12.07.2015 Views

Instructions for the preparation of a camera-ready paper in MS Word

Instructions for the preparation of a camera-ready paper in MS Word

Instructions for the preparation of a camera-ready paper in MS Word

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Real-time energy resources schedul<strong>in</strong>gconsider<strong>in</strong>g <strong>in</strong>tensive w<strong>in</strong>d penetrationMarco SilvaPolytechnic <strong>of</strong> Portomasi@isep.ipp.ptHugo MoraisPolytechnic <strong>of</strong> Portohgvm@isep.ipp.ptZita ValePolytechnic <strong>of</strong> Portozav@isep.ipp.ptAbstractThe use <strong>of</strong> distributed energy resources, based on natural<strong>in</strong>termittent power sources, like w<strong>in</strong>d generation, <strong>in</strong>power systems imposes <strong>the</strong> development <strong>of</strong> new adequateoperation management and control methodologies.A short-term Energy Resource Management (ERM)methodology per<strong>for</strong>med <strong>in</strong> two phases is proposed <strong>in</strong> this<strong>paper</strong>. The first one addresses <strong>the</strong> day-ahead ERMschedul<strong>in</strong>g and <strong>the</strong> second one deals with <strong>the</strong> five-m<strong>in</strong>uteahead ERM schedul<strong>in</strong>g.The ERM schedul<strong>in</strong>g is a complex optimization problemdue to <strong>the</strong> high quantity <strong>of</strong> variables and constra<strong>in</strong>ts.In this <strong>paper</strong> <strong>the</strong> ma<strong>in</strong> goal is to m<strong>in</strong>imize <strong>the</strong> operationcosts from <strong>the</strong> po<strong>in</strong>t <strong>of</strong> view <strong>of</strong> a virtual power playerthat manages <strong>the</strong> network and <strong>the</strong> exist<strong>in</strong>g resources. Theoptimization problem is solved by a determ<strong>in</strong>istic mixed<strong>in</strong>tegernon-l<strong>in</strong>ear programm<strong>in</strong>g approach.A case study consider<strong>in</strong>g a distribution network with33 bus, 66 distributed generation, 32 loads with demandresponse contracts and 7 storage units and 1000 electricvehicles has been implemented <strong>in</strong> a simulator developed<strong>in</strong> <strong>the</strong> field <strong>of</strong> <strong>the</strong> presented work, <strong>in</strong> order to validate <strong>the</strong>proposed short-term ERM methodology consider<strong>in</strong>g <strong>the</strong>dynamic power system behavior.Keywords: Mixed-<strong>in</strong>teger non-l<strong>in</strong>ear programm<strong>in</strong>g;Short-term energy resources management; Smart grid;Virtual power player;1. Nomenclaturec Excess generated energy costEGEcCut ( b)Consumption curtailment cost <strong>for</strong> bus bcRed ( b)Consumption reduction cost <strong>for</strong> bus bcSupplierSupplier energy costcStorageChargeStorage charge costcStorageDischargeStorage discharge costcV 2GChargeV2G charge costcV 2GDischargeV2G discharge costc Non-supplied power costNSPcDG( g)Generation cost <strong>of</strong> generation unit gngTotal number <strong>of</strong> generatorsnbTotal number <strong>of</strong> busesP Load powerLoadPCut ( b)Consumption curtailment <strong>for</strong> bus bP Maximum consumption curtailment <strong>in</strong>CutMax ( b)bus bPDG ( g)PDGMax ( g)PDGM<strong>in</strong> ( g)PEGEPRed ( b)PRedMax ( b)Generation power <strong>of</strong> generation unit gMaximum generation power <strong>of</strong> generationunit gM<strong>in</strong>imum generation power <strong>of</strong> generationunit gExcess generated energy costPSupplierSupplier powerPStorageStorage powerConsumption reduction <strong>for</strong> bus bMaximum consumption reduction <strong>in</strong>bus bPStorageInitialInitial stored powerPStorageChargeStorage charge powerPStorageChargeMaxMaximum storage charge powerPStorageDischargeStorage discharge powerPStorageDischargeMaxMaximum storage discharge powerPStorageMaxMaximum storage powerP V2G powerV2GP Initial stored power <strong>in</strong> V2G batteriesV 2GInitialPV 2GChargeStorage charge power <strong>in</strong> V2G batteries2 V GChargeMaxP Maximum storage charge power <strong>in</strong>V2G batteries


P Storage discharge power <strong>in</strong> V2G batteriesV 2GDischargeP Maximum storage discharge power <strong>in</strong>V 2GDischargeMaxV2G batteriesP Maximum storage power <strong>in</strong> V2G batteriesV 2GMaxP Non-supplied powerNSPX B<strong>in</strong>ary variable <strong>for</strong> consumption curtailment,<strong>for</strong> busCut ( b)bXDG( g)XStorageB<strong>in</strong>ary variable <strong>for</strong> generation unit gB<strong>in</strong>ary variable <strong>for</strong> storage chargeYStorage B<strong>in</strong>ary variable <strong>for</strong> storage dischargeXV2GB<strong>in</strong>ary variable <strong>for</strong> V2G chargeYV2GB<strong>in</strong>ary variable <strong>for</strong> V2G discharge1. IntroductionThe <strong>in</strong>creas<strong>in</strong>g use <strong>of</strong> Distributed Generation (DG),ma<strong>in</strong>ly based on renewable energy resources, and o<strong>the</strong>rDistributed Energy Resources (DER), <strong>in</strong>clud<strong>in</strong>g DG,Demand Response (DR) programs, storage systems andelectric and plug-<strong>in</strong> hybrid vehicles poses new challengesto Power Systems plann<strong>in</strong>g and operation. Also <strong>the</strong><strong>in</strong>troduction <strong>of</strong> liberalized markets <strong>in</strong> <strong>the</strong> electricity sectorhas caused significant changes <strong>in</strong> power systemsagents relationships. DER use <strong>in</strong> distribution network hasbeen <strong>in</strong>creased