12.07.2015 Views

Landmark-based Morphometric Analysis in Selected Species of ...

Landmark-based Morphometric Analysis in Selected Species of ...

Landmark-based Morphometric Analysis in Selected Species of ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

288 Zoological Studies 38(3): 287-294 (1999)organism. When comb<strong>in</strong>ed with multivariate statisticalprocedures, they <strong>of</strong>fer the most powerful tool fortest<strong>in</strong>g and graphically display<strong>in</strong>g differences <strong>in</strong>shape (Loy et al. 1993, Rohlf and Marcus 1993,Rohlf et al. 1996). The purpose <strong>of</strong> this paper is toreexam<strong>in</strong>e the data analyzed by Cavalcanti andLopes (1993), us<strong>in</strong>g a larger sample and geometricmorphometric methods that should provide new <strong>in</strong>sights<strong>in</strong>to features <strong>of</strong> shape change which cannotbe documented by the analysis <strong>of</strong> conventional distancemeasurements.MATERIALS AND METHODSChoice <strong>of</strong> species for <strong>in</strong>clusion <strong>in</strong> this study wasdeterm<strong>in</strong>ed by the availability <strong>of</strong> an adequate sizerange and number <strong>of</strong> specimens. A total <strong>of</strong> 52 <strong>in</strong>dividualsfrom 6 species <strong>of</strong> Serranidae that are amongthe most common along the southeast coast <strong>of</strong> Brazil(Figueiredo and Menezes 1980, Heemstra andRandall 1993) were measured. Sample sizes andbody size range for each species are as follows:Dules auriga Cuvier, 1829: n = 13, 44-101 mm <strong>in</strong>standard length (SL); Diplectrum radiale (Quoy andGaimard, 1824): n = 11, 20-152 mm SL; Diplectrumformosum (L<strong>in</strong>naeus, 1766): n = 4, 62-148 mm SL;Ep<strong>in</strong>ephelus marg<strong>in</strong>atus (Lowe, 1834): n = 5, 68-190mm SL; Mycteroperca acutirostris (Valenciennes,1828): n = 5, 56-131 mm SL; and Mycteropercabonaci (Poey, 1860): n = 4, 41-147 mm SL. Thespecimens exam<strong>in</strong>ed are housed <strong>in</strong> the Departamentode Zoologia, Universidade Federal do Rio deJaneiro (DZ/UFRJ), Departamento de Biologia Animale Vegetal, Universidade do Estado do Rio deJaneiro (DBAV/UERJ), and Laboratório de Ictiologia,Departamento de Ciências Biológicas, UniversidadeEstadual de Feira de Santana (LIUEFS).Measurements were <strong>based</strong> on a truss networkprotocol (Strauss and Bookste<strong>in</strong> 1982, Bookste<strong>in</strong> etal. 1985), anchored at 10 homologous anatomicallandmarks (Fig. 1). <strong>Landmark</strong>s refer to: (1) anteriortip <strong>of</strong> the snout on the upper jaw; (2) the most posterioraspect <strong>of</strong> the neurocranium (beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> scalednape); (3) orig<strong>in</strong> <strong>of</strong> pelvic f<strong>in</strong>; (4) orig<strong>in</strong> <strong>of</strong> sp<strong>in</strong>ousdorsal f<strong>in</strong>; (5) orig<strong>in</strong> <strong>of</strong> anal f<strong>in</strong>; (6) orig<strong>in</strong> <strong>of</strong> s<strong>of</strong>t dorsalf<strong>in</strong>; (7) <strong>in</strong>sertion <strong>of</strong> anal f<strong>in</strong>; (8) <strong>in</strong>sertion <strong>of</strong> 2nd dorsalf<strong>in</strong>; (9) <strong>in</strong>sertion <strong>of</strong> 1st ventral caudal f<strong>in</strong> ray; and (10)<strong>in</strong>sertion <strong>of</strong> 1st dorsal caudal f<strong>in</strong> ray. <strong>Landmark</strong> 1can be classified as type 1 and landmarks 2 to 10 astype 2, follow<strong>in</strong>g the classification <strong>of</strong> Bookste<strong>in</strong>(1991). All measurements were taken with Verniercalipers to the nearest 0.05 mm.The 21 <strong>in</strong>ter-landmark distances obta<strong>in</strong>ed fromthe truss network were converted to Cartesian coord<strong>in</strong>atesby means <strong>of</strong> a simplified