30.11.2012 Views

Marine and Freshwater Resources Institute Report No. 4 Exotic ...

Marine and Freshwater Resources Institute Report No. 4 Exotic ...

Marine and Freshwater Resources Institute Report No. 4 Exotic ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ISSN: 1328-5548<br />

<strong>Marine</strong> <strong>and</strong> <strong>Freshwater</strong> <strong>Resources</strong> <strong>Institute</strong><br />

<strong>Report</strong> <strong>No</strong>. 4<br />

<strong>Exotic</strong> <strong>Marine</strong> Pests in the Port of Hastings,<br />

Victoria.<br />

D. R. Currie <strong>and</strong> D. P. Crookes<br />

December 1997<br />

<strong>Marine</strong> <strong>and</strong> <strong>Freshwater</strong> <strong>Resources</strong> <strong>Institute</strong><br />

PO Box 114<br />

Queenscliff 3225


CONTENTS<br />

SUMMARY 1<br />

1. BACKGROUND 2<br />

2. DESCRIPTION OF THE PORT OF HASTINGS 3<br />

2.1 Shipping movements 3<br />

2.2 Port development <strong>and</strong> maintenance activities 4<br />

2.21 Dredge <strong>and</strong> spoil dumping 4<br />

2.22 Pile construction <strong>and</strong> cleaning 5<br />

3. EXISTING BIOLOGICAL INFORMATION 5<br />

4. SURVEY METHODS 6<br />

4.1 Phytoplankton 6<br />

4.11 Sediment sampling for cyst-forming species 6<br />

4.12 Phytoplankton sampling 6<br />

4.2 Trapping 7<br />

4.3 Zooplankton 7<br />

4.4 Diver observations <strong>and</strong> collections on wharf piles 7<br />

4.5 Visual searches 7<br />

4.6 Epibenthos 8<br />

4.7 Benthic infauna 8<br />

4.8 Seine netting 8<br />

4.9 Sediment analysis 8<br />

5. SURVEY RESULTS 9<br />

5.1 Port environment 9<br />

5.2 Introduced species in port 9<br />

5.21 ABWMAC target introduced species 9<br />

5.22 Other target species 11<br />

5.23 Additional exotic species detected 12<br />

5.24 Adequacy of survey intensity 13<br />

6. IMPACT OF EXOTIC SPECIES 13<br />

7. ORIGIN AND POSSIBLE VECTORS FOR THE INTRODUCTION OF<br />

EXOTIC SPECIES FOUND IN THE PORT. 14<br />

8. INFLUENCES OF THE PORT ENVIRONMENT ON THE SURVIVAL<br />

OF INTRODUCED SPECIES. 15<br />

ACKNOWLEDGMENTS 16<br />

REFERENCES 17<br />

TABLES 1-6 21<br />

FIGURES 1-5 25<br />

APPENDICES 1 & 2 36


SUMMARY<br />

The Port of Hastings in Westernport Bay was surveyed for introduced species between<br />

4th <strong>and</strong> 15th of March 1997. The survey focused on habitats in the vicinity of<br />

commercial wharves that were likely to be colonised by introduced species <strong>and</strong> a<br />

variety of techniques were used to detect exotic species. Potential ‘pest’ species<br />

identified by the Australian Ballast Water Management Advisory Council<br />

(ABWMAC) were targeted in particular. The survey closely followed guidelines<br />

produced by the CSIRO Centre for Research on Introduced <strong>Marine</strong> Pests (CRIMP).<br />

A total of 355 species were collected during the survey but only 7 of these species<br />

were confirmed as introduced. The following exotic species were found in the Port of<br />

Hastings: the European shore crab Carcinus maenus; the European clam Corbula<br />

gibba; the Asian mussel Musculista senhousia; the Asian bivalve Theora lubrica; <strong>and</strong><br />

the cosmopolitan bryozoans Bugula dentata, Bugula neritina <strong>and</strong> Watersipora<br />

subtorquata. The only ABWMAC target species found was Carcinus maenus.<br />

Bugula dentata was the only exotic species abundant enough in Port of Hastings to<br />

cause a significant ecological impact. This bryozoan forms erect flexible growths <strong>and</strong><br />

carpets the surfaces of pier pylons at all commercial wharves in the Port of Hastings.<br />

Bugula dentata has been present in Westernport Bay for more than 20 years <strong>and</strong> was<br />

probably first introduced on the hulls of ships or pleasure craft.<br />

The Port of Hastings receives more ballast water than any other commercial port in<br />

Victoria <strong>and</strong> is therefore particularly susceptible to introductions of exotic larvae.<br />

Most vessels currently entering port have a domestic last port of call <strong>and</strong> the majority<br />

of these emanate from either Port Kembla or Botany Bay. As both these mainl<strong>and</strong><br />

ports contain exotic species also recorded from the Port of Hastings, both have been<br />

identified as likely sources of current <strong>and</strong> future introductions. Port Phillip Bay which<br />

is now infested with exotics <strong>and</strong> geographically close to Westernport Bay is also<br />

recognised as potential source for further introductions. Proposed increases in oil<br />

tanker movements between the Port of Geelong <strong>and</strong> the Port of Hastings will<br />

undoubtedly increase the risk of organism transfers between the two bays. However<br />

shipping translocations are not the only threat to the ecology of Westernport Bay.<br />

Water circulation models for northern Bass Strait suggest that some exotics will<br />

inevitably reach Westernport Bay as larvae carried in coastal currents from Port<br />

Phillip Heads.<br />

The rapid tidal currents which flow past all commercial berths in the Port of Hastings<br />

may be responsible for the relatively low number of exotic species established near the<br />

port. Such currents probably hinder larval settlement in the immediate vicinity of the<br />

wharves, <strong>and</strong> may serve to transport larvae discharged in ballast water into unsuitable<br />

habitat. Conversely these same currents may assist in the wide <strong>and</strong> rapid distribution<br />

of introductions better suited to other environments within Westernport Bay.<br />

1


1. BACKGROUND<br />

The transport of species on the hulls <strong>and</strong> in the ballast water of international shipping,<br />

<strong>and</strong> the subsequent establishment of exotic organisms in foreign ports is not a new<br />

phenomenon (Byrne et al., 1997). The issue has only received attention in recent years<br />

as the magnitude of impacts caused by introductions on native species become more<br />

apparent. The devastating effects of introductions such as the zebra mussel Dreissena<br />

polymorpha into the Great Lakes (Griffiths et al., 1991; Strayer, 1991), the ctenophore<br />

Mnemiopsis leidyi into the Black Sea (Vinogradov et al., 1989) <strong>and</strong> the clam<br />

Potamocorbula amurensis into San Francisco Bay (Carlton et al., 1990) have<br />

undoubtedly served to highlight the serious nature of this problem.<br />

All exotic species alter natural interactions in the invaded ecosystems, but not all pose<br />

serious threats to these ecosystems. Unfortunately identifying species likely to<br />

establish in new ecosystems is difficult, as is predicting their likely impact<br />

(Hengeveld, 1989). There are now over 150 cryptogenic <strong>and</strong> possibly indroduced<br />

species in Port Phillip Bay, Victoria (Marnie Nelson CRIMP pers. comm.). <strong>No</strong>t all of<br />

these species appear to be causing major disruptions but a number of species are<br />

causing concern as they occur in large numbers.<br />

Recognition that exotic species introduced into Victorian waters may be causing<br />

significant ecological effects on our coastal environments resulted in the formation of<br />

the Victorian Ballast Water Working Group (VBWWG) in 1994. This group included<br />

representatives from Environment Protection Authority (EPA), Department of<br />

Natural <strong>Resources</strong> <strong>and</strong> Environment (DNRE), Port of Melbourne Authority (PMA)<br />

<strong>and</strong> the Australian Quarantine <strong>and</strong> Inspection Service (AQIS). VBWWG<br />

commissioned two studies in 1995. The first of these (Walters 1996) was a desk study<br />

to document patterns of ship visits <strong>and</strong> ballast water discharge in Victorian ports. The<br />

second study was to document the exotic species which had established in each of<br />

Victoria's ports <strong>and</strong> is described in part in this report. This report describes the results<br />

of a field survey for exotic species in the Port of Hastings, <strong>and</strong> subsequent reports will<br />

describe exotic species in other Victorian ports.<br />

Concern about the impact of exotic species throughout all coastal regions of Australia<br />

<strong>and</strong> particularly near ports, resulted in the establishment of the Centre for Research on<br />

Introduced <strong>Marine</strong> Pests (CRIMP) within the Fisheries Division of the CSIRO in<br />

1994. One of the primary tasks of the Centre is to determine the diversity <strong>and</strong><br />

distribution of introduced marine species in Australia by surveying a represetative set<br />

of ports from all regions in Australia. CRIMP guidelines for the conduct of port<br />

surveys for exotic species (Hewitt <strong>and</strong> Martin, 1996) were used as the basis for the<br />

design of an earlier survey of the Port of Portl<strong>and</strong> (Parry et al., 1997). This survey of<br />

the Port of Hastings employed precisely the same methods outlined for the Port of<br />

Portl<strong>and</strong> survey.<br />

A variety of sampling techniques were used to sample a large range of habitats for<br />

exotic species in the Port of Hastings. Potential ‘pest’ species were targeted<br />

particularly. Sampling strategies were designed to detect species listed on the<br />

Australian Ballast Water Management Advisory Council (ABWMAC) schedule of<br />

target introduced ‘pest’ species, including Gymnodinium <strong>and</strong> Alex<strong>and</strong>rium sp. (toxic<br />

dinoflagellates), Undaria pinnatifida (Japanese seaweed), Asterias amurensis<br />

2


(<strong>No</strong>rthern Pacific seastar), Sabella spallanzanii (Giant fan worm) <strong>and</strong> Carcinus<br />

maenus (European shore crab), but not Vibrio cholera (Cholera bacterium) <strong>and</strong> fish<br />

pathogens, although they are also on the ABWMAC schedule. In addition, recent<br />

research in Port Phillip Bay confirmed the presence of the exotic bivalve Theora<br />

lubrica <strong>and</strong> identified four newly established, abundant <strong>and</strong> potentially damaging pest<br />

species, the small sabellid polychaete worm Euchone limnicola, the bivalves Corbula<br />

gibba (Currie <strong>and</strong> Parry, 1996) <strong>and</strong> Musculista senhousia, <strong>and</strong> the majid crab<br />

Pyromaia tuberculata (Parry et al., 1996). These five benthic species were also<br />

targeted in our survey.<br />

2. DESCRIPTION OF THE PORT OF HASTINGS<br />

The Port of Hastings is located 60 km south east of Melbourne on Westernport Bay.<br />

The port currently operates two marine tanker terminals at Crib Point <strong>and</strong> Long Isl<strong>and</strong>,<br />

<strong>and</strong> one cargo terminal at the Steel Industry Wharves (Fig. 1). The deep water port can<br />

accommodate vessels up to 165,000 deadweight tonnes, <strong>and</strong> it presently h<strong>and</strong>les an<br />

average of three crude oil carriers, six LPG vessels <strong>and</strong> eight vessels with steel<br />

cargoes per month. Imports are dominated by steel slab which is shipped from Port<br />

Kembla in New South Wales to supply the BHP hot strip coating mill at Hastings.<br />

Main exports include rolled <strong>and</strong> coated steel products for domestic <strong>and</strong> international<br />

markets, in addition to crude oil <strong>and</strong> gas which is piped ashore from Bass Strait.<br />

All three commercial shipping terminals are located within 10 km of each other in the<br />

<strong>No</strong>rth Arm of Westernport Bay. The following habitats were recorded near the<br />

terminals: s<strong>and</strong>y beaches, intertidal mudflats, boulder breakwalls, silty sediments, <strong>and</strong><br />

concrete/steel piles. Previous studies have documented additional habitats within the<br />

bay including salt marsh, mangroves, seagrass beds, <strong>and</strong> subtidal rocky areas<br />

(Marsden <strong>and</strong> Mallet, 1975; Smith et al., 1975).<br />

2.1 Shipping movements<br />

Western Port Bay was first settled by Europeans in 1826, when a British military<br />

camp was established to protect colonial shipping movements in Bass Strait. This<br />

camp was shortly ab<strong>and</strong>oned, <strong>and</strong> the natural harbour was little used until after World<br />

War II when the potential for a port development in the Bay was recognised. Largescale<br />

heavy industry developments on the Bay’s foreshore were begun in the late<br />

1960’s <strong>and</strong> included the construction of three separate shipping terminals. These port<br />

developments resulted in a considerable increase in the number of ships entering<br />

Westernport Bay in the period following their completion in the early 1970’s. The<br />

current volume of commercial shipping traffic using berths in the Port of Hastings<br />

has just been documented by Walters (1996), <strong>and</strong> provides the source for the<br />

following summary.<br />

During 1994/95, the Port of Hastings received the second smallest number of ship<br />

visits for a Victorian port (258 vessels), but the greatest volume of ballast water. The<br />

2.2 million tonnes of ballast discharged at Hastings exceeded by far the 1.4 million<br />

tonnes discharged at Melbourne, even though Melbourne received ten times more ship<br />

3


visits (2651 vessels). This is accounted for by the high number of tankers that came in<br />

to load crude oil <strong>and</strong> gas from the Long Isl<strong>and</strong> Pier. These vessels entered port fully<br />

loaded with ballast which was discharged during loading. In the Port of Melbourne,<br />

most ships discharge minimal ballast as they both load <strong>and</strong> unload cargo.<br />

Approximately 90% of the ballast water discharged at Hastings in 1994/95 came from<br />

vessels that had a domestic last port of call. In all, 225 vessels visiting Hastings had a<br />

domestic last port of call, while 33 had an international last port of call. The last ports<br />

of call for the majority of vessels were Botany Bay (73 ships) <strong>and</strong> Port Kembla (71<br />

ships). Of these two ports, most ballast discharged came from tankers operating out<br />

of Botany Bay. The relatively small amount of ballast discharged at Hastings by ships<br />

from Port Kembla is explained by the predominance of Roll-On/Roll-Off vessels<br />

plying this route. Ships like the Iron Monarch unload 13,600 tonnes of steel slab at<br />

the Steel Industry Wharves each week but do not need to discharge ballast. These<br />

vessels do however take on ballast water in Westernport Bay for the return journey to<br />

Port Kembla.<br />

Total cargo h<strong>and</strong>led by the Port of Hastings has steadily declined since 1993/94,<br />

largely as a result of reduced oil <strong>and</strong> gas exports. This reduction in trade is attributed<br />

to both a decline in Bass Strait oil <strong>and</strong> gas production, <strong>and</strong> a greater reliance on road<br />

transportation. Trade figures for 1995/96 identified the Long Isl<strong>and</strong> petrochemical<br />

terminal as the most frequently used commercial shipping berth in the Port of<br />

Hastings (107 visits), followed by the Steel Industry Wharves (94 visits), <strong>and</strong> Crib<br />

Point Jetty (1 visit). Recommissioning of the <strong>No</strong>.1 berth at Crib Point Jetty, is<br />

expected to generate the import of over 300,000 tonnes of refined petrochemicals per<br />

year <strong>and</strong> may assist in arresting the recent decline in cargo throughput at the Port of<br />

Hastings.<br />

2.2 Port development <strong>and</strong> maintenance activities.<br />

2.21 Dredging <strong>and</strong> spoil dumping<br />

The <strong>No</strong>rth Arm of Westernport Bay was first dredged in 1964 to allow commercial<br />

shipping free passage to wharf developments on the western shoreline. This dredging<br />

involved the removal of high spots along the existing channel, <strong>and</strong> deepening of<br />

berthing pockets adjacent to wharves. In total these operations involved the removal<br />

of 1.5 million m 3 of seabed from an area of 85.4 hectares (Ministry for Conservation,<br />

1975).<br />

More than 384,000 m 3 of seafloor was removed during dredging works at Crib Point<br />

in 1966, <strong>and</strong> all spoil was dumped in the <strong>No</strong>rth Arm channel off Tankerton, French<br />

Isl<strong>and</strong>. Dredging at Long Isl<strong>and</strong> Point was completed in 1969 <strong>and</strong> most of the 450,000<br />

m 3 of spoil was dumped into mangroves south of the Long Isl<strong>and</strong> Pier, the rest of the<br />

spoil was dumped subtidally on the side of the East Arm channel between French <strong>and</strong><br />

Phillip Isl<strong>and</strong>s (Ministry for Conservation, 1975). All of the 676,000 m 3 of spoil<br />

produced from dredging operations near the Steel Industry Wharves in 1972 was<br />

dumped ashore to provide reclamation areas for future building developments.<br />