significantly [1, 2], br<strong>in</strong>g<strong>in</strong>g new challengesto power systems agents and lead<strong>in</strong>g to <strong>the</strong> smartgrid concept [3-8].In some cases, <strong>the</strong> <strong>in</strong>vestment made <strong>in</strong> RES is not used<strong>in</strong> its full extent. In some periods, with high w<strong>in</strong>d generationand low demand consumption, a w<strong>in</strong>d curtailment isalso necessary. Presently, operation plann<strong>in</strong>g methodsare not adequate to <strong>the</strong> characteristics <strong>of</strong> most <strong>of</strong> DERand even with a lot <strong>of</strong> ongo<strong>in</strong>g research work some problemsrema<strong>in</strong> unsolved. This is <strong>the</strong> case <strong>of</strong> real-time DERmanagement which should take <strong>in</strong>to account all <strong>the</strong> relevanttechnical and economic issues [9, 10].The high number <strong>of</strong> w<strong>in</strong>d energy is worrisome, s<strong>in</strong>cew<strong>in</strong>d power is stochastic, especially <strong>in</strong> <strong>the</strong> very shortterm (e.g., over any given hour, 30 m<strong>in</strong>utes, 15 m<strong>in</strong>utesor 5 m<strong>in</strong>utes period) [11]. This has created a completelynew challenge to <strong>the</strong> system operators so ma<strong>in</strong>ta<strong>in</strong> cont<strong>in</strong>uouslybalance electricity supply and demand.The ma<strong>in</strong> difficulties with renewable energy resourcesare <strong>the</strong> dispatchability and reliability problems associatedwith <strong>the</strong>ir operation. The output <strong>of</strong> some renewable generation,such as w<strong>in</strong>d generators and photovoltaic systems,is determ<strong>in</strong>ed by <strong>the</strong> climate and wea<strong>the</strong>r conditionsand operat<strong>in</strong>g patterns will <strong>the</strong>re<strong>for</strong>e follow <strong>the</strong>senatural conditions. The <strong>in</strong>termittent nature <strong>of</strong> <strong>the</strong>sesources leads to an output which <strong>of</strong>ten does not suit <strong>the</strong>load demand pr<strong>of</strong>ile. Smart grids <strong>in</strong>troduce new managementconcepts with new operation methods <strong>for</strong> adequatelyschedul<strong>in</strong>g renewable based generation and allDER.Storage systems and electric vehicles could be veryuseful <strong>in</strong> <strong>the</strong> Energy Resources Management (ERM)process. These units <strong>in</strong>crease <strong>the</strong> consumption <strong>in</strong> generationsurplus cases (charge batteries) and <strong>in</strong>crease <strong>the</strong>generation <strong>in</strong> shortage generation cases (discharge batteries).Demand response programs can be used <strong>in</strong> a moreflexible way guarantee<strong>in</strong>g that <strong>the</strong> most costly generationresources are managed so that operation costs are keptwith<strong>in</strong> acceptable limits [12, 13]. The new context <strong>in</strong>cludesa large number <strong>of</strong> players (electricity consumers,DG owners, aggregat<strong>in</strong>g entities such as Virtual PowerPlayers (VPP) [14-16], and system operators) act<strong>in</strong>g <strong>in</strong>competitive Electricity Markets.Short-Term energy resource management is a veryrelevant task <strong>in</strong> modern energy systems [9, 10]. It consists<strong>in</strong> correctly schedul<strong>in</strong>g <strong>the</strong> available DER <strong>in</strong> orderto reduce <strong>the</strong> operation costs. The number <strong>of</strong> variablesconsidered <strong>in</strong> this approaches, and <strong>the</strong> need <strong>for</strong> obta<strong>in</strong><strong>in</strong>ga rapid response, requires <strong>the</strong> usage <strong>of</strong> advanced optimizationtechniques, such as artificial <strong>in</strong>telligence techniques,namely metaheuristics such as Particle SwarmOptimization, Genetic Algorithms or Simulated Anneal<strong>in</strong>g[7, 9, 17-20].The coord<strong>in</strong>ation <strong>of</strong> all <strong>the</strong>se resources is a quite challeng<strong>in</strong>gissue requir<strong>in</strong>g distributed <strong>in</strong>telligence accord<strong>in</strong>gto <strong>the</strong> concept <strong>of</strong> <strong>the</strong> smart grid [3, 6, 8]. This can beachieved through an <strong>in</strong>tegration <strong>of</strong> <strong>the</strong> behavior and actions<strong>of</strong> all users connected to it, and so, adequatelyschedul<strong>in</strong>g renewable based generation and all DER,<strong>in</strong>clud<strong>in</strong>g <strong>the</strong> available load curtailment opportunities [1,10].This work contributes to overcome this situation conceiv<strong>in</strong>g,develop<strong>in</strong>g and implement<strong>in</strong>g methodologiesadequate <strong>for</strong> energy resource management <strong>in</strong> a distributionnetwork, consider<strong>in</strong>g <strong>in</strong>tensive penetration <strong>of</strong> DG,storage, electric vehicles and load curtailment opportunitiesenabled by demand response programs <strong>in</strong> <strong>the</strong> context<strong>of</strong> future power systems. The proposed methodologiesare based on <strong>the</strong> characteristics <strong>of</strong> <strong>the</strong> problem and <strong>of</strong> <strong>the</strong><strong>in</strong>volved resources.2. Energy Resource ManagementMethodologyProper use <strong>of</strong> optimization techniques <strong>in</strong> <strong>the</strong> DERreal-time schedul<strong>in</strong>g is very relevant <strong>for</strong> smart grids.This is ma<strong>in</strong>ly due to <strong>the</strong> lack <strong>of</strong> accuracy <strong>in</strong> w<strong>in</strong>d <strong>for</strong>ecast<strong>in</strong>gwhen <strong>the</strong> <strong>for</strong>ecast<strong>in</strong>g anticipation is <strong>in</strong>creased. In[21] <strong>the</strong> authors demonstrate that w<strong>in</strong>d <strong>for</strong>ecast<strong>in</strong>g can bevery accurate <strong>for</strong> very short-term <strong>for</strong>ecast<strong>in</strong>g, us<strong>in</strong>g <strong>the</strong>last 5 hours <strong>of</strong> w<strong>in</strong>d speed data to predict <strong>the</strong> next 5m<strong>in</strong>utes. This methodology can be used <strong>in</strong> this case toupdate 5 m<strong>in</strong>utes ahead optimization <strong>in</strong>put data. In [22]very short-term w<strong>in</strong>d <strong>for</strong>ecast<strong>in</strong>g is also discussed <strong>for</strong> areal world application us<strong>in</strong>g data provided by HydroTasmania. A 2.5 m<strong>in</strong>utes horizon is proposed <strong>in</strong> <strong>the</strong> usedneuro-fuzzy methodology with less than 4% error. How-


ever, <strong>the</strong> <strong>for</strong>ecast accuracy significantly drops when <strong>the</strong>time horizon is extended, with much higher errors when<strong>the</strong> prediction is made several hours ahead, namely <strong>for</strong>medium-term <strong>for</strong>ecast<strong>in</strong>g, with over 6 hours <strong>of</strong> anticipation.Due to <strong>the</strong> difficulties <strong>of</strong> hav<strong>in</strong>g accurate <strong>for</strong>ecast<strong>in</strong>g<strong>for</strong> natural resources, ma<strong>in</strong>ly due to <strong>for</strong>ecast w<strong>in</strong>d, <strong>the</strong>schedul<strong>in</strong>g <strong>of</strong> energy resources should be undertakenwith little anticipation. This leads to <strong>the</strong> proposal <strong>of</strong> atwo-phase short-term energy resources schedul<strong>in</strong>g, withdifferent time anticipations (1 hour and 5 m<strong>in</strong>) (Figure 1),each one consider<strong>in</strong>g <strong>the</strong> most updated <strong>for</strong>ecasts, <strong>the</strong>al<strong>ready</strong> established contracts and market transactions and<strong>the</strong> market opportunities. The authors propose a newmethodology to <strong>the</strong> real-time energy resource managementthat considers all <strong>the</strong> referred resources and aims atm<strong>in</strong>imiz<strong>in</strong>g <strong>the</strong> operation costs. The developed methodologyconsiders two different algorithms. The first one isused <strong>in</strong> each hour and <strong>the</strong> objective function consists <strong>in</strong>m<strong>in</strong>imiz<strong>in</strong>g <strong>the</strong> operation cost. The difference between<strong>the</strong> energy resource schedul<strong>in</strong>g computed <strong>in</strong> <strong>the</strong> previousday and <strong>the</strong> energy resource schedul<strong>in</strong>g necessary to respondto <strong>the</strong> <strong>for</strong>ecasted load demand. The second one isrun <strong>in</strong> real-time <strong>for</strong> each period <strong>of</strong> 5 m<strong>in</strong>utes [23]. It considers<strong>the</strong> adjustment accord<strong>in</strong>g to <strong>the</strong> <strong>for</strong>ecast <strong>of</strong> generationto <strong>the</strong> verified load demand. The difference betweenalgorithms concerns <strong>the</strong> resources managed by each one.All <strong>the</strong> resources (generators, storage units, electric vehicles,demand response programs, and <strong>the</strong> <strong>in</strong>tra-day market)are considered by <strong>the</strong> first algorithm. The secondalgorithm (5 m<strong>in</strong>utes) only manages <strong>the</strong> connected generators(sp<strong>in</strong>n<strong>in</strong>g reserve) with available power capacity,storage units, electric vehicles, demand response withload reduction contracts, and considers market penalties.The ma<strong>in</strong> goal is m<strong>in</strong>imize <strong>the</strong> operation cost and m<strong>in</strong>imize<strong>the</strong> impact <strong>in</strong> <strong>the</strong> day ahead and hour ahead energyresources schedul<strong>in</strong>g. Consider<strong>in</strong>g <strong>the</strong>se goals <strong>the</strong> aggregatorreduces <strong>the</strong> operation costs and at same time <strong>the</strong>market penalties.To test <strong>the</strong> methodology, a distribution network hasbeen implemented <strong>in</strong> an Power Systems Simulation Tool(PSST) [24]. In each period <strong>of</strong> optimization, PSST exports<strong>the</strong> <strong>in</strong>stant data (bus voltages, generation, load consumptions,l<strong>in</strong>e power flows, etc) to optimization tools<strong>of</strong>tware (OTS). The <strong>in</strong>puts to <strong>the</strong> algorithms <strong>of</strong> optimizationare <strong>the</strong> actual data <strong>of</strong> generation and consumptionsent by PSST and existent data base with equipmentcharacteristics, DR contracts, and day-ahead electricitymarket <strong>in</strong><strong>for</strong>mation.Fig. 1. Proposed methodology architecture