multidimensionalscal<strong>in</strong>g algorithm (Carpenter et al. 1996), us<strong>in</strong>g theUNFOLD program written by H.J.S. Sommer (unpubl.).The raw coord<strong>in</strong>ates <strong>of</strong> all specimens werealigned (i.e., translated, rotated, and scaled to matchone another) us<strong>in</strong>g the Procrustes generalized orthogonalleast-squares (GLS) superimpositionmethod, which fits 1 configuration over another bym<strong>in</strong>imiz<strong>in</strong>g the sum <strong>of</strong> squared distances betweenhomologous landmarks (Rohlf 1990, Rohlf and Slice1990). The average configuration <strong>of</strong> landmarks result<strong>in</strong>gfrom this procedure served as the “reference”or tangent configuration (def<strong>in</strong><strong>in</strong>g the po<strong>in</strong>t <strong>of</strong> tangencybetween the non-l<strong>in</strong>ear shape space and theapproximat<strong>in</strong>g tangent space, see Rohlf 1996) <strong>in</strong>subsequent computations.For each specimen, centroid size and the x andy uniform components were also computed. Centroidsize is an overall size measure and was calculatedas the square root <strong>of</strong> the summed squareddistances <strong>of</strong> each landmark to the centroid <strong>of</strong> theconfiguration. The uniform components express <strong>in</strong>formationon global scale (uniform, aff<strong>in</strong>e) shapevariation (Bookste<strong>in</strong> 1991). The 1st uniform componentaccounts for the stretch<strong>in</strong>g along the x-axis <strong>of</strong>the configuration, whereas the 2nd uniform component<strong>in</strong>dicates dilations or compressions along the y-axis. In the present study, the x-axis corresponds tothe antero-posterior axis, and the y-axis correspondsto the dorso-ventral axis <strong>of</strong> the fish bodies. The uniformcomponents were estimated by the l<strong>in</strong>earizedProcrustes method <strong>of</strong> Bookste<strong>in</strong> (1996b). Correlationand regression analysis (Sokal and Rohlf 1995)was performed between centroid size and the x andy uniform components. Centroid size was tested fordifferences among species by s<strong>in</strong>gle classificationanalysis <strong>of</strong> variance (ANOVA: Sokal and Rohlf1995). The uniform components were tested for sig-Fig. 1. Outl<strong>in</strong>e draw<strong>in</strong>g <strong>of</strong> Mycteroperca acutirostris, show<strong>in</strong>g thelocations <strong>of</strong> the 10 anatomical landmarks (numbered po<strong>in</strong>ts) andmorphometric distance measures recorded on each <strong>in</strong>dividual.


Cavalcanti et al. − Serranid Geometric <strong>Morphometric</strong>s 289nificant differences among species by multivariateanalysis <strong>of</strong> variance (MANOVA: Neff and Marcus1980). All specimens were scaled to unit centroidsize before alignment by the GLS superimpositionprocedure.The coord<strong>in</strong>ates <strong>of</strong> all aligned specimens wereused for the th<strong>in</strong>-plate spl<strong>in</strong>es relative warp analysis(Bookste<strong>in</strong> 1991, Rohlf 1993), <strong>in</strong> order to analyzeand display the direction <strong>of</strong> shape differences amongspecies. The th<strong>in</strong>-plate spl<strong>in</strong>es technique (Bookste<strong>in</strong>1989) consists <strong>of</strong> fitt<strong>in</strong>g an <strong>in</strong>terpolat<strong>in</strong>g function tothe landmark coord<strong>in</strong>ates <strong>of</strong> each specimen aga<strong>in</strong>stthe reference configuration so that all homologouslandmarks co<strong>in</strong>cide. The bend<strong>in</strong>g energy matrix result<strong>in</strong>gfrom the th<strong>in</strong>-plate spl<strong>in</strong>e function fitted to thereference configuration is then decomposed <strong>in</strong>to orthogonalaxes, the pr<strong>in</strong>cipal warps, that describeshape deformations <strong>of</strong> the