4


Although no capital dredging works have been undertaken in the north arm of<br />

Westernport Bay since commercial wharf developments were completed in the early<br />

1970’s, some maintenance dredging has been conducted. Approximately 30,000 m 3<br />

of sediment was removed from the main channel between the number 19 <strong>and</strong> 21<br />

marker buoys during 1994. All spoil from this minor dredging was later dumped in<br />

the Tankerton spoil ground off French Isl<strong>and</strong> (Capt. Dick Cox pers. comm.).<br />

2.22 Pile construction <strong>and</strong> cleaning<br />

Wharf piles must be considered a primary site for establishment of exotic species<br />

introduced by vessels, <strong>and</strong> the principal point for the establishment of hull fouling<br />

species. The materials used in the construction of the piles may affect the available<br />

free space <strong>and</strong> therefore the susceptibility of the structure to colonisation by invasive<br />

species. Materials like corroding steel <strong>and</strong> rotting wood would seem the least desirable<br />

for settlement as the surfaces of these materials are constantly eroded. All piles at the<br />

Steel Industry Wharf, Long Isl<strong>and</strong> Pier <strong>and</strong> Crib Point Jetty were constructed from<br />

steel (Table 1). Each of these facilities have cathodic protection installed to reduce the<br />

effects of corrosion on the steel piles. To further minimise corrosion, piles at the<br />

Long Isl<strong>and</strong> Pier <strong>and</strong> Crib Point Jetty are sleeved with concrete from the decking to a<br />

depth of 1m below low water.<br />

The Port of Hastings has no maintenance program to remove fouling organisms from<br />

the support piles <strong>and</strong> columns of its wharves. Contract divers periodically scrape<br />

encrustations from piles at the Long Isl<strong>and</strong> Pier, unfortunately the locations of those<br />

piles cleaned <strong>and</strong> dates on which the dives were conducted were not readily available.<br />

Pile maintenance at the Steel Industry Wharf is also poorly documented, however 2<br />

piles on the southern side of the facility were scraped <strong>and</strong> painted following this study<br />

in March 1997.<br />

3. EXISTING BIOLOGICAL INFORMATION<br />

Biological surveys of the marine biota in Westernport Bay date back to the early<br />

nineteenth century when the French exploration vessel Astrolabe made the first<br />

collections of invertebrates (Smith et al. 1975). Since then many studies have<br />

included Westernport as part of a regional survey of the Victorian or southern<br />

Australian coast (Macgillivray, 1868; Carter, 1886; Pritchard <strong>and</strong> Gatliff, 1898; Parr,<br />

1932; <strong>Marine</strong> Research Group of Victoria, 1984).<br />

In 1965 the Fisheries <strong>and</strong> Wildlife Division, Victoria carried out an intensive survey<br />

of the benthos near Crib Point in the north arm of Westernport Bay. A report on the<br />

mollusc distributions from this survey was provided by Coleman (1976), while<br />

detailed taxonomic studies on the amphipods collected were included in Barnard <strong>and</strong><br />

Drummond (1978). Unfortunately no complete faunal lists were ever published from<br />

the survey.<br />

Less than ten years after the inception of the Crib Point survey Fisheries <strong>and</strong> Wildlife<br />

Division undertook a second more extensive bay-wide survey. The Westernport Bay<br />

environmental study of 1973-74 (Ministry for Conservation, 1975) included a number<br />

5


of detailed investigations of the population <strong>and</strong> community structure of the Bay’s<br />

marine flora <strong>and</strong> fauna. The biological surveys used a variety of sampling techniques<br />

to target phytoplankton, macro-algae, seagrass, zooplankton, benthos <strong>and</strong> demersal<br />

fish. In particular, the benthic sampling programme provided information on the<br />

distribution of molluscs (Coleman <strong>and</strong> Cuff, 1980) <strong>and</strong> callianassid shrimps (Coleman<br />

<strong>and</strong> Poore, 1980; Coleman, 1981). Analysis of all taxa collected provided a basis for<br />

the classification of two major soft-bottom communities in Westernport Bay related to<br />

sediment type (Coleman et al., 1978).<br />

<strong>No</strong>ne of the above studies explicitly identified exotic species however two species<br />

with cosmopolitan distributions that have probably been introduced, the bryozoan<br />

Bugula dentata <strong>and</strong> the decapod crustacean Carcinus maenus, were previously<br />

recorded for Westernport Bay (Smith et al., 1975). The polychaete worm<br />

Pseudopolydora paucibranchiata which was collected in the bay during the 1973-74<br />

environmental survey is also probably introduced (Blake <strong>and</strong> Kudenov, 1978).<br />

Several unpublished environmental impact assessments have been undertaken over the<br />

last 20 years in the north arm of Westernport Bay by environmental consultants<br />

<strong>Marine</strong> Science <strong>and</strong> Ecology, but none of these studies detected exotic species (Jan<br />

Watson pers. comm.).<br />

4. SURVEY METHODS<br />

The range of survey methods used in this survey are summarised in Table 2.<br />

4.1 Phytoplankton<br />

4.11 Sediment sampling for cyst-forming species.<br />

Sediment cores were taken by divers on 12, 13 <strong>and</strong> 14 March 1997 using 20 cm long<br />

plastic tubes with a 25 mm internal diameter. Sediment tubes were capped with bungs<br />

<strong>and</strong> kept upright in a refrigerator or on ice until delivered to the Australian<br />

Government Analytical Laboratory on 17 March 1997. Sediment cores were taken at<br />

the base of pylons at the Steel Industry Wharf (3 cores, Site 4, Fig. 2a), Long Isl<strong>and</strong><br />

Pier (3 cores, Site 4, Fig. 3a) <strong>and</strong> at Crib Point Jetty (3 cores, Site 1, Fig. 4a).<br />

4.12 Phytoplankton sampling<br />

Three phytoplankton samples were collected using vertical tows of a small 20 µm<br />

plankton net. Samples were collected from the Steel Industry Wharf (Fig. 2b), Long<br />

Isl<strong>and</strong> Pier (Fig. 3b) <strong>and</strong> at Crib Point Jetty (Fig. 4b) on 5 June 1997. Samples were<br />

maintained on ice <strong>and</strong> examined live by Dr Peter Beach (Botany Department,<br />

University of Melbourne).<br />

6


4.2 Trapping<br />

Traps of three different sizes, intended to catch crabs, shrimp <strong>and</strong> scavenging<br />

organisms, were deployed at 15 sites (Figs. 2b, 3b, 4b) between 11 <strong>and</strong> 13 March 1997<br />

within the Port of Hastings. The largest traps were oval-shaped “Opera-house” design<br />

crab/yabby traps (65 cm x 46 cm x 23 cm) covered in 2 cm mesh net, shrimp traps<br />

were rectangular (43 cm x 25 cm x 25 cm) <strong>and</strong> covered in fine 2-5 mm mesh net, <strong>and</strong><br />

the scavenger traps were constructed of a 35 cm length of 10 cm diameter pvc pipe<br />

with a funnel at one end <strong>and</strong> a 1 mm plankton mesh covering the other. A set of 3<br />

traps (crab, shrimp, scavenger) were deployed overnight at each site.<br />

4.3 Zooplankton<br />

Zooplankton was collected using a 3 m long x 60 cm diameter, 300 µm mesh<br />

plankton net. A small boat was used to undertake two 10 min plankton tows on 11<br />

March 1997 near the Steel Industry Wharf (Fig. 2b), Long Isl<strong>and</strong> Pier (Fig. 3b) <strong>and</strong><br />

Crib Point Jetty (Fig. 4b). One of these sample was collected during daylight between<br />

1400 <strong>and</strong> 1600 hrs <strong>and</strong> the other collected at night between 1900 <strong>and</strong> 2000 hrs.<br />

Samples were fixed in 10% formalin <strong>and</strong> have been archived.<br />

4.4 Diver observations <strong>and</strong> collections on wharf piles<br />

Semi-quantitative sampling was undertaken on six piles on the Steel Industry Wharf<br />

(Sites 1-6, Fig. 2a), Long Isl<strong>and</strong> Pier (Sites 1-6, Fig. 3a) <strong>and</strong> Crib Point Jetty (Sites 1-<br />

6, Fig. 4a). The six piles (sites) surveyed on each berthing facility were always<br />

separated by at least 2 piles. On each sampled pile a bungee cord was used to fix a<br />

weighted cord marked at 1 m intervals near the low water mark. A Panasonic NV<br />

MS95 SVHS video movie camera was used to record the marine fouling on each of<br />

these piles <strong>and</strong> care was taken to include the marked cord in the video to ensure depth<br />

was continuously recorded. At depths of -0.5 m, -3 m <strong>and</strong> -7 m one photograph of<br />

fouling organisms (14 ×17 cm in area) was taken using a Nikonos Mark IVA<br />

underwater camera fitted with a 28 mm lens. An area 30 x 40 cm that included the<br />

areas photographed was then scraped with a dive knife <strong>and</strong> all attached fouling<br />

organisms collected in a mesh bag (5mm) <strong>and</strong> subsequently fixed in 10% formalin. To<br />

prevent loss of spicules, sponges from Crib Point Jetty were preserved in 70% alcohol.<br />

Fouling organisms scraped from three depths on two piles from each berthing facility<br />

were identified as far as possible in the laboratory, <strong>and</strong> samples from the four other<br />

piles sampled on each berthing facility were archived.<br />

Diver observations <strong>and</strong> qualitative samples were also collected by divers at two<br />

further sites at the Steel Industry Wharf (Fig. 2a), Long Isl<strong>and</strong> Pier (Fig. 3a) <strong>and</strong> Crib<br />

Point Jetty (Fig. 4a).<br />

4.5 Visual searches<br />

Divers examined breakwalls <strong>and</strong> pylons both of which form suitable substrates for<br />

Sabella <strong>and</strong> Undaria during the main field survey between 4 <strong>and</strong> 15 May 1997.<br />

Because Undaria is thought to be more prolific during winter <strong>and</strong> spring, two<br />

7


additional dives were conducted within the Hastings Marina <strong>and</strong> over subtidal reef at<br />

Eagle Rock on the 10 September 1997 specifically to target this algal species.<br />

4.6 Epibenthos<br />

Epibenthos was sampled with an Ockelmann sled at 3 sites near the Steel Industry<br />

Wharf (Fig. 2c), Long Isl<strong>and</strong> Pier (Fig. 3c) <strong>and</strong> Crib Point Jetty (Fig. 4c). The sled was<br />

fitted with a 1.0 cm liner <strong>and</strong> towed for 5 min at each site. All samples were preserved<br />

in 10% formalin. All samples were inspected on the vessel to detect large exotics<br />

vulnerable to this technique including Asterias amurensis <strong>and</strong> Sabella spallanzanii,<br />

but only 2 samples taken from each berthing facility were analysed for all species. The<br />

remaining sample was archived.<br />

4.7 Benthic infauna<br />

Benthic infauna was sampled using 0.1 m 2 Smith-McIntyre grabs <strong>and</strong> diver cores.<br />

Grab samples were taken at 5 sites near the Steel Industry Wharf (Fig. 2c), Long<br />

Isl<strong>and</strong> Pier (Fig. 3c) <strong>and</strong> Crib Point Jetty (Fig. 4c). All 15 grab samples were analysed.<br />

Three 86 mm diameter cores were collected by divers near the bases of two piles on<br />

the Steel Industry Wharf (Sites 1 <strong>and</strong> 4, Fig. 2a), Long Isl<strong>and</strong> Pier (Sites 1 <strong>and</strong> 4, Fig.<br />

3a) <strong>and</strong> Crib Point Jetty (Sites 1 <strong>and</strong> 4, Fig. 4a). Only 3 core samples from each<br />

shipping facility were analysed.<br />

Animals from grab <strong>and</strong> core samples retained on a 1 mm sieve were examined under a<br />

dissecting microscope <strong>and</strong> all species identified <strong>and</strong> counted.<br />

4.8 Seine netting<br />

A 10 mm mesh seine net, 60 m long <strong>and</strong> 1.25 m high, was used to sample inshore fish<br />

near the Steel Industry Wharf (Fig. 2b), Long Isl<strong>and</strong> Pier (Fig. 3b) <strong>and</strong> Crib Point Jetty<br />

(Fig. 4b) on 11 March 1997. At each of these locations the net was shot once during<br />

daylight (~1500 hrs) <strong>and</strong> once at night (~2100 hrs).<br />

4.9 Sediment analysis<br />

A 70 ml subsample of each benthic grab sample was taken in the field <strong>and</strong> frozen as<br />

soon as practical. These sediment samples were later analysed to determine percentage<br />

organic content <strong>and</strong> particle size composition. The following methods were applied:<br />

A 15-25 g sample of sediment was dried in an oven at 95 °C for 24 h <strong>and</strong> then placed<br />

in a muffle furnace at 500 °C for 24 h. The percentage organic content of the sediment<br />

was estimated from the loss of weight on ignition in the muffle furnace.<br />

A further 20-30 g sample was wet sieved through a 63 µm sieve <strong>and</strong> the fine fraction<br />

<strong>and</strong> coarse (s<strong>and</strong>) fraction were each dried at 95 °C for 24 h <strong>and</strong> weighed. Fall<br />

velocities <strong>and</strong> equivalent grain sizes were measured for the s<strong>and</strong> fraction using a 2 m<br />

high automated settling tube controlled by a Macintosh computer with software from<br />

the University of Waikato (Greilach et al., 1995).<br />

8


5. SURVEY RESULTS<br />

5.1 Port environment<br />

Westernport Bay has a water surface area of 680 km 2 of which 270 km 2 (40%) is<br />

intertidal mudflat. The physical nature of the bay, with wide deep channels, rock<br />

platforms, sheltered tidal flats, mangrove <strong>and</strong> salt-marsh areas, provides a wide<br />

spectrum of habitat types each supporting a unique assemblage of animals <strong>and</strong> plants<br />

(Ministry for Conservation, 1975).<br />

Temperature, salinity <strong>and</strong> oxygen concentration were recorded during the 1973-74<br />

Westernport Bay environmental study <strong>and</strong> have been summarised by Coleman et al.<br />

(1978). The annual water temperature varied according to water depth. In the<br />

shallowest regions of the bay, to the north of French Isl<strong>and</strong>, the temperature ranged<br />

from 10-22°C. In contrast, oceanic water from Bass Strait at the entrance to the bay<br />

ranged in temperature from 13-20°C. Salinity varied from 30 to 38 ppt <strong>and</strong> was<br />

highest in the late summer. Oxygen saturation was generally close to 100%, although<br />

values as high as 195% occurred where photosynthesis of seagrass was vigorous.<br />

Tides are predominantly semi-diurnal, <strong>and</strong> range increases progressively from the<br />

entrance (1.6m) towards the top of the bay (2.2m). Tidal lag also increases in a similar<br />

way with low tide occurring some two hours later at the top of the bay. Water<br />

movement patterns in the bay are complex but generally show a net clockwise<br />

circulation around both Phillip <strong>and</strong> French Isl<strong>and</strong>s (Ministry for Conservation, 1975).<br />

These water movements are reflected in the distribution of bottom sediments. The<br />

sediment of the <strong>No</strong>rth Arm channel offshore from the Port of Hastings facilities, is<br />

predominantly medium to course s<strong>and</strong> with a mud content generally less than 5%. In<br />

contrast to the channel sediments, inshore sediments from shallow sub-littoral areas<br />

<strong>and</strong> tidal flats is fine s<strong>and</strong>, silt <strong>and</strong> clay (Marsden <strong>and</strong> Mallet, 1975). Sediment<br />

characteristics immediately surrounding the Port of Hastings wharves are shown in<br />

Table 3.<br />

5.2 Introduced species in port<br />

A list of all exotic species found in the Port of Hastings survey is shown in Table 4. A<br />

summary of the mean number of all species found in the survey, except for<br />

dinoflagellates, by each sampling method is shown in Appendix 1. The percentage of<br />

samples containing each taxa for each sampling method is shown in Appendix 2.<br />

5.21 ABWMAC target introduced species<br />

• Gymnodinium <strong>and</strong> Alex<strong>and</strong>rium<br />

<strong>No</strong> cysts of the introduced toxic dinoflagellates Alex<strong>and</strong>rium catenella <strong>and</strong><br />

Gymnodinium catenatum were found in sediment cores taken in the Port of Hastings<br />

during March 1997 (Table 5). <strong>No</strong>r were live specimens of Alex<strong>and</strong>rium catenella <strong>and</strong><br />