2.1. Ma<strong>the</strong>matical <strong>for</strong>mulationThis sub-section presents <strong>the</strong> ma<strong>the</strong>matical <strong>for</strong>mulation<strong>of</strong> <strong>the</strong> problem proposed to be solved. This problemis classified as mixed-<strong>in</strong>teger non-l<strong>in</strong>ear. The objectivefunction (1) <strong>of</strong> this mixed-<strong>in</strong>teger non-l<strong>in</strong>ear model is<strong>for</strong>mulated with <strong>the</strong> aim <strong>of</strong> f<strong>in</strong>d<strong>in</strong>g <strong>the</strong> m<strong>in</strong>imal cost <strong>of</strong>supply<strong>in</strong>g <strong>the</strong> demand.M<strong>in</strong>imizengPSupplier cSupplier ( PDG ( g ) cDG( g )) g 1PStorageChargecStorageChargePStorageDischargecStorageDischargef PV 2GCharge cV 2GChargePV 2GDischarge cV 2GDischargePNSP cNSP PEGE cEGE nb PCut( b) cCut( b) b1 PRed ( b) c Red ( b)Two demand response capacities (consumption reductionand consumption curtailment) are considered as aresource. The existence <strong>of</strong> storage units and several generators,as well as <strong>the</strong> energy supplied by a supplier, arealso considered.Equations (2) to (13) refer to <strong>the</strong> constra<strong>in</strong>ts that areconsidered. Equation (2) refers to <strong>the</strong> first Kirchh<strong>of</strong>f Lawor power balance constra<strong>in</strong>t.ngP P P PSupplier DG( g) StorageDischarge V 2GDischargeg 1nb P P PNSP Cut( b) Red ( b)b1 P P P PLoad StorageCharge V 2GCharge EGEEquations (3) to (7) represent <strong>the</strong> constra<strong>in</strong>ts concern<strong>in</strong>g<strong>the</strong> maximum capacity consider<strong>in</strong>g <strong>the</strong> available resources,<strong>for</strong> both generation (3, 4) and load response (5,6), and <strong>for</strong> storage units (7). In <strong>the</strong> consumption curtailmentprogram, <strong>the</strong> participation <strong>of</strong> each load only can beby its total curtailment power.P P(3)DG( g) DGMax ( g)DG( g) DGM<strong>in</strong> ( g) DG( g) DG( g)(2)P P X ; X 0,1 (4)P P X ; X 0,1(5)Cut ( b) Cut ( b) Cut ( b) CutA( b)P P(6)Red ( b) RedMax ( b)(1)considered <strong>in</strong> equation (8) and <strong>the</strong> charge capacity <strong>in</strong>equation (9). In each <strong>in</strong>stant, <strong>the</strong> battery only can becharg<strong>in</strong>g or discharg<strong>in</strong>g, as imposed <strong>in</strong> equation (10).P P X ; X 0,1StorageDischarge StorageDischargeMax Storage StorageP P Y ; Y 0,1 (9)StorageCharge StorageChargeMax Storage StorageX Y 1; X and Y 0,1 (10)Storage Storage Storage StorageIt is also necessary to impose that it is not possible todischarge more than <strong>the</strong> stored energy (11). Similarly,<strong>the</strong> power to be charged plus <strong>the</strong> power stored cannot behigher than <strong>the</strong> total storage resource capacity (12). F<strong>in</strong>ally,<strong>the</strong> storage state is obta<strong>in</strong>ed consider<strong>in</strong>g <strong>the</strong> <strong>in</strong>itialstored energy, <strong>the</strong> charge, and <strong>the</strong> discharge <strong>in</strong> each timeperiod (13).PStorageDischargeP 0(11)StorageInitialPStorageCharge PStorageInitial PStorageMax(12)PStorage PStorageInitial PStorageDischarge PStorageCharge(13)Electric vehicles with gridable capability (V2G) resourcesrequire a special treatment due to specific operationconstra<strong>in</strong>ts. The discharge capacity is considered <strong>in</strong>equation (14) and <strong>the</strong> charge capacity <strong>in</strong> equation (15). Ineach <strong>in</strong>stant, <strong>the</strong> battery only can be charg<strong>in</strong>g or discharg<strong>in</strong>g,as imposed <strong>in</strong> equation (16).P P X ; X 0,1 (14)V 2GDischarge V 2GDischargeMax V 2G V 2GP P Y ; Y 0,1 (15)V 2GCharge V 2GChargeMax V 2G V 2GX Y 1; X and Y 0,1 (16)V 2G V 2G V 2G V 2GIt is also necessary to impose that it is not possible todischarge more than <strong>the</strong> stored energy (17). Similarly,<strong>the</strong> power to be charged plus <strong>the</strong> power stored cannot behigher than <strong>the</strong> total storage resource capacity (18). F<strong>in</strong>ally,<strong>the</strong> storage state is obta<strong>in</strong>ed consider<strong>in</strong>g <strong>the</strong> <strong>in</strong>itialstored energy, <strong>the</strong> charge, and <strong>the</strong> discharge <strong>in</strong> each timeperiod (19).PV 2GDischargePV 2GInitial0 (17)P P P(18)V 2GCharge V 2G V 2GMaxP P P P(19)V 2G V 2GInitial V 2GDischarge V 2GCharge(8)PStorage P(7)StorageMaxStorage resources require a special treatment due tospecific operation constra<strong>in</strong>ts. The discharge capacity is


2.2. Short-term schedul<strong>in</strong>g simulatorIn this work <strong>the</strong> DICOPT solver is used to <strong>the</strong> MINLPapproach <strong>for</strong> <strong>the</strong> short-term energy resources management,<strong>the</strong> OTS is used <strong>for</strong> <strong>in</strong>terface between <strong>the</strong> results<strong>of</strong> schedul<strong>in</strong>g and <strong>the</strong> simulation tool [28-30]. To simulate<strong>the</strong> use <strong>of</strong> DER <strong>in</strong> power systems, it is necessary tocreate models <strong>in</strong> simulation tools to test schedul<strong>in</strong>g solutionsprior to actual implementation. The tool <strong>for</strong> simulation<strong>of</strong> electricity network and energy resources used toapply <strong>the</strong> proposed methodology is PSST.The choice <strong>of</strong> <strong>the</strong>se three s<strong>of</strong>tware packages fulfilled<strong>the</strong> requirements, provid<strong>in</strong>g us with powerful ma<strong>the</strong>maticalresources <strong>of</strong> DICOPT solver, and <strong>the</strong> use <strong>of</strong> <strong>the</strong> OTSwith <strong>the</strong> advantage <strong>of</strong> an efficient connection with <strong>the</strong>PSST