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> transverse deflecti<strong>on</strong>.Error boundsWe decompose <str<strong>on</strong>g>the</str<strong>on</strong>g> finite element soluti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> benchmark problem in analogy with Eq. (3) asu h = u lh + u sh ,where u lh and u sh stand <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> finite element projecti<strong>on</strong>s of u s and u l , respectively. Since u s issmooth uni<str<strong>on</strong>g>for</str<strong>on</strong>g>mly in t and since <str<strong>on</strong>g>the</str<strong>on</strong>g> finite elements c<strong>on</strong>sidered are all locking-free, <str<strong>on</strong>g>the</str<strong>on</strong>g> elementsbehave optimally when approximating u s . Quantitatively this means that <str<strong>on</strong>g>the</str<strong>on</strong>g> error u s u sh , whenmeasured in <str<strong>on</strong>g>the</str<strong>on</strong>g> energy norm, is of order O(h) uni<str<strong>on</strong>g>for</str<strong>on</strong>g>mly in t <str<strong>on</strong>g>for</str<strong>on</strong>g> all <str<strong>on</strong>g>the</str<strong>on</strong>g> three elements [3, 7, 8].80


✻ ψ(x)E2Amplitudes at x = 0E1 ψ lh (0) ∼ h 2E2,E3 ψ lh (0) ∼ hExact ψ l (0) ∼ t...E1... . . ....... .Exact.. . . . . . . . . . .✲ xE3Figure 2: Finite element layer modesFor <str<strong>on</strong>g>the</str<strong>on</strong>g> layer error term, <str<strong>on</strong>g>the</str<strong>on</strong>g> analysis in [7, 8] gives <str<strong>on</strong>g>the</str<strong>on</strong>g> following bounds in <str<strong>on</strong>g>the</str<strong>on</strong>g> energy norm:h < t : u l u lh = O(h/ √ t) (E1,E2,E3) (5)h ≥ t : u l u lh ={ O(h +√t) (E1)O( √ h) (E2,E3)(6)Here <str<strong>on</strong>g>the</str<strong>on</strong>g> bound (5) indicates that <strong>on</strong> sufficiently fine meshes (h < t), all <str<strong>on</strong>g>the</str<strong>on</strong>g> three elementsbehave optimally (as compared with interpolati<strong>on</strong> accuracy) even when approximating <str<strong>on</strong>g>the</str<strong>on</strong>g> layer.On coarser meshes, e<str<strong>on</strong>g>special</str<strong>on</strong>g>ly when t ≪ h, <str<strong>on</strong>g>the</str<strong>on</strong>g> finte element models c<strong>on</strong>sidered obviously failto capture <str<strong>on</strong>g>the</str<strong>on</strong>g> layer. The best <strong>on</strong>e can <str<strong>on</strong>g>the</str<strong>on</strong>g>n hope <str<strong>on</strong>g>for</str<strong>on</strong>g> is that <str<strong>on</strong>g>the</str<strong>on</strong>g> layer in <str<strong>on</strong>g>the</str<strong>on</strong>g> numerical model ismore or less absent. That being <str<strong>on</strong>g>the</str<strong>on</strong>g> case, <str<strong>on</strong>g>the</str<strong>on</strong>g> layer error should be of <str<strong>on</strong>g>the</str<strong>on</strong>g> same order as <str<strong>on</strong>g>the</str<strong>on</strong>g> layeritself, i.e., of order O( √ t). As shown by <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d bound (6), this is essentially how <str<strong>on</strong>g>the</str<strong>on</strong>g> elementE1 behaves (modulo an additi<strong>on</strong>al term of order O(h)). Instead <str<strong>on</strong>g>the</str<strong>on</strong>g> elements E2 and E3 behavedifferently: The layer approximati<strong>on</strong> error is of order O(h 1/2 ) uni<str<strong>on</strong>g>for</str<strong>on</strong>g>mly in <str<strong>on</strong>g>the</str<strong>on</strong>g> range 0 ≤ t ≤ h, aresult c<strong>on</strong>firmed by a lower error bound in [8]. Thus <str<strong>on</strong>g>the</str<strong>on</strong>g>re arises numerical layer amplificati<strong>on</strong> <strong>on</strong>coarse meshes with elements E2,E3. According to <str<strong>on</strong>g>the</str<strong>on</strong>g> error analysis this is not a locking effect butra<str<strong>on</strong>g>the</str<strong>on</strong>g>r a c<strong>on</strong>sistency (or equilibrium) error caused by <str<strong>on</strong>g>the</str<strong>on</strong>g> shear reducti<strong>on</strong>s [8]. The phenomen<strong>on</strong> isparticularly interesting at t = 0, where <str<strong>on</strong>g>the</str<strong>on</strong>g> exact soluti<strong>on</strong> is <str<strong>on</strong>g>the</str<strong>on</strong>g> Kirchhoff soluti<strong>on</strong> with no layer.Benchmark soluti<strong>on</strong>sWe solve <str<strong>on</strong>g>the</str<strong>on</strong>g> benchmark problem by <str<strong>on</strong>g>the</str<strong>on</strong>g> three finite elements methods, choosing ν = 0, t = 0.01and h = 0.05 = 5t. We focus <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> layer mode u lh in each case. In Fig. 2 <str<strong>on</strong>g>the</str<strong>on</strong>g> horiz<strong>on</strong>talprofiles of <str<strong>on</strong>g>the</str<strong>on</strong>g> numerical layer modes are shown <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> vertical rotati<strong>on</strong> ψ. For comparis<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g>exact layer mode is also shown. We observe that <str<strong>on</strong>g>the</str<strong>on</strong>g> E1 aproximati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> layer mode has asmall amplitude and gives little indicati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> presence of <str<strong>on</strong>g>the</str<strong>on</strong>g> layer as expected. In <str<strong>on</strong>g>the</str<strong>on</strong>g> E2 andE3 approximati<strong>on</strong>sis, a numerical boundary layer appears. The amplitude and <str<strong>on</strong>g>the</str<strong>on</strong>g> length scale ofdecay of this layer are both of order O(h), so <str<strong>on</strong>g>the</str<strong>on</strong>g> strength in <str<strong>on</strong>g>the</str<strong>on</strong>g> energy norm is of order O(h 1/2 ).The slow rate of c<strong>on</strong>vergence when t ≪ h is thus explained.81


C<strong>on</strong>clusi<strong>on</strong>sWe have dem<strong>on</strong>strated by benchmark soluti<strong>on</strong>s that in some of <str<strong>on</strong>g>the</str<strong>on</strong>g> locking-free plate element <str<strong>on</strong>g>for</str<strong>on</strong>g>mulati<strong>on</strong>sproposed in <str<strong>on</strong>g>the</str<strong>on</strong>g> literature <str<strong>on</strong>g>the</str<strong>on</strong>g>re arises numerical layer amplificati<strong>on</strong> at free boundary.In <str<strong>on</strong>g>the</str<strong>on</strong>g> MITC4/QUAD4 <str<strong>on</strong>g>for</str<strong>on</strong>g>mulati<strong>on</strong> this effect does not appear, so some shear modificati<strong>on</strong>s arebetter than o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs in this respect. In general, when designing locking-free finite element <str<strong>on</strong>g>for</str<strong>on</strong>g>mulati<strong>on</strong>s<str<strong>on</strong>g>for</str<strong>on</strong>g> plates or shells, <strong>on</strong>e should take into account that numerical modificati<strong>on</strong>s focusing <strong>on</strong><strong>on</strong>e soluti<strong>on</strong> comp<strong>on</strong>ent may cause unwanted error growth <strong>on</strong> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r comp<strong>on</strong>ents.References[1] R.H. MacNeal. A simple quadrilateral shell element. Computers & Structures, 8, 175–<str<strong>on</strong>g>18</str<strong>on</strong>g>3, (1978).[2] K.J. Ba<str<strong>on</strong>g>the</str<strong>on</strong>g> and E.N: Dvorkin. A four-node plate bending element based <strong>on</strong> Mindlin/Reissner plate<str<strong>on</strong>g>the</str<strong>on</strong>g>ory and mixed interpolati<strong>on</strong>. Int. J. Num. Meth. Eng., 21, 367–383, (1985).[3] J. Pitkäranta. Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical and historical reflecti<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> lowest-order finite element models <str<strong>on</strong>g>for</str<strong>on</strong>g>thin structures. Computers & Structures, 81, 895–909, (2003).[4] I. Fried and S.K. Yang. Triangular, nine-degrees-of-freedom, C 0 plate bending element of quadraticaccuracy. Quart. Appl. Math., 31, 303–312, (1973).[5] D. Chapelle and R. Stenberg. An optimal low-order locking-free finite element method <str<strong>on</strong>g>for</str<strong>on</strong>g> Reissner-Mindlin plates. Math. Models Methods Appl. Sci., 8, 407–430, (1998).[6] D.N. Arnold and R.S. Falk. A uni<str<strong>on</strong>g>for</str<strong>on</strong>g>mly accurate finite element method <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Reissner-Mindlinplate. SIAM J. Numer. Anal., 26, 1276–1290, (1989).[7] J. Pitkäranta and M. Suri. Design principles and error analysis <str<strong>on</strong>g>for</str<strong>on</strong>g> reduced-shear plate-beding finiteelements. Numer. Math., 75, 223–266, (1996).[8] J. Pitkäranta and M. Suri. Upper and lower error bounds <str<strong>on</strong>g>for</str<strong>on</strong>g> plate-bending finite elements. Numer.Math., 84, 611–648, (2000).82


Finding <str<strong>on</strong>g>the</str<strong>on</strong>g> most efficient rotati<strong>on</strong>-free triangular shellelementMattias Gärdsback and A. Gunnar TibertDepartment of MechanicsRoyal Institute of Technology, Stockholm, Swedene–mail: gunnart@mech.kth.seSummary To simulate <str<strong>on</strong>g>the</str<strong>on</strong>g> deployment of lightweight structures, efficient shell elements are required. Triangularrotati<strong>on</strong>-free shell elements, where <str<strong>on</strong>g>the</str<strong>on</strong>g> out-of-plane rotati<strong>on</strong> around each edge is approximated from<str<strong>on</strong>g>the</str<strong>on</strong>g> main element and <str<strong>on</strong>g>the</str<strong>on</strong>g> adjacent element, represent a group of such elements. Various <str<strong>on</strong>g>for</str<strong>on</strong>g>mulati<strong>on</strong>s <str<strong>on</strong>g>for</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> plate bending part have been published. Simple elements, such as <str<strong>on</strong>g>the</str<strong>on</strong>g> CST and <str<strong>on</strong>g>the</str<strong>on</strong>g> LST, have <str<strong>on</strong>g>the</str<strong>on</strong>g>n beenused <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> membrane part. In this article, <str<strong>on</strong>g>the</str<strong>on</strong>g> aim has been to find <str<strong>on</strong>g>the</str<strong>on</strong>g> best possible superpositi<strong>on</strong> of arotati<strong>on</strong>-free plate part and membrane part.Introducti<strong>on</strong>For most thin-film structures, i.e. airbags, <str<strong>on</strong>g>the</str<strong>on</strong>g> bending stiffness may be neglected in <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong>.C<strong>on</strong>trary, <str<strong>on</strong>g>for</str<strong>on</strong>g> space inflatables, <str<strong>on</strong>g>the</str<strong>on</strong>g> vanishingly small bending stiffness may have n<strong>on</strong>-negligibleeffects <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> deployment behaviour. In <str<strong>on</strong>g>the</str<strong>on</strong>g> micro-gravity envir<strong>on</strong>ment of space, <str<strong>on</strong>g>the</str<strong>on</strong>g> strain energy,induced by <str<strong>on</strong>g>the</str<strong>on</strong>g> folding of <str<strong>on</strong>g>the</str<strong>on</strong>g> structure, may be sufficient to cause premature deployment <str<strong>on</strong>g>for</str<strong>on</strong>g>certain structures, e.g. crease-pattern folded tubes [1]. Wrinkling is also an important <str<strong>on</strong>g>issue</str<strong>on</strong>g> inmany applicati<strong>on</strong>s. There<str<strong>on</strong>g>for</str<strong>on</strong>g>e, it is crucial to take into account <str<strong>on</strong>g>the</str<strong>on</strong>g> bending stiffness.Due to <str<strong>on</strong>g>the</str<strong>on</strong>g> singularity of <str<strong>on</strong>g>the</str<strong>on</strong>g> unstressed folded c<strong>on</strong>figurati<strong>on</strong>, explicit time integrati<strong>on</strong> schemesshould be used in a dynamic deployment simulati<strong>on</strong>. Since a time-c<strong>on</strong>suming explicit integrati<strong>on</strong>scheme is required, at least during <str<strong>on</strong>g>the</str<strong>on</strong>g> initial phase of <str<strong>on</strong>g>the</str<strong>on</strong>g> deployment, simple and rapidlycomputed elements are desirable. Triangular elements are usually <str<strong>on</strong>g>the</str<strong>on</strong>g> preferred choice as <str<strong>on</strong>g>the</str<strong>on</strong>g>ycan be adapted to arbitrary geometries and because of efficient triangle mesh generators. In thisrespect, <str<strong>on</strong>g>the</str<strong>on</strong>g> triangular shell elements without rotati<strong>on</strong>al DOF are particularly interesting since <str<strong>on</strong>g>the</str<strong>on</strong>g>bending stiffness can be included without increasing <str<strong>on</strong>g>the</str<strong>on</strong>g> size of <str<strong>on</strong>g>the</str<strong>on</strong>g> problem. This paper reviews<str<strong>on</strong>g>the</str<strong>on</strong>g> various <str<strong>on</strong>g>for</str<strong>on</strong>g>mulati<strong>on</strong>s available <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se elements in an attempt to find a simple, yet accurate,<strong>on</strong>e <str<strong>on</strong>g>for</str<strong>on</strong>g> deployment simulati<strong>on</strong>s of inflatable structures.Summary of rotati<strong>on</strong>-free elementsThe shell elements without rotati<strong>on</strong>al DOF, i.e. rotati<strong>on</strong>-free (RF) elements are composed of aplate bending part, which uses <str<strong>on</strong>g>the</str<strong>on</strong>g> out-of-plane displacements of <str<strong>on</strong>g>the</str<strong>on</strong>g> three adjacent elements toapproximate <str<strong>on</strong>g>the</str<strong>on</strong>g> curvatures, and a comm<strong>on</strong> membrane element, using <str<strong>on</strong>g>the</str<strong>on</strong>g> in-plane displacementsto compute <str<strong>on</strong>g>the</str<strong>on</strong>g> in-plane strains.Plate bendingHamphire et al. [2], Phaal and Calladine [3] [4], Oñate et al. [5] [6] [7], Brunet and Sabourin[8] and Guo et al. [9] have all developed RF plate elements. The derivati<strong>on</strong>s differ, but <str<strong>on</strong>g>the</str<strong>on</strong>g> mainassumpti<strong>on</strong>s are almost <str<strong>on</strong>g>the</str<strong>on</strong>g> same. They are all based <strong>on</strong> Kirchoffs plate bending <str<strong>on</strong>g>the</str<strong>on</strong>g>ory andassumes c<strong>on</strong>stant curvatures <str<strong>on</strong>g>for</str<strong>on</strong>g> simplicity, i.e <str<strong>on</strong>g>the</str<strong>on</strong>g> basic assumpti<strong>on</strong>s are <str<strong>on</strong>g>the</str<strong>on</strong>g> same as used byMorley [10]. In <str<strong>on</strong>g>the</str<strong>on</strong>g> RF elements <str<strong>on</strong>g>the</str<strong>on</strong>g> rotati<strong>on</strong>s used by Morley are approximated using <str<strong>on</strong>g>the</str<strong>on</strong>g> out-ofplanedisplacements.The elements are derived differently, but <str<strong>on</strong>g>the</str<strong>on</strong>g> resulting stiffness matrices are almost <str<strong>on</strong>g>the</str<strong>on</strong>g> same <str<strong>on</strong>g>for</str<strong>on</strong>g>all <str<strong>on</strong>g>the</str<strong>on</strong>g> RF elements listed above, except <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e by Phaal and Calladine [3] [4]. The reas<strong>on</strong> is that<str<strong>on</strong>g>the</str<strong>on</strong>g> same important steps and <str<strong>on</strong>g>the</str<strong>on</strong>g> same important assumpti<strong>on</strong>s are used. The hinges around eachedge of <str<strong>on</strong>g>the</str<strong>on</strong>g> main element can be described by <str<strong>on</strong>g>the</str<strong>on</strong>g> two elements sharing <str<strong>on</strong>g>the</str<strong>on</strong>g> edge. The first stepis to determine <str<strong>on</strong>g>the</str<strong>on</strong>g> deflecti<strong>on</strong> angles ( ), i.e. <str<strong>on</strong>g>the</str<strong>on</strong>g> angles that each of <str<strong>on</strong>g>the</str<strong>on</strong>g> two elements indivdually<str<strong>on</strong>g>for</str<strong>on</strong>g>ms relative to <str<strong>on</strong>g>the</str<strong>on</strong>g> comm<strong>on</strong> edge due to <str<strong>on</strong>g>the</str<strong>on</strong>g> displacements in <str<strong>on</strong>g>the</str<strong>on</strong>g> nodes. All but Phaal and¡83


Calladine [3] [4] <str<strong>on</strong>g>the</str<strong>on</strong>g>n relates to <str<strong>on</strong>g>the</str<strong>on</strong>g> rotati<strong>on</strong>s, and <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> rotati<strong>on</strong>s to <str<strong>on</strong>g>the</str<strong>on</strong>g> (c<strong>on</strong>stant) curvatures.The <strong>on</strong>ly difference is how <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tributi<strong>on</strong> from <str<strong>on</strong>g>the</str<strong>on</strong>g> two deflecti<strong>on</strong> angles are weighted. Oñate¡et al. used <str<strong>on</strong>g>the</str<strong>on</strong>g> average in <str<strong>on</strong>g>the</str<strong>on</strong>g>ir first BST element [5] [6], <str<strong>on</strong>g>the</str<strong>on</strong>g>n updated it to use sec<strong>on</strong>d degreepolynomial shape functi<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g>ir EBST element [7]. Brunet and Sabourin [8] and Guo et al. [9]used weights proporti<strong>on</strong>al to <str<strong>on</strong>g>the</str<strong>on</strong>g> inverse of <str<strong>on</strong>g>the</str<strong>on</strong>g> heights of <str<strong>on</strong>g>the</str<strong>on</strong>g> triangles perpendicular to <str<strong>on</strong>g>the</str<strong>on</strong>g> edge.Phaal and Calladine [3] [4] use a different approach. The displacements are expressed as polynomialsof sec<strong>on</strong>d degree, where <str<strong>on</strong>g>the</str<strong>on</strong>g> coefficients of <str<strong>on</strong>g>the</str<strong>on</strong>g> quadratic terms are proporti<strong>on</strong>al to <str<strong>on</strong>g>the</str<strong>on</strong>g>curvatures. The curvatures ( ) are <str<strong>on</strong>g>the</str<strong>on</strong>g>n determined to best fit with <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> coordinates and displacementsof <str<strong>on</strong>g>the</str<strong>on</strong>g> nodes. A small disadvantage is that <str<strong>on</strong>g>the</str<strong>on</strong>g> inverse of a 3 times 3 matrix relatingand is required, which makes <str<strong>on</strong>g>the</str<strong>on</strong>g> handling of boundary c<strong>on</strong>diti<strong>on</strong>s slightly more complicated.¡Membrane partIn most of <str<strong>on</strong>g>the</str<strong>on</strong>g> rotati<strong>on</strong>-free shell elements, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>stant strain triangle (CST) is used to represent<str<strong>on</strong>g>the</str<strong>on</strong>g> membrane stiffness. The CST element has been <str<strong>on</strong>g>the</str<strong>on</strong>g> preferred choice because of its simplicity,having <strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g> in-plane translati<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> three corner nodes as degrees of freedom.The sec<strong>on</strong>d most simple choice would be to use a linear strain triangle (LST) approach. Recently,Oñate and Flores [7] suggested to use <str<strong>on</strong>g>the</str<strong>on</strong>g> six nodes in <str<strong>on</strong>g>the</str<strong>on</strong>g> same patch of elements as <str<strong>on</strong>g>for</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> plate bending part to compute an isoparametric LST triangle. This approach has primarilytwo disadvantages because of <str<strong>on</strong>g>the</str<strong>on</strong>g> overlapping: it is n<strong>on</strong>c<strong>on</strong><str<strong>on</strong>g>for</str<strong>on</strong>g>ming and it becomes unnecessarilycomputati<strong>on</strong>ally expensive. This n<strong>on</strong>c<strong>on</strong><str<strong>on</strong>g>for</str<strong>on</strong>g>mity may cause problems e<str<strong>on</strong>g>special</str<strong>on</strong>g>ly <str<strong>on</strong>g>for</str<strong>on</strong>g> unstructuredgrids.Here, we also suggest that isoparametric LST elements are used because of <str<strong>on</strong>g>the</str<strong>on</strong>g> superior accuracycompared to CST elements. The LST elements are computed as usual by using <str<strong>on</strong>g>the</str<strong>on</strong>g> same nodes as<str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> plate bending part, but <strong>on</strong>e fourth of <str<strong>on</strong>g>the</str<strong>on</strong>g> elements compared to <str<strong>on</strong>g>the</str<strong>on</strong>g> LST approach by Oñateand Flores [7].The advantages are that <str<strong>on</strong>g>the</str<strong>on</strong>g> accuracy is better than <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> CST element, and <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>c<strong>on</strong><str<strong>on</strong>g>for</str<strong>on</strong>g>mity,overlapping and cumbersome boundary c<strong>on</strong>diti<strong>on</strong>s associated with <str<strong>on</strong>g>the</str<strong>on</strong>g> approach by Oñate andFlores [7] are avoided. The main disadvantage with this approach would be that some additi<strong>on</strong>alwork is necessary when all nodes are not in <str<strong>on</strong>g>the</str<strong>on</strong>g> same plane. If <str<strong>on</strong>g>the</str<strong>on</strong>g> difference is small, which itusually will be, <str<strong>on</strong>g>the</str<strong>on</strong>g> projecti<strong>on</strong>s can simply be used. If <str<strong>on</strong>g>the</str<strong>on</strong>g> difference is large <str<strong>on</strong>g>the</str<strong>on</strong>g>n distances normalto <str<strong>on</strong>g>the</str<strong>on</strong>g> surface should be used. Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r problem may be <str<strong>on</strong>g>the</str<strong>on</strong>g> same as <str<strong>on</strong>g>for</str<strong>on</strong>g> LST elements in general,shear-locking may occur if more than <strong>on</strong>e point is used in <str<strong>on</strong>g>the</str<strong>on</strong>g> reduced integrati<strong>on</strong>.References[1] Tsunoda H, Senbokuya Y, Watanabe M. Deployment method of space inflatable structures using foldingcrease patterns. In Proceedings of <str<strong>on</strong>g>the</str<strong>on</strong>g> 44th AIAA/ASME/ASCE/AHS/ASC Structures, StructuralDynamics, and Materials C<strong>on</strong>ference and Exhibit, Norfolk, VA, USA, April 7–10, 2003. AIAA 2003-1979.[2] Hampshire JK, Topping BHV, Chan HC. Three node triangular bending elements with <strong>on</strong>e degree offreedom per node. Engineering Computati<strong>on</strong>s 1992; 9:49-62.[3] Phaal R, Calladine R. A simple class of finite elements <str<strong>on</strong>g>for</str<strong>on</strong>g> plate and shell problems. I: Elements <str<strong>on</strong>g>for</str<strong>on</strong>g>beams and thin flat plates. Internati<strong>on</strong>al Journal <str<strong>on</strong>g>for</str<strong>on</strong>g> Numerical Methods in Engineering 1992; 35:955-977.[4] Phaal R, Calladine R. A simple class of finite elements <str<strong>on</strong>g>for</str<strong>on</strong>g> plate and shell problems. II: An element <str<strong>on</strong>g>for</str<strong>on</strong>g>thin shells, with <strong>on</strong>ly translati<strong>on</strong>al degrees of freedom. Internati<strong>on</strong>al Journal <str<strong>on</strong>g>for</str<strong>on</strong>g> Numerical Methodsin Engineering 1992; 35:979-996.[5] Oñate E, Cervera M. Derivati<strong>on</strong> of thin plate bending elements with <strong>on</strong>e degree of freedom per node:A simple three node triangle. Engineering Computati<strong>on</strong>s 1993; 10:543-561.[6] Oñate E, Zárate F. Rotati<strong>on</strong>-free triangular plate and shell elements. Internati<strong>on</strong>al Journal <str<strong>on</strong>g>for</str<strong>on</strong>g> NumericalMethods in Engineering 2000; 47:557-603.[7] Oñate E, Flores GF. Improvements in <str<strong>on</strong>g>the</str<strong>on</strong>g> membrane behaviour of <str<strong>on</strong>g>the</str<strong>on</strong>g> three node rotati<strong>on</strong>-free BST shelltriangle using an assumed strain approach. Computer Methods in Applied Mechanics and Engineering2005; 194:907-932.84


[8] Brunet M, Sabourin F. A simplified triangular shell element with a necking criteri<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> 3-D sheet<str<strong>on</strong>g>for</str<strong>on</strong>g>minganalysis. Journal of Materials Processing Technology 1995. 50:238-251.[9] Guo YQ, Gati W, Naceur H, Batoz JL. An efficient DKT rotati<strong>on</strong> free shell element <str<strong>on</strong>g>for</str<strong>on</strong>g> springbacksimulati<strong>on</strong> in sheet metal <str<strong>on</strong>g>for</str<strong>on</strong>g>ming. Computers and Structures 2002. 80:2299-2312.[10] Morley LSD. The c<strong>on</strong>stant-moment plate-bending element. Journal of Strain Analysis 1971; 6:20-24.85


A Posteriori Error Estimates in Linear Elastic FractureMechanics based <strong>on</strong> Different FE-Soluti<strong>on</strong> Spaces <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>Primal and <str<strong>on</strong>g>the</str<strong>on</strong>g> Dual ProblemMarcus Rüter , Sergey Korotov and Christian SteenbockInstitute of Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>maticsHelsinki University of Technology, P.O. Box 1100, 02015 TKK, Finlande–mail: Marcus.Ruter@hut.fiSummary The objective of <str<strong>on</strong>g>the</str<strong>on</strong>g> present paper is to derive goal-oriented a posteriori error estimators <str<strong>on</strong>g>for</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> error obtained while approximately evaluating <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>linear J -integral as a fracture criteri<strong>on</strong> in linearelastic fracture <strong>mechanics</strong> (LEFM) using <str<strong>on</strong>g>the</str<strong>on</strong>g> finite element method. Such error estimators are based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>well-established strategy of solving an auxiliary dual problem. In a straight<str<strong>on</strong>g>for</str<strong>on</strong>g>ward fashi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong> to<str<strong>on</strong>g>the</str<strong>on</strong>g> dual problem is sought in <str<strong>on</strong>g>the</str<strong>on</strong>g> same FE-space as <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> primal problem, i.e. <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> samemesh, although it merely acts as a weight of <str<strong>on</strong>g>the</str<strong>on</strong>g> discretizati<strong>on</strong> error <strong>on</strong>ly. In this paper, we follow <str<strong>on</strong>g>the</str<strong>on</strong>g>strategy recently proposed by Korotov [6] and derive goal-oriented error estimators of <str<strong>on</strong>g>the</str<strong>on</strong>g> averaging type,where <str<strong>on</strong>g>the</str<strong>on</strong>g> dual soluti<strong>on</strong> is computed <strong>on</strong> a different—usually coarser—mesh than <str<strong>on</strong>g>the</str<strong>on</strong>g> primal soluti<strong>on</strong>.Introducti<strong>on</strong>In (macroscopic) c<strong>on</strong>tinuum <strong>mechanics</strong> of elastic de<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g> failure of structures can generallybe analyzed within <str<strong>on</strong>g>the</str<strong>on</strong>g> framework of fracture <strong>mechanics</strong> as <strong>on</strong>e possible approach. In thispaper, we restrict our c<strong>on</strong>siderati<strong>on</strong>s to <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>special</str<strong>on</strong>g> case of linear elastic fracture <strong>mechanics</strong> as usedin analyzing <str<strong>on</strong>g>the</str<strong>on</strong>g> fracture behavior of materials denoted as “brittle”. A fundamental step was <str<strong>on</strong>g>the</str<strong>on</strong>g>introducti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> J -integral c<strong>on</strong>cept by Cherepanov [3] and Rice [7] as an appropriate criteri<strong>on</strong><str<strong>on</strong>g>for</str<strong>on</strong>g> crack propagati<strong>on</strong>, which can be interpreted within <str<strong>on</strong>g>the</str<strong>on</strong>g> framework of Eshelbian <strong>mechanics</strong> as<str<strong>on</strong>g>the</str<strong>on</strong>g> absolute value of <str<strong>on</strong>g>the</str<strong>on</strong>g> material <str<strong>on</strong>g>for</str<strong>on</strong>g>ce acting <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> crack tip, see e.g. Steinmann [11].In a finite element setting, <str<strong>on</strong>g>the</str<strong>on</strong>g> a posteriori estimati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> error of <str<strong>on</strong>g>the</str<strong>on</strong>g> J -integral requires a<str<strong>on</strong>g>special</str<strong>on</strong>g> approach widely known as goal-oriented error estimati<strong>on</strong> as introduced by Erikss<strong>on</strong> etal. [4] and developed fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r by Becker and Rannacher [2] and o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs. A key feature in thisc<strong>on</strong>text is <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>structi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> dual data. Since <str<strong>on</strong>g>the</str<strong>on</strong>g> J -integral is n<strong>on</strong>linear by definiti<strong>on</strong>, asuitable linearizati<strong>on</strong> is required to pose and to solve <str<strong>on</strong>g>the</str<strong>on</strong>g> dual problem.In recent years, goal-oriented adaptive finite element methods in fracture <strong>mechanics</strong> have beenestablished, see Rüter et al. [8, 10, 9] and Heintz et al. [5]. Remarkably, <str<strong>on</strong>g>the</str<strong>on</strong>g> first steps in thisdirecti<strong>on</strong> have already been taken in 1984 by Babuška and Miller [1].The paper is organized as follows: first, <str<strong>on</strong>g>the</str<strong>on</strong>g> boundary value problem of linearized elasticity isintroduced and <str<strong>on</strong>g>the</str<strong>on</strong>g> J -integral is presented. Subsequently, we discuss <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>structi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> dualdata. Finally, we focus <strong>on</strong> averaging-based error estimati<strong>on</strong> techniques <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> error of <str<strong>on</strong>g>the</str<strong>on</strong>g> J -integral based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> dual problem and present an illustrative numerical example.Linear elastic fracture <strong>mechanics</strong>The linearized elasticity problemIn this secti<strong>on</strong>, we briefly present <str<strong>on</strong>g>the</str<strong>on</strong>g> linearized elasticity problem. To begin with, let us introduce<str<strong>on</strong>g>the</str<strong>on</strong>g> elastic body which is given by <str<strong>on</strong>g>the</str<strong>on</strong>g> closure of a bounded open set R 3 with apiecewise smooth, polyhedral and Lipschitz c<strong>on</strong>tinuous boundary such that D N D [ N Nand D \ N D;,where D and N are <str<strong>on</strong>g>the</str<strong>on</strong>g> porti<strong>on</strong>s of <str<strong>on</strong>g>the</str<strong>on</strong>g> boundary where Dirichlet andNeumann boundary c<strong>on</strong>diti<strong>on</strong>s are imposed, respectively. Assuming, <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sake of simplicity,homogeneous Dirichlet boundary c<strong>on</strong>diti<strong>on</strong>s, all admissible displacements u W N ! R of <str<strong>on</strong>g>the</str<strong>on</strong>g>elastic body N are elements of <str<strong>on</strong>g>the</str<strong>on</strong>g> Hilbert space V Dfv 2 ŒH 1 ./ 3 I vj D D 0g.The weak <str<strong>on</strong>g>for</str<strong>on</strong>g>mulati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> linearized elasticity problem <str<strong>on</strong>g>the</str<strong>on</strong>g>n reads: find u 2 V such thata.u; v/ D F.v/ 8v 2 V (1)87


with <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinuous, symmetric and V -elliptic bilinear <str<strong>on</strong>g>for</str<strong>on</strong>g>m a W V V ! R and <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinuouslinear <str<strong>on</strong>g>for</str<strong>on</strong>g>m F W V ! R defined byZZa.u; v/ D .u/ W ".v/ dV and F.v/ D Nt v dA; (2) Nrespectively. Here, D W " denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> stress tensor given in terms of <str<strong>on</strong>g>the</str<strong>on</strong>g> fourth-orderelasticity tensor and <str<strong>on</strong>g>the</str<strong>on</strong>g> strain tensor " defined as <str<strong>on</strong>g>the</str<strong>on</strong>g> symmetric gradient of u. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore,Nt 2 ŒL 2 . N / 3 are prescribed tracti<strong>on</strong>s imposed <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Neumann boundary N .For<str<strong>on</strong>g>the</str<strong>on</strong>g>sakeofsimplicity, body <str<strong>on</strong>g>for</str<strong>on</strong>g>ces are omitted in our <str<strong>on</strong>g>for</str<strong>on</strong>g>mulati<strong>on</strong>.The discrete counterpart of <str<strong>on</strong>g>the</str<strong>on</strong>g> variati<strong>on</strong>al problem (1) c<strong>on</strong>sists in seeking a soluti<strong>on</strong> u 1h in afinite-dimensi<strong>on</strong>al subspace V 1h V satisfyinga.u 1h ; v 1h / D F.v 1h / 8v 1h 2 V 1h : (3)The J -integral as a crack propagati<strong>on</strong> criteri<strong>on</strong>In <str<strong>on</strong>g>the</str<strong>on</strong>g> classical <str<strong>on</strong>g>the</str<strong>on</strong>g>ory of LEFM, three principally different but equivalent strategies have beendeveloped in <str<strong>on</strong>g>the</str<strong>on</strong>g> last century, namely <str<strong>on</strong>g>the</str<strong>on</strong>g> energy release rate c<strong>on</strong>cept,<str<strong>on</strong>g>the</str<strong>on</strong>g>stress intensity approachand <str<strong>on</strong>g>the</str<strong>on</strong>g> J -integral c<strong>on</strong>cept, as originally proposed by Cherepanov [3] and Rice [7].In this paper, we deal in particular with <str<strong>on</strong>g>the</str<strong>on</strong>g> widely-used J -integral c<strong>on</strong>cept. The J -integral, whichis a n<strong>on</strong>linear functi<strong>on</strong>al J W V ! R, can be c<strong>on</strong>veniently derived by a straight<str<strong>on</strong>g>for</str<strong>on</strong>g>ward applicati<strong>on</strong>of <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>cept of material <str<strong>on</strong>g>for</str<strong>on</strong>g>ces, since J is <str<strong>on</strong>g>the</str<strong>on</strong>g> projecti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> material <str<strong>on</strong>g>for</str<strong>on</strong>g>ce F mat acting<strong>on</strong><str<strong>on</strong>g>the</str<strong>on</strong>g>crack tip into <str<strong>on</strong>g>the</str<strong>on</strong>g> directi<strong>on</strong> of crack propagati<strong>on</strong> (given in terms of <str<strong>on</strong>g>the</str<strong>on</strong>g> unit vector e jj ), i.e.ZJ.u/ D e jj Q˙ .u/ n dA; (4) Jwhere J is an arbitrary c<strong>on</strong>tour around <str<strong>on</strong>g>the</str<strong>on</strong>g> crack tip and Q˙ denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> so-called Newt<strong>on</strong>-Eshelby stress tensor given by Q˙ D W s I H T with specific strain-energy functi<strong>on</strong> W s ,identity tensor I and displacement gradient H . Hence, <str<strong>on</strong>g>the</str<strong>on</strong>g> material <str<strong>on</strong>g>for</str<strong>on</strong>g>ce acting <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> crack tipcan be evaluated in terms of <str<strong>on</strong>g>the</str<strong>on</strong>g> (material) tracti<strong>on</strong>s Q˙ n at <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tour J . Notice <str<strong>on</strong>g>the</str<strong>on</strong>g> analogyto a physical <str<strong>on</strong>g>for</str<strong>on</strong>g>ce which can be determined by <str<strong>on</strong>g>the</str<strong>on</strong>g> (physical) tracti<strong>on</strong>s n.A pre-existing crack <str<strong>on</strong>g>the</str<strong>on</strong>g>n starts to grow if J reaches <str<strong>on</strong>g>the</str<strong>on</strong>g> material dependent threshold J c .From a computati<strong>on</strong>al point of view, however, it proves c<strong>on</strong>venient to compute <str<strong>on</strong>g>the</str<strong>on</strong>g> J -integral bymeans of <str<strong>on</strong>g>the</str<strong>on</strong>g> equivalent domain expressi<strong>on</strong>ZJ.u/ D H .qe jj / W Q˙ .u/ dV (5) Jra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than by <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tour expressi<strong>on</strong> (4). In <str<strong>on</strong>g>the</str<strong>on</strong>g> above, q D q.x; y/ (or q D q.x; y; z/ in threedimensi<strong>on</strong>s) represents an arbitrary, c<strong>on</strong>tinuously differentiable weighting functi<strong>on</strong> with q D 1 at<str<strong>on</strong>g>the</str<strong>on</strong>g> crack tip and q D 0 <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tour (or surface) J that bounds <str<strong>on</strong>g>the</str<strong>on</strong>g> area (or volume) J .A posteriori error estimati<strong>on</strong>The error of <str<strong>on</strong>g>the</str<strong>on</strong>g> J -integralOur main objective in this paper is to estimate <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>linear error measure J.u/ J.u 1h /.SinceJ is n<strong>on</strong>linear by definiti<strong>on</strong>, we first derive its exact linearizati<strong>on</strong> J S W V ! R such that J.u/J.u 1h / D J S .u; u 1h I e/ with discretizati<strong>on</strong> error e D u u 1h . Up<strong>on</strong> applying <str<strong>on</strong>g>the</str<strong>on</strong>g> fundamental<str<strong>on</strong>g>the</str<strong>on</strong>g>orem of calculus <strong>on</strong> J , <str<strong>on</strong>g>the</str<strong>on</strong>g> so-called secant linear <str<strong>on</strong>g>for</str<strong>on</strong>g>m J S takes <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>mZ 1 ZJ S .u; u 1h I e/ D H .qe jj / W ˙..s// W H .e/ dV ds; (6)0 J88


F350 mmΩJ350 mmΓ Jcracka175 175 700 mm1400 mm175 175Figure 1: Parallel-edge-cracked borosilicate glass plate, primal loading and area J .see Rüter and Stein [9], with .s/ D u 1h C se, s 2 Œ0; 1 and fourth-order tensor of elastic tangentmoduli associated with <str<strong>on</strong>g>the</str<strong>on</strong>g> Newt<strong>on</strong>-Eshelby stress tensor ˙, cf. Heintz et al. [5], defined as˙ D @ Q˙@H D I ˝ I ˝ H T ˝ I H T ˝ 1 C H T ˝ 1 ; (7)where and are Lamé parameters.Duality techniquesIn order to estimate <str<strong>on</strong>g>the</str<strong>on</strong>g> error of <str<strong>on</strong>g>the</str<strong>on</strong>g> J -integral, we follow <str<strong>on</strong>g>the</str<strong>on</strong>g> general strategy of solving anauxiliary dual problem which reads: find a soluti<strong>on</strong> u 2 V that satisfiesa. u; v/ D J S .u; u 1h I v/ 8v 2 V : (8)An exact error representati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g>mula <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> error measure J S .u; u 1h I e/ in terms of <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong>of <str<strong>on</strong>g>the</str<strong>on</strong>g> dual problem (8) is now simply obtained by substituting v D e into (8) and readsJ S .u; u 1h I e/ D a.e; u u 2h / C a.e; u 2h / 8 u 2h 2 V 2h (9a)D a.e; u u 2h / C R.u 1h I u 2h / 8 u 2h 2 V 2h (9b)with residual functi<strong>on</strong>al of <str<strong>on</strong>g>the</str<strong>on</strong>g> primal problem R W V ! R defined asR.u 1h I u 2h / D F. u 2h / a.u 1h ; u 2h /; (10)where <str<strong>on</strong>g>the</str<strong>on</strong>g> finite-dimensi<strong>on</strong>al subspace V 2h V is generally different from V 1h . Note that in <str<strong>on</strong>g>the</str<strong>on</strong>g><str<strong>on</strong>g>special</str<strong>on</strong>g> case where V 2h V 1h , <str<strong>on</strong>g>the</str<strong>on</strong>g> residual R clearly vanishes due to <str<strong>on</strong>g>the</str<strong>on</strong>g> Galerkin orthog<strong>on</strong>ality.In computati<strong>on</strong>al practice, we choose u 2h as <str<strong>on</strong>g>the</str<strong>on</strong>g> finite element soluti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> discretized dualproblem (8). In this case, <str<strong>on</strong>g>the</str<strong>on</strong>g> secant <str<strong>on</strong>g>for</str<strong>on</strong>g>m J S .u; u 1h I e/ is approximated by its tangent J T .e/ DJ S .u 1h ; u 1h I e/. The goal-oriented a posteriori error estimator is <str<strong>on</strong>g>the</str<strong>on</strong>g>n simply obtained by averaging<str<strong>on</strong>g>the</str<strong>on</strong>g> gradients that appear in <str<strong>on</strong>g>the</str<strong>on</strong>g> bilinear <str<strong>on</strong>g>for</str<strong>on</strong>g>m a (<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> element level) as described inKorotov [6], see also <str<strong>on</strong>g>the</str<strong>on</strong>g> references <str<strong>on</strong>g>the</str<strong>on</strong>g>rein. In this fashi<strong>on</strong>, however, no error bounds can be obtained.Finally, it should be emphasized that <strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g> bilinear <str<strong>on</strong>g>for</str<strong>on</strong>g>m a needs to be approximated <str<strong>on</strong>g>for</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> computati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> error estimator, since <str<strong>on</strong>g>the</str<strong>on</strong>g> residual functi<strong>on</strong>al R can be computed exactly.Numerical ExampleThe system c<strong>on</strong>sidered in this numerical example is a parallel-edge-cracked borosilicate glassplate in plane-stress state subjected to 4-point bending, as depicted in Figure 1. For <str<strong>on</strong>g>the</str<strong>on</strong>g> chosen89


2Estimated error10 2 Number of degrees of freedom10 3Effectivity index1.5110 410 2 10 3 10 40.510 2 10 3 10 4Number of degrees of freedomFigure 2: Estimated error J.u/ J.u 1h /.Figure 3: Effectivity index.borosilicate glass, <str<strong>on</strong>g>the</str<strong>on</strong>g> following material data are assumed: E D 64 000 N/mm 2 , D 0:2 andJ c D 0:015 kJ/m 2 . The chosen load in this example is F D 0:6 N/mm 2 . Due to symmetryc<strong>on</strong>siderati<strong>on</strong>s, <strong>on</strong>ly <strong>on</strong>e half of <str<strong>on</strong>g>the</str<strong>on</strong>g> specimen is modeled using triangular P 1 -elements.The estimated error of <str<strong>on</strong>g>the</str<strong>on</strong>g> J -integral is plotted in Figure 2. Here, an optimal error c<strong>on</strong>vergencecan be observed, although—within <str<strong>on</strong>g>the</str<strong>on</strong>g> adaptive mesh refinement process—<str<strong>on</strong>g>the</str<strong>on</strong>g> dual finite elementsoluti<strong>on</strong> is solved <strong>on</strong>ly <strong>on</strong>ce <strong>on</strong> a coarse mesh (758 degrees of freedom). The associated effectivityindex is visualized in Figure 3 and also shows a good result around <str<strong>on</strong>g>the</str<strong>on</strong>g> desired value of ”1”.AcknowledgmentsMarcus Rüter is supported by <str<strong>on</strong>g>the</str<strong>on</strong>g> DFG under <str<strong>on</strong>g>the</str<strong>on</strong>g> grant no. RU1213/1-1. Sergey Korotov is supportedby <str<strong>on</strong>g>the</str<strong>on</strong>g> Academy Research Fellowship no. 208628 from <str<strong>on</strong>g>the</str<strong>on</strong>g> Academy of Finland. ChristianSteenbock is supported by <str<strong>on</strong>g>the</str<strong>on</strong>g> project no. 211512 from <str<strong>on</strong>g>the</str<strong>on</strong>g> Academy of Finland.References[1] I. Babuška and A. Miller The post-processing approach in <str<strong>on</strong>g>the</str<strong>on</strong>g> finite element method. Part 3: Aposteriori error estimates and adaptive mesh selecti<strong>on</strong>. Int. J. Numer. Meth. Engng, 20, 2311–2324,(1984).[2] R. Becker and R. Rannacher A feed-back approach to error c<strong>on</strong>trol in finite element methods: Basicanalysis and examples. East-West J. Numer. Math., 4, 237–264, (1996).[3] G. Cherepanov Crack propagati<strong>on</strong> in c<strong>on</strong>tinuous media. J. Appl. Math. Mech., 31, 503–512, (1967).[4] K. Erikss<strong>on</strong>, D. Estep, P. Hansbo and C. Johns<strong>on</strong> Introducti<strong>on</strong> to adaptive methods <str<strong>on</strong>g>for</str<strong>on</strong>g> differentialequati<strong>on</strong>s. Acta Numer., 106–158, (1995).[5] P. Heintz, F. Larss<strong>on</strong>, P. Hansbo and K. Runess<strong>on</strong> Adaptive strategies and error c<strong>on</strong>trol <str<strong>on</strong>g>for</str<strong>on</strong>g> computingmaterial <str<strong>on</strong>g>for</str<strong>on</strong>g>ces in fracture <strong>mechanics</strong>. Int. J. Numer. Meth. Engng, 60, 1287–1299, (2004).[6] S. Korotov New technologies <str<strong>on</strong>g>for</str<strong>on</strong>g> c<strong>on</strong>trol of local errors in engineering computati<strong>on</strong>s by FEM. Proceedingsof <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>18</str<strong>on</strong>g>th Nordic Seminar <strong>on</strong> Computati<strong>on</strong>al Mechanics, Helsinki, Finland, (2005).[7] J. Rice A path independent integral and <str<strong>on</strong>g>the</str<strong>on</strong>g> approximate analysis of strain c<strong>on</strong>centrati<strong>on</strong> by notchesand cracks. J. Appl. Mech., 35, 379–386, (1968).[8] M. Rüter, P. Heintz, F. Larss<strong>on</strong>, P. Hansbo, K. Runess<strong>on</strong> and E. Stein Strategies <str<strong>on</strong>g>for</str<strong>on</strong>g> goal-oriented aposteriori error estimati<strong>on</strong> in elastic fracture <strong>mechanics</strong>. In E. Lund et al., editors, Proceedings of <str<strong>on</strong>g>the</str<strong>on</strong>g>15th Nordic Seminar <strong>on</strong> Computati<strong>on</strong>al Mechanics pages 43–46, Aalborg, Denmark, (2002).[9] M. Rüter and E. Stein Goal-oriented a posteriori error estimates in linear elastic fracture <strong>mechanics</strong>.Comput. Methods Appl. Mech. Engrg., in press, (2005).[10] E. Stein, M. Rüter and S. Ohnimus Adaptive finite element analysis and modelling of solids andstructures. Findings, problems and trends. Int. J. Numer. Meth. Engng, 60, 103–138, (2004).[11] P. Steinmann, D. Ackermann and F.J. Barth Applicati<strong>on</strong> of material <str<strong>on</strong>g>for</str<strong>on</strong>g>ces to hyperelastostatic fracture<strong>mechanics</strong>. II. Computati<strong>on</strong>al setting. Int. J. Solids Structures, 38, 5509–5526, (2001).90


FPK-equati<strong>on</strong> soluti<strong>on</strong>s <str<strong>on</strong>g>for</str<strong>on</strong>g> stochastic structural resp<strong>on</strong>sePentti VarpasuoFortum Nuclear Services Ltd,Helsinki, Finland, e-mail:pentti.varpasuo@kolumbus.fiSummary Brownian moti<strong>on</strong> studies enabled <str<strong>on</strong>g>the</str<strong>on</strong>g> modeling of <str<strong>on</strong>g>the</str<strong>on</strong>g> stochastic structural resp<strong>on</strong>se with <str<strong>on</strong>g>the</str<strong>on</strong>g>aid of multi-dimensi<strong>on</strong>al Markov processes. The state transiti<strong>on</strong> probability functi<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> a Markovprocess is <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong> of a partial differential equati<strong>on</strong>, known as <str<strong>on</strong>g>the</str<strong>on</strong>g> Fokker Planck Kolmogorov (FPK)equati<strong>on</strong>, or <str<strong>on</strong>g>for</str<strong>on</strong>g>ward diffusi<strong>on</strong> equati<strong>on</strong>. The FPK- equati<strong>on</strong> governs <str<strong>on</strong>g>the</str<strong>on</strong>g> diffusi<strong>on</strong> of probability mass instate space. It is analogical in <str<strong>on</strong>g>for</str<strong>on</strong>g>m to <str<strong>on</strong>g>the</str<strong>on</strong>g> diffusi<strong>on</strong> equati<strong>on</strong>s <str<strong>on</strong>g>for</str<strong>on</strong>g> heat and mass transfer in <str<strong>on</strong>g>the</str<strong>on</strong>g>rmohydraulicproblems. The drift and diffusi<strong>on</strong> coefficients in <str<strong>on</strong>g>the</str<strong>on</strong>g> FPK-equati<strong>on</strong> can be related to <str<strong>on</strong>g>the</str<strong>on</strong>g>parameters in <str<strong>on</strong>g>the</str<strong>on</strong>g> dynamic equati<strong>on</strong>s of moti<strong>on</strong>. The finite element <str<strong>on</strong>g>for</str<strong>on</strong>g>mulati<strong>on</strong> using standard software<str<strong>on</strong>g>for</str<strong>on</strong>g> diffusi<strong>on</strong> problems <str<strong>on</strong>g>for</str<strong>on</strong>g>ms an effective approach <str<strong>on</strong>g>for</str<strong>on</strong>g> solving n<strong>on</strong>-linear random vibrati<strong>on</strong> problemswith <str<strong>on</strong>g>the</str<strong>on</strong>g> aid of FPK -equati<strong>on</strong>.Introducti<strong>on</strong>The Brownian moti<strong>on</strong> studies were <str<strong>on</strong>g>the</str<strong>on</strong>g> basis <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> modeling of <str<strong>on</strong>g>the</str<strong>on</strong>g> resp<strong>on</strong>se of dynamic systems torandom excitati<strong>on</strong> in terms of multi-dimensi<strong>on</strong>al Markov processes (So<strong>on</strong>g, 1973), (Roberts & Spanos,1990), (So<strong>on</strong>g & Grigoriu, 1993), (Lin & Cai, 1995), (Soize, 1998). The state transiti<strong>on</strong> probabilityfuncti<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> a Markov process can be exoressed in <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>m of <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong> of partial differentialequati<strong>on</strong>, known as <str<strong>on</strong>g>the</str<strong>on</strong>g> Fokker Planck Kolmogorov (FPK) equati<strong>on</strong>.The Fokker Planck Kolmogorov equati<strong>on</strong> that determines <str<strong>on</strong>g>the</str<strong>on</strong>g> diffusi<strong>on</strong> of probability mass in statespace, is analogical to <str<strong>on</strong>g>the</str<strong>on</strong>g> diffusi<strong>on</strong> equati<strong>on</strong>s of heat or mass transfer in <str<strong>on</strong>g>the</str<strong>on</strong>g>rmo-hydraulic problems.The drift coefficients and <str<strong>on</strong>g>the</str<strong>on</strong>g> diffusi<strong>on</strong> matrix in <str<strong>on</strong>g>the</str<strong>on</strong>g> FPK equati<strong>on</strong> are related to <str<strong>on</strong>g>the</str<strong>on</strong>g> parameters inequati<strong>on</strong>s of moti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> vibrati<strong>on</strong> systems.The soluti<strong>on</strong> of FPK –equati<strong>on</strong> offers an approach <str<strong>on</strong>g>for</str<strong>on</strong>g> solving n<strong>on</strong>-linear random vibrati<strong>on</strong> problems.The finite element soluti<strong>on</strong> follows <str<strong>on</strong>g>the</str<strong>on</strong>g> references (Yi, Spencer & Bergman, 1997), (Wojtkiewicz &Bergman, 2001a) and (Wojtkiewicz & Bergman, 2001b).Literature surveySo<strong>on</strong>g (1973) gives <str<strong>on</strong>g>the</str<strong>on</strong>g> FPK-equati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g>mulati<strong>on</strong> and soluti<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> a single-degree of freedom oscillatorexcited with white noise W(t):X’’(t) + 2βX’(t) + k(X) = W(t) (1)With X(t) = X1(t), X’(t) = X2(t) and with <str<strong>on</strong>g>the</str<strong>on</strong>g> vector X(t) = [X1(t), X2(t)]T Equati<strong>on</strong> (1) can bepresented in Ito equati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g>m as follows:wheredX(t)=[X 2 (t),-k(X 1 (t))-2βX 2 (t)] T dt+[0,dΒ(t)] T (2)E{dΒ(t)} = 0, E{[dΒ(t)] 2 } = 2Ddt (3)The Fokker-Planck-Kolmogorov equati<strong>on</strong> can <str<strong>on</strong>g>the</str<strong>on</strong>g>n be written∂f(x,t|x 0 ,t 0 )/∂t = -∂/∂x 1 (x 2 f) + ∂/∂x 2 {[k(x 1 ) +2βx 2 ]f} +∂ 2 /∂x 2 2 (Df) (4)The soluti<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> stati<strong>on</strong>ary density functi<strong>on</strong> f s (x 1 ,x 2 ) can <str<strong>on</strong>g>the</str<strong>on</strong>g>n be written91


f s (x 1 ,x 2 ) = c exp{-2β/D[∫ 0 x1 k(x)dx +x 2 2 /2]} (5)So<strong>on</strong>g&Grigoriu, 1993, give <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong> of Duffing – equati<strong>on</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g> aid of FPK- equati<strong>on</strong> asfollows. The oscillator has <str<strong>on</strong>g>the</str<strong>on</strong>g> unit mass, <str<strong>on</strong>g>the</str<strong>on</strong>g> damping parameter is c, and <str<strong>on</strong>g>the</str<strong>on</strong>g> restoring <str<strong>on</strong>g>for</str<strong>on</strong>g>ce is given by<str<strong>on</strong>g>the</str<strong>on</strong>g> functi<strong>on</strong> U’(x). The oscillator is subjected to zero-mean Gaussian white-noise excitati<strong>on</strong> W(t) with<strong>on</strong>e-sided power spectral density G 0 . The displacement X(t) of <str<strong>on</strong>g>the</str<strong>on</strong>g> oscillator satisfies <str<strong>on</strong>g>the</str<strong>on</strong>g> differentialequati<strong>on</strong>an alternative Ito <str<strong>on</strong>g>for</str<strong>on</strong>g>m of this equati<strong>on</strong> isX’’(t) +cX’(t) +U’ (X(t))=W(t) (6)dX 1 (t) = H ,2 [X(t)]dt; (7)dX 2 (t) = -{H ,1 [X(t)] + cH ,2 [X(t)]}dt + (πG 0 ) 1/2 dB(t)In Equati<strong>on</strong> (7) X 1 (t) = X(t); X 2 (t) = X’(t); H(X) = U(X) + X 2 /2 denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> total mechanical energy; H ,k= ∂H/∂x k ; and B(t) is <str<strong>on</strong>g>the</str<strong>on</strong>g> standard Wiener process with independent increments dB(t) of zero means andvariances dt. The vector process X(t) having comp<strong>on</strong>ents X 1 (t) and X 2 (t) is of <str<strong>on</strong>g>the</str<strong>on</strong>g> diffusi<strong>on</strong> type. Thestati<strong>on</strong>ary Fokker-Planck equati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> transiti<strong>on</strong> probability density f(x,t|x 0 ,t 0 ) is-∂/∂x 1 (H ,2 f) - ∂/∂x 2 [(-H ,1 – cH ,2 )f]+πG 0 /2∂ 2 f/∂x 22(8)Suppose U’ (X) = ω 0 2 X(1 + εX 2 ). The system with this restoring functi<strong>on</strong> is called <str<strong>on</strong>g>the</str<strong>on</strong>g> Duffingoscillator. The stati<strong>on</strong>ary probability density of X(t) isf(x 1 ,x 2 )={(2π) 1/2 σ 0 ’qexp[-1/(2σ 0 2 )(x 12+ ε/2x 1 4 )]}{1/(2πσ 0 ’) 1/2 exp(-x 2 2 /(2σ 0 2 ’)} (9)where σ 0 2 =πG 0 /(2cω 0 2 ) and σ 0 2 ’=ω 0 2 σ 0 2 represent stati<strong>on</strong>ary variances of X(t) and X’(t) <str<strong>on</strong>g>for</str<strong>on</strong>g> linearoscillator when ε=0. The normalizati<strong>on</strong> c<strong>on</strong>stant q is given byq-1 = π(G 0 /(2cε)) 1/2 exp [1/(8εσ 0 2 K 1/4 (1/(8εσ 0 2 ))] (10)where K 1/4 is <str<strong>on</strong>g>the</str<strong>on</strong>g> modified Bessel functi<strong>on</strong> of order ¼. The stati<strong>on</strong>ary variance of <str<strong>on</strong>g>the</str<strong>on</strong>g> displacement isσ X 2 = (πε/2) 1/2 (2σ 0 2 /ε) 3/4 D -3/2 (1(2εσ 0 2 ) 1/2 )/K 1/4 (1/(8εσ 0 2 )) (11)where D -3/2 ( ) is <str<strong>on</strong>g>the</str<strong>on</strong>g> parabolic cylinder functi<strong>on</strong>. Lin&Cai, 1995, c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>linearly dampedSDOF- system under multiplicative and additive white noise excitati<strong>on</strong>. The n<strong>on</strong>linear system governedbyX’’ + (α + βX 2 )X’ + ω 0 2 [1 + W 1 (t)] X = W 2 (t) (12)where W 1 (t) and W 2 (t) are independent Gaussian white noises with spectral densities K 11 and K 22 ,respectively. Equati<strong>on</strong> (12) is replaced by <str<strong>on</strong>g>the</str<strong>on</strong>g> following Ito equati<strong>on</strong>s:dX 1 = X 2 dt (13)dX 2 = -[(α + βX 1 2 )X 2 + ω 0 2 X 1 ]dt + [2π(ω 0 4 K 11 X 1 2 + K 22 )] 1/2 dB(t) (14)The reduced Fokker-Planck equati<strong>on</strong>, corresp<strong>on</strong>ding to (13) and (14), is given byx 2 ∂p/∂x 1 -∂/∂x 2 {[(α+βx 1 2 )x 2 +ω 0 2 x 1 ]p}+π(ω 0 4 K 11 x 1 2 +K 22 )∂ 2 p/∂x 2 2 =0 (15)The soluti<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> stati<strong>on</strong>ary probability density functi<strong>on</strong> in Equati<strong>on</strong> (15) is given by92


p(x 1 ,x 2 )=Cexp[-α/(2πK 22 )(ω 0 2 x 1 2 +x 2 2 )] (16)Equati<strong>on</strong> (16) shows that <str<strong>on</strong>g>the</str<strong>on</strong>g> displacement X(t) = X 1 (t) and <str<strong>on</strong>g>the</str<strong>on</strong>g> velocity X’(t) = X 2 (t) at <str<strong>on</strong>g>the</str<strong>on</strong>g> same t arejointly Gaussian distributed. The same Gaussian distributi<strong>on</strong> is obtained if we set β = 0 and W l (t) = 0,that is, if <str<strong>on</strong>g>the</str<strong>on</strong>g> system is linear and under <strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g> additive white noise excitati<strong>on</strong>. This means that under asuitable combinati<strong>on</strong> of additive and multiplicative Gaussian random excitati<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g> stati<strong>on</strong>aryresp<strong>on</strong>se of a n<strong>on</strong>linear system can also be Gaussian. Different stochastic systems can sometimes sharea comm<strong>on</strong> probability distributi<strong>on</strong>.Soize, 1998, gives extensive <str<strong>on</strong>g>for</str<strong>on</strong>g>mulati<strong>on</strong>s <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> use FPK-equati<strong>on</strong> in different types of randomvibrati<strong>on</strong> problems. For numerical soluti<strong>on</strong> example of <str<strong>on</strong>g>the</str<strong>on</strong>g> stochastic differential equati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> M<strong>on</strong>teCarlo numerical simulati<strong>on</strong> is used. The random vibrati<strong>on</strong> problem is <str<strong>on</strong>g>for</str<strong>on</strong>g>mulated with <str<strong>on</strong>g>the</str<strong>on</strong>g> aid of <str<strong>on</strong>g>the</str<strong>on</strong>g> firstorder Ito equati<strong>on</strong> and a Crank-Nichols<strong>on</strong> numerical time integrati<strong>on</strong> scheme is used <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong>.The Ito equati<strong>on</strong> can be written asd(Q(t),P(t) T = b(Q(t),P(t))dt + [A] dW (17)In equati<strong>on</strong> (17) Q(t) are <str<strong>on</strong>g>the</str<strong>on</strong>g> generalized coordinates and P(t) are <str<strong>on</strong>g>the</str<strong>on</strong>g> generalized momentums. b is <str<strong>on</strong>g>the</str<strong>on</strong>g>drift vector and [A] is <str<strong>on</strong>g>the</str<strong>on</strong>g> diffusi<strong>on</strong> matrix and W is normalized Wiener process. To make <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong>of <str<strong>on</strong>g>the</str<strong>on</strong>g> equati<strong>on</strong> (17) suitable <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> use a Crank-Nichols<strong>on</strong> method <str<strong>on</strong>g>the</str<strong>on</strong>g> following identity is introduced[M(q)] -1 = [M o ] -1 + ([M(q)] -1 - [M o ] -1 ) (<str<strong>on</strong>g>18</str<strong>on</strong>g>)With <str<strong>on</strong>g>the</str<strong>on</strong>g> aid of Equati<strong>on</strong> (<str<strong>on</strong>g>18</str<strong>on</strong>g>) Equati<strong>on</strong> (17) can be written asdX = [A]Xdt + V(X)dt + [A ]dW (19)where [A] = [ [0], g 0 [S 0 ]] T and X = (Q,P) and matrix A and vector V(X) are defined byA 11 = [0], A 12 = [M 0 ] -1 , A 21 = [K 0 ], A 22 = - [Β 0 ][Μ 0 ] −1 (20)V(X) = [ U(Q,P), R(Q,P) – [Β 0 ]U(Q,P) ] T (21)In Equati<strong>on</strong> (21) [Β 0 ] is <str<strong>on</strong>g>the</str<strong>on</strong>g> damping matrix, U(Q,P) = ([M(Q)] -1 – [M 0 ] -1 )P and R(Q,P) is a vectorwhose comp<strong>on</strong>ents R j (Q,P) are given by <str<strong>on</strong>g>the</str<strong>on</strong>g> inner vector productRj(Q,P) = 1/2 (22)[D j (Q)] = ∂/∂Q j [M(Q)] (23)With <str<strong>on</strong>g>the</str<strong>on</strong>g>se <str<strong>on</strong>g>the</str<strong>on</strong>g> Crank-Nichols<strong>on</strong> time integrati<strong>on</strong> scheme yieldsX n+1 -X n = 1/2∆t [A ] (X n+l +X n ) + 1/2∆t {V(X n+l )+V(X n )} + [A ] ∆W n+1 (24)Equati<strong>on</strong> (24) can be written asX n+1 = [K] N(X n+1 ) + G n+1 (25)where G n+1 is independent from X n+1 , but depends <strong>on</strong> X n and ∆W n+1 , and [K] is a c<strong>on</strong>stant matrix. Eachtime step, X n+1 in Equati<strong>on</strong> (25) is solved by <str<strong>on</strong>g>the</str<strong>on</strong>g> iterative algorithm X (j+1) n+1 = [K ] V(X (j) n+1 + G n+l , <str<strong>on</strong>g>for</str<strong>on</strong>g> j> 0 with initial value X (0) n+1 = X nFinite element <str<strong>on</strong>g>for</str<strong>on</strong>g>mulati<strong>on</strong> of numerical soluti<strong>on</strong>Two dimensi<strong>on</strong>al <str<strong>on</strong>g>for</str<strong>on</strong>g>m of FPK - equati<strong>on</strong> can be written as93