Gymnodinium catenatum detected in phytoplankton samples taken from the Port of<br />

Hastings during June 1997 (Table 6). Live specimens of the native non-toxic<br />

Gymnodinium spp. were however found along with the potentially toxic diatom<br />

9


Pseudo-nitzschia sp. (Table 6). Species of the Pseudo-nitzschia genus have caused<br />

amnesic shellfish poisoning (ASP) in humans (Arnott, MAFRI, pers. comm.).<br />

Shellfish populations at Flinders on the western entrance of Westernport Bay have<br />

been monitored for paralytic shellfish poison (PSP) <strong>and</strong> domoic acid (the ASP toxin)<br />

on a monthly basis over the last 10 years. <strong>No</strong>ne of the shellfish collections at this site<br />

contained measurable levels of either PSP or ASP toxins (Arnott, MAFRI,<br />

unpublished data). Phytoplankton samples have also been taken from the Flinders site<br />

over the same period. These samples have contained four different dinoflagellate<br />

species in the genus Alex<strong>and</strong>rium including the exotic Alex<strong>and</strong>rium catenella.<br />

• Undaria pinnatifida<br />

Undaria was not observed by divers growing on or near any of the Port of Hastings<br />

wharves during the field survey in March 1997. It is however unlikely that divers<br />

would have identified Undaria during the survey because at this time of year Undaria<br />

exists, almost exclusively, as a microscopic gametophyte (Hay <strong>and</strong> Luckens, 1987;<br />

AQIS, 1994). The large (2m) sporophyte stage, easily recognised by divers, probably<br />

only occurs between the months of June <strong>and</strong> February. A further search for Undaria<br />

was therefore made by divers during September 1997. This search of the Hastings<br />

Marina <strong>and</strong> subtidal reef near Eagle Rock did detect the native kelps Ecklonia radiata<br />

<strong>and</strong> Phyllospora comosa, butUndaria was not found.<br />

Undaria was first recorded in Australia at Rheban on the east coast of Tasmania in<br />

1988 (S<strong>and</strong>erson, 1990). Subsequent surveys have indicated a gradual spread in<br />

distribution to more than 50 km of the Tasmanian coastline (AQIS, 1994). Undaria<br />

was detected on the Australian mainl<strong>and</strong> in 1996 (Burridge pers. comm.) <strong>and</strong> is now<br />

established on subtidal reefs <strong>and</strong> pier pylons near Kirk Point in Port Phillip Bay.<br />

• Asterias amurensis<br />

Asterias was not detected by divers <strong>and</strong> none were collected in Ockelmann sled shots<br />

taken near the three Port of Hastings wharves surveyed during the field study. This<br />

species of seastar is native to the northern Pacific, <strong>and</strong> is thought to have been<br />

introduced into Tasmania via ships ballast water in the early 1980’s (Morrice, 1995).<br />

The current known distribution of Asterias extends through south eastern Tasmania,<br />

although the range in Australia has potential to increase (Byrne et al., 1997). A small<br />

number of adult specimens have recently been collected in Port Phillip Bay, <strong>and</strong> it<br />

appears that these animals were transported to the Bay as adults on coastal vessels<br />

operating out of Tasmania. Mature Asterias have, for example, been detected in the<br />

holds of domestic ships departing Hobart (Chad Hewitt, CRIMP pers. comm.).<br />

• Sabella spallanzanii<br />

<strong>No</strong> individuals were observed by divers <strong>and</strong> none were collected in Ockelmann sled<br />

samples around the Port of Hastings. Sabella spallanzanii is a native of the<br />

Mediterranean <strong>and</strong> Atlantic coasts of Europe, but is now present in a number of<br />

harbours along the southern coast of Australia (Clapin <strong>and</strong> Evans, 1995). The worm is<br />

first thought to have become established in Corio Bay, Victoria in the late 1980’s <strong>and</strong><br />

10


has since spread to occupy much of the western <strong>and</strong> northern regions of Port Phillip<br />

Bay (Parry et al., 1996).<br />

• Carcinus maenus<br />

Only one European shore crab was recorded during the study. This specimen was<br />

collected from a baited trap that had been deployed overnight on intertidal mud flats<br />

north of the Steel Industry Wharf (Fig. 2b). The same trap contained six individuals of<br />

the native crab Paragrapsus gaimardii, indicating some dietary overlap with<br />

Carcinus. It remains to be seen if this apparent numerical dominance of the native<br />

Paragrapsus over the exotic Carcinus reflects actual populations of these crabs in<br />

Westernport Bay or some other interaction. CRIMP for example, have detected a<br />

seasonal reduction in the trapping efficiency of Carcinus (Chad Hewitt, pers. comm.).<br />

The distribution of Carcinus maenus along the Victorian coastline has been mapped<br />

by the <strong>Marine</strong> Research Group of Victoria (1984). This map depicts Carcinus as<br />

occurring in Westernport Bay however no notes are provided detailing the location<br />

<strong>and</strong> date of the collection. Carcinus is also mentioned as occurring on beaches in<br />

Westernport in a manuscript describing the bays invertebrate fauna (Smith et al.,<br />

1975), but again precise collection notes are omitted. It is not clear exactly how long<br />

Carcinus has been established in Westernport Bay, however it does appear to have<br />

been present for at least 20 years. Carcinus maenus is first thought to have become<br />

established in Australia in nearby Port Phillip Bay as early as 1856 (Walters, 1996).<br />

5.22 Other targeted species<br />

One of the purposes of this <strong>and</strong> similar surveys of exotic species in Australian ports is<br />

to provide a better appreciation of those exotic species which are causing large<br />

impacts. Once further information becomes available it seems likely that there will be<br />

alterations to the ABWMAC schedule of marine pest species. Most of the pest species<br />

on the ABWMAC schedule occur in Port Phillip Bay (Alex<strong>and</strong>rium, Asterias,<br />

Undaria, Sabella, <strong>and</strong> Carcinus). However in Port Phillip Bay the species of most<br />

concern currently (note Asterias is rare <strong>and</strong> Undaria was only detected in July 1996),<br />

based on their apparent abundance <strong>and</strong> biomass (Parry personal observations) are<br />

Sabella <strong>and</strong> Corbula gibba <strong>and</strong> possibly Euchone limnicola, Theora lubrica,<br />

Musculista senhousia <strong>and</strong> Pyromaia tuberculata. These latter five species were<br />

targeted in the Port of Hastings survey using Smith-McIntyre grabs <strong>and</strong> diver cores.<br />

Corbula, Theora <strong>and</strong> Musculista were all detected using these sampling techniques.<br />

Corbula gibba is a suspension feeding bivalve mollusc that grows to a maximum size<br />

of about 15 mm in shell length. It occurs at the surface of soft sediments between the<br />

shallow subtidal zone <strong>and</strong> depths of 150 m. The left shell valve of one juvenile<br />

Corbula (length 2.8 mm, height 2.0 mm) was found in a replicate core sample taken<br />

beneath the northern berth of Crib Point jetty (Site 1, Fig. 4a). Because no soft body<br />

parts were attached to this shell valve, it was not possible to determine if the animal<br />

was alive at the time of collection. The polished nature of the shell interior <strong>and</strong> the<br />

presence of an external periostracum layer suggest the valve belonged to an animal<br />

that was alive at the least one or two months prior to the survey. Corbula is native to<br />

the north Atlantic <strong>and</strong> was first identified in Australia from samples taken during 1991<br />

in Port Phillip Bay (Currie <strong>and</strong> Parry, 1996). This species was not recorded in Port<br />

11


Phillip Bay during an extensive bay-wide survey conducted between 1969 <strong>and</strong> 1973<br />

(Poore et al., 1975), but small numbers of Corbula have been recently identified in<br />

archived samples collected in Corio Bay during 1987 (Coleman, pers. comm.).<br />

Corbula is now abundant throughout Port Phillip Bay, attaining densities of<br />

250/0.1m 2 , <strong>and</strong> is a major component in the diets of nine species of demersal fish<br />

(Parry et al., 1995). Port Phillip Bay is probably the source for recent translocations<br />

of this species to Portl<strong>and</strong>, Victoria (Parry et al., 1997) <strong>and</strong> Devonport, Tasmania<br />

(Hewitt pers. comm.) particularly in view of the high volume of shipping movements<br />

between these Ports.<br />

Theora lubrica is a deposit feeding bivalve that reaches a maximum length of about<br />

14mm. Two small specimens of Theora lubrica (3.5 mm <strong>and</strong> 8.0 mm length) were<br />

collected from separate core samples taken below the concrete decking of the Steel<br />

Industry wharf (Site 4, Fig. 2a). This species is native to the western Pacific region<br />

<strong>and</strong> is common in muddy sediments in bays throughout Japan (Tanaka <strong>and</strong> Kikuchi,<br />

1979). Although Theora lubrica was first identified in Australia from samples<br />

collected in the Swan Estuary in 1971 (Chalmer et al., 1976), it has been present in<br />

Port Phillip Bay since at least 1969 (Poore et al., 1975 - as Theora fragilis). Theora<br />

lubrica is thought to have been introduced into Australia via ballast water in<br />

commercial shipping (Hutchings et al., 1987).<br />

Musculista senhousia is a small mussel (30 mm length) that may occur epifaunally on<br />

hard or soft substrates, <strong>and</strong> may be found in great abundance (2500/m 2 ; Morton,<br />

1974). A total of six juvenile Musculista (


the West Indies <strong>and</strong> Japan. The type locality is given as Rio de Janeiro but its native<br />

range is currently unresolved (Gordon <strong>and</strong> Mawatari, 1992). Watersipora subtorquata<br />

has a wide Australian distribution <strong>and</strong> has been recorded from Portl<strong>and</strong> (Parry et al.,<br />

1997), Townsville (Tzioumis, 1994) <strong>and</strong> Torres Strait (Gordon <strong>and</strong> Mawatari, 1992).<br />

Bugula neritina is a distinctive purple-brown bryozoan that forms erect flexible<br />

colonies up to 10cm in height. It has a short larval life <strong>and</strong> usually settles on hard<br />

substrates within two hours. It also displays rapid growth <strong>and</strong> colonies of Bugula<br />

neritina can attain a height of 7cm in only two months (Gordon <strong>and</strong> Mawatari, 1992).<br />

This species was not commonly encountered during the Port of Hastings survey <strong>and</strong><br />

was only recorded at the Steel Industry wharf, where it was present in two out of six<br />

pylon scrapings analysed (Site 3, 3m <strong>and</strong> Site 6, 0.5m, Fig 2a). Bugula neritina is a<br />

cosmopolitan species <strong>and</strong> its current world wide distribution probably results from its<br />

transportation on the hulls of ships. Its distribution in Australia includes coastal<br />

waters of South Australia (Shepherd <strong>and</strong> Thomas, 1982), Victoria (Port Phillip Bay -<br />

Keough <strong>and</strong> Raimondi, 1995; Portl<strong>and</strong> - Parry et al., 1997) <strong>and</strong> New South Wales<br />

(Port Kembla - Moran <strong>and</strong> Grant, 1993).<br />

Bugula dentata is one of the most common fouling organisms encountered on pier<br />

structures in the Port of Hastings. The bushy green bryozoan was found in three pylon<br />

scrapings from the Steel Industry wharf, five scrapings from the Long Isl<strong>and</strong> pier <strong>and</strong><br />

five scrapings from the Crib Point jetty (number of scrapings analysed at each location<br />

= 6). It was present at all three depths surveyed (0.5m, 3m <strong>and</strong> 7m) but appeared to<br />

become more abundant with increasing depth. Like B. neritina, B. dentata has a<br />

cosmopolitan distribution which is thought to have resulted from its transportation<br />

around the world on the hulls of ships. This species is known to occur in the South<br />

Australia (Shepherd <strong>and</strong> Thomas, 1982) <strong>and</strong> Victoria (Port Phillip Bay - Hope Black,<br />

1971; Portl<strong>and</strong> -Parry et al., 1997).<br />

5.24 Adequacy of survey intensity<br />

The more samples that are taken in any biological survey the more species will be<br />

recorded. But as additional samples are taken additional species accumulate at a<br />

decreasing frequency, until an asymptote is approached where essentially all the<br />

species in all the habitats have been collected. To determine the likelihood that further<br />

species exist on wharf piles <strong>and</strong> in the benthos of the Port of Hastings cumulative<br />

species curves were calculated for grab sampling (Fig. 5a) <strong>and</strong> for sampling of wharf<br />

piles (Fig. 5b). In the Port of Hastings the total number of benthic species was<br />

approaching an asymptote near 15 grab samples, while the total number of wharf pile<br />

species was close to asymptotic after 6 scrapings. Additional grabs or scrapings may<br />

have revealed a small number of additional species. It is unlikely however that any<br />

‘pest’ species was not collected as such species must usually be abundant to be<br />

considered a ‘pest’.<br />

6. IMPACT OF EXOTIC SPECIES<br />

As the abundances of most exotic species detected during the survey of the Port of<br />

Hastings was low, it is unlikely that many of these introductions are currently having a<br />

13


major impact on the ecology of the port environment. The only introduced species<br />

common enough to cause a significant ecological effect was Bugula dentata. This<br />

cosmopolitan bryozoan, which has been present in Westernport Bay for more than 20<br />

years, carpets the surfaces of pier pylons at all commercial wharves in the Port of<br />

Hastings <strong>and</strong> is likely to compete with native sedentary species for food <strong>and</strong> space.<br />

Although Bugula dentata is common in nearby Port Phillip Bay it does not form part<br />

of the diets of 35 native demersal fish species (Parry et al., 1995). Further research is<br />

required to document the impact of this species on indigenous organisms in<br />

Westernport Bay.<br />

One exotic species, the polychaete worm Pseudopolydora paucibranchiata, which<br />

was previously known from Westernport Bay was not recorded in the present study.<br />

This worm was abundant in grab samples taken in the <strong>No</strong>rth <strong>and</strong> East Arms of the<br />

Bay during 1974 (Blake <strong>and</strong> Kudenov, 1978), although it was not found in samples<br />

taken at the same time near the commercial wharves. While the current absence of<br />

this worm in the Port of Hastings may simply reflect spatial <strong>and</strong> or temporal variations<br />

in population size, its continued rarity suggests it is unlikely to be having a major<br />

effect on the ecology of the port environment.<br />

7. ORIGIN AND POSSIBLE VECTORS FOR THE INTRODUCTION OF<br />

EXOTIC SPECIES FOUND IN THE PORT.<br />

Natural expansion of a species’ biogeographical range <strong>and</strong> shipping activities are<br />

widely cited as the two major mechanisms for introductions of marine organisms into<br />

new environments. Both processes initially require the physical transportation of the<br />

potential immigrant across an intervening space. This movement of larvae <strong>and</strong> or<br />

adult forms is mediated by wind <strong>and</strong> currents in natural systems, <strong>and</strong> by hull fouling<br />

<strong>and</strong> ballast water entrainment in shipping activities.<br />

Some of the exotic species collected during the Port of Hastings survey may have<br />

been introduced through natural range expansions. Four species in particular (ie<br />

Carcinus maenus, Musculista senhousia, Theora lubrica <strong>and</strong> Corbula gibba) which<br />

occur in nearby Port Phillip Bay <strong>and</strong> have long larval development stages (>10 days),<br />

could have been introduced to the Port of Hastings as larvae in coastal currents.<br />

Water circulation models developed for Bass Strait (Black et al., 1990) indicated that<br />

larvae can be transported from Port Phillip Heads to the entrance of Westernport Bay<br />

in less than 4 days during a steady south-westerly wind of 8ms -1 . It is however equally<br />

likely that these same four species were transported to the Port of Hastings via<br />

commercial shipping. Carcinus maenus has the capacity to be translocated either as<br />

an adult within fouling communities on the hulls of ships, or as larvae in ballast water.<br />

Musculista senhousia too has the potential to be transported as a fouling organism or<br />

as larvae in ballast water. Theora lubrica <strong>and</strong> Corbula gibba are incapable of fouling<br />

hard substrates <strong>and</strong> can only have been introduced into Westernport Bay as larvae.<br />

Hull fouling on shipping is identified as the most likely method for the introduction of<br />

the exotic bryozoan Bugula neritina into Hastings. <strong>No</strong>t only is this species extremely<br />

common on the hulls of boats (Gordon <strong>and</strong> Mawatari, 1992), it has a larval life of less<br />

than 2 hours when substrata are present (Keough, 1989) <strong>and</strong> is unlikely to survive<br />

transportation within a ships ballast tanks. Two other exotic bryozoans found at<br />