reference configuration atdifferent spatial scales. The projection <strong>of</strong> the superimposedspecimens onto the pr<strong>in</strong>cipal warps producesthe partial-warp scores, that describe their deviationsfrom the reference configuration and thatcan be used as variables <strong>in</strong> subsequent multivariatestatistical analyses (Rohlf 1995 1996, Rohlf et al.1996). The relative warps are the pr<strong>in</strong>cipal components<strong>of</strong> the variation among specimens <strong>in</strong> this space(for computational details see Bookste<strong>in</strong> 1989 1991,Rohlf 1993). The average configuration <strong>of</strong> landmarkswas used as the reference configuration <strong>in</strong> therelative warp analysis, and the reference was alignedto its pr<strong>in</strong>cipal axes. The relative warps were computedwith the scal<strong>in</strong>g option α = 0, that weights alllandmarks equally and is considered to be more appropriatefor systematic studies (Loy et al. 1993,Rohlf 1993, Rohlf et al. 1996). The relative warpswere computed <strong>in</strong> the full shape space (i.e., <strong>in</strong>clud<strong>in</strong>gboth the uniform component and the non-uniformcomponents), as recommended by Bookste<strong>in</strong>(1996a) for exploratory studies such as the presentone. This usually provides effective low-dimensionalord<strong>in</strong>ations, without requir<strong>in</strong>g potentially unwarrantedassumptions about the precise spatial scale<strong>of</strong> the shape changes (Bookste<strong>in</strong> 1996a). Furthermore,as po<strong>in</strong>ted out by Walker (1996), relative warpanalyses that separate the aff<strong>in</strong>e and non-aff<strong>in</strong>ecomponents can make <strong>in</strong>terpretation <strong>of</strong> the shapevariation ambiguous if these components are correlated.Deformation grids us<strong>in</strong>g th<strong>in</strong>-plate spl<strong>in</strong>eswere used to graphically portray the patterns <strong>of</strong>shape variation among the landmarks.Patterns <strong>of</strong> among-species variation <strong>in</strong> totalshape space (aff<strong>in</strong>e + nonaff<strong>in</strong>e) were exam<strong>in</strong>ed bycanonical variates analysis (CVA: Neff and Marcus1980) <strong>of</strong> the partial-warp scores matrix with the uniformcomponents appended. Shape changes associatedwith the canonical variate axes were depictedas deformation grids generated by regress<strong>in</strong>g thepartial-warp scores onto each canonical axis (Rohlfet al. 1996). A cluster analysis us<strong>in</strong>g the unweightedpairgroup average method (UPGMA: Sneath andSokal 1973) was performed on the matrix <strong>of</strong> Mahalanobisdistances produced by the CVA procedure, <strong>in</strong>order to depict hierarchically the shape differencesamong species.The relative warps analysis and computation <strong>of</strong>partial-warp scores were done us<strong>in</strong>g F.J. Rohlf’sTPSRelw program, version 1.16. Regressions betweenthe partial warps and canonical variates werecomputed with the TPSRegrw program, version 1.13.Canonical variates analysis and cluster<strong>in</strong>g were performedwith the STATISTICA package, version 4.3(StatS<strong>of</strong>t 1993). All computations were performedon an IBM-compatible microcomputer. Most <strong>of</strong> theprograms used <strong>in</strong> this study are available over theInternet by FTP from the “morphmet” directory at life.bio.sunysb.edu or via the WWW at http://life.bio.sunysb.edu/morph/.RESULTSThere was a slight but significant correlation betweenthe x and y uniform components (r = 0.366, p