∂f/∂t = -Σ∂/∂x i (z i f) + ½ ΣΣ ∂ 2 /∂x i ∂x j (H ij f) (26)Indices i and j in <str<strong>on</strong>g>the</str<strong>on</strong>g> sums of Equati<strong>on</strong> (26) go from 1 to 2. Vector z i in Equati<strong>on</strong> (26) is called <str<strong>on</strong>g>the</str<strong>on</strong>g> driftvector and matrix H ij <str<strong>on</strong>g>the</str<strong>on</strong>g> diffusi<strong>on</strong> matrix. With f=0 <strong>on</strong> boundary of <str<strong>on</strong>g>the</str<strong>on</strong>g> investigated domain and withinitial c<strong>on</strong>diti<strong>on</strong> f x0 (x 0 ,0) = f x0. Equati<strong>on</strong> (26) is amenable to soluti<strong>on</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g> aid of finite elementmethod. Approximating <str<strong>on</strong>g>the</str<strong>on</strong>g> transiti<strong>on</strong> probability density functi<strong>on</strong> f by <str<strong>on</strong>g>the</str<strong>on</strong>g> following expressi<strong>on</strong>f x (x,t) = ΣN j (x)f j e (t) (27)where <str<strong>on</strong>g>the</str<strong>on</strong>g> functi<strong>on</strong>s N j are shape functi<strong>on</strong>s expressing <str<strong>on</strong>g>the</str<strong>on</strong>g> unknown transiti<strong>on</strong> probability densityfuncti<strong>on</strong> inside <strong>on</strong>e finite element using its nodal values.The soluti<strong>on</strong> of Equati<strong>on</strong> (26) is obtained by weighted residual <str<strong>on</strong>g>for</str<strong>on</strong>g>mulati<strong>on</strong> using <str<strong>on</strong>g>the</str<strong>on</strong>g> Bubnov–Galerkinmethod (Wedig&v<strong>on</strong> Wagner, 1999). First <str<strong>on</strong>g>the</str<strong>on</strong>g> residual of Equati<strong>on</strong> (26) is defined by substituting intoequati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> approximati<strong>on</strong> of Equati<strong>on</strong> (27). The weighted residual is <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>for</str<strong>on</strong>g>med by multiplying <str<strong>on</strong>g>the</str<strong>on</strong>g>residual with weighting functi<strong>on</strong>s and <str<strong>on</strong>g>the</str<strong>on</strong>g> weighted residual is integrated over <str<strong>on</strong>g>the</str<strong>on</strong>g> investigated domainand <str<strong>on</strong>g>the</str<strong>on</strong>g> result is set to zero. This means that <str<strong>on</strong>g>the</str<strong>on</strong>g> residual is required to be orthog<strong>on</strong>al to <str<strong>on</strong>g>the</str<strong>on</strong>g> space, where<str<strong>on</strong>g>the</str<strong>on</strong>g> base vectors are <str<strong>on</strong>g>the</str<strong>on</strong>g> weighting functi<strong>on</strong>s. The <str<strong>on</strong>g>special</str<strong>on</strong>g> feature of <str<strong>on</strong>g>the</str<strong>on</strong>g> Bubnov–Galerkin method is thatweighting functi<strong>on</strong>s are <str<strong>on</strong>g>the</str<strong>on</strong>g> same as <str<strong>on</strong>g>the</str<strong>on</strong>g> shape functi<strong>on</strong>s in Equati<strong>on</strong> (27) i. e. W i = N i . In this study fournode quadrilateral elements are used and shape and weighting functi<strong>on</strong>s in local system of coordinatesare as followsN 1 = ¼(1-ξ)(1-η) (28)N 2 = ¼(1+ξ)(1-η) (29)N 3 = ¼(1+ξ)(1+η) (30)N 4 = ¼(1-ξ)(1+η)§ (31)In Equati<strong>on</strong>s (28) – (31) ξ and η are coordinates in <str<strong>on</strong>g>the</str<strong>on</strong>g> local elemental system of coordinates and <str<strong>on</strong>g>the</str<strong>on</strong>g>irvalues vary from -1 up to +1. By implementing <str<strong>on</strong>g>the</str<strong>on</strong>g> procedure described above <str<strong>on</strong>g>the</str<strong>on</strong>g> governing matrixequati<strong>on</strong> of problem is obtained asK ij =Σ∫{N j ∂N i /∂x 2 ∂H 22 /∂x 2 + H 22 ∂N i /∂x 2 ∂N j /∂x 2 +N i Σz r ∂N j ∂x r - N i N j Σ∂z r /∂x r }dx (32)C ij = Σ∫N i N j dx (33)In Equati<strong>on</strong>s (33) and (34) <str<strong>on</strong>g>the</str<strong>on</strong>g> indices in first sums go from 1 to N e , where N e is <str<strong>on</strong>g>the</str<strong>on</strong>g> number of elementsin <str<strong>on</strong>g>the</str<strong>on</strong>g> model, and <str<strong>on</strong>g>the</str<strong>on</strong>g> indices in sums inside <str<strong>on</strong>g>the</str<strong>on</strong>g> brackets go from 1 to 2. The underline in x means that xis a vector of two comp<strong>on</strong>ents. The integrati<strong>on</strong>s in (33) and (34) go over <str<strong>on</strong>g>the</str<strong>on</strong>g> volume of <str<strong>on</strong>g>the</str<strong>on</strong>g> element. Inorder to clarify <str<strong>on</strong>g>the</str<strong>on</strong>g> meanings of drift vector {z} and diffusi<strong>on</strong> matrix [H] we look into <str<strong>on</strong>g>the</str<strong>on</strong>g> case ofDuffing oscillator, which has <str<strong>on</strong>g>the</str<strong>on</strong>g> following governing equati<strong>on</strong>y’’+ 2βy’ +ω 2 y 3 = W(t); (34)where <str<strong>on</strong>g>the</str<strong>on</strong>g> autocorrelati<strong>on</strong> functi<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> W(t) is E[W(t)W(t+τ)] = 2πS 0 δ(t) and τ = t 2 – t 1 and δ(t) isDirac’s delta functi<strong>on</strong>. In this case <str<strong>on</strong>g>the</str<strong>on</strong>g> drift vector and <str<strong>on</strong>g>the</str<strong>on</strong>g> diffusi<strong>on</strong> matrix of <str<strong>on</strong>g>the</str<strong>on</strong>g> FPK- equati<strong>on</strong> are asfollowswhere y’ is <str<strong>on</strong>g>the</str<strong>on</strong>g> velocity of <str<strong>on</strong>g>the</str<strong>on</strong>g> Duffing oscillator.z 1 = y’ (35)z 2 =-2βy’ – ω 2 y 3§ (36)where y is <str<strong>on</strong>g>the</str<strong>on</strong>g> displacement of <str<strong>on</strong>g>the</str<strong>on</strong>g> Duffing oscillator. The diffusi<strong>on</strong> matrix is given by <strong>on</strong>ly <strong>on</strong>e elementas follows94


where S 0 is c<strong>on</strong>stant power spectral density of white noise process.C<strong>on</strong>clusi<strong>on</strong>H 22 = 2πS 0 (37)The paper shows how <str<strong>on</strong>g>the</str<strong>on</strong>g> well established finite element apparatus and <str<strong>on</strong>g>the</str<strong>on</strong>g> standard linear finiteelement codes can be used to solve n<strong>on</strong>linear random vibrati<strong>on</strong> problemsReferences[1] So<strong>on</strong>g T.T., Random Differential Equati<strong>on</strong>s in Science and Engineering, Academic Press, NewYork and L<strong>on</strong>d<strong>on</strong>, 1973.[2] Roberts J.B., Spanos P.D., Random Vibrati<strong>on</strong> and Statistical Linearizati<strong>on</strong>. John Wiley & S<strong>on</strong>s,Chicester, England, 1990.[3] So<strong>on</strong>g T. T. Grigoriu Mircea, Random Vibrati<strong>on</strong> of Mechanical and Structtural Systems,Prentice –Hall, Englewood Cliffs, New Jersey, 1993.[4] Y.K.Lin, G. Q. Cai, Probabilistic Structural Dynamics, McGraw-Hill, Inc., New York, 1995.[5] Soize C., The Fokker-Planck Equati<strong>on</strong> For Stochastic Dynamic Systems and its explicit steadystate soluti<strong>on</strong>s, World Scientific, New Jersey, 1998[6] Yi W., Spencer B. F., Bergman L. A., Soluti<strong>on</strong> of Fokker – Planck equati<strong>on</strong>s in higherdimensi<strong>on</strong>s95


The Effect of Delaminati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Natural Frequencies of<str<strong>on</strong>g>the</str<strong>on</strong>g> Composite Beams <strong>on</strong> Two-Parameter Foundati<strong>on</strong>Helle HeinInstitute of Computer ScienceUniversity of Tartu, Liivi 2, 50409 Tartu, Est<strong>on</strong>iae-mail: helle.hein@ut.eeSummary A general analytical soluti<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> delaminated composite beam <strong>on</strong> a two-parameterelastic foundati<strong>on</strong> is derived. The soluti<strong>on</strong> is not restricted to a particular range of magnitudes of <str<strong>on</strong>g>the</str<strong>on</strong>g>foundati<strong>on</strong> parameters. The effect of size and locati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> delaminati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> frequencies and modeshapes are investigated.1. Introducti<strong>on</strong>Delaminati<strong>on</strong> in composite laminates may develop from small cracks due to imperfectfabricati<strong>on</strong> processes or impact loading during service. The presence of delaminati<strong>on</strong> isknown to cause strength and stiffness degradati<strong>on</strong> as well as changes to <str<strong>on</strong>g>the</str<strong>on</strong>g> vibrati<strong>on</strong>characteristics of <str<strong>on</strong>g>the</str<strong>on</strong>g> structure. The vibrati<strong>on</strong>s of delaminated beams have been studied inmany papers [1]-[8]. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, beams resting <strong>on</strong> elastic foundati<strong>on</strong>s are verycomm<strong>on</strong> technical problems in structural and geotechnical engineering. The influences ofelastic foundati<strong>on</strong> stiffness <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> free vibrati<strong>on</strong> of beams and plates have been examined in[9]-[12]. Various types of foundati<strong>on</strong> models have been developed. The simplest model is <str<strong>on</strong>g>the</str<strong>on</strong>g>Winkler model in <str<strong>on</strong>g>the</str<strong>on</strong>g> case of which <str<strong>on</strong>g>the</str<strong>on</strong>g> foundati<strong>on</strong> medium is taken into account as a systemof infinitely close linear springs. Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r model proposed by Pasternak acquires shearinteracti<strong>on</strong> between springs.In <str<strong>on</strong>g>the</str<strong>on</strong>g> present study, <str<strong>on</strong>g>the</str<strong>on</strong>g> free vibrati<strong>on</strong> analysis of delaminated layered composite beamsresting <strong>on</strong> elastic foundati<strong>on</strong> is c<strong>on</strong>sidered. The elastic foundati<strong>on</strong> is modeled with <str<strong>on</strong>g>the</str<strong>on</strong>g> aid oftwo parameters [11], [12].Formulati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> problemIn this secti<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> analytical soluti<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> free vibrati<strong>on</strong> of a delaminated composite beamresting <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> elastic foundati<strong>on</strong> is <str<strong>on</strong>g>for</str<strong>on</strong>g>mulated. For <str<strong>on</strong>g>the</str<strong>on</strong>g> sake of simplicity <str<strong>on</strong>g>the</str<strong>on</strong>g> case with <strong>on</strong>edelaminati<strong>on</strong> regi<strong>on</strong> is c<strong>on</strong>sidered. The geometry of <str<strong>on</strong>g>the</str<strong>on</strong>g> asymmetrically delaminated beamwith width b is shown in Figure 1. The delaminated beam can be viewed as a combinati<strong>on</strong> offour beams, each beam having thickness H i and length L i (i = 1, …, 4), c<strong>on</strong>nected at <str<strong>on</strong>g>the</str<strong>on</strong>g>delaminati<strong>on</strong> boundaries x = x 2 , x = x 3 . Each of <str<strong>on</strong>g>the</str<strong>on</strong>g> beams is treated as a classical Euler-Bernoulli beam. The following assumpti<strong>on</strong>s are c<strong>on</strong>sidered:1. The delaminated layers are assumed to be in touch al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g>ir whole length all <str<strong>on</strong>g>the</str<strong>on</strong>g> time, butare allowed to slide over each o<str<strong>on</strong>g>the</str<strong>on</strong>g>r.2. The cross-secti<strong>on</strong>s near <str<strong>on</strong>g>the</str<strong>on</strong>g> delaminati<strong>on</strong> fr<strong>on</strong>ts remain perpendicular to <str<strong>on</strong>g>the</str<strong>on</strong>g> de<str<strong>on</strong>g>for</str<strong>on</strong>g>medmidplane of <str<strong>on</strong>g>the</str<strong>on</strong>g> beam and thus take full account of <str<strong>on</strong>g>the</str<strong>on</strong>g> differential stretching between <str<strong>on</strong>g>the</str<strong>on</strong>g> twodelaminated layers of <str<strong>on</strong>g>the</str<strong>on</strong>g> beam.The governing equati<strong>on</strong>s of <str<strong>on</strong>g>the</str<strong>on</strong>g> free vibrati<strong>on</strong>s of <str<strong>on</strong>g>the</str<strong>on</strong>g> i-th (i = 1;4) beam segment <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>transverse displacement are:42d wid wi2Di− k2+ ( k1− ρ ) = 0,42iAiωwi(1)dx dxwhere D i is <str<strong>on</strong>g>the</str<strong>on</strong>g> bending stiffness, ρ i is <str<strong>on</strong>g>the</str<strong>on</strong>g> mass density, w i is <str<strong>on</strong>g>the</str<strong>on</strong>g> mode shape and A i is <str<strong>on</strong>g>the</str<strong>on</strong>g>cross secti<strong>on</strong>al area of <str<strong>on</strong>g>the</str<strong>on</strong>g> i-th beam. The quantity denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> frequency, <str<strong>on</strong>g>the</str<strong>on</strong>g> quantities k 1and k 2 denote <str<strong>on</strong>g>the</str<strong>on</strong>g> Winkler and Pasternak parameters, respectively.The mechanical properties of <str<strong>on</strong>g>the</str<strong>on</strong>g> composite beams can be determined using <str<strong>on</strong>g>the</str<strong>on</strong>g> classicallaminate <str<strong>on</strong>g>the</str<strong>on</strong>g>ory [13]:97


whereDQQDi 2( B )11,ii= D −(2)11 iA11n= 3 3( ),ˆ ( ),ˆ 2 211−1=11−1= niiib ni b11(−11Qkikikzkzk−A b11Qzkzk−B Q z z11k k −13 k=1k=12 k = 1k1122= Qk11cos124E22=1−ννIn (2) and (3)θ + Q21,k22Q42 2 ksin θ + 2cos θ sin θ ( Q66= G12, ν21ν12E=EiD 11denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> bending stiffness,1122.11+ 2Qk66),Q11E11=1−ννiA 11is <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong>al stiffness and1221,),(3)iB 11isˆ kis <str<strong>on</strong>g>the</str<strong>on</strong>g>coupling bending/extensi<strong>on</strong>al stiffness of <str<strong>on</strong>g>the</str<strong>on</strong>g> beam secti<strong>on</strong>. The quantitycoefficient stiffness of <str<strong>on</strong>g>the</str<strong>on</strong>g> k-s lamina of <str<strong>on</strong>g>the</str<strong>on</strong>g> beam secti<strong>on</strong> and can be calculated with <str<strong>on</strong>g>the</str<strong>on</strong>g> aidof lamina parameters. In (3) E 11 , E 22 and ν 12 , ν 21 stand <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>gitudinal and transverseYoung’s modules and Poiss<strong>on</strong>’s ratio of a single lamina, respectively; θ is <str<strong>on</strong>g>the</str<strong>on</strong>g> laminaorientati<strong>on</strong> angle; z k and z k-1 are <str<strong>on</strong>g>the</str<strong>on</strong>g> locati<strong>on</strong>s of <str<strong>on</strong>g>the</str<strong>on</strong>g> k-th lamina with respect to <str<strong>on</strong>g>the</str<strong>on</strong>g> mid-planeof <str<strong>on</strong>g>the</str<strong>on</strong>g> beam secti<strong>on</strong> (Fig. 1 b). The sec<strong>on</strong>d term in (2) takes into account <str<strong>on</strong>g>the</str<strong>on</strong>g> reducti<strong>on</strong> ofstiffness due to <str<strong>on</strong>g>the</str<strong>on</strong>g> bending-extensi<strong>on</strong> coupling [14].Q 11(a)(b)Figure 1: The geometry of <str<strong>on</strong>g>the</str<strong>on</strong>g> composite beam: (a) model of <str<strong>on</strong>g>the</str<strong>on</strong>g> beam with <strong>on</strong>e delaminati<strong>on</strong>; (b) <str<strong>on</strong>g>the</str<strong>on</strong>g>i-th beam laminateThe following quantities are introduced:2k1− ρ A ω k22λi= 4, δi= , αi= λ + δi i4D4Di ii1Taking (4) into account <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong> of (1) can be expressed aswi=4k = 1i iC F ( x)where <str<strong>on</strong>g>the</str<strong>on</strong>g> functi<strong>on</strong>s F ik(x)can be presented as following:kki(4)(5)98


,'iF( x) cosβ cosh1ix αix i F ( x)cos β sinh2ix αix,i = F( x)sin β cosh3 ix αixiF ( x) sinβ sinh4 ix αix if2δ < λ ,ii(6)iF( x) e1 i F ( x)xe2 i = −F( x)e3 iF ( x) − xe4 2λix2λix2λix2λix,if2δ = λ ,ii(7)iF( x) coshβ cosh1ix αix i F ( x)cosh β sinh2ix αix,i = F( x)sinh β cosh3 ix αixiF ( x) sinh β sinh4 ix αix if2δ > λ .ii(8)The quantity i is defined as 2 λi− δiin eq.(6),βi= 2 δi− λiin eq.(7).(9)The governing equati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> beam segments 2 and 3 is42d w2d w22( D2 + D3) − 2k2+ [ 2k1− ( ρ2A2+ ρ3A3) ω ] w422dx dx= 0.(10)iThe soluti<strong>on</strong> can be found similarly as in <str<strong>on</strong>g>the</str<strong>on</strong>g> previous case. The unknown coefficients Ckcanbe determined by four boundary c<strong>on</strong>diti<strong>on</strong>s and 8 c<strong>on</strong>tinuity c<strong>on</strong>diti<strong>on</strong>s.The c<strong>on</strong>tinuity c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>for</str<strong>on</strong>g> deflecti<strong>on</strong>, slope, shear <str<strong>on</strong>g>for</str<strong>on</strong>g>ce and bending moments at x = x 2are:w = w , w ' = w ,'1D w ' = ( D11221+ D ) w3H1D1w' = ( D2+ D3) w ' − P ,11 d2where <str<strong>on</strong>g>the</str<strong>on</strong>g> load P d depends up<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> extent of differential stretching of <str<strong>on</strong>g>the</str<strong>on</strong>g> delaminatedlayers. The load P d can be obtained from <str<strong>on</strong>g>the</str<strong>on</strong>g> axial equilibrium and compatibility c<strong>on</strong>diti<strong>on</strong>sbetween shortening/stretching of <str<strong>on</strong>g>the</str<strong>on</strong>g> delaminated layers [2]. Similar c<strong>on</strong>diti<strong>on</strong>s can beestablished at x = x 3 . The boundary c<strong>on</strong>diti<strong>on</strong>s and <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinuity c<strong>on</strong>diti<strong>on</strong>s provide 12ihomogeneous equati<strong>on</strong>s <str<strong>on</strong>g>for</str<strong>on</strong>g> 12 unknown coefficients Ck. A n<strong>on</strong>-trivial soluti<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>coefficients exists <strong>on</strong>ly when <str<strong>on</strong>g>the</str<strong>on</strong>g> determinant of <str<strong>on</strong>g>the</str<strong>on</strong>g> coefficient matrix vanishes.Numerical results22(11)The calculati<strong>on</strong>s is per<str<strong>on</strong>g>for</str<strong>on</strong>g>med <strong>on</strong> a T300/934 graphite/epoxy cantilever beam with a [0 0 /90 0 ] 2sstacking sequence, which was studied by Shen and Grady [4]. The dimensi<strong>on</strong>s of <str<strong>on</strong>g>the</str<strong>on</strong>g> 8-plybeam are 127x12.7x1.016 mm 3 . The material properties <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> lamina are: E 11 = 134 GPa, E 22= 10.3 GPa, G 12 = 5 GPa, ν 12 = 0.33 and ρ = 1.48e3kg/m 3 . All delaminati<strong>on</strong>s are at <str<strong>on</strong>g>the</str<strong>on</strong>g>99


midspan and <str<strong>on</strong>g>the</str<strong>on</strong>g> delaminati<strong>on</strong>s sizes are 0.0 (intact beam), 25.4, 50.8, 76.2 and 101.6 mm.The results of <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong>s are presented in Table 1.Table 1The primary frequencies of symmetrically delaminated cantilever beam (Hz)Delaminati<strong>on</strong>lengthPresentk 1 =k 2 =0FEM [4]k 1 =k 2 =0Analytical[6]k 1 =k 2 =0Presentk 1 =400,k 2 =0Intact 82.01 82.04 81.88 84.3125.4 80.73 80.13 80.47 83.3050.8 75.83 75.29 75.36 78.8776.2 66.73 66.94 66.14 70.70101.6 56.24 57.24 55.67 61.60AcknowledgementFinancial support from <str<strong>on</strong>g>the</str<strong>on</strong>g> Est<strong>on</strong>ian Science Foundati<strong>on</strong> under Grant ETF-5240 is gratefullyacknowledged.References[1] J.T.S. Wang, Y.Y. Liu and J.A. Gibby. Vibrati<strong>on</strong>s of split beams. J. Sound Vib., 84, 491–502,(1982) .[2] P.M. Mujumdar and S. Suryanarayan. Flexural vibrati<strong>on</strong>s of beams with delaminati<strong>on</strong>s. J. SoundVib., 125, 441-461, (1988).[3] J.J. Tracy and G.C. Pardoen. Effect of delaminati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> natural frequencies of compositelaminates. J. Compos. Mater., 23, 1200-1215, (1989).[4] M.H.H. Shen and J.E. Grady. Free vibrati<strong>on</strong>s of delaminated beams. AIAA J., 30, 1361-1370,(1992).[5] D. Shu. Vibrati<strong>on</strong> of sandwich beams with double delaminati<strong>on</strong>s. Compos. Sci. Technol., 54, 101-109, (1995).[6] D. Shu and C.N. Della. Vibrati<strong>on</strong>s of multiple delaminated beams. Compos. Struct., 64, 467-477,(2004).[7] J. Lee. Free vibrati<strong>on</strong> analysis of delaminated composite beams. Comput. Struct., 74, 121-129,(2000).[8] Y. Zou, L. T<strong>on</strong>g and G.P. Steven. Vibrati<strong>on</strong>-based model-dependent damage (delaminati<strong>on</strong>) identificati<strong>on</strong>and health m<strong>on</strong>itoring <str<strong>on</strong>g>for</str<strong>on</strong>g> composite structures - a review. J. Sound Vib., 230, 357-378, 2000).[9] O. Bart<strong>on</strong>. The natural frequency of rectangular symmetric angle/ply laminates resting <strong>on</strong> an elasticfoundati<strong>on</strong>. J. Sound Vib., 206, 126-132, (1997).[10] I. Coskun and H. Engin. N<strong>on</strong>-linear vibrati<strong>on</strong>s of a beam <strong>on</strong> an elastic foundati<strong>on</strong>. J. Sound Vib.,223, 335-354, (1999).[11] M. Eisenberger. Vibrati<strong>on</strong> frequencies <str<strong>on</strong>g>for</str<strong>on</strong>g> beams <strong>on</strong> variable <strong>on</strong>e- and two- parameter elasticfoundati<strong>on</strong>s. J. Sound Vib., 176, 577-584, (1994).[12] B.N. Alemdar and P. Gülkan. Beams <strong>on</strong> generalized foundati<strong>on</strong>s: supplementary element matrices.Eng. Struct. 19, 910-920, (1997).[13] J.N. Reddy and A. Miravete. Practical analysis of composite laminates. CRC, Boca Rat<strong>on</strong>, (1995).[14] R.M. J<strong>on</strong>es Mechanics of composite materials. Philadelphia, Taylor and Francis Inc, (1999).100


Fatigue life predicti<strong>on</strong> of polymer covered rollR. Karjalainen* and S-G. SjölindDepartment of Mechanical EngineeringUniversity of Oulu, Oulu, Finlande-mail:reetta.karjalainen@me.oulu.fiSummary The main object in this study is to apply failure criteria to <str<strong>on</strong>g>the</str<strong>on</strong>g> fatigue life predicti<strong>on</strong> of FRPcovered rolls running in paper machines. This abstract reflects <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory of failure criteri<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> modelunder development.Introducti<strong>on</strong>In a calender paper is running through <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tact area between two rolls, where <str<strong>on</strong>g>the</str<strong>on</strong>g> loadingrates are quite high. The calender composite covers run <str<strong>on</strong>g>for</str<strong>on</strong>g> l<strong>on</strong>g times in paper machines andcan reach respectable ages in number of loadings received, and thus <str<strong>on</strong>g>the</str<strong>on</strong>g> effect of <str<strong>on</strong>g>the</str<strong>on</strong>g> repeatedcompressive loadings <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> cover durability is interesting.Fatigue analysis of composite materials is difficult due to several c<strong>on</strong>current failure modes and<str<strong>on</strong>g>the</str<strong>on</strong>g>ir mechanisms. E<str<strong>on</strong>g>special</str<strong>on</strong>g>ly <str<strong>on</strong>g>for</str<strong>on</strong>g> compressi<strong>on</strong> failure, <str<strong>on</strong>g>the</str<strong>on</strong>g> mechanisms that lead to failure arenot fully understood yet.Several <str<strong>on</strong>g>the</str<strong>on</strong>g>ories have been proposed <str<strong>on</strong>g>for</str<strong>on</strong>g> predicting <str<strong>on</strong>g>the</str<strong>on</strong>g> failure of composites. After a thoroughreview of various composite failure <str<strong>on</strong>g>the</str<strong>on</strong>g>ories [1, 2], a criteri<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> matrix failure in compressi<strong>on</strong>called LaRC03 [3], was selected as <str<strong>on</strong>g>the</str<strong>on</strong>g> best candidate. LaRC03 criteri<strong>on</strong> predicts matrix failurewithout requiring curve-fitting parameters and it has been shown accurate and physicallyc<strong>on</strong>sistence [4].LaRC03 criteri<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> matrix failure in compressi<strong>on</strong>LaRC03 is based <strong>on</strong> Hashin’s criteria and Puck’s acti<strong>on</strong> plane c<strong>on</strong>cept. However, <str<strong>on</strong>g>for</str<strong>on</strong>g> matrixcompressi<strong>on</strong> Hashin was not able to calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> angle <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> fracture plane. The Mohr-Coulomb (M-C) criteri<strong>on</strong> is comm<strong>on</strong>ly used in applicati<strong>on</strong>s where fracture under tensi<strong>on</strong>loading is different from fracture under compressi<strong>on</strong> loading and now in LaRC03 criteri<strong>on</strong> it isapplied to calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> angle of fracture. Boehler, while studying <str<strong>on</strong>g>the</str<strong>on</strong>g> failure of choppedglassfiber/epoxy mat laminates under c<strong>on</strong>fining pressures, <str<strong>on</strong>g>for</str<strong>on</strong>g>mulated a shearing criteri<strong>on</strong> based<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> M-C criteri<strong>on</strong> and found it to fit his experimental measurements well.The matrix failure under compressi<strong>on</strong> loading is assumed to result from a quadratic interacti<strong>on</strong>between <str<strong>on</strong>g>the</str<strong>on</strong>g> effective shear stresses T Lτeffand τeffacting <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> faces of a fracture plane. Theeffective stressτeffis related to <str<strong>on</strong>g>the</str<strong>on</strong>g> stressesTexpressi<strong>on</strong>τ = τ + ησ . In <str<strong>on</strong>g>the</str<strong>on</strong>g> literature,effn−1tan ( η)Tτ andσn(see Fig. 1) by <str<strong>on</strong>g>the</str<strong>on</strong>g>is called <str<strong>on</strong>g>the</str<strong>on</strong>g> angle of internal fricti<strong>on</strong> andit is assumed to be a material c<strong>on</strong>stant. In general, <str<strong>on</strong>g>the</str<strong>on</strong>g> effective stresses must be defined in bothdirecti<strong>on</strong>s as shown in Eq. 1.τ = τ + η σT T Teffτ = τ + η σL L Leffnn(1)101


where terms η T and η L are referred to as coefficients of transverse and l<strong>on</strong>gitudinal influence,respectively, and <str<strong>on</strong>g>the</str<strong>on</strong>g> operand x = x if x≥ 0 ; o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise x = 0 .The matrix failure index(FI M ) is written asT2L2⎛τ⎞ ⎛effτ ⎞effFI M= ⎜ T ⎟ + ⎜ L ⎟,⎜ S ⎟ ⎜ S ⎟(2)⎝ ⎠ ⎝ ⎠where S T and S L are <str<strong>on</strong>g>the</str<strong>on</strong>g> transverse and in-plane shear strengths, respectively.Figure 1. Fracture of a unidirecti<strong>on</strong>al lamina subjected to transverse compressi<strong>on</strong> and in-plane stress.The stress comp<strong>on</strong>ents can be expressed in terms of <str<strong>on</strong>g>the</str<strong>on</strong>g> in-plane stresses σ22and τ12and <str<strong>on</strong>g>the</str<strong>on</strong>g>angle of <str<strong>on</strong>g>the</str<strong>on</strong>g> fracture plane α , and thus <str<strong>on</strong>g>the</str<strong>on</strong>g> effective stresses can be defined as22T( )L( 12 22cos )Tτ = −σ cosα sinα −η cosαeffLτ = cosα τ + η σ αeffThe angle of <str<strong>on</strong>g>the</str<strong>on</strong>g> fracture plane α is <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e that maximizes <str<strong>on</strong>g>the</str<strong>on</strong>g> failure index (FI M ) and itdepends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> applied transverse stress σ 22 as shown in Fig. 2.,(3)Figure 2: Matrix failure envelopes <str<strong>on</strong>g>for</str<strong>on</strong>g> a typical unidirecti<strong>on</strong>al E-glass lamina subjected to in-planecompressi<strong>on</strong> and shear loading.The coefficient of transverse influence η T isT −1η = .tan 2α0(4)102


The angle of fracture plane α 0 =53 o ±2 o is a typical <str<strong>on</strong>g>for</str<strong>on</strong>g> composites. There<str<strong>on</strong>g>for</str<strong>on</strong>g>e, <str<strong>on</strong>g>the</str<strong>on</strong>g> coefficient ofTtransverse influence is in <str<strong>on</strong>g>the</str<strong>on</strong>g> range 0.21 ≤η≤0.36.The coefficient of l<strong>on</strong>gitudinal influence η L can be determined by shear tests, but in absence oftest data, it can be estimated asLL S cos 2α(5)0η =− .C 2Y cos αThe transverse shear strength S T is difficult to measure experimentally, but it can be determinedfromT C⎛ cosα⎞0S = Y cosα0⎜sinα0+ ⎟. (6)⎝ tan 2α0 ⎠For a typical fracture angle of 53 o TCS = 0.378 Y .The stiffnesses and strengths used in LaRC03 curve are shown in Fig. 3, in which <str<strong>on</strong>g>the</str<strong>on</strong>g>re are also<str<strong>on</strong>g>the</str<strong>on</strong>g> envelopes <str<strong>on</strong>g>for</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r criteria.0Figure 3. Failure envelopes and WWFE test data <str<strong>on</strong>g>for</str<strong>on</strong>g> unidirecti<strong>on</strong>al composite E-Glass/LY556.ModellingA 2-D FE-modelling of <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer covered roll is to be per<str<strong>on</strong>g>for</str<strong>on</strong>g>med using <str<strong>on</strong>g>the</str<strong>on</strong>g> commercial finiteelement software ABAQUS. The model geometry and <str<strong>on</strong>g>the</str<strong>on</strong>g> boundary c<strong>on</strong>diti<strong>on</strong>s take advantageof <str<strong>on</strong>g>the</str<strong>on</strong>g> symmetry c<strong>on</strong>diti<strong>on</strong>s. The c<strong>on</strong>tact area between rolls will be modelled by specifying ac<strong>on</strong>tact between <str<strong>on</strong>g>the</str<strong>on</strong>g>m, and <str<strong>on</strong>g>the</str<strong>on</strong>g> load is to be created by <str<strong>on</strong>g>for</str<strong>on</strong>g>ced displacement of <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trary roll.The criteri<strong>on</strong> will be programmed as subroutine and implemented into ABAQUS.103


C<strong>on</strong>cluding remarksThis study presents a criteri<strong>on</strong>, which seems to be promising in predicting <str<strong>on</strong>g>the</str<strong>on</strong>g> fatigue failure incompressi<strong>on</strong>. In <str<strong>on</strong>g>the</str<strong>on</strong>g> future <str<strong>on</strong>g>the</str<strong>on</strong>g>re is <str<strong>on</strong>g>the</str<strong>on</strong>g> possibility to verify <str<strong>on</strong>g>the</str<strong>on</strong>g> computed results with <str<strong>on</strong>g>the</str<strong>on</strong>g> testresults.AcknowledgementsThe funding of this research from <str<strong>on</strong>g>the</str<strong>on</strong>g> Metso Paper, Inc. is gratefully acknowledged.References[1] F. París. A study of failure criteria of fibrous composite materials. NASA/CR-2001-210661, (2001).[2] M.J. Hint<strong>on</strong>, A.S. Kaddour and P.D. Soden. A comparis<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> predictive capabilities of currentfailure <str<strong>on</strong>g>the</str<strong>on</strong>g>ories <str<strong>on</strong>g>for</str<strong>on</strong>g> composite laminates, judged against experimental evidence. Composite Scienceand Technology, 62, 1725-1797, (2002)[3] C.G. Dávila and P.P. Camanho. Failure criteria <str<strong>on</strong>g>for</str<strong>on</strong>g> FRP laminates in plane stress. NASA/TM-2003-212663, (2003).[4] S. Ragi<strong>on</strong>ieri and D. Weinberg. Finite element implementati<strong>on</strong> of advanced failure criteria <str<strong>on</strong>g>for</str<strong>on</strong>g>composites. The NAFEMS World C<strong>on</strong>gress, (2005).104


Extensi<strong>on</strong> of ASME regulatory <str<strong>on</strong>g>for</str<strong>on</strong>g> validati<strong>on</strong> of dynamicalcalculati<strong>on</strong> when deviati<strong>on</strong>s in as-buildtLic engrg Lena StrömbergLTech, Fredrlg 38, Se-38237 Nybro(previously Dep of Solid Mechanics, Royal Instititute of Techn, KTH)e-mail: lest0400@student.miun.seSummary At c<strong>on</strong>structi<strong>on</strong> based <strong>on</strong> design plan, <str<strong>on</strong>g>the</str<strong>on</strong>g>re are often deviati<strong>on</strong> in support positi<strong>on</strong>s,bends, welds and mass distributi<strong>on</strong>s. For a pipe model to be valid, certain rules regarding deviati<strong>on</strong>from model based <strong>on</strong> drawings, are c<strong>on</strong>venient. In <str<strong>on</strong>g>the</str<strong>on</strong>g> present c<strong>on</strong>text, a method to validate adynamical calculati<strong>on</strong> is proposed. New eigen frequencies <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> as-buildt system are calculatedfrom a modal analysis, and compared to design frequencies. If <str<strong>on</strong>g>the</str<strong>on</strong>g> deviati<strong>on</strong> is within a certainrange, it is assumed that o<str<strong>on</strong>g>the</str<strong>on</strong>g>r properties are also limited, and that, <str<strong>on</strong>g>the</str<strong>on</strong>g> results from <str<strong>on</strong>g>the</str<strong>on</strong>g> originalcomplete model are valid.Introducti<strong>on</strong>A piping system attached to <str<strong>on</strong>g>the</str<strong>on</strong>g> reactor tank and <str<strong>on</strong>g>the</str<strong>on</strong>g> main steam line was calculated <str<strong>on</strong>g>for</str<strong>on</strong>g>dynamical loads, static loads and <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal expansi<strong>on</strong>. The purpose of <str<strong>on</strong>g>the</str<strong>on</strong>g> pipe is to ensurethat <str<strong>on</strong>g>the</str<strong>on</strong>g> level of water in <str<strong>on</strong>g>the</str<strong>on</strong>g> tank(vessel) is known, by leading exhaust gases from <str<strong>on</strong>g>the</str<strong>on</strong>g>facility of measurment at <str<strong>on</strong>g>the</str<strong>on</strong>g> top of <str<strong>on</strong>g>the</str<strong>on</strong>g> pipe. Due to <str<strong>on</strong>g>the</str<strong>on</strong>g> close vicinity of <str<strong>on</strong>g>the</str<strong>on</strong>g> reactor, <str<strong>on</strong>g>the</str<strong>on</strong>g>piping system is Class 1, according to ASME[1], however since <str<strong>on</strong>g>the</str<strong>on</strong>g> diameter of pipes aresmall, <str<strong>on</strong>g>the</str<strong>on</strong>g> rules <str<strong>on</strong>g>for</str<strong>on</strong>g> Class 2 are sufficient to validate <str<strong>on</strong>g>the</str<strong>on</strong>g> system. Thus, <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal transientsleading to low cycle fatigue, need not be c<strong>on</strong>sidered.The dynamical loads that are present, in various combinati<strong>on</strong>s with static loads, are e.g.water hammer due to closure of inner or outer valves, water hammer due to opening ofsafety walves <str<strong>on</strong>g>for</str<strong>on</strong>g> steam pipe, oscillati<strong>on</strong>s from wet-well, floor resp<strong>on</strong>s spektra <str<strong>on</strong>g>for</str<strong>on</strong>g>earthquake, occuring <str<strong>on</strong>g>for</str<strong>on</strong>g> different levels of operati<strong>on</strong>, such us normal operati<strong>on</strong>, start andshut-down, safety shut-down. Load input are present as time history as well as spectralamplitudes.Combinati<strong>on</strong> of loads are d<strong>on</strong>e according to rules given by <str<strong>on</strong>g>the</str<strong>on</strong>g> owner in a documentspecified <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> system.Loads due to weight, pressure and <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal expansi<strong>on</strong> are always combined withsuperpositi<strong>on</strong>. In some cases, dynamical loads could be combined with SRSS. This is lessc<strong>on</strong>servative causing <str<strong>on</strong>g>the</str<strong>on</strong>g> larger load to give <str<strong>on</strong>g>the</str<strong>on</strong>g> main c<strong>on</strong>tributi<strong>on</strong>.Since <str<strong>on</strong>g>the</str<strong>on</strong>g> valve opening causes <str<strong>on</strong>g>the</str<strong>on</strong>g> 'chugging', it emanates from <str<strong>on</strong>g>the</str<strong>on</strong>g> same source, and it ismost likely that <str<strong>on</strong>g>the</str<strong>on</strong>g> effects are not superposed as maximum c<strong>on</strong>tributi<strong>on</strong>s, but are indifferent phases.ModelFor small pipes, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a regulatory [2], that admits installati<strong>on</strong> without a calculati<strong>on</strong>.This c<strong>on</strong>tains rules <str<strong>on</strong>g>for</str<strong>on</strong>g> distance between supports, types of support and a restricti<strong>on</strong> <strong>on</strong><str<strong>on</strong>g>the</str<strong>on</strong>g> lowest eigen frequency (approx 33Hz, in this case). For <str<strong>on</strong>g>the</str<strong>on</strong>g> exhausti<strong>on</strong> pipe, <str<strong>on</strong>g>the</str<strong>on</strong>g>expansi<strong>on</strong> loop at <str<strong>on</strong>g>the</str<strong>on</strong>g> attachment to steam pipe, gives lower eigen frequencies (approx8Hz), cf. Figure 1. Hereby, a full dynamic analysis was per<str<strong>on</strong>g>for</str<strong>on</strong>g>med.The pipe was calculated in <str<strong>on</strong>g>the</str<strong>on</strong>g> program Pipe Stress [3].105


To achieve a model with correct, known boundary c<strong>on</strong>diti<strong>on</strong>, parts of attached pipesneeded to be invoked. The rigid ends of <str<strong>on</strong>g>the</str<strong>on</strong>g> model was <str<strong>on</strong>g>the</str<strong>on</strong>g> tank, <str<strong>on</strong>g>the</str<strong>on</strong>g> inside wall of <str<strong>on</strong>g>the</str<strong>on</strong>g>reactor c<strong>on</strong>tainment, and <str<strong>on</strong>g>the</str<strong>on</strong>g> floor above wet-well.Results <str<strong>on</strong>g>for</str<strong>on</strong>g> design c<strong>on</strong>figurati<strong>on</strong>Pipe orientati<strong>on</strong>s and support positi<strong>on</strong>s were adjusted in order to achieve sufficiently lowstresses <str<strong>on</strong>g>for</str<strong>on</strong>g> load combinati<strong>on</strong>s at all levels. Based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>se results, corresp<strong>on</strong>ding loads <strong>on</strong>supports were deduced, and comp<strong>on</strong>ents were designed to withstand <str<strong>on</strong>g>the</str<strong>on</strong>g> loads.Since <str<strong>on</strong>g>the</str<strong>on</strong>g> model c<strong>on</strong>tained both <str<strong>on</strong>g>the</str<strong>on</strong>g> large steam pipes and <str<strong>on</strong>g>the</str<strong>on</strong>g> exhaust pipe, <str<strong>on</strong>g>the</str<strong>on</strong>g> entries of<str<strong>on</strong>g>the</str<strong>on</strong>g> stiffness matrix where different in magnitude. Such c<strong>on</strong>diti<strong>on</strong>s, could be known tointroduce some sensitivity to <str<strong>on</strong>g>the</str<strong>on</strong>g> system, however that is handled in <str<strong>on</strong>g>the</str<strong>on</strong>g> program. It wasobserved however, that (minor) changes of support positi<strong>on</strong>s, and piping, caused overstresses<str<strong>on</strong>g>for</str<strong>on</strong>g> dynamical loads. This was mostly due to <str<strong>on</strong>g>the</str<strong>on</strong>g> fact, that <str<strong>on</strong>g>the</str<strong>on</strong>g>re were smallmargins from <str<strong>on</strong>g>the</str<strong>on</strong>g> beginning.Adapti<strong>on</strong> to as-buildt c<strong>on</strong>figurati<strong>on</strong>After c<strong>on</strong>structi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g>re were some deviati<strong>on</strong> in support positi<strong>on</strong>s, change in pipelengths, bends, welds and mass distributi<strong>on</strong>s. Distributed mass c<strong>on</strong>sists of pipe and heatisolati<strong>on</strong>, whereas valves often are modeled as point masses.Within <str<strong>on</strong>g>the</str<strong>on</strong>g> code, <str<strong>on</strong>g>the</str<strong>on</strong>g>re are some possibility to tune parameters, such as stiffness of valvesand directi<strong>on</strong> of supports. Within <str<strong>on</strong>g>the</str<strong>on</strong>g>se ramificati<strong>on</strong>s, it may have been possible, howevertime c<strong>on</strong>suming, to verify <str<strong>on</strong>g>the</str<strong>on</strong>g> system by calculati<strong>on</strong>.Extensi<strong>on</strong> of ASME n<strong>on</strong>mandatory appendix 11, <str<strong>on</strong>g>for</str<strong>on</strong>g> validati<strong>on</strong> of dynamicalcalculati<strong>on</strong> when deviati<strong>on</strong>s in as-buildtFor a pipe model to be valid, certain rules regarding deviati<strong>on</strong> from model based <strong>on</strong>drawings, are c<strong>on</strong>venient. Suggesti<strong>on</strong>s <strong>on</strong> admissable alterati<strong>on</strong>s in as-buildt compared todesign, are given in ASME appendices. In this c<strong>on</strong>text, <str<strong>on</strong>g>the</str<strong>on</strong>g> rules are extended todynamical variati<strong>on</strong>s.Admissable alterati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> mass distributi<strong>on</strong> is according to ASME appendix, 20%. Thismay be expressed in alterati<strong>on</strong> of eigen frequencies <str<strong>on</strong>g>for</str<strong>on</strong>g> oscillati<strong>on</strong> of bending degrees offreedom at a beam with given boundary c<strong>on</strong>diti<strong>on</strong>s, free ends/supported ends, and is 9%.(The alterati<strong>on</strong> is independent of boundary c<strong>on</strong>diti<strong>on</strong>s.) A suggesti<strong>on</strong> <strong>on</strong> code developmentis that every change is permitted, that results in a change in eigen frequencies lessthan this value.Since <str<strong>on</strong>g>the</str<strong>on</strong>g> analysis <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dynamical loads requires significant calculati<strong>on</strong> ef<str<strong>on</strong>g>for</str<strong>on</strong>g>t, and <str<strong>on</strong>g>the</str<strong>on</strong>g>result is highly dependant of eigen frequencies that are obtained through a quite simplemodal analysis, this proposal is a significant improvement, and a great part of <str<strong>on</strong>g>the</str<strong>on</strong>g>calculati<strong>on</strong>s d<strong>on</strong>e be<str<strong>on</strong>g>for</str<strong>on</strong>g>e hardware c<strong>on</strong>structi<strong>on</strong>, will be valid also <str<strong>on</strong>g>for</str<strong>on</strong>g> as-buildt.This code development is valid <str<strong>on</strong>g>for</str<strong>on</strong>g> dynamical loads, when as-buildt differs from usedcalculati<strong>on</strong> profound (input data). The static load cases eigenweight (DW), operatingpressure (PO) and <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal expansi<strong>on</strong> (TO), are not enveloped. These are verified with <str<strong>on</strong>g>the</str<strong>on</strong>g>static mandatory rules.The shift in eigen frequency could be allowed to be <str<strong>on</strong>g>the</str<strong>on</strong>g> sum (or SRSS or max) of <str<strong>on</strong>g>the</str<strong>on</strong>g> shiftin eigen frequencies, <str<strong>on</strong>g>for</str<strong>on</strong>g> all admissable changes. An investigati<strong>on</strong>, and evaluati<strong>on</strong> ofvalidity should be d<strong>on</strong>e, <str<strong>on</strong>g>for</str<strong>on</strong>g> some chosen systems.Δω(allowed)=F(Δω(ch in mass distr), Δω(ch in supp pos), Δω(ch in point masses))F(x,y)=x+y, or F(x,y)=(x 2 +y 2 ) 1/2 , or F(x,y)=max(x,y)106