14


Hastings (Watersipora subtorquata <strong>and</strong> Bugula dentata) are also believed to have<br />

short larval lives <strong>and</strong> were probably introduced as fouling organisms on the hulls of<br />

ships.<br />

Relatively few ships which visit the Port of Hastings have an international last port of<br />

call (Walters, 1996) <strong>and</strong> so most species introduced directly to the port by shipping are<br />

likely to have been translocated from other Australian Ports. Ships originating in Port<br />

Kembla <strong>and</strong> Botany Bay visit Hastings more often <strong>and</strong> discharge more ballast waters<br />

than vessels operating out of any other Australian port. Given that at least some of the<br />

exotics identified during this study are known to occur in either Port Kembla (Bugula<br />

neritina <strong>and</strong> Watersipora subovoidea syn. W. subtorquata; Moran <strong>and</strong> Grant, 1989) or<br />

Botany Bay (Theora lubrica; Climo, 1976) the probability of these ports being a major<br />

source for introductions is high. It is however important to note that although<br />

frequency of shipping visits <strong>and</strong> quantity of ballast water discharged increase the risk<br />

of species translocation, establishment of an introduced species is not necessarily<br />

dependent on these factors. With suitable environmental conditions, feral species<br />

imported infrequently <strong>and</strong> in low numbers can be just as successful in their new<br />

habitat as those imported frequently <strong>and</strong> in large numbers. The volume of shipping<br />

plying routes between Hastings <strong>and</strong> other Victorian ports is small yet all seven exotic<br />

species found in Hastings are known to occur in Port Phillip Bay <strong>and</strong> six are known<br />

from the Port of Portl<strong>and</strong> (Carcinus maenus not recorded). Like Port Kembla <strong>and</strong><br />

Botany Bay, these two Victorian ports probably play major roles in the translocation<br />

of exotic species to Hastings, unfortunately in the absence of adequate historical data<br />

it is virtually impossible to accurately identify the origin <strong>and</strong> date of the introductions.<br />

8. INFLUENCES OF THE PORT ENVIRONMENT ON THE SURVIVAL<br />

OF INTRODUCED SPECIES.<br />

Previous studies in Westernport Bay have shown it to support an extraordinarily<br />

diverse macrofauna (Smith et al., 1975; Coleman et al., 1978). Westernport Bay has<br />

more than three times the total number of invertebrate species present in nearby Port<br />

Phillip Bay <strong>and</strong> also contains the majority of species that occur there (Ministry for<br />

Conservation, 1975). Although differences in the physical features of the two<br />

embayments are likely to account for much of the observed faunal differences, there<br />

appears to be a disproportionately small number of exotic species found on or near<br />

commercial wharves in Westernport Bay. Shipping facilities in both embayments are<br />

subject to similar fluctuations in salinity <strong>and</strong> temperature <strong>and</strong> also subject to the same<br />

degree of wave exposure. In addition the two Bays are geographically close to one<br />

another <strong>and</strong> connected periodically by shipping. There would appear to be a very high<br />

risk of species translocations between these bays. Despite these similarities more than<br />

20 exotic marine species that are known to occur in Port Phillip Bay were not found in<br />

the Port of Hastings. Furthermore some of these exotic species, including the pier<br />

fouling ascidians Ciona intestinalis, Styela clava <strong>and</strong> Ascidiella aspersa, have been<br />

present on commercial wharves in Port Phillip Bay for over 20 years but do not appear<br />

to have been translocated to Hastings.<br />

The wharves of all three commercial shipping facilities in the Port of Hastings lie<br />

adjacent to a deep water channel that is subject to swift tidal flows (> 0.5m/s). Larvae<br />

15


that are discharged in ballast water from ships berthed in the Port of Hastings are<br />

likely to be transported several kilometres away within 2 or 3 hours. This may in part<br />

explain why many exotics species that are common in nearby Port Phillip Bay <strong>and</strong><br />

susceptible to shipping translocations have not yet become established within the<br />

immediate vicinity of the Port of Hastings. Of course these same tidal currents may<br />

facilitate the rapid distribution of exotic species to other favourable habitats beyond<br />

the port environment. This study has targeted exotic species occurring in habitats<br />

immediately surrounding shipping berths, but not all habitat types present within the<br />

Bay were sampled. It is possible that additional sampling in mudflats, mangroves <strong>and</strong><br />

rocky shores will reveal additional exotic species.<br />

ACKNOWLEDGMENTS<br />

We would like to thank the harbourmaster at the Port of Hastings Captain Willie<br />

Smith <strong>and</strong> the acting harbourmaster Captain Dick Cox for their assistance during field<br />

operations <strong>and</strong> for providing information on shipping movements <strong>and</strong> channel<br />

dredging.<br />

Thanks to Dave Beyer (Skipper) <strong>and</strong> Alan Kilpatrick (Engineer) on the ‘R.V. Sarda’,<br />

<strong>and</strong> to Mark Ferrier, Michael Callan <strong>and</strong> Brett Abbot for careful work in the field<br />

collecting samples. The dedication of Tricia Paradise <strong>and</strong> Matt McArthur in the<br />

sorting <strong>and</strong> identification of samples in the laboratory was also greatly appreciated.<br />

Thanks also to the following staff from the Museum of Victoria for their assistance<br />

with the taxonomy of voucher reference material; Garry Poore (Crustaceans), Robin<br />

Wilson (Polychaetes) <strong>and</strong> Sue Boyd (Molluscs). Special thanks to Chad Hewitt <strong>and</strong><br />

Dick Martin (CRIMP), <strong>No</strong>el Coleman (MAFRI), <strong>and</strong> Greg Parry (EPA) for their<br />

valued advice.<br />

This project was commissioned by the Victorian Ballast Water Working Group <strong>and</strong><br />

was jointly funded by the Victorian Fisheries Division, the Victorian Environment<br />

Protection Authority, the Port of Melbourne Authority <strong>and</strong> the Port of Hastings<br />

Authority.<br />

16


REFERENCES<br />

AQIS (1994). An epidemiological review of possible introductions of fish diseases,<br />

northern Pacific seastar <strong>and</strong> Japanese kelp through ships’ ballast water. <strong>Report</strong><br />

Number 3. Ballast Water Research Series. (AGPS, Canberra).<br />

Barnard, J.L. <strong>and</strong> Drummond, M.M. (1978). Gammaridean Amphipoda of Australia,<br />

Part III: The Phoxocephalidae. Smithsonian Contributions to Zoology 245, 1-551.<br />

Black, K.P., Hatton, D. N. <strong>and</strong> Colman, R. (1990). Prediction of extreme sea levels in<br />

northern Port Phillip Bay <strong>and</strong> the possible effects of a rise in mean sea levels. <strong>Report</strong><br />

to the Board of Works (Victorian <strong>Institute</strong> of <strong>Marine</strong> Science, Melbourne).<br />

Blake, J.A. <strong>and</strong> Kudenov, J.D. (1978). The Spionidae (Polychaeta) from southeastern<br />

Australia <strong>and</strong> adjacent areas with a revision of the genera. Memoirs of the National<br />

Museum of Victoria 39, 171-280.<br />

Byrne, M., Morrice, M.G. <strong>and</strong> Wolf, B. (1997). Introduction of the northern Pacific<br />

asteroid Asterias amurensis to Tasmania: reproduction <strong>and</strong> current distribution.<br />

<strong>Marine</strong> Biology 127, 673-685.<br />

Carlton, J.T., Thompson, J.K., Schmel, L.E. <strong>and</strong> Nichols, F.H. (1990). Remarkable<br />

invasion of San Francisco Bay (California, USA) by the Asian clam Potamocorbula<br />

amurensis 1. Introduction <strong>and</strong> dispersal. <strong>Marine</strong> Ecology Progress Series 66, 81-94.<br />

Carter, H.J. (1886) Sponges from South Australia. Annals <strong>and</strong> Magazine of Natural<br />

History 18 (5), 445-466.<br />

Chalmer, P.N., Hodgkin, E.P. <strong>and</strong> Kendrick, G.W. (1976). Benthic faunal changes in a<br />

seasonal estuary of south-east Australia. Records of the Western Australian Museum 4<br />

(4), 383-410.<br />

Clapin, G. <strong>and</strong> Evans, D.R. (1995). The status of the introduced marine fanworm<br />

Sabella spallanzanii in Western Australia: a preliminary investigation. CSIRO<br />

Australia, Division of Fisheries, Centre for Research on Introduced <strong>Marine</strong> Pests,<br />

Technical <strong>Report</strong> 2, 34.<br />

Climo, F.M. (1976). The occurrence of Theora (Endopleura) lubrica Gould, 1861<br />

(Mollusca: Bivalvia: Semelidae) in New Zeal<strong>and</strong>. Auckl<strong>and</strong> <strong>Institute</strong> <strong>and</strong> Museum<br />

Conchology Section Bulletin 1, 11-16.<br />

Coleman, N. (1976). The molluscs of Crib Point, Western Port, Victoria. Journal of<br />

the Malacological Society of Australia 3, 239-255.<br />

Coleman, N., Cuff, W., Drummond, M. <strong>and</strong> Kudenov, J.D. (1978). A quantitative<br />

survey of the macrobenthos of Western Port, Victoria. Australian Journal of <strong>Marine</strong><br />

<strong>and</strong> <strong>Freshwater</strong> Research 29, 445-466.<br />

Coleman, N. <strong>and</strong> Cuff, W. (1980). The abundance, distribution <strong>and</strong> diversity of the<br />

molluscs of Westernport, Victoria, Australia. Malacologia 20, 35-63.<br />

17


Coleman, N. <strong>and</strong> Poore, G.C.B. (1980). The distribution of Callianassa species<br />

(Crustacea, Decapoda) in Western Port, Victoria. Proceedings of the Royal Society of<br />

Victoria 91, 73-78.<br />

Coleman, N. (1981). <strong>No</strong>tes on the biology of Callianassa in Western Port.<br />

Proceedings of the Royal Society of Victoria 92, 201-205.<br />

Coleman, N. (1993). The macrobenthos of Corio Bay. Environment Protection<br />

Authority, Victoria <strong>Report</strong> SRS91/010, 33.<br />

Currie, D. R. <strong>and</strong> Parry, G. D. (1996). The effect of scallop dredging on a soft<br />

sediment community: a large scale experimental study. <strong>Marine</strong> Ecology Progress<br />

Series 134, 131-50.<br />

Gordon, D.P. <strong>and</strong> Mawatari, S.F. (1992). Atlas of marine fouling Bryozoa of New<br />

Zeal<strong>and</strong> ports <strong>and</strong> harbours. New Zeal<strong>and</strong> Oceanographic <strong>Institute</strong>, Miscellaneous<br />

Publications 107, 1-52.<br />

Greilach, P. R., Black, K. P., Parry, G. D. <strong>and</strong> Forsyth, M. (1995). Scallop dredging<br />

<strong>and</strong> sedimentation in Port Phillip Bay. Victorian <strong>Institute</strong> of <strong>Marine</strong> Sciences Working<br />

Paper 29, 1-200.<br />

Hay, C. H. <strong>and</strong> Luckens, P. A. (1987). The Asian kelp Undaria pinnatifida<br />

(Phaeophyta: Laminales) found in a New Zeal<strong>and</strong> harbour. New Zeal<strong>and</strong> Journal of<br />

Botany 25, 329-32.<br />

Hewitt, C <strong>and</strong> Martin, R. (1996). Introduced species survey. Protocol for Port Surveys.<br />

(Centre for Research on Introduced <strong>Marine</strong> Pests, CSIRO, Hobart).<br />

Hope Black, J. (1971). Benthic communities. Memoirs of the National Museum of<br />

Victoria 32, 129-170.<br />

Hutchings, P.A. van der Velde, J.T. <strong>and</strong> Keable, S. J. (1987). Guidelines for the<br />

conduct of surveys for detecting introductions of non-indigenous marine species by<br />

ballast water <strong>and</strong> other vectors - <strong>and</strong> a review of marine introductions to Australia.<br />

Occasional <strong>Report</strong>s of the Australian Museum 3, 147.<br />

Keough, M.J. (1989). Dispersal of the bryozoan Bugula neratina <strong>and</strong> effects of adults<br />

on newly metamorphosed juveniles. <strong>Marine</strong> Ecology Progress Series 57, 163-171.<br />

Keough, M.J. <strong>and</strong> Raimondi, P.T. (1995). Responses of settling invertebrate larvae to<br />

bioorganic films: effects of different types of films. Journal of Experimental <strong>Marine</strong><br />

Biology <strong>and</strong> Ecology 185, 235-253.<br />

MacGillivray, P.H. (1868). Descriptions of some new genera <strong>and</strong> species of Australian<br />

Polyzoa; to which is added a list of species found in Victoria. Transactions <strong>and</strong><br />

Proceedings of the Royal Society of Victoria 9, 126-148.<br />

<strong>Marine</strong> Research Group of Victoria (1984). Coastal invertebrates of Victoria An atlas<br />

of selected species (MRGV <strong>and</strong> Museum of Victoria, Melbourne).<br />

Marsden, M.A.H. <strong>and</strong> Mallett, C.W. (1975). Quaternary evolution, morphology <strong>and</strong><br />

sediment distribution, Westernport Bay, Victoria. Proceedings of the Royal Society of<br />

Victoria 87, 107-137.<br />

18


Ministry for Conservation (1975). A preliminary report on the Westernport Bay<br />

environmental study. <strong>Report</strong> for the period 1973-1974. (Ministry for Conservation,<br />

Melbourne).<br />

Moran, P.J. <strong>and</strong> Grant, T.R. (1989). The effects of industrial pollution on the<br />

development of <strong>and</strong> succession of marine fouling communities. PSZNI: <strong>Marine</strong><br />

Ecology 10 (3), 231-246.<br />

Moran, P.J. <strong>and</strong> Grant, T.R. (1993). Larval settlement of marine fouling organisms in<br />

polluted water from Port Kembla Harbour, Australia. <strong>Marine</strong> Pollution Bulletin 26<br />

(9), 512-514.<br />

Morrice, M.G. (1995). The distribution <strong>and</strong> ecology of the introduced north Pacific<br />

seastar, Asterias amurensis (Lütken), in Tasmania. Final <strong>Report</strong>. Australian Nature<br />

Conservation Agency Feral Pests, Program Number 35. (Commonwealth Ministry of<br />

Environment Sport <strong>and</strong> Territories, Canberra).<br />

Griffiths, R. W., Schloesser, D. W., Leach, J. H. <strong>and</strong> Kovalak, W. P. (1991).<br />

distribution <strong>and</strong> dispersal of the zebra mussel (Dreissena polymorpha) in the Great<br />

Lakes region. Canadian Journal of Fisheries <strong>and</strong> Aquatic Sciences 48, 1381-8.<br />

Hengeveld, R., Ed (1989). Dynamical biological invasions. (Chapman <strong>and</strong> Hall,<br />

London.)<br />

Morton, B. (1974). Some aspects of the biology, population dynamics <strong>and</strong> functional<br />

morphology of Musculista senhousia Benson (Bivalvia, Mytilidae). Pacific Science<br />

28, 19-33.<br />

Parr, W. J. (1932). Victorian <strong>and</strong> South Australian shallow-water Foraminifera, Part 1.<br />

Proceedings of the Royal Society of Victoria 44, 1-14.<br />

Parry, G. D., Hobday, D. K., Currie, D. R., Officer, R. A. <strong>and</strong> Gason, A. S. (1995).<br />

The distribution, abundance <strong>and</strong> diets of demersal fish in Port Phillip Bay. CSIRO<br />

Port Phillip Bay Environmental Study, Technical <strong>Report</strong> 21., 1-119.<br />

Parry, G.D., Lockett, M.M., Crookes, D.P., Coleman, N. <strong>and</strong> Sinclair M.A. (1996).<br />

Mapping <strong>and</strong> distribution of Sabella spallanzanii in Port Phillip Bay. Final <strong>Report</strong>.<br />

Fisheries Research <strong>and</strong> Development Corporation, Project Number 94/164.<br />

Parry, G.D., Currie, D.R. <strong>and</strong> Crookes, D.P. (1997). <strong>Exotic</strong> marine pests in Portl<strong>and</strong><br />

Harbour <strong>and</strong> environs. <strong>Marine</strong> <strong>and</strong> <strong>Freshwater</strong> <strong>Resources</strong> <strong>Institute</strong>, Technical <strong>Report</strong><br />