290 Zoological Studies 38(3): 287-294 (1999)pattern or group<strong>in</strong>g related to either uniform component,and the species <strong>of</strong> Serran<strong>in</strong>ae and Ep<strong>in</strong>ephel<strong>in</strong>aeoverlap broadly (Fig. 2). The uniform components<strong>in</strong>stead separate the higher-bodied species(Dules and Ep<strong>in</strong>ephelus) from the lower-bodied ones(Diplectrum and Mycteroperca). Diplectrum specieshave low somewhat elongate bodies, as shown bytheir high scores along x (antero-posterior shear<strong>in</strong>g).Mycteroperca species approach the mean shape <strong>of</strong>the group, and Dules auriga and Ep<strong>in</strong>ephelusmarg<strong>in</strong>atus are high bodied species with high scoresalong y (dorsoventral dilation) and low scores alongx. Diplectrum radiale has a lower and relatively moreelongated body than D. formosum. Dules has thehighest body among the species <strong>in</strong> the sample.Centroid size was not significantly correlatedwith either x or y uniform components for all specimenspooled (r = 0.121, p < 0.39 for x; r = 0.217, p


Cavalcanti et al. − Serranid Geometric <strong>Morphometric</strong>s 291dividual scores onto the first 2 canonical variates(Fig. 5) shows a clear separation <strong>of</strong> the low-bodiedspecies <strong>of</strong> the subfamily Serran<strong>in</strong>ae from the highbodiedspecies <strong>of</strong> Ep<strong>in</strong>ephel<strong>in</strong>ae, along the 1stcanonical variate axis (Fig. 6a). The 2nd canonicalvariate axis discloses an <strong>in</strong>terest<strong>in</strong>g pattern, show<strong>in</strong>ga separation <strong>of</strong> some species on the basis <strong>of</strong> a relativeenlargment <strong>of</strong> the caudal peduncle (Fig. 6b).As shown on the UPGMA phenogram <strong>based</strong> onthe matrix <strong>of</strong> Mahalanobis distances computed fromthe partial-warp scores (Fig. 7), the species studiedwere assigned to 2 very dist<strong>in</strong>ct clusters, accord<strong>in</strong>gto their respective subfamilies. <strong>Species</strong> with<strong>in</strong> thesame genus (Diplectrum radiale and D. formosum;Mycteroperca acutirostris and M. bonaci) were alsogrouped together <strong>in</strong> the phenogram.was overall less <strong>in</strong>formative (regard<strong>in</strong>g species systematicrelationships) than the analysis us<strong>in</strong>g onlythe nonaff<strong>in</strong>e components. The uniform components<strong>in</strong>dicate that at large spatial scales, bodyshape is similar <strong>in</strong> functional groups, ma<strong>in</strong>ly separat<strong>in</strong>gthe high-bodied species associated with hardbottoms and more sedentary habits, from the lowbodiedones associated with s<strong>of</strong>t bottoms and morevagile habits. At small scales, <strong>in</strong> turn, nonaff<strong>in</strong>eDISCUSSIONAlthough no significant correlation was foundbetween centroid size and the uniform components<strong>of</strong> shape change, there were significant differences<strong>in</strong> centroid size among species. This may be duesimply to sampl<strong>in</strong>g effects, but the small size <strong>of</strong> thesample available for study with<strong>in</strong> each species precludedan analysis <strong>of</strong> patterns <strong>of</strong> allometric growth.As po<strong>in</strong>ted out by Carpenter (1996) <strong>in</strong> his geometricmorphometric study <strong>of</strong> lethr<strong>in</strong>id fishes, the <strong>in</strong>vestigation<strong>of</strong> <strong>in</strong>dividual species is required for a more completeunderstand<strong>in</strong>g <strong>of</strong> allometry patterns.The analysis <strong>of</strong> the uniform components aloneFig. 5. Scatterplot <strong>of</strong> <strong>in</strong>dividual scores from the canonical variatesanalysis <strong>of</strong> all specimens, with the uniform component<strong>in</strong>cluded.Fig. 6. Results <strong>of</strong> regression <strong>of</strong> the partial-warp scores onto the1st (a) and 2nd (b) canonical vectors with the uniform component<strong>in</strong>cluded, depicted as deformations us<strong>in</strong>g th<strong>in</strong>-plate spl<strong>in</strong>es.