C<strong>on</strong>clusi<strong>on</strong>A new method to verify a calculati<strong>on</strong> analysis, compared with revised drawings and inputdata was proposed. Instead of <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong> of new actual loads <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> system, acomparis<strong>on</strong> between eigen frequencies, <str<strong>on</strong>g>for</str<strong>on</strong>g> as-buildt, and previously analysed system, ismade. If changes are within a certain tolerance, a full analysis is not required.Advantages of <str<strong>on</strong>g>the</str<strong>on</strong>g> method• New input data <str<strong>on</strong>g>for</str<strong>on</strong>g> dynamical loads are not necessary. (When support positi<strong>on</strong>sare moved, <str<strong>on</strong>g>the</str<strong>on</strong>g> dynamical loads may change, and new files <str<strong>on</strong>g>for</str<strong>on</strong>g> load basis haveto be deduced, which implies significant work load.• Only modal analysis required.•New calculati<strong>on</strong> of support loads is not required•Highlights <str<strong>on</strong>g>the</str<strong>on</strong>g> present approach to dynamical effects, in terms of loadcombinati<strong>on</strong> and calculati<strong>on</strong> profound <str<strong>on</strong>g>for</str<strong>on</strong>g> input dataRemarksIn order to actually reduce dynamical loads, damping facilities need to be installed.Oscillati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> building could be damped by a liquid in communicating vessel at top of<str<strong>on</strong>g>the</str<strong>on</strong>g> building, as is d<strong>on</strong>e in buildings subjected to ground moti<strong>on</strong>s, eg earthquakes. Thiswill reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> loads from <str<strong>on</strong>g>the</str<strong>on</strong>g> floor resp<strong>on</strong>se. Vibrati<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> system are reduced byinstalling a rubber spring facility, with <str<strong>on</strong>g>the</str<strong>on</strong>g> unwanted eigen frequency, near <str<strong>on</strong>g>the</str<strong>on</strong>g> oscillatingarea.In nuclear applicati<strong>on</strong>, vibrati<strong>on</strong>s of <str<strong>on</strong>g>the</str<strong>on</strong>g> system with <str<strong>on</strong>g>the</str<strong>on</strong>g> circulati<strong>on</strong> pump, whereeliminated by installing a so called damping weight. The name is somewhat misleading,since it changes <str<strong>on</strong>g>the</str<strong>on</strong>g> eigen frequency, but does not introduce energy c<strong>on</strong>suming damping.Since <str<strong>on</strong>g>the</str<strong>on</strong>g> system resp<strong>on</strong>se close to res<strong>on</strong>ance is exp<strong>on</strong>enential, it should be discussedwhe<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g>re are some cases that should be excepted from <str<strong>on</strong>g>the</str<strong>on</strong>g> rule extensi<strong>on</strong>, 9%.AcknowledgementsThe author acknowledge Erik Adolfss<strong>on</strong>, ÅF, <str<strong>on</strong>g>for</str<strong>on</strong>g> valuable help <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> subject.References[1] ASME Code <str<strong>on</strong>g>for</str<strong>on</strong>g> pressurized equipment in e.g. nuclear applicati<strong>on</strong>, www.asme.org.Results are valid <str<strong>on</strong>g>for</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r dynamic evaluati<strong>on</strong>s[2] ’Dragning och stagning av klenrör’.[3] Pipe Stress. Finite element program, based <strong>on</strong> ASME Code.107


108


Forces Between Joined Discrete Particles in Discrete Element MethodJani Paavilainen ∗ and Jukka TuhkuriLaboratory <str<strong>on</strong>g>for</str<strong>on</strong>g> Mechanics of Materials, Department of Mechanical EngineeringHelsinki University of Technology, Espoo, Finlande–mail: Jani.Paavilainen@tkk.fi, Jukka.Tuhkuri@tkk.fiSummary Determinati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>ces between joined rectangular discrete particles (elements) ispresented. A two-dimensi<strong>on</strong>al discrete element program is developed fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r to handle <str<strong>on</strong>g>the</str<strong>on</strong>g>se <str<strong>on</strong>g>for</str<strong>on</strong>g>ces. Avibrating beam is simulated to benchmark <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>ces between particles joined toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r.Introducti<strong>on</strong>Discrete element method (DEM) is a numerical tool used to simulate <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>linear dynamics of asystem of particles. In DEM, individual material particles (discrete elements) are c<strong>on</strong>sidered to beseparate, but <str<strong>on</strong>g>the</str<strong>on</strong>g> elements can interact with each o<str<strong>on</strong>g>the</str<strong>on</strong>g>r through particle–particle c<strong>on</strong>tacts [1] [2].Thus DEM has been applied e<str<strong>on</strong>g>special</str<strong>on</strong>g>ly to studies of granular materials in, <str<strong>on</strong>g>for</str<strong>on</strong>g> example, rock andice <strong>mechanics</strong>.However, DEM is also usefull in analyses of fragmentati<strong>on</strong> of solids as well as structural failureand collapse [3] [4] [5]. In such studies, in additi<strong>on</strong> to modelling fracture, also <str<strong>on</strong>g>the</str<strong>on</strong>g> behavior of<str<strong>on</strong>g>the</str<strong>on</strong>g> structure be<str<strong>on</strong>g>for</str<strong>on</strong>g>e fracture must be modelled with DEM. As an example, when simulating <str<strong>on</strong>g>the</str<strong>on</strong>g>failure of a floating sea ice sheet against a structure, <str<strong>on</strong>g>the</str<strong>on</strong>g> dynamics of <str<strong>on</strong>g>the</str<strong>on</strong>g> ice sheet be<str<strong>on</strong>g>for</str<strong>on</strong>g>e failuremust also be modelled. In a discrete element simulati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> ice sheet, or beam in 2D, is composedof discrete elements which are joined or “glued” toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r. In this work, <str<strong>on</strong>g>the</str<strong>on</strong>g> joining of discreteelements toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r and calculati<strong>on</strong> of <str<strong>on</strong>g>for</str<strong>on</strong>g>ces between joined discrete elements is presented andimplementati<strong>on</strong> into a DEM code is verified through simulati<strong>on</strong>s of a vibrating beam.Equati<strong>on</strong>s of moti<strong>on</strong>In this c<strong>on</strong>text all <str<strong>on</strong>g>the</str<strong>on</strong>g> particles (discrete elements) are rigid and uni<str<strong>on</strong>g>for</str<strong>on</strong>g>m rectangles. In discreteelement method, <str<strong>on</strong>g>the</str<strong>on</strong>g> moti<strong>on</strong> of each rigid particle, positi<strong>on</strong> r, velocity v, orientati<strong>on</strong> θ and angularvelocity ω, has to be determined in some frame of reference. According to Newt<strong>on</strong>’s sec<strong>on</strong>d lawof moti<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> moti<strong>on</strong> of a rigid particle is described by <str<strong>on</strong>g>the</str<strong>on</strong>g> following differential equati<strong>on</strong>sm id 2 r idt 2 = F i and I id 2 θ idt 2 = T i (1)<str<strong>on</strong>g>for</str<strong>on</strong>g> each particle i. In Equati<strong>on</strong> (1) m i , F i , I i and T i are <str<strong>on</strong>g>the</str<strong>on</strong>g> mass, <str<strong>on</strong>g>for</str<strong>on</strong>g>ce, moment of inertia andtorque respectively.The <str<strong>on</strong>g>for</str<strong>on</strong>g>ces F i and torques T i c<strong>on</strong>tain both <str<strong>on</strong>g>the</str<strong>on</strong>g> internal and external <str<strong>on</strong>g>for</str<strong>on</strong>g>ces acting <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> particle i.To distinguish <str<strong>on</strong>g>the</str<strong>on</strong>g> internal and external <str<strong>on</strong>g>for</str<strong>on</strong>g>ces from <strong>on</strong>e ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r we introduce a group of discreteparticles: A group of particles is a collecti<strong>on</strong> of particles that are joined toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r in such a mannerthat <str<strong>on</strong>g>the</str<strong>on</strong>g> group can support both tensile and compressive <str<strong>on</strong>g>for</str<strong>on</strong>g>ces. Now, <str<strong>on</strong>g>the</str<strong>on</strong>g> internal <str<strong>on</strong>g>for</str<strong>on</strong>g>ces are dueto relative movement between two adjacent particles in a same group of particles and <str<strong>on</strong>g>the</str<strong>on</strong>g> external<str<strong>on</strong>g>for</str<strong>on</strong>g>ces are due to o<str<strong>on</strong>g>the</str<strong>on</strong>g>r sources such as collisi<strong>on</strong>s between particle groups, gravity and bouyancyof individual particles etc. It follows from <str<strong>on</strong>g>the</str<strong>on</strong>g>se definiti<strong>on</strong>s and <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that <str<strong>on</strong>g>the</str<strong>on</strong>g> particles are rigid,that <strong>on</strong>e particle al<strong>on</strong>e can not have any internal <str<strong>on</strong>g>for</str<strong>on</strong>g>ces. In <str<strong>on</strong>g>the</str<strong>on</strong>g> rest of this work <strong>on</strong>ly internal <str<strong>on</strong>g>for</str<strong>on</strong>g>cesare c<strong>on</strong>sidered.109


Forces between joined particlesForces between joined particles in discrete element method is covered by e.g. Hopkins [6]. Since,with our definiti<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g>re are no internal <str<strong>on</strong>g>for</str<strong>on</strong>g>ces defined between different particle groups or in<strong>on</strong>e particle, we next c<strong>on</strong>sider two adjacent particles in a same group, see Fig. 1(a). The particleshave an adjacent edge by which <str<strong>on</strong>g>the</str<strong>on</strong>g>y are joined toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r. The joint is c<strong>on</strong>sidered viscous-elastic. InDEM, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>ces between joined particles are due to relative movement of <str<strong>on</strong>g>the</str<strong>on</strong>g> particles. In Fig. 1(b)two adjacent particles, which have moved with respect to <strong>on</strong>e ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r, are shown. The local frameof particle 1 and <str<strong>on</strong>g>the</str<strong>on</strong>g> frame <strong>on</strong> edge of <str<strong>on</strong>g>the</str<strong>on</strong>g> particle 1, with normal and tangential directi<strong>on</strong>s, arealso shown in Fig. 1(b). The distance between <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding points <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> adjacent edges ofparticles 1 and 2 is denoted by δ and will be called a stretch. The stretch is a functi<strong>on</strong> of t, <str<strong>on</strong>g>the</str<strong>on</strong>g>tangential directi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> edge, i.e. δ(t).hb1tδ(t)bb) adjacent particlesn2ha) group of particlesth/2δ n (t)n−h/2c) normal comp<strong>on</strong>ent of stretchFigure 1: a) A group of particles with two adjacent particles highlighted. b) Two adjacent particles whichhave moved with respect <strong>on</strong>e ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r. c) Normal comp<strong>on</strong>ent of <str<strong>on</strong>g>the</str<strong>on</strong>g> stretch δ n (t).In Fig. 1(c) <str<strong>on</strong>g>the</str<strong>on</strong>g> normal comp<strong>on</strong>ent of <str<strong>on</strong>g>the</str<strong>on</strong>g> stretch is shown. Following [6], <str<strong>on</strong>g>the</str<strong>on</strong>g> normal comp<strong>on</strong>entof <str<strong>on</strong>g>the</str<strong>on</strong>g> elastic and dissipative <str<strong>on</strong>g>for</str<strong>on</strong>g>ces exerted <strong>on</strong> particle 1 is integrated over <str<strong>on</strong>g>the</str<strong>on</strong>g> length of <str<strong>on</strong>g>the</str<strong>on</strong>g> jointas followsF n = F ne + F nd = E b∫ h/2−h/2δ n (t)dt + c n∫ h/2−h/2˙δ n (t)dt, (2)where E is Young’s modulus, b is <str<strong>on</strong>g>the</str<strong>on</strong>g> width and h is <str<strong>on</strong>g>the</str<strong>on</strong>g> height of <str<strong>on</strong>g>the</str<strong>on</strong>g> particle and c n is <str<strong>on</strong>g>the</str<strong>on</strong>g> normaldamping c<strong>on</strong>stant. The tangential comp<strong>on</strong>ent of <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>ce, <str<strong>on</strong>g>the</str<strong>on</strong>g> shear <str<strong>on</strong>g>for</str<strong>on</strong>g>ce, is derived analogouslyby using <str<strong>on</strong>g>the</str<strong>on</strong>g> shear modulus G and <str<strong>on</strong>g>the</str<strong>on</strong>g> tangential comp<strong>on</strong>ent of <str<strong>on</strong>g>the</str<strong>on</strong>g> stretch δ t (t)F t = F te + F td = G b∫ h/2−h/2δ t (t)dt + c t∫ h/2−h/2˙δ t (t)dt, (3)where c t is <str<strong>on</strong>g>the</str<strong>on</strong>g> tangential damping c<strong>on</strong>stant. The torque from <str<strong>on</strong>g>the</str<strong>on</strong>g> elastic and dissipative normal<str<strong>on</strong>g>for</str<strong>on</strong>g>ces in <str<strong>on</strong>g>the</str<strong>on</strong>g> local frame of particle 1 is110


T n = T ne + T nd = − E b∫ h/2−h/2The torque exerted by shear <str<strong>on</strong>g>for</str<strong>on</strong>g>ces to <str<strong>on</strong>g>the</str<strong>on</strong>g> local frame of particle 1 is∫ h/2tδ n (t)dt − c n t ˙δ n (t)dt. (4)−h/2Solving <str<strong>on</strong>g>the</str<strong>on</strong>g> equati<strong>on</strong>s of moti<strong>on</strong>T s = b 2 (F te + F td ). (5)After all <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>ces and torques have been calculated <str<strong>on</strong>g>for</str<strong>on</strong>g> each particle by using (2), (3), (4) and(5), <str<strong>on</strong>g>the</str<strong>on</strong>g> equati<strong>on</strong>s of moti<strong>on</strong>s (1) are solved using explicit time integrati<strong>on</strong>. The following centraldifference method is used:r i+1 = r i + v i ∆t + (∆t)2 F i2 mv i+1 = v i + ∆t i2 (F m + F i+1), (6)m<str<strong>on</strong>g>for</str<strong>on</strong>g> each time step i = 1, 2, . . . The orientati<strong>on</strong> θ and angular velocity ω of each particle are alsodetermined by <str<strong>on</strong>g>the</str<strong>on</strong>g> same method.Vibrati<strong>on</strong> of a beamAs a simple test case <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> calcutati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>ces between joined particles, a vibrating beamwas modeled with different boundary c<strong>on</strong>diti<strong>on</strong>s. Both <str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>gitudinal and transverse vibrati<strong>on</strong>swere studied. Figure 2a) shows <str<strong>on</strong>g>the</str<strong>on</strong>g> displacement of <str<strong>on</strong>g>the</str<strong>on</strong>g> midpoint of <str<strong>on</strong>g>the</str<strong>on</strong>g> beam in case of l<strong>on</strong>gitudinalvibrati<strong>on</strong> and Figure 2b) shows <str<strong>on</strong>g>the</str<strong>on</strong>g> displacement of <str<strong>on</strong>g>the</str<strong>on</strong>g> midpoint of <str<strong>on</strong>g>the</str<strong>on</strong>g> beam in transversevibrati<strong>on</strong>.0.015a) L<strong>on</strong>gitudinal vibrati<strong>on</strong> of a beam (clambed−clambed)0.01amplitude [m]0.0050−0.005−0.01−0.0150 0.05 0.1 0.15 0.2 0.25 0.3 0.35time [s]0.04b) Transverse vibrati<strong>on</strong> of a beam (clambed−clambed)amplitude [m]0.020−0.02−0.040 0.5 1 1.5time [s]Figure 2: a) L<strong>on</strong>gitudinal vibrati<strong>on</strong> of a beam. b) Transverse vibrati<strong>on</strong> of a beam.111


The natural frequences of <str<strong>on</strong>g>the</str<strong>on</strong>g> beam with different boundary c<strong>on</strong>diti<strong>on</strong>s were calculated and comparedto <str<strong>on</strong>g>the</str<strong>on</strong>g> analytical soluti<strong>on</strong>s presented in [7]. Young’s modulus E = 1.0 · 10 9 MPa, densityρ = 920 kg/m 3 and <str<strong>on</strong>g>the</str<strong>on</strong>g> height of <str<strong>on</strong>g>the</str<strong>on</strong>g> beam h = 0.5 m were <str<strong>on</strong>g>the</str<strong>on</strong>g> same <str<strong>on</strong>g>for</str<strong>on</strong>g> all <str<strong>on</strong>g>the</str<strong>on</strong>g> test cases. O<str<strong>on</strong>g>the</str<strong>on</strong>g>rused properties and results are shown in table 1.Table 1: Natural frequences of <str<strong>on</strong>g>the</str<strong>on</strong>g> beam.boundary length of number of ω [1/s] ω [1/s]c<strong>on</strong>diti<strong>on</strong>s vibrati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> beam [m] ∆t [s] elements ([7]) (DEM)clambed–clambed l<strong>on</strong>gitudinal 3.96 5.0 · 10 −7 19 827.1 826.7clambed–clambed transverse 4.0 5.0 · 10 −5 9 210.4 209.4clambed–free transverse 4.25 5.0 · 10 −5 9 29.3 29.2C<strong>on</strong>cluding remarksThe calculati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>ces between joined rectangular particles in discrete element method waspresented and implemented to a DEM program. Vibrating beam was simulated with <str<strong>on</strong>g>the</str<strong>on</strong>g> programand <str<strong>on</strong>g>the</str<strong>on</strong>g> natural frequences obtained were compared to <strong>on</strong>es given by analytical soluti<strong>on</strong>s. Nosignificant differences between <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong>s could be found.AcknowledgementThis work was supported by <str<strong>on</strong>g>the</str<strong>on</strong>g> Finnish Cultural Foundati<strong>on</strong> and Heikki and Hilma H<strong>on</strong>kanenFoundati<strong>on</strong> which are gratefully acknowledged.References[1] P.A. Cundall and O.D.L.Strack. A discrete numerical model <str<strong>on</strong>g>for</str<strong>on</strong>g> granular assemblies. Géotechnique,29, 47–65, (1979).[2] O.R. Walt<strong>on</strong> and R.L. Braun. Viscosity, Granular–Temperature, and Stress Calculati<strong>on</strong>s <str<strong>on</strong>g>for</str<strong>on</strong>g> ShearingAssemblies of Inelastic, Fricti<strong>on</strong>al Disks. Journal of Rheology, 30, 949–980, (1986).[3] D.R.J. Owen et al. The modelling of multi-fracturing solids and particulate media. Int.J. <str<strong>on</strong>g>for</str<strong>on</strong>g> NumericalMethods in Engineering, 60, 317–339, (2004).[4] M.A. Hopkins, J. Tuhkuri and M. Lensu. Rafting and ridging of thin ice sheets. Journal of GeophysicalResearch, 104, 13,605–13,613, (1999).[5] A. Munjiza. The Combined Finite-Discrete Element Method. Wiley, (2004).[6] M.A. Hopkins. A Particle Beam Simulati<strong>on</strong>. Mechanics Computing in 1990s and Bey<strong>on</strong>d Proceedings,1274–1278,(1991).[7] D.J. Inman. Engineering Vibrati<strong>on</strong>. Prentice-Hall, New Jersey, Sec<strong>on</strong>d editi<strong>on</strong>, (2001).112


A Finite Element Method <str<strong>on</strong>g>for</str<strong>on</strong>g> General Boundary C<strong>on</strong>diti<strong>on</strong>Mika Juntunen ∗ and Rolf StenbergInstitute of Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>maticsHelsinki University of Technology, Espoo, Finlande–mail: mika.juntunen@tkk.fiSummary In this note we introduce a method <str<strong>on</strong>g>for</str<strong>on</strong>g> handling general boundary c<strong>on</strong>diti<strong>on</strong>s based <strong>on</strong> anapproach suggested by Nitsche (1971) <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> approximati<strong>on</strong> of Dirichlet boundary c<strong>on</strong>diti<strong>on</strong>s. We usePoiss<strong>on</strong>’s equati<strong>on</strong>s as a model problem and present <str<strong>on</strong>g>the</str<strong>on</strong>g> a priori and <str<strong>on</strong>g>the</str<strong>on</strong>g> a posteriori error estimates. Also,we show that c<strong>on</strong>venti<strong>on</strong>al error estimates <str<strong>on</strong>g>for</str<strong>on</strong>g> Dirichlet and Neumann boundary c<strong>on</strong>diti<strong>on</strong>s are a <str<strong>on</strong>g>special</str<strong>on</strong>g>case of <str<strong>on</strong>g>the</str<strong>on</strong>g> proposed error estimates.Introducti<strong>on</strong>En<str<strong>on</strong>g>for</str<strong>on</strong>g>cing perturbed Dirichlet boundary c<strong>on</strong>diti<strong>on</strong> i.e. <str<strong>on</strong>g>the</str<strong>on</strong>g> Robin boundary c<strong>on</strong>diti<strong>on</strong> with smallcoefficient in <str<strong>on</strong>g>the</str<strong>on</strong>g> derivative term leads to a high c<strong>on</strong>diti<strong>on</strong> number in <str<strong>on</strong>g>the</str<strong>on</strong>g> system matrix. Perturbedboundary c<strong>on</strong>diti<strong>on</strong> also plagues <str<strong>on</strong>g>the</str<strong>on</strong>g> adaptive mesh refinement based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> a posteriori errorestimate since <str<strong>on</strong>g>the</str<strong>on</strong>g> straight <str<strong>on</strong>g>for</str<strong>on</strong>g>ward <str<strong>on</strong>g>for</str<strong>on</strong>g>mulati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> problem leads to a posteriori estimate thatinduces a too dense mesh <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> boundary. A numerical scheme has to take <str<strong>on</strong>g>the</str<strong>on</strong>g>se facts intoaccount in order to produce an efficient and numerically stable method.Perturbed boundary c<strong>on</strong>diti<strong>on</strong>s arise <str<strong>on</strong>g>for</str<strong>on</strong>g> example in linear elasticity where a solid is <strong>on</strong> a very stiffbut elastic support. Also, en<str<strong>on</strong>g>for</str<strong>on</strong>g>cing normal Dirichlet boundary c<strong>on</strong>diti<strong>on</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g> penalty methodis equivalent to solving a problem with perturbed Dirichlet boundary c<strong>on</strong>diti<strong>on</strong>s since <str<strong>on</strong>g>the</str<strong>on</strong>g> penaltymethod is not c<strong>on</strong>sistent.We show a method based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Nitsche method [1] [2] [3] to circumvent <str<strong>on</strong>g>the</str<strong>on</strong>g> high c<strong>on</strong>diti<strong>on</strong>number of <str<strong>on</strong>g>the</str<strong>on</strong>g> system matrix in <str<strong>on</strong>g>the</str<strong>on</strong>g> case of <str<strong>on</strong>g>the</str<strong>on</strong>g> perturbed boundary c<strong>on</strong>diti<strong>on</strong>. The method isproposed in a way that it is possible to move c<strong>on</strong>tinuously between <str<strong>on</strong>g>the</str<strong>on</strong>g> Neumann and <str<strong>on</strong>g>the</str<strong>on</strong>g> Dirichletboundary c<strong>on</strong>diti<strong>on</strong>s. We show <str<strong>on</strong>g>the</str<strong>on</strong>g> a priori error estimate that has <str<strong>on</strong>g>the</str<strong>on</strong>g> optimal rate of c<strong>on</strong>vergence.Under <str<strong>on</strong>g>the</str<strong>on</strong>g> saturati<strong>on</strong> assumpti<strong>on</strong> we also show <str<strong>on</strong>g>the</str<strong>on</strong>g> a posteriori error estimate.Deriving The Nitsche MethodWe use <str<strong>on</strong>g>the</str<strong>on</strong>g> Poiss<strong>on</strong> problem as a model problem.−∆u = f∂u∂n = 1 (g − u) + qɛu = 0in Ω<strong>on</strong> Γ<strong>on</strong> ∂Ω \ Γ(1)where Ω is a bounded domain in space with polyg<strong>on</strong>al boundary, f ∈ L 2 (Ω), g, q ∈ L 2 (Γ) andɛ ∈ R, ɛ > 0.Remark 1. The value of <str<strong>on</strong>g>the</str<strong>on</strong>g> parameter ɛ allows to move between <str<strong>on</strong>g>the</str<strong>on</strong>g> Dirichlet and Neumannproblems c<strong>on</strong>tinuously i.e.ɛ → 0⇒ u = gɛ → ∞ ⇒ ∂u∂n = q<strong>on</strong> Γ<strong>on</strong> Γ .We suppose that we have shape regular finite element partiti<strong>on</strong>s T h of <str<strong>on</strong>g>the</str<strong>on</strong>g> domain Ω ∈ R N ,N = 2, 3. By K ∈ T h we denote an element of <str<strong>on</strong>g>the</str<strong>on</strong>g> mesh and by E we denote an edge of <str<strong>on</strong>g>the</str<strong>on</strong>g>element. The mesh induces a partiti<strong>on</strong>ing also to <str<strong>on</strong>g>the</str<strong>on</strong>g> boundary of <str<strong>on</strong>g>the</str<strong>on</strong>g> domain ∂Ω and we denoteG h = {E : K ∩ Γ, K ∈ T h } .(2)113


(The Nitsche Method). Find u h ∈ V h such thatB h (u h , v) = F h (v) ∀v ∈ V h (3)whereB h (u, v) = ( ∇u, ∇v ) Ω + ∑ {−γh [E 〈 ∂uɛ + γh E ∂n , v〉 E + 〈 u, ∂v 〉 ]∂n EE∈G h} (4)1 〈 〉+ u, vɛ + γh E − ɛγh E 〈∂uE ɛ + γh E ∂n , ∂v 〉∂n EandF h (v) = ( f, v ) Ω + ∑ {1 〈 〉g, vɛ + γh EE∈G h+ɛ 〈 〉q, vɛ + γh E −EE −ɛγh E 〈 ∂v 〉q,ɛ + γh E ∂n Eγh E 〈 ∂v 〉g,ɛ + γh E ∂n}.E(5)Remark 2. Setting γ = 0 in equati<strong>on</strong> (3) yields <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>venti<strong>on</strong>al variati<strong>on</strong>al <str<strong>on</strong>g>for</str<strong>on</strong>g>mulati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g>model problem (1). Due to <str<strong>on</strong>g>the</str<strong>on</strong>g> inc<strong>on</strong>sistency of <str<strong>on</strong>g>the</str<strong>on</strong>g> penalty method this variati<strong>on</strong>al <str<strong>on</strong>g>for</str<strong>on</strong>g>m can alsobe seen as <str<strong>on</strong>g>the</str<strong>on</strong>g> variati<strong>on</strong>al <str<strong>on</strong>g>for</str<strong>on</strong>g>m induced by <str<strong>on</strong>g>the</str<strong>on</strong>g> applicati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> penalty method with penaltyparameter ɛ to <str<strong>on</strong>g>the</str<strong>on</strong>g> problem−∆u = fu = g + ɛqin Ω<strong>on</strong> Γ .Remark 3. Setting ɛ = 0 in equati<strong>on</strong> (3) yields <str<strong>on</strong>g>the</str<strong>on</strong>g> variati<strong>on</strong>al <str<strong>on</strong>g>for</str<strong>on</strong>g>m of <str<strong>on</strong>g>the</str<strong>on</strong>g> Nitsche method appliedto problem [2]−∆u = fu = gin Ω<strong>on</strong> Γ .Remark 4. Letting ɛ → ∞ in equati<strong>on</strong> (3) yields <str<strong>on</strong>g>the</str<strong>on</strong>g> variati<strong>on</strong>al <str<strong>on</strong>g>for</str<strong>on</strong>g>m of <str<strong>on</strong>g>the</str<strong>on</strong>g> Neumann problem−∆u = f∂u∂n = qin Ω<strong>on</strong> Γ .Lemma 1 states that <str<strong>on</strong>g>the</str<strong>on</strong>g> proposed method is indeed c<strong>on</strong>sistent.Lemma 1. The soluti<strong>on</strong> u of <str<strong>on</strong>g>the</str<strong>on</strong>g> equati<strong>on</strong>s (1) satisfiesB h (u, v) = F h (v) ∀v ∈ V . (6)A priori error estimateFor <str<strong>on</strong>g>the</str<strong>on</strong>g> analysis of <str<strong>on</strong>g>the</str<strong>on</strong>g> method we define <str<strong>on</strong>g>the</str<strong>on</strong>g> following mesh-dependent norm‖v‖ 2 h := ‖∇v‖2 L 2 (Ω) + ∑ E∈G h1ɛ + h E‖v‖ 2 L 2 (E) . (7)114


Lemma 2. There is a positive c<strong>on</strong>stant C I such that [3]∥ ∑ ∥∥∥ ∂v2h E ∂n∥≤ C I ‖∇v‖ 2 L 2 (Ω)E∈G hL 2 (E)∀v ∈ V h . (8)Since it is possible to compute a value to <str<strong>on</strong>g>the</str<strong>on</strong>g> coefficient C I of Lemma 2, it follows from Lemma 3that <str<strong>on</strong>g>the</str<strong>on</strong>g> proposed method is always stable.Lemma 3. Suppose that γ < 1/C I . Then <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a positive c<strong>on</strong>stant C such thatFollowing interpolati<strong>on</strong> estimate holds [3].B h (v, v) ≥ C‖v‖ 2 h ∀v ∈ V h . (9)Lemma 4. Suppose that u ∈ H s (Ω), with 3/2 < s ≤ p + 1. Then it holdsinf ‖u − v‖ h ≤ Ch s−1 ‖u‖ Hs (Ω) . (10)v∈V hNow we can <str<strong>on</strong>g>for</str<strong>on</strong>g>mulate <str<strong>on</strong>g>the</str<strong>on</strong>g> a priori error estimate in <str<strong>on</strong>g>the</str<strong>on</strong>g> mesh dependent norm.Theorem 1. Suppose that γ < 1/C I . Then it holdsand if u ∈ H s (Ω) and 3/2 < s < p + 1, <str<strong>on</strong>g>the</str<strong>on</strong>g>n‖u − u h ‖ h ≤ C infv∈V h‖u − v‖ h (11)‖u − u h ‖ h ≤ Ch s−1 ‖u‖ Hs (Ω) . (12)A posteriori error estimateThe a posteriori error estimate of <str<strong>on</strong>g>the</str<strong>on</strong>g> Nitsche method is based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> saturati<strong>on</strong> assumpti<strong>on</strong> [4].The assumpti<strong>on</strong> is that refining <str<strong>on</strong>g>the</str<strong>on</strong>g> mesh produces better soluti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> mesh dependent energynorm.Assumpti<strong>on</strong> 1. Assume <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists β < 1 such thatwhere u 2h is a soluti<strong>on</strong> <strong>on</strong> a mesh size 2h.‖u − u h ‖ h ≤ β‖u − u 2h ‖ h , (13)Theorem 2. Suppose <str<strong>on</strong>g>the</str<strong>on</strong>g> saturati<strong>on</strong> Assumpti<strong>on</strong> 1 holds and that γ < 1/C I . Then it holds( ∑ ) 1/2‖u − u h ‖ h ≤ C EK(u 2 h ) , (14)K∈T hwhereEK(u) 2 = h 2 K‖∆u + f‖ 2 L 2 (K) + h [ ∂u] ∥ 2E ∥∥∥ ∂n+∥h E ∥∥∥(ɛ + γh E ) 2 ɛ ( ∂u∂n − q) + u − g∥L 2 (∂K∩I)∥2L 2 (∂K∩Γ),(15)where I is <str<strong>on</strong>g>the</str<strong>on</strong>g> internal boundaries of <str<strong>on</strong>g>the</str<strong>on</strong>g> mesh.115


Remark 5. Setting ɛ = 0 yieldsEK(u) 2 = h 2 K‖∆u + f‖ 2 L 2 (K) + h [ ∂u] ∥ 2E ∥∥∥ ∂nL 2 (∂K∩I)+ 1(16)‖u − g‖ 2 Lh 2 (∂K∩Γ) , Ewhich is <str<strong>on</strong>g>the</str<strong>on</strong>g> a posteriori estimate of <str<strong>on</strong>g>the</str<strong>on</strong>g> Nitsche method <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>-perturbed problem.Remark 6. Setting γ = 0 yieldsEK(u) 2 = h 2 K‖∆u + f‖ 2 L 2 (K) + h [ ∂u] ∥ 2E ∥∥∥ ∂nL 2 (∂K∩I)∥ ∥∥∥ ∂u+ h E∂n − q + 1 ∥ ∥∥∥2ɛ (u − g) ,L 2 (∂K∩Γ)(17)which is <str<strong>on</strong>g>the</str<strong>on</strong>g> a posteriori estimate of <str<strong>on</strong>g>the</str<strong>on</strong>g> penalty method or <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>venti<strong>on</strong>al approach to <str<strong>on</strong>g>the</str<strong>on</strong>g>perturbed problem.Remark 7. Letting ɛ → ∞ yieldsEK(u) 2 = h 2 K‖∆u + f‖ 2 L 2 (K) + h [ ∂u] ∥ 2E ∥∥∥ ∂nL 2 (∂K∩I)∥ ∥ ∥∥∥ ∂u ∥∥∥2+ h E∂n − q ,L 2 (∂K∩Γ)(<str<strong>on</strong>g>18</str<strong>on</strong>g>)which is <str<strong>on</strong>g>the</str<strong>on</strong>g> a posteriori estimate of <str<strong>on</strong>g>the</str<strong>on</strong>g> Neumann problem.These remarks show that <str<strong>on</strong>g>the</str<strong>on</strong>g> a posteriori estimate holds <str<strong>on</strong>g>for</str<strong>on</strong>g> all values of ɛ, even <str<strong>on</strong>g>the</str<strong>on</strong>g> limit valuesof ɛ yield <str<strong>on</strong>g>the</str<strong>on</strong>g> correct a posteriori estimate. In additi<strong>on</strong>, setting γ = 0 yields <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>venti<strong>on</strong>alapproach or <str<strong>on</strong>g>the</str<strong>on</strong>g> penalty method, depending <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> problem.For <str<strong>on</strong>g>the</str<strong>on</strong>g> proofs of <str<strong>on</strong>g>the</str<strong>on</strong>g> error estimates check [5].References[1] J.A. Nitsche. Über ein Variati<strong>on</strong>sprinzip zur Lösung v<strong>on</strong> Dirichlet-Problemen bei Verwendung v<strong>on</strong>Teilräumen, die keinen Randbedingungen unterworfen sind. Abhandlungen aus dem Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matischenSeminar der Universität Hamburg 36, 9–15, (1970/71)[2] R. Stenberg. Mortaring by a method of J.A. Nitsche. Computati<strong>on</strong>al Mechanics; New Trends andApplicati<strong>on</strong>s S. Idelsohn, E. Oate and E. Dvorkin (Eds.) @CIMNE, Barcel<strong>on</strong>a, Spain, 1998[3] R. Becker, P. Hansbo, and R. Stenberg. A finite element methods <str<strong>on</strong>g>for</str<strong>on</strong>g> domain decompositi<strong>on</strong> withn<strong>on</strong>-matching grids. Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical Modelling and Numerical Analysis 37, 209–225, (2003)[4] D. Braess and R. Verfürth A posteriori error estimator <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Raviart-Thomas element. SIAM J.Numer. Anal 33, 2431–2444, (1996)[5] M. Juntunen and R. Stenberg. The Nitsche method <str<strong>on</strong>g>for</str<strong>on</strong>g> general boundary c<strong>on</strong>diti<strong>on</strong>. In preparati<strong>on</strong>.116


New Technologies <str<strong>on</strong>g>for</str<strong>on</strong>g> C<strong>on</strong>trol of Local Errors in EngineeringComputati<strong>on</strong>s by FEMSergey KorotovInstitute of Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>maticsHelsinki University of Technology, Espoo, Finlande–mail: sergey.korotov@hut.fiSummary We show that popular gradient averaging techniques can be successfully used <str<strong>on</strong>g>for</str<strong>on</strong>g> reliable c<strong>on</strong>trolof local errors appearing in finite element computati<strong>on</strong>s <str<strong>on</strong>g>for</str<strong>on</strong>g> linear elliptic type boundary value problems.Error c<strong>on</strong>trol in terms of linear functi<strong>on</strong>als with local supports and also in terms of local integral norms isc<strong>on</strong>sidered. General schemes <str<strong>on</strong>g>for</str<strong>on</strong>g> c<strong>on</strong>structi<strong>on</strong> of easily computable estimates <str<strong>on</strong>g>for</str<strong>on</strong>g> both types of c<strong>on</strong>trol aredescribed and effectivity of <str<strong>on</strong>g>the</str<strong>on</strong>g> proposed estimates is dem<strong>on</strong>strated in numerical tests.Introducti<strong>on</strong>The paper is devoted to a recent trend in a posteriori error estimati<strong>on</strong> which is based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>ceptof c<strong>on</strong>trol of local computati<strong>on</strong>al errors. Error estimates of such type c<strong>on</strong>trol are str<strong>on</strong>glymotivated by practical needs, in which analysts are often interested not <strong>on</strong>ly in <str<strong>on</strong>g>the</str<strong>on</strong>g> classical errorin global energy norms, i.e., over <str<strong>on</strong>g>the</str<strong>on</strong>g> whole soluti<strong>on</strong> domain, but also in in<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> about localerrors over certain parts of it. One way <str<strong>on</strong>g>for</str<strong>on</strong>g> obtaining such an in<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> is to introduce a linearfuncti<strong>on</strong>al l associated with a subdomain of <str<strong>on</strong>g>special</str<strong>on</strong>g> interest and to c<strong>on</strong>struct a posteriori computableestimate <str<strong>on</strong>g>for</str<strong>on</strong>g> l(u − ū), where u is <str<strong>on</strong>g>the</str<strong>on</strong>g> exact soluti<strong>on</strong> and ū is <str<strong>on</strong>g>the</str<strong>on</strong>g> approximate <strong>on</strong>e. Weshow that popular and computati<strong>on</strong>ally cheap gradient averaging procedures can be effectivelyused <str<strong>on</strong>g>for</str<strong>on</strong>g> such a purpose if ū is computed by <str<strong>on</strong>g>the</str<strong>on</strong>g> finite element method. Moreover, we show thatalso an error measured in local integral norms can be effectively estimated via estimates of <str<strong>on</strong>g>the</str<strong>on</strong>g>error in terms of suitably c<strong>on</strong>structed linear functi<strong>on</strong>als. The effectivity of proposed estimates isdem<strong>on</strong>strated in numerical tests.C<strong>on</strong>trol of error by linear functi<strong>on</strong>alsModel elliptic problem. Let Ω be a bounded and c<strong>on</strong>nected domain in R d (d = 1, 2, ...) with aLipschitz c<strong>on</strong>tinuous boundary ∂Ω, we c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> problem: Find u such that−div(A∇u) = f in Ω, u = 0 <strong>on</strong> ∂Ω, (1)where f ∈ L 2 (Ω), matrix A = {a ij (x)} d i,j=1 is symmetric and is such thata ij (x) ∈ L ∞ (Ω), A(x)ξ · ξ ≥ c ‖ξ‖ 2 ∀ξ ∈ R d ∀x ∈ Ω. (2)To find an approximati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> problem (1) by <str<strong>on</strong>g>the</str<strong>on</strong>g> finite element method we employ <str<strong>on</strong>g>the</str<strong>on</strong>g> so-calledweak <str<strong>on</strong>g>for</str<strong>on</strong>g>mulati<strong>on</strong> of (1): Find u ∈ H0 1 (Ω) such that∫∫A∇u · ∇w dx = fw dx ∀w ∈ H0 1 (Ω). (3)ΩΩLet u h ∈ H0 1 (Ω) be a c<strong>on</strong>tinuous piecewise polynomial finite element approximati<strong>on</strong> of u computed<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> primal mesh T h . The questi<strong>on</strong> is in which sense to measure <str<strong>on</strong>g>the</str<strong>on</strong>g> error e := u − u h .One way to do that is via linear functi<strong>on</strong>al l ϕ (e.g., with a local support ω ⊆ Ω), i.e., to estimate<str<strong>on</strong>g>the</str<strong>on</strong>g> value, <str<strong>on</strong>g>for</str<strong>on</strong>g> example, of∫l ϕ (e) = l ϕ (u − u h ) := ϕ(u − u h ) dx, where supp ϕ = ω. (4)Ω117


10.80.60.40.20−0.2−0.4−0.6−0.8−1−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 110.80.60.40.20−0.2−0.4−0.6−0.810.80.60.40.20−0.2−0.4−0.6−0.81.510.50−11−0.50.5000.5−0.51 −1−1−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1−1−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1Figure 1: Ω, ω, T h (88 nodes), u h , and typical T τ (31 and 247 nodes).∫It is clear that <str<strong>on</strong>g>the</str<strong>on</strong>g> estimates <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> above value can also be used to estimate <str<strong>on</strong>g>the</str<strong>on</strong>g> value of l ϕ (u) =ϕu dx, called often as <str<strong>on</strong>g>the</str<strong>on</strong>g> quantity of interest.ωError decompositi<strong>on</strong>. In order to estimate (4), <strong>on</strong>e usually introduces <str<strong>on</strong>g>the</str<strong>on</strong>g> so-called adjoint problem:Find v ∈ H0 1 (Ω) such that (cf. (3))∫∫ ( )A∇v · ∇w dx = ϕw dx = l ϕ (w) ∀w ∈ H0 1 (Ω). (5)ΩΩIf functi<strong>on</strong> ϕ ∈ L 2 (Ω), <str<strong>on</strong>g>the</str<strong>on</strong>g>n problem (5) has a unique soluti<strong>on</strong>. Usually, <strong>on</strong>e cannot solve (5)exactly and <strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g> finite element approximati<strong>on</strong> v τ , obtained <strong>on</strong> adjoint mesh T τ (not necesarilycoinciding with T h ), is available. Then we can represent error (4) as follows∫∫∫∫ϕ(u−u h )dx= A∇v ·∇(u−u h )dx= A∇(v −v τ )·∇(u−u h )dx+ A∇v τ ·∇(u−u h )dx=ΩΩΩΩΩΩ∫ ∫∫= fv τ dx − A∇v τ · ∇u h dx+ A∇(v − v τ ) · ∇(u − u h )dx=E 0 (u h , v τ ) + E 1 (u h , v τ ). (6)C<strong>on</strong>structi<strong>on</strong> of estimator. It is well known that averaged gradients of finite element approximati<strong>on</strong>s<str<strong>on</strong>g>for</str<strong>on</strong>g> linear elliptic problems usually dem<strong>on</strong>strate so-called superc<strong>on</strong>vergence effect (see,e.g., [1]). This suggests to use averaged gradients instead of unknown gradients in (6) andestimate (4) by <str<strong>on</strong>g>the</str<strong>on</strong>g> following a posteriori computable value (called estimator) Ẽ(u h , v τ ) =E 0 (u h , v τ ) + Ẽ1(u h , v τ ), where∫Ẽ 1 (u h , v τ ) = A(G τ (∇v τ ) − ∇v τ ) · (G h (∇u h ) − ∇u h ) dx, (7)and G h and G τ are suitable gradient averaging operators.ΩNumerical test. Let Ω be a L-shaped domain with reentrant corner at (0, 0) obtained from a square(−1, 1)×(−1, 1), ω := (−0.2, 0)×(−0.2, 0) (see Fig. 1 (left)), let ϕ ≡ 1 in ω (and vanish outsideof ω), A be <str<strong>on</strong>g>the</str<strong>on</strong>g> unit matrix, f ≡ 10 in Ω. The c<strong>on</strong>tinuous piecewise linear finite element soluti<strong>on</strong>u h is calculated <strong>on</strong> T h with 88 nodes, <str<strong>on</strong>g>the</str<strong>on</strong>g>n l(u − u h ) = 0.005346. The per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance of <str<strong>on</strong>g>the</str<strong>on</strong>g>estimator <str<strong>on</strong>g>for</str<strong>on</strong>g> various choices of adjoint meshes (having 31, 42, . . . , 2077 nodes) is presented inFig. 2. The effectivity index I eff := Ẽ(u h, v τ )/l(u − u h ). We clearly observe that: a) estimatorgives reas<strong>on</strong>ably good results (0.72 ≤ I eff ≤ 0.93) <str<strong>on</strong>g>for</str<strong>on</strong>g> adjoint meshes which are c<strong>on</strong>siderablycoarser than <str<strong>on</strong>g>the</str<strong>on</strong>g> primal meshes; b) estimator is asymptotically (τ → 0) correct. Very similarresults are reported in [2, 3, 4, 5] <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> problem (1) with mixed boundary c<strong>on</strong>diti<strong>on</strong>s and also <str<strong>on</strong>g>for</str<strong>on</strong>g>problems in linear elasticity.Ω1<str<strong>on</strong>g>18</str<strong>on</strong>g>


0.005346EE 0E131 42 59 75 88 99 148 247 549 929 2077Figure 2: Behaviour of estimator Ẽ and its parts, E 0 and Ẽ1, <str<strong>on</strong>g>for</str<strong>on</strong>g> various adjoint meshes.Mesh adaptivity. The estimator Ẽ(u h, v τ ) =∑T ∈T (i)hI T , where each c<strong>on</strong>tributi<strong>on</strong> I T is a valueof <str<strong>on</strong>g>the</str<strong>on</strong>g> integral taken over a particular element T of <str<strong>on</strong>g>the</str<strong>on</strong>g> current primal mesh T (i)hto c<strong>on</strong>struct <str<strong>on</strong>g>the</str<strong>on</strong>g> next primal mesh T (i+1). This suggestshin order to decrease <str<strong>on</strong>g>the</str<strong>on</strong>g> error (4) as follows. First, wefind <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum am<strong>on</strong>g all modulus |I T |’s and, sec<strong>on</strong>dly, mark up those elements T ’s whichhave <str<strong>on</strong>g>the</str<strong>on</strong>g>ir c<strong>on</strong>tributi<strong>on</strong>s larger than <str<strong>on</strong>g>the</str<strong>on</strong>g> “user-given threshold” θ (θ ∈ [0, 1]) times that maximumvalue. Refining <str<strong>on</strong>g>the</str<strong>on</strong>g> marked elements and making <str<strong>on</strong>g>the</str<strong>on</strong>g> mesh c<strong>on</strong><str<strong>on</strong>g>for</str<strong>on</strong>g>ming, we get T (i+1) . The higheffectivity of this adaptive procedure has been dem<strong>on</strong>strated in [2, 3, 5].C<strong>on</strong>trol of error in local integral normsEstimates <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> error measured in terms of <str<strong>on</strong>g>special</str<strong>on</strong>g>ly c<strong>on</strong>structed functi<strong>on</strong>als can be used also <str<strong>on</strong>g>for</str<strong>on</strong>g>evaluating local integral norms of <str<strong>on</strong>g>the</str<strong>on</strong>g> error. Let us c<strong>on</strong>sider, <str<strong>on</strong>g>for</str<strong>on</strong>g> example,∫‖e‖ 2 2,ω = ‖u − u h‖ 2 2,ω = |u(x) − u h (x)| 2 dx. (8)It is obvious that ‖u − u h ‖ 2,ω =supη∈L 2(ω)ωRη(u−u h)dxω‖η‖ 2,ω, where supremum is attained at η = u − u h .If a priori known that u − u h ∈ Ξ(ω) ⊂ L 2 (ω), <str<strong>on</strong>g>the</str<strong>on</strong>g>n∫η(u − u h )dxω‖u − u h ‖ 2,ω ==: |u − ū| Ξ . (9)‖η‖ 2,ωsupη∈Ξ(ω)However, |u − u h | Ξ is <strong>on</strong>ly seminorm and equality in (9) is normally replaced by inequality.Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less, |·| Ξ may give adequate presentati<strong>on</strong> <strong>on</strong> norm ‖·‖ 2,ω provided Ξ c<strong>on</strong>tains sufficientlylarge amount of trial functi<strong>on</strong>s. Let Ξ := {ϕ 1 , ϕ 2 , . . . , ϕ n }, where ϕ i are given. In [4] it is firstproved that|u − u h | Ξ = (B −1 l · l) 1 2 , (10)wherel=(l ϕ1 , l ϕ2 , . . . , l ϕn ) T ,∫l ϕi (u − u h ) =ωϕ i (u − u h )dx,( ∫B =ωnϕ i ϕ j dx) . i,j=1 (11)∣∣∣∣Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r, it is proved that ∣|u − u h | Ξ − ‖u − u h ‖ 2,ω = O(diam(ω) k ), where k depends <strong>on</strong>regularity of u and number of trial functi<strong>on</strong>s used in definiti<strong>on</strong> of | · | Ξ , see [4]. Thus, estimatesfrom Secti<strong>on</strong> 2 can be efectively used to estimate <str<strong>on</strong>g>the</str<strong>on</strong>g> error (8) by (10)–(11) with l ϕi , i = 1, . . . , n,replaced by corresp<strong>on</strong>ding estimates.h119


Numerical test. C<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> test problem from Secti<strong>on</strong> 2, <str<strong>on</strong>g>for</str<strong>on</strong>g> which ‖u − u h ‖ 2,ω = 0.028703. Toestimate this local norm of <str<strong>on</strong>g>the</str<strong>on</strong>g> error we can use e.g. estimates via 4 functi<strong>on</strong>als, l ϕ1 , . . . , l ϕ4 , withϕ 1 , . . . , ϕ 4 being bilinear over ω and c<strong>on</strong>structed so that <str<strong>on</strong>g>the</str<strong>on</strong>g>y are equal to 1 at <strong>on</strong>e node and 0’s at<str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r. If <str<strong>on</strong>g>the</str<strong>on</strong>g> error in terms of functi<strong>on</strong>als can be computed exactly <str<strong>on</strong>g>the</str<strong>on</strong>g>n |u − u h | Ξ = 0.028<str<strong>on</strong>g>18</str<strong>on</strong>g>2,which gives a very good estimati<strong>on</strong> of (8) as predicted <str<strong>on</strong>g>the</str<strong>on</strong>g>oretically in [4]. However, in practicewe <strong>on</strong>ly have estimators’ values, which estimate <str<strong>on</strong>g>the</str<strong>on</strong>g> error by <str<strong>on</strong>g>the</str<strong>on</strong>g> value 0.019795 if <str<strong>on</strong>g>the</str<strong>on</strong>g> adjointmesh with 42 nodes is used, and by <str<strong>on</strong>g>the</str<strong>on</strong>g> value 0.026881 - <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> case of <str<strong>on</strong>g>the</str<strong>on</strong>g> adjoint mesh with 549nodes.Comments1. The approach proposed in Secti<strong>on</strong> 2 is different from <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs available in <str<strong>on</strong>g>the</str<strong>on</strong>g> literature,where it is always assumed that primal and adjoint problems are solved <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> same mesh. Usingour technique <strong>on</strong>e can obtain reliable estimates also <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> case when <str<strong>on</strong>g>the</str<strong>on</strong>g> number of nodes inadjoint mesh is c<strong>on</strong>siderably smaller than <str<strong>on</strong>g>the</str<strong>on</strong>g> number of nodes in primal mesh.2. The effectivity of <str<strong>on</strong>g>the</str<strong>on</strong>g> estimator Ẽ str<strong>on</strong>gly increases when <strong>on</strong>e is interested not in a singlesoluti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> primal problem <str<strong>on</strong>g>for</str<strong>on</strong>g> a c<strong>on</strong>crete data, but analyzes a series of approximate soluti<strong>on</strong>s<str<strong>on</strong>g>for</str<strong>on</strong>g> a certain set of boundary c<strong>on</strong>diti<strong>on</strong>s and various right-hand sides (which is typical in <str<strong>on</strong>g>the</str<strong>on</strong>g> engineeringdesign when it is necessary to model <str<strong>on</strong>g>the</str<strong>on</strong>g> behavior of a c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> various workingregimes). In this case, <str<strong>on</strong>g>the</str<strong>on</strong>g> adjoint problem can be solved <strong>on</strong>ly <strong>on</strong>ce (<str<strong>on</strong>g>for</str<strong>on</strong>g> each ω and l ϕ ), and thissoluti<strong>on</strong> can be fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r used in testing <str<strong>on</strong>g>the</str<strong>on</strong>g> accuracy of approximate soluti<strong>on</strong>s of various primalproblems.3. In <str<strong>on</strong>g>the</str<strong>on</strong>g> above we c<strong>on</strong>sidered problem (1) with a homogeneous Dirichlet boundary c<strong>on</strong>diti<strong>on</strong><strong>on</strong>ly <str<strong>on</strong>g>for</str<strong>on</strong>g> simplicity. A more general problem with n<strong>on</strong>homogeneous mixed boundary c<strong>on</strong>diti<strong>on</strong>scan be treated in <str<strong>on</strong>g>the</str<strong>on</strong>g> same way (see [2]). Similar estimates can be straight<str<strong>on</strong>g>for</str<strong>on</strong>g>wardly c<strong>on</strong>structed(using <str<strong>on</strong>g>the</str<strong>on</strong>g> ideas described above) <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r elliptic models, e.g., in linear elasticity (see [3, 5]),etc. The same ideology can be also applied to approximati<strong>on</strong>s obtained by hp-versi<strong>on</strong> of FEM.AcknowledgementThe author was supported by <str<strong>on</strong>g>the</str<strong>on</strong>g> Academy Research Fellowship no. 208628 from <str<strong>on</strong>g>the</str<strong>on</strong>g> Academyof Finland.References[1] I. Hlaváček, M. Křížek. On a superc<strong>on</strong>vergent finite element scheme <str<strong>on</strong>g>for</str<strong>on</strong>g> elliptic systems. I. Dirichletboundary c<strong>on</strong>diti<strong>on</strong>s. Apl. Mat. 32, 131–154, 1987.[2] S. Korotov. A posteriori error estimati<strong>on</strong> of goal-oriented quantities <str<strong>on</strong>g>for</str<strong>on</strong>g> elliptic type BVPs. J. Comput.Appl. Math. (in press).[3] S. Korotov. Error c<strong>on</strong>trol in terms of linear functi<strong>on</strong>als based <strong>on</strong> gradient averaging techniques. ComputingLetters (submitted).[4] S. Korotov, P. Neittaanmäki, S. Repin. A posteriori error estimati<strong>on</strong> of goal-oriented quantities by <str<strong>on</strong>g>the</str<strong>on</strong>g>superc<strong>on</strong>vergence patch recovery. J. Numer. Math. 11, 33–59, 2003.[5] M. Rüter, S. Korotov, Ch. Steenbock. A posteriori error estimates in linear elastic fracture <strong>mechanics</strong>based <strong>on</strong> different FE-soluti<strong>on</strong> spaces <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> primal and <str<strong>on</strong>g>the</str<strong>on</strong>g> dual problem. In Proc. of <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>18</str<strong>on</strong>g>-th NordicSeminar of Comput. Mech. (NSCM<str<strong>on</strong>g>18</str<strong>on</strong>g>), Helsinki-Stockholm 2005.120


Soluti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> Helmholtz equati<strong>on</strong> withc<strong>on</strong>trollability and spectral element methodsErkki HeikkolaVTT Processes, Jyväskylä, FinlandSanna Mönkölä ∗ , Anssi Pennanen, Tuomo RossiDepartment of Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical In<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> Technology,University of Jyväskylä, Jyväskylä, Finland∗ e–mail: sanna.m<strong>on</strong>kola@it.jyu.fiSummary We <str<strong>on</strong>g>for</str<strong>on</strong>g>mulate <str<strong>on</strong>g>the</str<strong>on</strong>g> Helmholtz problem as an exact c<strong>on</strong>trollability problem <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> time-dependentwave equati<strong>on</strong>. The problem is discretized in space domain with spectral elements leading to high accuracyand diag<strong>on</strong>al mass matrices. After discretizati<strong>on</strong>, exact c<strong>on</strong>trollability problem is re<str<strong>on</strong>g>for</str<strong>on</strong>g>mulated as aleast squares problem, which is solved by c<strong>on</strong>jugate gradient method. We illustrate <str<strong>on</strong>g>the</str<strong>on</strong>g> method with somenumerical experiments <strong>on</strong> an acoustic scattering simulati<strong>on</strong>.Introducti<strong>on</strong>We c<strong>on</strong>sider a c<strong>on</strong>trollability method <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> numerical soluti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> two-dimensi<strong>on</strong>al Helmholtzequati<strong>on</strong> with an absorbing boundary c<strong>on</strong>diti<strong>on</strong> describing <str<strong>on</strong>g>the</str<strong>on</strong>g> scattering of a time-harm<strong>on</strong>ic incidentwave by a sound-soft obstacle:− κ(x)2ρ(x) U − ∇ · ( 1ρ(x) ∇U )= 0, in Ω, (1)U = 0, <strong>on</strong> Γ 0 , (2)−iκ(x)U + ∂U∂n = G ext, <strong>on</strong> Γ ext , (3)where U(x) denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> total acoustic pressure c<strong>on</strong>sisting of <str<strong>on</strong>g>the</str<strong>on</strong>g> scattered wave U scat (x) and <str<strong>on</strong>g>the</str<strong>on</strong>g>incident wave U inc (x) = exp(i⃗ω · x), where i is <str<strong>on</strong>g>the</str<strong>on</strong>g> imaginary unit and <str<strong>on</strong>g>the</str<strong>on</strong>g> vector ⃗ω gives <str<strong>on</strong>g>the</str<strong>on</strong>g>propagati<strong>on</strong> directi<strong>on</strong>. The functi<strong>on</strong> G ext depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> incident wave. The domain Ω is boundedby <str<strong>on</strong>g>the</str<strong>on</strong>g> surface of <str<strong>on</strong>g>the</str<strong>on</strong>g> obstacle Γ 0 and an absorbing boundary Γ ext . Vector n is <str<strong>on</strong>g>the</str<strong>on</strong>g> outward normalvector to domain Ω. The wavenumber and density of <str<strong>on</strong>g>the</str<strong>on</strong>g> material are denoted by κ(x) and ρ(x),respectively, and <str<strong>on</strong>g>the</str<strong>on</strong>g>y are varying with respect to x. The wavenumber is related to <str<strong>on</strong>g>the</str<strong>on</strong>g> angular frequencyω = ‖⃗ω‖ 2 and to <str<strong>on</strong>g>the</str<strong>on</strong>g> speed of sound c(x) by <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>mula κ(x) =wavelength is given by λ(x) = 2πκ(x) .ωc(x). The corresp<strong>on</strong>dingNumerous soluti<strong>on</strong> methods exist directly <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> time-harm<strong>on</strong>ic equati<strong>on</strong> above. For example,various fictitious domain and domain decompositi<strong>on</strong> methods have been applied to <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>dingfinite element problems. A comm<strong>on</strong> quality of <str<strong>on</strong>g>the</str<strong>on</strong>g>se methods is that <str<strong>on</strong>g>the</str<strong>on</strong>g>y lead to largescaleindefinite linear systems, which are solved iteratively. It is difficult to develop efficientprec<strong>on</strong>diti<strong>on</strong>ers <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> iterative soluti<strong>on</strong>, e<str<strong>on</strong>g>special</str<strong>on</strong>g>ly when <str<strong>on</strong>g>the</str<strong>on</strong>g> material coefficients are varying.Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r difficulty in <str<strong>on</strong>g>the</str<strong>on</strong>g> finite element soluti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> Helmholtz equati<strong>on</strong> is <str<strong>on</strong>g>the</str<strong>on</strong>g> polluti<strong>on</strong> effect,which deteriorates accuracy when wave number increases even if discretizati<strong>on</strong> resoluti<strong>on</strong> is keptfixed (see, e.g., [6]). Many techniques have been developed to reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> polluti<strong>on</strong> effect andduring recent years various methods using plane waves as basis functi<strong>on</strong>s have turned out to besuccesful (see, e.g., [3], [5]). In this work, we adhere to a polynomial basis, but increase <str<strong>on</strong>g>the</str<strong>on</strong>g> orderof <str<strong>on</strong>g>the</str<strong>on</strong>g> basis functi<strong>on</strong>s to reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> polluti<strong>on</strong> effect.121