1, 1-20.<br />

Poore, G. C. B., Rainer, S. F., Spies, R. B. <strong>and</strong> Ward, E. (1975). The zoobenthos<br />

program in Port Phillip Bay, 1969-73. Fisheries <strong>and</strong> Wildlife Paper, Victoria 7, 1-78.<br />

Pritchard, G.B. <strong>and</strong> Gatliff, J.H. (1898). Catalogue of the marine shells of Victoria,<br />

Part 1. Proceedings of the Royal Society of Victoria 10, 236-284.<br />

S<strong>and</strong>erson, J. C. (1990). A preliminary survey of the distribution of the introduced<br />

macroalga, Undaria pinnatifida (Harvey) Suringer on the east coast of Tasmania.<br />

Botanica Marina 33, 153-7.<br />

19


Shepherd, S. A. <strong>and</strong> Thomas, I. M., Eds (1982). <strong>Marine</strong> Invertebrates of Southern<br />

Australia. Part 1. (J.D. Woolman, Government Printers, South Australia.)<br />

Slack-Smith, S.M. <strong>and</strong> Brearley, A. (1978). Musculista senhousia (Benson 1842); a<br />

mussel recently introduced into the Swan River estuary, Western Australia. (Mollusca:<br />

Mytilidae). Records of the Western Australian Museum 13 (2), 225-230.<br />

Smith, B.J., Coleman, N. <strong>and</strong> Watson, J.E. (1975). The invertebrate fauna of<br />

Westernport Bay. Proceedings of the Royal Society of Victoria 87, 149-155.<br />

Strayer, D. L. (1991). Projected distribution of the zebra mussel, Dreissena<br />

polymorpha, in <strong>No</strong>rth America. Canadian Journal of Fisheries <strong>and</strong> Aquatic Sciences<br />

48, 1389-95.<br />

Tanaka, M. <strong>and</strong> Kikuchi, T. (1979). Ecological studies on benthic macrofauna in<br />

Tomoe Cove, Amakusa. III. Life history <strong>and</strong> population fluctuations of major<br />

molluscs. Publications for the Amakusa <strong>Marine</strong> Biological Laboratory Kyushu<br />

University 5 (5), 79-115.<br />

Tzioumis, V. (1994). Bryozoan stolonal outgrowths: A role in competitive<br />

interactions? Journal of the <strong>Marine</strong> Biological Association of the United Kingdom 74<br />

(1), 203-210.<br />

Vinogradov, M., YE, Shushkina, E. A., Musayeva, E. I. <strong>and</strong> Sorokin, P., YU (1989).<br />

A newly acclimated species in the Black Sea: The ctenophore Mnemiopsis leidyi<br />

(Ctenophore: Lobata). Oceanology 29, 220-4.<br />

Walters, S. (1996). Ballast water, hull fouling <strong>and</strong> exotic marine organism<br />

introductions via ships - A Victorian study. Environment Protection Authority,<br />

Victoria Publication 494, 143.<br />

Wear, R. G. (1974). Incubation in British decapod Crustacea, <strong>and</strong> the effects of<br />

temperature on the rate <strong>and</strong> success of embryonic development. Journal of the <strong>Marine</strong><br />

Biological Association of the United Kingdom 54, 745-62.<br />

20


Table 1. Summary of wharf development, Port of Hastings.<br />

Berth Date built Depth (m) Pile construction Cathodic protection<br />

<strong>No</strong>. 1 Steel Industry Wharf 1971* 12.1 Steel Yes<br />

<strong>No</strong>. 2 Steel Industry Wharf 1971 12.1 Steel Yes<br />

Long Isl<strong>and</strong> Pier 1969 15.8 Steel +<br />

<strong>No</strong>. 1 Crib Point Jetty 1973 # 15.8 Steel +<br />

<strong>No</strong>. 2 Crib Point Jetty 1973 # 12.8 Steel +<br />

Yes<br />

* New mooring dolphins constructed in 1986 to accommodate BHP RO-RO vessel Iron Monarch.<br />

# New mooring dolphins constructed in 1984.<br />

+<br />

Top of piles are covered by a concrete sleeve to a depth of 1m below low water.<br />

Table 2. Summary of sampling methods, habitats sampled <strong>and</strong> target taxa, Port of<br />

Hastings, 4 March - 15 March 1997.<br />

Sampling methods Habitat sampled Target taxa<br />

<strong>No</strong>n-targeted:<br />

Qualitative surveys:<br />

• diver searches piles, breakwaters, soft sediment algae, invertebrates, fish<br />

• video/still photography piles, breakwaters, soft sediment algae, invertebrates, fish<br />

• Ockelmann sled soft sediment epifauna<br />

• beach seine soft sediment, seagrass mobile epifauna, fish<br />

• plankton net - 100µm water column zooplankton<br />

Quantitative surveys:<br />

• diver scrapings piles algae, invertebrates<br />

• video/still photography piles algae, invertebrates<br />

• Smith-McIntyre grabs soft sediment infauna<br />

• large cores soft sediment infauna<br />

Targeted:<br />

• diver searches piles, breakwaters, soft sediment Asterias, Sabella, Carcinus<br />

• traps piles, breakwaters, soft sediment Carcinus<br />

• small cores soft sediment dinoflagellate cysts<br />

• shore surveys intertidal wrack Undaria<br />

• plankton net - 20µm water column dinoflagellates<br />

21<br />

Yes<br />

Yes


Table 3. Sediment characteristics of grab samples taken from the Port of Hastings on<br />

the 4th <strong>and</strong> 5th March 1997. Phi (φ) = -Log2 of the particle size in millimetres.<br />

(a) Steel Industry Wharf<br />

Grab number 1 2 3 4 5<br />

Latitude 38°17.700 38°17.632 38°17.589 38°17.498 38°17.462<br />

Longitude 145°13.605 145°13.666 145°13.688 145°13.797 145°13.731<br />

Depth (m) 14 12 12 12 12<br />

Weight (kg) 19 6 12 6 7<br />

% < 63µm 20.7 14.7 1.3 11.6 7.8<br />

Fraction >63µm<br />

Mean Phi (φ) 1.91 1.95 0.02 2.71 2.50<br />

Sorting 0.86 1.14 0.47 0.78 0.75<br />

Skewness 0.36 -0.27 -0.15 -1.53 -0.59<br />

Kurtosis -0.89 -1.25 -0.62 2.53 0.62<br />

(b) Long Isl<strong>and</strong> Pier<br />

Grab number 1 2 3 4 5<br />

Latitude 38°18.771 38°18.772 38°18.412 38°18.366 38°18.392<br />

Longitude 145°13.561 145°13.713 145°13.748 145°13.644 145°13.666<br />

Depth (m) 17 17 17 17 16<br />

Weight (kg) 13 7 6 19 11<br />

% < 63µm 5.3 3.8 4.0 7.9 3.7<br />

Fraction >63µm<br />

Mean Phi (φ) 0.55 0.69 0.53 1.83 1.84<br />

Sorting 0.69 0.84 0.71 0.87 0.64<br />

Skewness 1.48 0.71 0.84 1.14 -0.76<br />

Kurtosis 3.26 1.51 2.66 -0.73 2.24<br />

(c) Crib Point Jetty<br />

Grab number 1 2 3 4 5<br />

Latitude 38°21.244 38°21.072 38°20.803 38°20.928 38°21.184<br />

Longitude 145°13.616 145°13.606 145°13.661 145°13.340 145°13.329<br />

Depth (m) 15 15 14 12 15<br />

Weight (kg) 10 9 15 9 12<br />

% < 63µm 25.4 20.4 1.3 2.7 11.0<br />

Fraction >63µm<br />

Mean Phi (φ) 1.70 1.31 0.33 0.65 1.72<br />

Sorting 0.80 0.89 0.59 0.92 0.90<br />

Skewness 0.40 0.42 1.02 0.59 0.19<br />

Kurtosis -0.17 0.03 13.18 0.47 -0.76<br />

22


Table 4. <strong>Exotic</strong> species found in the Port of Hastings. * Indicates species on the<br />

ABWMAC schedule of target pest species. “+” = Detected; “.” = <strong>No</strong>t detected .<br />

Species Taxa Steel Industry Long Isl<strong>and</strong> Crib Point<br />

Wharf<br />

Pier<br />

Jetty<br />

Bugula dentata Bryozoan + + +<br />

Bugila neritina Bryozoan + . .<br />

Carcinus maenus * Decapod crustacean + . .<br />

Corbula gibba Bivalve mollusc . . +<br />

Musculista senhousia Bivalve mollusc + + .<br />

Theora lubrica Bivalve mollusc + . .<br />

Watersipora subtorquata Bryozoan + . +<br />

Table 5. Dinoflagellate cysts detected in sediment cores Port of Hastings, 12-14<br />

March 1997. “+” = Detected; “.” = <strong>No</strong>t detected .<br />

Species Steel Industry Wharf Long Isl<strong>and</strong> Pier Crib Point Jetty<br />

1 2 3 1 3 3 1 2 3<br />

Toxic dinoflagellates<br />

Alex<strong>and</strong>rium spp . . . . . . . . .<br />

Gymnodinium catenatum . . . . . . . . .<br />

<strong>No</strong>n-toxic dinoflagellates<br />

Gonyaulax spinifera . . . . + . . . .<br />

Gonyaulax spp . + . . . . . . .<br />

Protoperidinium spp . . + . . . . + .<br />

Scrippsiella trochoidea . . . . . . . + .<br />

23


Table 6. Phytoplankton species recorded from Port of Hastings, 5 June 1997. Species<br />

are listed approximately in their order of abundance. B - Bacillariophyceae (diatoms);<br />

D - Dinophyceae (dinoflagellates); C - Cryptophyceae (cryptomonads); H -<br />

Prymnesiophyceae (haptophytes); P - Prasinophyceae (green flagellates).<br />

Species Steel Industry Wharf Long Isl<strong>and</strong> Pier Crib Point Jetty<br />

Nitzschia sp. (B) + + +<br />

Navicula spp. (B) + + +<br />

Rhizosolenia setigera (B) 3<br />

+ + +<br />

Asterionella sp. (B) + + +<br />

Teleaulax acuta (C) + + +<br />

Plagioselmis prolonga (C) + + +<br />

Pyramimonas spp. (P) + + +<br />

Chaetoceros sp. (B) + +<br />

Pseudo-nitzschia sp. (B) 1<br />

+<br />

Thalassiosira sp. (B) 2<br />

+<br />

Scrippsiella sp. (D) 2<br />

Coscinosira sp. (B) +<br />

Pyramimonas grossii (P) +<br />

Licmophora sp. (B) +<br />

Rhizosolenia cf. chunii (B) 3<br />

+<br />

Gymnodinium spp. (D) +<br />

1<br />

Potentially toxic (ASP).<br />

2<br />

Species implicated in harmful algal blooms (rarely) through oxygen depletion.<br />

3<br />

Potentially toxic to shellfish at least.<br />

24<br />

+


Figure 5. Cumulative species curves for : (a) Grab samples taken in the Port of<br />

Hastings, <strong>and</strong> (b) Scrapings taken at different depths (three) on piles (two) at<br />

each of the commercial shipping facilities (three) in the Port of Hastings.<br />

Number of species<br />

Number of species<br />

250<br />

200<br />

150<br />

100<br />

50<br />

a.<br />

0<br />

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15<br />

Cumulative number of grabs<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

b.<br />

0<br />

0 1 2 3 4 5 6<br />

Cumulative number of scrapings<br />

35<br />

0.5m<br />

3m<br />

7m


Appendix 1. Mean density of species in Port of Hastings/sampling unit. <strong>Exotic</strong> species (7) are shown in bold type.<br />