292 Zoological Studies 38(3): 287-294 (1999)shape differences depicted by the partial warpsord<strong>in</strong>ated species ma<strong>in</strong>ly accord<strong>in</strong>g to their systematicrelationships. This agrees with the f<strong>in</strong>d<strong>in</strong>gs <strong>of</strong>Loy et al. (1993) and Rohlf et al. (1996), and suggeststhat the nonaff<strong>in</strong>e shape components mayconta<strong>in</strong> more taxonomic <strong>in</strong>formation (possibly reflect<strong>in</strong>gthe phylogenetic relationships among thesespecies) than do the uniform components <strong>of</strong> shapevariation.We can also determ<strong>in</strong>e the relative importance<strong>of</strong> localized and global morphological changes <strong>in</strong> theshape differentation <strong>of</strong> the species. Shape modificationsseem to occur <strong>in</strong> large and small spatial scales.The most important global differences <strong>in</strong> body shapeare related to body elongation or shorten<strong>in</strong>g; thisleads to large differences <strong>in</strong> body height and caudalpeduncle length among the species. Dules andEp<strong>in</strong>ephelus are different from the other species <strong>in</strong>this aspect <strong>of</strong> form, hav<strong>in</strong>g considerably higher bodiesand shorter caudal peduncles. The primary nonuniformcomponent <strong>of</strong> shape change is related to anup-and-down arch<strong>in</strong>g <strong>in</strong> the body <strong>of</strong> the specimens,as clearly depicted by the 2nd relative warp (Fig. 4b).Carpenter (1996) suggested that such an “arch<strong>in</strong>geffect” <strong>of</strong> fish bodies <strong>in</strong> his relative warp analysis <strong>of</strong>lethr<strong>in</strong>id fishes might either be a measurementartifact, result<strong>in</strong>g from problems <strong>in</strong> the preservation<strong>of</strong> the specimens, or <strong>in</strong>stead have a functionalexplanation. S<strong>in</strong>ce our sample also consists <strong>of</strong> preservedspecimens, the arch<strong>in</strong>g observed <strong>in</strong> thisstudy could also be attributed to a similar effect <strong>of</strong>preservation.Some <strong>of</strong> the shape changes here<strong>in</strong> analyzedcan, however, be given a functional <strong>in</strong>terpretation,be<strong>in</strong>g conceivably related to differences <strong>in</strong> habitatand feed<strong>in</strong>g ecology <strong>of</strong> each species. Mycteropercaand Ep<strong>in</strong>ephelus have higher bodies and largerheads, and live mostly <strong>in</strong> rocky crevices close to theshore. They feed ma<strong>in</strong>ly on fishes, crustaceans, andcephalopods, and behave as ambush predators, hid<strong>in</strong>g<strong>in</strong> holes and caves and catch<strong>in</strong>g prey with a suddenrush and snap <strong>of</strong> the jaws (Heemstra andRandall 1993). The elongate Diplectrum species,with smaller heads and longer caudal peduncles, arebetter swimmers and are found mostly on sandybottoms, feed<strong>in</strong>g actively on benthic crustaceansand fishes (Darcy 1985). Dules auriga, <strong>in</strong> turn, is <strong>in</strong>termediate<strong>in</strong> shape between species <strong>of</strong> the subfamilyEp<strong>in</strong>ephel<strong>in</strong>ae and those <strong>of</strong> genus Diplectrum,with a feed<strong>in</strong>g ecology and habitat preferences moresimilar to the latter (Cussac and Molero 1987). Theresults <strong>of</strong> the relative warp analysis as depicted bythe th<strong>in</strong>-plate spl<strong>in</strong>es deformation grids (Fig. 4a) areconsistent with this <strong>in</strong>terpretation. This pattern <strong>of</strong>shape variation seems to be the opposite <strong>of</strong> that observed<strong>in</strong> freshwater fish communities, where <strong>in</strong> generalpiscivorous species tend to be more elongatethan deeper-bodied benthic foragers (W<strong>in</strong>emiller1991), and deserves further <strong>in</strong>vestigation.The relationship between morphology and ecology<strong>in</strong> fishes has long been known, and a few studieshave applied multivariate morphometric methods to<strong>in</strong>vestigate ecomorphological patterns <strong>in</strong> multi-speciesfish communities (see Douglas and Matthews1992, and references there<strong>in</strong>). The decomposition<strong>of</strong> shape variation <strong>in</strong>to uniform and non-uniform(partial warps) components through geometricalanalysis <strong>of</strong> landmark data takes <strong>in</strong>to account theconfiguration <strong>of</strong> the sample data po<strong>in</strong>ts, and can thusdescribe and locate differences <strong>of</strong> form <strong>in</strong> organismsFig. 7. UPGMA phenogram constructed from Mahalanobis distances computed on all partial warps.