Exact c<strong>on</strong>trollability <str<strong>on</strong>g>for</str<strong>on</strong>g>mulati<strong>on</strong>An alternative approach to solving <str<strong>on</strong>g>the</str<strong>on</strong>g> time-harm<strong>on</strong>ic equati<strong>on</strong> is to return to <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>dingtime-dependent equati<strong>on</strong> and look <str<strong>on</strong>g>for</str<strong>on</strong>g> time-periodic soluti<strong>on</strong>. Direct time-integrati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> waveequati<strong>on</strong> can be used to reach <str<strong>on</strong>g>the</str<strong>on</strong>g> time-periodic case, but c<strong>on</strong>vergence is usually too slow to beuseful in practice. We use <str<strong>on</strong>g>the</str<strong>on</strong>g> idea of Bristeau, Glowinski and Périaux to speed up <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>vergenceby c<strong>on</strong>trol techniques [1]. The original time-harm<strong>on</strong>ic equati<strong>on</strong> is re<str<strong>on</strong>g>for</str<strong>on</strong>g>mulated as exactc<strong>on</strong>trollability problem <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> wave equati<strong>on</strong>: Find initial c<strong>on</strong>diti<strong>on</strong>s e 0 and e 1 such that:1 ∂ 2 u( 1)ρ(x)c(x) 2 ∂t 2 − ∇ · ρ(x) ∇u = 0, in Q = Ω × [0, T ], (4)u = 0, <strong>on</strong> γ 0 = Γ 0 × [0, T ], (5)1 ∂uc(x) ∂t + ∂u∂n = g ext, <strong>on</strong> γ ext = Γ ext × [0, T ], (6)u(x, 0) = e 0 ,∂u∂t (x, 0) = e 1 in Ω, (7)u(x, T ) = e 0 ,∂u∂t (x, T ) = e 1 in Ω. (8)Spectral element discretizati<strong>on</strong>For <str<strong>on</strong>g>the</str<strong>on</strong>g> spatial discretizati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> wave equati<strong>on</strong> (4)-(7), we use spectral element method, whichcombines <str<strong>on</strong>g>the</str<strong>on</strong>g> geometric flexibility of classical finite elements with <str<strong>on</strong>g>the</str<strong>on</strong>g> high accuracy of spectralmethods. The computati<strong>on</strong>al domain is divided into quadrilateral elements, and in each elementa local higher-order polynomial basis is introduced. The degrees of freedom corresp<strong>on</strong>ding to <str<strong>on</strong>g>the</str<strong>on</strong>g>basis functi<strong>on</strong>s are located at <str<strong>on</strong>g>the</str<strong>on</strong>g> Gauss-Lobatto integrati<strong>on</strong> points of <str<strong>on</strong>g>the</str<strong>on</strong>g> elements. This method ise<str<strong>on</strong>g>special</str<strong>on</strong>g>ly useful <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong> of time-dependent wave equati<strong>on</strong>s, because it leads to a diag<strong>on</strong>almass matrix also with a higher-order basis [2] (see also [8]). This fact is very beneficial <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>time-dependent simulati<strong>on</strong> with explicit schemes. After spatial discretizati<strong>on</strong> we have <str<strong>on</strong>g>the</str<strong>on</strong>g> semidiscreteequati<strong>on</strong>M ∂2 u∂t 2 + S ∂u + Ku = F, (9)∂twhere vector u(t) c<strong>on</strong>tains <str<strong>on</strong>g>the</str<strong>on</strong>g> nodal values of <str<strong>on</strong>g>the</str<strong>on</strong>g> functi<strong>on</strong> u(x, t) at time t, and satisfies <str<strong>on</strong>g>the</str<strong>on</strong>g> initialc<strong>on</strong>diti<strong>on</strong> (7) at time t = 0. Because mass matrices M and S are diag<strong>on</strong>al, explicit time steppingwith central finite differences requires <strong>on</strong>ly matrix-vector multiplicati<strong>on</strong>s. Stiffness matrix isdenoted by K, and F is <str<strong>on</strong>g>the</str<strong>on</strong>g> vector due to <str<strong>on</strong>g>the</str<strong>on</strong>g> functi<strong>on</strong> g ext .Least-squares problemThe exact c<strong>on</strong>trollability problem <str<strong>on</strong>g>for</str<strong>on</strong>g> computing T −periodic soluti<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> wave equati<strong>on</strong> involvesfinding such initial c<strong>on</strong>diti<strong>on</strong>s e 0 and e 1 that <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong> u and its time derivative ∂u∂t attime T would coincide with <str<strong>on</strong>g>the</str<strong>on</strong>g> initial c<strong>on</strong>diti<strong>on</strong>s. For <str<strong>on</strong>g>the</str<strong>on</strong>g> numerical soluti<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> exact c<strong>on</strong>trollabilityproblem is replaced by a least-squares optimizati<strong>on</strong> problem with <str<strong>on</strong>g>the</str<strong>on</strong>g> functi<strong>on</strong>al J, whichis, <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> discrete level, of <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>m:(J(e 0 , e 1 , u) = 1 ((u(t) − e 0 ) T ∂u(t)K (u(t) − e 0 ) +2∂t) T ( ) ) ∂u(t)− e 1 M − e 1 . (10)∂tThe purpose is to minimize functi<strong>on</strong>al J, which depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> initial c<strong>on</strong>diti<strong>on</strong>s both directlyand indirectly through <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> wave equati<strong>on</strong>.122


C<strong>on</strong>jugate gradient methodSince vector u depends linearly <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> initial c<strong>on</strong>diti<strong>on</strong>s e 0 and e 1 , J is a quadratic functi<strong>on</strong>,and (10) can be minimized by solving <str<strong>on</strong>g>the</str<strong>on</strong>g> linear system ∇J(e 0 , e 1 ) = 0 with a prec<strong>on</strong>diti<strong>on</strong>edc<strong>on</strong>jugate gradient (CG) method. The transiti<strong>on</strong> procedure to compute <str<strong>on</strong>g>the</str<strong>on</strong>g> initial approximati<strong>on</strong>of e 0 and e 1 <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> CG algorithm as well as <str<strong>on</strong>g>the</str<strong>on</strong>g> block-diag<strong>on</strong>al prec<strong>on</strong>diti<strong>on</strong>er,are <str<strong>on</strong>g>the</str<strong>on</strong>g> same as <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>es used in [1].L =(K 00 M), (11)Each CG iterati<strong>on</strong> step requires computati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> gradient ∇J, which involves <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong> of<str<strong>on</strong>g>the</str<strong>on</strong>g> wave equati<strong>on</strong> (4)-(8) and its adjoint equati<strong>on</strong>. Also soluti<strong>on</strong> of <strong>on</strong>e linear system with matrixL and some matrix-vector operati<strong>on</strong>s are needed. In [1], <str<strong>on</strong>g>for</str<strong>on</strong>g>mulas <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> gradient coresp<strong>on</strong>d to<str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinuous functi<strong>on</strong>, while we compute <str<strong>on</strong>g>the</str<strong>on</strong>g> gradient of <str<strong>on</strong>g>the</str<strong>on</strong>g> discretized functi<strong>on</strong> (10). Thus,<str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>mulas are slightly different, but <str<strong>on</strong>g>the</str<strong>on</strong>g> basic operati<strong>on</strong>s are <str<strong>on</strong>g>the</str<strong>on</strong>g> same.Soluti<strong>on</strong> of a linear system with <str<strong>on</strong>g>the</str<strong>on</strong>g> prec<strong>on</strong>diti<strong>on</strong>er requires <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong> of two systems with <str<strong>on</strong>g>the</str<strong>on</strong>g>stiffness matrix K and <str<strong>on</strong>g>the</str<strong>on</strong>g> diag<strong>on</strong>al mass matrix M. Efficient soluti<strong>on</strong> of linear systems with<str<strong>on</strong>g>the</str<strong>on</strong>g> matrix K is critical <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> overall efficiency of <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trol method. We apply <str<strong>on</strong>g>the</str<strong>on</strong>g> algebraicmultigrid (AMG) by Kickinger [7] at this stage. The use of AMG methods <str<strong>on</strong>g>for</str<strong>on</strong>g> spectral elementshas recently been studied in [4].Numerical examplesWe illustrate <str<strong>on</strong>g>the</str<strong>on</strong>g> per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance of <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trollability method with scattering in domain Ω = [0, 5]×[0, 4], where we have two coated n<strong>on</strong>-c<strong>on</strong>vex semi-open cavities as reflectors. Internal width andheight of cavities are 0.75 and 1.25. Thickness of both <str<strong>on</strong>g>the</str<strong>on</strong>g> wall and <str<strong>on</strong>g>the</str<strong>on</strong>g> coating material is 0.25,and distance between cavities is 1.0 (see Fig. 1). To guarantee accuracy demands also <str<strong>on</strong>g>for</str<strong>on</strong>g> higherorders, <str<strong>on</strong>g>the</str<strong>on</strong>g> time interval [0.0, 1.0] is divided into 300 timesteps of equal size. Computati<strong>on</strong>s havebeen carried out <strong>on</strong> a HP 9000/785/J5600 workstati<strong>on</strong> at 552 MHz PA-RISC 8600 CPU.The absorbing boundary c<strong>on</strong>diti<strong>on</strong> is presented such that g ext = ∂uinc∂n+ ∂uinc∂twith <str<strong>on</strong>g>the</str<strong>on</strong>g> incidenceplane wave of <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>m u inc (x, t) = cos(⃗ω·x) cos(ωt)+sin(⃗ω·x) sin(ωt), whit angular frequencyω = 4π and propagati<strong>on</strong> directi<strong>on</strong> ⃗ω = ω 2 (−√ 2, √ 2). Density is assumed to be c<strong>on</strong>stant ρ(x) =1.0. In <str<strong>on</strong>g>the</str<strong>on</strong>g> first test, <str<strong>on</strong>g>the</str<strong>on</strong>g> speed of sound c(x) is varying such that it is equal to <strong>on</strong>e outside<str<strong>on</strong>g>the</str<strong>on</strong>g> obstacle and 0.5 in <str<strong>on</strong>g>the</str<strong>on</strong>g> coating, implying that outside <str<strong>on</strong>g>the</str<strong>on</strong>g> obstacle wavelength λ(x) = 0.5and in <str<strong>on</strong>g>the</str<strong>on</strong>g> coating λ(x) = 0.25. Absorbing boundary is located at a distance of 1.5λ from <str<strong>on</strong>g>the</str<strong>on</strong>g>obstacle. Since rectangular mesh with element width h = 0.0625 is used, <str<strong>on</strong>g>the</str<strong>on</strong>g>re are 8 elements perwavelength outside <str<strong>on</strong>g>the</str<strong>on</strong>g> obstacle and 4 in <str<strong>on</strong>g>the</str<strong>on</strong>g> coating. In <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d test case, parameters are <str<strong>on</strong>g>the</str<strong>on</strong>g>same, expect c(x) = 0.25 in <str<strong>on</strong>g>the</str<strong>on</strong>g> coating of <str<strong>on</strong>g>the</str<strong>on</strong>g> right hand obstacle.Both test examples are solved by increasing <str<strong>on</strong>g>the</str<strong>on</strong>g> order of <str<strong>on</strong>g>the</str<strong>on</strong>g> spectral element basis. C<strong>on</strong>tour linesrepresenting <str<strong>on</strong>g>the</str<strong>on</strong>g> total field u in (4)-(8) are plotted in Fig. 1 and Fig. 2 with order of <str<strong>on</strong>g>the</str<strong>on</strong>g> spectralelement basis equal to 4. The number of CG iterati<strong>on</strong>s needed to solve <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trol problem aregiven in Tbl. 1, which also shows <str<strong>on</strong>g>the</str<strong>on</strong>g> number of degrees of freedom (DOF) in <str<strong>on</strong>g>the</str<strong>on</strong>g> spectral elementmesh. CPU time in sec<strong>on</strong>ds is depicted in Fig. 3, where DOF increases as <str<strong>on</strong>g>the</str<strong>on</strong>g> order of <str<strong>on</strong>g>the</str<strong>on</strong>g> spectralelement basis increases from 1 to 5. Spectral order equal to <strong>on</strong>e corresp<strong>on</strong>ds to bilinear finiteelements.C<strong>on</strong>cluding remarksSimulati<strong>on</strong> results in Tbl. 1 show that, if <str<strong>on</strong>g>the</str<strong>on</strong>g> spatial discretizati<strong>on</strong> is accurate enough, <str<strong>on</strong>g>the</str<strong>on</strong>g> numberof iterati<strong>on</strong>s remains nearly c<strong>on</strong>stant while <str<strong>on</strong>g>the</str<strong>on</strong>g> number of optimizati<strong>on</strong> variables (i.e. two times123


DOF) increases. In additi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> computati<strong>on</strong>al ef<str<strong>on</strong>g>for</str<strong>on</strong>g>t of <str<strong>on</strong>g>the</str<strong>on</strong>g> method seems to depend linearly <strong>on</strong>DOF (see Fig. 3).Figure 1: Soluti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> first test problem.Figure 2: Soluti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d test problem.number of iterati<strong>on</strong>sorder DOF test 1 test 21 4635 372 5792 <str<strong>on</strong>g>18</str<strong>on</strong>g>039 289 6953 40211 292 5944 71151 292 596Table 1: Number of iterati<strong>on</strong>s which is needed toreduce <str<strong>on</strong>g>the</str<strong>on</strong>g> relative euclidean norm of <str<strong>on</strong>g>the</str<strong>on</strong>g> gradientof <str<strong>on</strong>g>the</str<strong>on</strong>g> functi<strong>on</strong>al J below 10 −4 .Figure 3: CPU time in sec<strong>on</strong>ds with respect to degreesof freedom, when c(x) is 0.5 in both coatings and 1.0outside <str<strong>on</strong>g>the</str<strong>on</strong>g> obstacles.References[1] M. O. Bristeau, R. Glowinski, and J. Périaux. C<strong>on</strong>trollability methods <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> computati<strong>on</strong> of timeperiodicsoluti<strong>on</strong>s; applicati<strong>on</strong> to scattering. Journal of Computati<strong>on</strong>al Physics, 147(2):265–292, 1998.[2] G. Cohen. Higher-Order Numerical Methods <str<strong>on</strong>g>for</str<strong>on</strong>g> Transient Wave Equati<strong>on</strong>s. Springer Verlag, 2001.[3] C. Farhat, P. Wiedemann-Goiran, and R. Tezaur. A disc<strong>on</strong>tinuous Galerkin method with plane wavesand Lagrange multipliers <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong> of short wave exterior Helmholtz problems <strong>on</strong> unstructuredmeshes. Wave Moti<strong>on</strong>, 39(4):307–317, 2004.[4] J.J. Heys, T.A. Manteuffel, S.F. McCormick, and L.N. Ols<strong>on</strong>. Algebraic multigrid <str<strong>on</strong>g>for</str<strong>on</strong>g> higher-orderfinite elements. Journal of Computati<strong>on</strong>al Physics, 204(2):520–532, 2005.[5] T. Huttunen, J. P. Kaipio, and P. M<strong>on</strong>k. The perfectly matched layer <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ultra weak variati<strong>on</strong>al <str<strong>on</strong>g>for</str<strong>on</strong>g>mulati<strong>on</strong>of <str<strong>on</strong>g>the</str<strong>on</strong>g> 3D Helmholtz equati<strong>on</strong>. Internati<strong>on</strong>al Journal <str<strong>on</strong>g>for</str<strong>on</strong>g> Numerical Methods in Engineering,61(7):1072–1092, 2004.[6] F. Ihlenburg. Finite Element Analysis of Acoustic Scattering. Springer Verlag, 1998.[7] F. Kickinger. Algebraic multi-grid <str<strong>on</strong>g>for</str<strong>on</strong>g> discrete elliptic sec<strong>on</strong>d-order problems. In Multigrid methods V(Stuttgart, 1996), pages 157–172. Springer, Berlin, 1998.[8] O. Z. Mehdizadeh and Paraschivoiu M. Investigati<strong>on</strong> of a two-dimensi<strong>on</strong>al spectral element method<str<strong>on</strong>g>for</str<strong>on</strong>g> Helmholtz’s equati<strong>on</strong>. Journal of Computati<strong>on</strong>al Physics, <str<strong>on</strong>g>18</str<strong>on</strong>g>9:111–129, 2003.124


Vectors and tensors with matrix manipulati<strong>on</strong>sJ. Freund*Laboratory <str<strong>on</strong>g>for</str<strong>on</strong>g> Mechanics of MaterialsHelsinki University of Technology, Espoo, Finlande−mail: jouni.freund@tkk.fiJ. Paavola and E.-M. Sal<strong>on</strong>enLaboratory of Structural Mechanics,Helsinki University of Technology, Espoo, Finlande−mail: juha.paavola@tkk.fi and eero-matti.sal<strong>on</strong>en@tkk.fiSummary A matrix-based manipulati<strong>on</strong> to deal with invariant expressi<strong>on</strong>s in arbitrary coordinates isdescribed. It can be c<strong>on</strong>sidered as a simplified tensor analysis <str<strong>on</strong>g>for</str<strong>on</strong>g>mulati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> first and sec<strong>on</strong>d ordertensors. The skills demanded from <str<strong>on</strong>g>the</str<strong>on</strong>g> student to be able to apply <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>mulati<strong>on</strong> are modest: basicmatrix algebra and few rules c<strong>on</strong>cerning open products in dyads. Use of <str<strong>on</strong>g>the</str<strong>on</strong>g> method is dem<strong>on</strong>strated inc<strong>on</strong>necti<strong>on</strong> with polar coordinates and momentum balance equati<strong>on</strong> of <strong>mechanics</strong>.Introducti<strong>on</strong>Tensor analysis <str<strong>on</strong>g>for</str<strong>on</strong>g>malism is undoubtedly <str<strong>on</strong>g>the</str<strong>on</strong>g> most elegant way to describe physics ande<str<strong>on</strong>g>special</str<strong>on</strong>g>ly <strong>mechanics</strong> in arbitrary coordinate systems. In basic engineering courses, however,<str<strong>on</strong>g>the</str<strong>on</strong>g>re is usually no possibility to sacrifice time <str<strong>on</strong>g>for</str<strong>on</strong>g> preparing <str<strong>on</strong>g>the</str<strong>on</strong>g> students to master <str<strong>on</strong>g>the</str<strong>on</strong>g> necessaryc<strong>on</strong>cepts of, say, summati<strong>on</strong> c<strong>on</strong>venti<strong>on</strong>, covariant differentiati<strong>on</strong>, Christoffel symbols, etc. [1].Then, a matrix-based <str<strong>on</strong>g>for</str<strong>on</strong>g>malism, can be employed with profit as this ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical tool shouldbe familiar from <str<strong>on</strong>g>the</str<strong>on</strong>g> elementary courses of linear algebra.Notati<strong>on</strong>Two sets of base vectors will be c<strong>on</strong>sidered simultaneously, of which <strong>on</strong>e is <str<strong>on</strong>g>the</str<strong>on</strong>g> Cartesian “refer e nce system” and <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r <strong>on</strong>e general. These are denoted here by <str<strong>on</strong>g>the</str<strong>on</strong>g> symbols i,j andea,eb, respectively. The relati<strong>on</strong>ship between <str<strong>on</strong>g>the</str<strong>on</strong>g> systems is written as ÏÔea ¸Ô Ïi¸Ì = [ F ]e˝ Ì ˝, (1)ÔÓb Ô˛Ój˛where [ F ] is a 2 ¥ 2 matrix having an inverse. As above and in what follows, a square matrixwill be represented by square brackets and a column matrix by braces. Inverting or/andtransposing (1) and using rules of matrix algebra gives obvious equivalent alternativerepresentati<strong>on</strong>s.Employing <str<strong>on</strong>g>the</str<strong>on</strong>g>se base vectors, a vector a can be expressed e.g. in <str<strong>on</strong>g>for</str<strong>on</strong>g>msÏi¸ Ïax¸ÏÔea¸Ô ÏÔaa¸Ôa = { axay} Ì˝= { i j} Ì = { aa ab} = { ea eb a˝ Ì}jye˝ Ìba˝ (2)Ó ˛ Ó ˛ ÔÓ Ô˛ ÔÓ b Ô˛and a dyad a <str<strong>on</strong>g>for</str<strong>on</strong>g> example as Èaxxaxy˘Ïi¸ Èaaa aab ˘ÏÔea¸Ô Èaxa axb˘ÏÔea¸Ôa = { i j} Í ˙Ì˝= { eaeb} Í ˙Ì = { i j} Í ˙ .ayx ayy jaba abb e˝ Ì baya aybe˝ (3)ÍÎ ˙˚Ó ˛ ÎÍ ˚˙ÔÓ Ô˛ ÎÍ ˚˙ÔÓ bÔ˛From <str<strong>on</strong>g>the</str<strong>on</strong>g> matrix algebra point of view, representati<strong>on</strong>s of (3) are 1¥1-matrices. In ordinarymatrix algebra, transposing a 1¥1-matrix (often called a scalar) does not change its value.However, here with dyads, transposing any of <str<strong>on</strong>g>the</str<strong>on</strong>g> right-hand sides of (3) using <str<strong>on</strong>g>the</str<strong>on</strong>g> ordinarymatrix algebra rules produces <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>jugate dyad a c . For example,T T Èaxxaxy˘ Ïi¸ Èaaa aab ˘ ÏÔea ¸Ôac= { i j} Í ˙ Ì˝= { eaeb}Í ˙ Ì ayxayyjabaabbe˝(4)ÎÍ ˚˙ Ó ˛ ÎÍ ˚˙ÓÔb ˛Ô125


This follows from <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>-commutative property of <str<strong>on</strong>g>the</str<strong>on</strong>g> open products of <str<strong>on</strong>g>the</str<strong>on</strong>g> base vectors in <str<strong>on</strong>g>the</str<strong>on</strong>g>dyads. C<strong>on</strong>necti<strong>on</strong>s between <str<strong>on</strong>g>the</str<strong>on</strong>g> comp<strong>on</strong>ents of <str<strong>on</strong>g>the</str<strong>on</strong>g> invariant quantities a and a in (2) and (3)in different bases can be easily obtained with <str<strong>on</strong>g>the</str<strong>on</strong>g> help of relati<strong>on</strong> (1).Basic toolsThe c<strong>on</strong>necti<strong>on</strong> indicated above between two sets of base vectors can be employed withoutnecessarily c<strong>on</strong>sidering <str<strong>on</strong>g>the</str<strong>on</strong>g> sets associated with two separate coordinate systems. From this <strong>on</strong>,however, we c<strong>on</strong>sider in particular a mapping between <str<strong>on</strong>g>the</str<strong>on</strong>g> familiar rectangular Cartesian systemwith coordinates x and y and ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r possibly curvilinear <strong>on</strong>e with coordinates a and b Ïi¸Ïi¸r = { x y} Ì˝={ x( a, b) y( a, b) } Ì ˝.(5)Ój˛Ój˛The c<strong>on</strong>venti<strong>on</strong>al obvious way to associate base vectors with <str<strong>on</strong>g>the</str<strong>on</strong>g> coordinate systems is asfollows: Ïex¸ Ï∂r/∂x¸Ïi¸Ì = =e˝ Ì ˝ Ì˝(6)Ó y ˛ Ó∂r/∂y˛ Ój˛and ÏÔe a ¸Ô Ï∂r/ ∂a¸ È∂x/ ∂a ∂y/∂a˘Ïi¸Ì e˝ = Ì ˝ =b r/ bÍÌ ˝ÔÓÔ˛Ó∂ ∂ ˛ Î∂x/ ∂b ∂y/∂b˙ (7)˚Ój˛In tensor analysis literature, base vectors defined as (6) and (7) are said to <str<strong>on</strong>g>for</str<strong>on</strong>g>m a natural basis<str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> systems or <str<strong>on</strong>g>the</str<strong>on</strong>g>y are called covariant base vectors. As seen, base vectors (6) are here unitvectors whereas base vectors (7) are usually not of unit length. The corresp<strong>on</strong>ding unit vectorscan be obtained by normalizing. However, <str<strong>on</strong>g>for</str<strong>on</strong>g>mulas remain usually much simpler if <str<strong>on</strong>g>the</str<strong>on</strong>g>derivati<strong>on</strong>s proceed with base vectors (7). If desired, <str<strong>on</strong>g>the</str<strong>on</strong>g> normalizati<strong>on</strong> to unit vectors can beper<str<strong>on</strong>g>for</str<strong>on</strong>g>med at <str<strong>on</strong>g>the</str<strong>on</strong>g> very end.Comparis<strong>on</strong> with (1) shows that here <str<strong>on</strong>g>the</str<strong>on</strong>g> matrixÈ∂x/ ∂a∂y/∂a˘[ F] = Í .∂x/ ∂b∂y/∂b˙(8)Î˚One useful result is obtained as follows:ÔÏea Ô¸ Ïi¸ TTÌ ◊ { eaeb} = [ F] ◊ { i j}[ F] = [ F][ F] = [ G]e˝ Ì˝(9)ÔÓb Ô˛Ój˛The interpretati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> manipulati<strong>on</strong>s above, and its generalizati<strong>on</strong> to o<str<strong>on</strong>g>the</str<strong>on</strong>g>r types of products,combining vector and matrix algebra should be ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r obvious. The symmetric matrix [ G]of(9) is <str<strong>on</strong>g>the</str<strong>on</strong>g> matrix counterpart of <str<strong>on</strong>g>the</str<strong>on</strong>g> covariant metric tensor. It has a very important role inc<strong>on</strong>tinuum <strong>mechanics</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g>re<str<strong>on</strong>g>for</str<strong>on</strong>g>e introducing <str<strong>on</strong>g>the</str<strong>on</strong>g> shorthand notati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> it is justified.The derivatives of <str<strong>on</strong>g>the</str<strong>on</strong>g> general base vectors with respect to <str<strong>on</strong>g>the</str<strong>on</strong>g> curvilinear coordinates and givenin <str<strong>on</strong>g>the</str<strong>on</strong>g> same basis are needed in many cases. We find from (1) (as base vectors of <str<strong>on</strong>g>the</str<strong>on</strong>g> Cartesiansystem are c<strong>on</strong>stants):∂ ÔÏeaÔ¸ ∂ Ïi¸ Ê ∂ ˆ -[ ] [ ] [ ] 1 ÔÏeaÔ¸Ì = F = F F ,a e˝ Ì˝ Á ˜ Ì ˝(10)∂ ÔÓ bÔ˛ ∂a Ój˛ Ë∂a¯ ÔÓ ebÔ˛∂ ÔÏeaÔ¸ ∂ Ïi¸ Ê ∂ ˆ -[ ] [ ] [ ] 1 ÏÔea¸ÔÌ = F = F F .b e˝ Ì˝ Ì ˝∂ b ∂b jÁË∂b˜ (11)ÓÔ ˛Ô Ó ˛ ¯ ÔÓ ebÔ˛Comparing <str<strong>on</strong>g>the</str<strong>on</strong>g>se with tensor analysis literature, it is seen that <str<strong>on</strong>g>the</str<strong>on</strong>g> matrix products multiplying<str<strong>on</strong>g>the</str<strong>on</strong>g> column matrix of base vectors <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> right-hand sides of (10) and (11) are <str<strong>on</strong>g>the</str<strong>on</strong>g> matrixcounterparts of <str<strong>on</strong>g>the</str<strong>on</strong>g> Christoffel symbols of <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d kind.Applying chain differentiati<strong>on</strong> gives126


Ï∂/ ∂x¸ È∂a / ∂x ∂b / ∂x˘Ï∂/ ∂a¸ -[ ] 1 Ï∂/∂a¸Ì ˝= F, (12)/ yÍÌ ˝=Ìa / y b / y˙˝Ó∂ ∂ ˛ Î∂ ∂ ∂ ∂ ˚Ó∂/ ∂b˛ Ó∂/∂b˛where <str<strong>on</strong>g>the</str<strong>on</strong>g> last <str<strong>on</strong>g>for</str<strong>on</strong>g>m is seen to be valid by inverting relati<strong>on</strong> (8). The <str<strong>on</strong>g>for</str<strong>on</strong>g>mula is useful <str<strong>on</strong>g>for</str<strong>on</strong>g>instance when <str<strong>on</strong>g>the</str<strong>on</strong>g> nabla operator is employed. Starting with <str<strong>on</strong>g>the</str<strong>on</strong>g> well-known expressi<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g>rectangular Cartesian case, we obtain Ï∂/ ∂x¸ T-1Ï∂/∂a¸ -1Ï∂/∂a¸—={ i j} Ì ˝= { ea eb} ([ F][ F]) Ì ˝={ ea eb}[ G]Ì ˝.(13)Ó∂/ ∂y˛ Ó∂/∂b˛ Ó∂/∂b˛These are <str<strong>on</strong>g>the</str<strong>on</strong>g> tools necessary <str<strong>on</strong>g>for</str<strong>on</strong>g> applicati<strong>on</strong>s. We c<strong>on</strong>tinue with some illustrative examples.The idea is to start from an invariant quantity expressed in a familiar <str<strong>on</strong>g>for</str<strong>on</strong>g>m in a rectangularCartesian coordinate system and by suitable matrix manipulati<strong>on</strong>s express it finally in variablesof <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r system [2].Gradient in polar coordinatesWe c<strong>on</strong>sider first <str<strong>on</strong>g>the</str<strong>on</strong>g> polar coordinate system with a ~ r and b ~ q and derive <str<strong>on</strong>g>the</str<strong>on</strong>g> expressi<strong>on</strong>of <str<strong>on</strong>g>the</str<strong>on</strong>g> gradient operator. The mapping between <str<strong>on</strong>g>the</str<strong>on</strong>g> Cartesian system and <str<strong>on</strong>g>the</str<strong>on</strong>g> polar coordinatesystem of type (5) is given by Ïi¸Ïi¸r = { x y} Ì˝={ rcosqrsinq}Ì ˝. (14)Ój˛Ój˛From this we getÈ cosqsinq˘[ F]= Í , [-rsinqrcosq˙ ] [ ][ ] T È1 0˘G = F F = 2, (15)Î˚ÍÎ0 r ˙˚and from (13) ∂ ∂ -{ }[ ] 1 Ï∂/ ∂r¸ ∂ 1 ∂—= i + j = ereqG Ì ˝= er+ eq. (16)∂x ∂y ∂/∂q∂r 2Ó ˛r ∂qLet us note that here | eq | = r and if <str<strong>on</strong>g>the</str<strong>on</strong>g> base vectors were normalized <strong>on</strong>e would obtain <str<strong>on</strong>g>the</str<strong>on</strong>g>usual expressi<strong>on</strong> c<strong>on</strong>taining just <strong>on</strong>e r in <str<strong>on</strong>g>the</str<strong>on</strong>g> denominator of <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d term of (16). The basevectors of <str<strong>on</strong>g>the</str<strong>on</strong>g> polar coordinate system are clearly orthog<strong>on</strong>al as <str<strong>on</strong>g>the</str<strong>on</strong>g> off-diag<strong>on</strong>al terms of [ G]are zeros.Momentum balance in c<strong>on</strong>tinuum <strong>mechanics</strong>As a sec<strong>on</strong>d example, we c<strong>on</strong>sider equati<strong>on</strong> describing <str<strong>on</strong>g>the</str<strong>on</strong>g> momentum balance of c<strong>on</strong>tinuum.Writing comp<strong>on</strong>ent <str<strong>on</strong>g>for</str<strong>on</strong>g>ms of this –innocent looking– equati<strong>on</strong> may easily turn to disaster. In ouropini<strong>on</strong>, explicit use of base vectors makes <str<strong>on</strong>g>the</str<strong>on</strong>g> reas<strong>on</strong>ing c<strong>on</strong>cerning <str<strong>on</strong>g>the</str<strong>on</strong>g> various selecti<strong>on</strong>s andsteps leading to <str<strong>on</strong>g>the</str<strong>on</strong>g> comp<strong>on</strong>ent <str<strong>on</strong>g>for</str<strong>on</strong>g>ms ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r easy to follow even in case of large displacementsand curvilinear material coordinate system.To be specific, we aim at writing <str<strong>on</strong>g>the</str<strong>on</strong>g> comp<strong>on</strong>ent <str<strong>on</strong>g>for</str<strong>on</strong>g>ms of differential equati<strong>on</strong> (actually in twodimensi<strong>on</strong>s) 3—◊ s + f = 0 in V à , (17)in which s is <str<strong>on</strong>g>the</str<strong>on</strong>g> Cauchy stress and f is <str<strong>on</strong>g>the</str<strong>on</strong>g> given body <str<strong>on</strong>g>for</str<strong>on</strong>g>ce so that practical calculati<strong>on</strong>s arepossible. As <str<strong>on</strong>g>the</str<strong>on</strong>g> equati<strong>on</strong> describes <str<strong>on</strong>g>the</str<strong>on</strong>g> momentum balance of a material volume V depending<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> first thing is to rewrite (17) in a coordinate system in which <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong>domain is c<strong>on</strong>stant V . For this purpose, <strong>on</strong>e assumes that <str<strong>on</strong>g>the</str<strong>on</strong>g> positi<strong>on</strong> vectors of materialparticles of <str<strong>on</strong>g>the</str<strong>on</strong>g> initial and final domains V and V , respectively, are related with mapping Ïi¸Ïer¸r = r + u( r ) = { x+ ux( x, y) y+ uy( x, y) } Ì˝= { r+ur( r, q) uq( r, q)} Ì ˝ (<str<strong>on</strong>g>18</str<strong>on</strong>g>)Ój˛Óeq˛of type (5),in which r identifies a material particle and ur ( ) is its displacement. As vectorquantities, <str<strong>on</strong>g>the</str<strong>on</strong>g>se can be expressed in any c<strong>on</strong>venient coordinate system as indicated by <str<strong>on</strong>g>the</str<strong>on</strong>g>127


sec<strong>on</strong>d <str<strong>on</strong>g>for</str<strong>on</strong>g>m <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Cartesian system and <str<strong>on</strong>g>the</str<strong>on</strong>g> third <str<strong>on</strong>g>for</str<strong>on</strong>g>m <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polar system. The remaining isjust an exercise of <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>mes discussed.As a dyad, Cauchy stress is invariant and can be expressed in any coordinate system. Whensubstituted <str<strong>on</strong>g>the</str<strong>on</strong>g>re, <str<strong>on</strong>g>the</str<strong>on</strong>g> gradient and Cauchy stress in system give representati<strong>on</strong> 1 /saa s- Ï∂ ∂a¸ È ab ˘ÏÔea ¸Ô—◊ s = { ea eb}[ G] Ì ˝◊( { ea eb}Í ˙Ì ) (19)Ó∂/∂b˛ Ísbasbb˙ÓÔeÎ ˚ b ˛˝Ô<str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> first term <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> left hand side of (17). Assuming e.g. that <str<strong>on</strong>g>the</str<strong>on</strong>g> comp<strong>on</strong>ents of <str<strong>on</strong>g>the</str<strong>on</strong>g> body<str<strong>on</strong>g>for</str<strong>on</strong>g>ce are given in <str<strong>on</strong>g>the</str<strong>on</strong>g> Cartesian system, <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d terms becomesie1f { fx fy} Ï ¸ - a{ fx fy} [ F]Ï Ô ¸ Ô= Ì˝=Ì je˝(20)Ó ˛ ÔÓ b Ô˛When substituted in (17), expressi<strong>on</strong>s (19) and (20) give <str<strong>on</strong>g>the</str<strong>on</strong>g> comp<strong>on</strong>ent <str<strong>on</strong>g>for</str<strong>on</strong>g>ms. Usually <str<strong>on</strong>g>the</str<strong>on</strong>g>basic unknowns are <str<strong>on</strong>g>the</str<strong>on</strong>g> displacement comp<strong>on</strong>ents so that mapping (<str<strong>on</strong>g>18</str<strong>on</strong>g>) is not known ‘a priori’,but it ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r follows as <str<strong>on</strong>g>the</str<strong>on</strong>g> part of <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong>. Then, naturally an additi<strong>on</strong>al (c<strong>on</strong>stitutive)equati<strong>on</strong> relating somehow <str<strong>on</strong>g>the</str<strong>on</strong>g> stress dyad and displacement vector is needed. The relati<strong>on</strong>ship between <str<strong>on</strong>g>the</str<strong>on</strong>g> base vectors of <str<strong>on</strong>g>the</str<strong>on</strong>g> material coordinate system ea,eb, <str<strong>on</strong>g>the</str<strong>on</strong>g> polarcoordinate system r , e e q and <str<strong>on</strong>g>the</str<strong>on</strong>g> reference coordinate system i,j is given by È ∂u v ∂v ˘ È ∂u v ∂v˘e1 1aÍ + +r r r ˙ + +ÏÔ ¸Ô ∂ ∂ Ïer¸ Í ∂r r ∂r˙È cosqsinq˘Ïi¸Ì e˝= Í ˙Ì ˝=Í ˙b u u u equ u uÍrsinqrcosq˙Ì˝(21)ÓÔ ˛Ô Í∂ ∂ ∂ ∂ -j- vr 1+ + ˙Ó ˛ Í - vr 1+ + ˙Î ˚Ó ˛ÍÎ∂q r ∂q ˙˚ ÍÎ∂q r ∂q˙˚Above we have used <str<strong>on</strong>g>the</str<strong>on</strong>g> shorthand notati<strong>on</strong>s u = urand v = uq . The last <str<strong>on</strong>g>for</str<strong>on</strong>g>m, written in terms<str<strong>on</strong>g>the</str<strong>on</strong>g> base vectors of <str<strong>on</strong>g>the</str<strong>on</strong>g> reference coordinate system, is needed as <str<strong>on</strong>g>the</str<strong>on</strong>g> base vectors of <str<strong>on</strong>g>the</str<strong>on</strong>g>reference system were assumed to be c<strong>on</strong>stants e.g. in derivati<strong>on</strong> of (13) and those <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polarsystem do not satisfy this. Matrix[ F ] , appearing in <str<strong>on</strong>g>the</str<strong>on</strong>g> basic <str<strong>on</strong>g>for</str<strong>on</strong>g>mulas, is obvious from (21) andÈ ∂u v ∂v ˘ È ∂u ∂u˘1 1[ ] [ ][ ] T Í + +1 0+ -vr∂r r ∂r ˙È˘Í∂r∂q˙G = F F = Í ˙ u u v2Í˙. (22)Í∂ ∂ 0 1/ r v ∂v uvr 1 ˙ÍÎ˙˚Í∂v- + + + 1+ +ÍÎ∂qr ∂q˙˚ ÍÎr ∂rr ∂q˙˙ ˚With <str<strong>on</strong>g>the</str<strong>on</strong>g>se expressi<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g> comp<strong>on</strong>ent <str<strong>on</strong>g>for</str<strong>on</strong>g>ms of <str<strong>on</strong>g>the</str<strong>on</strong>g> equati<strong>on</strong>s (19) become ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r lengthyalthough <str<strong>on</strong>g>the</str<strong>on</strong>g> derivati<strong>on</strong> is straight<str<strong>on</strong>g>for</str<strong>on</strong>g>ward. The setting simplifies c<strong>on</strong>siderably under <str<strong>on</strong>g>the</str<strong>on</strong>g> smalldisplacement assumpti<strong>on</strong> as <str<strong>on</strong>g>the</str<strong>on</strong>g>n <strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g> middle terms of <str<strong>on</strong>g>the</str<strong>on</strong>g> right hand side of (22) is retained.C<strong>on</strong>cluding remarksWe have presented a matrix manipulati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g>mulati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> vectors and dyads. To apply it, <str<strong>on</strong>g>the</str<strong>on</strong>g>skills demanded from <str<strong>on</strong>g>the</str<strong>on</strong>g> student are modest: basic matrix algebra and few rules c<strong>on</strong>cerningopen products in dyads. As <str<strong>on</strong>g>the</str<strong>on</strong>g> number of new c<strong>on</strong>cepts bey<strong>on</strong>d those of ordinary is not large,<str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>mulati<strong>on</strong> may be useful alternative in some courses in mechanical engineering educati<strong>on</strong>.The presentati<strong>on</strong> was restricted to two dimensi<strong>on</strong>s, but <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>mulas in <str<strong>on</strong>g>the</str<strong>on</strong>g> three-dimensi<strong>on</strong>alcase are obtained by increasing <str<strong>on</strong>g>the</str<strong>on</strong>g> sizes of <str<strong>on</strong>g>the</str<strong>on</strong>g> relevant matrices just by <strong>on</strong>e. In <str<strong>on</strong>g>the</str<strong>on</strong>g> discussed<str<strong>on</strong>g>for</str<strong>on</strong>g>m, <str<strong>on</strong>g>the</str<strong>on</strong>g> presentati<strong>on</strong> does not go bey<strong>on</strong>d sec<strong>on</strong>d order tensors (this is, however, often enoughin <strong>mechanics</strong>). If index notati<strong>on</strong> and summati<strong>on</strong> c<strong>on</strong>venti<strong>on</strong> are introduced, <str<strong>on</strong>g>the</str<strong>on</strong>g> matrix<str<strong>on</strong>g>for</str<strong>on</strong>g>mulati<strong>on</strong> above can be trans<str<strong>on</strong>g>for</str<strong>on</strong>g>med to a much more compact <str<strong>on</strong>g>for</str<strong>on</strong>g>m. However, this demands anew step of assimilati<strong>on</strong> from <str<strong>on</strong>g>the</str<strong>on</strong>g> student and if this is worth <str<strong>on</strong>g>the</str<strong>on</strong>g> ef<str<strong>on</strong>g>for</str<strong>on</strong>g>t depends again <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>depth of applicati<strong>on</strong>s in a course.References[1] W. Flügge, Tensor Analysis and C<strong>on</strong>tinuum Mechanics, Springer-Verlag, New York, (1972).[2] J. Paavola and E.-M. Sal<strong>on</strong>en, Coping with curvilinear coordinates in solid <strong>mechanics</strong>,Int.J.Mech.Enging.Educ. 32, 1-10, (2004).128


Virtual Work, Lagrange’s Equati<strong>on</strong>s and Finite ElementsJ. FreundDepartment of Mechanical EngineeringHelsinki University of Technologye-mail: jouni.freund@tkk.fiJ. Paavola* and E.-M. Sal<strong>on</strong>enDepartment of Civil and Envir<strong>on</strong>mental EngineeringHelsinki University of Technologye-mail: juha.paavola@tkk.fiSummary It is suggested that <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>necti<strong>on</strong>s between Lagrange’s equati<strong>on</strong>s and system equati<strong>on</strong>s indisplacement based finite element method should be emphasized in teaching of <strong>mechanics</strong>. The <strong>on</strong>lyactual difference between <str<strong>on</strong>g>the</str<strong>on</strong>g>m lies in <str<strong>on</strong>g>the</str<strong>on</strong>g> way <str<strong>on</strong>g>the</str<strong>on</strong>g> generalized <str<strong>on</strong>g>for</str<strong>on</strong>g>ces due to inertia are traditi<strong>on</strong>allycalculated. A simple example shows two ways to evaluate generalized <str<strong>on</strong>g>for</str<strong>on</strong>g>ces due to inertia.Introducti<strong>on</strong>It is a comm<strong>on</strong> experience that students cannot often <str<strong>on</strong>g>for</str<strong>on</strong>g>m a comprehensive view of a subjecte<str<strong>on</strong>g>special</str<strong>on</strong>g>ly if <str<strong>on</strong>g>the</str<strong>on</strong>g> knowledge comes from different courses given by different lecturers usingmaybe varying terminology and notati<strong>on</strong>. In <strong>mechanics</strong>, computati<strong>on</strong>al procedures, <str<strong>on</strong>g>for</str<strong>on</strong>g> example,have introduced apparently new c<strong>on</strong>cepts into teaching and <str<strong>on</strong>g>the</str<strong>on</strong>g> students may have difficulties tosee any c<strong>on</strong>necti<strong>on</strong>s with <str<strong>on</strong>g>the</str<strong>on</strong>g> older analytical methods. Every ef<str<strong>on</strong>g>for</str<strong>on</strong>g>t should be made toemphasize <str<strong>on</strong>g>the</str<strong>on</strong>g> unifying c<strong>on</strong>cepts in different courses to help <str<strong>on</strong>g>the</str<strong>on</strong>g> students to assimilate a solidground based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> actually few basic principles of <strong>mechanics</strong>. One of <str<strong>on</strong>g>the</str<strong>on</strong>g>se is <str<strong>on</strong>g>the</str<strong>on</strong>g> principle ofvirtual work and <str<strong>on</strong>g>the</str<strong>on</strong>g> present article deals with two apparently different applicati<strong>on</strong>s of itshowing <str<strong>on</strong>g>the</str<strong>on</strong>g>ir close c<strong>on</strong>necti<strong>on</strong>.The importance of <str<strong>on</strong>g>the</str<strong>on</strong>g> principle of virtual work in applicati<strong>on</strong>s and in teaching of <strong>mechanics</strong>cannot be overestimated. Lagrange’s equati<strong>on</strong>s of moti<strong>on</strong> and system equati<strong>on</strong>s in displacementbased finite element method are powerful examples of procedures obtained directly from <str<strong>on</strong>g>the</str<strong>on</strong>g>principle of virtual work. Students of engineering meet Lagrange’s equati<strong>on</strong>s and finiteelements probably in separate courses and probably in <str<strong>on</strong>g>the</str<strong>on</strong>g> above order.Equati<strong>on</strong>s of moti<strong>on</strong>Let us recall shortly how classical Lagrange’s equati<strong>on</strong>s of moti<strong>on</strong> are derived using a particlesystem as an example case. Let <str<strong>on</strong>g>the</str<strong>on</strong>g> equati<strong>on</strong> of moti<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> a particle be written asF + f − m a = 0 .(1)i i i iHere, Fi is <str<strong>on</strong>g>the</str<strong>on</strong>g> resultant of <str<strong>on</strong>g>the</str<strong>on</strong>g> external <str<strong>on</strong>g>for</str<strong>on</strong>g>ces acting <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> particle, f i is <str<strong>on</strong>g>the</str<strong>on</strong>g> resultant of <str<strong>on</strong>g>the</str<strong>on</strong>g>internal <str<strong>on</strong>g>for</str<strong>on</strong>g>ces acting <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> particle, mi is <str<strong>on</strong>g>the</str<strong>on</strong>g> mass of <str<strong>on</strong>g>the</str<strong>on</strong>g> particle and a i <str<strong>on</strong>g>the</str<strong>on</strong>g> accelerati<strong>on</strong> of<str<strong>on</strong>g>the</str<strong>on</strong>g> particle. Multiplying (dot product) both sides of (1) by a virtual displacement δ riandsumming <str<strong>on</strong>g>the</str<strong>on</strong>g> equati<strong>on</strong>s over <str<strong>on</strong>g>the</str<strong>on</strong>g> particles of <str<strong>on</strong>g>the</str<strong>on</strong>g> system produces <str<strong>on</strong>g>the</str<strong>on</strong>g> virtual work equati<strong>on</strong>ext int inert∑ ∑ ∑δW ≡ δW + δW + δW ≡ F iδr + f iδr − ma i δr= 0 (2)i i i i i i ii i iThe meaning of <str<strong>on</strong>g>the</str<strong>on</strong>g> additi<strong>on</strong>al notati<strong>on</strong> introduced should be obvious. The positi<strong>on</strong> vector ofparticle i depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> generalized coordinates q1, q2, , qnand possibly also explicitly <strong>on</strong>time t:129


The virtual displacement is obtained as( q , q , , q , t).r = r (3)i i 1 2 n∂ iδr i = ∑ r δqj.(4)∂qjWhen this is substituted in (2) and it is demanded that <str<strong>on</strong>g>the</str<strong>on</strong>g> equati<strong>on</strong> is valid <str<strong>on</strong>g>for</str<strong>on</strong>g> any selecti<strong>on</strong> of<str<strong>on</strong>g>the</str<strong>on</strong>g> variati<strong>on</strong>s of <str<strong>on</strong>g>the</str<strong>on</strong>g> generalized coordinates, <str<strong>on</strong>g>the</str<strong>on</strong>g>re follows <str<strong>on</strong>g>the</str<strong>on</strong>g> equati<strong>on</strong>s of moti<strong>on</strong>ext int inertj j j jwhere <str<strong>on</strong>g>the</str<strong>on</strong>g> generalized <str<strong>on</strong>g>for</str<strong>on</strong>g>ces are evaluated byQ ≡ Q + Q + Q = 0, j = 1,2, ,nQQQextjintj==∑i∑inertj =− mi iii∑j(5)∂ iFii r ,(6)∂qj∂ ifii r ,(7)∂qj∂ria i .(8)∂qStudents of engineering meet <str<strong>on</strong>g>the</str<strong>on</strong>g>se equati<strong>on</strong>s usually <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> first time in courses of classical<strong>mechanics</strong>. However, in this c<strong>on</strong>necti<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> generalized <str<strong>on</strong>g>for</str<strong>on</strong>g>ces due to inertia are firstadditi<strong>on</strong>ally trans<str<strong>on</strong>g>for</str<strong>on</strong>g>med by a ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r involved ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical manipulati<strong>on</strong> into <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>msQinertj⎛ d ∂T∂T⎞=− −⎜⎝dt ∂qj ∂q⎟j ⎠where T is <str<strong>on</strong>g>the</str<strong>on</strong>g> kinetic energy of <str<strong>on</strong>g>the</str<strong>on</strong>g> system. Thus, finally, <str<strong>on</strong>g>the</str<strong>on</strong>g> equati<strong>on</strong>s of moti<strong>on</strong> becomejd ∂T∂Text int− = Qj+ Qj, j = 1,2, ,n .(10)dt ∂q ∂qjjThese are <str<strong>on</strong>g>the</str<strong>on</strong>g> famous Lagrange’s equati<strong>on</strong>s of moti<strong>on</strong>. In c<strong>on</strong>servative cases <str<strong>on</strong>g>the</str<strong>on</strong>g> generalized<str<strong>on</strong>g>for</str<strong>on</strong>g>ces from external and internal <str<strong>on</strong>g>for</str<strong>on</strong>g>ces can fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r be represented by derivatives of certainpotentials.We might call expressi<strong>on</strong> (9) as <str<strong>on</strong>g>the</str<strong>on</strong>g> indirect way and expressi<strong>on</strong> (8) as <str<strong>on</strong>g>the</str<strong>on</strong>g> direct way to evaluate<str<strong>on</strong>g>the</str<strong>on</strong>g> generalized <str<strong>on</strong>g>for</str<strong>on</strong>g>ces due to inertia. Of course, <str<strong>on</strong>g>the</str<strong>on</strong>g>y both give identical results but <str<strong>on</strong>g>the</str<strong>on</strong>g> ef<str<strong>on</strong>g>for</str<strong>on</strong>g>tsdemanded to per<str<strong>on</strong>g>for</str<strong>on</strong>g>m <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong>s may differ c<strong>on</strong>siderably. It seems that in textbooks <strong>on</strong>classical <strong>mechanics</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> direct way is given hardly any notice.Later, engineering students usually attend courses <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> finite element method in <str<strong>on</strong>g>the</str<strong>on</strong>g>displacement <str<strong>on</strong>g>for</str<strong>on</strong>g>mulati<strong>on</strong> e<str<strong>on</strong>g>special</str<strong>on</strong>g>ly in c<strong>on</strong>necti<strong>on</strong> with structural <strong>mechanics</strong> or strengths ofmaterials. The terminology <str<strong>on</strong>g>the</str<strong>on</strong>g>re is traditi<strong>on</strong>ally such that <str<strong>on</strong>g>the</str<strong>on</strong>g> students cannot easily detect anyc<strong>on</strong>necti<strong>on</strong>s with Lagrange’s equati<strong>on</strong>s. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> system equati<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> finite elementmethod are exactly according to (5), and <str<strong>on</strong>g>the</str<strong>on</strong>g> trans<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> into (9) is not usually per<str<strong>on</strong>g>for</str<strong>on</strong>g>med.Now, it is important <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> teacher to emphasize to <str<strong>on</strong>g>the</str<strong>on</strong>g> students that <str<strong>on</strong>g>the</str<strong>on</strong>g> nodal displacements(changing <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinuum to a finite degree of freedom system) are in fact <str<strong>on</strong>g>special</str<strong>on</strong>g> kind ofgeneralized coordinates. Then a curious student can start to see some c<strong>on</strong>necti<strong>on</strong>s but he/shemay still w<strong>on</strong>der why <str<strong>on</strong>g>the</str<strong>on</strong>g> left-hand side of (10) never appears. The obvious reas<strong>on</strong> is that in <str<strong>on</strong>g>the</str<strong>on</strong>g>finite element method it is quite straight<str<strong>on</strong>g>for</str<strong>on</strong>g>ward to use <str<strong>on</strong>g>the</str<strong>on</strong>g> direct way to evaluate <str<strong>on</strong>g>the</str<strong>on</strong>g> generalized(9)130