ABWMAC target species are marked with an asterisk.<br />

PHYLUM FAMILY SPECIES NAME PYLON NET TRAPS SLED CORES GRABS<br />

SCRAPING SEINE CRAB SCAVENGER SHRIMP<br />

n=18 n=6 n=15 n=15 n=15 n=6 n=9 n=15<br />

Annelida Ampharetidae Lysippides sp.1 . . . . . . . 3.87<br />

Isolda sp.1 . . . . . . 6.44 12.93<br />

Ampheretidae Ampharete sp.1 . . . . . . 0.11 0.6<br />

Capitellidae <strong>No</strong>tomastus sp.1 . . . . . . 3.56 10.4<br />

Capitellid sp.1 . . . . . . 1.56 .<br />

<strong>No</strong>tomastus sp.2 . . . . . . 0.33 3.07<br />

Cirratulidae Chaetozone sp.1 . . . . . . 0.11 0.13<br />

Tharyx sp.1 . . . . . . . 2.6<br />

Caulleriella sp.1 . . . . . . 0.44 0.13<br />

Tharyx sp.2 . . . . . . 0.11 1.27<br />

Dorvilleidae Dorvillea australiensis . . . . . . 0.11 0.2<br />

Eunicidae Marphysa sp.1 . . . . . . . 1.53<br />

Eunice cf. australis . . . . . . . 0.07<br />

Eunice sp.2 0.28 . . . . . . 0.13<br />

Glyceridae Glycera cf. americana . . . . . . 0.11 0.93<br />

Goniadidae Goniada cf. emerita . . . . . . . 0.47<br />

Hesionidae Nerimyra longicirrata . . . . . . . 0.27<br />

Hesionid sp.2 . . . . . . . 0.07<br />

Lumbrineridae Lumbrineris cf. latreilli . . . . . . . 1.13<br />

Lumbrineris sp.2 . . . . . . 0.78 7.87<br />

Magelonidae Magelona cf. dakini . . . . . . . 0.07<br />

Maldanidae Asychis glabra . . . . . . . 0.4<br />

Maldanid sp.1 . . . . . . 0.11 0.93<br />

Clymenella sp.1 . . . . . . . 0.33<br />

Nephtyidae Nephtys inornata . . . . . . 0.22 2.4<br />

Nereidae Simplisetia amphidonta 0.39 . . . . . . 0.07<br />

Platynereis dumerillii antipoda . . . 0.07 . . . 3.13<br />

Neridae Nereis sp.1 . . . . . . 0.11 0.07<br />

Onuphidae Onuphid sp.1 . . . . . . . 1.33<br />

Opheliidae Travisia sp.1 . . . . . . . 0.4<br />

Ophellidae Arm<strong>and</strong>ia cf. intermedia . . . . . . 1.67 24.27<br />

Orbiniidae Haploscoloplos sp.1 . . . . . . . 0.2<br />

Leitoscolopolos bifurcatus . . . . . . 0.22 0.53<br />

Orbinia sp.2 . . . . . . . 0.13<br />

Paraonidae Aricidea sp.1 . . . . . . 0.22 2.87<br />

Phyllodocidae Phyllodoce sp.1 . . . . . . 0.44 1.53<br />

Eulalia sp.1 . . . . . . . 0.13<br />

Polynoidae Harmothoe spinosa . . . . . . . 0.13<br />

Polyonidae sp.1 0.06 . . . . . . .<br />

Sabellidae Euchone variabilis . . . . . . 0.11 0.07<br />

Euchone sp.3 . . . . . . . 0.13<br />

Sabella sp.2 . . . . . . . 0.27<br />

Sabellastarte sp.1 . . . . . . . 0.13<br />

Sabella sp.1 1.06 . . . . . . 0.07<br />

Serpulidae Serpulid sp.2 . . . . . . . 0.07<br />

Spionidae Polydora sp.1 . . . . . . 0.11 .<br />

Prinospio auckl<strong>and</strong>ica . . . . . . . 0.07<br />

Syllidae Syllis sp.4 . . . . . . . 0.07<br />

Syllis sp.2 . . . . . . . 2.87<br />

Terebellidae Amaenna trilobata . . . . . . 0.44 1.4<br />

Terebellid sp.1 . . . . . . . 1.27<br />

Eupolymnia koorangia 0.06 . . . . . . 0.07<br />

Terebella cf. ehrenbergi 1.06 . . . . . . 0.13<br />

Trichobranchidae Artacamella dibranchiata . . . . . . 0.11 .<br />

Terebellides sp.1 0.06 . . . . . . .<br />

Brachiopoda Terebratellidae Magellania australis . . . . . + 1 0.2<br />

Bryozoa Bugulidae Bugula neritina + . . . . . . .<br />

Bugulidea Bugula dentata + . . . . . . .<br />

Cabereidae Caberea glabra + . . . . . 0.67 .<br />

Tricellaria sp.1 + . . . . . . .<br />

Reteporidae Triphyllozoon moniliferum 0.06 . . . . . 0.56 .<br />

Unknown Cheilostome #3 + . . . . . 0.44 .<br />

Cheilostome #4 . . . . . . 0.11 .<br />

Cheilostome #1 0.06 . . . . + . .<br />

Vesiculariidae Amathia sp.1 + . . . . . 0.11 .<br />

Watersiporideae Watersipora cf. subtorquata + . . . . . 0.11 .<br />

Chelicerata Ammotheidae Ammotheid sp.1 . . . . . . . 0.07<br />

Chlorophyta Caulerpaceae Caulerpa brownii + . . . . . . .<br />

Caulerpa cactoides + . . . . . . .<br />

Chordata Apogonidae Vincentia conspersa . . 0.13 . . . . .<br />

Aracanidae Aracana ornata . 0.33 0.07 . . . . .<br />

Aracana aurita . 0.83 . . . . . .<br />

Arripidae Arripis georgiana . 2.17 . . . . . .<br />

Ascidiidae Ascidia sydneyensis . . . . . . . 0.07<br />

Ascidia sp.1 0.06 . . . . . . .<br />

Ascidia sp.2 0.28 . . . . . . .<br />

Atherinidae Atherinosoma microstoma . 48.33 0.07 . 0.73 . . .<br />

Blenniidae Parablennius tasmanianus 0.06 . . . . . . .<br />

Carangidae Pseudocaranx dentex . 1.83 . . . . . .<br />

Clavelinidae Sycozoa cerebriformis 0.44 . . . . + . .<br />

Clinidae Cristiceps argyropleura . 0.5 . . . . . .<br />

Didemnidae Didemnum sp.1 + . . . . . . .<br />

Didemnum sp.2 + . . . . . . .<br />

Diodontidae Diodon nicthemerus . 2.17 . . . . . .<br />

Gobiesocidae Aspasmogaster tasmaniensis . . . . . . . 0.07<br />

36


Appendix 1. (Cont.)<br />

PHYLUM FAMILY SPECIES NAME PYLON NET TRAPS SLED CORES GRABS<br />

SCRAPING SEINE CRAB SCAVENGER SHRIMP<br />

n=18 n=6 n=15 n=15 n=15 n=6 n=9 n=15<br />

Chordata Hemiramphidae Hyporhamphus melanochir . 3.5 . . . . . .<br />

Holozoidae Ascidian #13 0.06 . . . . . . .<br />

Ascidian #14 1.06 . . . . . . .<br />

Labridae <strong>No</strong>tolabrus fucicola . . 0.2 . . . . .<br />

Molgulidae Ascidian #10 0.06 . . . . . . .<br />

Molgula sp.1 1.17 . . . . + . .<br />

Monacanthidae Acanthaluteres spilomanurus . 0.17 . . 0.13 . . .<br />

Meuschenia freycineti . . 0.07 . . . . .<br />

Scobinichthys granulatus . 0.17 . . . . . .<br />

Thamnaconus degeni . . 0.07 . . . . .<br />

Moridae Pseudophycis barbata . . 0.2 . . . . .<br />

Mugilidae Myxus elongatus . 2.33 . 0.13 . . . .<br />

Aldrichetta forsteri . 18.83 . . . . . .<br />

Odacidae Haletta semifasciata . . 0.07 . . . . .<br />

Pleuronectidae Rhombosolea tapirina . 0.17 . . . . . .<br />

Polycitoridae Ascidian #16 0.22 . . . . . . .<br />

Polyzoinae Amphicarpa meridiana 241.5 . . . . + 0.11 .<br />

Pyuridae Halocynthia hispida 2.11 . . . . . . .<br />

Pyura stolonifera 0.17 . . . . + . 3.53<br />

Microcosmus squamiger 2.44 . . . . . . .<br />

Herdmania momus 0.17 . . . . . . .<br />

Pyura australis 0.06 . . . . + . .<br />

Rhinobatidae Trygonorrhina guanerius . 1 . . . . . .<br />

Scorpaeniformes Gymnapistes marmoratus . 0.83 0.13 . 0.07 . . .<br />

Scyliorhinidae Asymbolus analis . . 0.07 . . . . .<br />

Sillanginidae Sillaginodes punctata . 10.83 . . . . . .<br />

Styelidae Cnemidocarpa sp.1 0.28 . . . . . . .<br />

Cnemidocarpa etheridgii . . . . . + . .<br />

Syngnathidae Syngnathus phillipi . . . . . + . 0.07<br />

Tetraodontidae Tetractenos glaber . 78.83 . . . . . .<br />

Contusus brevicaudus . 1 . . . . . .<br />

Cnidaria Campanulariidae Obelia cf. geniculata + . . . . . . .<br />

Eudendriidae Eudendrium cf. generale + . . . . . . .<br />

Melithaeidae Mopsella zimmeri + . . . . . . .<br />

Plumulariidae Algaophenia cf. plumosa 0.39 . . . . . 0.11 .<br />

Crustacea Acanthonotozomatidae Cypsiphimedia sp.1 . . . . . . . 0.07<br />

Alpheidae Alpheus sp.1 2.89 . . . 0.07 . 0.11 1.13<br />

Ampeliscidae Ampelisca euroa . . . . . . . 25.8<br />

Byblis mildura . . . . . . 0.78 164.67<br />

Amphipoda Tethygeneia sp.1 . . . 0.13 . . . .<br />

Anthuridae Amakusanthura pimelia . . . . . . . 0.8<br />

Haliophasma cribense . . . . . . . 0.07<br />

Haliophasma canale . . . . . . . 0.87<br />

Aoridae Aora mortoni . . . . . . . 0.27<br />

Apseudidae Apseudes sp.2 . . . . . . . 0.13<br />

Apseudes sp.1 . . . . . . 0.11 3<br />

Astacillidae Neastacilla deducta . . . . . . . 0.27<br />

Axiidae Axiopsis werribee . . . . . . . 0.07<br />

Bodotriidae Zenocuma rugosa . . . . . . . 1.53<br />

Glyphocuma bakeri . . . . . . . 0.2<br />

Callianassidae Callianassa arenosa . . . . . . 0.56 3.33<br />

Neocallichirus limosus . . . . . . 0.11 0.07<br />

Corophiidae Gammaropsis sp.2 . . . . . . . 0.67<br />

Xenocheira fasciata . . . . . . . 1.6<br />

Cheiriphotis sp.1 . . . . . . 0.33 1.33<br />

Gammaropsis sp.3 . . . . . . 0.11 1.13<br />

Rhinoecetes robustus . . . . . . . 0.07<br />

Photis sp.1 . . . . . . . 64.4<br />

Gammaropsis sp.1 . . . . . . . 3.47<br />

Crangonidae Pontophilus intermedius . . . . . . 0.11 0.27<br />

Cylindroleberidae Asteropterygion magnum . . . . . . . 0.27<br />

Empoulsenia sp.1 . . . . . . 0.44 0.53<br />

Cypridinidae Cypridinidae sp.2 . . . 2.13 . . . 0.07<br />

Cypridinidae sp.1 . . . . . . . 0.67<br />

Dexaminidae Paradexamine lanacoura . . . . . . 0.11 2.47<br />

Diastylidae Cumacean #1 . . . . . . . 0.33<br />

Gynodiastylis mutabilis . . . . . . . 0.07<br />

Gynodiastylis ambigua . . . . . . 0.11 0.07<br />

Dimorphostylis cottoni . . . . . . . 0.07<br />

Dicoides fletti . . . . . . . 0.2<br />

Dromiidae Dromiidea globosa . . . . . + . .<br />

Austrodromidia australis . . . . . + . .<br />

Eurydicidae Natatolana woodjonesi . . . 82.07 25.33 . 0.11 1<br />

Natatolana corpulenta . . . 0.13 . . . 0.2<br />

Eurydice tarti . . . . 0.07 . . 0.13<br />

Eusiridae Paramoera sp.1 . . . . . . . 0.07<br />

Gammaridae Maera mastersi . . . . . . . 3.93<br />

Ceradocus serratus . . . . . + . 2.8<br />

Goneplacidae Hexapus granuliferus . . . . . . . 0.13<br />

Grapsidae Paragrapsus gaimardii . . 0.93 . 0.4 . . .<br />

Haustoriidae Acanthohaustorius sp.1 . . . . . . . 0.13<br />

Hymenosomatidae Halicarcinus rostratus . . . . . . . 0.87<br />

Halicarcinus ovatus 0.11 . . 0.07 0.07 . . 0.93<br />

Idoteidae Austrochaetilia capeli . . . . . . . 0.2<br />

Kalliapseudidae Kalliapseudes sp.1 . . . . . . 1.11 13.93<br />

37


Appendix 1. (Cont.)<br />

PHYLUM FAMILY SPECIES NAME PYLON NET TRAPS SLED CORES GRABS<br />

SCRAPING SEINE CRAB SCAVENGER SHRIMP<br />

n=18 n=6 n=15 n=15 n=15 n=6 n=9 n=15<br />

Crustacea Leuconidae Hemileucon levis . . . . . . . 0.8<br />

Leucosiidae Phlyxia intermedia . . . . . + 0.11 0.47<br />

Philyra undecimspinosa . . . . . + . .<br />

Leucothoidae Leucothoe assimilis . . . . . . . 0.6<br />

Leucothoe commensalis 0.06 . . . . . 0.11 0.07<br />

Liljeborgiidae Liljeborgia sp.2 . . . . . . . 0.2<br />

Liljeborgia sp.4 . . . . . . . 0.33<br />

Liljeborgia dubia . . . . . . . 1.8<br />

Lysianassidae Ichnopus cribensis . . . . 0.07 . . .<br />

Sheardella tangaroa . . . . . . . 0.2<br />

Hippomedon denticulatus . . . . . . . 0.47<br />

Amaryllis macrophthalmus . . . 0.53 0.07 . 0.11 2.6<br />

Lysianassid sp.1 0.06 . . 43.07 13.33 . . 1<br />

Lysianassid sp.2 . . . 0.67 0.07 . . 0.53<br />

Lysianassid sp.3 . . . 0.07 0.13 . . 0.8<br />

Lysianassid sp.4 . . . 2.53 . . . 0.27<br />

Lysianassid sp.5 . . . 0.07 . . . .<br />

Majidae Leptomithrax gaimardii 0.17 . . . . + . .<br />

Melitidae Dulichiella australis . . . . . . 0.11 0.2<br />

Melphidippidae Hornellia micramphopus . . . . . . . 0.93<br />

Cheirocratus bassi . . . . . . . 0.6<br />

Mysidae Australomysis incisa . . . . . . . 0.2<br />

Tenagomysis sp.1 . . . . . . 0.11 0.07<br />

Paranchialina angusta . . . . . . . 1.47<br />

Nebaliidae Paranebalia sp.1 . . . . . . . 0.13<br />

Nebalia sp.1 . . . 0.2 . . . .<br />

Oedicerotidae Oedicerotid sp.2 . . . . . . . 0.07<br />

Paguridae Pagurid sp.1 . . . . 0.07 . . .<br />

Paguristes tuberculatus . . . . . + . 0.07<br />

Strigapagurus strigmanus . . . . . + . .<br />

Palaemonidae Macrobrachium intermedium . . . 0.93 3.33 + . 0.27<br />

P<strong>and</strong>alidae Parap<strong>and</strong>alus leptorhynchus . . . . 0.27 . . .<br />