power system simulator. This tool allows buildcustom models us<strong>in</strong>g PSST Design Editor. PSST hasbeen widely used <strong>in</strong> <strong>the</strong> study <strong>of</strong> distributed energy resources[31-37].To simulate <strong>the</strong> distribution network <strong>for</strong> <strong>the</strong> hourlyoperation plann<strong>in</strong>g, <strong>the</strong> authors had to implement <strong>the</strong>network <strong>in</strong> PSST and to create models <strong>of</strong> distributedgeneration units, loads, l<strong>in</strong>es and substation. Dur<strong>in</strong>g <strong>the</strong>simulation, PSST receives <strong>in</strong><strong>for</strong>mation concern<strong>in</strong>g distributionnetwork data, network state, DG and DR shorttermschedul<strong>in</strong>g result<strong>in</strong>g from <strong>the</strong> optimization process.The optimization process, needs <strong>the</strong> follow<strong>in</strong>g data: generationdata, generation costs, DR contracts, day-aheadDER schedul<strong>in</strong>g and <strong>the</strong> <strong>in</strong>tra-day market price, with <strong>the</strong>objective to m<strong>in</strong>imize <strong>the</strong> cost <strong>of</strong> <strong>the</strong> DG, load curtailmentand <strong>the</strong> <strong>in</strong>tra-day market.PSST has <strong>the</strong> capability <strong>of</strong> <strong>in</strong>terfac<strong>in</strong>g with OTScommands and toolboxes through a special <strong>in</strong>terface.OTS programs or block-sets that are to be <strong>in</strong>terfacedwith PSST must be designed and saved as an OTS programfile. Then, a user-def<strong>in</strong>ed block must be provided<strong>in</strong> PSST, with <strong>the</strong> necessary <strong>in</strong>puts and outputs, to <strong>in</strong>terface<strong>the</strong> OTS file. In this <strong>paper</strong>, an <strong>in</strong>terfac<strong>in</strong>g block hasbeen created <strong>in</strong> PSST to l<strong>in</strong>k <strong>the</strong> OTS files def<strong>in</strong>ed with<strong>in</strong><strong>the</strong> block.Fig. 2 shows components and <strong>the</strong> connection between<strong>the</strong> PSST and OTS.Fig. 2. Components and connections <strong>of</strong> a bus implemented<strong>in</strong> PSSTwhere:pgnqgnvivjplkqlkpijxqijxpjixqjixfckIfgnfgnActive power <strong>of</strong> DG unit n <strong>in</strong> BUS iReactive power <strong>of</strong> DG unit n <strong>in</strong> BUS iVoltage magnitude <strong>in</strong> BUS iVoltage magnitude <strong>in</strong> BUS jActive power demand <strong>of</strong> load k <strong>in</strong> BUS iReactive power demand <strong>of</strong> load k <strong>in</strong> BUS iActive power <strong>in</strong> l<strong>in</strong>e x from BUS i to BUS jReactive power <strong>in</strong> l<strong>in</strong>e x from BUS i to BUS jActive power <strong>in</strong> l<strong>in</strong>e x from BUS j to BUS iReactive power <strong>in</strong> l<strong>in</strong>e x from BUS j to BUS iLoad control variable <strong>of</strong> load kMax. <strong>in</strong>stantaneous active power generator <strong>of</strong>DG unit nGenerator control variable <strong>of</strong> DG unit nThe network values obta<strong>in</strong>ed <strong>for</strong> period t and withload <strong>for</strong>ecast and generation <strong>for</strong>ecast <strong>for</strong> period t+1, areimportant data <strong>for</strong> optimization process. The obta<strong>in</strong>edoptimized solution is sent to PSST, through <strong>the</strong> follow<strong>in</strong>gvariables: <strong>the</strong> load control variable <strong>in</strong> each load, <strong>the</strong>maximum <strong>in</strong>stantaneous active power <strong>in</strong> each distributedgeneration unit, and <strong>the</strong> generator control variable <strong>in</strong>each distributed generation unit. These variables will set<strong>the</strong> new state <strong>of</strong> <strong>the</strong> generators and loads.4. Case studyThe case study shows <strong>the</strong> simulation <strong>of</strong> a distributionnetwork with high DER penetration us<strong>in</strong>g PSST simulationtool and DICOPT solver to optimize <strong>the</strong> energy resourcesusage, and OTS to <strong>in</strong>terface between <strong>the</strong> optimizationand <strong>the</strong> simulation tool. The method considers <strong>the</strong>5 m<strong>in</strong>utes operation plann<strong>in</strong>g, <strong>in</strong> each phase, all <strong>the</strong>available resources (DG, demand response, electric vehiclesand storage) respect<strong>in</strong>g <strong>the</strong>ir technical limits, contracts,day-ahead and <strong>in</strong>tra-day schedul<strong>in</strong>g, and aims atm<strong>in</strong>imiz<strong>in</strong>g <strong>the</strong> VPP operation costs.The simulator will iterate with <strong>the</strong> optimization <strong>of</strong> <strong>the</strong>DER short-term schedul<strong>in</strong>g, <strong>in</strong> terms <strong>of</strong> <strong>the</strong> 5 m<strong>in</strong>utesoperation plann<strong>in</strong>g dur<strong>in</strong>g 2 hours scenario. The casestudy was implemented on <strong>the</strong> distribution network with33 buses, from [19, 25], with load and Distributed Generation(DG) evolution prediction <strong>for</strong> <strong>the</strong> year 2040 [26],with 32 load, 66 DG and 1000 electric vehicles, 7 storageand 10 external supplier [26]. The electric vehicles usescenarios were developed <strong>in</strong> EVeSSi Simulator tool. Thisapplication allows <strong>the</strong> creation <strong>of</strong> different scenariosconsider<strong>in</strong>g <strong>the</strong> trip parameters, electric vehicles classesand types parameters, and electric vehicles specific modelparameters [27].Short-term schedul<strong>in</strong>g is used to reschedule <strong>the</strong> previouslyobta<strong>in</strong>ed schedule tak<strong>in</strong>g advantage <strong>of</strong> <strong>the</strong> betteraccuracy <strong>of</strong> short-term <strong>for</strong>ecast<strong>in</strong>g <strong>in</strong> order to obta<strong>in</strong>more efficient resource schedul<strong>in</strong>g solutions.The used optimization is based on a MINLP approachthat has proved to achieve a satisfactory cost operat<strong>in</strong>gpo<strong>in</strong>t <strong>in</strong> a competitive time.The proposed methodology demonstrated to be able toprovide users with significant cost reductions, lower<strong>in</strong>g