<str<strong>on</strong>g>for</str<strong>on</strong>g>ces (<str<strong>on</strong>g>the</str<strong>on</strong>g>re often called nodal <str<strong>on</strong>g>for</str<strong>on</strong>g>ces) due to inertia. This is because normally <str<strong>on</strong>g>the</str<strong>on</strong>g>displacements (and thus positi<strong>on</strong>s) are linear in <str<strong>on</strong>g>the</str<strong>on</strong>g> nodal displacements and <str<strong>on</strong>g>the</str<strong>on</strong>g>re<str<strong>on</strong>g>for</str<strong>on</strong>g>e <str<strong>on</strong>g>the</str<strong>on</strong>g>accelerati<strong>on</strong>s are also linear in <str<strong>on</strong>g>the</str<strong>on</strong>g> nodal accelerati<strong>on</strong>s. This makes <str<strong>on</strong>g>the</str<strong>on</strong>g> expressi<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> direct<str<strong>on</strong>g>for</str<strong>on</strong>g>mulati<strong>on</strong> simple.An exampleWe dem<strong>on</strong>strate <str<strong>on</strong>g>the</str<strong>on</strong>g> two alternative ways to evaluate generalized <str<strong>on</strong>g>for</str<strong>on</strong>g>ces due to inertia with anextremely simple example of classical <strong>mechanics</strong>: a pinned fricti<strong>on</strong>less slender homogeneousrod in plane moti<strong>on</strong> under gravity (Fig. 1).Figure 1: A rod with mass m and length l in plane rotati<strong>on</strong>al moti<strong>on</strong> about point O.Let <str<strong>on</strong>g>the</str<strong>on</strong>g> inclinati<strong>on</strong> angle q (Fig. 1) be <str<strong>on</strong>g>the</str<strong>on</strong>g> generalized coordinate and let coordinate s al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g>rod fix generic point <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> rod. The positi<strong>on</strong> vector is given byr = ssinqi−scosqj (11)where i and j are unit vectors al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> axes and differentiati<strong>on</strong> gives <str<strong>on</strong>g>the</str<strong>on</strong>g> velocityv = scosqqi+ssinqq j(12)and accelerati<strong>on</strong>The derivative( s qq 2 s qq ) i ( s qq 2 s qq ) j (13)a= − sin + cos + cos + sin .∂ r dr= = s cos qi + ssin qj .(14)∂qdqThe system here is <str<strong>on</strong>g>the</str<strong>on</strong>g> rod. The generalized <str<strong>on</strong>g>for</str<strong>on</strong>g>ce from internal <str<strong>on</strong>g>for</str<strong>on</strong>g>ces is zero. We evaluate <str<strong>on</strong>g>the</str<strong>on</strong>g>generalized <str<strong>on</strong>g>for</str<strong>on</strong>g>ce from external <str<strong>on</strong>g>for</str<strong>on</strong>g>ces (gravity) <str<strong>on</strong>g>for</str<strong>on</strong>g> simplicity without integrati<strong>on</strong>s by reducing<str<strong>on</strong>g>the</str<strong>on</strong>g> gravity <str<strong>on</strong>g>for</str<strong>on</strong>g>ces to <str<strong>on</strong>g>the</str<strong>on</strong>g> center of mass to <str<strong>on</strong>g>the</str<strong>on</strong>g> resultant <str<strong>on</strong>g>for</str<strong>on</strong>g>ceThus, according to (6),F = −mgj .(15)ext ∂r⎛ l l ⎞ mglQ = Fi s l/2 mg cos q sin q sin .q = =− ji⎜i+ j⎟=−q (16)∂ ⎝2 2 ⎠ 2131


The indirect way to evaluate <str<strong>on</strong>g>the</str<strong>on</strong>g> generalized <str<strong>on</strong>g>for</str<strong>on</strong>g>ce due to inertia is here very c<strong>on</strong>venient. Thekinetic energy of <str<strong>on</strong>g>the</str<strong>on</strong>g> rod is21 2 ml 2T = I0q= q (17)2 6and thus from (9):⎛2 2inert d ∂T ∂T ⎞ d ∂T d ml mlQj=− − =− =− q =− .⎜dt qj q ⎟ ⎝∂ ∂ j ⎠dt ∂qjdt3 3 q (<str<strong>on</strong>g>18</str<strong>on</strong>g>)In <str<strong>on</strong>g>the</str<strong>on</strong>g> direct way, we obtain using (8) firstinert ∂rQj=−∫ai dm∂qm l2 2=− ⎡( ssin qq scos qq) ( scos qq ssin qq) ⎤ ( scos q ssin q ) d s.l∫ − + i+ + j i i+0 ⎣⎦The integrand becomesThus, finally again,The equati<strong>on</strong> of moti<strong>on</strong> becomesor after simplificati<strong>on</strong> j (19)( − s sin qq 2 + s cos qq )( s cos q) + ( s cos qq2 + s sin qq )( s sin q) (20)2 2 2 2 2= s cos qq+ s sin qq = s q.3 2inert m l 2 m l 2 m l mlQj=− s qds q s ds ql∫ =− =− =−0 l∫ . q (21)0 l 3 32ext inert mgl mlQ + Qj=− sin q− q = 0(22)2 33g q+ sin q = 0.(23)2lIn <str<strong>on</strong>g>the</str<strong>on</strong>g> classical textbook applicati<strong>on</strong>s of Lagrange’s equati<strong>on</strong>s <str<strong>on</strong>g>the</str<strong>on</strong>g> systems usually c<strong>on</strong>sist ofsome rigid body and pointmass assemblages. As <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se bodies well-known <str<strong>on</strong>g>for</str<strong>on</strong>g>mulas giveready expressi<strong>on</strong>s (obtained also originally by integrati<strong>on</strong>s) <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> kinetic energy, it is easy tosee that <str<strong>on</strong>g>the</str<strong>on</strong>g> indirect way to evaluate generalized <str<strong>on</strong>g>for</str<strong>on</strong>g>ces due to inertia is to be preferred. In <str<strong>on</strong>g>the</str<strong>on</strong>g>finite element method <str<strong>on</strong>g>the</str<strong>on</strong>g> situati<strong>on</strong> is different.C<strong>on</strong>clusi<strong>on</strong>sOur suggesti<strong>on</strong>s based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> above c<strong>on</strong>siderati<strong>on</strong>s are <str<strong>on</strong>g>the</str<strong>on</strong>g> following. When Lagrange’sequati<strong>on</strong>s are lectured <strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> teacher should in<str<strong>on</strong>g>for</str<strong>on</strong>g>m <str<strong>on</strong>g>the</str<strong>on</strong>g> students that later, when <str<strong>on</strong>g>the</str<strong>on</strong>g>y meet <str<strong>on</strong>g>the</str<strong>on</strong>g>finite element method, <str<strong>on</strong>g>the</str<strong>on</strong>g> system equati<strong>on</strong>s <str<strong>on</strong>g>the</str<strong>on</strong>g>re are in fact “almost” Lagrange’s equati<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g><strong>on</strong>ly difference being <str<strong>on</strong>g>the</str<strong>on</strong>g> way <str<strong>on</strong>g>the</str<strong>on</strong>g> generalized <str<strong>on</strong>g>for</str<strong>on</strong>g>ces due to inertia are evaluated. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r, <str<strong>on</strong>g>the</str<strong>on</strong>g>teacher might present an example like <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e above to show in detail <str<strong>on</strong>g>the</str<strong>on</strong>g> steps needed inobtaining <str<strong>on</strong>g>the</str<strong>on</strong>g> generalized <str<strong>on</strong>g>for</str<strong>on</strong>g>ces by <str<strong>on</strong>g>the</str<strong>on</strong>g> two ways. Similarly, when <str<strong>on</strong>g>the</str<strong>on</strong>g> finite element method islectured <strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> teacher should remind <str<strong>on</strong>g>the</str<strong>on</strong>g> students about <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>necti<strong>on</strong>s to Lagrange’sequati<strong>on</strong>s. If a student can see and remember such c<strong>on</strong>necti<strong>on</strong>s, it leads to a unificati<strong>on</strong> ofc<strong>on</strong>cepts and represents clearly a kind of ec<strong>on</strong>omy of thought.132


Inertia and related topics of educati<strong>on</strong> in MechanicsLic engrg Lena StrömbergLTech, Fredrlg 38, Se-38237 Nybro(previously Dept of Solid Mechanics, Royal Instititute of Techn, KTH)e-mail: lena_str@hotmail.comSummary Useful examples in <strong>mechanics</strong> are given. The merry-go-round walk, as an illustrati<strong>on</strong> ofkinematics is refered to. An example of Coriolis effect, is revisited and illustrated. Properties of <str<strong>on</strong>g>the</str<strong>on</strong>g>intertia tensor is highlighted, eg. principal axis, free moti<strong>on</strong>, angle 120-symmetry.Introducti<strong>on</strong>It is c<strong>on</strong>venient to introduce properties with <str<strong>on</strong>g>the</str<strong>on</strong>g>ir <str<strong>on</strong>g>for</str<strong>on</strong>g>mal three-dimensi<strong>on</strong>al definiti<strong>on</strong>. Thenit is possible to use <str<strong>on</strong>g>the</str<strong>on</strong>g> tools, already known, from ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics, eg. trippel vector productand matrix algebra.StaticsDefine: Sum of <str<strong>on</strong>g>for</str<strong>on</strong>g>ces, F. Sum of Moment of <str<strong>on</strong>g>for</str<strong>on</strong>g>ces in a point 0, M 0 .Characterize <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>ce-system by <str<strong>on</strong>g>the</str<strong>on</strong>g> two properties F, M 0 .Derive <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>mula <str<strong>on</strong>g>for</str<strong>on</strong>g> ’byte av momentpunkt’, (change of point <str<strong>on</strong>g>for</str<strong>on</strong>g> Moment).Then, it is easy to ca<str<strong>on</strong>g>the</str<strong>on</strong>g>gorize <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>ce-system as ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r: Nollsystem, Momentsystem,Resultantsystem or Kraftskruv.DynamicsIn <str<strong>on</strong>g>the</str<strong>on</strong>g> kinematical <str<strong>on</strong>g>for</str<strong>on</strong>g>mula of accelerati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> different c<strong>on</strong>tributi<strong>on</strong>s could be exemplifiedfrom <str<strong>on</strong>g>the</str<strong>on</strong>g> ’merry-go-round walk’ as in [1].An interesting observable occurence of <str<strong>on</strong>g>the</str<strong>on</strong>g> Coriolis effect compared with centripetalaccelerati<strong>on</strong> is to be found in river banks, [2][3]. This is illustrated and c<strong>on</strong>cluded] [3], cf.Figure 1.The three dimensi<strong>on</strong>al definiti<strong>on</strong> of inertia tensor is very useful. With <str<strong>on</strong>g>the</str<strong>on</strong>g> methods ofma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics, properties of principal axis, symmetries etc, is easily given [1]. As anillustrati<strong>on</strong> of free moti<strong>on</strong> around principal axis, a box is thrown in rotati<strong>on</strong>, which is stableor unstable.From invariance, it could be shown that a 3-’propeller’, have two equal principal values,and thus have <str<strong>on</strong>g>the</str<strong>on</strong>g> same inertia properties as an in-plane circular disc [1].C<strong>on</strong>clusi<strong>on</strong>Some c<strong>on</strong>cepts of inertia in classical <strong>mechanics</strong> were exemplified. Use of modern matrixalgebra in c<strong>on</strong>juncti<strong>on</strong> with inertia <str<strong>on</strong>g>for</str<strong>on</strong>g> rigid bodies, is a challenging combinati<strong>on</strong> of abstract<str<strong>on</strong>g>for</str<strong>on</strong>g>malism and actual moving c<strong>on</strong>structi<strong>on</strong>s.References[1] Uhlhorn U. Mekanik I och II.[2] Arnold VI. Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical methods of classical <strong>mechanics</strong>, Springer.[3] Strömberg L. Inertia effects in river flows, Ltech, (2003).133


Inertia effects in river flows.C<strong>on</strong>sider an amount of water inmoti<strong>on</strong> at a river <strong>on</strong> earth.The water fulfils <str<strong>on</strong>g>the</str<strong>on</strong>g> equati<strong>on</strong> ofmoti<strong>on</strong>ma=Fa=a sys +a relThe system's accelerati<strong>on</strong> a sys iscomposed by coriolis-accelerati<strong>on</strong>and centripetal-accelerati<strong>on</strong>.The coriolis-accelerati<strong>on</strong> reads2Ωxv rel , where Ω is <str<strong>on</strong>g>the</str<strong>on</strong>g> angularvelocity of earth Ω=Ωe z , and v rel is<str<strong>on</strong>g>the</str<strong>on</strong>g> velocity of <str<strong>on</strong>g>the</str<strong>on</strong>g> waterrelative to <str<strong>on</strong>g>the</str<strong>on</strong>g> earth.In rivers, this could be notified aserodati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> river bank. Theeffect is largest <str<strong>on</strong>g>for</str<strong>on</strong>g> straight rivers,where <str<strong>on</strong>g>the</str<strong>on</strong>g> velocity is directed westeast<str<strong>on</strong>g>for</str<strong>on</strong>g> a while, (cf. Arnold).For rivers with sharp bends, <str<strong>on</strong>g>the</str<strong>on</strong>g>centrifugal <str<strong>on</strong>g>for</str<strong>on</strong>g>ce is <str<strong>on</strong>g>the</str<strong>on</strong>g> dominating.This reads ωx(ωxr), where ω=v rel /r,and r is <str<strong>on</strong>g>the</str<strong>on</strong>g> bending radius.Hereby, <str<strong>on</strong>g>the</str<strong>on</strong>g> outer river bank inevery bend is affected/erodated,independent of locati<strong>on</strong> at earth.For river heading west-to-east,<str<strong>on</strong>g>the</str<strong>on</strong>g> directi<strong>on</strong> of this part regardedas an inertia <str<strong>on</strong>g>for</str<strong>on</strong>g>ce is-2mΩv rel e z x(-e y )= 2mΩv rel (-e x ).Part of Volga, where <str<strong>on</strong>g>the</str<strong>on</strong>g> Corioliseffectis manifested.As seen in <str<strong>on</strong>g>the</str<strong>on</strong>g> figure, <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>Nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn hemisphere (-e x ) has acomp<strong>on</strong>ent directed towards <str<strong>on</strong>g>the</str<strong>on</strong>g>equator, south.L Strömberg, Fredrikslundsg 38, Se-38237 NybroPh<strong>on</strong>e: 0046706275753, lena_str@hotmail.com, www.alg<strong>on</strong>et.se/~lsdata134The coriolis-effect also cause watereddies to have opposite directi<strong>on</strong>ssouth and north of <str<strong>on</strong>g>the</str<strong>on</strong>g> equatorrespectively.


Stress evaluati<strong>on</strong> in sandwich structures near tri-materialwedgeAnders LyckegaardInsitute of Mechanical Engineering, Aalborg University,P<strong>on</strong>toppidanstræde 101, DK-9220 Aalborg SØ, Denmarke–mail: al@ime.aau.dkSummary It is often necessary to combine different core materials in a sandwich structure. In this case atri-material wedge is found were <str<strong>on</strong>g>the</str<strong>on</strong>g> two core materials meet <str<strong>on</strong>g>the</str<strong>on</strong>g> face sheets. This c<strong>on</strong>figurati<strong>on</strong> is knownto lead to singular stress state. The evaluati<strong>on</strong> of stresses in this vicinity is not trivial using commerciallyavailable analysis software. Here an approach is developed based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> eigenfuncti<strong>on</strong> expansi<strong>on</strong> soluti<strong>on</strong>used in c<strong>on</strong>juncti<strong>on</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g> finite element soluti<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> whole structure.Introducti<strong>on</strong>Sandwich structures c<strong>on</strong>sist of two stiff and str<strong>on</strong>g face sheets separated by a thick and compliantcore material. This combinati<strong>on</strong> results in a structures which is both light weight and has highbending stiffness and strength in additi<strong>on</strong> to high buckling resistance. Sandwich structures often<str<strong>on</strong>g>for</str<strong>on</strong>g>m <str<strong>on</strong>g>the</str<strong>on</strong>g> basis <str<strong>on</strong>g>for</str<strong>on</strong>g> extremely light weight applicati<strong>on</strong>. However, it is often necessary to insertstiff core insert into a sandwich structure, because <str<strong>on</strong>g>the</str<strong>on</strong>g> main core material is nei<str<strong>on</strong>g>the</str<strong>on</strong>g>r str<strong>on</strong>g or stiffenough to support c<strong>on</strong>centrated loads, see Fig. 1(a).Now a new situati<strong>on</strong> emerges, because at <str<strong>on</strong>g>the</str<strong>on</strong>g> intersecti<strong>on</strong> between <str<strong>on</strong>g>the</str<strong>on</strong>g> main core and <str<strong>on</strong>g>the</str<strong>on</strong>g> coreinsert <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a so-called tri-material wedge. This c<strong>on</strong>figurati<strong>on</strong> may lead to singular stresseswithin <str<strong>on</strong>g>the</str<strong>on</strong>g> framework of linear elasticity, and this state of stress may seriously affect <str<strong>on</strong>g>the</str<strong>on</strong>g> strengthof <str<strong>on</strong>g>the</str<strong>on</strong>g> structure – particularity <str<strong>on</strong>g>the</str<strong>on</strong>g> fatigue strength, see e.g. Bozhevolnaya and Thomsen [1, 2]. Itis <str<strong>on</strong>g>the</str<strong>on</strong>g>re<str<strong>on</strong>g>for</str<strong>on</strong>g>e important to evaluated <str<strong>on</strong>g>the</str<strong>on</strong>g> strength and magnitude of <str<strong>on</strong>g>the</str<strong>on</strong>g> singularity.Assumed soluti<strong>on</strong>The problem is posed a linear elastic soluti<strong>on</strong> in two dimensi<strong>on</strong>s by assuming plane strain. Thismay be expressed using Airy’s stress functi<strong>on</strong>. The soluti<strong>on</strong> to Airy stress functi<strong>on</strong> is assumed tobe (Eq. (1)) expressed in terms of <str<strong>on</strong>g>the</str<strong>on</strong>g> complex potentials <str<strong>on</strong>g>for</str<strong>on</strong>g> each of <str<strong>on</strong>g>the</str<strong>on</strong>g> material domains z ∈ Ω k(k = {1, 2, 3}) as:ϕ k (z) = a 1k z λ + a 2k z λ (1)ψ k (z) = b 1k z λ + b 2k z λwhere z is <str<strong>on</strong>g>the</str<strong>on</strong>g> coordinate represented as a complex number z = x+i·y, λ is an unknown c<strong>on</strong>stantthat has to be determined, al<strong>on</strong>g with <str<strong>on</strong>g>the</str<strong>on</strong>g> coefficients a ik and b ik , and (. . .) denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> complexc<strong>on</strong>jugated, see e.g. Theocaris [3] or Pageau et al. [4].This soluti<strong>on</strong> may also be determined by using ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r a separati<strong>on</strong> of variables principle or using<str<strong>on</strong>g>the</str<strong>on</strong>g> Mellin trans<str<strong>on</strong>g>for</str<strong>on</strong>g>m of Airy’s stress functi<strong>on</strong>, but it leads to <str<strong>on</strong>g>the</str<strong>on</strong>g> exact same soluti<strong>on</strong>.In <str<strong>on</strong>g>the</str<strong>on</strong>g> present case a <str<strong>on</strong>g>the</str<strong>on</strong>g> geometrical c<strong>on</strong>figurati<strong>on</strong> is given in Fig. 1, although it is generallypossible to vary all angles.Eigenvalue problemThe next step in <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong> procedure is to ensure that tracti<strong>on</strong>s (stress) and displacements arec<strong>on</strong>tinues across <str<strong>on</strong>g>the</str<strong>on</strong>g> radial material interfaces. This leads to a set of eight n<strong>on</strong>linear homogeneousequati<strong>on</strong>s. These may be written in matrix <str<strong>on</strong>g>for</str<strong>on</strong>g>m as:C(λ) · x = 0 (2)135


yC<strong>on</strong>centrated loadFace sheetMain coreCore insertMain coreΩ 2πΩ 1θ 1θrxFace sheetΩ 32π(a)(b)Figure 1: A sandwich structure subjected to a c<strong>on</strong>centrated load fitted with a core insert (a), where a trimaterialcorner is found at <str<strong>on</strong>g>the</str<strong>on</strong>g> interface between <str<strong>on</strong>g>the</str<strong>on</strong>g> core insert and <str<strong>on</strong>g>the</str<strong>on</strong>g> main core (b).1.21Re(λ)Im(λ)0.8λ0.60.40.2020 40 60 80 100 120 140 160Angle [deg]Figure 2: The eigenvalue (λ) as a functi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> angle θ 1 .where C(λ) is <str<strong>on</strong>g>the</str<strong>on</strong>g> coefficient matrix, x is a vector of c<strong>on</strong>stants (a 1k , a 2k , b 1k and b 2k ). This systemof equati<strong>on</strong>s give a n<strong>on</strong>-trivial soluti<strong>on</strong> when <str<strong>on</strong>g>the</str<strong>on</strong>g> determinant of C(λ) vanishes. An analyticalsoluti<strong>on</strong> to this equati<strong>on</strong> is not known, but a number of numerically determined roots are shownin Fig. 2 <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> materials system given in Table 1. The material properties given in <str<strong>on</strong>g>the</str<strong>on</strong>g> table arequite comm<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> sandwich structures with in this case represent a sandwich of Divinycell PVCfoam core materials [5] and Aluminium face sheets.The knowledge of <str<strong>on</strong>g>the</str<strong>on</strong>g> eigenvalues will all ready give some in<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> about <str<strong>on</strong>g>the</str<strong>on</strong>g> structure of <str<strong>on</strong>g>the</str<strong>on</strong>g>soluti<strong>on</strong>. The stress field is given as:Material Young’s modules Poiss<strong>on</strong>’s ratioΩ 1 (Divinycell H60) 60 MPa 0.32Ω 2 (Divinycell H200) 310 MPa 0.32Ω 3 (Aluminium) 70 GPa 1/3σ ij ∝ r λr−1 cos(ω ln(r))f k (θ) (3)Table 1: The material data used <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> determinati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> eigenvalue λ.136


P25 11symmtry20 110 120Figure 3: Finite element model of three point bending of a sandwich beam.where λ r and ω are <str<strong>on</strong>g>the</str<strong>on</strong>g> real (R(λ)) and imaginary (I(λ)) parts of <str<strong>on</strong>g>the</str<strong>on</strong>g> eigenvalue, respectively. Itis readily seen that if λ r < 1 <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> expressi<strong>on</strong> will lead to singular stresses. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, itis seen that if <str<strong>on</strong>g>the</str<strong>on</strong>g> imaginary part of <str<strong>on</strong>g>the</str<strong>on</strong>g> eigenvalue ω ≠ 0 <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> stresses exhibit an oscillatingbehaviour, with increasing frequency as r → 0. In fact ln(r) tends to infinity as r → 0, thus <str<strong>on</strong>g>the</str<strong>on</strong>g>oscillati<strong>on</strong>s increase towards <str<strong>on</strong>g>the</str<strong>on</strong>g> apex of <str<strong>on</strong>g>the</str<strong>on</strong>g> wedge.The eigenvalues in Fig. 2 are not unique <str<strong>on</strong>g>for</str<strong>on</strong>g> any given c<strong>on</strong>figurati<strong>on</strong>. It is possible to determineinfinitely many eigenvalues and corresp<strong>on</strong>ding eigenfuncti<strong>on</strong>s (Eq. 3). The sandwich c<strong>on</strong>figurati<strong>on</strong>is, however, not suitable <str<strong>on</strong>g>for</str<strong>on</strong>g> an series expansi<strong>on</strong> based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> eigenfuncti<strong>on</strong>s due to thin facesheets. Instead <str<strong>on</strong>g>the</str<strong>on</strong>g> analytical soluti<strong>on</strong> will be used in c<strong>on</strong>juncti<strong>on</strong> with a finite element model.Finite element modelA finite element model has been developed <str<strong>on</strong>g>for</str<strong>on</strong>g> general stress analysis of <str<strong>on</strong>g>the</str<strong>on</strong>g> sandwich specimen,see Fig. 3. It is difficult to determine <str<strong>on</strong>g>the</str<strong>on</strong>g> stresses near <str<strong>on</strong>g>the</str<strong>on</strong>g> singularity with standard displacementbased elements, however. It is also difficult to get an idea about <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>vergence properties of anygiven soluti<strong>on</strong>.Instead it will be assumed that <str<strong>on</strong>g>the</str<strong>on</strong>g> stress field near <str<strong>on</strong>g>the</str<strong>on</strong>g> tri-material wedge can be described in<str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>m Eq. (1), where <str<strong>on</strong>g>the</str<strong>on</strong>g> λ has been determined from Eq. (2). The stress field defined byEq. (1) will be fitted to <str<strong>on</strong>g>the</str<strong>on</strong>g> stress field from <str<strong>on</strong>g>the</str<strong>on</strong>g> finite element soluti<strong>on</strong> using <str<strong>on</strong>g>the</str<strong>on</strong>g> coefficients a ikand b ik , such that it is possible to extrapolate <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong> arbitrarily close to <str<strong>on</strong>g>the</str<strong>on</strong>g> apex of <str<strong>on</strong>g>the</str<strong>on</strong>g>wedge. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, it is possible to quantify <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>vergence of <str<strong>on</strong>g>the</str<strong>on</strong>g> finite element soluti<strong>on</strong> by<str<strong>on</strong>g>the</str<strong>on</strong>g> correlati<strong>on</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g> analytical soluti<strong>on</strong> inspired by <str<strong>on</strong>g>the</str<strong>on</strong>g> approach of Zienkiewicz and Zhu [6, 7].As a simple test <str<strong>on</strong>g>the</str<strong>on</strong>g> stresses σ xx al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> radial line θ = 0 will be fitted to <str<strong>on</strong>g>the</str<strong>on</strong>g> analytical soluti<strong>on</strong>given as:σ xx = c 0 + c 1 r λr−1 (4)where c 0 and c 1 are to be determined, and λ r = 0.8194305330 <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> materials given in Table 1.The imaginary part of <str<strong>on</strong>g>the</str<strong>on</strong>g> eigenvalue has been neglected (ω = 0.<str<strong>on</strong>g>18</str<strong>on</strong>g> · 10 −9 ) due to its smallmagnitude. In Fig. 4 <str<strong>on</strong>g>the</str<strong>on</strong>g> stresses are plotted in a radial line from <str<strong>on</strong>g>the</str<strong>on</strong>g> wedge based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> raw finiteelement data and <str<strong>on</strong>g>the</str<strong>on</strong>g> fitted functi<strong>on</strong>. The functi<strong>on</strong> was fitted using <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>linear least-squares(NLLS) Marquardt-Levenberg algorithm implemented in Gnuplot [8]. As it may be observedin Fig. 4 <str<strong>on</strong>g>the</str<strong>on</strong>g> fit between <str<strong>on</strong>g>the</str<strong>on</strong>g> finite element soluti<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> eigenfuncti<strong>on</strong> is very good <str<strong>on</strong>g>for</str<strong>on</strong>g> r >0.5 mm, and this corresp<strong>on</strong>ds nicely to <str<strong>on</strong>g>the</str<strong>on</strong>g> element size in this area, where <str<strong>on</strong>g>the</str<strong>on</strong>g> edge length ofelements is approximately l e = 0.6 mm.The fitted functi<strong>on</strong> may be extended to cover all three domains Ω k = {Ω 1 , Ω 2 , Ω 3 } if <str<strong>on</strong>g>the</str<strong>on</strong>g> eigenvaluesof Eq. 2 were known, although this has not yet been implemented. In this manner it willbe possible to fit <str<strong>on</strong>g>the</str<strong>on</strong>g> first few terms of <str<strong>on</strong>g>the</str<strong>on</strong>g> eigenfuncti<strong>on</strong> expansi<strong>on</strong> based <strong>on</strong> Eq. (1) to <str<strong>on</strong>g>the</str<strong>on</strong>g> finiteelement soluti<strong>on</strong>, such that <str<strong>on</strong>g>the</str<strong>on</strong>g> stress state near <str<strong>on</strong>g>the</str<strong>on</strong>g> apex of <str<strong>on</strong>g>the</str<strong>on</strong>g> tri-material wedge, and in additi<strong>on</strong>obtain an estimate of <str<strong>on</strong>g>the</str<strong>on</strong>g> accuracy of <str<strong>on</strong>g>the</str<strong>on</strong>g> finite element soluti<strong>on</strong> in this area.137


0.70.6FE dataFitted functi<strong>on</strong>Stress σ xx [MPa]0.50.40.30.20.100 1 2 3 4 5Radial distance [mm]Figure 4: The fit of finite element data <str<strong>on</strong>g>for</str<strong>on</strong>g> σ xx and <str<strong>on</strong>g>the</str<strong>on</strong>g> analytical soluti<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> stress given by Eq. (4).C<strong>on</strong>cluding remarksThe singular stress state in a tri-material corner is evaluated by fitting <str<strong>on</strong>g>the</str<strong>on</strong>g> eigenfuncti<strong>on</strong> expansi<strong>on</strong>to a finite element soluti<strong>on</strong>. In this manner it is possible to extrapolate <str<strong>on</strong>g>the</str<strong>on</strong>g> stresses from <str<strong>on</strong>g>the</str<strong>on</strong>g> finiteelement soluti<strong>on</strong> closer to <str<strong>on</strong>g>the</str<strong>on</strong>g> singularity. It is also possible to set up a measure of <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>vergenceof <str<strong>on</strong>g>the</str<strong>on</strong>g> finite element soluti<strong>on</strong> based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> eigenfuncti<strong>on</strong> soluti<strong>on</strong>.This approach will be developed fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r in <str<strong>on</strong>g>the</str<strong>on</strong>g> future such that <str<strong>on</strong>g>the</str<strong>on</strong>g> eigenvectors will be includedin <str<strong>on</strong>g>the</str<strong>on</strong>g> eigenfuncti<strong>on</strong> expansi<strong>on</strong>.References[1] E. Bozhevolnaya, O. Thomsen, Structurally graded core juncti<strong>on</strong>s in sandwich panels: Quasi staticloading c<strong>on</strong>diti<strong>on</strong>s, Composite Structures .[2] E. Bozhevolnaya, O. Thomsen, Structurally graded core juncti<strong>on</strong>s in sandwich panels: Fatigue loadingc<strong>on</strong>diti<strong>on</strong>s, Composite Structures .[3] P. Theocaris, The order of singularity at a multi-wedge corner of a composite plate, Internati<strong>on</strong>al Journalof Engineering Science 12 (1974) 107–20.[4] S. Pageau, P. Joseph, S. Biggers, Jr, The order of stress singularities <str<strong>on</strong>g>for</str<strong>on</strong>g> b<strong>on</strong>ded and disb<strong>on</strong>ded threematerialjuncti<strong>on</strong>s, Internati<strong>on</strong>al Journal of Solids and Structures 31 (21) (1994) 2979–2997.[5] DIAB Group Internati<strong>on</strong>al, Divinycell Data Sheet H Grade.[6] O. Zienkiewicz, J. Zhu, The superc<strong>on</strong>vergent patch recovery and a posteriori error estimates. part 1:The recovery technique, Internati<strong>on</strong>al Journal <str<strong>on</strong>g>for</str<strong>on</strong>g> Numerical Methods in Engineering 33 (1992) 1331–1364.[7] O. Zienkiewicz, J. Zhu, The superc<strong>on</strong>vergent patch recovery and a posteriori error estimates. part 2:Error estimates and adaptivity, Internati<strong>on</strong>al Journal <str<strong>on</strong>g>for</str<strong>on</strong>g> Numerical Methods in Engineering 33 (1992)1365–1382.[8] T. Williams, C. Kelley, gnuplot: An Interactive Plotting Program.138


Identificati<strong>on</strong> of Material Parameters of a PolymerTuomas Peräkylä* and Raimo v<strong>on</strong> HertzenLaboratory of Structures and StrengthLappeenranta University of Technology, Lappeenranta, Finlande-mail: perakyla@lut.fi , raimo.v<strong>on</strong>.hertzen@lut.fiMarko JorkamaMetso Paper, Inc.Wärtsilänkatu 100, 04400 Järvenpää, Finlande-mail: marko.jorkama@metso.comSummary A system identificati<strong>on</strong> procedure <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> estimati<strong>on</strong> of material parameters associated with ablock of polymer is presented. The polymer is modelled as a linear viscoelastic material, whosec<strong>on</strong>stitutive law can be expressed by an exp<strong>on</strong>ential hereditary relaxati<strong>on</strong> kernel. The identificati<strong>on</strong> isbased <strong>on</strong> a n<strong>on</strong>linear least squares fit of <str<strong>on</strong>g>the</str<strong>on</strong>g> model soluti<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> measured compressi<strong>on</strong> data. As a result,<str<strong>on</strong>g>the</str<strong>on</strong>g> relevant stiffness and viscosity parameters of <str<strong>on</strong>g>the</str<strong>on</strong>g> material are obtained. The uniqueness of <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong>in terms of <str<strong>on</strong>g>the</str<strong>on</strong>g> number of modelling parameters is discussed.Introducti<strong>on</strong>Polymers are widely used engineering materials due to <str<strong>on</strong>g>the</str<strong>on</strong>g>ir unique properties such as highdurability and good mechanical behaviour. While in many materials (metals or glass, <str<strong>on</strong>g>for</str<strong>on</strong>g>example) deviati<strong>on</strong>s from perfect elasticity are small, in polymeric systems, by c<strong>on</strong>trast, <str<strong>on</strong>g>the</str<strong>on</strong>g>mechanical behaviour is dominated by viscoelastic phenomena which may be truly spectacular.In <str<strong>on</strong>g>the</str<strong>on</strong>g> de<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> of hard solids, atoms are displaced from <str<strong>on</strong>g>the</str<strong>on</strong>g>ir equilibrium positi<strong>on</strong>s <strong>on</strong>lylocally. In polymers, <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, <str<strong>on</strong>g>the</str<strong>on</strong>g> flexible threadlike molecules are rearranged <strong>on</strong> alocal as well as l<strong>on</strong>g-range scale, giving rise to rapid as well as slow resp<strong>on</strong>ses, respectively.This leads to viscoelastic behaviour and to a wide range of time scales under external stress [1].When polymers are used in dynamic systems as comp<strong>on</strong>ents, it is necessary to know <str<strong>on</strong>g>the</str<strong>on</strong>g>structural parameters, such as stiffnesses and relaxati<strong>on</strong> times, related to <str<strong>on</strong>g>the</str<strong>on</strong>g> polymers. Theseparameters can be estimated by an identificati<strong>on</strong> technique that utilizes <str<strong>on</strong>g>the</str<strong>on</strong>g> resp<strong>on</strong>se of <str<strong>on</strong>g>the</str<strong>on</strong>g>system to a properly selected external excitati<strong>on</strong>. In this work, <str<strong>on</strong>g>the</str<strong>on</strong>g> external excitati<strong>on</strong> wasprovided by a simple compressi<strong>on</strong> test. The c<strong>on</strong>voluti<strong>on</strong> integral type stress-strain history,expressed in a closed <str<strong>on</strong>g>for</str<strong>on</strong>g>m in terms of <str<strong>on</strong>g>the</str<strong>on</strong>g> system parameters, was fitted to <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>dingmeasured values using <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>linear least squares fit algorithm. As a result, values <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>material stiffnesses and time c<strong>on</strong>stants were obtained.Mechanical Model of Viscoelastic BehaviourThe material models of viscoelasticity usually utilize a hereditary approach where stress is afuncti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> current strain as well as <str<strong>on</strong>g>the</str<strong>on</strong>g> past history of <str<strong>on</strong>g>the</str<strong>on</strong>g> strain in <str<strong>on</strong>g>the</str<strong>on</strong>g> material. For smalldisplacements, a linear model may be assumed. The most popular c<strong>on</strong>stitutive models based <strong>on</strong>mechanical models c<strong>on</strong>sisting of springs and dashpots are <str<strong>on</strong>g>the</str<strong>on</strong>g> well-known Voigt, Maxwell,Kelvin, and Wiechart models [1], [2]. According to <str<strong>on</strong>g>the</str<strong>on</strong>g> generalized Maxwell model (see Fig. 1),<str<strong>on</strong>g>the</str<strong>on</strong>g> viscoelastic c<strong>on</strong>stitutive law under uniaxial loading is [3], [4]ttn ⎡t τ −−⎤τ 1iτiσ () t = Eε() t − E ⎢i εi(0) e + ε( τ)e dτ⎥τi=1 i⎢⎣0⎥⎦∑ ∫ (1)139


where σ and ε are <str<strong>on</strong>g>the</str<strong>on</strong>g> stress and strain in <str<strong>on</strong>g>the</str<strong>on</strong>g> material element, respectively, E ∞ and E i are<str<strong>on</strong>g>the</str<strong>on</strong>g> elastic moduli, τ i <str<strong>on</strong>g>the</str<strong>on</strong>g> relaxati<strong>on</strong> times and ε i (0) <str<strong>on</strong>g>the</str<strong>on</strong>g> initial values of <str<strong>on</strong>g>the</str<strong>on</strong>g> internal strains of<str<strong>on</strong>g>the</str<strong>on</strong>g> single Maxwell elements ( i= 1,..., n), E = E∞+ E1 + + Enand t is time.E ∞E1E 2η1η 2. . .EnηnFigure 1: Generalized Maxwell model describing a material element.The relaxati<strong>on</strong> time τ i can be expressed in terms of <str<strong>on</strong>g>the</str<strong>on</strong>g> elastic modulusviscosity η i asηiτ i = , i= 1, … , nEiE i and dashpot(2)If <str<strong>on</strong>g>the</str<strong>on</strong>g> compressi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> material element is started from an equilibrium positi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> initialvalues ε i (0) vanish. In <str<strong>on</strong>g>the</str<strong>on</strong>g> uniaxial compressi<strong>on</strong> test <str<strong>on</strong>g>the</str<strong>on</strong>g> measurements were d<strong>on</strong>e at timest = ( j−1) ∆ t , j = 1, … , mj(3)The corresp<strong>on</strong>ding values of stress and strain are denoted by ˆ σ j and ˆ ε j . By defining <str<strong>on</strong>g>the</str<strong>on</strong>g>integraltj1τiIij= ε ( τ)e dττ ∫i0τ −t<str<strong>on</strong>g>the</str<strong>on</strong>g> calculated stresses σ = σ ( t ) can be expressed asjjj(4)j j i iji=1nσ = E ε − ∑ EI , j=1, … , m(5)By using <str<strong>on</strong>g>the</str<strong>on</strong>g> trapezoidal integrati<strong>on</strong> rule it is easy to see that <str<strong>on</strong>g>the</str<strong>on</strong>g> integrals I ij can be calculatedrecursively as∆t∆t−−τ ∆tiτiij i( j−1) ε j−1 ε j i12τiI e I + ( e + ) , I = 0Eqs. 5 and 6 establish <str<strong>on</strong>g>the</str<strong>on</strong>g> relati<strong>on</strong> between <str<strong>on</strong>g>the</str<strong>on</strong>g> values of stress and strain in terms of <str<strong>on</strong>g>the</str<strong>on</strong>g>viscoelastic parameters E , E i and τ i ( i= 1, … , n).Parameter Estimati<strong>on</strong>The parameters of a system can be identified by <str<strong>on</strong>g>the</str<strong>on</strong>g> resp<strong>on</strong>se of <str<strong>on</strong>g>the</str<strong>on</strong>g> system to external stimuli.The nature of <str<strong>on</strong>g>the</str<strong>on</strong>g> model and availability of suitable material tests act as a guide <str<strong>on</strong>g>for</str<strong>on</strong>g> a properidentificati<strong>on</strong> method. The method should be robust enough to give accurate estimates <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>(6)140


desired system parameters even in <str<strong>on</strong>g>the</str<strong>on</strong>g> presence of external perturbati<strong>on</strong>s and measurementerrors. In this work, n<strong>on</strong>linear curve fitting in <str<strong>on</strong>g>the</str<strong>on</strong>g> sense of least squares was utilized. The leastsquares algorithm is known to be relatively robust due to its low-pass filtering properties. Itc<strong>on</strong>sists of finding <str<strong>on</strong>g>the</str<strong>on</strong>g> system parameters so that <str<strong>on</strong>g>the</str<strong>on</strong>g> squared 2-norm of <str<strong>on</strong>g>the</str<strong>on</strong>g> residual isminimized, that ismmin ∑ ⎡σj( ˆ)− ˆ σ j⎤⎣εx⎦j=1where x = ( E∞, E1, τ1,..., E , ) Tn τ n is <str<strong>on</strong>g>the</str<strong>on</strong>g> vector of system parameters, ˆ j ε ˆ = ˆj ε are <str<strong>on</strong>g>the</str<strong>on</strong>g>measured values of stress and strain, respectively, and σ j () ε ˆ <str<strong>on</strong>g>the</str<strong>on</strong>g> stress calculated from Eqs. 5and 6 <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> measured strains ˆ ε k ( k = 1,..., j). The Matlab-routine lsqcurvefit with large-scaleoptimizati<strong>on</strong> and lower and upper bounds was used. This algorithm is a subspace trust regi<strong>on</strong>method and is based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> interior-reflective Newt<strong>on</strong> method and prec<strong>on</strong>diti<strong>on</strong>ed c<strong>on</strong>jugategradients.2σ and { }An example of <str<strong>on</strong>g>the</str<strong>on</strong>g> measured stress and strain during <str<strong>on</strong>g>the</str<strong>on</strong>g> interval 0 - 1 s is shown in Fig. 2a and<str<strong>on</strong>g>the</str<strong>on</strong>g> stress-strain relati<strong>on</strong> in Fig. 2b. The target value of strain was set to 0.95 %. During <str<strong>on</strong>g>the</str<strong>on</strong>g> first0.02 s <str<strong>on</strong>g>the</str<strong>on</strong>g> compressive stress was increased from zero in such a way that <str<strong>on</strong>g>the</str<strong>on</strong>g> target value ofstrain was approximately achieved. After that <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>ce c<strong>on</strong>trol system regulated <str<strong>on</strong>g>the</str<strong>on</strong>g>compressive stress so that <str<strong>on</strong>g>the</str<strong>on</strong>g> target value was sustained. As can be seen from Fig. 2a, <str<strong>on</strong>g>the</str<strong>on</strong>g> strainremains quite close to <str<strong>on</strong>g>the</str<strong>on</strong>g> target value. There are, however, small fluctuati<strong>on</strong>s around this valuedue to external disturbances and, possibly, due to small oscillati<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> feedback c<strong>on</strong>trolsystem. There are also fluctuati<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> stress, although not as much as in <str<strong>on</strong>g>the</str<strong>on</strong>g> strain.(7)350.01235300.0130Stress (MPa)25201510StressStrain0.0080.0060.004StrainStress (MPa)2520151050.0025000 0.2 0.4 0.6 0.8 1 1.2Time (s)00 0.002 0.004 0.006 0.008 0.01 0.012StrainFigure 2: (a) Measured stress and strain as a functi<strong>on</strong> of time, and (b) measured stress-strain relati<strong>on</strong> of<str<strong>on</strong>g>the</str<strong>on</strong>g> compressi<strong>on</strong> test.The model was fitted to <str<strong>on</strong>g>the</str<strong>on</strong>g> data of Fig. 2b as explained above <str<strong>on</strong>g>for</str<strong>on</strong>g> <strong>on</strong>e, two and three springdashpotpairs in <str<strong>on</strong>g>the</str<strong>on</strong>g> generalized Maxwell model. The results are shown in Table 1.Table 1. Results of <str<strong>on</strong>g>the</str<strong>on</strong>g> parameter estimati<strong>on</strong>.n E ∞ E 1 E 2 E 3 τ 1 τ 2 τ 3(GPa)(s)r1 2.438 0.726 0.166 0.72862 2.362 1.198 0.5<str<strong>on</strong>g>18</str<strong>on</strong>g> 0.015 0.374 0.04593 1.906 1.262 0.337 0.733 0.011 0.137 2.299 0.0325141


In additi<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> system parameters, <str<strong>on</strong>g>the</str<strong>on</strong>g> normalized residual of <str<strong>on</strong>g>the</str<strong>on</strong>g> fit at <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong> is shown.This value acts as a good indicator of <str<strong>on</strong>g>the</str<strong>on</strong>g> goodness of <str<strong>on</strong>g>the</str<strong>on</strong>g> fit. The measured and calculated stresshistories are shown in Fig. 3a. It can be seen that <str<strong>on</strong>g>the</str<strong>on</strong>g> fit is good with an average error of 0.2MPa (0.7 %) per measured value.0.80.70.60.5Residual and indeterminacyvs. number of parameters5045403530r0.40.30.20.1residual rindeterminacy e252015105e (%)03 5 7 9 11 13number of parametersFigure 3: (a) Measured and calculated stress histories, and (b) residual of <str<strong>on</strong>g>the</str<strong>on</strong>g> fit and <str<strong>on</strong>g>the</str<strong>on</strong>g> indeterminacy of<str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong> as a functi<strong>on</strong> of system parameters.To study <str<strong>on</strong>g>the</str<strong>on</strong>g> uniqueness of <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> least squares minimizati<strong>on</strong> search was launchedfrom several initial points of <str<strong>on</strong>g>the</str<strong>on</strong>g> parameter space. The spread of <str<strong>on</strong>g>the</str<strong>on</strong>g> resulting soluti<strong>on</strong>s wasc<strong>on</strong>sidered by <str<strong>on</strong>g>the</str<strong>on</strong>g> quantity1 ⎧n⎪ ∆E⎡∞ ∆Ei∆τ⎤ ⎫i ⎪e = ⎨ + ∑ ⎢ + ⎥ ⎬(8)2n+ 1⎩⎪E∞ , ave Ei 1 i, ave τ= ⎢⎣i,ave ⎥⎦⎭⎪which is a measure of <str<strong>on</strong>g>the</str<strong>on</strong>g> indeterminacy of <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong>. Here ∆ E∞ = ( E∞) max − ( E∞)min is <str<strong>on</strong>g>the</str<strong>on</strong>g>spread and E ∞ ,ave <str<strong>on</strong>g>the</str<strong>on</strong>g> average of E ∞ corresp<strong>on</strong>ding to <str<strong>on</strong>g>the</str<strong>on</strong>g> different initial points, and similarly<str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r parameters. The residual r of <str<strong>on</strong>g>the</str<strong>on</strong>g> fit and <str<strong>on</strong>g>the</str<strong>on</strong>g> indeterminacy e as a functi<strong>on</strong> ofsystem parameters is shown in Fig. 3b. It can be seen that <str<strong>on</strong>g>the</str<strong>on</strong>g> optimal value of systemparameters is five ( n = 2 ). Above that <str<strong>on</strong>g>the</str<strong>on</strong>g> fit does not improve but <str<strong>on</strong>g>the</str<strong>on</strong>g> uniqueness of <str<strong>on</strong>g>the</str<strong>on</strong>g>resulting system parameters is lost.C<strong>on</strong>cluding remarksA system identificati<strong>on</strong> procedure <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> evaluati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> material parameters of a viscoelasticblock of polymer was presented. The numerical evidence of <str<strong>on</strong>g>the</str<strong>on</strong>g> present work suggests that <str<strong>on</strong>g>the</str<strong>on</strong>g>uniqueness of <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong> is lost when <str<strong>on</strong>g>the</str<strong>on</strong>g> number of parameters becomes redundant, that is,<str<strong>on</strong>g>the</str<strong>on</strong>g> residual of <str<strong>on</strong>g>the</str<strong>on</strong>g> fit does not decrease with an increasing number of system parameters.References[1] J.D. Ferry. Viscoelastic Properties of Polymers. John Wiley & S<strong>on</strong>s, New York, (1980).[2] R. Singh, P. Davies and A.K. Bajaj. Estimati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> dynamical properties of polyurethane foamthrough use of Pr<strong>on</strong>y series. Journal of Sound and Vibrati<strong>on</strong>, 264, 1005-1043, (2003).[3] W. Flügge. Viscoelasticity. Blaisdell, Waltham, MA, (1967).[4] C. Carrot and V. Verney. Determinati<strong>on</strong> of a discrete relaxati<strong>on</strong> spectrum from dynamic experimentaldata using <str<strong>on</strong>g>the</str<strong>on</strong>g> Padé-Laplace method. European Polymer Journal, 32, 69-77, (1996).0142


N<strong>on</strong>-local plasticity model <str<strong>on</strong>g>for</str<strong>on</strong>g> fibre rein<str<strong>on</strong>g>for</str<strong>on</strong>g>ced c<strong>on</strong>creteLic engrg Lena StrömbergLTech, Fredrlg 38, Se-38237 Nybro(previously Dept of Solid Mechanics, Royal Instititute of Techn, KTH)e-mail: lena_str@hotmail.comSummary Topics of fibre rein<str<strong>on</strong>g>for</str<strong>on</strong>g>ced c<strong>on</strong>crete are covered. A n<strong>on</strong>-local plasticity model is used tosimulate <str<strong>on</strong>g>the</str<strong>on</strong>g> failure modes of blocks subjected to vertical displacement. FE-model results displaycracking in bands over <str<strong>on</strong>g>the</str<strong>on</strong>g> specimen, as also visible in experiments. To model <str<strong>on</strong>g>the</str<strong>on</strong>g> adhesi<strong>on</strong> propertieswhen used in lining, <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding gradient plasticity equati<strong>on</strong>s, in c<strong>on</strong>juncti<strong>on</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g> thin-film<str<strong>on</strong>g>for</str<strong>on</strong>g>mulati<strong>on</strong> are discussed. The maximum plastic strain is located at a distance from <str<strong>on</strong>g>the</str<strong>on</strong>g> interc<strong>on</strong>nect,depending <strong>on</strong> length scales.Introducti<strong>on</strong>Fibre rein<str<strong>on</strong>g>for</str<strong>on</strong>g>ced c<strong>on</strong>crete is used in a variety of applicati<strong>on</strong>s, cf. SFC (1985). Nowadays, <str<strong>on</strong>g>the</str<strong>on</strong>g>main applicati<strong>on</strong> is known to be lining. The c<strong>on</strong>crete and metal fibres makes a material suitable<str<strong>on</strong>g>for</str<strong>on</strong>g> covers of rock due to combined desired adhesi<strong>on</strong> properties and ductility.In general <str<strong>on</strong>g>the</str<strong>on</strong>g> cracking of a composite may c<strong>on</strong>sist of many features cf. J<strong>on</strong>ss<strong>on</strong> (2000). Recentmodelling have been n<strong>on</strong>-local damage plasticity, Geers et al (1999). Here, we shall focus <strong>on</strong>macroscopic <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> of a shear band, and layer effects, which may be modeled by n<strong>on</strong>-localplasticity.Recent experiments <str<strong>on</strong>g>for</str<strong>on</strong>g> various random fibre rein<str<strong>on</strong>g>for</str<strong>on</strong>g>ced c<strong>on</strong>crete mixtures has been per<str<strong>on</strong>g>for</str<strong>on</strong>g>medinlab, Ay (2000). The specimens were blocks of different sizes, and loading was applied asdisplacement <strong>on</strong> top. The failure modes were found to be shear band(s), at an angle, which is <str<strong>on</strong>g>the</str<strong>on</strong>g>typical behaviour of a v<strong>on</strong> Mises material.Model <str<strong>on</strong>g>for</str<strong>on</strong>g> blocksThe model is taken from Strömberg and Ristinmaa (1996), and <str<strong>on</strong>g>the</str<strong>on</strong>g> results display <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>of shear band and global softening. A weaker element is randomly initiated and at softening,‘cracking’ is present at two slip lines.Thin filmThe n<strong>on</strong>local model could be expanded to a gradient model, cf [7]. The gradient <str<strong>on</strong>g>for</str<strong>on</strong>g>mulati<strong>on</strong>will be used to model adhesi<strong>on</strong> of fibre rein<str<strong>on</strong>g>for</str<strong>on</strong>g>ced c<strong>on</strong>crete when used in lining, and as cover.The geometry and loading is of a thin film of thickness t, subjected to biaxial inplane strain, cf.Gudmunds<strong>on</strong> (2004). In <str<strong>on</strong>g>the</str<strong>on</strong>g> present <str<strong>on</strong>g>for</str<strong>on</strong>g>mulati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sistency c<strong>on</strong>diti<strong>on</strong> will be a sec<strong>on</strong>dorder differential equati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> plastic strain.ResultsFor negative plastic modulus (i.e local softening), <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong> are <str<strong>on</strong>g>the</str<strong>on</strong>g> hyperbolic functi<strong>on</strong>s.To achieve size effects, stress is assumed to be a decreasing functi<strong>on</strong>, and minimum is locatedoutside <str<strong>on</strong>g>the</str<strong>on</strong>g> film. Physically, this corresp<strong>on</strong>ds to that largest plastic strain delocalizes from <str<strong>on</strong>g>the</str<strong>on</strong>g>interc<strong>on</strong>nect. The gradient part will c<strong>on</strong>tribute with hardening in <str<strong>on</strong>g>the</str<strong>on</strong>g> stress strain relati<strong>on</strong>, andacts as a stiffener. To calculate an average elastic plastic modulus, <str<strong>on</strong>g>the</str<strong>on</strong>g> stress is integrated over<str<strong>on</strong>g>the</str<strong>on</strong>g> film, and divided by thickness. It is found that although <str<strong>on</strong>g>the</str<strong>on</strong>g> matrix is softening, <str<strong>on</strong>g>the</str<strong>on</strong>g> overallbehaviour may be hardening. The hardening is inversely proporti<strong>on</strong>al to film thickness, i.e. <str<strong>on</strong>g>the</str<strong>on</strong>g>c<strong>on</strong>figurati<strong>on</strong> display so called size effect ’<str<strong>on</strong>g>the</str<strong>on</strong>g> thinner, <str<strong>on</strong>g>the</str<strong>on</strong>g> harder’.For positive plastic modulus, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sistency c<strong>on</strong>diti<strong>on</strong> is elliptic.143


Attenti<strong>on</strong> to boundary effectsPreliminaries: The c<strong>on</strong>sistency c<strong>on</strong>diti<strong>on</strong> in <strong>on</strong>e dim is a Fredholm equati<strong>on</strong> that readsσ - σ = h{ λ }(1)where σ denotes stress,yyσ c<strong>on</strong>stant yield stress, h are hardening/softening, λ=λ(x), x is <str<strong>on</strong>g>the</str<strong>on</strong>g>coordinate of film thickness (0