Paranthuridae Paranthura acacia . . . . . . 0.11 2.87<br />

Acculathura gigas . . . . . . . 0.2<br />

Bullowanthura pambula . . . . . . . 1.67<br />

Pasiphaeidae Leptochela sydniensis . . . . . . 0.11 0.07<br />

Philomedidae Philomedid sp.2 . . . . . . . 0.13<br />

Euphilomedes sp.1 . . . . . . . 0.47<br />

Philomedid sp.1 . . . . . . . 0.67<br />

Phoxocephalidae Brolgus tattersalli . . . . . . . 0.07<br />

Birubius panamunus . . . . . . . 1<br />

Birubius cartoo . . . . . . . 0.07<br />

Pinnotheridae Pinnotheres hickmani 0.06 . . . . . . 0.07<br />

Platyischnopidae Tomituka doowi . . . . . . . 0.07<br />

Portunidae Nectocarcinus tuberculosus . . . . 0.07 . . .<br />

Carcinus maenas * . . 0.07 . . . . .<br />

Ovalipes australiensis . . . . . + . .<br />

Nectocarcinus integrifrons . . 0.4 . 0.13 . . .<br />

Sarsiellidae Sarsiella sp.1 . . . . . . . 0.33<br />

Sarsiella magna . . . . . . . 0.27<br />

Scalpellidae Smilium peronii . . . . . + . .<br />

Sergestidae Leucifer sp.1 . . . . . . . 0.07<br />

Serolidae Serolis cf. bakeri . . . . . . . 0.07<br />

Heteroserolis australiensis . . . . . . . 0.13<br />

Sphaeromidae Cymodoce gaimardii . . . . . . . 3.07<br />

Exosphaemora sp.2 . . . . . . . 0.6<br />

Cilicaea crassicaudata 0.17 . . . . . . 0.07<br />

Ceratocephalus grayanus . . . . . . . 0.13<br />

Exosphaemora sp.1 . . . . . . . 0.47<br />

Squillidae Austrosquilla osculans . . . . . . 0.11 0.47<br />

Squilla miles . . . . 0.07 . . 0.07<br />

Synopiidae Tiron sp.1 . . . . . . . 15.93<br />

Tanaidae Leptochelia sp.1 . . . . . . . 0.07<br />

Paratanais ignotus . . . . . . . 1.27<br />

Unknown Brachyura megalops sp.2 . . . . . . . 0.13<br />

Brachyura megalops sp.5 . . . . . . . 0.13<br />

Upogebiidae Upogebia dromana . . . . . . 0.11 0.67<br />

Xanthidae Pilumnus tomentosus 0.17 . . . . + . .<br />

Pilumnus monilifer 0.28 . . . . + . .<br />

Echinodermata Amphiuridae Ophiothrix caespitosa 0.06 . . . . . . .<br />

Amphiura el<strong>and</strong>iformis . . . . . . 0.11 0.27<br />

Ophiocentrus pilosus . . . . . . 0.11 0.33<br />

Amphipholis squamata . . . . . . 0.22 .<br />

Amphiura constricta . . . . . . 0.22 6.27<br />

Asteriidae Allostichaster polyplax . . . . . + . .<br />

Cidaridae Goniocidaris tubaria . . . . . + . .<br />

Goniasteridae Tosia magnifica . . . . . + . .<br />

Nectria ocellata . . . . . + . .<br />

Strongylocentrotidae Heliocidaris erythrogramma . . . . . + . .<br />

Temnopleuridae Holopneustes inflatus . . . . . + . .<br />

Echiura Bonelliidae Metabonellia haswelli . . . . . . 0.11 0.4<br />

Mollusca Acanthochitonidae Acanthochitona pilsbryi 0.17 . . . . . . .<br />

Arcidae Anadara trapezia . . . . . + . 0.27<br />

Aricidae Barbatia pistachia . . . . . + . .<br />

Buccinidae Cominella eburnea . . . 0.13 . . . .<br />

38


Appendix 1. (Cont.)<br />

PHYLUM FAMILY SPECIES NAME PYLON NET TRAPS SLED CORES GRABS<br />

SCRAPING SEINE CRAB SCAVENGER SHRIMP<br />

n=18 n=6 n=15 n=15 n=15 n=6 n=9 n=15<br />

Mollusca Calyptraeidae Calyptraea (Sigapatella) calypt . . . . . + . 2.93<br />

Cardiidae Fulvia tenuicostata . . . . . . . 1.87<br />

Pratulum thetidis . . . . . . 0.22 0.13<br />

Carditidae Venericardia bimaculata . . . . . + 0.89 4.93<br />

Chromodorididae Chromodoris cf. epicuria 0.06 . . . . . . .<br />

Columbellidae Demtimitrella pulla . . . 0.13 . . . .<br />

Dentimitrella sp.1 . . . . 0.07 . . .<br />

Corbulidae Corbula gibba . . . . . . 0.11 .<br />

Cyamiidae Cyamiomactra mactroides . . . . . . 0.22 1.6<br />

Cymatiidae Cymatiella verrucosa . . . 0.07 . . . 0.13<br />

Dorididae Dorid sp.2 0.06 . . . . . . .<br />

Dorid sp.1 . . . . . . . 0.07<br />

Eulimidae Strombiformis topaziaca . . . . . . . 1.2<br />

Fasciolariidae Pleuroploca australasia . . . . . + . .<br />

Hamineidae Liloa brevis . . . . . . . 0.07<br />

Hiatellidae Hiatella australis 0.11 . . . . . . .<br />

Hiatella subulata . . . . . . . 0.13<br />

Kelliidae Melliteryx acupunctum . . . . . . 0.22 2.07<br />

Leptochitonidae Leptochiton collusor . . . . . . . 0.2<br />

Limidae Limatula strangei . . . . . . . 0.07<br />

Lucinidae Bellucina crassilirata . . . . . . 0.11 0.13<br />

Myrtea mayi . . . . . . 0.22 0.13<br />

Mactridae Mactra jacksonensis . . . . . . 0.56 .<br />

<strong>No</strong>tospisula cf. trigonella . . . . . . 0.67 0.6<br />

Marginellidae Marginella sp.1 . . . . . . . 0.07<br />

Mitridae Amoria undulata . . . . . + . .<br />

Montacutidae Mysella donaciformis . . . . . . . 1.53<br />

Muricidae Bedeva paivae . . . . . . . 0.13<br />

Thais orbita 0.17 . . . . . . .<br />

Myochamidae Myadora albida . . . . . . 0.22 0.87<br />

Mytilidae Mytilus edulis planulatus 0.06 . . . . . . .<br />

Musculista senhousia . . . . . . . 0.4<br />

Gregariella barbatus . . . . . . . 0.07<br />

Nassariidae Niotha pauperata . . . 11.2 0.87 . . 0.53<br />

Nassarius burchardi . . . 3 . . 0.11 0.07<br />

Nasssaridae Nassarius (Zeuxis) pyrrhus . . . 0.47 0.33 . . 0.2<br />

Naticidae Polinices sordidus . . . . . . . 0.47<br />

Nuculidae Nucula obliqua . . . . . . 1.11 .<br />

Nucula pusilla . . . . . . . 0.73<br />

Octopodidae Octopus australis . 0.17 . . . . . .<br />

Octopus sp.1 . . . . . + . .<br />

Omnastrephidae <strong>No</strong>totodarus gouldi . 1.5 . . . . . .<br />

Ostreidae Ostrea angasi . . . . . + . .<br />

Pectinidae Cyclopecten cf. favus . . . . . . 0.11 6.73<br />

Periplomatidae Offadesma angasi . . . . . . . 0.27<br />

Philinidae Philine angasi . . . . . . . 0.07<br />

Pholadidae Pholas australasiae . . . . . + . 15.27<br />

Schizochitonidae Loricella angasi . . . . . + . .<br />

Scissurellidae Sinezona atkinsoni . . . . . . . 0.07<br />

Semelidae Theora cf. lubrica . . . . . . 0.22 .<br />

Sepiidae Euprymna tasmanica . . . . . . . 0.07<br />

Solenidae Solen vaginoides . . . . . + 0.11 0.33<br />

Stiliferidae Stilifer petterdi . . . . 0.07 . . .<br />

Tellinidae Tellina (Macomona) mariae . . . . . . 0.11 0.07<br />

Thraciidae Eximiothracia modesta . . . . . . . 1.07<br />

Trigoniidae Neotrigonia margaritacea . . . . . + 0.44 5.33<br />

Trochidae Clanculus limbatus . . . . 0.07 . . .<br />

Cantharidella tibiana . . . . 0.07 . . 0.13<br />

Veneridae Chioneryx cardioides . . . . . . . 0.07<br />

<strong>No</strong>tocallista diemenesis . . . . . + 0.11 5.47<br />

Vulsellidae Vulsella spongiarum 0.06 . . . . . . .<br />

Nematoda Monhysteridae Monhysterid sp.1 . . . . . . 0.33 1.2<br />

Nemertea Unknown Nemertean sp.5 . . . . . . . 0.13<br />

Platyhelminthes Unknown Turbellarian sp.1 . . . . . . 0.11 0.07<br />

Porifera Aplysillidae Dendrilla cf. rosea 0.06 . . . . . 0.11 .<br />

Halichondriidae Halichondria sp.2 0.33 . . . . . . .<br />

Halichondria sp.3 0.06 . . . . . . .<br />

Haliclonidae Haliclona sp.2 . . . . . + . .<br />

Haliclona sp.3 0.06 . . . . . . .<br />

Haliclona sp.1 0.06 . . . . + . .<br />

Psammascidae Psammascid sp.2 0.11 . . . . . . .<br />

Psammascid sp.1 0.06 . . . . . . .<br />

Suberitidae Suberitidae sp.1 0.11 . . . . . . .<br />

Tethyidae Tethya sp.1 0.11 . . . . + . .<br />

Unknown Demospongiae sp.6 . . . . . + . .<br />

Demospongiae sp.7 . . . . . + . .<br />

Demospongiae sp.8 . . . . . + . .<br />

Haplosclerid sp.1 0.06 . . . . . . .<br />

Sycon sp.1 . . . . . . . 0.07<br />

Sycon sp.2 0.06 . . . . . . .<br />

Poecilosclerid sp.1 0.11 . . . . . . .<br />

Poecilosclerid sp.2 + . . . . . . .<br />

Poecilosclerid sp.3 + . . . . . . .<br />

Dictyoceratid sp.1 0.56 . . . . . . .<br />

Dictyoceratid sp.2 0.06 . . . . . . .<br />

39


Appendix 1. (Cont.)<br />

PHYLUM FAMILY SPECIES NAME PYLON NET TRAPS SLED CORES GRABS<br />

SCRAPING SEINE CRAB SCAVENGER SHRIMP<br />

n=18 n=6 n=15 n=15 n=15 n=6 n=9 n=15<br />

Porifera Unknown Sycon sp.3 + . . . . . . .<br />

Demospongiae sp.4 + . . . . + . .<br />

Demospongiae sp.5 0.06 . . . . . . .<br />

Rhodophyta Delesseriaceae Hymenena sp.1 + . . . . . . .<br />

Gracilariaceae Gracilaria sp.2 + . . . . . . .<br />

Rhodomelaceae Rhodophyta #2 + . . . . . . .<br />

Unknown Rhodophyta #1 + . . . . . . .<br />

Sarcodina Elphidiidae Elphidium sp.1 . . . . . . . 0.4<br />

Miliolidae Triloculina affinis . . . . . . 50.78 932.27<br />

Quinqueloculina sp.1 . . . . . . 0.11 0.73<br />

Triloculina cf. oblonga . . . . . . 5.89 11.07<br />

Polymorphinidae Sigmoidella sp.1 . . . . . . 0.33 1.13<br />

Guttulina sp.1 . . . . . . 0.44 1.13<br />

Sipuncula Golfingiidae Themiste sp.2 . . . . . . . 0.13<br />

Phascolosomatidae Phascolosoma annulatum 0.06 . . . . . . .<br />

Phascolion sp.2 0.06 . . . . . . .<br />

40


Appendix 2. Percentage occurance of species in Port of Hastings obtained using different sampling methods. <strong>Exotic</strong><br />

species (7) are shown in bold type. ABWMAC target species are marked with an asterisk.<br />