<strong>the</strong> power losses and resource use costs. Moreover, it<strong>in</strong>cludes a dynamic analysis <strong>of</strong> <strong>the</strong> power system simulation,which is based on <strong>the</strong> use <strong>of</strong> PSST.Table 1 summarizes <strong>the</strong> considered energy resourcescosts <strong>for</strong> <strong>the</strong> case study and <strong>the</strong> number <strong>of</strong> DG units.Table 1. Case study energy resource data.Energy Resources Number <strong>of</strong> unitsPrice(m.u./MWh)case studyBiomass 4 0.0500 – 0.0720Cogeneration 15 0.0416 – 0.0600Fuel cell 7 0.5833 – 0.8400Hydro small 2 0.0458 – 0.0660Photovoltaic 31 0.0167 – 0.0240Waste to energy 1 0.0375 – 0.0540W<strong>in</strong>d 6 0.0250 – 0.0360Load DR 32 1.000 – 15.000Energy supply 10 0.5833 – 0.8400ElectricvehiclesDischarge 1000 0.2000 – 0.2500The results <strong>of</strong> loads consumption and <strong>the</strong> DG (PV andW<strong>in</strong>d) prediction can be seen <strong>in</strong> Fig. 3.The MINLP based optimization approach described <strong>in</strong>section 2 has been used <strong>for</strong> determ<strong>in</strong><strong>in</strong>g <strong>the</strong> DistributedGeneration and Demand Response short-term schedul<strong>in</strong>g<strong>for</strong> this case study. It is important to note that all 288optimizations, each one undertaken <strong>for</strong> 5 m<strong>in</strong>utes, aredependent from each o<strong>the</strong>r, because <strong>of</strong> <strong>the</strong> state <strong>of</strong> storageand state <strong>of</strong> electric vehicles. DER schedul<strong>in</strong>g <strong>for</strong>period t is undertaken <strong>in</strong> period t-1, consider<strong>in</strong>g <strong>the</strong> operationstate result<strong>in</strong>g from <strong>the</strong> schedule al<strong>ready</strong> used <strong>for</strong><strong>the</strong> previous periods.The methodology used to simulate <strong>the</strong> power system<strong>of</strong> this case study has been tested on a PC compatiblewith one Intel Xeon W5450 3.00 GHz processor, with 8Cores, 12GB <strong>of</strong> random-access-memory (RAM) andW<strong>in</strong>dows Sever Enterprise.4.2. Resultsschedul<strong>in</strong>g <strong>in</strong> <strong>the</strong> day-ahead and <strong>in</strong> <strong>the</strong> hour-ahead and<strong>the</strong> transients effects between <strong>the</strong> schedul<strong>in</strong>g periods. Inthis <strong>paper</strong> are presented <strong>the</strong> transient effects simulated <strong>in</strong>PSST.Figure 4 shows <strong>the</strong> results <strong>in</strong> PSST <strong>of</strong> an example <strong>of</strong><strong>the</strong> several energy resources evolution along a set <strong>of</strong> periods<strong>in</strong> bus 18. In Figure 5 is possible to see an example<strong>of</strong> <strong>the</strong> energy <strong>in</strong> a storage unit and an electric vehicle <strong>for</strong><strong>the</strong> same periods <strong>of</strong> time5. ConclusionsThis <strong>paper</strong> presented a short-term energy resourcemanagement methodology <strong>in</strong>volv<strong>in</strong>g day-ahead and fivem<strong>in</strong>utesahead schedul<strong>in</strong>g. Short-term schedul<strong>in</strong>g is usedto reschedule <strong>the</strong> previously obta<strong>in</strong>ed schedule tak<strong>in</strong>gadvantage <strong>of</strong> <strong>the</strong> better accuracy <strong>of</strong> short-term w<strong>in</strong>d andsolar generation and demand consumption <strong>for</strong>ecast<strong>in</strong>g <strong>in</strong>order to obta<strong>in</strong> more efficient resource schedul<strong>in</strong>gsolutions.The proposed method considers distributed generators,storage units, electric vehicles and two dist<strong>in</strong>ct demandresponse programs –consumption reduction and consumptioncurtailment.The optimization process use a determ<strong>in</strong>istic approachmixed <strong>in</strong>teger non-l<strong>in</strong>ear programm<strong>in</strong>g (MINLP). Theobta<strong>in</strong>ed feasibility solution is technically validatedus<strong>in</strong>g realistic power system simulation, based on PSST.The presented case study is based on a 33 busdistribution network with distributed generation, storageunits, electric vehicles and controllable loads.AcknowledgementsThis work is supported by FEDER Funds throughCOMPETE program and by National Funds throughFCT under <strong>the</strong> projects FCOMP-01-0124-FEDER:PEST-OE/EEI/UI0760/2011,PTDC/EEA-EEL/099832/2008, and PTDC/SEN-ENR/099844/2008.Several results can be obta<strong>in</strong>ed from <strong>the</strong> simulations <strong>in</strong>this case study. The most important ones are energyFig. 3. Load <strong>for</strong>ecast<strong>in</strong>g and <strong>the</strong> DG <strong>for</strong>ecast<strong>in</strong>g.