The size effect, <str<strong>on</strong>g>the</str<strong>on</strong>g> thinner <str<strong>on</strong>g>the</str<strong>on</strong>g> harder, is displayed, and, due to <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong>s, no dependencyof hardening parameter, h. Since stress varies, bending is present in <str<strong>on</strong>g>the</str<strong>on</strong>g> film.We note that <str<strong>on</strong>g>the</str<strong>on</strong>g> λ-distributi<strong>on</strong> do not meet <str<strong>on</strong>g>the</str<strong>on</strong>g> above requirement of a ‘softening’ layer (h0), would be <str<strong>on</strong>g>the</str<strong>on</strong>g> field2 2λ( x) = ε - σ( x)/ B= ε(2 x/ x − x / x ),giving <str<strong>on</strong>g>the</str<strong>on</strong>g> average stress σ =∆ ε B(1/ 3) x / t+σa b yAssuming o<str<strong>on</strong>g>the</str<strong>on</strong>g>r boundary c<strong>on</strong>diti<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>stant stress at <str<strong>on</strong>g>the</str<strong>on</strong>g> film surface may be positive. Forlarge negative values, <str<strong>on</strong>g>the</str<strong>on</strong>g> overall resp<strong>on</strong>se may be softening, that is <str<strong>on</strong>g>the</str<strong>on</strong>g> average modulus isnegative. To achieve fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r dependence <strong>on</strong> parameter h, we assume <str<strong>on</strong>g>the</str<strong>on</strong>g> boundary c<strong>on</strong>diti<strong>on</strong>λ( x ) = ∆ ε B/( B+ h)(2)bThis corresp<strong>on</strong>d to local plasticity in xb< x< t. The average modulus M a reads2bM = (2 / 3) B /( B+ h)( x / t) + Bh/( B+ h)(3)<str<strong>on</strong>g>for</str<strong>on</strong>g> h


at both boundaries. Summati<strong>on</strong> of c<strong>on</strong>diti<strong>on</strong>s and λ 0 =0, gives <str<strong>on</strong>g>the</str<strong>on</strong>g> above <str<strong>on</strong>g>for</str<strong>on</strong>g>mat, since λ’ islinear. For o<str<strong>on</strong>g>the</str<strong>on</strong>g>r functi<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>mat may be given by a series expansi<strong>on</strong>.Locati<strong>on</strong> of boundary layerAssume that A is an increasing functi<strong>on</strong> of ∆ε. Then, up<strong>on</strong> loading, <str<strong>on</strong>g>the</str<strong>on</strong>g> iterati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g>mula(4) display stability, instability and chaos, with qualitative and quantitative results from May(1970) [9].C<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>for</str<strong>on</strong>g> c<strong>on</strong>vergence, in terms of material parameters will be 13 and <str<strong>on</strong>g>the</str<strong>on</strong>g> z<strong>on</strong>ewidth admits two soluti<strong>on</strong>s, <strong>on</strong>e wider and <strong>on</strong>e smaller. For <str<strong>on</strong>g>the</str<strong>on</strong>g> smaller, <str<strong>on</strong>g>the</str<strong>on</strong>g> average modulusdecreases, and softening may appear.Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r, in turn, <str<strong>on</strong>g>the</str<strong>on</strong>g> smaller may corresp<strong>on</strong>d to a lower strain state, thus <str<strong>on</strong>g>for</str<strong>on</strong>g> this bifurcati<strong>on</strong>branch, we may have snap back. To achieve this at instability, <str<strong>on</strong>g>the</str<strong>on</strong>g> inverse behaviour atbifurcati<strong>on</strong> need to be c<strong>on</strong>sidered.When strain is fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r increased, <str<strong>on</strong>g>the</str<strong>on</strong>g> z<strong>on</strong>e width admits 4 soluti<strong>on</strong>s, (<strong>on</strong>e of which smaller thanat lower strain rate), to be chaotic when A(∆ε)>3.57 where it is possible to have ( x / x )=0.Rate sensitivityAssuming evoluting layer z<strong>on</strong>e is governed by diffusi<strong>on</strong>-like processes or dislocati<strong>on</strong>movement, it could be expected that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a threshold <str<strong>on</strong>g>for</str<strong>on</strong>g> loading rate above which <str<strong>on</strong>g>the</str<strong>on</strong>g> effectis not observable, since <str<strong>on</strong>g>the</str<strong>on</strong>g> micro structural velocities are lower. This corresp<strong>on</strong>ds to a ductilebrittletransiti<strong>on</strong>.For faster de<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> rates, it is likely that <str<strong>on</strong>g>the</str<strong>on</strong>g> self evoluting effect is less, and <str<strong>on</strong>g>the</str<strong>on</strong>g>re<str<strong>on</strong>g>for</str<strong>on</strong>g>eaverage hardening behaviour is dominating. Note, however, that ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r localizati<strong>on</strong> or widerz<strong>on</strong>e are possible (or a pending between <str<strong>on</strong>g>the</str<strong>on</strong>g> two, in a 2 n cyclic soluti<strong>on</strong>) at bifurcati<strong>on</strong>s.C<strong>on</strong>clusi<strong>on</strong>A n<strong>on</strong>local plasticity model <str<strong>on</strong>g>for</str<strong>on</strong>g> fibre rein<str<strong>on</strong>g>for</str<strong>on</strong>g>ced c<strong>on</strong>crete was proposed. Numerical simulati<strong>on</strong>sof failure in shear, showed good agreement with experimental results.The adhesi<strong>on</strong> property is due to <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that <str<strong>on</strong>g>for</str<strong>on</strong>g> low dense rein<str<strong>on</strong>g>for</str<strong>on</strong>g>ced mixtures, <str<strong>on</strong>g>the</str<strong>on</strong>g> surfacerepels <str<strong>on</strong>g>the</str<strong>on</strong>g> fibres, Trochu (2001). This is reflected by <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> layer problem withingradient plasticity, and corresp<strong>on</strong>ds to that <str<strong>on</strong>g>the</str<strong>on</strong>g> surface repels dislocati<strong>on</strong> as notified in Fleck andHutchins<strong>on</strong> (1997). The result presented here, give that <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum plastic strain is located ata distance from <str<strong>on</strong>g>the</str<strong>on</strong>g> bimaterial boundary, that is not at <str<strong>on</strong>g>the</str<strong>on</strong>g> interc<strong>on</strong>nect of wall and c<strong>on</strong>crete. Then<strong>on</strong>uni<str<strong>on</strong>g>for</str<strong>on</strong>g>m strain distributi<strong>on</strong> will cause hardening of <str<strong>on</strong>g>the</str<strong>on</strong>g> coating.With attenti<strong>on</strong> to behaviour near elastic-plastic boundaries, a new differential equati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g>effective plastic strain were deduced. A polynomial soluti<strong>on</strong> were exploited. It was found thatan iterative <str<strong>on</strong>g>for</str<strong>on</strong>g>mat of boundary c<strong>on</strong>diti<strong>on</strong> gives possibilities of an evoluting layer locati<strong>on</strong>. Thenewb146


esulting <str<strong>on</strong>g>for</str<strong>on</strong>g>mat display different properties of stability, multiple soluti<strong>on</strong>s and chaos.Since <str<strong>on</strong>g>the</str<strong>on</strong>g> str<strong>on</strong>g n<strong>on</strong>-local <str<strong>on</strong>g>for</str<strong>on</strong>g>mulati<strong>on</strong> with integral do not c<strong>on</strong>tain explicit boundary c<strong>on</strong>diti<strong>on</strong>,it is not equivalent with gradient plasticity (weakly n<strong>on</strong>-local <str<strong>on</strong>g>for</str<strong>on</strong>g>mulati<strong>on</strong>). The n<strong>on</strong>-similarsoluti<strong>on</strong>s above, show that comparis<strong>on</strong>s with different approaches, are of great importance.AcknowledgementsThe author acknowledge Nils Peters<strong>on</strong>s, Swetech, <str<strong>on</strong>g>for</str<strong>on</strong>g> valuable discussi<strong>on</strong>s, and <str<strong>on</strong>g>the</str<strong>on</strong>g> SwedishResearch Council (TFR) <str<strong>on</strong>g>for</str<strong>on</strong>g> facilitating <str<strong>on</strong>g>the</str<strong>on</strong>g> research.References[1] Ay, Lutfi, Dept of structural <strong>mechanics</strong>, KTH. pers<strong>on</strong>al communicati<strong>on</strong>[2] Fleck, N.A. and Hutchins<strong>on</strong>, J.W. Strain gradient Plasticity, Advances in AppliedMechanics, 33, 295-361. (1997).[3] Geers MGD, de Borst R, Peijs T. Compos Sci Techn 59, 10, 1569-1578. (1999).[4] Gudmunds<strong>on</strong> P. A unified treatment of strain gradient plasticity, J. of <str<strong>on</strong>g>the</str<strong>on</strong>g> Mech andPhys of Solids, 52, 1379-1406. (2004).[5] J<strong>on</strong>ss<strong>on</strong> M, Lic Thesis. (2000).[6] Steel fibre c<strong>on</strong>crete. US-Sweden joint <str<strong>on</strong>g>seminar</str<strong>on</strong>g> (NSF-STU), Stockholm, June 3-5,Editors Surendra P Shah, Ake Skarendahl, (1985).[7] Strömberg L and Ristinmaa M.FE-<str<strong>on</strong>g>for</str<strong>on</strong>g>mulati<strong>on</strong> of a n<strong>on</strong>local plasticity <str<strong>on</strong>g>the</str<strong>on</strong>g>ory,Computer Methods in Applied Mechanics and Engineering, 136, 127-144, (1996).[8] Trouchu F. Proceedings to <str<strong>on</strong>g>the</str<strong>on</strong>g> 4 th int esa<str<strong>on</strong>g>for</str<strong>on</strong>g>m c<strong>on</strong>ference <strong>on</strong> material <str<strong>on</strong>g>for</str<strong>on</strong>g>ming, Liege,Belgium, (2001).[9] Robert B Israel, Calculus <str<strong>on</strong>g>the</str<strong>on</strong>g> Maple Way, 2nd Ed. p 59-63. Addis<strong>on</strong> Wesley, (2000).147


148


Time-Temperature Superpositi<strong>on</strong> Method <str<strong>on</strong>g>for</str<strong>on</strong>g> Polyester ResinAntti-Jussi Vuotikka* and Stig-Göran SjölindDepartment of Mechanical EngineeringUniversity of Oulu, Oulu, FinlandEmail: Antti-Jussi.Vuotikka@oulu.fiSummary The aim of this study was to investigate a time-temperature superpositi<strong>on</strong> method <str<strong>on</strong>g>for</str<strong>on</strong>g> apolyester resin. The principles of <str<strong>on</strong>g>the</str<strong>on</strong>g>rmorheologically simple materials and <str<strong>on</strong>g>the</str<strong>on</strong>g>rmorheologically complexmaterials are presented, and <str<strong>on</strong>g>the</str<strong>on</strong>g> method of time-temperature superpositi<strong>on</strong> is applied.Introducti<strong>on</strong>Possibilities to use polymer matrix composites are versatile. The composite materials can beused <str<strong>on</strong>g>for</str<strong>on</strong>g> example in railway wag<strong>on</strong>s and road transport vehicles. In this kind of use <str<strong>on</strong>g>the</str<strong>on</strong>g> polymermatrix composites increase payloads of <str<strong>on</strong>g>the</str<strong>on</strong>g> transportati<strong>on</strong> vehicles due to <str<strong>on</strong>g>the</str<strong>on</strong>g>ir high strength toweight ratio.Although <str<strong>on</strong>g>the</str<strong>on</strong>g> use of <str<strong>on</strong>g>the</str<strong>on</strong>g> polymer matrix composites gives some benefits, <str<strong>on</strong>g>the</str<strong>on</strong>g>y also cause someproblems. The polymer resins in composites do not act as time-independent material such assteel. It is possible that its mechanical behaviour changes c<strong>on</strong>siderably in process of time.Thereby, it is important to develop methods, which can <str<strong>on</strong>g>for</str<strong>on</strong>g>esee <str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>g-term behaviour of <str<strong>on</strong>g>the</str<strong>on</strong>g>polymer matrix composites. The test methods used should also be time saving and easy, becausea huge variety of polymer materials exists.Thermorheologically simple materialsThere is a <str<strong>on</strong>g>special</str<strong>on</strong>g> type of temperature dependence of material properties c<strong>on</strong>cerning mostpolymer materials. They are referred as <str<strong>on</strong>g>the</str<strong>on</strong>g>rmorheologically simple materials (TSM) and <str<strong>on</strong>g>the</str<strong>on</strong>g>irbehaviour can be analytically described by time-temperature superpositi<strong>on</strong> (TTS). The creepfuncti<strong>on</strong> at arbitrary base temperature T = T 0 is J( t ), where t is time. When temperature fieldchanges uni<str<strong>on</strong>g>for</str<strong>on</strong>g>mly, it is possible to designate a corresp<strong>on</strong>ding creep functi<strong>on</strong> Ĵ( t, T ), where Tdenotes absolute temperature. ThenJˆ t, T = J t = L log t , (1)( ) ( ) ( )0where <str<strong>on</strong>g>the</str<strong>on</strong>g> independent variable is changed in J( t ). The next relati<strong>on</strong>ship is <str<strong>on</strong>g>the</str<strong>on</strong>g> basic postulateof TSMJ ˆ ( t , T) = L⎡⎣ log t+ϕ( T)⎤⎦ , (2)where <str<strong>on</strong>g>the</str<strong>on</strong>g> shift functi<strong>on</strong> φ( T ) obeys <str<strong>on</strong>g>the</str<strong>on</strong>g> relati<strong>on</strong>s as followsdϕ( T)ϕ ( T 0 ) = 0 , 0 . (3)dTThe meaning of equati<strong>on</strong> (2) can be physically explained such that <str<strong>on</strong>g>the</str<strong>on</strong>g> change of temperatureshifts <str<strong>on</strong>g>the</str<strong>on</strong>g> creep functi<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> horiz<strong>on</strong>tal directi<strong>on</strong> when plotted against log t. A change ofvariable in <str<strong>on</strong>g>the</str<strong>on</strong>g> shift functi<strong>on</strong> is introduced by settingϕ T = log a T . (4)( ) ( )The c<strong>on</strong>diti<strong>on</strong>s of <str<strong>on</strong>g>the</str<strong>on</strong>g> first shift functi<strong>on</strong> in Eq. (3) now imply thatda( T )aT ( 0 ) = 1 , 0 . (5)dT149


Now, by using equati<strong>on</strong>s (1) and (4), equati<strong>on</strong> (2) can be written asJ ˆ ( t , T) = L⎡⎣ log ta( T) ⎤⎦ = J( ξ ) , (6)whereξ = ta ( T ) . (7)It is referred as reduced time. Thus, <str<strong>on</strong>g>the</str<strong>on</strong>g> creep functi<strong>on</strong> Ĵ( t, T ) at any temperature can directlybe obtained from <str<strong>on</strong>g>the</str<strong>on</strong>g> creep functi<strong>on</strong> J( t ) at base temperature T 0 by replacing time t with <str<strong>on</strong>g>the</str<strong>on</strong>g>reduced time ξ. It can be written in <str<strong>on</strong>g>the</str<strong>on</strong>g> integral presentati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reduced time whentemperature is allowed to change arbitrarily.t0( ( i,))ξ = ∫ aT xτ dτ, (8)where x i are coordinates and τ is time. The shift functi<strong>on</strong> a( T ) is a basic property of <str<strong>on</strong>g>the</str<strong>on</strong>g>material and it has to be determined from material tests [1]. The equati<strong>on</strong> (6) represents timetemperaturereducti<strong>on</strong> without any vertical shifting. However, it has been observed that <str<strong>on</strong>g>the</str<strong>on</strong>g>vertical shift can be required to reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> data [2].Thermorheologically complex materialsThe phenomen<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g>rmorheological complexity can be applied to <str<strong>on</strong>g>the</str<strong>on</strong>g> materials, which do not<str<strong>on</strong>g>for</str<strong>on</strong>g>m a smooth master creep curve by simple horiz<strong>on</strong>tal sifting. All elastic material parametersare independent of temperature and all time c<strong>on</strong>stants should have <str<strong>on</strong>g>the</str<strong>on</strong>g> same temperaturedependence in <str<strong>on</strong>g>the</str<strong>on</strong>g> TSM, whereas material parameters of <str<strong>on</strong>g>the</str<strong>on</strong>g>rmorheologically complex materials(TCM) are not restricted [3]. If material exhibits different degradati<strong>on</strong> mechanisms, <str<strong>on</strong>g>the</str<strong>on</strong>g>n it willnot be <str<strong>on</strong>g>the</str<strong>on</strong>g>rmorheologically simple [4].TCM can be divided into two classes, namely TCM-1 and TCM-2. The first class includesmaterials, which are composed of two or more TSM. This class c<strong>on</strong>sists also <str<strong>on</strong>g>the</str<strong>on</strong>g> compositematerials. The sec<strong>on</strong>d class includes o<str<strong>on</strong>g>the</str<strong>on</strong>g>r materials [5]. For TCM-2 cases, equati<strong>on</strong> (6) can bemodified such that <str<strong>on</strong>g>the</str<strong>on</strong>g> vertical shifting is taken into account.J ˆ t , T = b ( T ) J ξ , (9)( ) ( )where b( T ) is a temperature dependent vertical shift factor [4].In <str<strong>on</strong>g>the</str<strong>on</strong>g> effective time <str<strong>on</strong>g>the</str<strong>on</strong>g>ory, <str<strong>on</strong>g>the</str<strong>on</strong>g> strain resp<strong>on</strong>se is related to <str<strong>on</strong>g>the</str<strong>on</strong>g> stress σ and <str<strong>on</strong>g>the</str<strong>on</strong>g> referencecomplianse curve J by <str<strong>on</strong>g>the</str<strong>on</strong>g> equati<strong>on</strong> [6]tdσε () t = ∫ J( ξ −ξ′) dτ. (10)dτ0The shift factor functi<strong>on</strong>sThe shift factors between <str<strong>on</strong>g>the</str<strong>on</strong>g> reference curve and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r creep curves can now be calculated byequati<strong>on</strong>s (6) or (9), when <str<strong>on</strong>g>the</str<strong>on</strong>g> relati<strong>on</strong> between <str<strong>on</strong>g>the</str<strong>on</strong>g> real and reduced time has been obtainedexperimentally from <str<strong>on</strong>g>the</str<strong>on</strong>g> creep tests. Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r method is to use semi empirical expressi<strong>on</strong>s as <str<strong>on</strong>g>the</str<strong>on</strong>g>WLF equati<strong>on</strong> [4]−C1( T −T0)log a T=, (11)C2 + T −T0where C 1 and C 2 are material c<strong>on</strong>stants, which can be obtained by material tests. T 0 is usuallychosen to be <str<strong>on</strong>g>the</str<strong>on</strong>g> glass transiti<strong>on</strong> temperature T g . WLF is normally used above T g .150


At temperatures below T g <str<strong>on</strong>g>the</str<strong>on</strong>g> Arrhenius equati<strong>on</strong> can be used [7].AF ⎛c1 1 ⎞log aT= ⎜ − ⎟, (12)kb⎝T T0⎠where A is a c<strong>on</strong>stant, k b is Bolzmann c<strong>on</strong>stant and F c is free energy, which is a c<strong>on</strong>stant below<str<strong>on</strong>g>the</str<strong>on</strong>g> glass transiti<strong>on</strong> temperature [2].Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical models <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> creep complianceThe creep compliance can be illustrated by many different ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical functi<strong>on</strong>s, from which<str<strong>on</strong>g>the</str<strong>on</strong>g> most comm<strong>on</strong>ly used functi<strong>on</strong>s are Kohlrausch functi<strong>on</strong> and generalized Voigt model whichis also known as Pr<strong>on</strong>y series. The Kohlrausch functi<strong>on</strong> has <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>m⎞J t = ⎜ ⎟⎝τ⎠ , (13)where J 0 is <str<strong>on</strong>g>the</str<strong>on</strong>g> initial creep compliance and β is a shape parameter. This is usually used todescribe <str<strong>on</strong>g>the</str<strong>on</strong>g> short-term creep compliance. The Pr<strong>on</strong>y series is expressed asK −1⎡ ⎛ t ⎞⎤⎛() J0 exp tJ()t = J0+ ∑ Sk⎢ 1−exp⎜ − ⎟k = 1τ ⎥⎣ ⎝ ⎠⎦, (14)where K is <str<strong>on</strong>g>the</str<strong>on</strong>g> number of significant decaying exp<strong>on</strong>ent terms and S k are <str<strong>on</strong>g>the</str<strong>on</strong>g> Pr<strong>on</strong>y coefficients.The Pr<strong>on</strong>y series represents <str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>g-term creep compliance in general. [8]Creep testsThe testing material was a medium reactive ortophthalic or polyester resin. One panel was castby using this material and specimens were cut from this panel. Dimensi<strong>on</strong>s of <str<strong>on</strong>g>the</str<strong>on</strong>g> specimenswere: length 120mm, width 15mm and thickness 5mm. There were three c<strong>on</strong>stant testingtemperatures: 40°C, 60°C and 75°C. In each temperature four specimens were tested. The stresswas approximately 3.3MPa and <str<strong>on</strong>g>the</str<strong>on</strong>g> durati<strong>on</strong> of creep test was 48 hours <str<strong>on</strong>g>for</str<strong>on</strong>g> <strong>on</strong>e specimen. Thecreep compliance curves can be seen in Fig. 1 (Left).βFig 1. Left: The creep compliance curves from three different c<strong>on</strong>stant temperatures. Mid: The curves areshifted in horiz<strong>on</strong>tal directi<strong>on</strong>. Right: The curves are shifted in horiz<strong>on</strong>tal and vertical directi<strong>on</strong>s.Dotted solid line in <str<strong>on</strong>g>the</str<strong>on</strong>g> mid and right figure is <str<strong>on</strong>g>the</str<strong>on</strong>g> reference curve.Reference curves and shift factorsIt can be seen that it is not possible to fit Kohlrausch functi<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> creep compliance curves(Fig. 1. Left) and, thus, <strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g> Pr<strong>on</strong>y series is used. One creep compliance curve, which wastested at 40°C, was chosen to be <str<strong>on</strong>g>the</str<strong>on</strong>g> reference curve. The Pr<strong>on</strong>y series were fitted to this curve.After this, o<str<strong>on</strong>g>the</str<strong>on</strong>g>r curves were shifted in <str<strong>on</strong>g>the</str<strong>on</strong>g> horiz<strong>on</strong>tal directi<strong>on</strong> at first by using <str<strong>on</strong>g>the</str<strong>on</strong>g> method ofroot mean square to obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> best possible result. The vertical shift factor was <str<strong>on</strong>g>for</str<strong>on</strong>g>ced to beb T = 1. The shifted curves can be seen in Fig.1 (mid) and <str<strong>on</strong>g>the</str<strong>on</strong>g> shift factors in Fig 2. (left).Thereafter, <str<strong>on</strong>g>the</str<strong>on</strong>g> vertical shift factor was allowed to vary freely. The horiz<strong>on</strong>tal and vertical shift151


factors can be again obtained by using <str<strong>on</strong>g>the</str<strong>on</strong>g> RMS method and <str<strong>on</strong>g>the</str<strong>on</strong>g>y are shown in Fig.2 (mid andright), <str<strong>on</strong>g>the</str<strong>on</strong>g> shifted curves are in Fig.1 (right).( )N⎡bT f aTxi − yi⎤RMS% = 100 ∑ ⎢ ⎥i=1 ⎣ y, (15)i ⎦where N is <str<strong>on</strong>g>the</str<strong>on</strong>g> number of measured points in <str<strong>on</strong>g>the</str<strong>on</strong>g> creep curve, f() is <str<strong>on</strong>g>the</str<strong>on</strong>g> reference curve, a T andb T are <str<strong>on</strong>g>the</str<strong>on</strong>g> shift factors and (x i , y i ) are measured points in <str<strong>on</strong>g>the</str<strong>on</strong>g> creep curve.2Fig 2. Left: The horiz<strong>on</strong>tal shift factors from <str<strong>on</strong>g>the</str<strong>on</strong>g> first case. Mid and Right: The horiz<strong>on</strong>tal and verticalshift factors from <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d case. The solid line represents <str<strong>on</strong>g>the</str<strong>on</strong>g> Arrhenius type shift factor functi<strong>on</strong>in <str<strong>on</strong>g>the</str<strong>on</strong>g> left and middle figure. In <str<strong>on</strong>g>the</str<strong>on</strong>g> right figure, <str<strong>on</strong>g>the</str<strong>on</strong>g> shift factor functi<strong>on</strong> is a straight line.C<strong>on</strong>cluding remarksIt can be seen in Fig. 1 (mid) that <str<strong>on</strong>g>the</str<strong>on</strong>g> horiz<strong>on</strong>tal shifting <strong>on</strong>ly is not adequate. The creepcompliance curves do not smoothly overlap <str<strong>on</strong>g>the</str<strong>on</strong>g> reference curve. Thus, <str<strong>on</strong>g>the</str<strong>on</strong>g> vertical shifting isneeded and <str<strong>on</strong>g>the</str<strong>on</strong>g> testing material is clearly <str<strong>on</strong>g>the</str<strong>on</strong>g>rmorheologically complex.The Arrhenius type shift factor functi<strong>on</strong> does not fit to <str<strong>on</strong>g>the</str<strong>on</strong>g> horiz<strong>on</strong>tal shift factors well. Thecurves obtained at 75°C do not need shifting as much as <str<strong>on</strong>g>the</str<strong>on</strong>g> curves at 60°C. One reas<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> thiscould be that <str<strong>on</strong>g>the</str<strong>on</strong>g> physical aging, which increases <str<strong>on</strong>g>the</str<strong>on</strong>g> material stiffness, affects <str<strong>on</strong>g>the</str<strong>on</strong>g> creepcompliance curves at <str<strong>on</strong>g>the</str<strong>on</strong>g> highest testing temperature.AcknowledgementsThe author would like to recognize Foundati<strong>on</strong> of Technology in Finland (TES) and TaunoTönning-foundati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> sp<strong>on</strong>sorship of this work, and Fibrocom Oy <str<strong>on</strong>g>for</str<strong>on</strong>g> providing <str<strong>on</strong>g>the</str<strong>on</strong>g>specimens, which were used in <str<strong>on</strong>g>the</str<strong>on</strong>g> testing reported.References[1] Christensen R.M.. Theory of viscoelasticity: An Introducti<strong>on</strong>. New York. Academic Press. 1971.[2] O’C<strong>on</strong>nell P.A., McKenna G.B.. Arrhenius-type temperature dependence of <str<strong>on</strong>g>the</str<strong>on</strong>g> segmentalrelaxati<strong>on</strong> below T g . J. Chem. Phy. 110 (1999) 11054-11060.[3] Heymans, N.. C<strong>on</strong>stitutive equati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> polymer viscoelasticity derived from hierarchical modelsin cases of failure of time-temperature superpositi<strong>on</strong>. Signal Procecessing 83 (2003) 2345-2357.[4] Oliveira B.F., Creus G.J.. An analytical-numerical framework <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> study of ageing in fibrerein<str<strong>on</strong>g>for</str<strong>on</strong>g>ced polymer composites. Comp. Struct. 65 (2004) 443-457.[5] Haddad Y.M.. Viscoelasticity of engineering materials. L<strong>on</strong>d<strong>on</strong>. Chapman&Hall. 1995.[6] Bradshaw R.D., Brins<strong>on</strong> L.C.. Recovering N<strong>on</strong>iso<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal Physical Aging Shift Factors ViaC<strong>on</strong>tinuous Test Data: Theory and Experimental Results. J. Eng.Mat.Tech. 119 (1997) 233-241.[7] Li, R..Time-temperature superpositi<strong>on</strong> method <str<strong>on</strong>g>for</str<strong>on</strong>g> glass transiti<strong>on</strong> temperature of plasticmaterials. Mat. Sci.&Eng. A278 (2000) 36-45.[8] Bradshaw R.D., Brins<strong>on</strong> L.C.. A C<strong>on</strong>tinuous Test Data Method to Determine a Reference Curveand Shift Rate <str<strong>on</strong>g>for</str<strong>on</strong>g> Iso<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal Physical Aging. Polym. Eng. Sci., 39 (1999) 211-235.152


Slope safety calculati<strong>on</strong> with a n<strong>on</strong>-linear Mohr criteri<strong>on</strong> using finiteelement methodJohan Clausen ∗ and Lars DamkildeEsbjerg Department of EngineeringAalborg University Esbjerg, Esbjerg, Denmark∗ Email: jc@aaue.dkSummary Safety factors <str<strong>on</strong>g>for</str<strong>on</strong>g> soil slopes are calculated using a n<strong>on</strong>-linear Mohr envelope. The often usedlinear Mohr-Coulomb envelope tends to overestimate <str<strong>on</strong>g>the</str<strong>on</strong>g> safety as <str<strong>on</strong>g>the</str<strong>on</strong>g> material parameters are usuallydetermined at much higher stress levels, than those present at slope failure. Experimental data indicatesthat this leads to overestimati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> soil strength at low stress levels. The calculati<strong>on</strong>s are per<str<strong>on</strong>g>for</str<strong>on</strong>g>medwith <str<strong>on</strong>g>the</str<strong>on</strong>g> finite element method, and <str<strong>on</strong>g>the</str<strong>on</strong>g> plastic integrati<strong>on</strong> is carried out in principal stress space whichsimplifies <str<strong>on</strong>g>the</str<strong>on</strong>g> computati<strong>on</strong>s c<strong>on</strong>siderably.Introducti<strong>on</strong>Traditi<strong>on</strong>ally slope stability calculati<strong>on</strong>s are carried out using limit state analysis. If this is to bed<strong>on</strong>e analytically <str<strong>on</strong>g>the</str<strong>on</strong>g> soil must be c<strong>on</strong>sidered as a Mohr-Coulomb material. The material parametersof <str<strong>on</strong>g>the</str<strong>on</strong>g> Mohr-Coulomb model, fricti<strong>on</strong> angle, ϕ, and cohesi<strong>on</strong>, c, are often determined by <str<strong>on</strong>g>the</str<strong>on</strong>g>triaxial test. A substantial amount of experimental data indicates that <str<strong>on</strong>g>the</str<strong>on</strong>g> linear Mohr-Coulombenvelope does not describe <str<strong>on</strong>g>the</str<strong>on</strong>g> strength of <str<strong>on</strong>g>the</str<strong>on</strong>g> soil to a satisfactory degree, see e.g. Baker [1].This is e<str<strong>on</strong>g>special</str<strong>on</strong>g>ly pr<strong>on</strong>ounced at low values of <str<strong>on</strong>g>the</str<strong>on</strong>g> hydrostatic pressure, compared to <str<strong>on</strong>g>the</str<strong>on</strong>g> chamberpressure of <str<strong>on</strong>g>the</str<strong>on</strong>g> triaxial test. In slope stability calculati<strong>on</strong>s <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure in yield z<strong>on</strong>es are smallerthan <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure in <str<strong>on</strong>g>the</str<strong>on</strong>g> standard triaxial test at which <str<strong>on</strong>g>the</str<strong>on</strong>g> Mohr-Coulomb parameters were determined.This can cause an overestimati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> safety of <str<strong>on</strong>g>the</str<strong>on</strong>g> slope. A soluti<strong>on</strong> to this problemcan be obtained by expressing <str<strong>on</strong>g>the</str<strong>on</strong>g> soil strength as a n<strong>on</strong>-linear Mohr-envelope, see fig. 1. Severalsuch criteria have been proposed in <str<strong>on</strong>g>the</str<strong>on</strong>g> literature, e.g. Jiang et al. [2] and Yang and Yin [3]. Thesereferences <str<strong>on</strong>g>the</str<strong>on</strong>g>n calculates <str<strong>on</strong>g>the</str<strong>on</strong>g> safety factor by <str<strong>on</strong>g>the</str<strong>on</strong>g> upper bound method using an approximati<strong>on</strong> of<str<strong>on</strong>g>the</str<strong>on</strong>g> slip surface. In <str<strong>on</strong>g>the</str<strong>on</strong>g> present paper a full n<strong>on</strong>-linear finite element analysis will be carried out.This has <str<strong>on</strong>g>the</str<strong>on</strong>g> advantage that no approximati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> slip surface has to be made.N<strong>on</strong>linear yield criteri<strong>on</strong>Baker [1] suggests <str<strong>on</strong>g>the</str<strong>on</strong>g> following versi<strong>on</strong> of a n<strong>on</strong>linear Mohr envelope to capture <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>lineardependence of <str<strong>on</strong>g>the</str<strong>on</strong>g> failure shear stress <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> normal stress <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> slip plane:(τ = P a A T − σ ) h(1)P aHere <str<strong>on</strong>g>the</str<strong>on</strong>g> parameters τ and σ are <str<strong>on</strong>g>the</str<strong>on</strong>g> shear and normal stress <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> slip surface, respectively,P a is <str<strong>on</strong>g>the</str<strong>on</strong>g> atmospheric pressure, T is a n<strong>on</strong>dimensi<strong>on</strong>al tensile strength parameter, A is a scalingparameter and h c<strong>on</strong>trols <str<strong>on</strong>g>the</str<strong>on</strong>g> curvature of <str<strong>on</strong>g>the</str<strong>on</strong>g> envelope. It can be seen <strong>on</strong> figure 1 that <str<strong>on</strong>g>the</str<strong>on</strong>g> envelopefits test results quite well.Yield criteri<strong>on</strong> in principal stressesThe n<strong>on</strong>-linear Mohr envelope of Eq. (1) is expressed with respect to <str<strong>on</strong>g>the</str<strong>on</strong>g> stresses <strong>on</strong> a given slipsecti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> failing soil. i.e. at a certain orientati<strong>on</strong>. In order to apply a yield criteri<strong>on</strong> in a general153


N<strong>on</strong>-linearA =0.535T =0.0015h =0.604-80-60Test data-40Mohr-Coulombϕ =32 ◦c =6kPa-200τ [kPa]40302010σ [kPa]Figure 1: Mohr-Coulomb and n<strong>on</strong>-linear envelope, Eq. (1), fitted to test results. The envelopes are fitted byBaker [1] and <str<strong>on</strong>g>the</str<strong>on</strong>g> test results are by Perry [5].framework an isotropic criteri<strong>on</strong> should be <str<strong>on</strong>g>for</str<strong>on</strong>g>mulated in invariants. An explicit translati<strong>on</strong> of Eq.(1) into principal stresses is not possible, but a similar expressi<strong>on</strong> is a modified versi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g>Hoek-Brown criteri<strong>on</strong> given in [4]:(f = σ 1 − σ 3 − σ c 1 − mσ ) n1(2)σ cHere σ 1 and σ 3 are <str<strong>on</strong>g>the</str<strong>on</strong>g> major and minor principal stress, respectively, σ c is <str<strong>on</strong>g>the</str<strong>on</strong>g> uniaxial compressivestrength, m = σ c /σ a , where σ a is <str<strong>on</strong>g>the</str<strong>on</strong>g> apex stress, see figure 2, and n is a curvature parameter,0 ≦ n ≦ 1.Forn =1<str<strong>on</strong>g>the</str<strong>on</strong>g> Mohr-Coulomb criteri<strong>on</strong> is obtained.(σ a ,σ a )-80 -60 -40 -20Mohr-Coulomb(0, −σ c )Modified Hoek-Brownσ 3 [kPa]σ 1 [kPa]-20-40-60Figure 2: Plane strain Mohr-Coulomb and modified Hoek-Brown yield criteri<strong>on</strong> in principal stresses.-80Stress update in principal stressesIn <str<strong>on</strong>g>the</str<strong>on</strong>g> finite element calculati<strong>on</strong>s <str<strong>on</strong>g>the</str<strong>on</strong>g> slope soil is treated as a perfectly plastic material, and anassociated flow rule is applied. The plastic stress integrati<strong>on</strong> is carried out using a return mappingscheme. The general return mapping scheme is outlined by Crisfield [6] <str<strong>on</strong>g>for</str<strong>on</strong>g> general yieldcriteria. For this method to be applicable <str<strong>on</strong>g>the</str<strong>on</strong>g> yield criteri<strong>on</strong> must be expressed in <str<strong>on</strong>g>the</str<strong>on</strong>g> general sixdimensi<strong>on</strong>alstress space, or in <str<strong>on</strong>g>the</str<strong>on</strong>g> stress invariants I 1 ,I 2 ,I 3 or I 1 ,J 2 ,J 3 . To express <str<strong>on</strong>g>the</str<strong>on</strong>g> modifiedHoek-Brown yield criteri<strong>on</strong> in this manner will be very complicated. But as <str<strong>on</strong>g>the</str<strong>on</strong>g> criteri<strong>on</strong> is expressedin principal stresses <str<strong>on</strong>g>the</str<strong>on</strong>g> return mapping scheme can be carried out in a simple fashi<strong>on</strong>with respect to <str<strong>on</strong>g>the</str<strong>on</strong>g> principal axes. This is a fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r development of <str<strong>on</strong>g>the</str<strong>on</strong>g> method outlined in references[7, 8].154


Safety factor of a slopeUsually in geotecnical engineering <str<strong>on</strong>g>the</str<strong>on</strong>g> safety factor expresses <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio of <str<strong>on</strong>g>the</str<strong>on</strong>g> actual shear strengthto <str<strong>on</strong>g>the</str<strong>on</strong>g> shear strength needed to maintain equilibrium. For <str<strong>on</strong>g>the</str<strong>on</strong>g> Mohr-Coulomb criteri<strong>on</strong> this can beexpressed asr MC =c − σ tan ϕ(3)c r − σ tan ϕ rwhere c and ϕ are <str<strong>on</strong>g>the</str<strong>on</strong>g> cohesi<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> fricti<strong>on</strong> angle of <str<strong>on</strong>g>the</str<strong>on</strong>g> soil, respectively. The reduced parametersc r and ϕ r are <str<strong>on</strong>g>the</str<strong>on</strong>g> strength parameters needed to maintain equilibrium of <str<strong>on</strong>g>the</str<strong>on</strong>g> slope. One wayto estimate <str<strong>on</strong>g>the</str<strong>on</strong>g> safety factor is <str<strong>on</strong>g>the</str<strong>on</strong>g> ϕ − c reducti<strong>on</strong> scheme, see e.g. reference [9]. The parametersc and tan ϕ are reduced proporti<strong>on</strong>ally, which corresp<strong>on</strong>ds to a fixed apex point and a reducedfricti<strong>on</strong> angle.After establishing equilibrium of self-weight and externally applied loads c and tan ϕ are graduallyreduced until equilibrium can no l<strong>on</strong>ger be satisfied. The last values be<str<strong>on</strong>g>for</str<strong>on</strong>g>e failure are <str<strong>on</strong>g>the</str<strong>on</strong>g>nused to calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> factor of safety.In <str<strong>on</strong>g>the</str<strong>on</strong>g> example <str<strong>on</strong>g>the</str<strong>on</strong>g> parameter n is an independent parameter, and <str<strong>on</strong>g>the</str<strong>on</strong>g> rest of <str<strong>on</strong>g>the</str<strong>on</strong>g> parameters of <str<strong>on</strong>g>the</str<strong>on</strong>g>Hoek-Brown criteri<strong>on</strong> are fitted to <str<strong>on</strong>g>the</str<strong>on</strong>g> Mohr-Coulomb criteri<strong>on</strong> such that <str<strong>on</strong>g>the</str<strong>on</strong>g> envelopes in principalstress space as well as <str<strong>on</strong>g>the</str<strong>on</strong>g> tangents coincide at <str<strong>on</strong>g>the</str<strong>on</strong>g> point (σ 1 ,σ 3 )=(0,σ c ). This givesm = k − 1nand σ c =2c √ k (4)where k = 1+sin ϕ1−sin ϕis a fricti<strong>on</strong> parameter.The Hoek-Brown parameters are reduced by reducing <str<strong>on</strong>g>the</str<strong>on</strong>g> Mohr-Coulomb envelope proporti<strong>on</strong>allyas explained in <str<strong>on</strong>g>the</str<strong>on</strong>g> above. The curvature parameter n is kept c<strong>on</strong>stant throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> parameterreducti<strong>on</strong>.Computati<strong>on</strong>al exampleA slope is modelled with finite elements as shown <strong>on</strong> figure 3. The slope has a height of 10 m andis 20 m wide. The domain has a height of 15 m and a width of 40 m. The domain is modelledusing six-noded triangular LST-elements. The left and right boundaries are c<strong>on</strong>strained horiz<strong>on</strong>tallyand <str<strong>on</strong>g>the</str<strong>on</strong>g> lower boundary is fixed. Plane strain c<strong>on</strong>diti<strong>on</strong>s apply. The soil has a selfweight ofγ =20kN/m 3 . The strength parameters <str<strong>on</strong>g>for</str<strong>on</strong>g> n =1are ϕ =32 ◦ and c =6kPa, which complieswith <str<strong>on</strong>g>the</str<strong>on</strong>g> values fitted from test results shown in figure 1. Four analyses have been carried out with10n =1n =0.9n =0.7n =0.5-80-60-40-20σ 3 [kPa]σ 1 [kPa]-20-405-60102010Figure 3: Geometry and finite element mesh.Length unit is m.-80Figure 4: Hoek-Brown yield criteria with differentn-values in plane strain.155


different curvature parameters, n =1, 0.9, 0.7, 0.5, respectively. The different yield criteria canbe seen in figure 4.The result of <str<strong>on</strong>g>the</str<strong>on</strong>g> computati<strong>on</strong> can be seen in table 1. As expected <str<strong>on</strong>g>the</str<strong>on</strong>g> safety level decreases withdecreasing n.Table 1: Safety factors calculated by <str<strong>on</strong>g>the</str<strong>on</strong>g> finite element method. n =1is equivalent to a Mohr-Coulombmaterial.Material Safety factorn =1 1.81n =0.9 1.73n =0.7 1.47n =0.5 1.24C<strong>on</strong>clusi<strong>on</strong>Slope safety factors has been calculated <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> basis of a n<strong>on</strong>-linear Mohr-envelope. The n<strong>on</strong>linearenvelope fits test results better than <str<strong>on</strong>g>the</str<strong>on</strong>g> classical Mohr-Coulomb criteri<strong>on</strong>, e<str<strong>on</strong>g>special</str<strong>on</strong>g>ly at lowc<strong>on</strong>finement pressures, which are <str<strong>on</strong>g>the</str<strong>on</strong>g> stress states predominantly present <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> slip surfaces ofa slope collapse. The safety factors are calculated with <str<strong>on</strong>g>the</str<strong>on</strong>g> finite element method, using returnmapping in principal stress space <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> plastic integrati<strong>on</strong>.References[1] R. Baker. N<strong>on</strong>linear mohr envelopes based <strong>on</strong> triaxial data. Journal of Geotechnical and Geoenvir<strong>on</strong>mentalEngineering, 130(5):498–506, 2004.[2] J.C. Jiang, R. Baker, and T. Yamagami. The effect of strength envelope n<strong>on</strong>linearity <strong>on</strong> slope stabilitycomputati<strong>on</strong>s. Canadian Geotechnical Journal, 40:308–325, 2003.[3] Xiao-Li Yang and Jian-Hua Yin. Slope stability analysis with n<strong>on</strong>linear failure criteri<strong>on</strong>. Journal ofEngineering Mechanics, 130(3), 2004.[4] Evert Hoek and Edwin T. Brown. Empirical strength criteri<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> rock masses. Journal of GeotecnicalEngineering, 106:1013–1035, 1980.[5] J. Perry. A technique <str<strong>on</strong>g>for</str<strong>on</strong>g> defining n<strong>on</strong>-linear shear strength envelopes an <str<strong>on</strong>g>the</str<strong>on</strong>g>ir incorporati<strong>on</strong> in a slopestability method of analysis. Quarterly Journal of Engineering Geology and Hydrogeology , 27(3):231–241, 1994.[6] M.A. Crisfield. N<strong>on</strong>-Linear Finite Element Analysis of Solids and Structures, volume 2: AdvancedTopics. John Wiley & S<strong>on</strong>s, 1997.[7] Johan Clausen, Lars Damkilde, and Lars Andersen. One-step direct return method <str<strong>on</strong>g>for</str<strong>on</strong>g> mohr-coulombplasticity. In Proceedings of <str<strong>on</strong>g>the</str<strong>on</strong>g> 17th Nordic Seminar <strong>on</strong> Computati<strong>on</strong>al Mechanics , pages 156–159.KTH Mechanics, Royal Institute of Technology, Sweden, 2004.[8] Johan Clausen, Lars Damkilde, and Lars Andersen. Efficient return algorithms <str<strong>on</strong>g>for</str<strong>on</strong>g> associated plasticitywith multiple yield planes. Submitted to Internati<strong>on</strong>al Journal of Numerical Methods in Engineering ,2005.[9] R.B.J. Brinkgreve and P.A. Vermeer. Plaxis, Finite element Code <str<strong>on</strong>g>for</str<strong>on</strong>g> Soil and Rock Analyses, Versi<strong>on</strong>7. A.A. Balkema, Rotterdam, 1998.156


Shape Optimisati<strong>on</strong> of Core Interfaces in SandwichStructuresJ. Jakobsen*, and L.S. JohansenInstitute of Mechanical Engineering Aalborg UniversityP<strong>on</strong>toppidanstræde 101, DK-9220 Aalborg, DenmarkE−mail: jja@ime.aau.dkE. Lund, and O.T. ThomsenInstitute of Mechanical Engineering Aalborg UniversityP<strong>on</strong>toppidanstræde 101, DK-9220 Aalborg, DenmarkSummary A numerical approach <str<strong>on</strong>g>for</str<strong>on</strong>g> shape optimisati<strong>on</strong> was used to improve <str<strong>on</strong>g>the</str<strong>on</strong>g> structural per<str<strong>on</strong>g>for</str<strong>on</strong>g>manceof a sandwich comp<strong>on</strong>ent. The objective was to reduce a failure index in <str<strong>on</strong>g>the</str<strong>on</strong>g> vicinity of a core interfaceby modifying its shape. This was successfully achieved, and a reducti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> failure index of 37% wasobtained by <str<strong>on</strong>g>the</str<strong>on</strong>g> use of shape optimisati<strong>on</strong>.Introducti<strong>on</strong>Structural sandwich elements have gained widespread acceptance within <str<strong>on</strong>g>the</str<strong>on</strong>g> aerospace, marine,automotive, building and sustainable energy industries as an excellent way to obtain extremelylightweight comp<strong>on</strong>ents and structures with very high bending stiffness, high strength and highbuckling resistance. O<str<strong>on</strong>g>the</str<strong>on</strong>g>r advantages include good acoustic damping, <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal insulati<strong>on</strong>s andcorrosi<strong>on</strong> resistance.However, <str<strong>on</strong>g>for</str<strong>on</strong>g> practical as well as structural reas<strong>on</strong>s <str<strong>on</strong>g>the</str<strong>on</strong>g> use of sandwich structures frequentlyinvolves <str<strong>on</strong>g>the</str<strong>on</strong>g> use of different cores in <str<strong>on</strong>g>the</str<strong>on</strong>g> same sandwich element [1]. Various core inserts(stiffeners, backing plates, etc.), which substitute a part of <str<strong>on</strong>g>the</str<strong>on</strong>g> original core in sandwich panels,are also used often in sandwich structures.It is well known that <str<strong>on</strong>g>the</str<strong>on</strong>g> joining of different cores in sandwich beams and panels leads to localeffects at <str<strong>on</strong>g>the</str<strong>on</strong>g> core juncti<strong>on</strong>s [1]. The local effects are caused by <str<strong>on</strong>g>the</str<strong>on</strong>g> mismatch of <str<strong>on</strong>g>the</str<strong>on</strong>g> elasticproperties of <str<strong>on</strong>g>the</str<strong>on</strong>g> adjoining core materials, and <str<strong>on</strong>g>the</str<strong>on</strong>g>y manifest <str<strong>on</strong>g>the</str<strong>on</strong>g>mselves by a rise of <str<strong>on</strong>g>the</str<strong>on</strong>g> in-planestresses in <str<strong>on</strong>g>the</str<strong>on</strong>g> sandwich faces as well as of <str<strong>on</strong>g>the</str<strong>on</strong>g> shear and through-<str<strong>on</strong>g>the</str<strong>on</strong>g>-thickness stresses in <str<strong>on</strong>g>the</str<strong>on</strong>g>adjacent cores. Depending <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> properties of <str<strong>on</strong>g>the</str<strong>on</strong>g> materials chosen <str<strong>on</strong>g>for</str<strong>on</strong>g> such a sandwichc<strong>on</strong>figurati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> stress c<strong>on</strong>centrati<strong>on</strong>s may cause local fracture of <str<strong>on</strong>g>the</str<strong>on</strong>g> core materials, butsevere face damage is also a highly possible scenario. This may jeopardize <str<strong>on</strong>g>the</str<strong>on</strong>g> structuralintegrity of a sandwich structure and cause failure under quasi-static as well as fatigue loadingc<strong>on</strong>diti<strong>on</strong>s [2].Recently it has been shown [3], that stress c<strong>on</strong>centrati<strong>on</strong>s associated with <str<strong>on</strong>g>the</str<strong>on</strong>g> local effectsdescribed above can be reduced significantly by modifying <str<strong>on</strong>g>the</str<strong>on</strong>g> shape of <str<strong>on</strong>g>the</str<strong>on</strong>g> core interfaces [3].In additi<strong>on</strong>, it has been shown that crack initiati<strong>on</strong> depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> shape of <str<strong>on</strong>g>the</str<strong>on</strong>g> core interfaces[4], and that <str<strong>on</strong>g>the</str<strong>on</strong>g> inclinati<strong>on</strong> angle of <str<strong>on</strong>g>the</str<strong>on</strong>g> interfaces influences <str<strong>on</strong>g>the</str<strong>on</strong>g> locati<strong>on</strong> of crack initiati<strong>on</strong> [4].N<strong>on</strong>e of <str<strong>on</strong>g>the</str<strong>on</strong>g> previous works dealing with <str<strong>on</strong>g>the</str<strong>on</strong>g> design of core juncti<strong>on</strong> interfaces, including <str<strong>on</strong>g>the</str<strong>on</strong>g>references cited above, have attempted a rigorous systematic approach to shape optimisati<strong>on</strong> ofcore juncti<strong>on</strong> interfaces using ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical programming and design sensitivity analysis. Thus,<str<strong>on</strong>g>the</str<strong>on</strong>g> objective of this paper is to propose an improved core juncti<strong>on</strong> design <str<strong>on</strong>g>for</str<strong>on</strong>g> a particularsandwich c<strong>on</strong>figurati<strong>on</strong> based <strong>on</strong> design sensitivity analysis and a systematic optimisati<strong>on</strong>technique.157


Shape Optimisati<strong>on</strong> MethodThe design optimizati<strong>on</strong> problem is solved in an iterative loop based <strong>on</strong> finite element analysis,analytic design sensitivity analysis and ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical programming. In this case <str<strong>on</strong>g>the</str<strong>on</strong>g>ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical programming problem is solved using SLP (Sequential Linear Programming).Two approaches can be used to evaluate <str<strong>on</strong>g>the</str<strong>on</strong>g> structural resp<strong>on</strong>se of a model. One is a localcriteri<strong>on</strong> approach, which in this case c<strong>on</strong>cerns <str<strong>on</strong>g>the</str<strong>on</strong>g> stresses in <str<strong>on</strong>g>the</str<strong>on</strong>g> structure. A global criteri<strong>on</strong> isano<str<strong>on</strong>g>the</str<strong>on</strong>g>r method to evaluate <str<strong>on</strong>g>the</str<strong>on</strong>g> structural resp<strong>on</strong>se. The compliance of a structure is <strong>on</strong>eexample of a global criteri<strong>on</strong>. It is decided to <str<strong>on</strong>g>for</str<strong>on</strong>g>mulate a local criteri<strong>on</strong> as objective functi<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> optimisati<strong>on</strong> problem as <str<strong>on</strong>g>the</str<strong>on</strong>g> cause of fracture is assumed to be an increased stress level at<str<strong>on</strong>g>the</str<strong>on</strong>g> core juncti<strong>on</strong>.The objective thus is to minimize stress c<strong>on</strong>centrati<strong>on</strong>s in and around <str<strong>on</strong>g>the</str<strong>on</strong>g> juncti<strong>on</strong> byminimizing <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum value of a failure index, F principal , which is defined as <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio of <str<strong>on</strong>g>the</str<strong>on</strong>g>first principal stress, σ 1 , to <str<strong>on</strong>g>the</str<strong>on</strong>g> allowable tensile stress in <str<strong>on</strong>g>the</str<strong>on</strong>g> material, S T , i.e. F principal = σ 1 /S T .The shape design variables, x i , are <str<strong>on</strong>g>the</str<strong>on</strong>g> positi<strong>on</strong>s of a set of points describing <str<strong>on</strong>g>the</str<strong>on</strong>g> interface curve,and <str<strong>on</strong>g>the</str<strong>on</strong>g>se are restrained to vary between <str<strong>on</strong>g>the</str<strong>on</strong>g> limits x ≤ xi≤ x . Thus, <str<strong>on</strong>g>the</str<strong>on</strong>g> optimizati<strong>on</strong> problemmay be stated as:i( principal i )Objective functi<strong>on</strong>: min max(F (x ))C<strong>on</strong>straints: x ≤x ≤xThe framework <str<strong>on</strong>g>for</str<strong>on</strong>g> solving <str<strong>on</strong>g>the</str<strong>on</strong>g> optimisati<strong>on</strong> problem in Eq. 1, is <str<strong>on</strong>g>the</str<strong>on</strong>g> structural designoptimisati<strong>on</strong> system ODESSY (Optimum DESign SYstem), developed at <str<strong>on</strong>g>the</str<strong>on</strong>g> Institute ofMechanical Engineering, Aalborg University [5 and 6].Finite Element ModelThe problem c<strong>on</strong>sidered is a three-material interface, which occurs in sandwich panels withmultiple core materials or inserts, see details in [7]. A sandwich beam designed with twodifferent core materials and aluminium face sheets is subjected to three-point bending, seeFigure 1. The beam has a total length of 500mm and c<strong>on</strong>sists of two 1mm face sheets ofaluminium 7075T-6 and a 25mm core made from DIAB Divinycell H60 and H200. Thematerials are assumed to be isotropic and exert linear elastic behaviour. The mechanicalproperties of <str<strong>on</strong>g>the</str<strong>on</strong>g> three materials are summated in Figure 1.(1)Material E[MPa]ν S T[MPa]H60 60 0.32 1.4H200 310 0.32 4.8Aluminium 73000 0.33 503Figure 1 Sandwich beam model with butt juncti<strong>on</strong>-type interfaces. Two different core materials are used:DIAB Divinycell H60 and H200. Their properties are given in <str<strong>on</strong>g>the</str<strong>on</strong>g> table. E is <str<strong>on</strong>g>the</str<strong>on</strong>g> modulus of elasticity, νPoiss<strong>on</strong>’s ratio and S T tensile strength of <str<strong>on</strong>g>the</str<strong>on</strong>g> material.To investigate <str<strong>on</strong>g>the</str<strong>on</strong>g> stress distributi<strong>on</strong> in and around <str<strong>on</strong>g>the</str<strong>on</strong>g> core juncti<strong>on</strong> interface, a plane stressfinite element model is made. According to symmetry <strong>on</strong>ly half of <str<strong>on</strong>g>the</str<strong>on</strong>g> beam is examined. Thefinite element model c<strong>on</strong>sists of a total of 20519 6- and 9-node isoparametric 2D elements.The element size near <str<strong>on</strong>g>the</str<strong>on</strong>g> interfaces is 0.30mm. At <str<strong>on</strong>g>the</str<strong>on</strong>g> core interface <str<strong>on</strong>g>the</str<strong>on</strong>g> elements have an evensmaller side length of 0.08mm (see Figure 2). This refined mesh accurately predicts <str<strong>on</strong>g>the</str<strong>on</strong>g> stresssituati<strong>on</strong> in close vicinity of <str<strong>on</strong>g>the</str<strong>on</strong>g> three-material interfaces.158


The applied load (F) is 2200N and is uni<str<strong>on</strong>g>for</str<strong>on</strong>g>mly distributed over a length of 2mm. To obtain <str<strong>on</strong>g>the</str<strong>on</strong>g>failure index at this load level <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> initial c<strong>on</strong>figurati<strong>on</strong>, i.e. vertical core juncti<strong>on</strong> interfaces,an initial analysis is per<str<strong>on</strong>g>for</str<strong>on</strong>g>med. The failure index is defined as shown in Eq. 2.⎛ σ⎞1, H 60σ1, H 200σ1, ALF = ⎜⎟principal, ,(2)⎝ ST, H 60ST, H 200ST, AL ⎠Fig. 2 illustrates <str<strong>on</strong>g>the</str<strong>on</strong>g> failure index distributi<strong>on</strong> F principal <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> beam in initial c<strong>on</strong>figurati<strong>on</strong>. At<str<strong>on</strong>g>the</str<strong>on</strong>g> upper interface corner, c<strong>on</strong>siderable stress c<strong>on</strong>centrati<strong>on</strong>s are observed in <str<strong>on</strong>g>the</str<strong>on</strong>g> core material.As singularities arise in <str<strong>on</strong>g>the</str<strong>on</strong>g> point where <str<strong>on</strong>g>the</str<strong>on</strong>g> three materials are joined, nodes at a representativedistance from <str<strong>on</strong>g>the</str<strong>on</strong>g> singularity are chosen <str<strong>on</strong>g>for</str<strong>on</strong>g> reference. C<strong>on</strong>vergence tests show that at <str<strong>on</strong>g>the</str<strong>on</strong>g>current mesh resoluti<strong>on</strong>, a distance of d c =0.2mm is sufficient to ensure c<strong>on</strong>vergence of <str<strong>on</strong>g>the</str<strong>on</strong>g>model.Figure 2: Left: Plot of <str<strong>on</strong>g>the</str<strong>on</strong>g> failure index F principal in <str<strong>on</strong>g>the</str<strong>on</strong>g> beam. Right: indicati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> interface lines c 1 , c 2and c 3 used <str<strong>on</strong>g>for</str<strong>on</strong>g> evaluating <str<strong>on</strong>g>the</str<strong>on</strong>g> failure index. The points c 1A , c 1B , c 2A and c 2B are indicated.The shape optimizati<strong>on</strong> problem is <str<strong>on</strong>g>for</str<strong>on</strong>g>mulated with <str<strong>on</strong>g>the</str<strong>on</strong>g> objective of minimizing <str<strong>on</strong>g>the</str<strong>on</strong>g> level ofF principal in <str<strong>on</strong>g>the</str<strong>on</strong>g> foam materials. The parameterisati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> problem is shown in Fig. 3.Figure 3: Left: The design boundary is parameterised as a five point cubic B-spline with sec<strong>on</strong>d orderc<strong>on</strong>tinuity. Vectors indicate <str<strong>on</strong>g>the</str<strong>on</strong>g> move directi<strong>on</strong>s <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> four c<strong>on</strong>trol points (A-D). The area meshed with6-node triangular elements is indicated with a rectangle. Right: The objective functi<strong>on</strong> is evaluated inboth core materials al<strong>on</strong>g lines placed at characteristic distances d c away from <str<strong>on</strong>g>the</str<strong>on</strong>g> singular corner pointsof <str<strong>on</strong>g>the</str<strong>on</strong>g> butt juncti<strong>on</strong>.The four c<strong>on</strong>trol points A-D are allowed to translate horiz<strong>on</strong>tally, each c<strong>on</strong>trolled by a designvariable x i , as indicated in Fig. 3.The shape optimisati<strong>on</strong> problem is <str<strong>on</strong>g>for</str<strong>on</strong>g>mulated as a min-max problem using a bound <str<strong>on</strong>g>for</str<strong>on</strong>g>mulati<strong>on</strong>and <str<strong>on</strong>g>the</str<strong>on</strong>g> objective of minimizing <str<strong>on</strong>g>the</str<strong>on</strong>g> local failure index <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> two core materials evaluated at<str<strong>on</strong>g>the</str<strong>on</strong>g> interface lines c 1 , c 2 , c 3 , c 4 and c 5 indicated in Fig. 5. In order to save computati<strong>on</strong>al time<strong>on</strong>ly those failure indices which have a value above 80% of <str<strong>on</strong>g>the</str<strong>on</strong>g> highest failure index are takeninto account (a failure index is a number between zero and <strong>on</strong>e, where <strong>on</strong>e indicates that failurewill occur).ResultsThe optimised result can be seen in Fig. 4. The largest failure level has been relocated to <str<strong>on</strong>g>the</str<strong>on</strong>g>central part of <str<strong>on</strong>g>the</str<strong>on</strong>g> juncti<strong>on</strong> interface, and <str<strong>on</strong>g>the</str<strong>on</strong>g> failure index level has been reduced from 0.76 to0.48, a reducti<strong>on</strong> of 37%.159