Cavalcanti et al. − Serranid Geometric <strong>Morphometric</strong>s 293more efficiently than can multivariate analyses <strong>of</strong> traditionaldistance measurements, even when the set<strong>of</strong> measurements corresponds to a truss system(Bookste<strong>in</strong> 1991). This approach has been shown toyield the most reward<strong>in</strong>g <strong>in</strong>formation <strong>in</strong> fish ecomorphologicalstudies (see Walker 1996 1997), and isexpected to f<strong>in</strong>d <strong>in</strong>creas<strong>in</strong>g applications <strong>in</strong> the nearfuture.Acknowledgments: We thank Mario Jorge Brum(Departamento de Zoologia, Universidade Federaldo Rio de Janeiro) and Ulisses Leite Gomes(Departamento de Biologia Animal e Vegetal,Universidade do Estado do Rio de Janeiro) for k<strong>in</strong>dlyallow<strong>in</strong>g us to exam<strong>in</strong>e specimens under their care.We also thank H.J.S. Sommer III (Department <strong>of</strong>Mechanical Eng<strong>in</strong>eer<strong>in</strong>g, Pennsylvania State Univ.),for mak<strong>in</strong>g available the s<strong>of</strong>tware for reconstruct<strong>in</strong>glandmark coord<strong>in</strong>ates from truss distance data, and2 anonymous reviewers for provid<strong>in</strong>g constructivecriticisms and valuable suggestions that greatly contributedto improvements <strong>of</strong> earlier versions <strong>of</strong> thispaper; however, any errors or omissions rema<strong>in</strong> ourown. The k<strong>in</strong>d support <strong>of</strong> the editors, Pr<strong>of</strong>essorKwang-Tsao Shao and Ms. Iris Y.-L. Chen, is muchappreciated.REFERENCESBookste<strong>in</strong> FL. 1989. Pr<strong>in</strong>cipal warps: th<strong>in</strong>-plate spl<strong>in</strong>es and thedecomposition <strong>of</strong> deformations. IEEE Trans. Pattern Anal.Mach. Intell. 11: 567-585.Bookste<strong>in</strong> FL. 1991. <strong>Morphometric</strong> tools for landmark data. Geometryand biology. Cambridge: Cambridge Univ. Press.Bookste<strong>in</strong> FL. 1996a. Comb<strong>in</strong><strong>in</strong>g the tools <strong>of</strong> geometric morphometrics.In LF Marcus, M Corti, A Loy, G Naylor, DESlice, eds. Advances <strong>in</strong> morphometrics. NATO ASI SeriesA: Life Sciences, Vol. 284. New York: Plenum Publ., pp.131-151.Bookste<strong>in</strong> FL. 1996b. A standard formula for the uniform shapecomponent <strong>in</strong> landmark data. In LF Marcus, M Corti, A Loy,G Naylor, DE Slice, eds. Advances <strong>in</strong> morphometrics.NATO ASI Series A: Life Sciences, Vol. 284. New York: PlenumPubl., pp. 153-168.Bookste<strong>in</strong> FL, B Chern<strong>of</strong>f, RL Elder, JM Humphries Jr., GRSmith, RE Strauss. 1985. <strong>Morphometric</strong>s <strong>in</strong> evolutionarybiology. Special Publication 15. Philadelphia: The Academy<strong>of</strong> Natural Sciences.Carpenter KE. 1996. <strong>Morphometric</strong> pattern and feed<strong>in</strong>g mode <strong>in</strong>emperor fishes (Lethr<strong>in</strong>idae, Perciformes). In LF Marcus,M Corti, A Loy, G Naylor, DE Slice, eds. Advances <strong>in</strong>morphometrics. NATO ASI Series A: Life Sciences, Vol.284. New York: Plenum Publ., pp. 479-487.Carpenter KE, HJ Sommer III, LF Marcus. 1996. Convert<strong>in</strong>gtruss <strong>in</strong>terlandmark distances to Cartesian coord<strong>in</strong>ates. InLF Marcus, M Corti, A Loy, G Naylor, DE Slice, eds. Advances<strong>in</strong> morphometrics. NATO ASI Series A: LifeSciences, Vol. 284. New York: Plenum Publ., pp. 103-111.Cavalcanti MJ, PRD Lopes. 1993. Análise morfométrica multivariadade c<strong>in</strong>co espécies de Serranidae (Teleostei, Perciformes).Acta Biol. Leopoldensia 15: 53-64.Cussac VE, AM Molero. 