Fig. 4. Example <strong>of</strong> evolution <strong>of</strong> energy resources (EV – Electric Vehicle, S – Storage, PV – Photovoltaic, W – W<strong>in</strong>d,L – Load) and voltage (V)Electric vehicleout <strong>of</strong>f gridFig. 5. Example evolution <strong>of</strong> energy <strong>in</strong> a storage unit and <strong>in</strong> a electric vehicle batteries


References[1] H. Morais, P. Kadar, P. Faria, Z. A. Vale, and H. M. Khodr,"Optimal schedul<strong>in</strong>g <strong>of</strong> a renewable micro-grid <strong>in</strong> an isolatedload area us<strong>in</strong>g mixed-<strong>in</strong>teger l<strong>in</strong>ear programm<strong>in</strong>g," RenewableEnergy, vol. 35, pp. 151-156, Jan 2010.[2] H. M. Khodr, M. R. Silva, Z. Vale, and C. Ramos, "Aprobabilistic methodology <strong>for</strong> distributed generation location <strong>in</strong>isolated electrical service area," Electric Power Systems Research,vol. 80, pp. 390-399, Apr 2010.[3] IEEE. (2011, IEEE SMART GRID. Available:http://smartgrid.ieee.org/[4] Kim J<strong>in</strong>ho and Park Hong-Il, "Policy Directions <strong>for</strong> <strong>the</strong> SmartGrid <strong>in</strong> Korea," Power and Energy Magaz<strong>in</strong>e, IEEE, vol. 9, pp.40-49, 2011.[5] I. K. Song, K. D. Kim, J. Kelly, and C. Thomas, "Local GreenTeams," Ieee Power & Energy Magaz<strong>in</strong>e, vol. 9, pp. 66-74, Jan-Feb 2011.[6] Li Fangx<strong>in</strong>g, Qiao Wei, Sun Hongb<strong>in</strong>, Wan Hui, Wang Jianhui,Xia Yan, Xu Zhao, and Zhang Pei, "Smart Transmission Grid:Vision and Framework," Smart Grid, IEEE Transactions on, vol.1, pp. 168-177, 2010.[7] Z. A. Vale, P. Faria, H. Morais, H. M. Khodr, M. Silva, and P.Kadar, "Schedul<strong>in</strong>g Distributed Energy Resources <strong>in</strong> an isolatedgrid - An Artificial Neural Network Approach," Ieee Power andEnergy Society General Meet<strong>in</strong>g 2010, 2010.[8] European Commission, "European SmartGrids TechnologyPlat<strong>for</strong>m - Vision and Strategy <strong>for</strong> Europe’s Electricity Networks<strong>of</strong> <strong>the</strong> Future," E. Communities, Ed., ed, 2006.[9] M. Silva, H. Morais, and Z. A. Vale, "Distribution network shortterm schedul<strong>in</strong>g <strong>in</strong> Smart Grid context," <strong>in</strong> Power and EnergySociety General Meet<strong>in</strong>g, 2011 IEEE, 2011, pp. 1-8.[10] A. Borghetti, M. Bosetti, S. Grillo, S. Massucco, C. A. Nucci, M.Paolone, and F. Silvestro, "Short-Term Schedul<strong>in</strong>g and Control<strong>of</strong> Active Distribution Systems With High Penetration <strong>of</strong>Renewable Resources," Ieee Systems Journal, vol. 4, pp. 313-322,Sep 2010.[11] CEPOS, "W<strong>in</strong>d Energy - The case <strong>of</strong> Denmark," Center <strong>for</strong>Politiske Studier, Copenhagen, DenmarkSeptember 2009.[12] ISO/RTO Council, "North American Wholesale ElectricityDemand Response Program Comparison," 2011.[13] M. H. Albadi and E. F. El-Saadany, "A summary <strong>of</strong> demandresponse <strong>in</strong> electricity markets," Electric Power SystemsResearch, vol. 78, pp. 1989-1996, Nov 2008.[14] C. Kieny, B. Berseneff, N. Hadjsaid, Y. Besanger, and J. Maire,"On <strong>the</strong> concept and <strong>the</strong> <strong>in</strong>terest <strong>of</strong> Virtual Power plant: someresults from <strong>the</strong> European project FENIX," 2009 Ieee Power &Energy Society General Meet<strong>in</strong>g, Vols 1-8, pp. 1877-1882, 2009.[15] K. E. Bakari and W. L. Kl<strong>in</strong>g, "Virtual power plants: An answerto <strong>in</strong>creas<strong>in</strong>g distributed generation," <strong>in</strong> Innovative Smart GridTechnologies Conference Europe (ISGT Europe), 2010 IEEEPES, 2010, pp. 1-6.[16] D. Pudjianto, C. Ramsay, and G. Strbac, "Virtual power plant andsystem <strong>in</strong>tegration <strong>of</strong> distributed energy resources," IetRenewable Power Generation, vol. 1, pp. 10-16, Mar 2007.[17] M. R. Silva, Z. Vale, H. M. Khodr, C. Ramos, and J. M. Yusta,"Optimal Dispatch with Reactive Power Compensation byGenetic Algorithm," 2010 Ieee Pes Transmission andDistribution Conference and Exposition: Smart Solutions <strong>for</strong> aChang<strong>in</strong>g World, 2010.