12.07.2015 Views

Open Quantum Dynamics of Mesoscopic Bose-Einstein ... - Physics

Open Quantum Dynamics of Mesoscopic Bose-Einstein ... - Physics

Open Quantum Dynamics of Mesoscopic Bose-Einstein ... - Physics

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

4. Continuously monitored <strong>Bose</strong> condensates: quasiprobability distributionswhere g =(g1,g2,g3,g4) ′ =(y 1 h 1 ,x 1 h 2 ,y 2 h 3 ,x 2 h 4 ) ′ . Thus the diffusion matrix is positivesemidefinite.Having generated a Fokker-Planck equation, we would then normally write downstochastic Langevin equations for the phase-space variables, so that numerical simulationscan be performed.However the presence <strong>of</strong> the nonderivative term complicatesmatters, so instead we derive equations <strong>of</strong> motion for the conditional averages, which willbe sufficient for our present purposes.In the calculations <strong>of</strong> the evolution <strong>of</strong> the moment 〈 g(α) 〉 , the first-derivative terms inEq. (4.27) become∫∫dα 4 g(α)dtLF =and the contribution from the second-derivative terms is∫4∑∫dα 4 g(α)dtDF =µ,ν=1dα 4 F L ·∇ α g(α), (4.30)dα 4 −Γα µα ν D Γ µν dt8∂ 2 g(α)∂α µ ∂α ν, (4.31)where we have integrated by parts and ignored any surface terms. The resultant equations<strong>of</strong> motion for the conditional moments, up to second order, ared 〈 x 〉 = −Ω 〈 y 〉 dt +2 √ ( 〈x2Γ 〉 − 〈 x 〉 ) 2dW (4.32a)d 〈 y 〉 (= Ω 〈 x 〉 +4κ 〈 xz 〉 − Γ 〈 〉 )y dt +2 √ Γ (〈 xy 〉 − 〈 x 〉〈 y 〉) dW (4.32b)2d 〈 z 〉 (= 4 κ 〈 xy 〉 − Γ 〈 〉 )z dt +2 √ Γ (〈 xz 〉 − 〈 x 〉〈 z 〉) dW (4.32c)2d 〈 x 2〉 = −2Ω 〈 xy 〉 dt +2 √ Γ( 〈x3 〉 − 〈 x 〉〈 x 〉 2 ) dW (4.32d)d 〈 y 2〉 = ( 2Ω 〈 xy 〉 − 8κ 〈 xyz 〉 − Γ (〈 y 2〉 − 〈 z 2〉)) dt +2 √ Γ( 〈xy2 〉 − 〈 x 〉〈 y 〉 2 ) dW(4.32e)d 〈 z 2〉 = ( 8κ 〈 xyz 〉 − Γ (〈 z 2〉 − 〈 y 2〉)) dt +2 √ ( 〈xz2Γ 〉 − 〈 x 〉〈 z 〉 ) 2dW (4.32f)d 〈 xy 〉 (= Ω( 〈 x 2〉 − 〈 y 2〉 )+4κ 〈 y 2 z 〉 − Γ 〈 〉 )xy dt +2 √ Γ (〈 x 2 y 〉 − 〈 x 〉〈 xy 〉) dW2d 〈 xz 〉 =(4.32g)(−Ω 〈 yz 〉 +4κ 〈 x 2 y 〉 − Γ 〈 〉 )xz dt +2 √ Γ (〈 x 2 z 〉 − 〈 x 〉〈 xz 〉) dW (4.32h)2d 〈 yz 〉 = ( Ω 〈 xz 〉 +4κ (〈 xy 2〉 − 〈 xz 2〉) − 2Γ 〈 xz 〉) dt +2 √ Γ (〈 xyz 〉 − 〈 x 〉〈 yz 〉) dW,(4.32i)where the variables x, y and z are as defined in Eq. (2.31). If the expectation <strong>of</strong> these equationsis calculated, to get the unconditional equations, then they reduce to the equations101

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!