1987. Contribucion al conocimiento dela biologia de Dules auriga Cuvier (Pisces, Serranidae).Revta. Bras. Biol. 47: 375-384.Darcy GH. 1985. Synopsis <strong>of</strong> biological data on the sand perch,Diplectrum formosum (Pisces, Serranidae). NOAA Tech.Rep. Circ. NMFS 26: 1-21.Douglas ME, WJ Matthews. 1992. Does morphology predictecology? Hypothesis test<strong>in</strong>g with<strong>in</strong> a freshwater streamfish assemblage. Oikos 65: 213-224.Figueiredo JL, NA Menezes. 1980. Manual de peixes mar<strong>in</strong>hosdo sudeste do Brasil. III. Teleostei (2). São Paulo: Museude Zoologia da Universidade de São Paulo.Gosl<strong>in</strong>e WA. 1966. The limits <strong>of</strong> the fish family Serranidae, withnotes on other lower percoids. Proc. Calif. Acad. Sci. 33:91-112.Heemstra PC, JE Randall. 1993. Groupers <strong>of</strong> the world (FamilySerranidae, Subfamily Ep<strong>in</strong>ephel<strong>in</strong>ae). An annotated andillustrated catalogue <strong>of</strong> the grouper, rockcod, h<strong>in</strong>d, coralgrouper and lyretail species known to date. FAO FisheriesSynopsis, No. 125, Vol. 16. Rome: Food and AgricultureOrganization <strong>of</strong> the United Nations.Loy A, M Corti, LF Marcus. 1993. <strong>Landmark</strong> data: size andshape analysis <strong>in</strong> systematics. A case study on Old WorldTalpidae (Mammalia, Insectivora). In LF Marcus, E Bello,A García-Valdecasas, eds. Contributions to morphometrics.Madrid: Museo Nacional de Ciencias Naturales,pp. 213-240.Neff NA, LF Marcus. 1980. A survey <strong>of</strong> multivariate methods forsystematics. New York: Privately published.Nelson JS. 1994. Fishes <strong>of</strong> the world. 3rd ed. New York: J. Wiley.Rohlf FJ. 1990. Rotational fit (Procrustes) methods. In FJ Rohlf,FL Bookste<strong>in</strong>, eds. Proceed<strong>in</strong>gs <strong>of</strong> the Michigan<strong>Morphometric</strong>s Workshop. Special Publication No. 2. AnnArbor: Univ. <strong>of</strong> Michigan Museum <strong>of</strong> Zoology, pp. 227-236.Rohlf FJ. 1993. Relative warp analysis and an example <strong>of</strong> itsapplication to mosquito w<strong>in</strong>gs. In LF Marcus, E Bello, AGarcía-Valdecasas, eds. Contributions to morphometrics.Madrid: Museo Nacional de Ciencias Naturales, pp. 131-159.Rohlf FJ. 1995. Multivariate analysis <strong>of</strong> shape us<strong>in</strong>g partial-warpscores. In KV Mardia, CA Gill, eds. Proceed<strong>in</strong>gs <strong>in</strong> currentissues <strong>in</strong> statistical shape analysis. Leeds: Leeds Univ.Press, pp. 154-158.Rohlf FJ. 1996. <strong>Morphometric</strong> spaces, shape components, andthe effects <strong>of</strong> l<strong>in</strong>ear transformations. In LF Marcus, M Corti,A Loy, G Naylor, DE Slice, eds. Advances <strong>in</strong> morphometrics.NATO ASI Series A: Life Sciences, Vol. 284. NewYork: Plenum Publ., pp. 117-129.Rohlf FJ, A Loy, M Corti. 1996. <strong>Morphometric</strong> analysis <strong>of</strong> OldWorld Talpidae (Mammalia, Insectivora) us<strong>in</strong>g partial-warpscores. Syst. Biol. 45: 344-362.Rohlf FJ, LF Marcus. 1993. A revolution <strong>in</strong> morphometrics.Trends Ecol. Evol. 8: 129-132.Rohlf FJ, DE Slice. 1990. Extensions <strong>of</strong> the Procrustes methodfor the optimal superimposition <strong>of</strong> landmarks. Syst. Zool.39: 40-59.Sneath PHA, RR Sokal. 1973. Numerical taxonomy: the pr<strong>in</strong>ciplesand practice <strong>of</strong> numerical classification. SanFrancisco: WH Freeman.Sokal RR, FJ Rohlf. 1995. Biometry: the pr<strong>in</strong>ciples and practice<strong>of</strong> statistics <strong>in</strong> biological research. 3rd ed. San Francisco:WH Freeman.