[18] Jizhong Zhu, Optimization <strong>of</strong> power system operation.Piscataway, N.J.: Wiley-IEEE ; Chichester : John Wiley[distributor], 2009.[19] P. Faria, Z. Vale, J. Soares, and J. Ferreira, "Demand ResponseManagement <strong>in</strong> Power Systems Us<strong>in</strong>g a Particle SwarmOptimization Approach," Intelligent Systems, IEEE, vol. PP, pp.1-1, 2011.[20] T. Sousa, H. Morais, Z. Vale, P. Faria, and J. Soares, "Intelligentenergy resource management consider<strong>in</strong>g vehicle-to-grid: Asimulated anneal<strong>in</strong>g approach," Accepted <strong>for</strong> Publication onIEEE Transaction on Smart Grid, Special Issue onTransportation Electrification and Vehicle-to-Grid Applications,2011.[21] Sérgio Ramos, João Soares, Zita Vale, and Hugo Morais, "AData M<strong>in</strong><strong>in</strong>g Based Methodology <strong>for</strong> W<strong>in</strong>d Forecast<strong>in</strong>g,"presented at <strong>the</strong> 16th International Conference on IntelligentSystem Applications to Power Systems (ISAP 2011), Crete,Greece, 2011.[22] C. W. Potter and M. Negnevitsky, "Very short-term w<strong>in</strong>d<strong>for</strong>ecast<strong>in</strong>g <strong>for</strong> Tasmanian power generation," Ieee Transactionson Power Systems, vol. 21, pp. 965-972, May 2006.[23] Cali<strong>for</strong>nia ISO, "Renewables Integration Market Vision &Roadmap Day-<strong>of</strong> Market," Initial Straw Proposal07/06/20112011.[24] PSCAD, "Applications <strong>of</strong> PSCAD / EMTDC," 2008.[25] M. E. Baran and F. F. Wu, "Network Reconfiguration <strong>in</strong>Distribution-Systems <strong>for</strong> Loss Reduction and Load Balanc<strong>in</strong>g,"Ieee Transactions on Power Delivery, vol. 4, pp. 1401-1407, Apr1989.[26] P. Faria, Z. A. Vale, and J. Ferreira, "Demsi &#x2014; A demandresponse simulator <strong>in</strong> <strong>the</strong> context <strong>of</strong> <strong>in</strong>tensive use <strong>of</strong> distributedgeneration," <strong>in</strong> Systems Man and Cybernetics (SMC), 2010 IEEEInternational Conference on, 2010, pp. 2025-2032.[27] J. Soares, "Modified PSO <strong>for</strong> day-ahead distributed energyresources schedul<strong>in</strong>g <strong>in</strong>clud<strong>in</strong>g vehicle-to-grid," Master degree<strong>the</strong>sis, Polytechnic <strong>of</strong> Porto, Portugal, 2011.BiographiesMarco Silva received <strong>the</strong> BSc degree <strong>in</strong>Electrical Eng<strong>in</strong>eer<strong>in</strong>g from <strong>the</strong> PolytechnicInstitute <strong>of</strong> Porto (ISEP/IPP), Portugal <strong>in</strong>2007. Presently, he is an Assistant Researcherat GECAD – Knowledge Eng<strong>in</strong>eer<strong>in</strong>g andDecision-Support Research Center <strong>of</strong>ISEP/IPP. His current research activities arefocused on future electrical networks with<strong>in</strong>tensive use <strong>of</strong> distributed generation.Hugo Morais (M’11 S’08) received <strong>the</strong>BSc and Master degrees <strong>in</strong> Electrical Eng<strong>in</strong>eer<strong>in</strong>gfrom <strong>the</strong> Polytechnic Institute <strong>of</strong>Porto (ISEP/IPP), Portugal <strong>in</strong> 2005 and 2010respectively. He is a Researcher at GECAD –Knowledge Eng<strong>in</strong>eer<strong>in</strong>g and Decision-Support Research Center and a PhD student.His research <strong>in</strong>terests <strong>in</strong>clude smart grids,virtual power players, and electricity markets.Zita A. Vale (SM’10 M’93 S’86) is <strong>the</strong>director <strong>of</strong> <strong>the</strong> Knowledge Eng<strong>in</strong>eer<strong>in</strong>g andDecision Support Research Center (GECAD)and a pr<strong>of</strong>essor at <strong>the</strong> Polytechnic Institute <strong>of</strong>Porto.She received her diploma <strong>in</strong> Electrical Eng<strong>in</strong>eer<strong>in</strong>g<strong>in</strong> 1986 and her PhD <strong>in</strong> 1993, bothfrom University <strong>of</strong> Porto. Her ma<strong>in</strong> research<strong>in</strong>terests concern Artificial Intelligence (A.I.)applications to Power System operation andcontrol, Electricity Markets, DistributedGeneration, and Smart Grids.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!