Figure 4 Left: Failure index distributi<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> optimised core interface. Right: Failure index level <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>original and optimised interface al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> top interface. As expected a reducti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> failure index isobtained.Comparing <str<strong>on</strong>g>the</str<strong>on</strong>g> results in Fig. 2 and 4 it can be observed that <str<strong>on</strong>g>the</str<strong>on</strong>g> heightened failure level, whichpreviously occurred near <str<strong>on</strong>g>the</str<strong>on</strong>g> top three-material interface, has been significantly reduced.Discussi<strong>on</strong> and C<strong>on</strong>clusi<strong>on</strong>It has been shown, that it is possible to obtain a significant improvement in <str<strong>on</strong>g>the</str<strong>on</strong>g> per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance of asandwich structure, even with singular stress states present in <str<strong>on</strong>g>the</str<strong>on</strong>g> initial design.The largest failure index of <str<strong>on</strong>g>the</str<strong>on</strong>g> original design is reduced by 37% relative to <str<strong>on</strong>g>the</str<strong>on</strong>g> new design. Afirst principal stress criteri<strong>on</strong> is used as objective <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> optimisati<strong>on</strong> problem. It can bediscussed if this choice is sufficient to improve <str<strong>on</strong>g>the</str<strong>on</strong>g> structural per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance of a sandwichcomp<strong>on</strong>ent. Some remarks can after all be stated regarding <str<strong>on</strong>g>the</str<strong>on</strong>g> optimisati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> core interface.One is that <str<strong>on</strong>g>the</str<strong>on</strong>g> interface should be critical to <str<strong>on</strong>g>the</str<strong>on</strong>g> structure, meaning that failure should initiate in<str<strong>on</strong>g>the</str<strong>on</strong>g> vicinity of <str<strong>on</strong>g>the</str<strong>on</strong>g> interface. Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r regards <str<strong>on</strong>g>the</str<strong>on</strong>g> use of a first principal stress criteri<strong>on</strong>. Thisdecisi<strong>on</strong> is based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong> that if small cracks appear near or in <str<strong>on</strong>g>the</str<strong>on</strong>g> interface <str<strong>on</strong>g>the</str<strong>on</strong>g>y willmost likely propagate in mode-I. However it should be menti<strong>on</strong>ed that o<str<strong>on</strong>g>the</str<strong>on</strong>g>r stress based criteriahave been tried out as well.References[1] E. Bozhevolnaya, O. T. Thomsen, A. Kildegaard and V. Skvortsov (2003). Local effects across corejuncti<strong>on</strong>s in sandwich panels. Composites Part B: Engineering, Volume 34, Issue 6, 509-517[2] Elena Bozhevolnaya and Ole Thybo Thomsen (2005). Structurally graded core juncti<strong>on</strong>s in sandwichbeams: fatigue loading c<strong>on</strong>diti<strong>on</strong>s. Composite Structures, Volume 70, Issue 1, 12-23[3] A. Lyckegaard, E. Bozhevolnaya, and O.T. Thomsen (2005). Parametric study of structurally gradedcore juncti<strong>on</strong>s, 7th Internati<strong>on</strong>al C<strong>on</strong>fernce <strong>on</strong> Sandwich Structures, pp 67-76, Springer[4] S. Ribeiro-Ayeh and S. Hallström (2003). Strength predicti<strong>on</strong> of beams with bi-material butt-joints.Engineering Fracture Mechanics, Volume 70, Issue 12, 1491-1507,[5] ODESSY (2005). Institute of Mechanical Engineering, Aalborg University, Denmark.www.ime.aau.dk.[6] Lund, E. (1994). Finite element based design sensitivity analysis and optimizati<strong>on</strong>. Ph.D. Thesis,Institute of Mechanical Engineering, Aalborg University, Denmark. Special report no. 23, availableat: www.ime.aau.dk/~el.[7] L. Johansen and J. Jakobsen (2005). Local effects in sandwich structures. Master <str<strong>on</strong>g>the</str<strong>on</strong>g>sis, Institute ofMechanical Engineering, Aalborg University, available at:http://www.ime.aau.dk/People/employees/jja160


On wave attenuati<strong>on</strong> in sandwich plates loaded by a layer ofviscous fluidS.V. SorokinInstitute of Mechanical EngineeringAalborg University, Denmarke-mail: svs@ime.aau.dkA.V. ChubinskijDepartment of Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>maticsState Marine Technical University of St. Petersburg, Russiae.mail: alex_chub@freemail.ruSummary: This paper addresses free wave propagati<strong>on</strong> in an unbounded elastic sandwich plate loaded by alayer of a viscous compressible fluid. The dispersi<strong>on</strong> equati<strong>on</strong> is derived <str<strong>on</strong>g>for</str<strong>on</strong>g> this coupled wave guide and<str<strong>on</strong>g>the</str<strong>on</strong>g> influence of various parameters of a sandwich plate compositi<strong>on</strong> and of <str<strong>on</strong>g>the</str<strong>on</strong>g> heavy fluid loading <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>viscosity-induced attenuati<strong>on</strong> of waves is studied.Introducti<strong>on</strong>The time harm<strong>on</strong>ic linear wave propagati<strong>on</strong> in elastic structures with heavy fluid loading istraditi<strong>on</strong>ally c<strong>on</strong>sidered within <str<strong>on</strong>g>the</str<strong>on</strong>g> framework of a <str<strong>on</strong>g>the</str<strong>on</strong>g>ory of a compressible inviscid fluid (<str<strong>on</strong>g>the</str<strong>on</strong>g>classical model of an acoustic medium). This model is perfectly valid <str<strong>on</strong>g>for</str<strong>on</strong>g> analysis of vibrati<strong>on</strong>s ofelastic structures submerged into an unbounded volume of a fluid (e.g., a ship hull in water) orvibrati<strong>on</strong>s of thin-walled fluid-c<strong>on</strong>veying structures (e.g., a water-filled tube). However, in somesituati<strong>on</strong>s, which are ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r comm<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> various industrial applicati<strong>on</strong>s, propagati<strong>on</strong> of anacoustic wave in a narrow gap between, say, two elastic plates or shells should be c<strong>on</strong>sidered and<str<strong>on</strong>g>the</str<strong>on</strong>g> attenuati<strong>on</strong> effect produced by viscosity of a fluid cannot be ignored. The paper addressesexactly this case.A model of dynamics of a viscous fluidLinearised Navier-Stokes equati<strong>on</strong>s are <str<strong>on</strong>g>for</str<strong>on</strong>g>mulated asρ ∂ rvflv p ( ) ( v)tμ r r− Δ +∇ − λ ) + μ r r r ∇ ∇⋅ = 0, (1a)∂∂ ρ r r + ρfl ∇⋅ v = 0 , (1b)∂tr rˆ ( p v)Eˆ)σ = − + λ∇⋅ + 2μeˆ, (1c)rr rr T2 eˆ=∇ v + ( ∇v) , (1d)∂ p =2cfl(1e)∂ρHere ρfland cflare density and sound speed in a quiescent fluid ; p is pressure; v r - velocity,ˆ σ and ê - stress tensor and strain rate tensor; Ê - identity tensor; ) μ and ν - dynamic and)kinematic coefficients of viscosity; μ = ρνfl; λ - sec<strong>on</strong>d coefficient of viscosity, which has <str<strong>on</strong>g>the</str<strong>on</strong>g>2 )following value λ =− μ (<str<strong>on</strong>g>the</str<strong>on</strong>g> volume viscosity is negligible).3The velocity field is sought in <str<strong>on</strong>g>the</str<strong>on</strong>g> following <str<strong>on</strong>g>for</str<strong>on</strong>g>m:161


v =∇ ϕ +∇× ψ(2)Thus, in <str<strong>on</strong>g>the</str<strong>on</strong>g> coordinate frame, where z is vertical axis and x is horiz<strong>on</strong>tal axis,∂ϕ∂ψv x= +∂x∂ z; ∂ϕ∂ψvz= − . (3)∂z∂xThe potentials ϕ andr ψ [1], satisfy uncoupled equati<strong>on</strong>s:⎡⎛)24μ∂ ⎞ 1 ∂ ⎤⎢⎜1+ Δ− ϕ⎜ 32 2 2ρ flc flt⎟⎥ =0, (4)⎢⎣⎝∂ ⎠ c fl∂t⎥⎦⎛ ∂ ⎞ r⎜νΔ− ⎟ψ= 0 . (5)⎝ ∂t⎠Then a pressure is expressed <strong>on</strong>ly via scalar potential:⎛ )4μ∂ ⎞p = ρflΔ− ϕ⎜. (6)⎝3ρfl∂t⎟⎠Normal and shear stresses are <str<strong>on</strong>g>for</str<strong>on</strong>g>mulated as2 24ν ϕ ψσxx ρ ⎛ ∂ ⎞flϕ 2ρflν ⎛∂∂=− ⎜ Δ− ⎟ + ⎜ +⎞2 ⎟(7)⎝ 3 ∂t⎠ ⎝ ∂x ∂x∂z⎠2 2 2ϕ ψ ψτzx= ρflν ⎛ 2∂ + ∂ −∂ ⎞⎜⎝ ∂∂ x z ∂∂ z z ∂∂ x x⎠ ⎟ (8)These stresses act at <str<strong>on</strong>g>the</str<strong>on</strong>g> plate and <str<strong>on</strong>g>the</str<strong>on</strong>g>y are accounted <str<strong>on</strong>g>for</str<strong>on</strong>g> in its equati<strong>on</strong>s of moti<strong>on</strong>. This model ofa viscous fluid naturally merges <str<strong>on</strong>g>the</str<strong>on</strong>g> classical model of an acoustic medium as viscositycoefficients vanish. It also merges <str<strong>on</strong>g>the</str<strong>on</strong>g> classical model of linear elasto-dynamics as <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>stitutelaw linking <str<strong>on</strong>g>the</str<strong>on</strong>g> stress tensor and <str<strong>on</strong>g>the</str<strong>on</strong>g> strain rate tensor is replaced by <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>venti<strong>on</strong>al in elasticityrelati<strong>on</strong> between <str<strong>on</strong>g>the</str<strong>on</strong>g> stress tensor and <str<strong>on</strong>g>the</str<strong>on</strong>g> strain tensor, which involves a shear modulus.A model of a sandwich plate loaded by a layer of viscous compressible fluidAn infinitely l<strong>on</strong>g sandwich plate is loaded by a layer of viscous compressible fluid. This layerhas a thickness 2 H and it is bounded by a rigid wall at <str<strong>on</strong>g>the</str<strong>on</strong>g> opposite to a plate side. The sandwichplate c<strong>on</strong>sists of two symmetrical relatively thin, stiff skin plies and thick, soft core ply.Dimensi<strong>on</strong>less parameters are introduced to describe <str<strong>on</strong>g>the</str<strong>on</strong>g> internal structure of a sandwich plate:hskinε = as a thickness parameter (a ratio of thickness of each individual skin ply to a thicknesshcoreρcoreEcoreof a core ply), δ = as a density parameter, γ = as a stiffness parameter. Hereafter,ρskinEskinsubscripts denoting parameters of skin plies are omitted. The de<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> of a sandwich plate isgoverned by two independent variables: a displacement of <str<strong>on</strong>g>the</str<strong>on</strong>g> mid-surface of <str<strong>on</strong>g>the</str<strong>on</strong>g> whole elementw (which are <str<strong>on</strong>g>the</str<strong>on</strong>g> same <str<strong>on</strong>g>for</str<strong>on</strong>g> all plies) and a shear angle between <str<strong>on</strong>g>the</str<strong>on</strong>g> mid-surfaces of skin plies θ .Moti<strong>on</strong> of a plate with heavy fluid loading is governed by <str<strong>on</strong>g>the</str<strong>on</strong>g> following equati<strong>on</strong>s [2]:4 2 2 4∂ w ∂θ∂ w ∂ w ∂ w∂τzxD1 −Γ ( + ) + M − I4 2 2 1=− σ2 2 xx+ N1(9)∂x ∂x ∂x ∂t ∂x ∂t ∂x2 2∂ θ ∂w∂ θ− D2 +Γ ( θ + ) + I2 2=−N 2 1τzx(10)∂x ∂x ∂t162


Formulas <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> elastic parameters in Eqs. (9-10) are quite cumbersome. They are presented inreference [3].Dynamics of <str<strong>on</strong>g>the</str<strong>on</strong>g> fluid is governed by Eqs. (4-5) and (7-8), with c<strong>on</strong>tinuity c<strong>on</strong>diti<strong>on</strong>s at <str<strong>on</strong>g>the</str<strong>on</strong>g> fluidstructureinterface written as:2⎧ ∂ϕ ∂ψ ⎛ ∂ w ∂θ⎞vx= + = N1⎜ + ⎟⎪ ∂x ∂z ∂t∂x∂t⎨⎝ ⎠ (11)⎪ ∂ϕ∂ψ∂w⎪vz= − =⎩ ∂z ∂x ∂tThe sec<strong>on</strong>d pair of c<strong>on</strong>diti<strong>on</strong>s at <str<strong>on</strong>g>the</str<strong>on</strong>g> rigid ‘bottom’ is:⎧ ∂ϕ∂ψvx= + = 0⎪ ∂x∂z⎨(12)⎪ ∂ϕ∂ψvz= − = 0⎪⎩∂z∂xThe problem in free wave propagati<strong>on</strong> is solved and <str<strong>on</strong>g>the</str<strong>on</strong>g> dispersi<strong>on</strong> equati<strong>on</strong> is derived. Thisequati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g>mulates a relati<strong>on</strong> between K= kH andωHΩ= . Due to <str<strong>on</strong>g>the</str<strong>on</strong>g> viscosity of a fluid,call wave numbers K acquire a real part, which characterizes <str<strong>on</strong>g>the</str<strong>on</strong>g> rate of decay of ‘almost’propagating waves.Numerical examplesA water-loaded sandwich plate is c<strong>on</strong>sidered and <str<strong>on</strong>g>the</str<strong>on</strong>g> depth of its layer is characterized by <str<strong>on</strong>g>the</str<strong>on</strong>g>Hratio χ = (<str<strong>on</strong>g>the</str<strong>on</strong>g> depth parameter). Let a free incident wave have <str<strong>on</strong>g>the</str<strong>on</strong>g> amplitude . As ith skinAout⎛ L ⎞passes al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> plate, it’s amplitude decreases to Aout, <str<strong>on</strong>g>the</str<strong>on</strong>g>n: ~ exp⎜Re K ⎟ , Re K < 0 .Ain⎝ H ⎠Hence, wave attenuati<strong>on</strong> is quantified by <str<strong>on</strong>g>the</str<strong>on</strong>g> real part of K . In Figures 1-3, <str<strong>on</strong>g>the</str<strong>on</strong>g> followingnotati<strong>on</strong>s are used: Curves A – <str<strong>on</strong>g>the</str<strong>on</strong>g> structure-originated flexural modes, B – <str<strong>on</strong>g>the</str<strong>on</strong>g> structureoriginatedshear modes, C – <str<strong>on</strong>g>the</str<strong>on</strong>g> first fluid-originated modes, D – <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d fluid-originatedmodes.flA inFigure 1Curves denoted by dots corresp<strong>on</strong>d to χ = 10 , by boxes to χ = 20 and by daggers to χ = 30 inFigure 1. O<str<strong>on</strong>g>the</str<strong>on</strong>g>r parameters are ε = 0.25 , γ = 0.0001, δ = 0. 1. Depth parameter χ has a163


significant influence <strong>on</strong> attenuati<strong>on</strong> of structure-originated mode (an increase in χ , whichcorresp<strong>on</strong>ds to a decrease in plate’s thickness, leads to more intensive attenuati<strong>on</strong>). However, ithas a weaker influence <strong>on</strong> attenuati<strong>on</strong> of fluid-originated modes.Figure 2In Figure 2, curves denoted by dots corresp<strong>on</strong>d to ε = 0.15 , by boxes to ε = 0.25 and bydaggers to ε = 1. O<str<strong>on</strong>g>the</str<strong>on</strong>g>r parameters are χ = 20 , γ = 0.0001, δ = 0. 1. The thickness parameterhas <str<strong>on</strong>g>the</str<strong>on</strong>g> str<strong>on</strong>gest influence <strong>on</strong> structure-originated shear modes.Figure 3In Figure 3, curves denoted by dots corresp<strong>on</strong>d to γ = 0.0001, by boxes to γ = 0.0005 and bydaggers to γ = 0.0025 . O<str<strong>on</strong>g>the</str<strong>on</strong>g>r parameters are χ = 20 , ε = 0.25 , δ = 0. 1. The influence of thisparameters is relatively weak.C<strong>on</strong>cluding remarksThe reported results suggest that <str<strong>on</strong>g>the</str<strong>on</strong>g> attenuati<strong>on</strong> of waves in fluid-loaded sandwich plates due tofluid’s viscosity may be ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r large (even <str<strong>on</strong>g>for</str<strong>on</strong>g> plates in water) and this effect is str<strong>on</strong>gly ‘modedependent’.References[1] A.N. Guz. Dynamics of solid bodies in a compressible viscous fluid at rest Prikladnaya Mekhanika <str<strong>on</strong>g>18</str<strong>on</strong>g>,3-22, (1981)[2] S.V. Sorokin. Analysis of wave propagati<strong>on</strong> in sandwich plates with and without heavy fluid loading,Journal of Sound and Vibrati<strong>on</strong>, 271(3), 1039-1062, (2004)[3] A.V. Chubinskij, S.V. Sorokin Wave propagati<strong>on</strong> in a sandwich plate loaded by a viscous compressiblefluid In O.T. Thomsen et al.., editors, Sandwich Structures 7: Advancing with Sandwich Structures andMaterials, pages 605-615, Springer, (2005)164


Flexibility Evaluati<strong>on</strong> of Prestressed KinematicallyIndeterminate FrameworksA. Gunnar TibertKTH MechanicsRoyal Institute of Technology, Stockholm, Swedene–mail: gunnar.tibert@mech.kth.seSummary The recent interest in tensegrity structures <str<strong>on</strong>g>for</str<strong>on</strong>g> various applicati<strong>on</strong>s has increased <str<strong>on</strong>g>the</str<strong>on</strong>g> need <str<strong>on</strong>g>for</str<strong>on</strong>g>simple and robust analysis methods. This work presents a method, which is closely c<strong>on</strong>nected to <str<strong>on</strong>g>the</str<strong>on</strong>g> generalisedMaxwell’s rule, <str<strong>on</strong>g>for</str<strong>on</strong>g> evaluating <str<strong>on</strong>g>the</str<strong>on</strong>g> softening effect due to all internal mechanisms in a prestressed,kinematic indeterminate assembly.Introducti<strong>on</strong>The recent interest <str<strong>on</strong>g>for</str<strong>on</strong>g> tensegrity structures in <strong>mechanics</strong> and biology has increased <str<strong>on</strong>g>the</str<strong>on</strong>g> research <strong>on</strong>simple and robust analysis methods [3, 4]. The present work follows <str<strong>on</strong>g>the</str<strong>on</strong>g> work <strong>on</strong> distributed staticindeterminacy, [8], which can be used to investigate <str<strong>on</strong>g>the</str<strong>on</strong>g> influence of element length imperfecti<strong>on</strong>s<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> prestress. First, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>necti<strong>on</strong> between <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>ce density, <str<strong>on</strong>g>for</str<strong>on</strong>g>ce and finite element methodsis outlined. Then, two methods <str<strong>on</strong>g>for</str<strong>on</strong>g> evaluating <str<strong>on</strong>g>the</str<strong>on</strong>g> softening effect of <str<strong>on</strong>g>the</str<strong>on</strong>g> internal mechanism aredescribed.Relati<strong>on</strong>ships between equilibrium matrices and <str<strong>on</strong>g>the</str<strong>on</strong>g> tangent stiffness matrixC<strong>on</strong>sider a general three-dimensi<strong>on</strong>al pin-jointed assembly with b bars, j joints and c kinematicc<strong>on</strong>straints. The static and kinematic properties are described by <str<strong>on</strong>g>the</str<strong>on</strong>g> generalised Maxwell’s rule[2]:3j − b − c = m − s (1)where m is <str<strong>on</strong>g>the</str<strong>on</strong>g> number of mechanisms (rigid body or internal) and s <str<strong>on</strong>g>the</str<strong>on</strong>g> number of states ofself-stress.Force density method versus <str<strong>on</strong>g>for</str<strong>on</strong>g>ce methodThe equilibrium equati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> x-directi<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> a node i where three bars meet isq ih (x i − x h )+q ij (x i − x j )+q ik (x i − x k )=f ix (2)where q = t/l is <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>ce density or tensi<strong>on</strong> coefficient <str<strong>on</strong>g>for</str<strong>on</strong>g> each bar. In <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>ce density <str<strong>on</strong>g>for</str<strong>on</strong>g>mulati<strong>on</strong>,<str<strong>on</strong>g>the</str<strong>on</strong>g> nodal coordinates are <str<strong>on</strong>g>the</str<strong>on</strong>g> unknowns:⎛⎜(−q ih q ih + q ij + q ik −q ij −q ik ) ⎝whereas in <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>ce method it is <str<strong>on</strong>g>the</str<strong>on</strong>g> element <str<strong>on</strong>g>for</str<strong>on</strong>g>ces that are <str<strong>on</strong>g>the</str<strong>on</strong>g> unknowns:(xi − x h x i − x jl ijl ihx i − x kl ik⎞x hx i ⎟x⎠ = f ix (3)jx k) ( )t iht ij = f ix (4)t ikThe c<strong>on</strong>nectivity <str<strong>on</strong>g>for</str<strong>on</strong>g> a pin-jointed assembly is written as a b × j c<strong>on</strong>nectivity matrix C. For a barn which c<strong>on</strong>nects nodes i and j:⎧⎨+1 <str<strong>on</strong>g>for</str<strong>on</strong>g> p = i,C n,p = −1 <str<strong>on</strong>g>for</str<strong>on</strong>g> p = j,(5)⎩0 o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise.165


Force density matrixFor a complete assembly, <str<strong>on</strong>g>the</str<strong>on</strong>g> equilibrium equati<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> x-directi<strong>on</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g> nodal coordinatesas unknowns areDx = f x (6)where D = C T QC and Q = diag(q). Equati<strong>on</strong>s identical in <str<strong>on</strong>g>for</str<strong>on</strong>g>m to (6) can be written in termsof <str<strong>on</strong>g>the</str<strong>on</strong>g> y- and z-directi<strong>on</strong>s.Equilibrium matrixIf <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>ces are <str<strong>on</strong>g>the</str<strong>on</strong>g> unknowns <str<strong>on</strong>g>the</str<strong>on</strong>g> equilibrium equati<strong>on</strong>s is written asHt = f (7)where <str<strong>on</strong>g>the</str<strong>on</strong>g> equilibrium matrix is c<strong>on</strong>veniently <str<strong>on</strong>g>for</str<strong>on</strong>g>med as [6]:⎡⎤H = ⎣ CT diag(Cx)L −1C T diag(Cy)L −1 ⎦ (8)C T diag(Cz)L −1The nullspace of H c<strong>on</strong>tains <str<strong>on</strong>g>the</str<strong>on</strong>g> states of self-stress and its left nullspace c<strong>on</strong>tains <str<strong>on</strong>g>the</str<strong>on</strong>g> mechanisms.Tangent stiffness matrixThe previous equilibrium <str<strong>on</strong>g>for</str<strong>on</strong>g>mulati<strong>on</strong>s <strong>on</strong>ly include <str<strong>on</strong>g>the</str<strong>on</strong>g> geometry of <str<strong>on</strong>g>the</str<strong>on</strong>g> framework and not <str<strong>on</strong>g>the</str<strong>on</strong>g>material properties. The equilibrium equati<strong>on</strong>s in a finite element setting is written asKd = f (9)where <str<strong>on</strong>g>the</str<strong>on</strong>g> tangent stiffness matrix K is composed of <str<strong>on</strong>g>the</str<strong>on</strong>g> elastic and geometric stiffness matrices,which <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pin-jointed assembly is written as [7, 4]:K = } H ˜ΦH {{ T} + I 3 ⊗ D(10)} {{ }K E K GNote that <str<strong>on</strong>g>the</str<strong>on</strong>g> diag<strong>on</strong>al matrix ˜Φ c<strong>on</strong>tains <str<strong>on</strong>g>the</str<strong>on</strong>g> modified axial stiffness of <str<strong>on</strong>g>the</str<strong>on</strong>g> bars. For bar i withcross-secti<strong>on</strong>al area a i , modulus of elasticity e i and unstrained length l 0,i , <str<strong>on</strong>g>the</str<strong>on</strong>g> modified axialstiffness is [1, 4]˜φ ii = a ie i= a (ie i1 − l )i − l 0,i= a ie i− t i(11)l i l 0,i l i l 0,i l iwhich <str<strong>on</strong>g>for</str<strong>on</strong>g> normal c<strong>on</strong>structi<strong>on</strong> materials is <strong>on</strong>ly little different from <str<strong>on</strong>g>the</str<strong>on</strong>g> normal axial stiffnessa i e i /l i .Evaluati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> flexibility of kinematic indeterminate assembliesThe bases <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mechanisms can be found from <str<strong>on</strong>g>the</str<strong>on</strong>g> singular value decompositi<strong>on</strong> of H, asillustrated in [5] and collected in <str<strong>on</strong>g>the</str<strong>on</strong>g> 3j − c × m matrix M. Certain frameworks, e.g. cable netsand tensegrity structures, have several internal mechanisms. By plotting each mechanism, <str<strong>on</strong>g>the</str<strong>on</strong>g>individual softening influence can be evaluated, but <str<strong>on</strong>g>the</str<strong>on</strong>g> accumulated influence of all mechanismsis difficult to estimate from <str<strong>on</strong>g>the</str<strong>on</strong>g>se plot. There<str<strong>on</strong>g>for</str<strong>on</strong>g>e, a simple method is proposed, in which <str<strong>on</strong>g>the</str<strong>on</strong>g>flexibility of each node due to <str<strong>on</strong>g>the</str<strong>on</strong>g> internal mechanisms is indicated by a single number.166


Elastic and geometric redundancyStröbel [7] introduced a method with elastic and geometric redundancies <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> elements to evaluate<str<strong>on</strong>g>the</str<strong>on</strong>g> flexibility and stability of prestressed kinematically indeterminate structures. In his method<str<strong>on</strong>g>the</str<strong>on</strong>g> total indeterminacy of <str<strong>on</strong>g>the</str<strong>on</strong>g> system is <str<strong>on</strong>g>the</str<strong>on</strong>g> sum of <str<strong>on</strong>g>the</str<strong>on</strong>g> elastic and geometric redundancies [7, 9]:r = r el + r geo =4b + c − 3j (12)The geometric stiffness matrix K G adds three stiffness parameters in <str<strong>on</strong>g>the</str<strong>on</strong>g> x-, y- and z-directi<strong>on</strong>sto <str<strong>on</strong>g>the</str<strong>on</strong>g> elastic stiffness matrix, <strong>on</strong> which <str<strong>on</strong>g>the</str<strong>on</strong>g> generalised Maxwell’s rule was based. For a singleelement, a geometric redundancy equals to 3 means that <str<strong>on</strong>g>the</str<strong>on</strong>g> element is stable without <str<strong>on</strong>g>the</str<strong>on</strong>g> influenceof <str<strong>on</strong>g>the</str<strong>on</strong>g> geometric stiffness. A value lower than 3 describes <str<strong>on</strong>g>the</str<strong>on</strong>g> part of <str<strong>on</strong>g>the</str<strong>on</strong>g> geometric stiffnessnecessary <str<strong>on</strong>g>for</str<strong>on</strong>g> stabilisati<strong>on</strong> and a value higher than 3 indicates that <str<strong>on</strong>g>the</str<strong>on</strong>g> element is unstable and hasto be stabilised by o<str<strong>on</strong>g>the</str<strong>on</strong>g>r elements. In this method a distincti<strong>on</strong> is made between compressi<strong>on</strong> andtensi<strong>on</strong> elements as <str<strong>on</strong>g>the</str<strong>on</strong>g> latter is more stable.Distributed kinematic indeterminacyThe approach by Ströbel [7] is interesting as <str<strong>on</strong>g>the</str<strong>on</strong>g> effects of <str<strong>on</strong>g>the</str<strong>on</strong>g> elastic and geometric stiffness canbe assigned to each member by two numbers. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> redundancy factors are difficult tointerpret as <str<strong>on</strong>g>the</str<strong>on</strong>g>y are not directly c<strong>on</strong>nected to a new counting rule, Eq. (12), and not <str<strong>on</strong>g>the</str<strong>on</strong>g> widelyused generalised Maxwell’s rule, Eq. (1). The method proposed in this work is directly c<strong>on</strong>nectedto <str<strong>on</strong>g>the</str<strong>on</strong>g> generalised Maxwell’s rule and previous work <strong>on</strong> statically and kinematically indeterminatestructures, e.g. [5].Similar to <str<strong>on</strong>g>the</str<strong>on</strong>g> distributi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> static indeterminacy s over <str<strong>on</strong>g>the</str<strong>on</strong>g> elements <str<strong>on</strong>g>for</str<strong>on</strong>g> kinematically indeterminateframeworks [8], <str<strong>on</strong>g>the</str<strong>on</strong>g> kinematic indeterminacy m may be distributed over <str<strong>on</strong>g>the</str<strong>on</strong>g> nodes. InFigure 1, a tensegrity simplex with quadratic base is shown. If all <str<strong>on</strong>g>the</str<strong>on</strong>g> base nodes are fully fixedc =12, <str<strong>on</strong>g>the</str<strong>on</strong>g> kinematic indeterminacy m =1is evenly distributed over <str<strong>on</strong>g>the</str<strong>on</strong>g> free nodes, Figure1(a). If, however, <str<strong>on</strong>g>the</str<strong>on</strong>g> minimum six degrees of freedom is fixed such that <str<strong>on</strong>g>the</str<strong>on</strong>g> rigid body modesdisappear, m =3is distributed over <str<strong>on</strong>g>the</str<strong>on</strong>g> nodes as shown in Figure 1(b).0.250.250.51.11330.250.300900.2500.08580000.585800.4142(a)(b)Figure 1: Distributi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> kinematic indeterminacy m <str<strong>on</strong>g>for</str<strong>on</strong>g> a tensegrity simplex with square base: (a)m =1(c = 12) and (b) m =3(c =6).C<strong>on</strong>clusi<strong>on</strong>sIt has been shown that <str<strong>on</strong>g>the</str<strong>on</strong>g> equilibrium matrix of <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>ce method is used to create <str<strong>on</strong>g>the</str<strong>on</strong>g> elasticstiffness matrix whereas <str<strong>on</strong>g>the</str<strong>on</strong>g> equilibrium matrix of <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>ce density method is used to create <str<strong>on</strong>g>the</str<strong>on</strong>g>167


geometrical stiffness matrix. The degree of kinematic indeterminacy may be distributed over allnodes and used as an indicator <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> flexibility of <str<strong>on</strong>g>the</str<strong>on</strong>g> each node due to all internal mechanisms.AcknowledgementSupport from <str<strong>on</strong>g>the</str<strong>on</strong>g> Swedish Research Council (c<strong>on</strong>tract 2002-5688) is gratefully acknowledged.Special thanks to Giovani Gomez Estrada <str<strong>on</strong>g>for</str<strong>on</strong>g> fruitful discussi<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> stability of tensegritystructures.References[1] J. H. Argyris and D. W. Scharpf. Large deflecti<strong>on</strong> analysis of prestressed networks. J. Struct. Div.,ASCE, 98, 633–654, (1972).[2] C. R. Calladine Buckminster Fuller’s “tensegrity” structures and Clerk Maxwell’s rules <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>structi<strong>on</strong>of stiff frames. Int. J. Solids Structures, 14, 161–172, (1978).[3] G. Gomez Estrada, H.-J. Bungartz, C. Mohrdieck. Numerical <str<strong>on</strong>g>for</str<strong>on</strong>g>m-finding of 2D tensegrity structures.IASS/IACM 2005—The 5th Internati<strong>on</strong>al C<strong>on</strong>ference <strong>on</strong> Computati<strong>on</strong> of Shell and SpatialStructures, Salzburg, Austria, June 1–4, (2005).[4] S. Guest. The stiffness of prestressed frameworks: a unifying approach. Int. J. Solids Structures, Inpress, (2005).[5] S. Pellegrino. Structural computati<strong>on</strong>s with <str<strong>on</strong>g>the</str<strong>on</strong>g> singular value decompositi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> equilibriummatrix. Int. J. Solids Structures, 30, 3025–3035, (1993).[6] H.-J. Schek. The <str<strong>on</strong>g>for</str<strong>on</strong>g>ce density method <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>m finding and computati<strong>on</strong> of general networks. Comput.Methods Appl. Mech. Engrg., 3, 115–134, (1974).[7] D. Ströbel. Die Anwendung der Ausgleichungsrechnung auf elastomechanische Systeme. Dissertati<strong>on</strong>,Deutsche Geodätische Kommissi<strong>on</strong> bei der Bayerischen Akademie der Wissenschaften, Reihe C, Heft478, München, (1997).[8] A. G. Tibert. Distributed indeterminacy in frameworks. IASS/IACM 2005—The 5th Internati<strong>on</strong>alC<strong>on</strong>ference <strong>on</strong> Computati<strong>on</strong> of Shell and Spatial Structures, Salzburg, Austria, June 1–4, (2005).[9] R. Wagner. The virtual world of “tensi<strong>on</strong>al integrity”. Textile Roofs 2001—The 6th Internati<strong>on</strong>alWorkshop <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Design and Practical Realisati<strong>on</strong> of Architectural Membrane Structures, Berlin,June 14–16, (2001).168


On shape sensitivity analysis with unstructured gridsJukka I. ToivanenDepartment of Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical In<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> TechnologyUniversity of Jyväskylä, Jyväskylä, Finlande-mail: jitoivan@cc.jyu.fiSummary A simple methodology that enables exact shape sensitivity analysis with unstructured meshesis presented. Method does not involve finite differencing or differentiati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> mesh generator, but isbased <strong>on</strong> de<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> of an existing mesh with <str<strong>on</strong>g>the</str<strong>on</strong>g> aid of <str<strong>on</strong>g>the</str<strong>on</strong>g> discretized Laplace equati<strong>on</strong>.Introducti<strong>on</strong>Design sensitivity analysis is an important step in gradient-based shape optimizati<strong>on</strong> [2, 3]. With<str<strong>on</strong>g>the</str<strong>on</strong>g> aid of automatic differentiati<strong>on</strong>, gradients of highly n<strong>on</strong>linear cost functi<strong>on</strong>als can be computedexactly up to numerical precisi<strong>on</strong>.The cost functi<strong>on</strong>al to be differentiated is typically implicit functi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trol variables:J (α) = J(α, u(α)). Here α is a vector of c<strong>on</strong>trol variables and u(α) =: u is <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong> to<str<strong>on</strong>g>the</str<strong>on</strong>g> set of algebraic equati<strong>on</strong>s arising from <str<strong>on</strong>g>the</str<strong>on</strong>g> finite element discretizati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> state equati<strong>on</strong>r(α, u(α)) = 0.In <str<strong>on</strong>g>the</str<strong>on</strong>g> classical adjoint method of <str<strong>on</strong>g>the</str<strong>on</strong>g> optimal c<strong>on</strong>trol <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>the</str<strong>on</strong>g> sensitivity is computed from∂J (α) ∂J(α, u) T ∂r(α, u)= − λ , (1)∂α k ∂α k ∂α kwhere λ is soluti<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> adjoint equati<strong>on</strong>( ) ∂r(α, u) Tλ = ∇ u J(α, u). (2)∂uIn this method, we need derivatives of <str<strong>on</strong>g>for</str<strong>on</strong>g>m ∂f/∂α k with f being r or J. It is generally notfeasible to write <str<strong>on</strong>g>the</str<strong>on</strong>g>se terms as explicit functi<strong>on</strong>s of <str<strong>on</strong>g>the</str<strong>on</strong>g> design variables, since such expressi<strong>on</strong>swould be very specific and complex. Assuming f depends <strong>on</strong> α k <strong>on</strong>ly through <str<strong>on</strong>g>the</str<strong>on</strong>g> variati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g>computati<strong>on</strong>al domain, those derivatives can be <str<strong>on</strong>g>for</str<strong>on</strong>g>mally written as∂f= ∂f ∂X, (3)∂α k ∂X ∂α kwhere X represents <str<strong>on</strong>g>the</str<strong>on</strong>g> mesh nodal co-ordinates. This <str<strong>on</strong>g>for</str<strong>on</strong>g>m is more useful in practice, sincecomputati<strong>on</strong> of ∂f/∂X can be implemented so that <str<strong>on</strong>g>the</str<strong>on</strong>g> resulting code is independent of shape andmesh parameterizati<strong>on</strong>. For details, see <str<strong>on</strong>g>for</str<strong>on</strong>g> example [3].The computati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> nodal sensitivities is sometimes c<strong>on</strong>sidered as <str<strong>on</strong>g>the</str<strong>on</strong>g> resp<strong>on</strong>sibility of <str<strong>on</strong>g>the</str<strong>on</strong>g>mesh generator [5]. But with unstructured meshes, <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists no algebraic rule <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> meshnode locati<strong>on</strong>s. Mesh generators can in principle be differentiated with an automatic differentiatorsuch as ADIFOR [1], but many unstructured mesh generati<strong>on</strong> methods include iterative proceduresin which nodes are added, relocated and removed, which makes <str<strong>on</strong>g>the</str<strong>on</strong>g> nodal co-ordinate dependence<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> design n<strong>on</strong>-smooth or even disc<strong>on</strong>tinuous. There<str<strong>on</strong>g>for</str<strong>on</strong>g>e, automatic differentiati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> meshgenerator will result in <strong>on</strong>ly <strong>on</strong>e-sided derivatives, which are of limited practical value.169


Computati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> mesh sensitivitiesShape optimizati<strong>on</strong> cycle can include a series of relatively small changes in <str<strong>on</strong>g>the</str<strong>on</strong>g> design. We would<str<strong>on</strong>g>the</str<strong>on</strong>g>re<str<strong>on</strong>g>for</str<strong>on</strong>g>e like to avoid remeshing of <str<strong>on</strong>g>the</str<strong>on</strong>g> whole domain in every optimizati<strong>on</strong> step, but instead <strong>on</strong>lyde<str<strong>on</strong>g>for</str<strong>on</strong>g>m <str<strong>on</strong>g>the</str<strong>on</strong>g> existing mesh. The Laplace equati<strong>on</strong> ∆v = 0 is widely used <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mesh de<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>[5]. With this equati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is no coupling of <str<strong>on</strong>g>the</str<strong>on</strong>g> de<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> in different directi<strong>on</strong>s, and we canthus look at <str<strong>on</strong>g>the</str<strong>on</strong>g> computati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> de<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> field in <strong>on</strong>e directi<strong>on</strong>.Discrete <str<strong>on</strong>g>for</str<strong>on</strong>g>m of <str<strong>on</strong>g>the</str<strong>on</strong>g> equati<strong>on</strong> is Av = b, where( ) ( I 0vbA =, b =A 21 A 22 0). (4)Here we assume that Dirichlet boundary c<strong>on</strong>diti<strong>on</strong> is specified <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> whole boundary, and v bincludes <str<strong>on</strong>g>the</str<strong>on</strong>g> boundary values.To obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> de<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> domain, we simply set v b to be <str<strong>on</strong>g>the</str<strong>on</strong>g> boundary de<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> andsolve <str<strong>on</strong>g>for</str<strong>on</strong>g> v. The nodal sensitivity ∂X/∂α k can now be obtained by using <str<strong>on</strong>g>the</str<strong>on</strong>g> same equati<strong>on</strong> withv b being <str<strong>on</strong>g>the</str<strong>on</strong>g> sensitivity of <str<strong>on</strong>g>the</str<strong>on</strong>g> boundary nodes ∂X b /∂α k . This can be seen in <str<strong>on</strong>g>the</str<strong>on</strong>g> following way:The equati<strong>on</strong> can also be written as v = Lv b where L is a linear trans<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> whose matrix is<str<strong>on</strong>g>for</str<strong>on</strong>g>med out of <str<strong>on</strong>g>the</str<strong>on</strong>g> columns of A −1 that corresp<strong>on</strong>d to <str<strong>on</strong>g>the</str<strong>on</strong>g> boundary nodes. The mesh co-ordinatesX = (X 1 , . . . , X N ) can <str<strong>on</strong>g>the</str<strong>on</strong>g>re<str<strong>on</strong>g>for</str<strong>on</strong>g>e be presented in a <str<strong>on</strong>g>for</str<strong>on</strong>g>mX i = X i,0 + L(X b i (α) − X b i (α 0 )) (5)where X i,0 are <str<strong>on</strong>g>the</str<strong>on</strong>g> initial co-ordinates, Xib are <str<strong>on</strong>g>the</str<strong>on</strong>g> boundary co-ordinates and α 0 is <str<strong>on</strong>g>the</str<strong>on</strong>g> initialdesign. From this we can obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> required sensitivities∂X i∂α k= L ∂Xb i∂α k. (6)which is equivalent with solving <str<strong>on</strong>g>the</str<strong>on</strong>g> system Av = b with v b being ∂X b /∂α k .Notice, that <str<strong>on</strong>g>the</str<strong>on</strong>g> matrix A stays <str<strong>on</strong>g>the</str<strong>on</strong>g> same through <str<strong>on</strong>g>the</str<strong>on</strong>g> whole sensitivity analysis, and <str<strong>on</strong>g>the</str<strong>on</strong>g>re<str<strong>on</strong>g>for</str<strong>on</strong>g>e itsdecompositi<strong>on</strong> has to be d<strong>on</strong>e <strong>on</strong>ly <strong>on</strong>ce, no matter how many design variables we have.Test problem: fluid flow c<strong>on</strong>trolThe presented approach is dem<strong>on</strong>strated with <str<strong>on</strong>g>the</str<strong>on</strong>g> following fluid flow c<strong>on</strong>trol problem. We havea channel with fixed inlet height and inlet flow profile. Our target is to produce a given targetoutflow profile by adjusting <str<strong>on</strong>g>the</str<strong>on</strong>g> shape of <str<strong>on</strong>g>the</str<strong>on</strong>g> channel. The c<strong>on</strong>figurati<strong>on</strong> can be seen in figure 1.The channel is assumed to symmetric in <str<strong>on</strong>g>the</str<strong>on</strong>g> x 2 directi<strong>on</strong>.We used so called CAD-free parameterizati<strong>on</strong> [4] and used <str<strong>on</strong>g>the</str<strong>on</strong>g> x 2 co-ordinates of <str<strong>on</strong>g>the</str<strong>on</strong>g> nodes <strong>on</strong>Γ w as design variables. Since <str<strong>on</strong>g>the</str<strong>on</strong>g> nodes are allowed to move <strong>on</strong>ly in x 2 directi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> sensitivities∂X 1 /∂α are all zero. Sensitivities ∂X 2 /∂α are computed from (6). The required boundary sensitivities∂X b 2 /∂α k are readily obtained: Sensitivity of a node with respect to <str<strong>on</strong>g>the</str<strong>on</strong>g> design variablethat corresp<strong>on</strong>ds to <str<strong>on</strong>g>the</str<strong>on</strong>g> node itself is always <strong>on</strong>e. Sensitivities with respect to o<str<strong>on</strong>g>the</str<strong>on</strong>g>r design variablesare zero, except <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> nodes <strong>on</strong> Γ o , which have a sensitivity that is directly proporti<strong>on</strong>al to<str<strong>on</strong>g>the</str<strong>on</strong>g>ir x 2 co-ordinate with respect to <str<strong>on</strong>g>the</str<strong>on</strong>g> design variable corresp<strong>on</strong>ding to <str<strong>on</strong>g>the</str<strong>on</strong>g> node <strong>on</strong> Γ w ∩ Γ o .170


The fluid flow is governed by <str<strong>on</strong>g>the</str<strong>on</strong>g> steady state Navier-Stokes equati<strong>on</strong>s{ −∆⃗u + ∇p + ρ⃗u · ∇⃗u = 0 in Ω∇ · u = 0 in Ω.Given inlet velocity profile and <str<strong>on</strong>g>the</str<strong>on</strong>g> target outlet velocity profile have <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>m of a Poisseuille flowu ∗ 1 = 3 2 U(1 − y2 ), u ∗ 2 = 0 (8)where y = 2x 2 /h, h is <str<strong>on</strong>g>the</str<strong>on</strong>g> height of <str<strong>on</strong>g>the</str<strong>on</strong>g> channel at that point and U is <str<strong>on</strong>g>the</str<strong>on</strong>g> characteristic velocity.We wish to accelerate <str<strong>on</strong>g>the</str<strong>on</strong>g> flow so that U at <str<strong>on</strong>g>the</str<strong>on</strong>g> outlet will be double <str<strong>on</strong>g>the</str<strong>on</strong>g> U at <str<strong>on</strong>g>the</str<strong>on</strong>g> inlet.Obviously this problem is ill-c<strong>on</strong>diti<strong>on</strong>ed (ie. <str<strong>on</strong>g>the</str<strong>on</strong>g> optimum boundary may be oscillatory). We wishto have a soluti<strong>on</strong> where <str<strong>on</strong>g>the</str<strong>on</strong>g> boundary Γ w is in some sense as smooth as possible. There<str<strong>on</strong>g>for</str<strong>on</strong>g>e, weadd to <str<strong>on</strong>g>the</str<strong>on</strong>g> cost functi<strong>on</strong>al a term that penalizes <str<strong>on</strong>g>for</str<strong>on</strong>g> any n<strong>on</strong>smoothness of <str<strong>on</strong>g>the</str<strong>on</strong>g> boundary. In full <str<strong>on</strong>g>the</str<strong>on</strong>g>cost functi<strong>on</strong>al reads∫c = (w 1 (u 1 − u ∗ 1) 2 + w 2 u 2 2)ds + w 3 ||r p || 2 . (9)Γ oHere w i are <str<strong>on</strong>g>the</str<strong>on</strong>g> weighting factors and r p is <str<strong>on</strong>g>the</str<strong>on</strong>g> discrete residual of <str<strong>on</strong>g>the</str<strong>on</strong>g> expressi<strong>on</strong>where δ is <str<strong>on</strong>g>the</str<strong>on</strong>g> x 2 de<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> boundary.(7)∆δ = 0 <strong>on</strong> Γ w (10)Solver was created <strong>on</strong> Numerrin software development envir<strong>on</strong>ment 1 , which provides <str<strong>on</strong>g>the</str<strong>on</strong>g> FE routines,build-in automatic differentiati<strong>on</strong> via operator overloading, and basic optimizati<strong>on</strong> routines.We used elementwise c<strong>on</strong>stant approximati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure and rotated linear elements <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>velocity. Automatic differentiati<strong>on</strong> allowed us to use Newt<strong>on</strong> linearizati<strong>on</strong> to solve <str<strong>on</strong>g>the</str<strong>on</strong>g> state equati<strong>on</strong>efficiently. Optimizati<strong>on</strong> was d<strong>on</strong>e using sequential quadratic programming (SQP).The Reynolds number at <str<strong>on</strong>g>the</str<strong>on</strong>g> inlet was specified to be 100. We started <str<strong>on</strong>g>the</str<strong>on</strong>g> optimizati<strong>on</strong> from achannel with a rectangular profile. Final shape of <str<strong>on</strong>g>the</str<strong>on</strong>g> channel al<strong>on</strong>g with <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure c<strong>on</strong>toursand outlet velocity profile can be seen in figure 1. In figure 2 <str<strong>on</strong>g>the</str<strong>on</strong>g> velocities at <str<strong>on</strong>g>the</str<strong>on</strong>g> outlet are plotted.We can see, that <str<strong>on</strong>g>the</str<strong>on</strong>g> goals are reached very well. The final shape of <str<strong>on</strong>g>the</str<strong>on</strong>g> channel is influenced by<str<strong>on</strong>g>the</str<strong>on</strong>g> choice of <str<strong>on</strong>g>the</str<strong>on</strong>g> penalty term, which tends to minimize <str<strong>on</strong>g>the</str<strong>on</strong>g> curvature of <str<strong>on</strong>g>the</str<strong>on</strong>g> moving boundary.C<strong>on</strong>clusi<strong>on</strong>sA general methodology that enables exact sensitivity analysis in FE framework with unstructuredmeshes is presented. The mesh de<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> is d<strong>on</strong>e using <str<strong>on</strong>g>the</str<strong>on</strong>g> discretized Laplace equati<strong>on</strong>. Thisprocedure has certain limitati<strong>on</strong>s: it is found out that <str<strong>on</strong>g>the</str<strong>on</strong>g> moving boundary has to be sufficientlysmooth at all optimizati<strong>on</strong> steps to avoid inverted elements. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, <str<strong>on</strong>g>the</str<strong>on</strong>g> nodal coordinatesensitivities with respect to any kind of boundary parameterizati<strong>on</strong> can be computed,which enables <str<strong>on</strong>g>the</str<strong>on</strong>g> exact computati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> cost functi<strong>on</strong>al derivative.Use of <str<strong>on</strong>g>the</str<strong>on</strong>g> method is dem<strong>on</strong>strated with a Navier-Stokes c<strong>on</strong>trol problem using CAD-free shapeparameterizati<strong>on</strong>, which is a very general method, but may require some kind of smoothing toprevent irregularities <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> boundary [4]. Also <str<strong>on</strong>g>the</str<strong>on</strong>g> number of design variables often becomeslarge, which may result in slow c<strong>on</strong>vergence of <str<strong>on</strong>g>the</str<strong>on</strong>g> optimizati<strong>on</strong>.1 Product of Numerola Oy, see www.numerola.fi171


ΓwΓiΓoΓsFigure 1: Optimized shape, <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure c<strong>on</strong>tours, and <str<strong>on</strong>g>the</str<strong>on</strong>g> velocity field of <str<strong>on</strong>g>the</str<strong>on</strong>g> final soluti<strong>on</strong> at <str<strong>on</strong>g>the</str<strong>on</strong>g> outlet.Velocity0.000160.000140.000120.000<str<strong>on</strong>g>18</str<strong>on</strong>g>e−056e−054e−052e−050−2e−050 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1yx 1 velocityTarget x 1 velocityx 2 velocityFigure 2: Velocity comp<strong>on</strong>ents and <str<strong>on</strong>g>the</str<strong>on</strong>g> target velocity profile at <str<strong>on</strong>g>the</str<strong>on</strong>g> outlet.References[1] C. Bischof, P. Khademi, A. Mauer, and A. Carle. Adi<str<strong>on</strong>g>for</str<strong>on</strong>g> 2.0: automatic differentiati<strong>on</strong> of Fortran 77programs. IEEE Computati<strong>on</strong>al Science and Engineering, 3, <str<strong>on</strong>g>18</str<strong>on</strong>g>–32, (1996).[2] M. D. Gunzburger. Perspectives in Flow C<strong>on</strong>trol and Optimizati<strong>on</strong>. Society <str<strong>on</strong>g>for</str<strong>on</strong>g> Industrial and AppliedMa<str<strong>on</strong>g>the</str<strong>on</strong>g>matics, (2003).[3] J. Haslinger and R. A. E. Mäkinen. Introducti<strong>on</strong> to Shape Optimizati<strong>on</strong>: Theory, Approximati<strong>on</strong> andComputati<strong>on</strong>. Society <str<strong>on</strong>g>for</str<strong>on</strong>g> Industrial and Applied Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics, (2003).[4] B. Mohammadi and O. Pir<strong>on</strong>neau. Applied Shape Optimizati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> Fluids. Ox<str<strong>on</strong>g>for</str<strong>on</strong>g>d University Press,(2001).[5] J. A. Samareh. Geometry and grid/mesh generati<strong>on</strong> <str<strong>on</strong>g>issue</str<strong>on</strong>g>s <str<strong>on</strong>g>for</str<strong>on</strong>g> CFD and CSM shape optimizati<strong>on</strong>.Optimizati<strong>on</strong> and Engineering, 6, 21–32, (2005).172