294 Zoological Studies 38(3): 287-294 (1999)StatS<strong>of</strong>t. 1993. STATISTICA/w User’s Guide. Tulsa, OK:StatS<strong>of</strong>t, Inc.Strauss RE, FL Bookste<strong>in</strong>. 1982. The truss: body form reconstruction<strong>in</strong> morphometrics. Syst. Zool. 31: 113-135.Walker JA. 1996. Pr<strong>in</strong>cipal components <strong>of</strong> body shape variationwith<strong>in</strong> an endemic radiation <strong>of</strong> threesp<strong>in</strong>e stickleback. InLF Marcus, M Corti, A Loy, G Naylor, DE Slice, eds. Advances<strong>in</strong> morphometrics. NATO ASI Series A: LifeSciences, Vol. 284. New York: Plenum Publ., pp. 321-334.Walker JA. 1997. Ecological morphology <strong>of</strong> lacustr<strong>in</strong>e threesp<strong>in</strong>estickleback Gasterosteus aculeatus L. (Gasterosteidae)body shape. Biol. J. L<strong>in</strong>n. Soc. 61: 3-50.W<strong>in</strong>emiller KO. 1991. Ecomorphological diversification <strong>in</strong> lowlandfreshwater fish assemblages from five biotic regions.Ecol. Monogr. 61: 343-365.XØk½]u©½þGtÎØ^aÐIò¦§ÎAúqÀRMauro José Cavalcanti 1 Leandro Rabello Monteiro 2 Paulo Roberto Duarte Lopes 3kì½þ¤AõÝókÈì (Serran<strong>in</strong>ae) º Dules auriga, Diplectrum formosum, D. radiale ÎÛ³Èì(Ep<strong>in</strong>ephel<strong>in</strong>ae) º Ep<strong>in</strong>ephelus marg<strong>in</strong>atus, Mycteroperca acutirostris, M. bonaci ¥»ØüͽþAH¡O±uXóÀRkP¡÷á±hÜqÀRkãsäØ¡§ÎAt§CNάܧÑc°Î¬ïܺ¡ÃÊMDégʨÀAãÜXbØ¡ºDnt§OP¹âÓ¨ÀÛöC¡ÃʨÀbØ¡³ãÛt§AýoǨÀLkM¡ºNÀþsµÏÀAÓéªÎÀ`øhiNØÀ÷Cé¬D¡ÃʺïÜiHM¡ºÏÀXkÈìPÛ³ÈìCoÇÎAºïÜiàPØ¡ÏaPá¹ßDºt§ÛöCöäüG kìAô¬[cAXóÎAA¡÷á±ÀÆAhÜqÀRC1 Departamento de Biologia Geral, Universidade Santa Úrsula, Rua Fernando Ferrari, 75, 22231-040, Rio de Janeiro, RJ, Brazil2 Departamento de Zoologia, Universidade Estadual Paulista, Caixa Postal 199, 13506-900, Rio Claro, SP, Brazil3 Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, Campus Universitário, Km 3, BR-116,44031-460, Feira de Santana, BA, Brazil

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!