PHYLUM FAMILY SPECIES NAME PYLON NET TRAPS SLED CORES GRABS<br />

SCRAPING SEINE CRAB SCAVENGER SHRIMP<br />

n=18 n=6 n=15 n=15 n=15 n=6 n=9 n=15<br />

Annelida Ampharetidae Lysippides sp.1 . . . . . . . 47<br />

Isolda sp.1 . . . . . . 22 80<br />

Ampheretidae Ampharete sp.1 . . . . . . 11 7<br />

Capitellidae <strong>No</strong>tomastus sp.1 . . . . . . 67 80<br />

Capitellid sp.1 . . . . . . 33 .<br />

<strong>No</strong>tomastus sp.2 . . . . . . 33 47<br />

Cirratulidae Chaetozone sp.1 . . . . . . 11 7<br />

Tharyx sp.1 . . . . . . . 53<br />

Caulleriella sp.1 . . . . . . 11 7<br />

Tharyx sp.2 . . . . . . 11 33<br />

Dorvilleidae Dorvillea australiensis . . . . . . 11 20<br />

Eunicidae Marphysa sp.1 . . . . . . . 67<br />

Eunice cf. australis . . . . . . . 7<br />

Eunice sp.2 28 . . . . . . 7<br />

Glyceridae Glycera cf. americana . . . . . . 11 47<br />

Goniadidae Goniada cf. emerita . . . . . . . 27<br />

Hesionidae Nerimyra longicirrata . . . . . . . 7<br />

Hesionid sp.2 . . . . . . . 7<br />

Lumbrineridae Lumbrineris cf. latreilli . . . . . . . 40<br />

Lumbrineris sp.2 . . . . . . 56 87<br />

Magelonidae Magelona cf. dakini . . . . . . . 7<br />

Maldanidae Asychis glabra . . . . . . . 20<br />

Maldanid sp.1 . . . . . . 11 33<br />

Clymenella sp.1 . . . . . . . 27<br />

Nephtyidae Nephtys inornata . . . . . . 22 73<br />

Nereidae Simplisetia amphidonta 22 . . . . . . 7<br />

Platynereis dumerillii antipoda . . . 7 . . . 47<br />

Neridae Nereis sp.1 . . . . . . 11 7<br />

Onuphidae Onuphid sp.1 . . . . . . . 40<br />

Opheliidae Travisia sp.1 . . . . . . . 7<br />

Ophellidae Arm<strong>and</strong>ia cf. intermedia . . . . . . 56 93<br />

Orbiniidae Haploscoloplos sp.1 . . . . . . . 7<br />

Leitoscolopolos bifurcatus . . . . . . 22 27<br />

Orbinia sp.2 . . . . . . . 13<br />

Paraonidae Aricidea sp.1 . . . . . . 22 47<br />

Phyllodocidae Phyllodoce sp.1 . . . . . . 22 53<br />

Eulalia sp.1 . . . . . . . 13<br />

Polynoidae Harmothoe spinosa . . . . . . . 13<br />

Polyonidae sp.1 6 . . . . . . .<br />

Sabellidae Euchone variabilis . . . . . . 11 7<br />

Euchone sp.3 . . . . . . . 13<br />

Sabella sp.2 . . . . . . . 7<br />

Sabellastarte sp.1 . . . . . . . 13<br />

Sabella sp.1 44 . . . . . . 7<br />

Serpulidae Serpulid sp.2 . . . . . . . 7<br />

Spionidae Polydora sp.1 . . . . . . 11 .<br />

Prinospio auckl<strong>and</strong>ica . . . . . . . 7<br />

Syllidae Syllis sp.4 . . . . . . . 7<br />

Syllis sp.2 . . . . . . . 53<br />

Terebellidae Amaenna trilobata . . . . . . 22 27<br />

Terebellid sp.1 . . . . . . . 40<br />

Eupolymnia koorangia 6 . . . . . . 7<br />

Terebella cf. ehrenbergi 22 . . . . . . 7<br />

Trichobranchidae Artacamella dibranchiata . . . . . . 11 .<br />

Terebellides sp.1 6 . . . . . . .<br />

Brachiopoda Terebratellidae Magellania australis . . . . . 33 33 20<br />

Bryozoa Bugulidae Bugula neritina 11 . . . . . . .<br />

Bugulidea Bugula dentata 72 . . . . . . .<br />

Cabereidae Caberea glabra 72 . . . . . 67 .<br />

Tricellaria sp.1 22 . . . . . . .<br />

Reteporidae Triphyllozoon moniliferum 72 . . . . . 56 .<br />

Unknown Cheilostome #3 6 . . . . . 44 .<br />

Cheilostome #4 . . . . . . 11 .<br />

Cheilostome #1 56 . . . . 67 . .<br />

Vesiculariidae Amathia sp.1 39 . . . . . 11 .<br />

Watersiporideae Watersipora cf. subtorquata 6 . . . . . 11 .<br />

Chelicerata Ammotheidae Ammotheid sp.1 . . . . . . . 7<br />

Chlorophyta Caulerpaceae Caulerpa brownii 6 . . . . . . .<br />

Caulerpa cactoides 6 . . . . . . .<br />

Chordata Apogonidae Vincentia conspersa . . 7 . . . . .<br />

Aracanidae Aracana ornata . 17 7 . . . . .<br />

Aracana aurita . 17 . . . . . .<br />

Arripidae Arripis georgiana . 50 . . . . . .<br />

Ascidiidae Ascidia sydneyensis . . . . . . . 7<br />

Ascidia sp.1 6 . . . . . . .<br />

Ascidia sp.2 11 . . . . . . .<br />

Atherinidae Atherinosoma microstoma . 33 7 . 20 . . .<br />

Blenniidae Parablennius tasmanianus 6 . . . . . . .<br />

Carangidae Pseudocaranx dentex . 33 . . . . . .<br />

Clavelinidae Sycozoa cerebriformis 28 . . . . 50 . .<br />

Clinidae Cristiceps argyropleura . 33 . . . . . .<br />

Didemnidae Didemnum sp.1 78 . . . . . . .<br />

Didemnum sp.2 22 . . . . . . .<br />

Diodontidae Diodon nicthemerus . 50 . . . . . .<br />

Gobiesocidae Aspasmogaster tasmaniensis . . . . . . . 7<br />

41


Appendix 2. (Cont.)<br />

PHYLUM FAMILY SPECIES NAME PYLON NET TRAPS SLED CORES GRABS<br />

SCRAPING SEINE CRAB SCAVENGER SHRIMP<br />

n=18 n=6 n=15 n=15 n=15 n=6 n=9 n=15<br />

Chordata Hemiramphidae Hyporhamphus melanochir . 33 . . . . . .<br />

Holozoidae Ascidian #13 11 . . . . . . .<br />

Ascidian #14 39 . . . . . . .<br />

Labridae <strong>No</strong>tolabrus fucicola . . 13 . . . . .<br />

Molgulidae Ascidian #10 6 . . . . . . .<br />

Molgula sp.1 67 . . . . 17 . .<br />

Monacanthidae Acanthaluteres spilomanurus . 17 . . 13 . . .<br />

Meuschenia freycineti . . 7 . . . . .<br />

Scobinichthys granulatus . 17 . . . . . .<br />

Thamnaconus degeni . . 7 . . . . .<br />

Moridae Pseudophycis barbata . . 13 . . . . .<br />

Mugilidae Myxus elongatus . 33 . 7 . . . .<br />

Aldrichetta forsteri . 33 . . . . . .<br />

Odacidae Haletta semifasciata . . 7 . . . . .<br />

Pleuronectidae Rhombosolea tapirina . 17 . . . . . .<br />

Polycitoridae Ascidian #16 17 . . . . . . .<br />

Polyzoinae Amphicarpa meridiana 83 . . . . 83 11 .<br />

Pyuridae Halocynthia hispida 39 . . . . . . .<br />

Pyura stolonifera 11 . . . . 83 . 20<br />

Microcosmus squamiger 44 . . . . . . .<br />

Herdmania momus 11 . . . . . . .<br />

Pyura australis 6 . . . . 17 . .<br />

Rhinobatidae Trygonorrhina guanerius . 50 . . . . . .<br />

Scorpaeniformes Gymnapistes marmoratus . 33 7 . 7 . . .<br />

Scyliorhinidae Asymbolus analis . . 7 . . . . .<br />

Sillanginidae Sillaginodes punctata . 50 . . . . . .<br />

Styelidae Cnemidocarpa sp.1 6 . . . . . . .<br />

Cnemidocarpa etheridgii . . . . . 17 . .<br />

Syngnathidae Syngnathus phillipi . . . . . 33 . 7<br />

Tetraodontidae Tetractenos glaber . 100 . . . . . .<br />

Contusus brevicaudus . 33 . . . . . .<br />

Cnidaria Campanulariidae Obelia cf. geniculata 11 . . . . . . .<br />

Eudendriidae Eudendrium cf. generale 6 . . . . . . .<br />

Melithaeidae Mopsella zimmeri 6 . . . . . . .<br />

Plumulariidae Algaophenia cf. plumosa 22 . . . . . 11 .<br />

Crustacea AcanthonotozomatidaeCypsiphimedia sp.1 . . . . . . . 7<br />

Alpheidae Alpheus sp.1 72 . . . 7 . 11 33<br />

Ampeliscidae Ampelisca euroa . . . . . . . 60<br />

Byblis mildura . . . . . . 22 60<br />

Amphipoda Tethygeneia sp.1 . . . 7 . . . .<br />

Anthuridae Amakusanthura pimelia . . . . . . . 20<br />

Haliophasma cribense . . . . . . . 7<br />

Haliophasma canale . . . . . . . 33<br />

Aoridae Aora mortoni . . . . . . . 20<br />

Apseudidae Apseudes sp.2 . . . . . . . 13<br />

Apseudes sp.1 . . . . . . 11 27<br />

Astacillidae Neastacilla deducta . . . . . . . 20<br />

Axiidae Axiopsis werribee . . . . . . . 7<br />

Bodotriidae Zenocuma rugosa . . . . . . . 60<br />

Glyphocuma bakeri . . . . . . . 20<br />

Callianassidae Callianassa arenosa . . . . . . 33 33<br />

Neocallichirus limosus . . . . . . 11 7<br />

Corophiidae Gammaropsis sp.2 . . . . . . . 13<br />

Xenocheira fasciata . . . . . . . 47<br />

Cheiriphotis sp.1 . . . . . . 22 20<br />

Gammaropsis sp.3 . . . . . . 11 27<br />

Rhinoecetes robustus . . . . . . . 7<br />

Photis sp.1 . . . . . . . 80<br />

Gammaropsis sp.1 . . . . . . . 87<br />

Crangonidae Pontophilus intermedius . . . . . . 11 13<br />

Cylindroleberidae Asteropterygion magnum . . . . . . . 27<br />

Empoulsenia sp.1 . . . . . . 33 33<br />

Cypridinidae Cypridinidae sp.2 . . . 40 . . . 7<br />

Cypridinidae sp.1 . . . . . . . 27<br />

Dexaminidae Paradexamine lanacoura . . . . . . 11 60<br />

Diastylidae Cumacean #1 . . . . . . . 7<br />

Gynodiastylis mutabilis . . . . . . . 7<br />

Gynodiastylis ambigua . . . . . . 11 7<br />

Dimorphostylis cottoni . . . . . . . 7<br />

Dicoides fletti . . . . . . . 13<br />

Dromiidae Dromiidea globosa . . . . . 17 . .<br />

Austrodromidia australis . . . . . 33 . .<br />

Eurydicidae Natatolana woodjonesi . . . 33 33 . 11 33<br />

Natatolana corpulenta . . . 7 . . . 20<br />

Eurydice tarti . . . . 7 . . 13<br />

Eusiridae Paramoera sp.1 . . . . . . . 7<br />

Gammaridae Maera mastersi . . . . . . . 53<br />

Ceradocus serratus . . . . . 17 . 47<br />

Goneplacidae Hexapus granuliferus . . . . . . . 13<br />

Grapsidae Paragrapsus gaimardii . . 20 . 27 . . .<br />

Haustoriidae Acanthohaustorius sp.1 . . . . . . . 7<br />

Hymenosomatidae Halicarcinus rostratus . . . . . . . 40<br />

Halicarcinus ovatus 6 . . 7 7 . . 40<br />

Idoteidae Austrochaetilia capeli . . . . . . . 13<br />

Kalliapseudidae Kalliapseudes sp.1 . . . . . . 44 67<br />

42


Appendix 2. (Cont.)<br />

PHYLUM FAMILY SPECIES NAME PYLON NET TRAPS SLED CORES GRABS<br />

SCRAPING SEINE CRAB SCAVENGER SHRIMP<br />

n=18 n=6 n=15 n=15 n=15 n=6 n=9 n=15<br />

Crustacea Leuconidae Hemileucon levis . . . . . . . 7<br />

Leucosiidae Phlyxia intermedia . . . . . 17 11 33<br />

Philyra undecimspinosa . . . . . 17 . .<br />

Leucothoidae Leucothoe assimilis . . . . . . . 47<br />

Leucothoe commensalis 6 . . . . . 11 7<br />

Liljeborgiidae Liljeborgia sp.2 . . . . . . . 13<br />

Liljeborgia sp.4 . . . . . . . 20<br />

Liljeborgia dubia . . . . . . . 53<br />

Lysianassidae Ichnopus cribensis . . . . 7 . . .<br />

Sheardella tangaroa . . . . . . . 20<br />

Hippomedon denticulatus . . . . . . . 27<br />

Amaryllis macrophthalmus . . . 13 7 . 11 67<br />

Lysianassid sp.1 6 . . 40 20 . . 60<br />

Lysianassid sp.2 . . . 13 7 . . 13<br />

Lysianassid sp.3 . . . 7 7 . . 20<br />

Lysianassid sp.4 . . . 20 . . . 7<br />

Lysianassid sp.5 . . . 7 . . . .<br />

Majidae Leptomithrax gaimardii 17 . . . . 83 . .<br />

Melitidae Dulichiella australis . . . . . . 11 13<br />

Melphidippidae Hornellia micramphopus . . . . . . . 7<br />

Cheirocratus bassi . . . . . . . 7<br />

Mysidae Australomysis incisa . . . . . . . 7<br />

Tenagomysis sp.1 . . . . . . 11 7<br />

Paranchialina angusta . . . . . . . 40<br />

Nebaliidae Paranebalia sp.1 . . . . . . . 13<br />

Nebalia sp.1 . . . 20 . . . .<br />

Oedicerotidae Oedicerotid sp.2 . . . . . . . 7<br />

Paguridae Pagurid sp.1 . . . . 7 . . .<br />

Paguristes tuberculatus . . . . . 33 . 7<br />

Strigapagurus strigmanus . . . . . 33 . .<br />

Palaemonidae Macrobrachium intermedium . . . 47 73 17 . 7<br />

P<strong>and</strong>alidae Parap<strong>and</strong>alus leptorhynchus . . . . 7 . . .<br />

Paranthuridae Paranthura acacia . . . . . . 11 73<br />

Acculathura gigas . . . . . . . 13<br />

Bullowanthura pambula . . . . . . . 47<br />

Pasiphaeidae Leptochela sydniensis . . . . . . 11 7<br />

Philomedidae Philomedid sp.2 . . . . . . . 7<br />

Euphilomedes sp.1 . . . . . . . 13<br />

Philomedid sp.1 . . . . . . . 33<br />

Phoxocephalidae Brolgus tattersalli . . . . . . . 7<br />

Birubius panamunus . . . . . . . 60<br />

Birubius cartoo . . . . . . . 7<br />

Pinnotheridae Pinnotheres hickmani 6 . . . . . . 7<br />

Platyischnopidae Tomituka doowi . . . . . . . 7<br />

Portunidae Nectocarcinus tuberculosus . . . . 7 . . .<br />

Carcinus maenas * . . 7 . . . . .<br />

Ovalipes australiensis . . . . . 17 . .<br />

Nectocarcinus integrifrons . . 20 . 13 . . .<br />

Sarsiellidae Sarsiella sp.1 . . . . . . . 13<br />

Sarsiella magna . . . . . . . 20<br />

Scalpellidae Smilium peronii . . . . . 17 . .<br />

Sergestidae Leucifer sp.1 . . . . . . . 7<br />

Serolidae Serolis cf. bakeri . . . . . . . 7<br />

Heteroserolis australiensis . . . . . . . 7<br />

Sphaeromidae Cymodoce gaimardii . . . . . . . 27<br />

Exosphaemora sp.2 . . . . . . . 13<br />

Cilicaea crassicaudata 11 . . . . . . 7<br />

Ceratocephalus grayanus . . . . . . . 13<br />

Exosphaemora sp.1 . . . . . . . 13<br />

Squillidae Austrosquilla osculans . . . . . . 11 33<br />

Squilla miles . . . . 7 . . 7<br />

Synopiidae Tiron sp.1 . . . . . . . 47<br />

Tanaidae Leptochelia sp.1 . . . . . . . 7<br />

Paratanais ignotus . . . . . . . 27<br />

Unknown Brachyura megalops sp.2 . . . . . . . 13<br />

Brachyura megalops sp.5 . . . . . . . 13<br />

Upogebiidae Upogebia dromana . . . . . . 11 27<br />

Xanthidae Pilumnus tomentosus 17 . . . . 17 . .<br />

Pilumnus monilifer 22 . . . . 17 . .<br />

Echinodermata Amphiuridae Ophiothrix caespitosa 6 . . . . . . .<br />

Amphiura el<strong>and</strong>iformis . . . . . . 11 13<br />

Ophiocentrus pilosus . . . . . . 11 20<br />

Amphipholis squamata . . . . . . 22 .<br />

Amphiura constricta . . . . . . 22 67<br />

Asteriidae Allostichaster polyplax . . . . . 17 . .<br />

Cidaridae Goniocidaris tubaria . . . . . 83 . .<br />

Goniasteridae Tosia magnifica . . . . . 33 . .<br />

Nectria ocellata . . . . . 17 . .<br />

Strongylocentrotidae Heliocidaris erythrogramma . . . . . 50 . .<br />

Temnopleuridae Holopneustes inflatus . . . . . 17 . .<br />

Echiura Bonelliidae Metabonellia haswelli . . . . . . 11 7<br />

Mollusca Acanthochitonidae Acanthochitona pilsbryi 17 . . . . . . .<br />

Arcidae Anadara trapezia . . . . . 33 . 27<br />

Aricidae Barbatia pistachia . . . . . 17 . .<br />

Buccinidae Cominella eburnea . . . 13 . . . .<br />

43


Appendix 2. (Cont.)<br />

PHYLUM FAMILY SPECIES NAME PYLON NET TRAPS SLED CORES GRABS<br />

SCRAPING SEINE CRAB SCAVENGER SHRIMP<br />

n=18 n=6 n=15 n=15 n=15 n=6 n=9 n=15<br />

Mollusca Calyptraeidae Calyptraea (Sigapatella) calypt . . . . . 100 . 67<br />

Cardiidae Fulvia tenuicostata . . . . . . . 40<br />

Pratulum thetidis . . . . . . 11 7<br />

Carditidae Venericardia bimaculata . . . . . 17 44 93<br />

Chromodorididae Chromodoris cf. epicuria 6 . . . . . . .<br />

Columbellidae Demtimitrella pulla . . . 13 . . . .<br />

Dentimitrella sp.1 . . . . 7 . . .<br />

Corbulidae Corbula gibba . . . . . . 11 .<br />

Cyamiidae Cyamiomactra mactroides . . . . . . 11 27<br />

Cymatiidae Cymatiella verrucosa . . . 7 . . . 7<br />

Dorididae Dorid sp.2 6 . . . . . . .<br />

Dorid sp.1 . . . . . . . 7<br />

Eulimidae Strombiformis topaziaca . . . . . . . 33<br />

Fasciolariidae Pleuroploca australasia . . . . . 50 . .<br />

Hamineidae Liloa brevis . . . . . . . 7<br />

Hiatellidae Hiatella australis 11 . . . . . . .<br />

Hiatella subulata . . . . . . . 7<br />

Kelliidae Melliteryx acupunctum . . . . . . 22 33<br />

Leptochitonidae Leptochiton collusor . . . . . . . 7<br />

Limidae Limatula strangei . . . . . . . 7<br />

Lucinidae Bellucina crassilirata . . . . . . 11 13<br />

Myrtea mayi . . . . . . 22 13<br />

Mactridae Mactra jacksonensis . . . . . . 11 .<br />

<strong>No</strong>tospisula cf. trigonella . . . . . . 22 20<br />

Marginellidae Marginella sp.1 . . . . . . . 7<br />

Mitridae Amoria undulata . . . . . 33 . .<br />

Montacutidae Mysella donaciformis . . . . . . . 40<br />

Muricidae Bedeva paivae . . . . . . . 7<br />

Thais orbita 17 . . . . . . .<br />

Myochamidae Myadora albida . . . . . . 11 20<br />

Mytilidae Mytilus edulis planulatus 6 . . . . . . .<br />

Musculista senhousia . . . . . . . 13<br />

Gregariella barbatus . . . . . . . 7<br />

Nassariidae Niotha pauperata . . . 40 27 . . 13<br />

Nassarius burchardi . . . 13 . . 11 7<br />

Nasssaridae Nassarius (Zeuxis) pyrrhus . . . 20 20 . . 7<br />

Naticidae Polinices sordidus . . . . . . . 27<br />

Nuculidae Nucula obliqua . . . . . . 22 .<br />

Nucula pusilla . . . . . . . 27<br />

Octopodidae Octopus australis . 17 . . . . . .<br />

Octopus sp.1 . . . . . 17 . .<br />

Omnastrephidae <strong>No</strong>totodarus gouldi . 67 . . . . . .<br />

Ostreidae Ostrea angasi . . . . . 17 . .<br />

Pectinidae Cyclopecten cf. favus . . . . . . 11 47<br />

Periplomatidae Offadesma angasi . . . . . . . 20<br />

Philinidae Philine angasi . . . . . . . 7<br />

Pholadidae Pholas australasiae . . . . . 33 . 47<br />

Schizochitonidae Loricella angasi . . . . . 33 . .<br />

Scissurellidae Sinezona atkinsoni . . . . . . . 7<br />

Semelidae Theora cf. lubrica . . . . . . 22 .<br />

Sepiidae Euprymna tasmanica . . . . . . . 7<br />

Solenidae Solen vaginoides . . . . . 17 11 13<br />

Stiliferidae Stilifer petterdi . . . . 7 . . .<br />

Tellinidae Tellina (Macomona) mariae . . . . . . 11 7<br />

Thraciidae Eximiothracia modesta . . . . . . . 47<br />

Trigoniidae Neotrigonia margaritacea . . . . . 100 22 80<br />

Trochidae Clanculus limbatus . . . . 7 . . .<br />

Cantharidella tibiana . . . . 7 . . 7<br />

Veneridae Chioneryx cardioides . . . . . . . 7<br />

<strong>No</strong>tocallista diemenesis . . . . . 33 11 60<br />

Vulsellidae Vulsella spongiarum 6 . . . . . . .<br />

Nematoda Monhysteridae Monhysterid sp.1 . . . . . . 22 40<br />

Nemertea Unknown Nemertean sp.5 . . . . . . . 7<br />

PlatyhelminthesUnknown Turbellarian sp.1 . . . . . . 11 7<br />

Porifera Aplysillidae Dendrilla cf. rosea 11 . . . . . 11 .<br />

Halichondriidae Halichondria sp.2 50 . . . . . . .<br />

Halichondria sp.3 11 . . . . . . .<br />

Haliclonidae Haliclona sp.2 . . . . . 50 . .<br />

Haliclona sp.3 33 . . . . . . .<br />

Haliclona sp.1 6 . . . . 17 . .<br />

Psammascidae Psammascid sp.2 22 . . . . . . .<br />

Psammascid sp.1 11 . . . . . . .<br />

Suberitidae Suberitidae sp.1 11 . . . . . . .<br />

Tethyidae Tethya sp.1 11 . . . . 17 . .<br />

Unknown Demospongiae sp.6 . . . . . 33 . .<br />

Demospongiae sp.7 . . . . . 17 . .<br />

Demospongiae sp.8 . . . . . 17 . .<br />

Haplosclerid sp.1 11 . . . . . . .<br />

Sycon sp.1 . . . . . . . 7<br />

Sycon sp.2 39 . . . . . . .<br />

Poecilosclerid sp.1 22 . . . . . . .<br />

Poecilosclerid sp.2 11 . . . . . . .<br />

Poecilosclerid sp.3 6 . . . . . . .<br />

Dictyoceratid sp.1 56 . . . . . . .<br />

Dictyoceratid sp.2 17 . . . . . . .<br />

44


Appendix 2. (Cont.)<br />

PHYLUM FAMILY SPECIES NAME PYLON NET TRAPS SLED CORES GRABS<br />

SCRAPING SEINE CRAB SCAVENGER SHRIMP<br />

n=18 n=6 n=15 n=15 n=15 n=6 n=9 n=15<br />

Porifera Unknown Sycon sp.3 6 . . . . . . .<br />

Demospongiae sp.4 11 . . . . 33 . .<br />

Demospongiae sp.5 6 . . . . . . .<br />

Rhodophyta Delesseriaceae Hymenena sp.1 17 . . . . . . .<br />

Gracilariaceae Gracilaria sp.2 17 . . . . . . .<br />

Rhodomelaceae Rhodophyta #2 28 . . . . . . .<br />

Unknown Rhodophyta #1 6 . . . . . . .<br />

Sarcodina Elphidiidae Elphidium sp.1 . . . . . . . 7<br />

Miliolidae Triloculina affinis . . . . . . 100 87<br />

Quinqueloculina sp.1 . . . . . . 11 20<br />

Triloculina cf. oblonga . . . . . . 100 53<br />

Polymorphinidae Sigmoidella sp.1 . . . . . . 11 27<br />

Guttulina sp.1 . . . . . . 22 40<br />

Sipuncula Golfingiidae Themiste sp.2 . . . . . . . 13<br />

Phascolosomatidae Phascolosoma annulatum 6 . . . . . . .<br />

Phascolion sp.2 6 . . . . . . .<br />

45

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!