Space Frame Optimizati<strong>on</strong> Using PSOJussi JalkanenInstitute of Applied Mechanics and Optimizati<strong>on</strong>Tampere University of Technology, Tampere, Finlande−mail: jussi.jalkanen@tut.fiSummary The topic of this paper is <str<strong>on</strong>g>the</str<strong>on</strong>g> discrete structural optimizati<strong>on</strong> of frames by using heuristicparticle swarm optimizati<strong>on</strong> (PSO) method. The topology and <str<strong>on</strong>g>the</str<strong>on</strong>g> shape of <str<strong>on</strong>g>the</str<strong>on</strong>g> frame are fixed and beams of<str<strong>on</strong>g>the</str<strong>on</strong>g> frame must be selected from standard RHS-secti<strong>on</strong>s. Semi-rigid beam elements are used in <str<strong>on</strong>g>the</str<strong>on</strong>g> analysis.Introducti<strong>on</strong>Tubular structures are comm<strong>on</strong> in real life and thus <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a clear need to achieve moreec<strong>on</strong>omical designs. Structural optimizati<strong>on</strong> offers a natural way to go fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r than just analyzing afew selected candidate structures by finite element method. Since <str<strong>on</strong>g>the</str<strong>on</strong>g>re is <strong>on</strong>ly a certain set ofprofiles available, it leads to n<strong>on</strong>linear c<strong>on</strong>strained discrete optimizati<strong>on</strong> problem.Discrete optimizati<strong>on</strong> problems are usually much harder to solve than <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>es that c<strong>on</strong>tain <strong>on</strong>lyc<strong>on</strong>tinuous design variables. Heuristic methods like genetic algorithms (GA) are ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r simple andvery flexible algorithms and still suitable <str<strong>on</strong>g>for</str<strong>on</strong>g> solving a variety of hard discrete or combinatorialoptimizati<strong>on</strong> problems. In this study a new populati<strong>on</strong> based heuristic method called ParticleSwarm Optimizati<strong>on</strong> (PSO) is used to improve <str<strong>on</strong>g>the</str<strong>on</strong>g> per<str<strong>on</strong>g>for</str<strong>on</strong>g>mance of tubular structures.Particle swarm optimizati<strong>on</strong>The basic idea of stochastic PSO is to model <str<strong>on</strong>g>the</str<strong>on</strong>g> social behavior of a swarm (e.g. birds or fishes) innature. A swarm of particles tries to adapt to its envir<strong>on</strong>ment by using previous knowledge based<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> experience of individual particles and <str<strong>on</strong>g>the</str<strong>on</strong>g> collective experience of <str<strong>on</strong>g>the</str<strong>on</strong>g> swarm. It is useful <str<strong>on</strong>g>for</str<strong>on</strong>g>a single member and <str<strong>on</strong>g>the</str<strong>on</strong>g> whole swarm to share all in<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> populati<strong>on</strong>.iiiIn PSO <str<strong>on</strong>g>the</str<strong>on</strong>g> new positi<strong>on</strong> xk + 1<str<strong>on</strong>g>for</str<strong>on</strong>g> particle i depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> current positi<strong>on</strong> xkand velocity vk + 1i i ixk + 1= xk+ vk + 1(1)where <str<strong>on</strong>g>the</str<strong>on</strong>g> velocity is calculated as followsiii ig iv+ 1= w v + c1r1( p − x ) + c2r2( p − x ). (2)kkipkis <str<strong>on</strong>g>the</str<strong>on</strong>g> best ever positi<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> particle i andkkso called inertia, r 1 and r 2 are uni<str<strong>on</strong>g>for</str<strong>on</strong>g>m random numbers [ ]kkgpkis <str<strong>on</strong>g>the</str<strong>on</strong>g> best ever positi<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> whole swarm. w isr r 0 ,1 and c 1 and c 2 are <str<strong>on</strong>g>the</str<strong>on</strong>g> scaling1, 2∈parameters. The value of w c<strong>on</strong>trols how widely <str<strong>on</strong>g>the</str<strong>on</strong>g> search process is d<strong>on</strong>e in <str<strong>on</strong>g>the</str<strong>on</strong>g> search space.The idea of <str<strong>on</strong>g>the</str<strong>on</strong>g> last two terms c<strong>on</strong>nected to c 1 and c 2 in <str<strong>on</strong>g>the</str<strong>on</strong>g> Eq. (2) is to direct <str<strong>on</strong>g>the</str<strong>on</strong>g> optimizati<strong>on</strong>process towards good potential areas in <str<strong>on</strong>g>the</str<strong>on</strong>g> search space. Usually 0 ,8 < w < 1, 4 and c1= c2= 2are selected. The value of w can be changed dynamically so that it is bigger during early iterati<strong>on</strong>rounds and becomes smaller later when it is time to focus <strong>on</strong> promising areas.Basically PSO is an algorithm <str<strong>on</strong>g>for</str<strong>on</strong>g> c<strong>on</strong>tinuous unc<strong>on</strong>strained optimizati<strong>on</strong> problems. Discretedesign variables can be taken into account simply rounding each design variable to closest allowedvalue in Eg. (1). C<strong>on</strong>straints can be handled by penalizing unfeasible soluti<strong>on</strong>s according to <str<strong>on</strong>g>the</str<strong>on</strong>g>unfeasibility. References [2] and [3] c<strong>on</strong>cern <str<strong>on</strong>g>the</str<strong>on</strong>g> basics of PSO.173


Semi-rigid beam elementUsually, <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sake of simplicity, <str<strong>on</strong>g>the</str<strong>on</strong>g> behavior of <str<strong>on</strong>g>the</str<strong>on</strong>g> joint in <str<strong>on</strong>g>the</str<strong>on</strong>g> frame is assumed to be perfectlyrigid or pinned. Un<str<strong>on</strong>g>for</str<strong>on</strong>g>tunately in real life this idealizati<strong>on</strong> is not true and joints are semi-rigid. Thebending moment causes some rotati<strong>on</strong>al de<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>necti<strong>on</strong>. In order to get a simplelinear analysis it is possible to assume that <str<strong>on</strong>g>the</str<strong>on</strong>g> rotati<strong>on</strong> is proporti<strong>on</strong>al to <str<strong>on</strong>g>the</str<strong>on</strong>g> bending moment.Figure 1: The semi-rigid beam element. v 1 , φ 1 , v 2 and φ 2 , are <str<strong>on</strong>g>the</str<strong>on</strong>g> node displacements.Figure 1 represent four degree of freedom plane beam element with two linear rotati<strong>on</strong>al springs atboth ends (stiffness factors are k 1 and k 2 ). The stiffness matrix, <str<strong>on</strong>g>the</str<strong>on</strong>g> mass matrix and <str<strong>on</strong>g>the</str<strong>on</strong>g> geometricstiffness matrix of element in Fig. 1 have been presented in ref. [1]. Based <strong>on</strong> [1] it isstraight<str<strong>on</strong>g>for</str<strong>on</strong>g>ward to add <str<strong>on</strong>g>the</str<strong>on</strong>g> axial degrees of freedoms and to generalize <str<strong>on</strong>g>the</str<strong>on</strong>g> study to c<strong>on</strong>cern <str<strong>on</strong>g>the</str<strong>on</strong>g> 12degrees of freedom space beam element which is <str<strong>on</strong>g>the</str<strong>on</strong>g> element type that has been used in this study.The value of rotati<strong>on</strong>al stiffness k depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> type of <str<strong>on</strong>g>the</str<strong>on</strong>g> joint and <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong>s of <str<strong>on</strong>g>the</str<strong>on</strong>g>profiles c<strong>on</strong>nected toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r. Because it is difficult to determinate <str<strong>on</strong>g>the</str<strong>on</strong>g> exact values <str<strong>on</strong>g>for</str<strong>on</strong>g> stiffnessesduring <str<strong>on</strong>g>the</str<strong>on</strong>g> optimizati<strong>on</strong> process <str<strong>on</strong>g>the</str<strong>on</strong>g> fixity factor α can be used instead of it. The fixity factor gets avalue α ∈[ 0,1 ] so that α = 0 means perfectly pinned joint and α = 1 means perfectly rigid joint.If <str<strong>on</strong>g>the</str<strong>on</strong>g> value of fixity factor α is known <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> actual rotati<strong>on</strong>al stiffness is3EIαk = ⋅(3)L 1−αwhere E is Young's module, I is <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d moment of inertia and L is <str<strong>on</strong>g>the</str<strong>on</strong>g> length of a beam.Optimizati<strong>on</strong> problemIn <str<strong>on</strong>g>the</str<strong>on</strong>g> current optimizati<strong>on</strong> problem <str<strong>on</strong>g>the</str<strong>on</strong>g> mass of <str<strong>on</strong>g>the</str<strong>on</strong>g> space frame is minimized subject to <str<strong>on</strong>g>the</str<strong>on</strong>g>displacement, strength and buckling c<strong>on</strong>straints. The profiles <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> beams should be chosen froma given selecti<strong>on</strong> of standard RHS secti<strong>on</strong>s that are put in order of magnitude in some sense.There are total n beams in <str<strong>on</strong>g>the</str<strong>on</strong>g> frame and m possible profiles <str<strong>on</strong>g>for</str<strong>on</strong>g> each beam (Fig. 2). The designx i1 K ∈ ,2, ,m represents <str<strong>on</strong>g>the</str<strong>on</strong>g> ordinal number of profile which is chosen <str<strong>on</strong>g>for</str<strong>on</strong>g> beam i.variable { }Fz20Fn= 8yx1 2 m-2 m-1 ma) b)Figure 2: a) A space frame. b) The selecti<strong>on</strong> of RHS profiles.174


In <str<strong>on</strong>g>the</str<strong>on</strong>g> standard ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical <str<strong>on</strong>g>for</str<strong>on</strong>g>m <str<strong>on</strong>g>the</str<strong>on</strong>g> optimizati<strong>on</strong> problem ismin m xgguisix∈( )bl( x) 0 i 1, , nug≤ =i ( x)Kbg( x) ≤ 0 i = 1, , ng ( x){ x , x , , x }12KnK≤ 0≤ 0i = 1,um(x) is <str<strong>on</strong>g>the</str<strong>on</strong>g> mass of <str<strong>on</strong>g>the</str<strong>on</strong>g> frame. The displacement c<strong>on</strong>straints ( x) ≤ 0iK, n. (4)g limit <str<strong>on</strong>g>the</str<strong>on</strong>g> desired nodesdisplacements to be less than <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum allowed values. The strength c<strong>on</strong>straints g ( x) ≤ 0take care that all <str<strong>on</strong>g>the</str<strong>on</strong>g> beams fulfil <str<strong>on</strong>g>the</str<strong>on</strong>g> strength requirements of Eurocode 3. The bucklingblc<strong>on</strong>straints <str<strong>on</strong>g>for</str<strong>on</strong>g> individual beams gi( x) ≤ 0 prevent beams from loosing <str<strong>on</strong>g>the</str<strong>on</strong>g>ir stability according tobgEurocode 3. The global buckling c<strong>on</strong>straint g ( x) ≤ 0 prevent <str<strong>on</strong>g>the</str<strong>on</strong>g> whole frame loosing <str<strong>on</strong>g>the</str<strong>on</strong>g>stability in <str<strong>on</strong>g>the</str<strong>on</strong>g> sense of linear stability <str<strong>on</strong>g>the</str<strong>on</strong>g>ory. n u is <str<strong>on</strong>g>the</str<strong>on</strong>g> number of displacement c<strong>on</strong>straints andnn = m is <str<strong>on</strong>g>the</str<strong>on</strong>g> number of possible candidate soluti<strong>on</strong>s.Example problemThe numerical test problem c<strong>on</strong>cerns <str<strong>on</strong>g>the</str<strong>on</strong>g> space frame of 72 beams in Fig. 3 a). The mass of <str<strong>on</strong>g>the</str<strong>on</strong>g>frame should be minimized so that <str<strong>on</strong>g>the</str<strong>on</strong>g> displacements u 1 and u 2 are less than u max = 50 mm,Eurocode 3 strength and buckling requirements which are presented in [4] are fulfilled and <str<strong>on</strong>g>the</str<strong>on</strong>g>safety factor against global buckling is at least 3. All beams should be chosen from a catalogue [4]that c<strong>on</strong>tains 53 different kind of recommended RHS profiles which all bel<strong>on</strong>g to <str<strong>on</strong>g>the</str<strong>on</strong>g> cross secti<strong>on</strong>classes 1 or 2. All columns in <str<strong>on</strong>g>the</str<strong>on</strong>g> corners of tower should have <str<strong>on</strong>g>the</str<strong>on</strong>g> same cross secti<strong>on</strong> as well asall diag<strong>on</strong>als in each floor and all horiz<strong>on</strong>tal beams in each floor. This means that <str<strong>on</strong>g>the</str<strong>on</strong>g> amount ofdesign variables is 13. Finally diag<strong>on</strong>al and horiz<strong>on</strong>tal beams can not be wider than <str<strong>on</strong>g>the</str<strong>on</strong>g> columns.There is <strong>on</strong>e 12 degrees of freedom semi-rigid space beam element per each beam in <str<strong>on</strong>g>the</str<strong>on</strong>g> FEMmodel.Columns are c<strong>on</strong>tinuous restrained beams which means that <str<strong>on</strong>g>for</str<strong>on</strong>g> all elements in columnsα = 1 . Diag<strong>on</strong>als and horiz<strong>on</strong>tal beams are c<strong>on</strong>nected to columns flexible and <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>m <str<strong>on</strong>g>the</str<strong>on</strong>g>c<strong>on</strong>stant value α = 0, 3 is used. At <str<strong>on</strong>g>the</str<strong>on</strong>g> moment all <str<strong>on</strong>g>the</str<strong>on</strong>g> strength requirements of <str<strong>on</strong>g>the</str<strong>on</strong>g> structuralhollow secti<strong>on</strong> joints are ignored.In PSO <str<strong>on</strong>g>the</str<strong>on</strong>g> size of <str<strong>on</strong>g>the</str<strong>on</strong>g> swarm will be increased by <strong>on</strong>e randomly chosen particle every time <str<strong>on</strong>g>the</str<strong>on</strong>g>best known feasible object functi<strong>on</strong> value has not improved during 5 previous iterati<strong>on</strong> rounds.However, if <str<strong>on</strong>g>the</str<strong>on</strong>g> best known object functi<strong>on</strong> value stays <str<strong>on</strong>g>the</str<strong>on</strong>g> same 20 iterati<strong>on</strong> rounds <str<strong>on</strong>g>the</str<strong>on</strong>g> increaseof swarm stops. The inertia w is changed dynamically by multiplying previous value with factor0,8 during each iterati<strong>on</strong> round. The initial swarm is selected randomly so that it includes 11feasible particles. As a result <str<strong>on</strong>g>the</str<strong>on</strong>g> average decrease of mass is presented in Fig. 3 d). The initialmass is 4541 kg, <str<strong>on</strong>g>the</str<strong>on</strong>g> mass of <str<strong>on</strong>g>the</str<strong>on</strong>g> lightest structure is 2972 kg and <str<strong>on</strong>g>the</str<strong>on</strong>g> median of mass is 3074 kg.C<strong>on</strong>clusi<strong>on</strong>In <str<strong>on</strong>g>the</str<strong>on</strong>g> discussed discrete optimizati<strong>on</strong> problem of tubular structures <str<strong>on</strong>g>the</str<strong>on</strong>g> global optimum is difficultto find in an arbitrary case. Heuristic PSO can be used to find good soluti<strong>on</strong>s that are relativelyclose to <str<strong>on</strong>g>the</str<strong>on</strong>g> global optimum. Fortunately this kind of soluti<strong>on</strong>s are good enough in manyapplicati<strong>on</strong>s and <str<strong>on</strong>g>the</str<strong>on</strong>g>re is no need to find <str<strong>on</strong>g>the</str<strong>on</strong>g> best soluti<strong>on</strong>.The example problem shows that <str<strong>on</strong>g>the</str<strong>on</strong>g> number of FEM-analysis is ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r big in structuraloptimizati<strong>on</strong> with PSO. This is typical <str<strong>on</strong>g>for</str<strong>on</strong>g> all heuristic methods. In additi<strong>on</strong>, due to <str<strong>on</strong>g>the</str<strong>on</strong>g> stochasticnature of PSO, <str<strong>on</strong>g>the</str<strong>on</strong>g>re should be several optimizati<strong>on</strong> runs in a single problem in order to getreliable results.i175


Young's module E 210 GPaPoiss<strong>on</strong>'s ratio ν 0,3density ρ 7850 kg/m 3yield limit R e 355 MPab)Swarm size 40Iterati<strong>on</strong> rounds 100Initial inertia w 0 1,4Penalty 2Scaling parameters c 1 , c 2 2c)a)d)Figure 3: a) The frame of 72 beams. b) Material data. c) Parameter values in PSO. d) The decrease of <str<strong>on</strong>g>the</str<strong>on</strong>g>mass (median) based <strong>on</strong> 10 PSO optimizati<strong>on</strong> runs.References[1] J. Jalkanen. Optimizati<strong>on</strong> of frames with semi-rigid c<strong>on</strong>necti<strong>on</strong>s using tabu search. In: K. M. Mathisen,T. Kvamsdal and K. M. Okstad (eds.) Proceedings of <str<strong>on</strong>g>the</str<strong>on</strong>g> 16 th Nordic Seminar <strong>on</strong> Computati<strong>on</strong>alMechanics, 91-94, (2003).[2] P.C. Fourie and A. A. Groenwold. The particle swarm optimizati<strong>on</strong> algorithm in size and shapeoptimizati<strong>on</strong>. Structural and Multidisciplinary Optimizati<strong>on</strong>, 23, 259-267, (2002).[3] G. Venter, and J. Sobieszczanski-Sobieski. Particle Swarm Optimizati<strong>on</strong>. AIAA Journal, Vol. 41, No 8,1583-1589, (2003).[4] Rautaruukki Met<str<strong>on</strong>g>for</str<strong>on</strong>g>m. Rautaruukin putkipalkkikäsikirja. (Design Handbook <str<strong>on</strong>g>for</str<strong>on</strong>g> Rautaruukki StructuralHollow Secti<strong>on</strong>s), (1997).176


Simulati<strong>on</strong> of Stress Adaptive B<strong>on</strong>e RemodellingBastian Ebbecke ∗ and Udo NackenhorstInstitut of Mechanics and Computati<strong>on</strong>al Mechanics IBNMUniversity of Hannover, Appelstrasse 9A, 30167 Hannovere–mail: ebbecke@ibnm.uni-hannover.deSummary Computati<strong>on</strong>al techniques <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong> of stress–adaptive b<strong>on</strong>e–remodelling have beendeveloped and applied <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> analysis of <str<strong>on</strong>g>the</str<strong>on</strong>g> bio–mechanical compatibility of hip–joint endopros<str<strong>on</strong>g>the</str<strong>on</strong>g>sis.Numerical simulati<strong>on</strong>s are in good agreement with clinical observati<strong>on</strong>s and enable parameter studies <str<strong>on</strong>g>for</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> development of optimized pros<str<strong>on</strong>g>the</str<strong>on</strong>g>sis designs.Introducti<strong>on</strong>Hip–joint endopros<str<strong>on</strong>g>the</str<strong>on</strong>g>tics has been developed to standard surgery. However, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a greatvariety of implant designs and surgery techniques and <str<strong>on</strong>g>the</str<strong>on</strong>g> questi<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> an optimal soluti<strong>on</strong> is stillnot answered yet. Probably this questi<strong>on</strong> has to be answered individually from patient to patient.Computati<strong>on</strong>al methods have been developed <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> predicti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> mechanical bio–compatibilityof endopros<str<strong>on</strong>g>the</str<strong>on</strong>g>ses. Besides <str<strong>on</strong>g>the</str<strong>on</strong>g> stress–analysis of implant and <str<strong>on</strong>g>the</str<strong>on</strong>g> b<strong>on</strong>e remodelling caused fromchanging mechanical stimulati<strong>on</strong> of b<strong>on</strong>e t<str<strong>on</strong>g>issue</str<strong>on</strong>g> is simulated. This approach enables studies of <str<strong>on</strong>g>the</str<strong>on</strong>g>bio–mechanical compatibility of different pros<str<strong>on</strong>g>the</str<strong>on</strong>g>sis designs under individual c<strong>on</strong>stituti<strong>on</strong> andmobility.Methods and materialsComputati<strong>on</strong>al methods <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong> of stress adaptive b<strong>on</strong>e remodelling are under developmentsince more than 15 years [1, 6, 9]. In this publicati<strong>on</strong> we follow up <str<strong>on</strong>g>the</str<strong>on</strong>g> previous work d<strong>on</strong>eby Nackenhorst and coworkers, <str<strong>on</strong>g>for</str<strong>on</strong>g> details it is referred to [4, 5, 8, 7]. By this approach <str<strong>on</strong>g>the</str<strong>on</strong>g> b<strong>on</strong>eis modelled in a c<strong>on</strong>tinuum sense, that means that <str<strong>on</strong>g>the</str<strong>on</strong>g> network structure of cancellous b<strong>on</strong>e in <str<strong>on</strong>g>the</str<strong>on</strong>g>proximal regi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> femur is smeared by an average mass density ϱ.Basic assumpti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory is an equati<strong>on</strong> of evoluti<strong>on</strong>˙ϱϱ 0= ˜k( ψψ ref− 1where ˜k = k/ϱ 0 has <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong> of <strong>on</strong>e over time. (1) is scaled by a reference mass–densityϱ 0 , ψ is <str<strong>on</strong>g>the</str<strong>on</strong>g> strain–energy density in <str<strong>on</strong>g>the</str<strong>on</strong>g> isotropic case and ψ ref a physiological target value.The computati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> strain–energy density distributi<strong>on</strong> is per<str<strong>on</strong>g>for</str<strong>on</strong>g>med by a linear–elastic finiteelement analysis, which is an approximate soluti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> mechanical equilibrium <str<strong>on</strong>g>for</str<strong>on</strong>g> arbitrarygeometries under c<strong>on</strong>siderati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> specific boundary c<strong>on</strong>diti<strong>on</strong>s. A standard procedure leadsto a system of linear equati<strong>on</strong>sKu = f (2)From <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> strain energy–density is derived by a simple post–processing step, i.e.)(1)ψ = 12ϱ εT Cε (3)where C is <str<strong>on</strong>g>the</str<strong>on</strong>g> elasticity–matrix and ε <str<strong>on</strong>g>the</str<strong>on</strong>g> VOIGT–representati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> linear strain tensor, whichis easily derived from <str<strong>on</strong>g>the</str<strong>on</strong>g> displacement–field computed from equati<strong>on</strong> (2).It is essential to recognize that <str<strong>on</strong>g>the</str<strong>on</strong>g> elasticity–matrix depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> spatial mass density distributi<strong>on</strong>.A c<strong>on</strong>stitutive relati<strong>on</strong> has to be stated between <str<strong>on</strong>g>the</str<strong>on</strong>g> YOUNGS–modulus E and mass–densityϱ. Within a <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic c<strong>on</strong>sistent framework a relati<strong>on</strong>EE 0=( ϱϱ 0) 2(4)177


has been proven, [7]. A n<strong>on</strong>linear problem c<strong>on</strong>sisting <str<strong>on</strong>g>the</str<strong>on</strong>g> time–discretized versi<strong>on</strong> of equati<strong>on</strong>(1), (2), (3) and (4) has to be solved.The 3D b<strong>on</strong>e is given by [12] and <str<strong>on</strong>g>the</str<strong>on</strong>g> muscle attachments can be found in [11]. To identify staticequivalent muscles and hip joint <str<strong>on</strong>g>for</str<strong>on</strong>g>ces from ct data, <str<strong>on</strong>g>the</str<strong>on</strong>g> global error∏(F)def= 1 2∑eli=1[λ i (F) − λ iopt] 2(5)has to minimized with a genetic algorithm, programmed in <str<strong>on</strong>g>the</str<strong>on</strong>g> MATLAB program code. F is <str<strong>on</strong>g>the</str<strong>on</strong>g>unknown vector of <str<strong>on</strong>g>the</str<strong>on</strong>g> muscles and hip joint <str<strong>on</strong>g>for</str<strong>on</strong>g>ces. A method <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> automatic mapping ofcomputed tomography numbers <strong>on</strong>to finite element models is necessary to solve this equati<strong>on</strong>,[10]. The soluti<strong>on</strong> of F is quite similar to <str<strong>on</strong>g>the</str<strong>on</strong>g> average of <str<strong>on</strong>g>the</str<strong>on</strong>g> measured dynamic <str<strong>on</strong>g>for</str<strong>on</strong>g>ces duringwalking and stairs climbing in [3].Figure 1: Average measured muscles and hip joint <str<strong>on</strong>g>for</str<strong>on</strong>g>ces during walking and stairsclimbing [3], (left) in comparis<strong>on</strong> with calculated <str<strong>on</strong>g>for</str<strong>on</strong>g>ces by minimizing (5), (right)Finite Element Model and validati<strong>on</strong>The first step of <str<strong>on</strong>g>the</str<strong>on</strong>g> computati<strong>on</strong> treats <str<strong>on</strong>g>the</str<strong>on</strong>g> optimizati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> boundary c<strong>on</strong>diti<strong>on</strong>s (staticallyequivalent loads) in <str<strong>on</strong>g>the</str<strong>on</strong>g> sense that a bio–mechanical equilibrium state is found <str<strong>on</strong>g>for</str<strong>on</strong>g> a physiologicallydensity distributi<strong>on</strong>. The b<strong>on</strong>e mass density distributi<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> an equilibrated femur model isdepicted in fig. 2. The comparis<strong>on</strong> with CT–data matches well. The hollow b<strong>on</strong>e as well as <str<strong>on</strong>g>the</str<strong>on</strong>g>characteristic trabecular structure of <str<strong>on</strong>g>the</str<strong>on</strong>g> cancellous proximal femur is approximated well by <str<strong>on</strong>g>the</str<strong>on</strong>g>finite element model. The medullary cavity, <str<strong>on</strong>g>the</str<strong>on</strong>g> trabecula and Ward’s triangle can be recognizedin <str<strong>on</strong>g>the</str<strong>on</strong>g> comparis<strong>on</strong>. This equilibrated model is used <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> studies <strong>on</strong> b<strong>on</strong>e remodelling causedfrom locally changed stress c<strong>on</strong>diti<strong>on</strong>s due to hip–joint endopros<str<strong>on</strong>g>the</str<strong>on</strong>g>sis.178


Figure 2: CT data set mapped <strong>on</strong> FEM mesh[10], (left) in comparis<strong>on</strong> with 3D computedmass density distributi<strong>on</strong>, (right)Figure 3: B<strong>on</strong>e remodelling caused from <str<strong>on</strong>g>the</str<strong>on</strong>g>Zweymueller–pros<str<strong>on</strong>g>the</str<strong>on</strong>g>sis.Pros<str<strong>on</strong>g>the</str<strong>on</strong>g>sis and resultsAs an example <str<strong>on</strong>g>the</str<strong>on</strong>g> b<strong>on</strong>e remodelling caused from a classical stem–pros<str<strong>on</strong>g>the</str<strong>on</strong>g>sis (Zweymueller) isshown in fig. 3. In <str<strong>on</strong>g>the</str<strong>on</strong>g> left <str<strong>on</strong>g>the</str<strong>on</strong>g> immediately post–operative state is plotted whereas in <str<strong>on</strong>g>the</str<strong>on</strong>g> right<str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>g–term bio–mechanical equilibrium state is shown. These simulati<strong>on</strong>s clearly indicate lossof b<strong>on</strong>e density e<str<strong>on</strong>g>special</str<strong>on</strong>g>ly in <str<strong>on</strong>g>the</str<strong>on</strong>g> medial cortical regi<strong>on</strong> which is in good agreement with clinicalobservati<strong>on</strong>s.These investigati<strong>on</strong>s of pros<str<strong>on</strong>g>the</str<strong>on</strong>g>sis are in close cooperati<strong>on</strong>s with <str<strong>on</strong>g>the</str<strong>on</strong>g> Medical Hight School ofHannover (MHH). A new innovative hip joint pros<str<strong>on</strong>g>the</str<strong>on</strong>g>sis is called Spir<strong>on</strong>-pros<str<strong>on</strong>g>the</str<strong>on</strong>g>sis. This pros<str<strong>on</strong>g>the</str<strong>on</strong>g>sisdeveloped in <str<strong>on</strong>g>the</str<strong>on</strong>g> year 1999 tries to avoid <str<strong>on</strong>g>the</str<strong>on</strong>g> risk of a sec<strong>on</strong>dary varizati<strong>on</strong> and to increase<str<strong>on</strong>g>the</str<strong>on</strong>g> stability [2]. At <str<strong>on</strong>g>the</str<strong>on</strong>g> development of this uncemented short-stemmed pros<str<strong>on</strong>g>the</str<strong>on</strong>g>sis attenti<strong>on</strong> wasFigure 4: radiograph in comparis<strong>on</strong> with computed mass density distributi<strong>on</strong>: Spir<strong>on</strong>Pros<str<strong>on</strong>g>the</str<strong>on</strong>g>sis, postoperativ left site, l<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g>rm effect right sitepaid <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> receipt of <str<strong>on</strong>g>the</str<strong>on</strong>g> regi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> femoral neck since this increases <str<strong>on</strong>g>the</str<strong>on</strong>g> stability in <str<strong>on</strong>g>the</str<strong>on</strong>g> primaryphase and gets a sufficient b<strong>on</strong>e stock in <str<strong>on</strong>g>the</str<strong>on</strong>g> revisi<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> a c<strong>on</strong>venti<strong>on</strong>al intramedullary pros<str<strong>on</strong>g>the</str<strong>on</strong>g>sis.Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore <str<strong>on</strong>g>the</str<strong>on</strong>g> use of <str<strong>on</strong>g>the</str<strong>on</strong>g> femoral neck should receive <str<strong>on</strong>g>the</str<strong>on</strong>g> mechanic of <str<strong>on</strong>g>the</str<strong>on</strong>g> natural joint by<str<strong>on</strong>g>the</str<strong>on</strong>g> unchanged muscular strain. The pros<str<strong>on</strong>g>the</str<strong>on</strong>g>sis is applied uncemented as a screw with c<strong>on</strong>ical179


asic body and self-tapping thread and reached by it <strong>on</strong>e c<strong>on</strong>siderable surface enlargement in <str<strong>on</strong>g>the</str<strong>on</strong>g>relatively compact volume of <str<strong>on</strong>g>the</str<strong>on</strong>g> femoral neck. By <str<strong>on</strong>g>the</str<strong>on</strong>g> sharp-edged thread <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> an osteoinducti<strong>on</strong>is reached in additi<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> titanium alloy and b<strong>on</strong>it coating. The results of <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong>are shown in fig. 4 in comparis<strong>on</strong> with radiographs. The stress-shielding in <str<strong>on</strong>g>the</str<strong>on</strong>g> area and <str<strong>on</strong>g>the</str<strong>on</strong>g> b<strong>on</strong>eresp<strong>on</strong>se at <str<strong>on</strong>g>the</str<strong>on</strong>g> lateral corticalis in <str<strong>on</strong>g>the</str<strong>on</strong>g> area of <str<strong>on</strong>g>the</str<strong>on</strong>g> end of <str<strong>on</strong>g>the</str<strong>on</strong>g> screw can be proved in <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong>and radiographs.C<strong>on</strong>clusi<strong>on</strong>sComputati<strong>on</strong>al techniques <str<strong>on</strong>g>for</str<strong>on</strong>g> qualitative analysis of b<strong>on</strong>e–remodelling are available to assist <str<strong>on</strong>g>the</str<strong>on</strong>g>surge<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g>ir choice <str<strong>on</strong>g>for</str<strong>on</strong>g> an individual pros<str<strong>on</strong>g>the</str<strong>on</strong>g>sis design. Future work will focus <strong>on</strong>to <str<strong>on</strong>g>the</str<strong>on</strong>g>development of more challenging pros<str<strong>on</strong>g>the</str<strong>on</strong>g>sis designs. Thus, metaphyseal anchored devices seemto be promising alternatives.References[1] Beaupre, G.S. and Orr, T.E. and Carter, D.R. An Approach <str<strong>on</strong>g>for</str<strong>on</strong>g> Time-Dependent B<strong>on</strong>e Modeling andRemodeling-Applicati<strong>on</strong>: A Preliminary Remodeling Simulati<strong>on</strong>. Journal of Orthopaedic Research,8, 662–670, (1990).[2] Birkenhauer, B. and Kistmacher, H. and Ries, J. K<strong>on</strong>zepte und erste klinische Ergebnisse der zementfreienSchenkelhalsschraubpro<str<strong>on</strong>g>the</str<strong>on</strong>g>se Typ Spir<strong>on</strong>. Der Orthopaede, 33, 1259-1266, (2004).[3] Duda, G. and Heller, M. and Bergmann, G. Musculoskeletal loading database: loading c<strong>on</strong>diti<strong>on</strong>s of<str<strong>on</strong>g>the</str<strong>on</strong>g> proximal femur. Theoretical Issues in Erg<strong>on</strong>omics Science, 6, 287–292, (2005).[4] Ebbecke, B. and Nackenhorst, U., Numerical Studies <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Biocompatibility of Innovative Hip-Joint-Pros<str<strong>on</strong>g>the</str<strong>on</strong>g>sis. c<strong>on</strong>ference paper, The FiniteElement Method in Biomedical Engineering, Bio<strong>mechanics</strong>and Related Fields. Ulm, 2003[5] Ebbecke, B. and Nackenhorst, U. Simulati<strong>on</strong> of stress adaptive b<strong>on</strong>e remodelling - towards an individual<str<strong>on</strong>g>the</str<strong>on</strong>g>rapy in endopros<str<strong>on</strong>g>the</str<strong>on</strong>g>tics. PAMM - Proc. in Appl. Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>m. and Mechanics. Dresden, 2004.[6] Jacobs, C.R. and Simo, J.C. and Beaupre, G.S. and Carter, D.C. Adaptive B<strong>on</strong>e Remodeling IncorporatingSimultaneous Density and Anisotropy C<strong>on</strong>siderati<strong>on</strong>s, Journal of Bio<strong>mechanics</strong>, 6, 603–613,1997.[7] Krstin, N. and Nackenhorst, U. and Lammering, R., Zur k<strong>on</strong>stitutiven Beschreibung des anisotropenbeanspruchungsadaptiven Knochenumbaus, Technische Mechanik 20, 31–40, 2000.[8] Nackenhorst, U., Numerical simulati<strong>on</strong> of stress stimulated b<strong>on</strong>e remodeling, Technische Mechanik17, 31–40, 1997.[9] Weinans, H. and Huiskes, R. and Gootenboer, H.J., The Behaviour of Adaptive B<strong>on</strong>e RemodelingSimulati<strong>on</strong> Models, Journal of Bio<strong>mechanics</strong> 25, 1425–1441, 1992.[10] Taddei, F. and Pancanti, A. and Vicec<strong>on</strong>ti, M. An improved method <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> automatic mapping ofcomputed tomography numbers <strong>on</strong>to finite element models. Medical Engineering and Physics 26,61-69, 2004.[11] Vicec<strong>on</strong>ti, M. and Ansal<strong>on</strong>i, M. and Baleani, M. and T<strong>on</strong>i, A. The muscle standardized femur. Journalof Bio<strong>mechanics</strong> 36, 145–146, 2003.[12] Vicec<strong>on</strong>ti, M. and Casali, M. and Massari, B. and Cristofolini, L. The standardized femur program.proposal <str<strong>on</strong>g>for</str<strong>on</strong>g> a reference geometry to be used <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> creati<strong>on</strong> of finite element models of <str<strong>on</strong>g>the</str<strong>on</strong>g> femur.Journal of Bio<strong>mechanics</strong> 29, 1241-1243, 1996.<str<strong>on</strong>g>18</str<strong>on</strong>g>0


Index of authorsSurname First name PageAarnes Jørg 19Bar<strong>on</strong>as Romas 63Bengz<strong>on</strong> Fredrik 47Bensow Rickard 45Brandt Tellervo 59Chubinskij A. V. 161Clausen Johan 153Damkilde Lars 153Ebbecke Bastian 177Fagerström Martin 27Formica Giovanni 37Fortino Stefania 37Freund Jouni 125 129Gärdsback Mattias 83Haatio Mika 67Hakula Harri 71Heikkola Erkki 121Hein Helle 97Herfjord Kjell 49Hertzen v<strong>on</strong> Raimo 55 139Ivanauskas Feliksas 63Jakobsen Johnny 157Jalkanen Jussi 173Johansen Le<strong>on</strong> S. 157Jorkama Marko 139Juntunen Mika 113Karjalainen Reetta 101Kippe Vegard 19Korotov Sergey 87 117Koumutsamakos Petros 9Kristensen Anders 51Krogstad Stein 19Kulys Juozas 63Kvamsdal Tr<strong>on</strong>d 49Lars<strong>on</strong> Mats 45 47Larss<strong>on</strong> Ragnar 27Lellep Jaan 33Lie Knut-Andreas 19Lund Erik 157Lyckegaard Anders 135Lyly Mikko 37 75Mönkölä Sanna 121Nackenhorst Udo 177Niemi Antti 71Niiranen Jarkko 75


Okstad Knut 49Paavilainen Jani 109Paavola Juha 125 129Pennanen Anssi 121Peräkylä Tuomas 139Pitkäranta Juhani 71 79Puman Ella 33Rossi Tuomo 121Rüter Marcus 87Saksala Timo 41Sal<strong>on</strong>en Eero-Matti 125 129Sjölind Stig-Göran 101 149Solem Sigurd 51Soomere Tarmo 31Sorokin Sergey 161Steenbock Christian 87Stenberg Rolf 75 113Strömberg Lena 105 133 143Sørli Karstein 49Thomsen Ole Thybo 157Tibert Gunnar 83 165Toivanen Jukka 169Toor Kashif 51Tuhkuri Jukka 1 109Varpasuo Pentti 91Vuotikka Antti-Jussi 149Wal<str<strong>on</strong>g>the</str<strong>on</strong>g>r Jens H<strong>on</strong>ore 9Ärölä Kilwa 55Öström John 67


List of participantsClausen Johan DenmarkJacobsen Johnny DenmarkKristensen Anders DenmarkLyckegaard Anders DenmarkWal<str<strong>on</strong>g>the</str<strong>on</strong>g>r Jens H<strong>on</strong>ore DenmarkHein Helle Est<strong>on</strong>iaLellep Jaan Est<strong>on</strong>iaSoomere Tarmo Est<strong>on</strong>iaAho Tapio FinlandÄrölä Kilwa FinlandBrandt Tellervo FinlandFreund Jouni FinlandHerzen v<strong>on</strong> Raimo FinlandJalkanen Jussi FinlandJuntunen Mika FinlandKarjalainen Reetta FinlandLaiho Antti FinlandLyly Mikko FinlandMönkölä Sanna FinlandNiemi Antti FinlandNiiranen Jarkko FinlandÖström John FinlandPaavilainen Jani FinlandPaavola Juha FinlandPeräkylä Tuomas FinlandPitkäranta Juhani FinlandSaksala Timo FinlandSal<strong>on</strong>en Heli FinlandToivanen Jukka FinlandTuhkuri Jukka FinlandVarpasuo Pentti FinlandVuotikka Antti-Jussi FinlandZuccaro Ennio FinlandBattini Jean-Marc FranceEbbecke Bastian GermanyLenhof Berndt GermanyRüter Marcus GermanyIvanauskas Feliksas LithuaniaKvamsdal Tr<strong>on</strong>d NorwayLie Knut-Andreas NorwayKorotov Sergey RussiaSorokin Sergey Russia


Bengz<strong>on</strong> Fredrik SwedenErikss<strong>on</strong> Anders SwedenHeintz Sofia SwedenLars<strong>on</strong> Mats SwedenLarss<strong>on</strong> Ragnar SwedenNurhussen Filli SwedenStrömberg Lena SwedenTibert Gunnar Sweden


Thursday 27:th October15.00-16.30 Check-in* (Helsinki)15.00-16.00 Registrati<strong>on</strong> in Olympia Terminal E.Zuccaro16.00-16.30 Check-in17.00 DEPARTURE17.00-19.00 Buffet dinner (Buffet Serenade)Friday 28:th October07.00-09.30 Breakfast (Maxim A La Carte)09.30 ARRIVAL09.45-10.00 Check-in* (Stockholm)09.45-10.00 Registrati<strong>on</strong> (Värtahamnen) E. Zuccaro10.00-10.15 Check-in10.15-10.30 Seminar opening (NSCM<str<strong>on</strong>g>18</str<strong>on</strong>g>/A)**10.30-12.00 Keynote sessi<strong>on</strong> I (NSCM<str<strong>on</strong>g>18</str<strong>on</strong>g>/A)10.30-11.15 Discrete Element Simulati<strong>on</strong>s in Ice Engineering J. Tuhkuri11.15-12.00 Numerical Simulati<strong>on</strong> of Nano-, Meso, Macro- and J.H. Wal<str<strong>on</strong>g>the</str<strong>on</strong>g>rMultiscale Fluid Dynamics12.00-13.00 Buffet lunch (Buffet Serenade)13.00-14.30 Keynote sessi<strong>on</strong> II (NSCM<str<strong>on</strong>g>18</str<strong>on</strong>g>/A)13.00-13.45 Multiscale methods <str<strong>on</strong>g>for</str<strong>on</strong>g> flow in porous media K.A. Lie13.45-14.30 Inverse Disc<strong>on</strong>tinuity Formulati<strong>on</strong> of Fracture R. Larss<strong>on</strong>14.30-15.00 Coffee break (C<strong>on</strong>ference center)15.00-15.45 Parallel sessi<strong>on</strong> I : fracture (NSCM<str<strong>on</strong>g>18</str<strong>on</strong>g>/A)15.00-15.15 Inelastic c<strong>on</strong>ical shells with cracks J. Lellep15.15-15.30 Simulati<strong>on</strong> of quasi-static crack growth by using <str<strong>on</strong>g>the</str<strong>on</strong>g> ϑ method M. Lyly15.30-15.45 Explicit FE-procedure <str<strong>on</strong>g>for</str<strong>on</strong>g> Numerical Modeling of Rock Fracture T. Saksalaunder Dynamic Indentati<strong>on</strong>15.00-15.45 Parallel sessi<strong>on</strong> I : applicati<strong>on</strong>s (NSCM<str<strong>on</strong>g>18</str<strong>on</strong>g>/B)15.00-15.15 Residual Based Approximati<strong>on</strong>s of Fine Scales in Variati<strong>on</strong>al M. Lars<strong>on</strong>Multiscale Approximati<strong>on</strong>s of Navier-Stokes Equati<strong>on</strong>s15.15-15.30 Adaptive Simulati<strong>on</strong> of Multiphysics Problems F. Bengz<strong>on</strong>15.30-15.45 Algorithms <str<strong>on</strong>g>for</str<strong>on</strong>g> fluid-structure interacti<strong>on</strong> of flow around two or T. Kvamsdalmore cylinders with large relative moti<strong>on</strong>s15.45-16.30 Keynote sessi<strong>on</strong> III (NSCM<str<strong>on</strong>g>18</str<strong>on</strong>g>/A)Less<strong>on</strong>s in wave <str<strong>on</strong>g>the</str<strong>on</strong>g>ory from <str<strong>on</strong>g>the</str<strong>on</strong>g> Indian Ocean TsunamiT. Soomereof Millennium and from <str<strong>on</strong>g>the</str<strong>on</strong>g> Baltic Sea Storm Surge of Century16.30-16.45 Break17.00 DEPARTURE16.45-<str<strong>on</strong>g>18</str<strong>on</strong>g>.00 Ordinary sessi<strong>on</strong> I : modelling (NSCM<str<strong>on</strong>g>18</str<strong>on</strong>g>/A)16.45-17.00 Finite Element analysis of jar c<strong>on</strong>necti<strong>on</strong>s: Modeling c<strong>on</strong>siderati<strong>on</strong>s A. Kristensen17.00-17.15 De<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> of a Paper Roll Loaded Against a Nip Roller K. Ärölä17.15-17.30 Comparis<strong>on</strong> between Approaches to Explicit Filtering in Large T. BrandtEddy Simulati<strong>on</strong>17.30-17.45 Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matica Modelling of Biosensors with Per<str<strong>on</strong>g>for</str<strong>on</strong>g>ated and F. IvanauskasSelective Membranes17.45-<str<strong>on</strong>g>18</str<strong>on</strong>g>.00 Modeling Aircraft Ground Behavior into a Flight Simulati<strong>on</strong> J. Öström<str<strong>on</strong>g>18</str<strong>on</strong>g>.00-19.00 Cocktail party (C<strong>on</strong>ference center)20.00-22.00 Seminar dinner (Maxim A La Carte)


Saturday 29:th October07.30-09.00 Breakfast (Maxim A La Carte)09.30 ARRIVAL***09.30-10.45 Parallel sessi<strong>on</strong> II : numerics (NSCM<str<strong>on</strong>g>18</str<strong>on</strong>g>/A)09.30-09.45 Benchmark study: MITC4-S and boundary layer-type de<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>s A. Niemi09.45-10.00 Computati<strong>on</strong>al results <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> superc<strong>on</strong>vergence and J. Niiranenpostprocessing of MITC plate elements10.00-10.15 Locking-Free Plate Elements at Free Boundary J. Pitkäranta10.15-10.30 Finding <str<strong>on</strong>g>the</str<strong>on</strong>g> most efficient rotati<strong>on</strong>-free triangular shell element G. Tibert10.30-10.45 A Posteriori Error Estimates in Linear Elastic Fracture Mechanics M. Rüterbased <strong>on</strong> Different FE-Soluti<strong>on</strong> Spaces <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Primal and <str<strong>on</strong>g>the</str<strong>on</strong>g>Dual Problem09.30-10.45 Parallel sessi<strong>on</strong> II : applicati<strong>on</strong>s (NSCM<str<strong>on</strong>g>18</str<strong>on</strong>g>/B)09.30-09.45 FPK-equati<strong>on</strong> soluti<strong>on</strong>s <str<strong>on</strong>g>for</str<strong>on</strong>g> stochastic structural resp<strong>on</strong>se P. Varpasuo09.45-10.00 The Effect of Delaminati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Natural Frequencies of <str<strong>on</strong>g>the</str<strong>on</strong>g> H. HeinComposite Beams <strong>on</strong> Two-Parameter Foundati<strong>on</strong>10.00-10.15 Fatigue life predicti<strong>on</strong> of polymer covered roll R. Karjalainen10.15-10.30 Extensi<strong>on</strong> of ASME regulatory <str<strong>on</strong>g>for</str<strong>on</strong>g> validati<strong>on</strong> of dynamical calculati<strong>on</strong> L. Strömbergwhen deviati<strong>on</strong>s in as-buildt10.30-10.45 Forces Between Joined Discrete Particles in Discrete Element Method J. Paavilainen10.45-11.00 Break11.00-11.45 Parallel sessi<strong>on</strong> III : numerics (NSCM<str<strong>on</strong>g>18</str<strong>on</strong>g>/A)11.00-11.15 A Finite Element Method <str<strong>on</strong>g>for</str<strong>on</strong>g> General Boundary C<strong>on</strong>diti<strong>on</strong> M. Juntunen11.15-11.30 New Tecnologies <str<strong>on</strong>g>for</str<strong>on</strong>g> C<strong>on</strong>trol of Local Errors in Engineering S. KorotovComputati<strong>on</strong>s by FEM11.30-11.45 Soluti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> Helmholtz equati<strong>on</strong> with c<strong>on</strong>trollability and S. Mönköläspectral element methods11.00-11.45 Parallel sessi<strong>on</strong> III : educati<strong>on</strong> (NSCM<str<strong>on</strong>g>18</str<strong>on</strong>g>/B)11.00-11.15 Vectors and tensors with matrix manipulati<strong>on</strong>s J. Freund11.15-11.30 Virtual Work, Lagranges Equati<strong>on</strong>s and Finite Elements J. Paavola11.30-11.45 Inertia and related topics of educati<strong>on</strong> in <strong>mechanics</strong> L. Strömberg11.45-12.30 Lunch (C<strong>on</strong>ference center)12.30-13.45 Parallel sessi<strong>on</strong> IV : materials (NSCM<str<strong>on</strong>g>18</str<strong>on</strong>g>/A)12.30-12.45 Stress evaluati<strong>on</strong> in sandwich structures near tri-material wedge A. Lyckegaard12.45-13.00 Identificati<strong>on</strong> of Material Parameters of a Polymer T. Peräkylä13.00-13.15 N<strong>on</strong>local plasticity model <str<strong>on</strong>g>for</str<strong>on</strong>g> fibre rein<str<strong>on</strong>g>for</str<strong>on</strong>g>ced c<strong>on</strong>crete L. Strömberg13.15-13.30 Time-Temperature Superpositi<strong>on</strong> Method <str<strong>on</strong>g>for</str<strong>on</strong>g> Polyester Resin A.-J. Vuotikka13.30-13.45 Slope safety calculati<strong>on</strong> with a n<strong>on</strong>-linear Mohr criteri<strong>on</strong> J. Clausenusing finite element method12.00-13.15 Parallel sessi<strong>on</strong> IV : applicati<strong>on</strong>s (NSCM<str<strong>on</strong>g>18</str<strong>on</strong>g>/B)12.30-12.45 Shape Optimisati<strong>on</strong> of Core Interfaces in Sandwich Structures J. Jacobsen12.45-13.00 On wave attenuati<strong>on</strong> in sandwich plates loaded by a layer of S. Sorokinviscous fluid13.00-13.15 Flexibility Evaluati<strong>on</strong> of Prestressed Kinematically Indeterminate G. TibertFrameworks13.15-13.30 On shape sensitivity analysis with unstructured grids J. Toivanen13.30-13.45 Space Frame Optimizati<strong>on</strong> Using PSO J. Jalkanen13.45-14.05 Seminar closure (NSCM<str<strong>on</strong>g>18</str<strong>on</strong>g>/A)13.45-14.00 Simulati<strong>on</strong> of Stress Adaptive B<strong>on</strong>e Remodelling B. Ebbecke14.00-14.30 Check-out (Helsinki)17.00 DEPARTURE17.00-19.00 Buffet dinner (Buffet Serenade)Sunday 30:th October07.00-09.30 Breakfast (Maxim A La Carte)09.30 ARRIVAL09.30- Check-out (Stockholm)* You may need to prove your identity (official ID-card with photograph or passport)** C<strong>on</strong>ference center (deck 6)*** Hki-Sto-Hki route participants checking-out this day should move luggages etc. to <str<strong>on</strong>g>seminar</str<strong>on</strong>g> roomNSCM<str<strong>on</strong>g>18</str<strong>on</strong>g>/A after <str<strong>on</strong>g>the</str<strong>on</strong>g> breakfast. Cabin keys will be inoperable after 10.30 <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> arrival day


OHJEITA KIRJOITTAJILLELehti julkaisee rakenteiden mekaniikkaa, maa - ja kallioperän mekaniikkaa, kiinteiden janestemäisten aineiden mekaniikkaa, lujuusoppia, rakenteiden ja k<strong>on</strong>eenosien suunnittelua jamitoitusta, rakennus - ja rakenneaineiden materiaalitekniikkaa ym. vastaavia aiheita käsitteleviäartikkeleita, lyhyitä kommentteja sekä kirjallisuuskatsauksia.Julkaistavaksi tarjottavat käsikirjoitukset tulee lähettää kahtena kappaleena ja A4-paperilletulostettuna lehden toimitussihteerille. Julkaistavien artikkeleiden maksimipituus <strong>on</strong> noin 15 sivua.Artikkelin alussa tulee olla tiivistelmä, j<strong>on</strong>ka pituus ei saa olla enempää kuin sata sanaa. Mikäliartikkeli <strong>on</strong> kirjoitettu suomen kielellä, tulee käsikirjoituksen mukana toimittaa englanninkielinentiivistelmä erillisellä paperilla. Kuvien piirrosten ja taulukoiden tulee olla sijoitettu tekstinyhteyteen. Käsikirjoituksissa sekä valmiissa artikkeleissa tulee käyttää yksinkertaista riviväliä,f<strong>on</strong>ttikokoa 12 ja mieluiten Times New Roman -f<strong>on</strong>ttia. Tiivistelmässä tulee kuitenkin käyttääriviväliä 0,80 cm. Jokaisen sivun vasempaan ja oikeaan reunaan jätetään 30 mm:n marginaali.Artikkelin nimiösivun ensimmäinen rivi aloitetaan 60 mm yläreunasta, muut sivut 35 mmyläreunasta ja viimeinen rivi lopetetaan 35 mm alareunasta. Lukujen otsikot kirjoitetaan isoillavahvennetuilla kirjaimilla ilman numerointia. Kaavat, kuvat ja taulukot numeroidaan jatkuvallanumeroinnilla. Lähdeluettel<strong>on</strong>, kuvien ja tekstin kieliasun suhteen voidaan noudattaa esimerkiksijulkaisun Tirkk<strong>on</strong>en, K., Teknisen kirjoituksen laatiminen, Suomen Teknillinen Seura STS r.y. &Teknillisten Tieteiden Akatemia, Helsinki 1987 ohjeita. Kirjoittajan tulee huolehtia siitä, etteitekijänoikeuksia rikota mahdollisten suorien lähdeaineist<strong>on</strong> lainauksien yhteydessä. Mikäliartikkeliin <strong>on</strong> otettu kuvia joistakin lähteistä, tulee kirjoittajan itse hankkia kirjallinen lupalainauksiin.Lehti julkaisee keskustelupalstallaan lyhyitä (1 -2 sivua) kirjoituksia, jotka sisältävät joko tässä taijossakin muussa alan lehdessä julkaistuihin artikkeleihin kohdistuvia mielipiteitä ja kritiikkiä taij<strong>on</strong>kin mielenkiintoisen lehden toimialaan kuuluvan teknisen menetelmän tai ratkaisun selostuksen.Artikkelien kirjoittajille lähetetään 5 ylimääräistä lehden numeroa.NOTES TO CONTRIBUTORSThe journal publishes articles, literature reviews and short notes <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical and experimentalstructural <strong>mechanics</strong>, soil and rock <strong>mechanics</strong>, c<strong>on</strong>tinuum and fluid <strong>mechanics</strong>, strength ofmaterials, design of structures and machines, structural materials, etc.Manuscripts should be submitted in duplicate <str<strong>on</strong>g>for</str<strong>on</strong>g>m to <str<strong>on</strong>g>the</str<strong>on</strong>g> secretary of <str<strong>on</strong>g>the</str<strong>on</strong>g> journal. The maximumlength of an article is about 15 pages including <str<strong>on</strong>g>the</str<strong>on</strong>g> figures, tables and list of references. The body of<str<strong>on</strong>g>the</str<strong>on</strong>g> manuscript should be preceded by an abstract of about <strong>on</strong>e hundred words. Manuscripts as wellas camera-ready papers should be printed with single line spacing <strong>on</strong> an A4 paper by using f<strong>on</strong>t size12 and preferably Times New Roman f<strong>on</strong>t. However, a 0.80 cm line spacing should be used in <str<strong>on</strong>g>the</str<strong>on</strong>g>Abstract. The top margin should be 60 mm <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> first page and 35 mm <strong>on</strong> all o<str<strong>on</strong>g>the</str<strong>on</strong>g>r pages. A 30mm left margin, a 30 mm right margin and a 35 mm bottom margin should be used. The chapterheadings should be without numbering and typed with capital letters. The <str<strong>on</strong>g>for</str<strong>on</strong>g>mulae, figures andtables should be c<strong>on</strong>secutively numbered. The authors should ensure that <str<strong>on</strong>g>the</str<strong>on</strong>g> manuscript does notinclude any material that may be subject to copyright or alternatively get a written permissi<strong>on</strong> to use<str<strong>on</strong>g>the</str<strong>on</strong>g> material subject to copyright.The journal publishes also short letters c<strong>on</strong>taining opini<strong>on</strong>s or critique <strong>on</strong> articles published in <str<strong>on</strong>g>the</str<strong>on</strong>g>journal or short letters describing a technical method or a soluti<strong>on</strong> having interest in <str<strong>on</strong>g>the</str<strong>on</strong>g> field of <str<strong>on</strong>g>the</str<strong>on</strong>g>journal. The length of <str<strong>on</strong>g>the</str<strong>on</strong>g>se letters should not exceed 2 pages.The authors will receive five copies of <str<strong>on</strong>g>the</str<strong>on</strong>g> journal free of charge.


R A K E N T E I D E N M E K A N I I K K AJOURNAL OF STRUCTURAL MECHANICSTOIMITUSBOARD OF EDITORSJUKKA TUHKURI, päätoimittajaPAAVO HASSINENSEPPO HUOVINENTUOMO KÄRNÄMAURI MÄÄTTÄNENSEPPO ORIVUORIJUHA PAAVOLAEERO-MATTI SALONENENNIO ZUCCARO, toimitussihteerieditor-in-chiefsecretaryASIANTUNTIJANEUVOSTO EDITORIAL ADVISORY BOARDJUKKA AALTO, prof.MATTI HAKALA, prof.MARKKU HEINISUO, tekn.triESKO HYTTINEN, prof.KARI IKONEN, tekn.triPAULI JUMPPANEN, tekn.triPEKKA KANERVA, prof.REIJO KOUHIA, tekn.triMARTTI MIKKOLA, prof.PENTTI MÄKELÄINEN, prof.ERKKI NIEMI, prof.HERMAN PARLAND, prof.JOUKO PELLOSNIEMI, dipl.ins.VESA PENTTALA, prof.JARI PUTTONEN, tekn.triMATTI A RANTA, prof.TAPANI RECHARDT, tekn.triOLLI SAARELA, prof.RISTO SAJANIEMI, dipl.ins.TAPIO SALMI, prof.SEPPO SALONEN, dipl.ins.ASKO SARJA, prof.ROLF STENBERG, prof.MARKKU TUOMALA, prof.PENTTI VARPASUO, tekn. triTOR-ULF WECK, prof.Hinnat: vuosikerta 12 EUR kotimaassa, ulkomaille tilattuna 38 EUR ja irt<strong>on</strong>umero 5 EUR.OSOITE: Teknillinen korkeakoulu, Rakennus- ja ympäristötekniikan osasto,Rakentajanaukio 4 A, PL 2100, 02015 TKK, puh. (09) 451 3701, telefax (09) 451 3826ADDRESS: Helsinki University of Technology, Department of Civil and Envir<strong>on</strong>mentalEngineering, Rakentajanaukio 4 A, P.O.Box 2100, FIN-02015 HUT, Finland, tel. (358-9)451 3701, telefax (358-9) 451 3826http://rmseura.tkk.fi/JulkaisijaRAKENTEIDEN MEKANIIKAN SEURA R.Y.ISSN 0783-6104PICASET OY

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!